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Abstract 

We use known recursive expressions for the moments of the Cantor distribution to derive asymptotic expansions for 
these moments. This is done by a combination of a method based on Mellin transform and the saddle point method. 
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The Cantor distribution with parameter O, 0 < 0 < 1 can be described by a random series 

0 
i>~l 

where the X~ are independent with the distribution 

p { x ~  = 0} = p { x ,  = ]}  = ½, 

and 0 = 1 - 0. The essential result of  Lad and Taylor (1992)  is the fol lowing recursion for the moments  
[~(xN):  

N - l  

1 i~O ( N )  l,qi~N-i~-(xi), N ~ I ,  E ( X ° ) :  1. ( 1 )  ~-(xN)-- 2(1 - 0  N) = 

The aim of  the present note is to solve the recursion (1).  We abbreviate aN = ~(X N) and rewrite the recursion 
as 

N 

2aN--ONaN= 0O ai, N~>I, a 0 =  1. (2) 
i=O 
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Now we introduce the exponential generating function 

Z N 
= aN --~. . 

N>~O 

Recursion (2) translates into 

2A(z) - 2 - A(Oz) + 1 = eOZA(Oz) - 1, 

o r  

1 + e  0z 
A ( z )  = - - A ( O z ) .  (3) 

2 

We can solve this equation by iteration, and we obtain (note that A(0) = l)  

A(z)  = H 1 + e ~°kz 
2 

k>~O 

For 0 = ½, the product collapses to 

e Z _ l  
A ( z )  = - - ,  

Z 

(4) 

Z N 
B(z)  = e - Z A ( z )  = Z b N - ~ . .  

N~O 

Eq. (3) translates then into 

l + e  - ~  
B(z)  - - - B ( O z ) ,  (5)  

2 

yielding 

B(z)  = I - I  1 + e -°kOz 
2 

k>~O 

We note here that the result obtained above could be deduced easily by interpreting the Cantor distribution 
as the distribution function of a 2-additive function given by 

L L 

4 = 0  - -  { = 0  

The notion of  q-additive functions was introduced by Delange (1972), where a necessary and sufficient 
condition for the existence of a distribution function is given. Formula (4) is an immediate consequence of 

so that an = 1/n + 1, which of course can be seen directly, since the Cantor distribution is then just the 
uniform distribution over the interval [0, 1]. Since aN is the coefficient of zU/N!, we have solved the recursion 
(1). More useful, however, is the asymptotic equivalent for aN, which we are going to derive in the sequel. 
For that, we need also the Poisson generating function 
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1 Delange's formula for the Fourier transform of this distribution function. Furthermore notice that for 0 < 
the moment generating function A(z) can be written as the integral 

A(z) = f~ e zt d~,~(t), 

where cg denotes the Cantor set given by the closure of the image f ( ~ )  and ~ denotes the normalized 
Hausdorff measure of  dimension log_~ 2. The function h(x) = f[0,x]n~e dOte(t) is a singular function, i.e. it is 
monotonically increasing, thus differentiable almost everywhere and the derivative vanishes almost everywhere 
despite of the fact that h(0) = 0 and h(1) = 1. 

Let us now start the asymptotic analysis of aN. For this purpose we compute the Mellin transform (cf. 
Doetsch, 1958; Flajolet et a1.,1995) of the logarithm of B(z) 

f0 f0 +;x) (logB)*(s) = l°gB(x)x~-ldx -- 1 - ~-~ log (1 x~_ld x (6) 

for-1 < ~ s  < 0. The remaining integral is easily computed as 

fo~log ( l +-~e-X)xS-tdx=F(s)((s + l)(1-2-~),  

again for - 1  < ~ s  < 0. Thus by Mellin's inversion formula we have 

1 f__ -l+i~ 0 -s 
l ogB(z )  = ~ l - - i o o  F(s)((s + 1)(1 - 2-~)l---~-~s_z-Sds. 

This formula holds for every z with l argzl < x/2. By shifting the line of integration to the right and taking 
the residues at s = 0 (double pole!) and s = Zk := 2kxi/log 1/0 for k E Z \{0}  (simple poles) into account 
we obtain 

log2 log2.  logo 2 
log B(z) = - log o 2- log0z 

2 2 
1 - " 

+ ,_.log---'--- ~ y ~  rCtk)((1 + Zk)(1 -- 2-Z~)e -zkl°g°e2kml°g°z 
ksz\(0} 

1 fM+i~ ,~-s 2-s-, z-~. + ~ r(s)((s + 1)(1 - )z----z-z,. ct s, 
1 - - ~ - ~  d M - - i ~  

(7)  

where O = 1/0 and M is any positive real number. Since the remaining integral is convergent by the well- 
known asymptotic behaviour of the F-function, the remainder term is a O(z -M) for any M > 0. From this 
we derive 

B(z) = F(log O z)z- I°g° 2(1 + O(z-M)) 

with an infinitely differentiable 1-periodic function F(x). 
The "de-Poissonization" technique (cf. Grabner, 1993; Rais et al., 1993) suggests the approximation aN 

B(N). Applying it to every term of the Fourier expansion of F(x) separately (the Fourier series is uniformly 
convergent), we obtain 

aN=F(logoN)N-l°g°2. ( 1 + 0 ( 1 ) ) .  (8) 
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In order to derive an explicit expression for the Fourier coefficients o f  F(x)  we take the Mellin transform 
of  (5) 

B*(s) = tgSB*(s) + ~ B(Ox)e-°XxS-ldx. 

By the above computations we know that this transform exists for 0 < As  < log o 2. The last equation yields 

/5 1 B(Ox)e-°Xx s- ~ d x, B*(s)- ~ 

where the integral converges for every s with As  > 0. By Mellin 's  inversion formula the Fourier coefficients 
o f  F(x)  are equal to the negative residues of  B*(s) at s = log o 2 + Zk, k E 7/. These are given by 

F ( k )  = - R e s B * ( s )  1 j/0 '~c - Is=log o 2+gk - -  2 log 69 B(Ox)e-Oxxlogo 2 - l + x ,  d x. 

These integrals can be easily computed numerically, because they are rapidly convergent for x ~ c~ and the 
behaviour for x ~ 0 is regular. 

The value 

1 B(zgx)e-Oxxlogo 2- I d x 
P ( 0 )  - 2 log O 

is of  special interest, as it is the mean value around which the periodic function F(x)  fluctuates. Since the 
amplitudes of  these fluctuations are usually quite small, we can write 

aN ~- F ( 0 ) .  N -  l°g° 2, 

which is suggestive, but not quite correct, as it ignores the fluctuations. 

Remark .  Notice that F ( 0 )  can be viewed as the following limit 

N 

/~(0) = lim I N__ lTNZa.nl°g°2l 
n=l 

This is due to the fact that ~-~n<U n-l+it = O(1) for t ¢ 0. 
To illustrate the results, we give a table of  F(0) ,  for several values of  0, and compare them with the values 

of  the recursion, for N = 50, N = 100 and N = 200 (see Table 1 ). 
Furthermore we present a plot o f  aNN l°g'o 2 versus lOgl0 N for 0 = 0.1 to illustrate the fluctuating behaviour 

o f  this function. (see Fig. 1). 
For the reader 's  convenience we summarize our findings. 

Theorem.  The moments F_(X N) of  the Cantor distribution with parameter 0 are given as the coefficient 
Z N 

of-rain  

H 
1 + e (l-O)O*z 

2 
k>~O 

Asymptotically, we have 

(o(1)) ~.(X N) = F(logl/o N ) N -  log,,) 2 1 ÷ ~ , 
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where F(x) is a periodic function of  period 1 and known Fourier coefficients. The mean ofF(x)  is #iven by 

1 / o ~  ] - [  1 -q- e -(1-0Wkx 
e-(1-0)Xxlog,.~ 2 - 1 d x "  

2 1 o g 0 J 0  .t.t 2 
k~>l 

We note here that in the case ~ = 2 -]/m for a positive integer m the function F is constant, because all 
Fourier coeffients in (7) vanish (except the one for k = 0). This corresponds to the fact that A(z) can be 

Table 1 

F(0)  aso x 501°go 2 aloo x 1001°go 2 a200 x 2001°go 2 

= 0.7 3.746 3.5373 3.6374 3.6892 
= 0.6 1.532 1.4842 1.5077 1.5197 
= 0 . 4  0.800 0.7902 0.7953 0.7979 
= 0 . 3 3 3  0.734 0.7260 0.7297 0.7320 
= 0 . 3  0.711 0.7041 0.7084 0.7094 
= 0 . 2  0.670 0.6682 0.6656 0.6726 
= 0 . 1  0.657 0.6534 0.6688 0.6513 

0.66 

0.64' 

0.62' 

0.6" 

0.58 

0.5 

0.5, 

O. 

• - • , . i . . . .  • _ 

"o o25 i" 
| • ! . . . .  i . .  . . _ • 

1.5 ~ 2:5 
X 

Fig. 1. 
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given expl ici t ly  by  

m-I  
A ( z ) = O - m 2 - m + l / 2 z - m l - I  (e2OO"z_ 1) ~ ,~o-m2-m+l /2z -meZ  ' 

r=O 

which  yields 

aN ~ o - m 2 - m + l / 2 N - m  

for this case. 
Furthermore,  we note that in the context  o f  the order statistics o f  the Cantor  dis t r ibut ion a recursion occurred 

in Hosking  (1994)  which was solved in Knopfmacher  and Prodinger  (1994).  In this case, a somewhat  more  
direct approach could  be used, since explicit  formulae for the quanti t ies o f  interest were available,  whereas 
here we have on ly  the generat ing funct ion A ( z ) ,  from which we have to extract the necessary information.  
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