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Propagation of waves through Cantor-set media is investigated by renormalization-group analysis. For
specific values of wave numbers, transmission coefficients are shown to be governed by the logistic map and,
in the chaotic region, they show sensitive dependence on small changes in parameters of the system such as the
index of refraction. For other values of wave numbers, our numerical results suggest that light transmits
completely or reflects completely by the Cantor-set media C!. It is also shown that transmission coefficients
exhibit a local scaling behavior near complete transmission if the complete transmission is achieved at a wave
number "="! with a rational "! /#. The scaling function is obtained analytically by using the Euler totient
function, and the local scaling behavior is confirmed numerically.
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I. INTRODUCTION

Wave properties in fractal #1–11$ and quasiperiodic
#12–17$ structures in one dimension have been of theoretical
and practical interest over the past two decades. They are
typical examples of self-similar structures, and physical
properties peculiar to them have been explored. In order to
observe effects of quasiperiodicity, optical experiments using
dielectric multilayers of SiO2 and TiO2 films were performed
for the Fibonacci multilayer #16,17$. In these experiments,
scaling behaviors of the transmission coefficients were ob-
served, which had been predicted by the renormalization-
group theory #15$. For fractal structures, optical wave propa-
gation on Cantor multilayers has been studied by several
authors #2–9$. Self-similar structures of the transmission !or
reflection" coefficients were obtained numerically #2–7$.
Moreover, resonant states of light were studied #8,9$, which
was motivated by an experiment using a three-dimensional
fractal cavity called the Menger sponge #18$.

In this paper, we re-examine the optical wave propagation
through Cantor sequences on the basis of the
renormalization-group theory. In addition to the self-similar
structures mentioned above, we find interesting chaotic be-
haviors of the transmission coefficients analytically. It is well
known that nonlinear dynamical systems showing chaotic
behaviors often have strange attractors with fractal structures
#19$, but we show that the reverse is also possible. Namely,
chaotic dynamics is obtained from a fractal structure. In the
following, we find that, for specific values of wave numbers,
the transmission coefficients show chaotic behaviors gov-
erned by the logistic map. For these wave numbers, the
transmission coefficients are very sensitive to small changes
in parameters of the system such as the index of refraction.
This exotic behavior leads to rapid oscillations of the trans-
mission coefficients as functions of the index of refraction,
which could be observed in an optical experiment. For other
wave numbers, our numerical study suggests that light even-
tually transmits completely or reflects completely for the in-
finite generation of the Cantor sequences C!.

We will also find intriguing local scaling behaviors of the
transmission coefficients near complete transmission, which
are distinct from the self-similar structures found in Refs.

#2–4$. The complete transmission can be regarded as a fixed
point of the renormalization-group equation, and the local
scaling behaviors are obtained on the basis of the
renormalization-group theory. It will be shown that if com-
plete transmission is achieved at a wave number "="! with
a rational "! /#, the transmission coefficient around the wave
number exhibits a local scaling behavior. The scaling relation
is determined by the rational number "! /# through the Euler
totient function, and an analytical expression of the scaling
function will be presented. We will also compare the analyti-
cal results with numerical data.

This paper is organized as follows. In Sec. II, we briefly
explain the Cantor sequences and the Cantor-set media. We
then formulate our problem in terms of renormalization-
group transformation. In Sec. III, we classify wave propaga-
tion and find chaotic behaviors of transmission coefficients
governed by the logistic map for specific wave numbers.
Optical experiments to observe the chaotic behaviors are also
proposed. For other wave numbers, complete transmission
and complete reflection of light in the Cantor-set media C!

are numerically suggested. In Sec. IV, scaling behaviors of
the transmission coefficients near complete transmission are
analyzed on the basis of the renormalization-group equation.
Finally, in Sec. V, we summarize our results and discuss a
generalization of our analysis for generalized Cantor-set
media.

II. TRANSFER-MATRIX METHOD AND
RENORMALIZATION-GROUP TRANSFORMATION

In this section, we make a formulation of our problem.
The Cantor sequences and the Cantor-set media are con-
structed, and the transfer-matrix method is introduced to
study wave propagation through them. Then the
renormalization-group equation is defined in terms of the
transfer-matrix method.

Let us construct the Cantor-set media first !see Fig. 1".
The procedure of constructing the Cantor set begins with a
line segment with unit length !C0 in Fig. 1". We regard this
as substrate A. To obtain the first generation C1, the line
segment is divided into three parts. The left and the right
segments are substrate A, each of which has a length of 1/3
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and the middle part, which has a length of 1/3, is removed.
We regard the removed part as substrate B. Then the proce-
dure is repeated for each of remaining line segments A to
obtain new generations. We call the jth generation of the
Cantor sequence as C j. For C j we have a set of 2 j line seg-
ments of substrate A, each of which has a length of 1 /3 j. By
repeating this procedure infinite times, we finally obtain the
Cantor-set media, C!, which are self-similar and have fractal
dimension ln 2 / ln 3. In the following, we denote the indices
of refraction of A and B as nA and nB, respectively, and take
nB=1 without loss of generality.

Now consider wave propagation through the Cantor se-
quence C j illustrated in Fig. 2. For simplicity, we suppose
that the incident light is linearly polarized. Here EL

!1", EL
!2",

and ER
!1" denote the incident light, the reflected light, and the

transmitted light, respectively. No incoming wave from the
right ER

!2" exists, ER
!2"=0. In order to understand light propa-

gation through C j, let us first consider interfaces of two lay-
ers in Fig. 3. The electric field for light in layer A is given by

E = EA
!1" exp#ikAx − i"t$ + EA

!2" exp#− ikAx − i"t$ , !1"

where kA=nAk is the wave number of light in substrate A and
" is frequency of light. !k is a wave number of light in the
vacuum." The electric field in a layer B is given by the same
expression with the subscript A replaced with B. The bound-
ary condition on the interface at the position x= l is given by

EA
!1"eikAl + EA

!2"e−ikAl = EB
!1"eikBl + EB

!2"e−ikBl,

nA!EA
!1"eikAl − EA

!2"e−ikAl" = EB
!1"eikBl − EB

!2"e−ikBl. !2"

By introducing the following variables:

E+ = E!1" + E!2", E− = !E!1" − E!2""/i , !3"

Eq. !2" is recast into

%E+

E−
&

A
= T−1!nAkl"TABT!kl"%E+

E−
&

B
. !4"

Here T!#" and TAB are transfer matrices given by

T!#" = %cos # − sin #

sin # cos #
&, TAB = %1 0

0 1/nA
& , !5"

which represent light propagation within a layer and across
an interface A←B, respectively. In a similar manner, from
the boundary condition on the interface at x= l+d, we have

%E+

E−
&

B!
= T

−1„k!l + d"…TBAT„nAk!l + d"…%E+

E−
&

A
, !6"

where TBA=TAB

−1
is the transfer matrix representing light

propagation across an interface B←A. Combining Eq. !4"
with Eq. !6", we obtain

%E+

E−
&

B!
= T−1„k!l + d"…TBAT!nAkd"TABT!kl"%E+

E−
&

B
. !7"

Here note that, for a layer A with thickness d, the phase # is
given by #=nAkd, and for a layer B with thickness d, the
phase # is given by #=kd.

We are now ready to consider light propagation through
C j in Fig. 2. Repeating the similar procedure above, we ob-
tain the following formula for light propagation through C j:

%E+

E−
&

R
= e−ikM j!k"%E+

E−
&

L
, !8"

where E$ is defined by Eq. !3" for EL
!1", EL

!2", and ER
!1". The

real matrix M j!k" is obtained recursively as

M j+1!k" = M j!k/3"T!k/3"M j!k/3" !9"

with the initial condition M0!k"=TBAT!nAk"TAB. Using the
initial condition and the recursive relation, we can show

det M j!k" = 1, „M j!k"…11 = „M j!k"…22. !10"

By eliminating EL
!2" from Eq. !8", the ratio of the amplitude

of the transmitted light ER
!1" to that of the incident light EL

!1"

for C j is obtained as

ER
!1"

EL
!1" =

2e−ik

2aj + i!bj − cj"
, !11"

where aj!k", bj!k", and cj!k" are components of M j!k",

M j!k" = %aj!k" bj!k"
cj!k" aj!k" &, aj!k"2 − bj!k"cj!k" = 1. !12"

Therefore the transmission coefficient Tj '(ER
!1"(2 / (EL

!1"(2 of
C j is given by

Tj!k" =
4

(M j!k"(2 + 2
, !13"

where (M j!k"(2'2aj!k"2+bj!k"2+cj!k"2.

Cj

E (1)

E (2)

E (1)L

L

R

FIG. 2. Electromagnetic wave propagation through the Cantor
sequence C j !j=2".
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FIG. 1. The first four generations of the Cantor sequences C j.
The Cantor-set media C! are obtained in the j→! limit.
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In Fig. 4 we illustrate a typical example of transmission
coefficients as functions of the wave number for C2, C3, and
C4. As shown clearly, we have a scaling behavior of the
transmission coefficients: if we multiply the wave number by
3 as one generation increases, we have a similar structure in
the transmission coefficients. To describe the scaling behav-
ior properly, we introduce the rescaled wave number kj
=3 j! for C j, then from Eq. !9", we have

M j+1!kj+1" = M j!kj"T!3 j!"M j!kj" ,

det M j!kj" = 1, „M j!kj"…11 = „M j!kj"…22, !14"

which can be regarded as the renormalization-group equa-
tion describing the scaling behavior. The “renormalized”
transmission coefficient Tj!kj" for C j is given by

Tj!kj" =
4

#M j!kj"#2 + 2
. !15"

III. CHAOTIC PROPAGATION, COMPLETE
TRANSMISSION, AND COMPLETE REFLECTION

OF LIGHT

In this section we study the scaling behaviors of the wave
propagation by using the renormalization-group equation
!14". Using analytical and numerical methods, we find two
different scaling behaviors depending on ! of the rescaled
wave number kj =3 j!: !a" For !=m" / !2·3q" with integers m
and q, the renormalization-group equation reduces to the lo-
gistic map describing a chaotic behavior. The renormalized
transmission coefficient Tj!kj" is very sensitive to parameters
of the system and it changes drastically as the generation
increases. !b" For the other !, it will be found numerically
that the renormalized transmission coefficient Tj!kj" eventu-
ally flows into either T=1 or T=0 as j→#.

A. !=m" Õ (2 ·3q)

Let us first suppose that m is even, m=2n. In this case,
T!3 j!" in Eq. !14" takes a unique value T!n"" for j$q $20%,
which enables us to solve Eq. !14" analytically. By defining
N j =T!3 j+1!"M j, Eq. !14" is recast into

N j+1 = N j
2 !j $ q", det N j = 1, N j = T!n""M j ,

!16"

and from the relation #N j#2= #M j#2, the renormalized trans-
mission coefficient Tj!kj" is rewritten as

Tj =
4

#N j#2 + 2
. !17"

To solve Eq. !16", we rewrite N j in terms of the Pauli
matrices %i !i=1,2 ,3",

N j = & j1 + # j · $, # j = !' j
!1",i' j

!2",' j
!3"" , !18"

with real & j and ' j
!i" !i=1,2 ,3". From Eq. !16", we have

& j+1 = & j
2 + # j

2, # j+1 = 2& j# j, & j
2 − # j

2 = 1 !j $ q" ,

!19"

where # j
2= !' j

!1""2− !' j
!2""2+ !' j

!3""2. By eliminating # j
2 in Eq.

!19", the map for & j is obtained,

& j+1 = 2& j
2 − 1 !j $ q" , !20"

and in terms of the solution & j of Eq. !20", # j and Tj are
represented as

(2)

B

(2)
B

(1) (1)
A

A

z x

E

E E

y

B

(2)
B

(1)E

E

x=l x=l+d

E
AB B'

FIG. 3. Electromagnetic wave propagation across interfaces be-
tween two layers A and B.
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FIG. 4. Transmission coefficients Tj as functions of the wave
number k for C2, C3, and C4 !from top to bottom" with nA=2.0. The
range of the wave number k for C j is 0(k(3 j". Note that the
horizontal axes are rescaled by a factor of 3.
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! j = !
k=q

j−1

"2!k#!q, Tj =
1 − ""2 + #2#

1 − ""2 + #2#! j
2 "j $ q# .

"21#

Here " and # are the constants of motion in Eq. "19#,

% j
"3#

% j
"2# =

%q
"3#

%q
"2# $ ",

% j
"1#

% j
"2# =

%q
"1#

%q
"2# $ # "j $ q# . "22#

For %!q%&1, they satisfy "2+#2&1, and for %!q%'1, "2

+#2'1.
Equations "20# and "21# can be solved analytically. For

0& %!q%(1, the solution is

! j = cos&2 j−q cos−1 !q', ! j =
sin&2 j−q cos−1 !q'

sin&cos−1 !q'
!q,

Tj =
1 − ""2 + #2#

1 − ""2 + #2#cos2&2 j−q cos−1 !q'
, "23#

and for %!q%$1,

! j = cosh&2 j−q cosh−1%!q%', ! j =
sinh&2 j−q cosh−1%!q%'

sinh&cosh−1%!q%'
!q,

Tj =
""2 + #2# − 1

""2 + #2#cosh2&2 j−q cosh−1%!q%' − 1
. "24#

For %!q%(1, the transmission coefficient Tj shows sensi-
tive dependence on parameters of the system. To illustrate
this, we show the transmission coefficients for q=1 and n
=1 case, "namely, )=* /3#, as functions of nA in Fig. 5. In
this case, !q=1 is given by

!1 = −
1
2

cos(2nA*

3
) +

*3
4
(nA +

1
nA
)sin(2nA*

3
) , "25#

and the region of nA with %!1%(1 is shown in Fig. 6. It is
found clearly that the transmission coefficients are very sen-
sitive to nA in the region where %!1%(1.

This sensitivity to parameters of the system can be prop-
erly understood by introducing a variable Xj =1−! j

2. In terms
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FIG. 5. "Color online# Transmission coefficients Tj as functions
of nA for )=* /3. The generations of the left panel are j=2, j=3,
and j=4. We also show transmission coefficients for j=5, j=10,
and j=100 in the right panel. We plot Tmin as a function of nA by
the thick red line.
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FIG. 6. "Color online# The value of %!1% as a function of nA for
)=* /3. For nA which gives %!1%(1 "solid lines#, the transmission
coefficients show chaotic behaviors. For nA which gives %!1%'1
"dashed lines#, the transmission coefficients flow into T=0 for j
→+.
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of Xj, Eq. !20" reduces to the logistic map with r=4,

Xj+1 = rXj!1 − Xj" , !26"

which has been studied extensively in the context of chaos
#21–24$. The logistic map with r=4 in the interval 0!X
!1 is known to be very sensitive to the initial condition of
the system, which implies that Tj for %"q%!1 also has the
same chaotic property.

A similar chaotic behavior of the transmission coefficient
also appears for odd m=2n+1,

# =
2n + 1
2 · 3q $ . !27"

The matrix T!3 j#" in Eq. !14" is now !−1" j−qT(!n+1 /2"$)
for j%q, so N j #&T!3 j+1#"M j$ becomes
N j = !−1" j+1−qT(!n+1 /2"$)M j. For this N j, we have the
same equation as Eq. !16",

N j+1 = N j
2, det N j = 1, !28"

and the same expression of the transmission coefficient as
Eq. !17",

Tj =
4

%N j%2 + 2
. !29"

By using " j, ! j, &, and ' defined in Eqs. !18" and !22", the
same solutions !23" and !24" are obtained. Thus we have the
same class of chaotic behavior. As an example, we show the
transmission coefficients Tj for #=$ /2 #n=q=0 in Eq. !27"$

as functions of nA in Fig. 7. For #=$ /2, "q=0 is given by

"0 =
1
2
'nA +

1
nA
(sin'nA$

2
( , !30"

and the region with %"0%!1 is shown in Fig. 8. We find again
that Tj is very sensitive to nA in the region with %"0%!1.

In the chaotic region, %"q%!1, the transmission coefficient
Tj has the lower bound Tmin,

Tmin = 1 − !&2 + '2" . !31"

For #=$ /3, & and ' are given by

& = 0, ' =
− )3!nA

2 − nA
−2"sin2!$nA/3" + !nA − nA

−1"sin!2$nA/3"

)3!nA + nA
−1"2 sin2!$nA/3" − !nA + nA

−1"sin!2$nA/3" − 2)3
, !32"

and for #=$ /2,

& =
1
2
'nA −

1
nA
(tan'$nA

2
(, ' = 0. !33"

The resultant Tmin’s as functions of nA are also depicted in
Figs. 5 and 7, respectively.

From the analytical solution !24", we notice that outside
the chaotic region, %"q%%1, Tj decreases monotonically as
the generation j increases. Thus we have complete reflection
Tj =0 for j→(.

B. Other "

For #!m$ / !2·3q", we numerically find that the transmis-
sion coefficient Tj flows into either T=1 or T=0 as the gen-
eration j increases. A typical example of our numerical re-
sults is shown in Fig. 9. It is also found that if complete
transmission of light occurs at a certain generation, light al-

ways transmits completely in the following generations. To
see this, let us use the component representation of M j!kj" as
Eq. !12",

M j!kj" = 'aj bj

cj aj
( , !34"

which satisfies aj
2−bjcj =1. If Tj =1, 2aj

2+bj
2+cj

2=2 from Eq.
!15"; thus M j can be parametrized as

M j!kj" = 'cos ) j − sin ) j

sin ) j cos ) j
( ,

!35"
aj = cos ) j, bj = − cj = − sin ) j .

Substituting this into Eq. !14" yields

M j+1!kj+1" = 'cos!2) j + kj" − sin!2) j + kj"
sin!2) j + kj" cos!2) j + kj"

( , !36"

which implies Tj+1=1.
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0
0
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χ |0|

FIG. 8. !Color online" The value of %"0% as a function of nA for
#=$ /2. For nA which gives %"0%!1 !solid lines", the transmission
coefficients show chaotic behaviors. For nA which gives %"0%*1
!dashed lines", the transmission coefficients flow into T=0 for
j→(.
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When ! is near !=m" / !2·3q", the transmission coeffi-
cient is found to show transition from the chaotic behavior
presented in Sec.III A: the chaotic behavior appears in first

few generations, but finally the transmission coefficient
flows into either complete transmission or complete reflec-
tion. For example, the transmission coefficient Tj for !
=" /3+10−4 is shown in Fig. 10. In the fifth generation !j
=5", the transmission coefficient shows a chaotic behavior
indistinguishable from that for !=" /3 !Fig. 5"; however, in
the tenth generation !j=10", it shows a different behavior
from that for !=" /3, then finally in the hundredth genera-
tion !j=100", it flows into either T=1 or T=0.

C. Optical experiments

The chaotic behaviors of the transmission coefficients
presented in Sec. III A can be observed experimentally. As
shown in Figs. 5 and 7, the chaotic characteristics in the
propagation are already evident in the first few generations
of the Cantor multilayers, where the transmission coeffi-
cients oscillate rapidly as functions of nA. !This oscillation
reflects the stretching and the folding processes of the logis-
tic map." Therefore, the finite generations of the Cantor mul-
tilayers are sufficient to observe the chaotic behaviors. Ex-
perimentally, the finite generations of C j can be fabricated by
using the vacuum deposition on a glass substrate #5,16,17$.
In a similar manner as the Fibonacci multilayers #16,17$, the
Cantor multilayers are prepared from SiO2 and TiO2 films.
Na3AlF6 and ZnS are also utilized for the fabrication of C j
#5$. Although the wave number k needs to satisfy the condi-
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tion k=3 j! with !=m" / !2·3q" !m and q are integers" in
order to observe the chaotic behaviors on the jth generation
of the Cantor multilayers, this condition can be met by using
tunable lasers.

From the argument in Sec. III A, the indices of the refrac-
tion of A and B should be set in the region with 0# #$q#
%1. Suppose that the index of refraction of B is 1, then $q is
given by $see Eq. !18"%
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FIG. 13. !Color online" !a" Transmission coefficients T̂j as func-
tions of & for nA=2.0 around !0

!=". The generations are j=4,
j=9, and j=14. !b" The ratio R̂j!&"= $1− T̂j!&"% / $1− T̂j−1!& /3"% for
nA=2.0 around !0

!=". The generations are j=4, j=9, and j=14.
The scaling function f !1"!&" is also plotted by the line.
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FIG. 14. !Color online" !a" Transmission coefficients T̂j as func-
tions of & for nA=2.0 around !0

!=" /2. The generations are j=9 and
j=10. !b" The ratio R̂j!&"= $1− T̂j!&"% / $1− T̂j−1!& /3"% for nA=2.0
around !0

!=" /2. The generations are j=9 and j=10. The scaling
function f !1"!&" is also plotted by the line.
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FIG. 15. !Color online" !a" Transmission coefficients T̂j as func-
tions of & for nA=3.0 around !0

!=" /3. The generations are j=14
and j=16. !b" The ratio R̂j!&"= $1− T̂j!&"% / $1− T̂j−2!& /32"% for nA
=3.0 around !0

!=" /3. The generations are j=14 and j=16. The
scaling function f !1"!&" is also plotted by the line. !c" T̂j for the
generations j=13 and j=15. !d" R̂j for the generations j=13 and j
=15. The scaling function is f !2"!&" in this case.
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!q =
1
2

Tr!T"3q+1"#Mq$ , "37#

where Mq !%Mq"kq#$ is the solution of Eq. "14#. For ex-
ample, in the case of "=# /3 ""=# /2#, !q=1 "!q=0# as a
function of the index of the refraction of A, nA, is given by
Eq. "25# !Eq. "30#$. As was illustrated in Fig. 6 "Fig. 8#, the
condition 0$ &!q&%1 can be met in a broad region of nA
without fine tuning. Therefore, the detection of the chaotic
behaviors is feasible for the current optical experiments.

The most impressive chaotic behavior is obtained if nA
satisfies &!q&'1. Near nA satisfying &!q&=1, all values of T

appear in a very narrow region of nA. In particular, complete
transmission and "almost# complete reflection are nearby in
the narrow region. By controlling nA, the Cantor multilayers
with &!q&'1 could be used as fast switching devices.

IV. LOCAL SCALING BEHAVIOR OF TRANSMISSION
COEFFICIENTS NEAR COMPLETE TRANSMISSION

In the previous section, we found two classes of behaviors
of the transmission coefficients where they remain finite:
chaotic behaviors and complete transmission. In this section,
we focus on a behavior of the transmission coefficient near
complete transmission. As we showed in the previous sec-
tion, if we have complete transmission of light at a certain
generation, light always transmits completely after the gen-
eration. Thus we can consider that complete transmission is a
fixed point of the renormalization-group equation "14#. Ac-
cording to the renormalization-group theory, the existence of
a fixed point implies that scalings are found around it !25$,
which turns out to be also true in our problem. In the follow-
ing, on the basis of the renormalization-group equation, it
will be shown that if complete transmission is achieved at a
wave number "! with a rational "! /#, then the transmission
coefficient Tj around the wave number exhibits a local scal-
ing behavior which is distinct from the global scaling illus-
trated in Fig. 4. Moreover, we will present the analytical
expression of the scaling function.
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FIG. 16. "Color online# "a# Transmission coefficients T̂j as func-
tions of & for nA=5.0 around "0

!=# /5. The generations are j=13
and j=17. "b# The ratio R̂j"&#= !1− T̂j"&#$ / !1− T̂j−4"& /34#$ for nA
=5.0 around "0

!=# /5. The generations are j=13 and j=17. The
scaling function f "2#"&# is also plotted by the line. "c# T̂j for the
generations j=14 and j=18. "d# R̂j for the generations j=14 and j
=18. The scaling function is f "3#"&# in this case.
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FIG. 17. "Color online# "a# Transmission coefficients Tj as func-
tions of & for nA=1 /2 around "1

!=#. The generations are j=14 and
j=15. "b# The ratio R̂j"&#= !1− T̂j"&#$ / !1− T̂j−1"& /3#$ for nA=1 /2
around "1

!=#. The generations are j=14 and j=15. The scaling
function f "1#"&# is also plotted by the line.
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In order to analyze the scaling behavior of Tj near T=1, it
is convenient to introduce other variables xj !aj"kj#, yj
!$bj"kj#−cj"kj#% /2, and zj !$bj"kj#+cj"kj#% /2 for the matrix
elements of M j"kj#,

M j"kj# = &aj"kj# bj"kj#
cj"kj# aj"kj#

', kj = 3 j! . "38#

Since aj"kj#, bj"kj#, and cj"kj# satisfy aj"kj#2−bj"kj#cj"kj#=1,
the variables "xj ,yj ,zj# are constrained on the manifold xj

2

+yj
2=1+zj

2 shown in Fig. 11. By rewriting xj and yj as

xj = (zj
2 + 1 cos " j, yj = (zj

2 + 1 sin " j , "39#

the map "14# is recast into

zj+1 = 2zj
(zj

2 + 1 cos"" j − 3 j!# ,

(zj+1
2 + 1 ei"j+1 = "zj

2 + 1#ei"2"j−3j!# + zj
2ei3j!, "40#

and the transmission coefficient Tj in Eq. "15# is rewritten as

Tj =
1

xj
2 + yj

2 =
1

1 + zj
2 . "41#

The complete transmission Tj =1 is achieved when zj =0.
From Eq. "40#, it can be found that this occurs either if "i#
zl=0 with zl−1!0 for an integer l "1# l# j# or "ii# z0=0.

First consider case "i# in detail. Suppose that zl=0 with
zl−1!0 is realized for !=!l

!. Then from the first equation of
Eq. "40#, it is found that case "i# is possible only if
cos""l−1−3l−1!l

!#=0. Thus "l−1 is given by

"l−1 = 3l−1!l
! +

2n + 1
2

$ "42#

with an integer n. Then using Eq. "40# with j= l−1 and zl
=0, we have

ei"l = "zl−1
2 + 1#ei"2"l−1−3l−1!l

!# + zl−1
2 ei3l−1!l

!

= "zl−1
2 + 1#ei$3l−1!l

!+"2n+1#$% + zl−1
2 ei3l−1!l

!

= − ei3l−1!l
!
. "43#

Hence "l is obtained as

"l = 3l−1!l
! + $ "mod 2$# . "44#

To determine " j for j% l, we use the second equation of Eq.
"40#. Since zj =0 for j% l, the second equation of Eq. "40#
becomes

ei"j+1 = ei"2"j−3j!l
!# "j % l# , "45#

which determines " j for j% l completely as

" j = − "3 j − 2 j−l3l#!l
! + 2 j−l"l "j % l, mod 2$# , "46#

where "l is given by Eq. "44#.
In a similar manner, we can also solve " j in case "ii#.

Suppose that z0=0 for !=!0
!. From the following explicit

form of M0:

M0"k0# = TBAT"nAk0#TAB = & cos nA! − "1/nA#sin nA!

nA sin nA! cos nA!
' ,

"47#

we obtain that z0= "nA−1 /nA#sin"nA!# /2. Therefore, !0
! is

given by !0
!=m$ /nA with an integer m. "Note that the indi-

ces of the refraction of A and B are different from each other,
i.e., nA!1.# Substituting this into Eq. "47#, we find that x0
=cos m$ and y0=0. Thus "0 is given by

"0 = m$ "mod 2$# . "48#

Since zj =0 for j%0, we have

ei"j+1 = ei"2"j−3j!0
!# "j % 0# "49#

from Eq. "40#, which determines " j as

" j = − "3 j − 2 j#!0
! + 2 j"0 "mod 2$# "50#

with "0=m$.
Now we study behavior of the transmission coefficient Tj

near T=1. For ! near !l
!, zl becomes nonzero but remains

small, so we can neglect higher-order terms of zi
2 "i% l# in

the map "40#. Up to the next leading order, the map "40# is
approximated by
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zj+1 = 2zj cos!! j − 3 j"", ei!j+1 = ei!2!j−3j"". !51"

The latter equation in Eq. !51" can be solved easily,

! j = − !3 j − 2 j−l3l"" + 2 j−l!l !mod 2#" , !52"

where !l is given by

!l = #3l−1"l
! + # + O!zl" for l ! 0

m# + O!z0" for l = 0
$ !mod 2#" .

!53"

Here we have determined !l in a similar manner as Eqs. !44"
and !48", but O!zl" corrections appear since zl!0 near "l

!.
Substituting this into the first equation in Eq. !51", we obtain

zj+1 = 2zj cos $ j
!l"!"" , !54"

where $ j
!l"!"" denotes

$ j
!l"!"" = #!2 · 3 j − 2 j−l3l"" − 2 j−l%3l−1"l

! + # + O!zl"& for l ! 0

!2 · 3 j − 2 j"" − 2 j%m# + O!z0"& for l = 0
$ !mod #" . !55"

Therefore, for " near "l
!, zj is given by

zj = zl'
i=l

j−1

%2 cos $i
!l"!""& . !56"

Using this, we obtain the following transmission coefficient
Tj near "l

!:

Tj = 1 − zl
2'

i=l

j−1

%2 cos $i
!l"!""&2. !57"

As is proved in the Appendix, we can show that if "l
! /# is

a rational number s / t with coprime integers s and t, the
phase $i

!l"!"l
!" becomes periodic for a sufficiently large i,

$i+p
!l" !"l

!" = $i
!l"!"l

!" !i % r, mod #" , !58"

where the minimal period p is given by a divisor of !!t".
%Here !!x" is the Euler totient function %26&." Using this, we
obtain a local scaling behavior near complete transmission.
To see this, rewrite Eq. !57" by using "="l

!+&
!(& ( '1",

Tj!&" = 1 − zl
2'

i=l

j−1

)2 cos%$i
!l"!"l

!" + $i
!l"!!"l

!"&&*2. !59"

If "l
! /# is a rational number s / t, then from relation !58", the

product in the right-hand side of Eq. !59" for j= pn+m−1
!m=1,2 , . . . , p" is rewritten as

'
i=l

pn+m−2

)2 cos%$i
!l"!"l

!" + $i
!l"!!"l

!"&&*2

= '
i=p!n−1"+m−1

pn+m−2

)2 cos%$i
!l"!"l

!" + $i
!l"!!"l

!"&&*2

( '
i=l

p!n−1"+m−2

)2 cos%$i
!l"!"l

!" + $i
!l"!!"l

!"&&*2

= '
)=0

p−1

)2 cos%$p!n−1"+m−1+)
!l" !"l

!" + $p!n−1"+m−1+)
!l"! !"l

!"&&*2

( '
i=l

p!n−1"+m−2

)2 cos%$i
!l"!"l

!" + $i
!l"!!"l

!"&&*2

= '
)=0

p−1

)2 cos%$pn0!m"+m−1+)
!l" !"l

!" + $p!n−1"+m−1+)
!l"! !"l

!"&&*2

( '
i=l

p!n−1"+m−2

)2 cos%$i
!l"!"l

!" + $i
!l"!!"l

!"&&*2, !60"

where n0!m" is the minimal integer satisfying pn0+m−1
%r. Therefore, we have

1 − Tpn+m−1!&"

= '
)=0

p−1

)2 cos%$pn0!m"+m−1+)
!l" !"l

!" + $p!n−1"+m−1+)
!l"! !"l

!"&&*2

(%1 − Tp!n−1"+m−1!&"& . !61"

From Eq. !55", $p!n−1"+m−1+)
!l"! !"l

!" behaves as

$p!n−1"+m−1+)
!l"! !"l

!" + 2 · 3p!n−1"+m−1+) !62"

for n*1. Thus defining f !m"!&" as

f !m"!&" = '
)=0

p−1

)2 cos%$pn0!m"+m−1+)
!l" !"l

!" + 2 · 3)&&*2, !63"

we obtain

1 − Tpn+m−1!&" = f !m"!3p!n−1"+m−1&"%1 − Tp!n−1"+m−1!&"&

!n * 1" . !64"

By renormalizing Tpn+m−1!&" as
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T̂pn+m−1!!" # Tpn+m−1!!/3p!n−1"+m−1" , !65"

Eq. !64" is rewritten as

1 − T̂pn+m−1!!" = f !m"!!"$1 − T̂p!n−1"+m−1!!/3p"% . !66"

This equation clearly indicates that the ratio
$1− T̂pn+m−1!!"% / $1− T̂p!n−1"+m−1!! /3p"% does not depend on
the generation of Cantor sequences and it has a scaling be-
havior with the scaling function f !m"!!".

To illustrate the local scaling behavior of Tj near T=1
obtained above, we compare our formula !66" with numeri-
cal results for various "l

!. In Figs. 12 and 13, we show the
transmission coefficient Tj for nA=2 and "0

!=#. The trans-
mission coefficients Tj as functions of " are presented in Fig.
12 and the renormalized one T̂j!!" is in Fig. 13. In this case,
the period p in Eq. !58" is p=$!1"=1 and the scaling func-
tion f !1"!!" is

f !1"!!" = 4 cos2!2!" . !67"

For j%9 we find an excellent agreement between our for-
mula !66" and numerical data in Fig. 13.

In Figs. 14–16, we also present local scaling behaviors for
nA= t and "0

!=# / t with integers t=2,3 ,5. For t=2,3 ,5, the
period p is given by p=1,2 ,4, respectively. The scaling
functions f !m"!!" are given by

f !1"!!" = 4 cos2!2!" !68"

for t=2;

f !1"!!" = 16 cos2!#/3 + 6!"cos2!2#/3 + 2!" ,

f !2"!!" = 16 cos2!2#/3 + 6!"cos2!#/3 + 2!" !69"

for t=3; and

f !1"!!" = 256 cos2!#/5 + 54!"cos2!4#/5 + 18!"cos2!4#/5 + 6!"cos2!#/5 + 2!" ,

f !2"!!" = 256 cos2!#/5 + 54!"cos2!#/5 + 18!"cos2!4#/5 + 6!"cos2!4#/5 + 2!" ,

f !3"!!" = 256 cos2!4#/5 + 54!"cos2!#/5 + 18!"cos2!#/5 + 6!"cos2!4#/5 + 2!" ,

f !4"!!" = 256 cos2!4#/5 + 54!"cos2!4#/5 + 18!"cos2!#/5 + 6!"cos2!#/5 + 2!" !70"

for t=5. Again, we have excellent agreements between the
numerical data and our analytical results.

As an example with l!0, we show a local scaling behav-
ior for nA=1 /2 and "1

!=# in Fig. 17. Here p=1 and the
scaling function is given by

f !1"!!" = 4 cos2!2!" . !71"

It also reproduces the numerical data excellently.
We also confirm numerically that if complete transmission

is achieved at a wave number with an irrational "! /#, no
scaling behavior is obtained. The case of nA=&2 is shown in
Fig. 18. Although complete transmission is realized at "
=

&2
2 #, no scaling behavior of Tj near the complete transmis-

sion is found in Fig. 18.

V. SUMMARY AND DISCUSSION

We investigate wave propagation through Cantor-set me-
dia on the basis of the renormalization-group equation. We
analytically find that, for specific wave numbers, the trans-
mission coefficients are governed by the logistic map. Espe-
cially, in the chaotic region, the transmission coefficients
show sensitive dependence on small changes in parameters
of the system such as the index of refraction. For wave num-
bers near the values giving the chaotic behavior, the trans-

mission coefficients again show chaotic behaviors in the first
few generations. For other values of wave numbers, our nu-
merical results suggest that light transmits completely or re-
flects completely by the Cantor-set media. We also show that
the transmission coefficients exhibit local scaling behaviors
near complete transmission if the complete transmission is
achieved at a wave number "! with a rational "! /#. The
analytical form of the scaling function is determined by "!

through the Euler totient function.
Finally, we would like to mention that our approach de-

veloped here can be extended to the generalized Cantor se-
quences, where the length of each A becomes 1 /& as one
increases the generation. For a positive integer &, in a similar
manner as Sec. III A, it is found that the initial wave num-
bers which give chaotic behaviors are

" =
2m

!& − 1"!& − 2"&q# !m,q:integers" . !72"

In addition, for an odd positive integer &, chaotic behaviors
are also found to appear for

" =
2m + 1

!& − 1"!& − 2"&q# !m,q:integers" . !73"
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APPENDIX: PERIODICITY OF !i
(l)("l

!)

In this appendix, we prove that !i
!l"!"l

!" has periodicity
!58" if and only if "l

! /# is a rational number. From the ex-
plicit forms of !i

!l" given by Eq. !55", it is immediately found
that if !i

!l"!"l
!" has periodicity !58", then "l

! /# should be a
rational number. Therefore, we will show in the following
that if "l

! /# is a rational number, then periodicity !58" is
obtained.

To prove this, we use the Euler theorem

N$!M" = 1 !mod M" , !A1"

where N and M are mutually prime integers and $!M" is the
Euler totient function which counts the number of positive
integers not greater than and coprime to M #26$. The Euler
totient function satisfies

$!nm" = $!n"$!m" !A2"

for coprime positive integers n and m.
Since O!zl" corrections in Eq. !55" disappear for "="l

!,
!i

!l"!"l
!" is given by

!i
!l"!"l

!" = %!2 · 3i − 2i−l+2 · 3l−1""l
! for l ! 0

!2 · 3i − 2i""0
! for l = 0

& !mod #" . !A3"

Thus for a rational "l
! /#=s / t with coprime integers s and t, we have

!i
!l"!"l

!" = '(2 · 3i

t
−

2i−l+2 · 3l−1

t
)s# for l ! 0

(2 · 3i

t
−

2i

t
)s# for l = 0 * !mod #" . !A4"

Now decompose t into t=2%3&u where %, &, and u are inte-
gers and u is coprime to 2 and 3. Then we obtain

!i
!l"!"l

!" = '( 3i−&

2%−1u
−

2i−l+2−%

3&−l+1u
)s# for l ! 0

( 3i−&

2%−1u
−

2i−%

3&u
)s# for l = 0 * !mod #" .

!A5"

Since 3 and 2%u, and 2 and 3&u are mutually prime integers,
respectively, we have from the Euler theorem

3$!2%u" = 1 !mod 2%u" ,

2$!3&u" = 1 !mod 3&u" . !A6"

Moreover, using relation !A2", we find

3$!2%3&u" = !3$!2%u""$!3&" = 1 !mod 2%u" ,

2$!2%3&u" = !2$!3&u""$!2%" = 1 !mod 3&u" , !A7"

namely,

3$!t" = 1 + 2%uM, 2$!t" = 1 + 3&uN !A8"

with integers M and N. From Eq. !A8", we have

!i+$!t"
!l" !"l

!" = (3i+$!t"−&

2%−1u
−

2i+$!t"−l+2−%

3&−l+1u
)s#

= ( 3i−&

2%−1u
−

2i−l+2−%

3&−l+1u
)s# + !2 · 3i−&M

− 2i−l+2−%3l−1N"s#

= !i
!l"!"l

!" + !2 · 3i−&M − 2i−l+2−%3l−1N"s#

!A9"

for l!0 and

!i+$!t"
!l" !"l

!" = (3i+$!t"−&

2%−1u
−

2i+$!t"−%

3&u
)s#

= ( 3i−&

2%−1u
−

2i−%

3&u
)s# + !2 · 3i−&M − 2i−%N"s#

= !i
!l"!"l

!" + !2 · 3i−&M − 2i−%N"s# !A10"

for l=0. Therefore, we obtain Eq. !58" with p=$!t" for a
sufficiently large i. Here note that $!t" is not the minimal
period of !i

!l"!"l
!" in general. Thus the minimal period p is a

divisor of $!t".
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