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Wave propagation in almost-periodic structures 
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Abstract 

The unusual phenomena occurring in the wave propagation in almost-periodic structures - both classical and quantum - 
are studied in this paper. Focusing our attention on stiuctures with spectral measures in the family of disconnected iterated 
function systems, we describe and characterize the concept of "quantum intermittency". This theory shows that the non- 
trivial renormalization properties of the set of orthogonal polynomials associated with these systems are the origin of such 
"intermittency", and leads to a new determination of the exponents of the asymptotic growth of the moments of the position 
operator. 
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1. Introduction 

Imagine an infinite, linear chain of particles of mass m j ,  linked by springs of rigidity kj ,  and bounded at one end to 

a fixed wall, in its state of equilibrium. Energy can be input in this system by suddenly displacing the zeroth particle 

from its equilibrium position, while holding all other particles at rest. Letting then the system free to follow its time 

evolution, one observes an excitation of the neighbouring masses, and an energy flow towards the infinite end of the 

chain. Is this flow permanent, so that all the energy will eventually escape to infinity, or is the motion recurrent in 

some sense? As is well known, either case may occur, depending on the nature (continuous or discrete, respectively) 

of the frequency spectrum of the system. In the former case. can one exactly (and quantitatively) characterize the 

energy flow? 

Quite interestingly, this problem has a long history, nicely reviewed in the volume Wave Propagat ion in Periodic 

Structures by Leon Brillouin [1]. Indeed, Newton himself studied a doubly infinite linear chain with equal masses, 

m, and spring constants, k. in the second book of the Principia,  in 1686. His aim was to derive a relation for the 
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speed of sound; letting d be distance between neighbouring "air" particles in the state of equilibrium, he obtained 
for the velocity v of propagation of an elastic wave the formula 

.- v = d ~ m  k-, (1) 

which he then related to the density p and to the isothermal bulk modulus kd of air: v = V' -~ /p .  Since Newton's 
result is akin to the theory we are about to expose, it is convenient to pause for a moment and rederive it in modern 
notation. 

Newton's equations of motion for the system are quite simply given by 

d2xi 
m--d- ~-  = k(xi+l -- xi) -- k(xi - x i-1) ,  ~ (2) 

where xi is the displacement of the ith particle from its equilibrium position. 
Normal modes for this system were discovered by John and Daniel Bernoulli around 1727. Simply putting 

xi = a i e  l°~t, one finds the following equation for the mode frequency, co, and amplitudes, ai : 

k(ai+l - 2ai q- a i - 1 )  = --mco2 ai. (3) 

Eq. (3) can also be seen as the eigen-problem of the infinite, symmetric, tridiagonal, Jacobi matrix J with constant 
diagonal and outer diagonal elements: Ji,i = - 2 k ,  Ji,i+l = Ji,i-1 = k. Its spectrum, rr(J),  is the interval [ -4k ,  0] 
and hence the proper frequencies of vibration, co, must belong to [ - 2  k ~ / ~ ,  2 ~ / m ] .  

In 1753, Daniel Bernoulli formulated the Principle o f  Superposition, according to which the general motion of 
the system above is given by a suitable superposition of "proper oscillations". Indeed, introducing the momenta 
Pi -= m d x i / d t  in the set of equations (2), we obtain 

- -  = H ( 4 )  
dt _ _ ' 

where H is an infinite, square block matrix having m -1 times the identity in the top right quarter, the Jacobi 
matrix J in the bottom left quarter, and zeros elsewhere. The spectrum of H is trivially related to that of J:  
a (H)  = i [ - 2 ~ ,  2 ~ / m ] ,  and the formal solution of the equations of motion, 

p( t )  \ p__(0)/' (5) 

can be "spectralized" in an eigen-function ("proper oscillations") expansion; of course, this has to be continuous. 
Choosing as initial condition at t = 0 the vector Xn = 3n,O, Pn = 0, which stands for the physical situation of 
sudden displacement of the zeroth mass from its equilibrium position, we find that the displacement of the generic, 
nth mass, at time t, is given by the real part of 

xn (t) = f Tn (y)e i 2vff/-~t I~/T~-y d/z(y), (6) 

where Tn is the (properly normalized) nth Chebychev polynomial, extended by symmetry to negative values of the 
index n, and/z is the continuous measure with density d/z(y) = dy/zrv/1 - y2. The motion of the nth element of 
the chain is therefore given by the Fourier transform of the nth orthogonal polynomial associated with the spectral 
measure /z, with respect to the spectral measure itself. This latter, /z, is associated with the initial state of the 
evolution: in quantum mechanical language, it is called the local density o f  states. These characteristics are quite 
general, and will be found in all systems treated in this paper. 
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The vector of  the instantaneous values of  the squares of  the displacements, 2 x n (t), gives a snapshot of  the elastic 

energy propagation; this can be gauged by the moments v~ 

v~(t) := ~ n~x~(t). (7) 
n 

When the moment problem is determined [2] (as in all cases we shall discuss in this paper) the full distribution {x 2 } 

is in one-to-one relation with the set of  its moments with integer index o~ _> 0. 

In the problem at hand, the integration in (6) can be performed in terms of  Bessel functions: xn (t) = J2n (2t x/T'/m). 

As a consequence, at fixed time t, the distribution of  elastic energy is localized in the region [hi _< tx/-k-7-~, with 
a negligible tail outside. One finds that v~ (t) ~ ( t ~ )  ~, and therefore, at least in a suitable average sense, the 

distribution of  elastic energy scales as a function of  the argument n / t ,  i.e. space over time: wave propagation is 

ballistic, and it is correct to associate a velocity to it, which is exactly that appearing in Newton's formula (1). 

One may wonder what are the characteristics of  the physical system (2) which give rise to this simple and regular 

behaviour - Certainly, the equality of  masses and spring constants, which leads to a constant Jacobi matrix J .  The 
presence of  an absolutely continuous spectral measure is another distinct feature. Indeed, since Lord Kelvin in 1881, 

and Born in 1912. it is known that richer spectral properties can be obtained by modulating the sequence of  masses. 
Nevertheless, when the Jacobi matrix associated with the problem is still periodic, the same qualitative picture shown 

above is to be found. It was then a remarkable fact when, in 1953. Dyson allowed masses in the chain to take random 

values, and found that with probability one the spectrum of the system is pure point, with exponentially localized 

eigen-functions [3]. In such systems, typically, energy stays confined, and cannot propagate to infinity! This is the 

content of  quantum localization. These dynamical behaviours are extremal, and a full spectrum of possibilities 

exists in between them. 
This has become evident more recently, in the study of  quasi- and almost-periodic systems [4-7]. Partly because 

of  the experimental discovery of  quasi-crystals, and partly because of  their mathematical appeal, these structures 

have been intensely studied, unveiling the deep relations which link, in sequence: 

The "character" of  the sequence of  coefficients of  the Jacobi matrix (i.e. periodicity, quasi/almost periodicity, or 

lack thereof). 
- The nature of  the spectral measure of  the system (i.e. pure point, singular continuous, absolutely continuous). 

The nature of  the time evolution of  the system (recurrencies, intermittent energy propagation along the chain, 

etc.). 
In our work [8,9], putting the spectral measure, rather than the Jacobi matrix, at the first place, we have observed 
that singular continuous properties of  the spectral measure imply almost periodicity of  the Jacobi matrix, and a 

non-trivial evolution of  the dynamical system. This phenomenon (non-trivial dynamical evolution) can be defined 
as the lack of  a simple scaling relation for the energy transport over the linear chain: moments va do not behave 

asymptotically as t ~'~, not even allowing the presence of  a constant y different from one at the exponent, and, as a 
consequence, the 2 distribution x n (t) does not scale as a function of  nt -~'. 

For reasons to be apparent in the following, we have termed the coexistence of these phenomena quantum 

intermittency. We believe that this paradigm plays a fundamental role in the physics of  these systems, and this paper 

is devoted to the discussion of  some of  its multi-faceted aspects. 
Its content can be summarized as follows: a class of  spectral measures to be considered throughout the paper 

is introduced in Section 2. A Jacobi matrix can be associated with each of  these spectral measures. The dynamics 
generated via Schr6dinger equation by these Jacobi Hamiltonians is introduced in Section 3, where we also briefly 
review known results, and anticipate new developments, for the asymptotic behaviour of  this dynamics, at f ixed 
site. While some aspects of  intermittency are already perceivable at this level, its full content is appreciated when 
looking comparatively at the evolution of  the moments vc~ defined above, suitably generalized to the quantum case. 
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This leads to the definition of  the intermittency function fi, for which, in Section 4, we develop a novel theory which 

shows its origin in the renormalization properties of  the orthogonal polynomials associated with the system. Finally, 

the conclusions try to put these results into a general perspective. 

2. Almost-periodic lattice systems derived from their spectral properties 

Many different systems have been studied in the research on the dynamical properties of almost-periodic systems; 

these include notably Fibonacci and Harper Jacobi matrices [10-15]. Nevertheless, we have preferred to build our 

research on the basis of  an inverse approach: a Jacobi (i.e. tridiagonal, semi-infinite, real symmetric) matrix is 
uniquely determined by, and uniquely defines, its spectral measure/z - with respect to the first basis vector in all 

cases when the moment problem is determined [2]. Therefore, we have assumed at the start a particular spectral 
measure as given, and derived from it the associated Jacobi matrix, i.e. the physical system it describes, and its 

time evolution. Because we have chosen/~ in a class for which many important results are known, our approach 

has allowed us to make very precise statements, not only from the theoretical viewpoint, but also in numerical 

experimentations. 

The class just mentioned consists of  the invariant measures of  iterated function systems (IFS) [16-18], among 

which we have considered in detail the sub-classes of  disconnected linear IFS, and of  real julia set measures. The 
techniques to derive the associated Jacobi matrices are presented in [19-21]. IFS measures can be defined by the 
balance equation 

M 

f f (x )d i t (x )= Z 7rj f f(dpj(x))dlz(x), (8) 
j = l  

which holds for any continuous function f ;  ~bj are a set of M contractive real maps, with associated weights 7rj, 

zrj > 0, ~ j  zrj ---- 1. When ~bi (x) = 8ix + fii, we are in the presence of  a linear IFS measure. When an IFS is 

generated by two non-linear maps, ~b+(x) = 4-v/x - -  ~., yr± = zc_ ---- ½, with )~ _> 2 a real parameter, we are facing 

a real Julia set measure: indeed, this is also the invariant measure of  the dynamical system z --~ z 2 )~, which lives 

on a real Julia set. 
The simplicity and at the same time, the richness of  these measures can be appreciated in the so-called thermo- 

dynamical formalism, which studies the limiting behaviour of  sums of the kind S ( { Ik },/z ) -- ~--~k/z (Ik)q I ( Ik ) -  3. 
Here, {Ig} is a cover of  the support of  the measure/z by intervals, and I denotes their length. For q fixed, as the 

size of  the cover (i.e. the largest value of  l (Ik)) tends to zero, the sum S may tend to zero or to infinity according 
to the value of  T. The border-line value between the two behaviours, r (q), defines the generalized dimension. Dq, 
via Dq = r(q)/q - 1. With a certain generality (sufficient for the cases considered here) we can say that DO is the 

fractal dimension of  the support of  the measure, D1 the information, and D2 the correlation dimension of/z. Usually, 
the generalized dimensions of  a singular spectral measure are hard to compute. Since they are strictly related to 
the dynamics, their precise determination is nevertheless crucial. For disconnected, linear IFS. the dimensions Dq 
follow simply from the equation 

M 

= 1 ,  

j = l  

which contains only a finite number of  terms, and can be easily solved to the precision wanted. The case of  real 
Julia set measures is just a bit harder, since they can be approximated by linear IFS: a thorough study is presented 

in [22]. 
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Fig. 1. Transmission coefficient, T(E) ,  as a function of  energy, E,  for the scattering of a wave through a (symmetrized) lattice system of 
length N = 40 (continuous curve), 80 (dashes), 120 (dots), described by the Jacobi matrix of the measure C. The energy dips correspond 
to gaps in the spectrum of/~. Because of  symmetry, only half of the picture is shown. 

A few particular cases of  these measures may serve to highlight the generality of  IFS theory: 
- The spectral measure/z  of  Newton's  example in Section h this is a Julia set measure with ), = 2. 
- The uni form Lebesque measure on [ - 1 ,  1]: this comes from a linear IFS with equal weights and q~±(x) = 

- Devil 's  staircase measures on [ - 1 ,  1]: we shall consider repeatedly the one given by q~±(x) = ~x :k 4, Jr_ = 
Jr+ = ½. For short, it will be indicated as C, because its support is a Cantor set. 
The first two examples above we somehow exceptional: for typical values of  the parameters, IFS measures are 

singular continuous, and one may wonder to what sort of  Jacobi matrices they give rise. It turns out that these are 
typically almost periodic [9] (limit periodic in the Julia case [23]). Therefore, in this approach, two of the three 
defining criteria of  quantum intermittency are met  since the very beginning. 

Of  a certain interest, worth of  being mentioned at this point, is the fact that the techniques leading to the construction 
of such Jacobi matrices [ 19] can be also translated into the design of electrical or mechanical filters, like that originally 
constructed by Vincent in 1898 [1]. In our examples, these filters arefractal-pass, in the sense that they suppress all 
frequencies, except those belonging to a fractal set, which can be chosen as wished b y  tuning the IFS parameters! 
Fig. 1 shows a typical transmission profile, at different lengths of  the filter, which renders evident the hierarchical 
construction of  the measure C effected by the corresponding IFS. 
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3. Quantum dynamics of almost-periodic Jacobi matrices 

Schrrdinger 's equation, i d ~ / d t  = J ~ ,  together with the initial condition ~(0)  ---- e0 :---- (1, 0 . . . .  ), describes 

a physical situation quite similar to that we have met in Section 1. Here, the Jacobi matrix J describes a lattice 

system with site energies Ji,i and hopping terms Ji,i+l. The initial site of  the evolution is e0, the zeroth lattice state, 
and, as time grows, the wave-packet ~p spreads on the lattice. The analogy is most clearly seen when exhibiting the 

solution of the equation of motion, as in [8,29] 

f- Cn(t) := (en, e-itJe0) = e l tEpn(E) d/x(E). (10) 

Here, Pn is the nth orthogonal polynomial associated with the spectral measure/~, and, as indicated, cn (t) is the 
projection of  O(t)  on the nth lattice state, en. 

Already at this level we can see one of  the distinct features of  quantum intermittency: Let us consider the 

projection of  the motion over a finite sub-lattice, which for convenience can be taken to be the set of sites from 
N 0 to N: EN (t) = ~ n = 0  ICn (t)12. According to the celebrated RAGE theorems [4], when the spectral measure Iz 

is absolutely continuous, ZN(t )  decays to zero: as in Newton's example, energy flows to infinity. When # is pure 

point, EN(t )  is almost-periodic, as in Dyson's  case. But when/x is singular continuous, EN(t)  follows neither of  
these behaviours [24]: all it can be said is that it goes to zero in Ces~o  time average. Indeed, thanks to a Mellin 
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Fig. 2. Projection of the motion on site zero, co, versus time, t, for the quantum dynamics of the IFS C. 
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type analysis, and generalizing previous results of Bessis et al. [25,26], Ketzmerick et al. [27], Makarov [28], and 
ourselves [8,9,29], we have shown [30] that, in the IFS class described above 

T 

if 2---T EN(S) ds = Z Rp e -zp logT + O(T-1), 

--T P 

(11) 

where zp are poles in the Mellin transform of ~N,  of the form Zp = ap + ibp, with z0 = D2, and ap > D2 for all 
p; Rp are the corresponding residues. The presence of poles with ap arbitrarily close, or equal to, D2, gives rise to 
a log-oscillatory behaviour in 3N (T), superimposed to the leading decay. Without Ceshro time-averaging, U,N (t) 
shows typically an "intermittent" behaviour (Fig. 2, see also [31]) with zones of "high activity" (which means here 
return of probability density close to the origin), and quiescence. 

4. The intermittency function/3 

Perhaps the most important manifestation of intermittency in wave propagation in almost-periodic structures is 
the fact that the distribution of excitations (x~(t) in the classical case, ICn (t)[2 in the quantum, see Fig. 3) does not 
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Fig. 3. Snapshot of the probability distribution, ICn (t)l 2, versus site, n, for the quantum dynamics of the IFS C. 
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np (t). Notice that the oscillations of the leftmost 10% of the distributions are associated with the recurrencies seen in Fig. 2. 

scale asymptotical ly as a function of  the product nt  y . This is manifest in the non-uniform scaling of  the moments 

va (Eq. (7) and Fig. 4), which can be encoded in an intermittencyfunction ~ of the moment  index ol, via 

log(va( t ) )  "~ a f t (u)  log t + g( log  t).  (12) 

Here, the leading correction g(s)  is a bounded function. The origin of  the function g can be easily explained by 

analysing in detail the distribution of  the complex poles of the Mell in transform of  "~N, and therefore also of  v~, as 

done in [30]. For particular values of  the parameters, g turns out to be asymptotically log-periodic. 

To the contrary, the nature of  the convex, non-decreasing function fl(ot) [8], which is l imited from below by D1 

(Guarneri 's  inequality [32,33]), is much more subtle, and elusive. In a previous paper [9], we have shown that in 

the case o f  real Julia sets the function fl is uniquely determined by the thermodynamical properties o f  the spectral 

measure Iz, via the relation 

fl(c0 = DI-,~.  (13) 

To our knowledge, this is the sole non-trivial case for which an exact result has been derived. In view of  what is 

noticed above, this also permits to obtain Newton's  result in a synthetic form, since all the generalized dimensions 

relevant to the case take the value one. 
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In the general case of which IFS are an excellent example, thanks to their approximation properties [34-37], 

this estimate is not exact [9]. It is then plausible that understanding why IFS measures do not follow relation (13) 
will give us a clue on the general behaviour. 2 To do this, we shall now present a novel, complete theory of the 
intermittency function fl of IFS measures, which contains Eq. (13) as a particular case. 

According to Eq. (10), the probability density on site n is 

= ff dl~(y)pn(x)pn(y)@(t, x - y), (14) fCn(t) l 2 

where ~ = e -it(x-y) for instantaneous values, or ~ = sint(x - y) / t (x  - y) for Ces~o averages. Applying the 

balance property (8), we get 

M P P 

[Cn(t) l 2 = E zrizrj [ [  d/~(x) dlz(y)pn(dpi(x))pn(qbj(y))q~(t, c~i(x) - (hi(y)), (15) 
i,j=l d d 

in which we can disregard terms with i • j ,  for they decrease in Ceshro average like t -1. To the contrary, diagonal 
terms decay like t -D2 [9,30], and will therefore be retained. 

Since the composite functions Pn (q~i (x)) are still polynomials of degree n, they can be expanded on the basis of 
the first n orthogonal polynomials of/z: 

Pn (qbi (x)) = ~ l-'i%pk (X). (16) 
k=0 

The coefficients F have a profound meaning, as they are the Lanczos vectors associated with a generalization of 
the Jacobi matrix J [19]. 

For convenience, we shall assume that F n are also defined, and null, for k > n. This relation can be used within i,k 
Eq. (15), to get 

M n f f d / z ( x )  d / z ( y )  E Fi,nkFi, n lpk(x)pl(y)~(3i t 'x  -- y ) '  (17)  

i=1 k,l=O 

where the sign --~ makes it evident that we are looking for asymptotic behaviours, and where linearity of the maps 
has allowed us to shift the multiplicative action of ~i from energy to time, in the argument of q~. 

Multiplying both sides of (17) by n '~, and summing over n, produces the moment v~ (t) at LHS; exchanging the 
order of summation at RHS (which is certainly allowed, since all terms in the summation decay sufficiently fast in 
the relative indices) gives 

M ~ o0 

f f ~"~naEn En va(t) ~ E J r  2 E dlz(x)dlz(y)pk(x)pl(y)fb(3it, x - y) ~...j i,k i,l" (18) 
i=1 k,l=O n 

We must now analyse in detail the terms appearing in this equation. The Stieltjes integrals 

Ck,l(t) := f f d/z(x) dlz(y)pk(x)pl(y)Cb(t, x -- y) ~ ~ 1 9  ~ 

2 In a recent paper by Pi6chon [38], a relation formally equivalent to Eq. (13), but radically different in meaning, has been conjectured 
to hold exactly, and generally. Without commenting here on the validity of  this conjecture, I remark that in such proposed relation/3 is the 
growth exponent of moments averaged over initial site (which mathematically amounts to different Jacobi Hamiltonians) and D are the 
thermodynamical dimensions of  the global density of  States - which is not the spectral measure/z,  and can indeed have rather different 
characteristics from the latter. 
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are the ins tantaneous  (or C e s ~ o  averaged) values of  the product  ckc~. They, too, decay in t ime average like t -D2 

The discrete Mel l in  t ransforms of  the numer ica l  coefficients F .  

(x) 

Mi.k.l (oe) : =  ~ n a Fi.n~ F/.n/, (20) 
n 

exist for all values of  t~. Relabel l ing indices,  to introduce the site distance p = 1 k, it can be shown that Mi.k.k+p (C~) 
behaves like rli,p (ct)k ~ as k tends to infinity. The coefficients rli,p (o0 can be found  numerical ly,  as we shall discuss 

later. We observe that Oi,p(a), for oe fixed, is a last ly decreasing funct ion of  p (see Fig. 5). 

Mak ing  use of  this analysis  in Eq. (18) leads to 

v~(t) ~ ~_,Jr 2 rli.o(oOv~(8,t) + Z rli,p(eOV~.p(3it) . (21) 
i = l  p > O  ] 
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where the generalized moment vc~,p(t) is defined by 2 Y~k kU!)~(Ck,k+p(t)), 9t denoting the real part. A weighted 

relation between different moments vc~.p, at different times t, and 6it, is established. This remarkable fact, together 
with the asymptotic behaviour of  these moments vc~,p ~ Vp(ot)t 'q~ (we can normalize to Zo = 1), leads us to an 

implicit equation for the function/4(00: 

1 + Z  (22) ~--- ~tOi Oi,o(O t) yp(Ot)Oi.p(~) • 
i:1 p>0 

This equation fully describes quantum intermittency in IFS systems. 

In fact, on the one hand, Eq. (22) can be turned into a computational scheme. The constants qi,p(ot) can be 

easily determined from the coefficients F (whose calculation requires only the Jacobi matrix J :  one can employ the 

techniques in [191 or directly the definition). The constants yp(ot) are the ratios between the asymptotic behaviours 
of  v,~,0 and v,~,p, and can be computed independently of/4.  In a moment, we shall present the results of  these 

computations. 
At the same time, Eq. (22) is invaluable to understand quantnm intermittency from the theoretical point of  view. 

To begin with, the result (13) can now be rederived in this general setting: In the Julia set case, one has the crucial 

renormalization equation P2n o (b+ = Pn. Approximating the non-linear maps 4,+ by an IFS with M = 2 q linear 
maps (the larger the integer q, the better the approximation), leads to ]F/nk I = 1 for k = n / M  and zero otherwise. 

Then, we have that 

~i = 2 -  q = __1 = .-(,~+1) M '  0i ,0(O')  7"t i , Oi,p = 0 for p > 0. (23) 

With these values, it is easy to see that Eq. (22) coincides with the definition of  generalized dimensions, Eq. (9). 
Let us now turn our attention to the devil's staircase measure C introduced in Section 2. Here, Eq. (13) predicts 

a flat function/4(~) = Do, while a non-constant function is observed in numerical experiments: something else 
than thermodynamics is deten-nining this enigmatic intermittency without  multi-scaling [9]. Because of  the sym- 

metries of  this IFS, the values of  0i,p(O0 do not depend on the map index i, and we can solve for/3 in Eq. (22), 

obtaining 

/4(o0 = log qo(oe) + ~ ypOp(U) • (24) 
Ot 

L p > 0  

Now, the renormalization form (23) of  the 0-functions leads to fl = Do, which is an extreme case of  a convex, non- 
decreasing function. It is therefore clear that any deviations from (23) must produce a convex, increasing function, 
which means intermittency. Such deviations are apparent in Fig. 5. 

A close analysis of  these data reveals that 00 differs very little - at least for small values of  u - from the estimate 
(23): at ~ = 0.4 one has q0 = 2.68 and z r l l - ~  = 2.64. Nonetheless, inserting these values in Eq. (24), and 
neglecting terms with p > 0, leads to the fl values:/3 = 0.806 and 0.756, respectively, which - on the scale of  

precise numerical computations - are appreciably different from themselves, and from the numerically comPuted 
value/3(0.4) = 0.777. Fig. 6 shows the/3-functions obtained by truncating the summation in Eq. (24) to p ---- 0, 
p = 0, 2, and p = 0, 2, 4 (the coefficients ?,p being null for odd p). Convergence of  the successive approximations 

to the experimental data (stars) is observed. At fixed values of  the maximal p,  the precision of  the approximation 
gets worse with increasing or, because of  the increase of  the curves Op (or). 

As seen, small variations in the values of  the q-functions can change appreciably the value of  the dynamical 
exponent/4; moreover, they can be responsible for intermittency, when this does not originate from the thermody- 
namical properties of  the spectral measure. What is then the origin of  these variations? It stems from the complicate 
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Fig. 6. Exact (stars), and approximate intermittency functions/3, versus ~, for the IFS C. See also Fig. 5 and text. Different approximations 
are p = 0 (circles), p = 0, 2 (squares), p = 0, 2, 4 (triangles). The continuous line marks the curve/3 = D 0. 

structure of  the coefficients F ,  pictured in Fig. 7, quite different from the simple renormalization ansatz I~nkl = 1 

for k = n / M  and zero otherwise. Eq. (16) shows that these coefficients encode the renormalization properties 
of  the orthogonal polynomials of  the spectral measure. Since these latter are the "eigen-functions" to be properly 

associated with a continuous spectrum, it is then natural that they play the significant role which has been unveiled 
by our analysis. 

5. C o n c l u s i o n s  

The dynamical analysis of  quantum motion has shown that except for a few non-physical examples this cannot be 
chaotic in a proper sense [39,40]. This fact poses a serious challenge to the pretension of  quantum mechanics to be 
a complete theory of  nature [41]. Nevertheless, the quest for the Holy Grail of quantum chaos, which has animated 
the physicists' community for more than a decade, has widely enlarged our understanding of  the motion induced by 
particular classes of  Schr6dinger's Hamiltonians. Among these, the case of  almost periodic systems has interested 
physicists and mathematicians alike. 
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Somehow boldly, we have proposed the term quantum intermittency for what appears to be the typical coexistence 

of three phenomena: almost periodicity of lattice Hamiltonians, singular spectral measures, and non-trivial dynamical 
phenomena. Most of these phenomena are of course well-known: RAGE-like results have a rich and 10ng history, 

as well as the ?odd" kind of recurrencies associated with singular continuous spectra, and the study of diffusion 
in relation with properties of the spectral measure. Nonetheless, the intermittency function /3, on which we focus 
mostly our attention, has a fresh look: it permits a quantitative description of the spreading of  the motion over the 
lattice basis, and has so far eluded a complete theoretical analysis. 

The particular value of/3 at ot = 2 (second moment) is certainly endowed with an important physical meaning 
[42]. Yet, only studying the full curve/3 as a function of ot permits to unveil the richness of the dynamics: in this 
sense quantum intermittency is a much stronger concept than anomalous diffusion, i.e., the inequality/3(2) # 1. It 

is indeed much harder to describe theoretically (and sometimes to compute numerically) the variations of 15 with 
c~, than to obtain approximate estimates - more or less precise - of/3 in a range of small values of ~: see also the 
papers by Artuso and Geisel in this volume, and Ref. [12]. The results presented in this paper are an important step 
in this direction, since they solve the problem in the vast class of IFS measures. 

Relations between dynamics and thermodynamical properties of the spectral measure emerge when we do not use 
the geometry of the Hilbert basis, and consider non-basis dependent quantities to describe the motion, as done by 
Guarneri [33,43,44]. The intermittency function/3 itself can be put in relation with the thermodynamical properties of 
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the spectral measure; this relation is exact and transparent in the case of Julia set Jacobi matrices. This paper explains 

why this is so, and why this fails in general: mathematically speaking, only under strong algebraic properties, like 

those of Julia sets, the orthogonal polynomials of a spectral measure are linked by a simple renormalization relation. 

Indeed, the fact that the motion in almost periodic systems should be described by such renormalization properties 

is known, and has been already employed, e.g., in the study of Fibonacci systems [12,13,45,46]. What is added 

by our results is the discovery that, typically, the renormalization procedure cannot be given a simple form, and 

must itself present a "singular" structure, which is the origin of the non-trivial intermittency function 13. The linear 

disconnected IFS studied in this paper are an evident illustration of this phenomenon. Since this class of systems is 

an excellent approximation tool for singular measures [34-37], we expect similar techniques and results to apply 

to a more general setting.i 
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