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We report on the study of a polariton gas confined in a quasi-periodic one dimensional cavity,
described by a Fibonacci sequence. Corresponding polariton modes are imaged both in real and
reciprocal space. We observe features characteristic of their fractal energy spectrum such as the
opening of mini-gaps obeying the gap labeling theorem. These observations are accurately repro-
duced solving an effective 1D Schrödinger equation, illustrating the potential of cavity polaritons as
a quantum simulator in complex topological geometries.

PACS numbers: 71.36.+c,78.55.Cr,78.67.-n, 05.45.Df, 61.43.Hv, 71.23.Ft

Free quantum particles or waves propagating in a spa-
tially varying potential present profound modifications
of their spectral density, which depend on the symme-
try of this potential. The richness of spectral distribu-
tions in constrained geometries has long been recognized.
The case of a periodic potential described by means of
the Bloch theorem is a significant example. The notion
of spectral distribution has been deepened in the wake
of quasi-crystals discovery and it led to a classification
of energy spectra into absolutely continuous, pure point
and singular continuous spectral distributions [1]. The
latter class proved to be surprisingly rich and it encom-
passes a broad range of potentials, such as quasi-periodic
potentials which have been thoroughly studied [2, 3].

An interesting quasi-periodic potential can be designed
using a Fibonacci sequence. The corresponding singu-
lar continuous energy spectrum has a fractal structure of
the Cantor set type [4–7], and it displays self-similarity
i.e., a symmetry under a discrete scaling transformation.
Denoting ρ(ε) the relevant density of states (DOS) in ε
(either energy or frequency), a discrete scaling symmetry
about a particular value εu is expressed by the property

µ(εu + ∆ε)− µ(εu) =
µ (εu + b∆ε)−µ (εu)

a
, (1)

where µ (ε) =
∫ ε
−∞ ρ (ε′) dε′ is the integrated density of

states (IDOS), or density measure, and a and b are scal-
ing parameters which usually, depend on εu. Defining
a shifted IDOS by Nεu (ε) ≡ µ(ε) − µ (εu), the general
solution of (1) can be written as [8]

Nεu (ε) = |ε− εu|α F
(

ln |ε− εu|
ln b

)
, (2)

where α = ln a
ln b is the local (εu-dependent) scaling ex-

ponent and F(z) is a periodic function of period unity,
whose (non-universal) form depends on the problem at
hand. Generally, the exponent α takes values between
zero and unity, so that the density ρ (ε) is a singular func-
tion. Such scaling properties of a fractal spectrum are
expected to modify the behavior of physical quantities

[8]. Recently studied examples include thermodynamic
properties of photons [9], random walks [10], quantum
diffusion of wave packets [11] and spontaneous emission
triggered by a fractal vacuum [12]. The diffusion of a
wave packet in a quasi-periodic medium is predicted to
be neither diffusive, nor ballistic but to present an exotic
behavior characterized by non-universal exponents and a
log-periodic modulation of its spreading with time. Up to
now, experimental demonstration of these specific prop-
erties of quasi-periodic structures is still missing. We
propose to use cavity polaritons to evidence such a frac-
tal anomalous behavior.

Cavity polaritons are quasi-particles arising from the
strong coupling between the optical mode of an optical
cavity and excitons confined in quantum wells [13]. They
have appeared recently as a promising system to real-
ize quantum simulators [14, 15]. Engineering of the po-
tential landscape is possible and allows implementing a
large variety of physical situations such as 1D [14, 16, 17]
and 2D periodic potentials [18, 19] with the generation
of gap solitons [17, 20], non-linear resonant tunneling
devices[21], or triangular [22] and honeycomb [23, 24] lat-
tices, which enables the exploration of graphene physics.
Polaritons offer experimental possibilities not available
in 1D or 2D photonic quasi-crystals such as direct time-
and energy-resolved measurements of the excitations in
both space and momentum domains. Thus, one can di-
rectly observe and visualize individual eigenmodes, and
the dynamics of wave packets.

In this letter, we use this well-controlled system to in-
vestigate both theoretically and experimentally the spec-
tral properties of a polariton gas in a quasi-periodic po-
tential. To do so, we have sculpted the lateral profile of a
quasi-1D cavity in the shape of a Fibonacci sequence. Us-
ing non resonant excitation in the low density regime, we
probe the modes both in real and reciprocal space. We
observe a quantitative agreement between experiments
and the calculated modes and density of states. In par-
ticular, we evidence features of a fractal energy spectrum,
namely gaps densely distributed and an integrated den-
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sity of states (IDOS) reflecting the existence of a discrete
scaling symmetry.

In our sample, cavity polaritons are confined within
narrow strips (wire cavities), whose width is modu-
lated quasi-periodically. These wires are fabricated pro-
cessing a planar high quality factor (Q ∼ 72000) mi-
crocavity grown by molecular beam epitaxy. It con-
sists in a λ/2 Ga0.05Al0.95As layer surrounded by two
Ga0.8Al0.2As/Ga0.05Al0.95As Bragg mirrors with 28 and
40 pairs in the top/bottom mirrors respectively. 12
GaAs quantum wells of width 7 nm are inserted in the
structure resulting in a 15meV Rabi splitting. Then,
the 200µm long wires with lateral dimension modu-
lated quasi-periodically are designed using electron beam
lithography and dry etching (Figs. 1(a-b)). The modu-
lation consists in two wire sections (”letters”) B and A
of the same length a = 1.35µm and different widths of
2.04µm and 3.5µm respectively (Fig.1(b)). The mod-
ulation of the width of the wire induces an effective 1D
potential for the longitudinal motion of polaritons, as dis-
cussed in the sequel. The letters are arranged according
to the Fibonacci sequence [4] using the following recur-
sion

Sj≥3 = [Sj−2Sj−1] , and S1 = B, S2 = A, (3)

where [Sj−2Sj−1] means concatenation of two sub-
sequences Sj−2 and Sj−1. The number of letters (length)
of a sequence Sj is given by the Fibonacci number Fj ,
such that Fj+1 = Fj + Fj−1.

The ratio Fj+1/Fj tends to the golden mean σ =
(1 +

√
5)/2 ' 1.62 in the limit j → ∞, while the corre-

sponding sequence S∞ becomes rigorously quasi-periodic
and invariant, i.e. self-similar, under the iteration trans-
formation 3. Our sample corresponds to S12 counting
144 letters. To study the polariton modes in these quasi-
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FIG. 1: (Color online) (a) Scanning electron microscopy im-
age of an array of modulated wires. (b) Zoom on a particular
wire, showing the shape of the A and B letters. (c) Schematic
of the nominal potential corresponding to the lateral shaping
of the wire cavity. The effective potential used in the numeri-
cal calculation is described in the text and in the supplement
[25].

periodic wires, we perform low temperature (10 K) micro-
photoluminescence experiments. Single wires are excited

non-resonantly using a cw monomode laser tuned typi-
cally 100meV above the polariton resonances. The ex-
citation spot extends over a 80µm-long region along the
wire. The sample emission is collected and imaged on
the entrance slit of a spectrometer coupled to a CCD
camera. Imaging respectively the sample surface and the
Fourier plane of the collection objective allows studying
the polariton modes either in real or reciprocal space.
The excitation power is kept low enough to stay below
condensation threshold and obtain a nearly homogeneous
population of the different polariton energy levels.

Fig.2.a displays the spatially and spectrally resolved
emission measured on a single modulated wire cavity for
an exciton-photon detuning around −6meV (namely the
difference in energy between the cavity mode at normal
incidence and the exciton resonance). Several polariton
modes are imaged. They present complex patterns of
bright and dark spots distributed over the region of the
wire under investigation. In the lowest energy state, the
bright spots correspond to ”AA” sections (which provide
a wide potential minimum) whereas for the higher order
modes, some of the bright spots are localized in simple
”A” regions. To understand the nature of these modes
and of their spectral density, we have calculated the po-
lariton eigenstates in such quasi-periodic structures.
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FIG. 2: (Color online) (a) Spectrally and spatially resolved
emission measured on a single modulated wire excited non-
resonantly (the linear polarization parallel to the wire is se-
lected). At the bottom of the figure, we report the letter
sequence corresponding to the end of the S12 potential se-
quence. (b) Calculated polariton Fibonacci modes as a func-
tion of energy and real space coordinate.

In our model whose details are given in the supplement
[25], we describe the confined photon modes using a 2D
scalar wave equation with vanishing boundary conditions
on the boundary of the wire considered as an axially sym-
metric strip where the longitudinal coordinate x ∈ [0, L]
(L being the length of the wire), and the transverse co-

ordinate −w(x)
2 ≤ y ≤ w(x)

2 . Here, w (x) > 0 accounts
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for the x-dependent width of the wire (Fig.1.c), i.e. a
quasi-periodic sequence of segments of two types, A and
B, as defined in (3). In the supplement [25], we show how
to map this 2D problem onto a 1D Schrödinger equation
with the effective potential :

V (x) =
π2

w2 (x)
+
π2 + 3

12

(
w′ (x)

w (x)

)2

. (4)

The first term of V (x) is the usual adiabatic approxima-
tion. The second term, which is not perturbative, ac-
counts for the sharpness of the steps and it is necessary
to obtain quantitative agreement between the numerics
and experiments. As clearly visible on Fig.1, the strip
shape is not perfectly abrupt but presents some smooth-
ness in the width variation introduced by the actual etch-
ing process. The smoothness scale is used as a fitting
parameter in the calculations (see supplement [25]). The
eigenfunctions φq (x) and eigenenergies EC,q are obtained
numerically. To calculate the polariton modes, we con-
sider the radiative coupling between excitons with a flat
dispersion to the photon modes we have obtained in our
simulations. Since the coupling is diagonal in the index q,
the resulting polariton eigenfunctions and photons have
the same spatial behavior. Fig. 2.b shows the polariton
modes thus obtained numerically. Since experimentally
we cannot resolve states which are separated by less than
the polariton linewidth, we have averaged the intensity
over eigenmodes close in energy. Thus, what appears in
Fig.2.b as the two lowest eigenmodes (bright intensity),
are actually two bands separated by a gap. Clearly the
calculation reproduces very accurately the spatial struc-
ture of the polariton modes observed in the experiment.
This direct imaging of the Fibonacci modes in a quasi-
periodic structure is a clear asset offered by cavity po-
laritons.

Probing the polariton modes in reciprocal space pro-
vides also remarkable information about the eigenmodes.
To show that, momentum space is accessed by imag-
ing the Fourier plane of the microscope objective tak-
ing advantage of the one-to-one relation between angle
of emission and in-plane momentum of polaritons. Such
far field imaging is shown on Fig.3.a for the same wire
as in Fig.2. A complex band structure appears with the
opening of gaps not regularly spaced unlike the case of
a periodic modulation [17]. The shape of the calculated
band structure reproduces quantitatively the measure-
ments (Fig.3.b). In the rest of the paper, we show that
despite the finite size of the system, both in the numerics
and in the experiments, fundamental physical properties
are evidenced in this complex band-structure which in-
dicate the onset of a fractal density of states. To study
the spectrum and the position of its gaps, it is convenient
to rewrite the quasi-periodic potential V (x) in (4) under
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FIG. 3: (Color online) (a) Spectrally resolved far field emis-
sion measured on the same wire cavity used in Fig.2; (b)
Corresponding simulation. The positions of the gaps labelled
with two integers [p, q] is indicated with red arrows and it is
in accordance with the gap labeling theorem.

the form,

V (x) =
∑

n

χ(σ−1n)ub(x− an) (5)

valid in principle [4] for an infinitely long system (j →
∞) and where ub(x) (which depends on w(x)) describes
the shape of the letter B. The periodic function χ(x) is
defined, within [0, 1], by χ(x) = 1 for 0 < x < 2− σ and
χ(x) = 0 for 2 − σ < x < 1. The Fourier transform of
V (x) is

V (k) = ũb(k)
∑

p,q

χq δ
(
ka− 2π(p+ qσ−1)

)
. (6)

Since σ is irrational, each Bragg peak of the quasi-
periodic potential can be uniquely labeled with a set [p, q]
of two integers so that the corresponding wave number
is k = Qp,q ≡ 2π

a

(
p+ qσ−1

)
. Similarly to the Bloch

theorem for a periodic modulation, we may expect that
a series of gaps opens at each independent Bragg peak
Qp,q. Thus, to label the gaps and to obtain the IDOS
given in (2), it is tempting to consider the quasi-periodic
potential V (x) as a perturbation. Albeit not justified
in the present case, we shall first use this assumption
since it allows to give a more intuitive and qualitative
derivation of gap labeling. But the Bragg peaks being a
dense set, we must be cautious and first approximate σ
by its finite approximants σj = Fj+1/Fj , where aFj+1

is the length of the unit cell of the periodic approximant
Vj+1(x), a chain of periodically repeated Sj ’s defined in
(3). Its Fourier transform Vj+1(k) is obtained replacing
σ by σj in (6). Vj+1(k) thus defined, is the structure
factor of a periodic structure and therefore it has a finite
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density of Bragg peaks spaced by ∆k = 2π/(aFj+1). Per-
turbation theory in |V | � 1 is now applicable. To first
order, each Bragg peak k = Qp,q ≡ 2π

a (Fj+1p+ Fjq)
hybridizes the degenerate Bloch waves at wave numbers
±Qp,q/2. The coupling between these plane waves is
best described by a two-level Hamiltonian with diagonal,
ε ≡ EQp,q/2 = E−Qp,q/2, and off-diagonal, Vq ≡ V χq,
matrix elements. The doubly degenerate level ε splits
into ε ± |Vq| and a gap of width 2|Vq| opens at this en-
ergy. Accordingly, there is a one-to-one correspondence
between the Bragg peaks and the gaps generated through
the hybridization of plane waves, so that each gap can
also be labeled with the two integers [p, q]. Noting that
Qp,q a = p+qσ−1 is the proportion of plane waves whose
energies (for V = 0) are less than ε = EQp,q/2, the IDOS
inside the [p, q]-gap is

N (ε = EQp,q/2) = p+ qσ−1 = qσ−1 (mod. 1) (7)

for N (ε = EQp,q/2) ∈ [0, 1].
While the previous result has been obtained using per-

turbation theory, it happens that it has a much broader
range of validity generally expressed by the so called
gap labeling theorem [27] formulated by Bellissard and
coworkers. This theorem provides a precise framework
for applicability and allows to compute values of the
IDOS in the gaps of the spectrum of 1D families of
Schrödinger Hamiltonians with bounded potentials V (x)
defined by primitive substitutions on a finite alphabet
(two letters for the Fibonacci sequence). An interesting
and important consequence of that theorem is the topo-
logically stable nature of the IDOS values in the gaps
which extends beyond perturbation theory. Those spe-
cific values are obtained [27] from some prescribed linear
combinations of components of eigenvectors of the corre-
sponding substitution matrix characteristic of the quasi-
periodic potential. For the Fibonacci sequence defined in
(3), that prescription reduces to linear combinations of 1
and σ−1 namely to Eq.(7). In Fig.3.a, we indicate with
red arrows the labeling of the gaps using the set [p, q],
demonstrating that the positions of the gaps are accu-
rately determined by the positions of the Bragg peaks
even for a relatively short Fibonacci sequence such as
considered here. These positions are stable topological
quantities, namely independent of the strength of the po-
tential. On the other hand, the energy width of the gaps
depend on the heights of the Bragg peaks, i.e. on the
details of the potential ub(x) (and w(x)).

The peculiar structure of the emission spectrum ap-
pears also clearly by considering the total emission in-
tensity I(ε) nearly proportional to the DOS. Fig.4.a
displays peaks and deeps corresponding respectively to
bands and pseudo-gaps. The measured integrated inten-
sity

∫ ε
εmin

I(ε′)dε′, is reported in Fig.4.b together with

the numerically calculated DOS and IDOS (Figs 4.c-
d). An excellent agreement is achieved between the-
ory and experiment despite some difference in the height

of the DOS peaks and the corresponding IDOS steps,
to be attributed to the non-ideally uniform popula-
tion of the modes (see Fig.3). Applying (7), valid in
principle in the infinite limit (j → ∞), to the gaps
[−1, 2], [1,−1], [0, 1] indicated in Fig.4.d, one obtains re-
spectively N (EQp,q/2) = 0.24, 0.38, 0.62, in good agree-
ment with both experiments and numerics.

For the infinite system, there exists an infinite series
of gaps at p+ qσ−1 ∈ [0, 1] . Thus the energy spectrum,
which is the complementary of these gaps, is singular
continuous. It is a Cantor like set whose total width
vanishes. The high resolution available in the numerics
allows to consider finer details of the IDOS as predicted
by the scaling form Eq.(2). In the inset of Fig.4.d, we
have plotted in a log-log scale the IDOS as a function of
(properly normalized) energy. It is noticeable that, even
for such a finite sized system, we indeed observe a power
law behavior multiplied by a log-periodic function, a di-
rect signature of the fractal character of the polariton
spectrum. The spectral resolution of the experimental
spectrum does not allow to observe this log-periodic os-
cillation in the present structure. An optimization of the
microcavity structure, thanks to a smaller step size a and
higher potential steps V0 should allow resolving also ex-
perimentally this feature.
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FIG. 4: (Color online) (a) Measured total (angular-averaged)
emission spectrum I(ε) of the quasi-periodic wire and (b) In-
tegrated emission intensity

∫ ε
I(ε′)dε′; (c) Calculated DOS

smoothed for the comparison with I(ε) in (a); (d) Calculated
IDOS normalized to unity at the gap [1, 0] (see Fig.3). Inset:
The log-log plot exemplifies the scaling behaviour (2) of the
IDOS near the bottom E0 of the spectrum.

In summary, we have studied spectral properties of a
gas of cavity polaritons in a 1D quasi-periodic poten-
tial described by a Fibonacci sequence of finite size. We
have observed the characteristic behavior of the associ-
ated fractal energy spectrum, namely gaps densely dis-
tributed and an IDOS well described by the scaling form
(2) and which follows the gap labeling theorem (7). We
have obtained a spectrally and spatially resolved image of
the polariton modes which is in good quantitative agree-
ment with theoretical and numerical results. Our results
support the idea that topological features of a fractal
spectrum are robust and show up quite accurately even
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for a relatively short structure. Those results evidence
the great interest of cavity polaritons to study the anoma-
lous time expansion of a polariton wave-packet [11] and
more generally to realize quantum simulators of complex
quantum systems.
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Forchel,and Y. Yamamoto, New Journal of Physics 15,
035032 (2013)

[23] Na Young Kim, Andreas Löffler, Sven Höfling, Alfred
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We present a brief but explicit derivation of the 1D Schrödinger equation with the effective
potential V (x) given by Eq.(4) of the letter. We stress the importance of the second, often omitted,
term in V (x) and then compare the results obtained within this effective 1D approach to those
obtained using a full fledged numerical calculation of the 2D polariton spectrum.

DERIVATION OF THE EXPRESSION OF THE
EFFECTIVE POTENTIAL GIVEN BY

EQUATION (4)

The purpose of this supplement is to derive and dis-
cuss the validity of the 1D Schrödinger equation with the
effective potential V (x),

V (x) =
π2

w2 (x)
+
π2 + 3

12

(
w′ (x)

w (x)

)2

(1)

given by Eq.(4) in the letter. To that aim, we need to
map the original 3D setup onto an effective 1D problem.
As described in more detail in the letter, polaritonic wires
are fabricated by processing a planar λ/2 cavity. We de-
note n its effective refractive index. The electromagnetic
field is confined along the (vertical) z-direction using two
Bragg mirrors. This confinement is much tighter than
that in the perpendicular xy-plane. For the latter, we
impose zero boundary conditions, an approximation jus-
tified by the high contrast in refractive index between
dielectric and air (see, e.g., Ref. [1]). Under the above as-
sumptions, the corresponding electromagnetic field eigen-
modes can be chosen to have either TE or TM polariza-
tions. The polarization splitting is large in an etched wire
cavity, probably because of strain relaxation. Since in the
experiment we detect only one polarization, we do not
include the polarization degree of freedom in the simula-
tion and we consider a scalar wave approximation. Then,
looking for separable solutions between vertical and lat-
eral coordinates, leads to the following two-dimensional
(2D) stationary wave equation

Eψ (x, y) = − ~2

2mph
4⊥ψ (x, y) , (2)

where mph ≡ n2Ec/c2 is the effective photon mass, Ec ≡
~c
n kz is the energy associated with the fundamental mode
of the λ/2 cavity, and 4⊥ ≡ ∂2x + ∂2y is the transverse
Laplacian. Since E � Ec, the total photon energy can
be expanded in E so that,

~ω ≈ Ec + E . (3)

As a result of our assumed zero boundary conditions in
the xy-plane, the electromagnetic field ψ (x, y) vanishes
on the boundary.

Note that Eq.(2), with the same boundary conditions,
also holds to describe the center-of-mass motion of the
excitons confined to the xy-plane by the quantum wells.
Therefore, within the same approximations, the electro-
magnetic field and the excitons have similar eigenmodes
and energy spectrum (up to the difference in their effec-
tive mass), so that the photon-exciton coupling is diago-
nal in the eigenmode index. A flat exciton dispersion is
used because of their relatively large mass. The finding of
the eigenmodes of the 2D problem (2) on a strip can eas-
ily be done numerically. Nevertheless, it is useful to have
a well controlled 1D effective model providing intuition
and insight of the essential features of the problem at
hand. This is particularly relevant for the quasi-periodic
potential we study and its fractal polariton spectrum,
since a broad range of analytical and numerical tools are
specifically available for the 1D problem, such as the gap
labeling theorem used in the letter.

To proceed further and establish the expression of the
1D effective potential Eq.(1), we look for solutions of
the wave equation Eq. (2) on a symmetric strip de-
fined by its longitudinal coordinate x ∈ [0, L], where L
is the length of the wire, and its transverse coordinate

−w(x)
2 ≤ y ≤ w(x)

2 . The function w (x) > 0, which de-
fines the x-dependent width of the wire, is assumed to
be differentiable. The sought solution can generally be
written in the form of a Fourier series over the transverse
quasi-modes,

ψ (x, y) =
∞∑

n=0

ψn (x)

√
2

w (x)
cos (ky,n (x) y) , (4)

where both the transverse wave vector, ky,n (x) = π 2n+1
w(x) ,

and the expansion coefficients ψn (x), are x-dependent.
This solution is symmetric with respect to the middle
line y = 0, and it is not coupled to the similar anti-
symmetric one (note that for a non-symmetric strip, both
solutions would participate to the expansion (4)). We
need to consider only symmetric solutions, since they in-
clude the lowest frequency branch, corresponding to the
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2

lowest transverse quasi-mode, ky,0 (x) = π
w(x) . An infi-

nite hierarchy of coupled differential equations for ψm (x)
is obtained by substituting the expansion (4) into the
wave equation (2) and subsequently integrating over y

with the weight
√

2
w(x) cos (ky,m (x) y). Neglecting the

coupling to the higher quasi-modes, leads to the follow-
ing approximate equation for the lowest quasi-mode:

Eψ0 (x) =
~2

2mph

[
− d2

dx2
+ V (x)

]
ψ0 (x) , (5)

where V (x) given in Eq.(1), defines the effective 1D po-
tential along the strip for the lowest transverse mode.
Similar results have been obtained for the study of cold
atoms in optical trap waveguides [2]. The coupling of
ψ0 (x) to the higher quasi-modes leads to the appearance
of additional terms in Eq.(5), involving various deriva-
tives of w (x). For a coupling strength between quasi-
modes small compared to the energy separation to the
next mode, we can neglect those additional terms. The
detailed analysis of this conditions is, however, beyond
the scope of this supplement. Instead, we justify this ap-
proximation comparing our results to the full fledged 2D
numerics.

The first term in the potential V (x) given in Eq.(1)
is the usual adiabatic approximation, proportional to
k2y,0 (x), which accounts for the distribution of the ”ki-
netic” energy between the transversal and the longitudi-
nal degrees of freedom. For a constant w (x), the prob-
lem is separable. It leads to uncoupled transverse modes
ψm (x) and the adiabatic kinetic term is the only remain-
ing contribution to V (x). For a varying profile w (x) such
as the one we consider, the problem is not separable any-
more, and the second term in Eq.(1) becomes relevant.
This term is sensitive to the stiffness of the boundary
variation [2]. For a smoothly varying width, w′ (x) is
small and the second term is negligible compared to the
kinetic term. For a sharper step structure, like the one we
consider (see Fig. 1,b,c of the letter), the two terms in the
effective potential become comparable. In the limit in of
sharp steps for V (x), the second term in Eq.(1) becomes
singular, namely a repulsive δ-function squared. In that
case, higher transversal quasi-modes must be included.

COMPARISON BETWEEN THE EXACT 2D
CALCULATION AND THE EFFECTIVE 1D

POTENTIAL

We wish now to show that the effective 1D model
provides a quantitatively good description of the mea-
sured polariton spectrum provided we include the sec-
ond term in the potential (1) which account for the
sharp boundary modulation. To that purpose, we com-
pare the low energy eigenmode spectra obtained from
the exact two-dimensional (2D) and the effective one-
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FIG. 1: (Color online) Comparison between the results ob-
tained for the IDOS based on the full 2D and the 1D calcula-
tions using the effective potential V (x) given by Eq. (1). The
values of smoothing parameter η are indicated in the inset.

dimensional calculations. The 2D calculation is done us-
ing, instead of (4), a complete two-dimensional Fourier
expansion, and then diagonalizing the Hamiltonian in
this two-dimensional basis. In addition, a scale is in-
troduced over which we smoothen the width profile by
means of a convolution of the binary width profile with
the Gaussian kernel,

g (x) ∝ e−(x/ηa)2 , (6)

where a is the single letter length (1.35µm) and the rela-
tive, dimensionless smoothness scale η is used as a fitting
parameter (to the experimental data). This is justified
looking at the micrograph of the wire in Fig. 1.b of the
letter. Obviously, there is some smoothness in the wire
width variation, introduced by the etching process. Its
scale, however, is hard to quantify from the direct mea-
surement, and should be considered as a phenomenolog-
ical parameter. In order to compare the effective 1D
description to the full 2D calculation, we have plotted in
Fig.1 the integrated density of states (IDOS) for different
values of the fitting parameter η. We note that the po-
sition and the width of the gaps of the 2D spectrum are
significantly less sensitive to the parameter η than the
effective 1D spectrum. Note however, that the value of
the IDOS in the gaps is independent of η in both cases,
since it is a topologically stable quantity. These differ-
ent sensitivities to the parameter η can be rather exactly
compensated by increasing the smoothness scale in the
1D calculation relatively to the corresponding 2D case.
This is demonstrated in Fig. 1 by superimposing the two
results for different sets of choices of η. On the other
hand, the 1D calculation using only the first (kinetic)
term in V (x) does not show any specific dependence on
η even for rather large values of the smoothing. It is thus
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FIG. 2: (Color online) Comparison between the spectral func-
tion obtained from the full 2D calculation (left) versus the 1D
calculation using the effective potential V (x) given by Eq.(1)
where only the first kinetic term has been considered (right).

not possible to use this approximation to reproduce the

2D calculation. Moreover, the 1D potential based on the
first kinetic term only in Eq.(1), is unable to reproduce
the gap structure of the spectrum, even qualitatively. To
show this, we have plotted in the left panel of Fig. 2, the
spectral function of the 2D calculation. It is compared
(right panel) to the 1D spectral function obtained using
the first term only in Eq. (1). We note the discrepancy
in the position of the gaps which cannot be handled by
a proper choice of η. More important, the higher energy
gaps (e.g. the one labeled [1, 0]) in Fig.3 of the letter are
missing. In contrast, the full 1D effective model with a
proper value of η reproduces faithfully both the 2D and
the measured spectra.
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