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A b s t r a c t  

Hamiltonian tridiagonal matrices characterized by multi-fractal spectral measures in the family of iterated function systems 
can be constructed by a recursive technique described here. We prove that these Hamiltonians are almost-periodic. They are 
suited to describe quantum lattice systems with nearest neighbours coupling, as well as chains of linear classical oscillators, 
and electrical transmission lines. 

We investigate numerically and theoretically the time dynamics of the systems so constructed. We derive a relation linking 
the long-time, power-law behaviour of the moments of the position operator, expressed by a scaling function/3 of the moment 
order a, and spectral multi-fractal dimensions, Dq, via fl(a) = DI-~. We show cases in which this relation is exact, and cases 
where it is only approximate, unveiling the reasons for the discrepancies. 
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1. I n t r o d u c t i o n  

Usually, the study of  almost/quasi-periodic systems starts by assigning a suitable rule for building a quantum 

Hamiltonian operator, and then proceeds to the determination of  its spectral quantities [ 1 ] (which is frequently a 

hard task) and of  the time dynamics it generates. In doing so, multi-fractal energy spectra have been frequently 
observed, and anomalous characteristics of the time evolution have been exhibited [2-6]. 

These findings raise the question if multi-fractal spectra are typical in almost/quasi-periodic systems [7], and, vice 

versa, if almost/quasi-periodicity is always associated with singular continuous spectral measures. The relations 
between this pair (spectral multi-fractality and Hamiltonian almost-periodicity) and the time dynamics generated via 
Schr6dinger's equation are also interesting, and intricate: do the former always imply anomalous scaling relations of  
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physical quantities like, for instance, the expectation value of the position operator? Can we make any quantitative 

statement to this effect? 
In this paper, we employ a new algorithm for deriving a Hamiltonian operator (called a Jacobi matrix because of 

its mathematical nature) with a pre-assigned spectral measure in the vast class of  iterated function systems (IFSs). 
This technique provides us with an ideal patient for our surgical table, who can be fully dissected and analysed. In 

particular, we provide evidence that Jacobi matrices associated with IFSs are almost periodic, and we argue that 
this is likely to be the typical case in a large class of  measures with fractal support. 

The analysis which can be carried out in this example permits us to compute exactly the asymptotic behaviour 

of the wave function projections, for short and long times. By introducing a renormalization approach in the theory 

of orthogonal polynomials, we also derive a relation linking the asymptotic power-law growth of the moments of 

the position operator and multi-fractal generalized dimensions. This theory explains the phenomenon that we have 

termed quantum intermittency. 

The specific properties of IFSs are crucial for our theory; Yet, since particular IFSs can be found so to approximate 
arbitrarily well (in a technical sense) any "fractal" measure [8-11], the results obtained in the IFS class may have a 
much wider generality. 

We shall present our results as follows: in Section 2 we introduce the general formalism of IFS and of Jacobi 

matrices, employed to solve the inverse problem of finding a Hamiltonian with a given spectrum. This formalism 

is then applied in Section 3 to derive a stable solution algorithm. The almost-periodic properties of the Hamilto- 
nian so determined are studied numerically in Section 4, and the intermittent quantum dynamics it generates is 

then discussed in Sections 5 and 6. The conclusions summarize the work and present some previews on further 
investigations. 

2. IFS and their Jacobi matrices 

Systems of linear iterated functions [ 12-15] are finite collections of maps 

Oi(X) : = ~ i X q - [ ~ i ,  i = l . . . . .  M, (1) 

where 3i,/3i are real constants, and the contraction rates 6 i have modulus less than one. Without loss of generality, 
we may assume that each ~bi maps [0, 1] into itself, and that 4h (0) ---- 0. 

A probability, rri, is associated with each map: ~ri > 0, Y~i 7ri -- 1. Employing these probabilities, a measure 
over [0, 1] can be defined as the unique positive measure satisfying the balance property 

I 1 
M 

0 0 

o ~bi) d/~ (2) 

for any continuous function f .  This measure is supported on A, the subset of  [0, 1 ] which solves the equation 

--- U (hi(a). A 
i=l ..... M 

(3) 

The set A is invariant under the action of shrinking it to smaller copies of  itself, and glueing them together. Because 
of Eq. (3), the geometry of this set is typically fractal (except for special choices of the map parameters); in turn, 
the balance relation (2) is responsible for the multi-fractal properties of the measure #.  In fact, let us consider a 
disconnected IFS, that is to say, one for which the sets ~bi (A) do not intersect each other. Under these circumstances, 



578 G. Mantica/Physica D 103 (1997) 576-589 

the multi-fractal properties of the balanced measure are easily computable: the spectrum of generalized dimensions 
Dq follows from the equation 

M 
7 r q 8 7  r = 1 ~4) J J 

j = l  

whose unique real solution defines r as a function of q, and leads to  Dq = r(q)/(q - 1). In virtue of this relation, 

one can tune the map parameters to obtain various multi-fractal spectra. 

The problem of determining a Hamiltonian possessing # as spectral measure can be solved [16] considering the 
set of associated orthonormal polynomials {Pn }: 

f pi (X)pk : ~i,k. (5 )  ix) d#(x)  

In fact, any such set of polynomials is characterized by a three-term recurrence relation which can be written 

xpj(x) = rj+lPj+l (x) + Ajpj(x) + rjpj_l(x), (6) 

or, in matrix form 

Hp(x) = xp(x). (7) 

In the above, p(x) is the vector whose components are the orthonormal polynomials evaluated at site x, and H is the 
Jacobi matrix, which is constructed as the real, symmetric, tridiagonal matrix whose diagonal and outer diagonals 

are the v e c t o r s  Aj and rj, respectively: 

Hi,i : Ai, Hi+l,i : Hi,i+l :- ri+l, i ---- 0 ,  1 . . . .  (8 )  

H defines a nearest neighbours lattice system, with site energies A i and hopping constants r i. Similarly, H can 
describe a linear array of masses coupled by springs, and also an electrical transmission line, whose characteristics 

vary from one element to the next. 
Standard theory proves that, letting the Jacobi matrix H act in 12 (the space of square summable sequences, whose 

canonical basis will be indicated by {e0, el . . . .  }) the spectral measure of H with respect to the vector e0 (the local 
density of states of physical jargon) is precisely #: in fact, one has 

(eo, g(H)eo) = f g(x) d#(x)  (9) 

for well-behaved functions g. This is the theoretical solution of the inverse problem we have proposed. In order to 
translate it into a practical solution, we need to compute the Jacobi matrix coefficients starting from the measure 

/z, i.e. from the map parameters defining the IFS. 

3. A stable technique for computing IFS Jacobi matrices 

The problem of constructing the Jacobi matrix associated with IFS measures is hard, and the usual techniques 
of polynomial sampling [17-19] are plagued by exponentially increasing errors which allow only computation of 
very few Jacobi matrix coefficients [20]. Alternatively, the sole technique available so far has been an algebraic 
procedure programmed in MAPLE by Vrscay [2 l ]. Yet, it is severely limited by memory and time requirements. To 
overcome these difficulties we have devised a direct algorithm applicable to IFS measures. 
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We first observe that, for any n, 

n 

p,,((ai(x)) = Z Fi.nl pt(x) ,  i = 1 . . . . .  M. (10) 
/=0 

This is immediate,  since Pn (4)i (x)) is an nth degree polynomials  which can be expanded on the first n orthogonal 

polynomials.  Less immediate is to derive a recursive rule for the coefficients F/hi, l = 0 . . . . .  n. It turns out 

that, at fixed n, they can be determined from the map parameters, and from the Jacobi matrix entries A j, for 

j = 0, 1 . . . . .  n -- 1, and rm, for m = 0, 1 . . . . .  n. In fact (dropping for simplicity the map index i), we have that 

poI&r + [4) = po(x),  and hence F~0} = 1. Suppose now that Ft k is known for k = 0 . . . . .  n - 1 and all relative l 's:  

from Eq. (6) we obtain the complete decomposit ion of Pn (3x + [4) over Pt, l = 1 . . . . .  n: 

n - 1 n - 1 

r,,pn(Sx + [4) = ([4 - A,, t) Z FI"-I pl(x)  + S Z Fln-I (rl+l PI+I (x) + Alpl (x)  + rlPl i(x))  
t=0 /=0 (1 1) 

n - 2  

--rn-I Z FIn-2pI(x). 
/=0 

Eq. ( l 1 ) allows now the determination of  the coefficients F/n. 

We observe that the highest-order polynomial,  Pn, appears twice in the above equation, always in the form of  the 

product rn Pn : hence, the coefficients in the expansion of  the polynomial  rn Pn can be determined without knowing 

r,~. Therefore, if we let /~,  (x) = rn Pn (x), a second decomposit ion can be written as 

n I 

/3,,(¢i(x)) = Fin,,fi,,(x) + Z Fin'p'(x)' 12) 
l=0 

where the coeff ic ients /a  can be computed recursively from Eq. (11), on the basis of the knowledge of  only A j, rj, 
f i ) r j  = 0 , 1  . . . . .  n - -  I. 

We can now compute the non-diagonal entries of the Jacobi matrix: from Eq. (6) we write 

2 f p n ( x ) x p n - I ( x ) d # .  (13) rt l  ~ -  

Hence, using the balance property (2) and Eqs. (10) and (12) this becomes 

f f.n f n - I  - lpn(x)pl(x)  d/*. 14) Z 2l", (fi X q- [4,) i,m i.' pm(x)pl(X)  + Z -" G,. G"I ( 
i= I Lm=O/=0 /=0 

2 
F;t 

Again, we can use the recurrence relations (6), to get 

M 

r, 2, = ~~rr i (Bi  + Ci + Di), 
i=1 

where we have put 

n I 

B, = ~-]/[4, + a iA , )~ : ' ,F " - '  i , I  " 

l =0  

n - 2  
Ci ~i ~ -n n-I ~n Fn-I  : rl+l(Fi,lq,l+l -}- Fi,l+l i,l )" 

/=0 

(15) 

(16) 

(]7) 
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and 

Oi ~i 7-.n ,~n- 1 2 = l i , n l i , n _ l r  n. ( 1 8 )  

Because of  contractivity of the maps, I Di I r n2 < 1. Therefore, r 2 (and hence rn > 0) can be computed from Eq. (15), 

on the basis of  the knowledge of  the coefficients in expansions (10) of  order n - 1, of  order n in (12), of  the map 

parameters, and of  the matrix entries A j ,  rj ,  for j = 0, 1 . . . . .  n - 1. 

A similar trick allows the computation of the diagonal entries An; We use Eqs. (2) and (6) (integrals are taken 

with respect to/~): 

M M n 

a. fxp2.(x) = : : l'i, l 1-'i, m p! (X)pm (x) .  
i=1 i=1 m,l=O 

(19) 

Using the orthonormality properties of the sequence Pn, and the recurrence relation, Eq. (6), we get 

An = Z gi  (~'n.m)2(fli -b ~ iAm)  + F'inm~.nm+l~i(rm + r m + l )  , ( 2 0 )  

i = 1 Lm = 0  ' m =0  

thereby determining An as a function of  the coefficients in Eq. (10) of order n fixed, of  the map parameters, and of  

the matrix entries A j ,  for j = 0, 1 . . . . .  n - 1, and rm, for m = 0, 1 . . . . .  n. 

These results can be properly chained into an iterative construction of  the Jacobi matrix H: The algorithm is 

structured as follows: 

• Initialization. At the first step, we have Ao = # t ,  ro ---- 0, F ° ---- 1. The first-order moment of # , /~ l ,  can be 

simply computed from Eq. (2). 

• Iteration. Suppose that Al, rl, and F t are known for I = 0, 1 . . . . .  n - 1. Then we: 

- Compute  ~n .  We use Eqs. (11) and (12). 

- Compute  rn. We use Eqs. (13)-(18). 

- Compute  F n. This is immediate at this stage. 

- Compute  An. We use Eqs. (19) and (20). Then we iterate the procedure. 

Graphically: 

. . . . .  . . . . .  

' A O  . . . . .  An-1  ' A O  . . . . .  An " (21) 

In a separate work [20] we have analysed the reasons of  the failure of classical polynomial sampling [17,19] 

when applied to singular measures, and assessed the numerical stability of the recursive algorithm presented above. 

We have observed a polynomial error propagation with respect to matrix order for the recursive algorithm, while 
using the classical algorithms the error growth was found to be exponential. 

4. Almost periodicity of IFS Jacobi matrices 

Having devised a stable solution of  the Hamiltonian inverse problem, we can study the properties of  large Jacohi 

matrices. Fig. 1 shows an IFS measure, one of  its orthogonal polynomials, and the beginning of  the sequence of  rn 

coefficients. Let us focus our attention on the last. 
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X 

Fig. 1. Orthogonal polynomial PS (x) of the IFS measure with maps (6i, ~i. ~i) = (2' 0.½ ), ( 2  3 ½), with a finite-resolution represen- 
tation of the support of the measure obtained by plotting a large number of points on the attractor. Because of the finite size of points, this 
latter appears as a sequence of dashes. Only the symmetrical half is shown; in the inset, the beginning of the sequence of r,,. The vertical 
scale ranges from zero to ½. Lines are merely to guide the eye. 

We can clearly observe a zero frequency ithe average value), a sr frequency (flipping up and down), and clearly 

other frequencies are present in the sequence. A Fourier analysis is simply effected writing 

rn = Z Fkein°Jk" (22) 
k 

This sum may not converge in the usual sense, and it might have to be replaced by an integral in the case of a 

continuous component in the "spectrum" of  the sequence rn. If the continuous component is absent, the system is 

almost-periodic.  Within this case, if the set of  frequencies wk can be derived from a finite set of  periods, the sequence 

r,, is quas i -per iod ic :  that is, this is the case if there exist suitable ~ l  . . . . .  £2 t, such that for all k the frequency ~ok 

can be written cok = niS21 + " "  + np~"2p for integer nl  . . . . .  np. 
A numerical, fast Fourier analysis of  the sequence rn is presented in Fig. 2, where peaks in the distribution of I Fk [2 

~ i th  a clear hierarchical structure are observed. These peaks seem to suggest the presence of a point component in 

the spectrum of this sequence. Yet, care has always to be exerted to assess this fact numerically. To obtain a further 

piece of evidence we performed an analysis of  the phase of Fk around these peaks, like that shown in Fig. 3, and 

fi)und ar r  discontinuity, which indicates [22] that they are indeed related to a point component.  The sequence rn is 

therefore almost-periodic.  
Since no simple rational relation among the peak sequences seems to hold, numerical evidence seems to 

suggest that the sequence is not quasi-periodic.  Our numerical investigations have shown that these charac- 

teristics are typical in the class of Hamiltonian associated with IFS measures, supported on Cantor sets. In 

view of the approximation properties of  IFS measures, this result is likely to be much more general: indeed, in 
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co/Tr 

Fig. 2. Discrete Fourier transform of the rn sequence (n = 1 . . . . .  213) associated with the IFS of  Fig. 1. The constant and Jr frequencies 
exceed the vertical scale, and are not reported. 

the family of Jacobi matrices associated with real Julia sets [23,24], which can be well approximated by IFS, 

limit periodicity of the sequence rn has been proven directly [25]. The problem of a formal proof is therefore 
open. 

5. Quantum dynamics of almost-periodic lattice systems 

Jacobi matrices generate a quantum dynamics in le via Schr6dinger's equation, 

• d~p 
t dt  = H ~ ,  ~ ( 0 )  = e0 := ( 1 , 0  . . . .  ). ( 2 3 )  

The initial state of the evolution, e0, is the zeroth lattice state. In oscillator terms, this corresponds to a situation 
where the first mass is displaced from its equilibrium position, while all the other masses are at rest in their equilibria• 

In electrical terms, the current (or the voltage) is non-zero only in the first element of the transmission line described 
by the Jacobi matrix H. 

The solution of Schr6dinger equation can be formally obtained as [26,27] 

:= (en, e i tHeo)  = f e-itXpn(X ) d#(x),  (24) Cn(t) 

where Cn(t) is the component of ~( t )  at the nth lattice state. Eq. (24) shows that this component is the Fourier 
transform of the orthogonal polynomial Pn with respect to the spectral measure #. This fact allows us to derive 
important results. 
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Fig. 3. Plot of  the phase ¢' of  the discrete Fourier transform of the sequence rH associated with the IFS of Figs. 1 and 2, to show the rr 
discontinuity close to the value of the main peak of Fig. 2. 

Firstly, the asymptotic behaviour for small t can be controlled as follows: Ic,, (t)12 ~ t 2n. In fact, 

f c,,(t) = d~(x )pn (x )  ( - - l t ) Ix l  = d # ( x ) p n ( x ) x  l. (25) 
l! I! 

l=0 /=n 

Because of the orthogonality properties of  the set Pn this expansion begins with I = n, which proves the result. 

Secondly, in the infinite time limit, denoting by Sn (T) the time average of Icn ]2 up to time T, 

7" , /  S , , (T )  = ~ ]c,,]2(t)dt, 

~e have that 

S , , (T )  ~ T -n2 (26) 

fi~r all n, a result which involves the correlation dimension De of  the fractal measure/~. The case with n = 0 is 

implicitly contained in [28], and was originally proposed in the present context by Ketzmerick et al. [4]. Successively, 
il has attracted a lot of  attention, mainly from cultors of  mathematical rigour. Our generalization has the advantage 

of  requiring a simple proof, via the usage of  the Mellin transform, as in [28]. In fact, we write 

f f s i n ( x - y ) T p n ( x ) p n ( y  ). (27) S,,(T) : d#(x)  d# (y )  (x - y ) T  
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To find the asymptotic behaviour of Eq. (27), we take the Mellin transform, Mn (z), of  S~ (T): 

f f f ~  , ,p, ,(x)pn(y) Mn(z) = Tz-I-Sn(T)dT = G(Z) × d#(x )  alzty) -~ S ~  - G(Z) × En(z), (28) 

where G(z) = F(z - l) sin(½rr(z - 1)) and En(z) is defined implicitly by the last equality. The dominating power 
law in the long time behaviour of  Sn is determined by the divergence abscissa of  M,, (z): that is to say, S,, (T) ~ T - w, 

where w is the largest real z for which Mn (z), hence En (z), converges. It is apparent from Eq. (28) that the divergence 

of En is piloted by the small scale structure of the measure #. Since the polynomials Pn are smooth functions, with 

bounded derivatives on the support of  #,  the divergence abscissa of  En is the same for all n, and, in particular, it 

coincides with that of  E0. E0 (z) is known as the generalized electrostatic energy of the measure # and its divergence 
abscissa is known to be D2 [28], the correlation dimension of the measure/z.  

It is important to remark that the domains of  validity of  the asymptotic expansions just derived are not uniform 
in n. This adds to the difficulty of  the problem to be discussed in the following section. 

6. Renormalization theory of quantum intermittency 

An important characteristics of  the quantum motion introduced in Section 5, is the way it spreads over the 12 

lattice basis, {en }. In fact, in oscillator terms, spreading corresponds to energy transmission along the linear chain, be 

it mechanical or electrical. In quantum mechanical terms, it corresponds to unbounded motion of the lattice particle, 
of  the kind treated only qualitatively by RAGE theorems. To gauge this phenomenon, we define the moments of  the 
position operator h: 

va(t) :---- (~(t), h~Tz(t)) = Z n~lcn(t)l 2. 
n 

(29) 

Their asymptotic behaviour follows a power law, 

vc, (t) ~ t ~ ,  (30) 

where fl is a non-trivial function of the moment  order t~. In [6,27] we found that/~ is convex, non-decreasing, and 

non-constant even in the case of  a one-scale Cantor set, characterized by trivial thermodynamics: this is what we call 
quantum intermittency. Corrections to Eq. (30) can also be observed in the form of log-scaled oscillations of  v~ (t), 

super-imposed to its leading behaviour. They can be explained by the Mellin-type analysis presented in Section 5. 

We can estimate the function fl(ot) on the basis of  simple renormalization group considerations. For simplicity, 
let us consider an IFS with M maps, of  equal probability zri = I/M. Let this IFS be non-overlapping. Then, let 
I be the smallest interval containing A, the IFS attractor, and let 1l be the image of I under the map @. Clearly, 

It n lm= 13 if I -¢ m, and the measure/z  restricted to It is a linearly rescaled copy of the original. Then, as a first 
approximation, we can assume that the orthogonal polynomials of  the restricted measure are also obtained by linear 
rescaling of the original polynomials: 

M n  
Mn pM.(4~t(x)) = ~ rl,k pk(x) ~- af p.(x), 

k=0 
(31) 

where ~rt n = 4-1. In other words, we assume a very simple form for the coefficients F Mn, which amounts to making 
a renormalization ansatz. 
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Fig. 4. Multi-fractal dimensions DO (full diamonds), D 1 (full squares), dynamical exponents fl (0) (open squares) and r (  1 ) (open diamonds) 
~ersus contraction rate 81 , for the family of IFS described in the text. 

Let us now consider SMn (T), as defined above. Because of the balance property (2), it can be written 

f f sinT((at(x)-49m(y)) -SMn(T)= y~ 7rlZrm d#(x)  d/~(y) T(~pt(x)-q~m(V)) pMn(49t(x))pMn(qbm(y)). (32) 
I,rn=l 

In the previous equation, q~; (x) and q~,,, (y) belong to It and Ira, respectively. If I ~ m, these intervals are separated 
by a finite gap. As T tends to infinity, these contributions tend to zero as T - j  . We can therefore retain only the 
diagonal terms in Eq. (32). 

If we now employ the approximate estimate (31) in the RHS of Eq. (32) we can write 

M 

SMn(T) = ~--~zrZS,~(6;T). (33) 
l=1 

This too is a sort of renormalization equation which links the wave function component at site Mn and time T to the 
component at site n and at shorter times 3t T. When inserted in Eqs. (29) and (33) implies that the growth exponent 
fl associated with the averaged moments ~,~ via Eq. (30) must satisfy the relation 

M 

1 = M ~-L ~-~ ~t~.  (34) 
/=1 

Comparing this result with Eq. (4) we obtain the crucial equation 

fl(et) = Dt--c~, (35) 
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which links multi-fractal properties and time dynamics. In particular, Eq. (35) implies that/3(0) ---- D~, which is 
consistent with the rigorous result/3(0) > DI [5]. Notice that/3(0) can be defined by a limiting procedure on/~(ot), 
or by the evolution of the logarithmic moment. We also have/3(1 ) -- Do. 

Because of the rough approximation involved in Eq. (31), and for the validity of Eq. (33) both CM, and c, need to 

be in their asymptotic regimes, we do not expect Eq. (35) to be always exact. Indeed, in Fig. 4 we have considered 
a family of IFS measures, characterized by M = 2, 32 = 2,/~l -- 0,/~2 = 5' rrl = and zr2 = The contraction 
rate 31 is allowed to vary in the range [0.2, 0.5], which implies a significant variation both in the structure of the 
support of the balanced measure and in its multi-fractal properties. Plotted in Fig. 4 are the scaling exponents/~(0) 
and/~ (!), compared with the multi-fractal dimensions D~ and Do, respectively. We observe a substantial agreement 
between the two data sets, dynamical and multi-fractal. Numerically, the discrepancy is always less than 5%. 
We can therefore conclude that relation (35) catches some essential part of the physics. Yet, the situation is more 
complicated, as the following pair of examples show. 

The first is a magnificent counter-example. Let us consider a new class of IFS measures (and related Hamiltonians) 
characterized by M = 2 and by a particular choice of the weights: 

7rj = ~ D  j = 1, 2, (36) 

where D is the (constant) value log 2/(log 5-log 2). This choice originates what is called a uniform Gibbs measure. 

The first of such IFS is that of Figs. 1-3, and D is its fractal dimension. Indeed, all IFS with property (36) are 
characterized by the same fiat thermodynamic function Dq = D. Clearly, because of Eq. (36) and rr] + 7r2 = 1, 
only one parameter among the map weights and contraction rates is left free. By varying this parameter we can 
construct different IFS measures, with the same fiat thermodynamics. What are then the corresponding dynamical 
exponents/~(ot)? The approximate relation (35) predicts/~(ot) _~ D for all or. 
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Fig. 5. Scaling functions fl(a) for the four IFSs (a)-(d) described in the text: (a) circles; (b) squares; (e) triangles; (d) diamonds. 
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In Fig. 5 we have considered the IFS with: (a) 81 = ~2 = 2 ,  yl. 1 = g 2  = 1,  which is a "pure" Cantor set; (b) 

81 --- 0.5090, 82 = 0.2978, and Zrl = 3; (c) 8t = 0.5293, ~ 2  = 0.2802, and 7I" 1 = 0.6180. and (d) 81 = 0.6033, 

82 = 0.2196, and Jrl = 0.6823. The first observation we can draw from this figure is that ~ is not flat, as shown 

in 127], even if the i n t e rmi t t ency  range  in the [0, 5] interval is very narrow. The second is that the prediction 

/~ = D = 0.7565 is correct within 2% at ot = 0 and about 5% at ot = 5. The third, and most important, is that the 

scaling function/~ is roughly invariant from case to case. 

These results are intriguing - the coincidence of the curves in Fig. 5 suggests that the spectrum of generalized 

dimensions Dq m u s t  play some role in determining/3(e) :  the fractal measures (a)-(d)  seem to have little in common 

beyond having the same flat thermodynamics.  Nevertheless, precisely because in these c a s e s  Dq is flat, neither 

Eq. (35), nor any general relation of  the kind/3(or) = Dq(c~), with q an as yet unknown function of e can hold 

rigorously. 

Let us now come to a favourable example: we can construct a class of measures for which the renormalization 

Eq. (31 ) is exact: these are the equilibrium measures of  the Julia sets generated by the polynomials  

,9 
P ( z )  = z -  - k ,  (37) 

where )~ > 2 is a real constant. As we have already remarked, the Jacobi matrices for these problems can be 

constructed by a stable recursion algorithm [23,24]. Non-linearity of  the IFS maps stemming from Eq. (37) as 

inverse branches of P(z)  can be treated by considering sufficiently high iterations p(t),  and a theory perfectly 

analogous to (30)-(35) can be carried out, with the same result. 

0.86 

0.85 

0.84 

0.83 

0.82 

0.81 

0.8 

0.79 

0.78 

¢, 

o ~ 

,0 
$ 

C, 

+~ 

i 

'dynam' o 
'therm' + + 

I I I I I 

1 2 3 4 5 6 

Fig. 6. Scaling function/3(~x) for the Julia set measure with ~. = 2.2 (diamonds) and thermodynamical  dimensions D 1 -~x (crosses). 
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In Fig. 6 we make the usual comparison between the moment scaling function, fl(a), and thermodynamics [29], 

D l - a :  the curves coincide within numerical precision! Therefore, one can conclude that discrepancies from Eq. (35) 

are due to the non-exactness of  Eq. (31) when a spectral measure is approximated by IFS, except for the case of 

Julia measures, which are known to have strong algebraic properties. 

Incidentally, we note that for Julia sets, the invariant measure coincides with the measure of  the asymptotic 

distribution of  the zeros of  the associated orthogonal polynomials, the latter being also the physicists' global density 

of  states. Might it be that the correct quantity entering Eq. (35) is this second measure? The analysis of  the IFS 

data presented here seems to exclude this case, although we cannot exclude that this role is played by yet another 

spectral measure still to be determined. 

7. Conclusions 

We have presented a stable algorithm for the determination of  lattice Hamiltonian operators possessing a given 

spectral measure, in the class of  linear IFS. This algorithm consists of a recursive determination of  the associated 

Jacobi matrix, in the framework of  the theory of  orthogonal polynomials. 

The Hamiltonian operators determined in this way are characterized by almost-periodic coefficients: since IFS 

measures approximate arbitrarily well any measure supported on a Cantor set, this fact might lead to a proof that 

almost periodicity is always associated with this kind of  spectra. 

In a quantum mechanical context, the Jacobi matrices studied here can be employed as models of  almost-periodic 

systems: the dynamical properties of  such systems can be studied in their essence, having extracted the crucial 

information on the related spectral measures. We have shown that connections between spectral properties and 

dynamics go far beyond the conventional RAGE theorems: in particular, delocalization of  particle's position along 

the lattice basis can be described by a scaling function fl governing the moments of  order ot of  the position operator. 

Non-constancy of  this function translates mathematically the phenomenon of quantum interference. 

We have derived an intriguing relation, f l (a )  = D1-~ ,  linking dynamics and the thermodynamical properties of  

the spectral measure: considering the Jacobi matrices associated with Julia sets we have constructed a family of  

quantum systems for which the relation is exact, and we have discussed the reasons for the discrepancies present in 

the general case. We believe that a further refinement of  the results presented in this paper will lead to a profound 

understanding of  the mathematical and physical properties of almost-periodic quantum systems. 

Finally, we remark that the Jacobi Hamiltonians considered in this paper are not simple exotic curiosities, but 

can also describe time-resolved energy absorption in externally perturbed quantum systems, as well as electron 

dynamics in solid-state electrostructures like super-lattices [30], where by varying an alloy concentration along a 

deposition axis different spectral structures can be found [31 ]. Here, our results may become relevant in several 

problems, like - for instance - the design of  lasers and radiation detectors. 
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