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Abstract

We study measures generated by systems of linear iterated functions,
their Fourier transforms, and those of their orthogonal polynomials. We
characterize the asymptotic behaviours of their discrete and continuous av-
erages. Further related quantities are analyzed, and relevance of this analysis
to quantum mechanics is briefly discussed.
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1 Introduction

This paper applies and extends the general results of the companion paper I in the
case of measures generated by Linear Iterated Functions Systems, L.I.F.S., that
are perhaps the most manageable example of singular measures. Further details
and different proofs can be obtained for this class of measures. Specifically, we
shall consider the Fourier Bessel functions Jn(µ; t):

Jn(µ; t) :=
∫

dµ(s) pn(µ; s) e−its, (1)

where, as in paper I, pn(µ; s) are the orthogonal polynomials of the measure µ,
that are easily proven to exist for all orders. We shall study the asymptotics, for
large argument t, of the Cesaro averages of Jn(µ; t), and of the quadratic quanti-
ties Jn(µ; t)J ∗m(µ; t). These averages will be indicated by J̄n(µ; t) and Anm(µ; t),
respectively. In addition to the conventional Cesaro procedure, we introduce and
discuss in this paper different averaging techniques.

We refer to paper I for further notations and general results. In particular,
results from paper I will be referred to with the suffix -I. In this respect, the table
of symbols at the end of paper I might prove to be very useful.
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In the quadratic case, when n = m = 0, this problem has already been treated
in the literature, as remarked in Paper I. In this context, measures generated by
L.I.F.S. are particularly simple, since they allow for the examination of the nature
of the singularities determining the analyticity range of the Mellin transforms, as
originally remarked by Bessis et al. [1] and by Makarov [2]. The extension to the
general n,m case is also motivated by the quantum mechanical applications of the
formalism [3]. In fact, when the Jacobi matrix of a measure is considered as the
Hamiltonian in the Schrödinger equation of the evolution in a separable Hilbert
space, the components of the quantum motion are precisely the Fourier transforms
of the orthogonal polynomials of the spectral measure [4]. As a consequence, we
shall sometimes refer to the argument t of the F-B. functions as to the “time”.

We shall proceed as follows. In the next section we outline the relations
between generalized Fourier-Bessel functions and quantum time evolution. This
section is self-contained, and can be skept by the reader uninterested in this appli-
cation of the theory. In Sect. 3 we review the essentials of the formalism of Iterated
Function Systems. We then assume a sort of separation condition for the I.F.S.
measure, that in Sect. 4 leads us to derive the local dimension of the measure µ
at fixed points of the I.F.S. maps. We also prove a theorem on the measure of the
ball of radius ε centered at such points. In Sect. 5 the same direct techniques allow
us to derive the asymptotics of the F-B. functions. Graphical illustrations are also
displayed. Starting from Sect. 6 we resume the theory of Paper I, by studying
the Mellin transforms of F-B. functions, whose analytic continuation leads to the
inversion theorems described in Sect. 7. We derive here a trigonometric series rep-
resentation for the time-rescaled F-B. functions. In the following Sect. 8, we discuss
how the same Mellin techniques can be applied to averaging procedures other than
Cesaro, and as a by-product, we derive a Fourier series representation for the the
measure of the ball of radius ε, when rescaled by the appropriate exponent. The
asymptotic behaviour, in a strip of the complex plane, of the Mellin transforms is
studied in Sect. 9, where we present quite general results, and graphical–numerical
illustrations. We employ these results in Sect. 10 to further enhance our control of
the convergence properties of the trigonometric series derived in the previous sec-
tions. The same goal is achieved in Sect. 11 by introducing discrete Cesaro sums.
These latter constitute an argument worth of investigation in itself, that is briefly
sketched. In Sect. 12 we then move to consider products of F-B. functions. The
theory is now seen as an extension of the techniques of the preceding sections. To
avoid repetitions, the conclusions in Sect. 13 are no more than a brief recap of the
aims of this paper.

2 F-B. Functions and Quantum Dynamics

The relevance of the generalized Fourier-Bessel functions Jn(µ; t) in a quantum
mechanical context can be seen as follows. Let H be the Hilbert space given by
the closure in L2(R, dµ) of the vector subspace generated by {1, s, s2, ..., sn, ...}. In
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H the orthonormal polynomials {pn(µ; s)}n∈N can be taken as basis set {en}n∈N
of H. It is well known that these polynomials satisfy the recursion relation

spn(µ; s) = an+1pn+1(µ; s) + bnpn(µ; s) + anpn−1(µ; s), (2)

where an > 0, and bn are real numbers which obviously depend on µ (so that we
feel no need to indicate this dependence explicitly). In H we consider the operator
H defined by

(Hf)(s) = sf(s) for any f ∈ D(H) = {f ∈ H|sf(s) ∈ H}

D(H) is dense in H and H is self-adjoint on it. The recursion relation (2) can now
be written as

Hpn = an+1pn+1 + bnpn + anpn−1

and the matrix elements of H on {pn}n∈N form the Jacobi Matrix J of the system
of orthogonal polynomials

J := ((pn,Hpm), n, m = 0, . . .) =




b0 a1

a1 b1 a2

a2 b2 a3

. . . . . . . . .


 .

where (·, ·) denotes the scalar product in H. Outside the tri-diagonals, the matrix
elements are null.

We can interpret H (equivalently, J) as the Hamiltonian of a tight-binding
model on a lattice with canonical basis {en}n∈N. Let us then consider the evolution
generated in the separable Hilbert H space by Schrödinger equation,

i
d

dt
ψ(t) = Hψ(t). (3)

In this equation, ψ is the wave-function. The physical amplitudes of the quantum
motion are the square moduli of the projections of the wave-function on the basis
states of Hilbert space, ψn := (ψ(t), en):

|ψn(t)|2 := |(ψ(t), en)|2. (4)

The initial state of the evolution, ψ(0), can be chosen freely. Letting it coin-
cide with the first basis state e0 = p0(µ; s) = 1 leads to:

Proposition 1 Let µ, H, J , ψ(0) = e0 and ψ(t) be defined as in the above. Then,
ψn(t), the projection of the time evolution on the n-th basis state, is Jn(µ; t), the
n-th generalized Fourier-Bessel function.

Proof. We first observe that µ coincides with the spectral measure associated to p0,
that is, µp0 = (p0|PBp0) =

∫
dµ(s) χB(s) =

∫
B

dµ(s), where PB is a projector in
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the spectral family of H associated to the Borel set B and χB is the characteristic
function of B. Then, from ψ(t) = e−itHe0 = e−itsp0(µ; s) = e−its, one has at once

ψn(t) = (en, ψ(t)) =
∫

dµ(s) pn(µ; s) e−its = Jn(µ; t). 2 (5)

This proposition has been the basis of various investigations of the quantum dy-
namics of systems with singular continuous spectral measures [3, 4, 5, 6, 7, 8, 9, 10].

3 Linear Iterated Function Systems

Systems of hyperbolic linear iterated functions [11, 12, 13] are finite collections of
real maps

`i(s) := δis + βi, i = 1, . . . , M, (6)

where δi, βi are real constants, and where the contraction rates δi have modulus
larger than zero and less than one. For simplicity, we may assume that these
constants are positive. A positive weight, πi, is associated with each map: πi > 0,∑

i πi = 1. Employing these weights, a measure µ can be defined as:

Definition 1 The balanced invariant I.F.S. measure µ is the unique measure that
satisfies ∫

f dµ =
M∑

i=1

πi

∫
(f ◦ `i) dµ, (7)

for any continuous function f .

This measure is supported on A, the subset of R that solves the equation A =⋃
i=1,...,M `i(A). The set A is invariant under the action of shrinking, and pasting.

Because of this, the geometry of this set is typically fractal (except for special
choices of the map parameters). In turn, the balance relation (7) is responsible for
the multi-fractal properties of the measure µ.

We shall need in this paper a few results easily derived in L.I.F.S. theory.

Lemma 1 For any n, there exist real parameters Γn
i,l, i = 0, . . . , M , l = 0, . . . , n,

such that

pn(µ; `i(s)) =
n∑

l=0

Γn
i,l pl(µ; s), i = 1, . . . ,M. (8)

Proof. It is immediate, since pn(µ; `i(s)) is an n-th degree polynomial, that can be
expanded on the first n orthogonal polynomials: the related coefficients are Γn

i,l. 2

Lemma 2 Let Γn
il be the coefficients in eq. (8). Then, Γn

i,n = δi
n.
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Proof. Obviously, pn(µ; s) = an
nsn + an

n−1s
n−1 + . . . + an

0 ; then,

pn(µ; `i(s)) = an
n(δis + βi)n + . . . + an

0 = δi
nan

nsn + . . . = δi
npn(µ; s) + Qn−1(s),

where Qn−1 is a polynomial of degree n− 1. Comparing with

pn(µ; `i(s)) = Γn
i,npn(µ; s) + Γn

i,n−1pn−1(µ; s) + . . . + Γn
i,0,

and using the orthogonality of the polynomials {pn(µ; s)} gives the result. 2

4 Local analysis of L.I.F.S. measures

Let us now study in detail the local properties of the I.F.S. measures µ around
the point zero. We assume that zero is the fixed point of the first I.F.S. map, and
that a kind of separability condition holds:

Assumption 1 The L.I.F.S. maps are such that `1(s) = δ1s, and that the distance
between zero and `i(A) is strictly positive, for any i 6= 1. Here A is the attractor
of the I.F.S.

Notice that this assumption is implied by the open set condition, but it is weaker
than this latter. Indeed, it allows for overlaps of the map images. A realization of
this condition is given by an I.F.S. whose parameters satisfy β1 = 0, βi > 0 for
i 6= 1, 0 < δi < 1 for all i.

The analysis extends with only notational complications to fixed points of
finite combinations of I.F.S. maps, when a natural adaptation of assumption to
1 holds, and, via a suitable approximation argument, to a generic point in the
support of the I.F.S. measure µ. The measure µ so defined enjoys distinctive prop-
erties. We first observe that

Proposition 2 If assumption 1 holds, then µ([−ε, ε]) = εaA(log ε), where a :=
log π1/log δ1, and A(ζ) is a strictly positive periodic function, of period log δ−1

1 :
A(ζ) = A(ζ + log δ−1

1 ). Moreover, a is the local and the electrostatic dimension of
the L.I.F.S. measure µ at zero: γ−(µ; 0) = γ+(µ; 0) = d(µ; 0) = a.

Proof. Let m(ε) be the measure of the ball of radius ε centered at zero:

m(ε) :=
∫

dµ(s)χ(−ε,ε)(s). (9)

Applying the balance relation (7) one obtains

m(ε) =
M∑

i=1

πi

∫
dµ(s)χ(−ε,ε)(δis + βi). (10)
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We now let B(ε) denote the terms with i 6= 1 at r.h.s.:

B(ε) :=
∑

i 6=1

πi

∫
dµ(s)χ(−ε,ε)(δis + βi). (11)

In the term i = 1 in eq. (10) we use the property χ(−ε,ε)(δ1s) = χ(−ε/δ1,ε/δ1)(s) of
the characteristic function, to arrive at

m(ε) = π1m(ε/δ1) + B(ε). (12)

Eq. (12) is a sort of renormalization equation for the function A. To proceed
further, we need to study the function B(ε). It is easy to see that B(ε) is null for
ε < %min, where %min is the minimum distance of the images `i(A) from zero, for
i 6= 1. Thanks to assumption 1, this quantity is strictly positive. Also, m(ε) is a
continuous, monotone non-decreasing function, bounded from below by zero and
from above by one. It can also be noted that m(%min) is strictly larger than zero,
since m(ε) is such for any ε > 0, because zero is the fixed point of the first I.F.S.
map. Let now ε0 belong to I0 = (%min, %min/δ1), and let εk = δk

1ε0. Then, applying
eq. (12) once, we have

m(ε1) = π1m(ε0) + B(ε1). (13)

Since B(εk) = 0 for k ≥ 1, the above equation extends to

m(εk) = πk
1m(ε0), k = 1, 2, . . . . (14)

Let now a := log π1/log δ1, ζ := log(ε), and ζk := log(εk) = ζ0 + k log δ1. Let also
A(ζ) := e−aζm(eζ): in the new variables, eq. (14) becomes

A(ζk) = A(ζ0). (15)

Therefore, A(ζ) is a continuous, periodic function. It is strictly positive, because
m(ε) is such in I0. As a consequence, we obtain the first part of the thesis: m(ε) =
εaA(log ε). Recall now the definition of local dimension, Def. 7-I, paper I, and
Thm. 2-I, paper I, that permit to conclude. 2

We shall come back to the function A(ζ) at the end of Sect. 8. It is evident
that we can construct I.F.S. measures with arbitrary local dimension d0(µ; 0) in
(0,∞) [14]. This fact will be helpful to investigate the importance of the value of
d0(µ; 0) in the asymptotics of F-B. functions.

5 Asymptotics of F-B. functions for L.I.F.S. mea-
sures

Recall the definition of the asymptotic exponents αn(µ) from paper I and the
property:

αn(µ) = min{dn(µ), 1}. (16)
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When dn(µ) = αn(µ) these quantities are the exponents of the asymptotic decay
of the averaged F-B. functions, via Thm. 6-I. A further application of the balance
relation of I.F.S. measures is a renormalization argument that leads to a different
proof, and to further detail:

Theorem 1 For an I.F.S. in the conditions of assumption 1, when d0(µ; 0) =
α0(µ) < 1 and when d0(µ; 0) > α0(µ) = 1, the function

jn(µ; t) := tα0(µ)J̄n(µ; t) (17)

is bounded. In the first instance, moreover, jn(µ; t) is an asymptotically log periodic
function of period log δ−1

1 :

jn(µ; δ−k
1 t) → un(t),

as k → ∞, for all t ∈ R. The function un(t) is continuous, and log-periodic:
un(δ−1

1 t) = un(t) for all t ∈ R.

Proof. Recall that d0(µ) = log π1/ log δ1. In the following, we drop for conciseness
the reference to the measure µ in the arguments of d0, jn, pn, and elsewhere. Let

θn(t) := td0J̄n(µ; t) = td0

∫
dµ(s)

sin(ts)
ts

pn(s). (18)

Apply eqs. (7) and (8), to obtain

θn(t) = td0−1
M∑

i=1

πi

∫
dµ(s)

sin(t(δis + βi))
δis + βi

pn(δis + βi), (19)

θn(t) = td0−1
M∑

i=1

πi

n∑

l=0

Γn
i,l

∫
dµ(s)

sin(t(δis + βi))
δis + βi

pl(µ; s). (20)

Observe that the index i labels the summation over all I.F.S. maps. Let us now
single out the terms with i = 1:

θn(t) =
π1

δ1
td0−1

n∑

l=0

Γn
1,l

∫
dµ(s)pl(µ; s)

sin tδ1s

s
+ td0−1φn(t), (21)

where we have put

φn(t) :=
M∑

i=2

πi

∫
dµ(s)

sin(t(δis + βi))
δis + βi

pn(δis + βi). (22)

Working out the first term in eq. (21) we finally obtain

θn(t) =
n∑

l=0

Γn
1,lθl(δ1t) + td0−1φn(t), (23)
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where the definition of d0 has been employed, to simplify π1δ
−d0
1 = 1.

Observe that when assumption 1 holds, φn(t) are bounded functions: |φn(t)| ≤
Cn with Cn constant. In fact, take any integral appearing in eq. (22), that con-
tributes to φn(t): on the support of µ, the denominators δis + βi are larger than,
or equal to %min. Then,

|
∫

dµ(s)
sin(t(δis + βi))

δis + βi
pn(δis + βi)| ≤ ‖pn‖∞

%min
,

where we have introduced the infinity norm of pn over the bounded support of µ,
‖pn‖∞.

Let us first consider the case n = 0. The relation (23) becomes:

θ0(t) = θ0(δ1t) + td0−1φ0(t). (24)

Take now an arbitrary t = t0 ∈ R and set tk := δ−k
1 t0. Eq. (24) becomes

θ0(tk)− θ0(tk−1) = td0−1
k φ0(tk), (25)

and ∑

k

|θ0(tk)− θ0(tk−1)| ≤ C0

∑

k

td0−1
k = C0t

d0−1
0

∑

k

δ
−k(d0−1)
1 . (26)

When d0 = α < 1 the function θ0(t) coincides with j0(t). In addition, the last
series is convergent, and therefore the sequence j0(tk) converges to a limit, that
we call u0(t). Quite obviously, u0(δ−1

1 t) = u0(t) for all t ∈ R. Take now the
interval I = [t0, δ−1

1 t0], and the sequence of functions uk
0(t) := j0(δ−k

1 t) defined
over I. These functions are clearly continuous. Because of the estimate (26) this
sequence is uniformly convergent, and therefore u0 = limk→∞ uk

0 is a continuous
function. This proves the full theorem for n = 0 and d0 < 1.

The case of n > 0, d0 = α < 1, can now be proven by induction. In fact, the
relation Γn

1,n = δn
1 allows us to re-write eq. (23) as follows:

θn(t) = δn
1 θn(δ1t) +

n−1∑

l=0

Γn
1,lθl(δ1t) + td0−1φn(t), (27)

and therefore
jn(tk)− jn(tk−1) = δn

1 (jn(tk−1)− jn(tk−2))+

+
n−1∑

l=0

Γn
1,l(jl(tk−1)− jl(tk−2)) + td0−1

k (φn(tk)− δd0−1
1 φn(tk−1)). (28)

Take now the modulus, bound the r.h.s., and sum over k from two to infinity:

∞∑

k=2

|jn(tk)− jn(tk−1)| ≤ δn
1

∞∑

k=2

|(jn(tk−1)− jn(tk−2))|+
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+
n−1∑

l=0

|Γn
1,l|

∞∑

k=2

|(jl(tk−1)− jl(tk−2))|+
∞∑

k=2

td0−1
k |(φn(tk)− δd0−1

1 φn(tk−1))|. (29)

Because of the difference in the indices, the first line of the above inequality can
be modified as:

(1− δn
1 )

∞∑

k=2

|jn(tk)− jn(tk−1)| ≤ δn
1 |(jn(t1)− jn(t0))|+ . . .

without affecting the remaining items. In the second line, the terms |(φn(tk) −
δd0−1
1 φn(tk−1))| are bounded; when d0 < 1 the series

∑∞
k=2 td0−1

k was proven to
converge in eq. (26) above. Therefore, the induction hypothesis that

∑∞
k=2 |(jl(tk−1)−

jl(tk−2))| is convergent for l = 0, . . . , n − 1 guarantees that this is the case also
for l = n. The induction seed for l = 0 has been proven in in eq. (26), and in
conclusion ∞∑

k=1

|(jn(tk)− jn(tk−1))| < ∞ (30)

for any value of n. The proof can now be completed as in the case n = 0.
Observe now that a convenient representation of the function θ0(t) can be

obtained by applying iteratively eq. (24) k times:

θ0(t) = θ0(δk
1 t) + td0−1

k−1∑

j=0

(
π1

δ1
)jφ0(δ

j
1t). (31)

Because of the definition (18), and because d0 > 0, limt→0 θn(t) = 0; hence, δ1 < 1
implies that θ0(δk

1 t) → 0 as k →∞. Taking this limit in eq. (31) we get

θ0(t) = td0−1
∞∑

j=0

(
π1

δ1
)jφ0(δ

j
1t). (32)

Remark that our proof shows that this representation is valid even without requir-
ing the full validity of assumption 1: it only needs zero to be the fixed point of one
of the I.F.S. maps.

To further exploit this point, let now ψ0(t) := φ0(t)/t. Eq. (32) can now be
written in terms of the F-B. function and of ψ0:

J̄0(µ; t) =
1
t

∞∑

j=0

(
π1

δ1
)jφ0(δ

j
1t) =

∞∑

j=0

π1
jψ0(δ

j
1t). (33)

Observe that, in force of the definition (22), ψ0(t) is a bounded function (even
without assuming assumption 1), so that the last series in the above is uniformly
absolutely convergent.
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Let us now re-assume validity of assumption 1, that amounts to have φ0(t)
bounded. Consider the case n = 0, and d0 > α = 1, that implies π1

δ1
< 1. Then, we

have uniform absolute convergence of the first series in eq. (33):
∞∑

j=0

(
π1

δ1
)j |φ0(δ

j
1t)| ≤ C0

δ1

δ1 − π1
,

whose sum defines the bounded function Φ0(t). This permits to write

J̄0(µ; t) =
1
t
Φ0(t). (34)

By utilizing again eq. (27) we can prove iteratively that there exist bounded
functions Φn(t) such that J̄n(µ; t) = 1

t Φn(t), for all n. In fact, when written in
terms of jn(µ; t) = tJ̄n(µ; t) (recall that now α = 1), eq. (27) becomes:

jn(µ; t) = δn+d0−1
1 jn(µ; δ1t) +

n−1∑

l=0

Γn
1,lδ

d0−1
1 jl(µ; δ1t) + φn(t). (35)

Suppose now that jl(µ; t) are bounded functions for l = 0, . . . , n − 1. Then, the
last two terms in eq. (35) define a bounded function Bn(t):

jn(µ; t) = δn+d0−1
1 jn(µ; δ1t) + Bn(t). (36)

Let us iterate this equation, to get

jn(µ; t) = δ
k(n+d0−1)
1 jn(µ; δk

1 t) +
k∑

j=0

δ
k(n+d0−1)
1 Bn(δk

1 t). (37)

Again, if d0 > 1 the first term at r.h.s. vanishes for k →∞, and

|jn(µ; t)| ≤
k∑

j=0

δ
k(n+d0−1)
1 |Bn(δk

1 t)| ≤ C

1− δn+d0−1
1

. 2 (38)

Remark 1 When αn(µ) = dn(µ; 0) = 1 our proof does not assure us that jn(µ; t)
is a bounded function. The numerical data of Fig. 2 display a logarithmic diver-
gence, and therefore our result appears to be the strongest possible.

Remark 2 Equations (33), or better (24), are a convenient means for numerical
experiments. In fact, the functions at r.h.s. can be efficiently computed using the
techniques of [15, 16, 17]. Figures (1) and (2) are obtained in this way. They
provide an illustration of the content of this Theorem.

Remark 3 The asymptotically log-periodic character of the functions jn(µ; t),
with their convergence to the fractal curve un(t), is a remarkable result, born
out of the technique of Cesaro averaging. This is particularly significative when
compared to the situation in the absence of averaging [18].
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Figure 1: Convergence of j0(µ; t) to the log-periodic limit for the L.I.F.S. with
`1(s) = 2

5s, `2(s) = 2
5s+ 4

5 , and π1 = 3
5 , π2 = 2

5 . Here, d0(µ) ' 0.5574929506... is a
number between one half and one. Time is logarithmically scaled via the variable
w ∈ [0, 1]: t(w) = t0δ

−n−w
1 , with t0 = 100. The vertical scale has been divided

by δ1. In (a) four different periods (n = 0, . . . , 3) are shown. The region around
w = .33 (circled) is magnified in the inset (b): a single peak for n = 0 splits into a
twin structure. The same pattern is then repeated (inset (c), where only n = 1, 2, 3
are plotted). In the limit, the graph of the function u0(t(w)) is a fractal curve.
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Figure 2: Function j0(µ; t) for the L.I.F.S. with `1(s) = 2
5s, `2(s) = 2

5s + 4
5 , and

π1 = 2
5 , π2 = 3

5 . Here, d0(µ; 0) = 1, and J̄0(µ; t) is infinitesimal with respect to t−x,
for all x < 1. In this borderline case we are not assured that j0(µ; t) is a bounded
function; yet its divergence—if any—should be slower than any power-law. The
numerical data suggest that a logarithmic divergence is taking place: observe the
almost perfect interpolation of the peaks effected by the line.
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6 Mellin Analysis of F-B. functions: Singularities

In the previous section, the exact asymptotic behaviour of the Cesaro averaged
F-B. functions has been derived. Observe that the statement of Thm. 1 is stronger
than that of Thm. 6-I of paper I. The unifying power of the analysis presented in
paper I permits to understand why this achievement is possible: the nature of the
singularities of the Mellin transform for L.I.F.S. can be fully mastered.

Recall the definitions. Mn(µ; z) is the Mellin transform of the function J̄n(µ; t):

Mn(µ; z) =
∫ ∞

0

dt tz−1J̄n(µ; t). (39)

This can be written as
Mn(µ; z) = H(z) Gn(µ; z), (40)

with H(z) = Γ(z − 1) sin[π
2 (z − 1)], and

Gn(µ; z) =
∫

dµ(s)
pn(µ; s)
|s|z . (41)

It is now easy to find the singularity picture of Mn(µ; z), in the family of
I.F.S. measures under investigation.

Proposition 3 Gn(µ, z) has simple poles at zm + k, m = −∞, . . . ,∞, k =
0, . . . , n. We have set zm := d0(µ) + imω, with d0(µ) = log π1

log |δ1| , and ω := − 2π
log |δ1| .

Proof: Combining the I.F.S. balance relation and eq. (8) in the integral defining
Gn(µ, z), one obtains

Gn(µ, z) =
M∑

i=1

n∑

l=0

Γn
i,lπi

∫
dµ(s) pl(µ; s)|δis + βi|−z. (42)

Under assumption 1, terms with i 6= 1 at r.h.s. are analytic functions of z (because
δis + βi is never null, when s belongs to the support of µ), and will be collectively
denoted by Φn(µ; z):

Φn(µ; z) =
M∑

i=2

n∑

l=0

Γn
i,lπi

∫
dµ(s) pl(µ; s)|δis + βi|−z. (43)

In particular,

Φ0(µ; z) =
M∑

i=2

πi

∫
dµ(s) |δis + βi|−z. (44)

Then, we also split off the term with i = 1, and l = n. We use the relation
Γn

i,n = δn
i , proven in Lemma 2, to get:

E(z − n)Gn(µ, z) = Φn(µ; z) + π1|δ1|−z
n−1∑

l=0

Γn
1,lGl(µ, z), (45)

13



where the function E(z) is defined by:

E(z) := 1− π1|δ1|−z. (46)

The set of equations (45) can be iteratively solved: the first gives

G0(µ, z) =
Φ0(µ; z)

E(z)
, (47)

which has simple poles at zm := d0(µ) + imω, with d0(µ) = log π1
log |δ1| , and ω :=

− 2π
log |δ1| . This proves the lemma for n = 0. The general case follows by iteration

of eq. (45), with the aid of eqs. (46),(47). 2

We can now apply the theory of paper I to obtain the the asymptotic decay
of the Cesaro averages J̄n(µ; t), as in the first part of Theorem 1. We so prove
that J̄n(µ; t) = o(t−x), for any x < αn(µ). Yet, the Mellin technique leads us to
stronger results.

7 Analytic Continuation and Inversion Theorems

The full power of the Mellin transform approach is appreciated when effecting the
analytic continuation of Mn(µ; z). Because of Prop. 3 just one of the vertical lines
of singularity can occur in the strip 0 < <(z) < 1. We now study what happens
in this case. We therefore assume for starters that α0(µ) = d0(µ) < 1. Otherwise,
we might try to apply Thm 9-I of paper I. The results obtained in this fashion are
two theorems that substitute Thms. 7-I and 8-I of paper I:

Theorem 2 Let 0 < d0(µ) = α0(µ) < 1
2 . One can write

J̄n(µ; t) = t−α0(µ)Ψn(log t) + Nn(t), (48)

where Ψn is a periodic function, and tx̄Nn(t) is infinitesimal, when t → ∞, for
any α0(µ) < x̄ < 1

2 .

Theorem 3 Let 1
2 ≤ d0(µ) = α0(µ) < 1. One can write

J̄n(µ; t) = t−α0(µ)Ψn(log t) + Nn(t), (49)

where Ψn is a periodic function, and tx̄Nn(t) belongs to L2((1,∞), dt
t ) for all

α0(µ) < x̄ < 1.

Proof: We now compute a contour integral similar to that of Thm. 8-I of paper
I, but where the rightmost vertical component is to the right of the first line
of singularities: Consider the sequence of rectangular paths γN , composed of the
vertical segment x + iy, with x < 1

2 , y ∈ [−(N + 1
2 )ω, (N + 1

2 )ω], the horizontal
segment from x + i(N + 1

2 )ω to x̄ + i(N + 1
2 )ω, with α0(µ) < x̄ < 1 and the two

14



remaining segments needed to form a rectangle in the complex plane. As in paper
I, consider the function mn(z) := Mn(µ; z)e−τz, which is now meromorphic in the
the strip, and let IN (n, τ) be its contour integral. It can be parted according to
the contour components, as

IN (n, τ) = IN (x, n, τ) + HN (x, x̄, n, τ)− IN (x̄, n, τ), (50)

where IN (x, n, τ) denotes the integral over the vertical component with Re(z) = x,
and the terms over the horizontal segments have been collected in the function HN .
We now interrupt for a moment the proof of Thms. 2, 3 to introduce a series of
technical lemmas needed in the evaluation of the terms in eq. (50). 4

Lemma 3 The functions Φn(µ; z) are uniformly bounded in the strip x < <(z) <
x̄, with arbitrary 0 < x < x̄.

Proof. The integrals in eq. (43) can be bounded by:

‖pl‖∞
∫

dµ(s) |δis + βi|−<(z),

for i = 2, . . ., and for these values of i the minimum of |δis + βi| over the support
of µ, %min, is strictly positive, in force of the assumption 1. Therefore,

|Φn(µ; z)| ≤ max{1, %−x̄
min}

M∑

i=2

πi

n∑

l=0

|Γn
i,l|‖pl‖∞. (51)

The r.h.s. is then a constant that depends only on n. 2

Lemma 4 Let κN = {z ∈ C s.t z = u ± i(N + 1
2 )ω, u ∈ [x, x̄]} with arbitrary

0 < x < x̄. Then, there exist positive constants gn depending on n, but not on N ,
such that |Gn(µ; z)| ≤ gn, for all z ∈ κN .

Proof. First of all, the functions Φn(µ; z) are uniformly bounded on the horizontal
segments κN , in force of lemma 3 above. Secondly, the functions E(z−n) are real,
and uniformly inferiorly bounded on κN : since |δ1|±i(N+ 1

2 )ω = −1,

E(z − n) = 1− π1|δ1|−u−n±i(N+ 1
2 )ω = 1 + π1|δ1|−u−n > 1 ∀z ∈ κN . (52)

For the same reason, π1|δ1|−z = −π1|δ1|−u. Finally, eqs. (51,52) imply that |G0(µ; z)| ≤
C0 for all z ∈ κN , and the lemma follows by induction using eq. (43), together
with eqs. (51,52). 2

Lemma 5 For any x, x̄ in (0, 3
2 ), τ ≥ 0, HN (x, x̄, n, τ) vanishes uniformly in τ ,

as N tends to infinity.
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Proof. Clearly,

HN (x, x̄, n, τ) =
∫

κN

e−τzH(z)Gn(µ; z) dz.

We can then use Lemma 4, and the asymptotic information

H(zm) ' |m|− 3
2+α, (53)

to show that

HN (x, x̄, n, τ) ≤ Cne−τx|(N +
1
2
)ω|− 3

2+x̄|x̄− x|,

from which the lemma follows. 2

Lemma 6 The residues of Mn(µ; z) at the poles zm := d0(µ) + imω, have the
form

ρn
m = H(zm)Φ0(zm)qn, (54)

where the coefficients qn are independent of m.

Proof. Let ρn
m be the residues of Mn(µ; z). We have that

ρn
m = ηn

mH(zm), (55)

where, obviously, the coefficients ηn
m are the residues of Gn(µ; z) inside the pre-

scribed strip. These latter can be obtained taking limits in eq. (45):

ηn
m = lim

z→zm

(z − zm)Gn(µ; z).

After reduction of the functions E(z−n) to their explicit form, eq (46), we obtain
the recursion relation:

ηn
m =

1
1− |δ1|n

n−1∑

l=0

Γn
1,l ηl

m, (56)

initialized by

η0
m =

Φ0(zm)
E′(zm)

=
Φ0(zm)
log |δ1| . (57)

This can be simplified, somehow, by noticing that the term Φ0(zm) is a factor of
everything. In so doing, we arrive at the form (54), where qn can be obtained from
the relation

qn =
1

1− |δ1|n
n−1∑

l=0

Γn
1,l ql, (58)

initialized by

q0 =
1

log |δ1| . 2 (59)

We now need an estimate of |ρn
m| for large |m|. This is contained in
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Lemma 7 For large m, there exist a constant Cn such that

|ρn
m| ≤ Cn|m|− 3

2+d0(µ). (60)

Proof. In force of the estimates in the proof of Lemma 4, |Φ0(zm)| < C , with C
a suitable constant. The asymptotic information (53) then completes the proof of
the lemma. 2

Continuation of the proof of Thms. 2, 3. We can now consider the evaluation of
the integral IN (n, τ). Clearly, IN (n, τ) is equal to 2πi times the sum of residues
of Mn(µ; z)e−τz inside the contour γN . Using the information just derived we can
write:

IN (x, n, τ) = IN (x̄, n, τ)−HN (x, x̄, n, τ) + 2πi

N∑

m=−N

ρn
me−τzm . (61)

Since zm = d0(µ) + imω, a trigonometric polynomial in τ appears at r.h.s. We
let N go to infinity in eq. (61). The horizontal contribution HN vanishes, because
of lemma 5. The l.h.s. tends to the limit iJ̄n(eτ ), as in Theorem 8-I of paper I.
Moreover, when α0(µ) < 1

2 , we can also take x̄ < 1
2 , so that limN→∞ IN (x̄, n, τ) is

a Fourier transform of a L1 function, and therefore

I∞(x̄, n, τ) = 2πie−x̄τun(x̄, τ) (62)

with un(x̄, τ) a C0 function of τ . The Fourier series in (61),
∞∑

m=−∞
ρn

me−iτωm =
∞∑

m=−∞
H(zm)Φ0(zm)qne−iτωm (63)

converges uniformly, because of the boundedness of Φn(zm), of Lemma 3, and of
the estimate (53) on the growth of H(zm), giving rise to a periodic function of τ .
Collecting this information, we can write

J̄n(eτ ) = e−α0(µ)τ
∞∑

m=−∞
ρn

me−imωτ + e−x̄τun(x̄, τ). (64)

Returning to linear time, t = eτ , we obtain the thesis of Thm. 2
If α0(µ) > 1

2 , we can still perform the limit N → ∞ in eq. (61), but con-
vergence of the individual terms at r.h.s. of (60) is in L2 sense: precisely, we
have again equation (64), now with square summable terms:

∑
m |ρn

m|2 < ∞, and
un(x̄, τ) ∈ L2(R, dτ). Finally, it is evident from lemma 5 that e−x̄τun(x̄, τ) does
not depend on x̄, as far as x̄ > α. This completes the proof of Thm. 3 2

The above theorems complete the asymptotic analysis of J̄n(t), showing the
presence of log-periodic oscillations superimposed to a power-law decay given by
the Hölder exponent of the spectral measure at zero. This behaviour has a cor-
rection which decays faster, on the average, at infinity. A strengthening of these
theorems will be obtained later on, after we derive an enhanced version of Lemma
3.
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8 Different forms of Averaging

Compare eqs. (9) and (18). It is apparent that the kernels χ(−ε,ε)(s) and sinc (ts)
are sampling the measure µ in the neighbourhood of zero, when ε → 0, or t →
∞. One also easily realizes that the two kernels are Fourier conjugated pairs: in
fact, to the kernel sinc (ts) in the integration over the measure µ corresponds a
Cesaro average in the time integration, rendered by the kernel χ(−1/t,1/t). Quite
symmetrically, the kernel χ(−ε,ε)(s) in eq. (9) corresponds to sinc averaging of
F-B. functions:

J S

n(µ;
1
ε
) =

ε

2

∫ ∞

−∞

sin εt

εt
Jn(µ; t)dt. (65)

A theory quite parallel to that of paper I can then be performed also with this
different averaging, and with any other time averaging kernel K, leading to the
formula

Mn(µ; z) = HK(z) Gn(µ; z), (66)

where HK(z) originates from the Mellin transform of the Fourier conjugate kernel
K̂. In the case of sinc averaging, we have HK(z) = 1

z .
In the same vein, it is possible to recast Prop. 2 in terms of the Mellin

transform of the function m(ε):

M(m; z) = −1
z
G0(µ;−z), (67)

a relation valid in the strip −d0(µ) < <(z) < 0. In so doing, the left divergence
abscissa of the Mellin transform governs the small ε behavior of m(ε). The right
divergence abscissa, zero, if of course related to the constant behaviour of m(ε)
when ε is larger than the diameter of the support of µ. Again developing a suitable
path integral, in the case of L.I.F.S. measures fulfilling assumption 1, the function
A(τ) of Prop. 2 can be associated to the Fourier series

lim
N→∞

N∑

m=−N

Φ0(zm)
zm log |δ1|e

−iτωm, (68)

where τ := log ε. This analysis has been performed in [15]. Figure 3 shows the
graph of this function for the I.F.S. described in Fig. 1.

9 Asymptotics of the Mellin Transform of F-B.
functions in the strip of analyticity

In line with the general theory presented in Paper I, let us now consider the
asymptotic behaviour, in the strip of analyticity, of the Mellin transforms Gn(µ; x+
iy). The properties of L.I.F.S. measures permits to carry on the analysis to a much
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larger extent than in the general case. Recall that in this study a crucial role is
played by the measure νx appearing in Sect. 14 of paper I, and defined via

∫
dνx(τ)f(τ) =

∫
dµ(s)|s|−xf(log(|s|)), (69)

that is required to hold for any continuous function f which vanishes at infinity.
Thm. 13-I of paper I asserts that the asymptotic decay of the Cesaro average of
Gn(µ; x+ iy) is determined by the local dimension, at zero, of νx. Its value can be
easily characterized:

Proposition 4 The local dimensions of νx at zero is equal to the local dimensions
of µ at one, for any x < d0(µ).

Proof: Let us compute the νx-measure of the ball of radius ε at zero:

νx(Bε(0)) =
∫

dνx(τ)χ[−ε,ε](τ). (70)

Because of eq. (69), we obtain

νx(Bε(0)) =
∫ eε

e−ε

dµ(s)
1
sx
∼

∫ 1+ε

1−ε

dµ(s)
1
sx
∼ µ(Bε(1)), (71)

and therefore the upper and lower dimensions of νx at zero are the same as the
local dimensions of µ at one.

The case of the electrostatic dimension is similar: the generalized electrostatic
potential of ν at zero can be written:

G(ν; 0, w) :=
∫

dν(τ)
1
|τ |w =

∫
dµ(r)
|r|x

1
| log |r||w .

We now part the integral with respect to dµ in two parts: one for |r−1| < 1/2, and
the complementary. The latter defines an analytic function in w. In the domain of
the first, the logarithm can be bounded as (|r|−1) ≥ log |r| ≥ c1(|r|−1) for |r| ≥ 1,
and c2(1 − |r|) ≤ log |r| ≤ (1 − |r|) for |r| ≤ 1, with c1 and c2 suitable constants.
Using these constraints into the argument of the integrand we can bound the
divergence abscissa of G(ν; 0, w) by that of G(µ; 1, w) on both sides, so that the
thesis follows. 2

Thm 13-I, paper I, can now be applied, to prove straightforwardly that:

Proposition 5 When assumption 1 holds, and x < d0(µ), the Cesaro average in
in the variable y of the Mellin transform Gn(µ; x + iy) decays as o(t−a), t being
the range of Cesaro averaging, for any a < min{1, d0(µ; 1)}.
This Proposition is illustrated in Figure 4. Because the support of the L.I.F.S.
considered in the figure is contained in the interval [0, 1], and one is the fixed point
of the second map, the local dimension of νx at one can be computed explicitly.
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Let us now turn to the asymptotic behaviour of the Cesaro average of the
square modulus of Gn(µ; x+iy): 1

2T

∫ T

−T
|Gn(µ; x+iy)|2dy. To study this latter, we

need to compute the correlation dimension of νx. It is remarkable that Theorem
14-I of paper I can be rendered clear–cut for linear I.F.S. measures:

Theorem 4 For an I.F.S. verifying assumption 1, for all x < d0(µ), the diver-
gence abscissa of the electrostatic energy of the measure νx does not depend on x
and coincides with that of the balanced invariant measure µ: D2(νx) = D2(µ).

Proof. The electrostatic energy E(νx; z) of the measure νx is defined by the double
integral

E(νx; z) =
∫∫

dνx(r)dνx(s)
|r − s|z =

∫∫
dµ(r)dµ(s)

1
|r|x|s|x | log |r| − log |s||z (72)

The second equality in the above equation is a consequence of the definition of
νx. We use the I.F.S. balance relation, eq. (7), in eq. (72) to obtain E(νx; z) in the
form of a sum of various complex functions of the variable z:

E(νx; z) =
M∑

i,j=1

mi,j(z). (73)

The indices i, j label the maps of the I.F.S. Explicitly, the functions mi,j(z) are
given by

mi,j(z) = πiπj

∫∫
dµ(r)dµ(s)

|δir + βi|x|δjs + βj |x | log |δir + βi| − log |δjs + βj ||z . (74)

We now part the diagonal from the outdiagonal terms in the sum in eq. (73), and
in the former the term corresponding to the first map:

E(νx; z) = m11(z) +
∑

i=j 6=1

mij(z) +
∑

i 6=j

mij(z). (75)

We easily recognize that the first term at r.h.s. can be written

m11(z) = π2
1 |δ1|−2x

∫∫
dµ(r)dµ(s)

|r|x|s|x | log |r| − log |s||z , (76)

and therefore m11(z) is just π2
1 |δ1|−2xE(ν; z), that allows to write

(1− π2
1 |δ1|−2x)E(νx; z) =

∑

j>1

mjj(z) +
∑

i 6=j

mij(z). (77)

We must now use the geometric properties of the support of µ. Assumption 1 on
the I.F.S. implies that

diam(A) ≥ |δjs + βj | ≥ %min > 0, for j 6= 1, (78)
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where the first term is the diameter of A, the support of µ, and the chain of
inequalities holds for any s in this set. Moreover, since |r−s|/b ≤ | log(r)−log(s)| ≤
|r − s|/a for any r, s in a finite interval [a, b] ⊂ R+, this also implies that the
logarithmic difference in the denominator of mij(z) can be bounded as

η1||δir+βi|− |δjs+βj || ≤ | log |δir+βi|− log |δjs+βj || ≤ η2||δir+βi|− |δjs+βj ||,
(79)

with strictly positive constants η1, η2, for any i 6= 1, j 6= 1 and for any r, s in the
support of µ.

Let us now consider the terms mjj with j > 1. Inequalities (78) provide finite
upper and lower bounds for the first two terms in the denominator in eq. (74).
In addition, since the sign of δjr + βj is the same for all r in the support of µ,
inequalities (79) become

η1|δj ||r − s| ≤ | log |δjr + βj | − log |δjs + βj || ≤ η2|δj ||r − s|. (80)

Therefore, under assumption 1, the divergence abscissa of mjj(z), j 6= 1 is the
same as that of the electrostatic energy integral of the measure µ, that we have
called D2(µ).

We are then left with the terms mij(z) with i 6= j. If we were to assume
disconnectedness of the I.F.S., it would be immediate to show that they are analytic
functions. In fact, in this case δjs+βj would belong to a branch of the hierarchical
structure of the support of µ, separated by a finite distance from the others.
Therefore, in this case the thesis would follow.

Yet, we can obtain the result under the more general assumption 1. First, let
us assume that both i and j are different from 1. Then, the estimates (78),(79)
still apply, so that the divergence abscissa of mij(z) is the same as that of the
integral

li,j(z) =
∫∫

dµ(r)dµ(s)
||δir + βi| − |δjs + βj ||z . (81)

We shall back to these functions momentarily. Prior to that, we consider the case
of i = 1, j > 1. We divide the integral m1j(z) in two parts, according to the
integration being extended to |δ1r| ≤ 1/2|δjs + βj |, or to its complementary. In
the former case,

| log |δ1r| − log |δjs + βj || ≥ log 2,

and therefore the related integral is an analytic function. Notice in fact that the
integral ∫∫

dµ(r)dµ(s)
|δ1r|x|δjs + βj |x =

1
|δ1|x

∫
dµ(r)
|r|x

∫
dµ(s)

|δjs + βj |x
is convergent, for x < d0(µ). In the second case region, since |δjs + βj | ≥ %min,
one has |δ1r| ≥ %min/2. Because of these inequalities, |δ1r|x|δjs + βj |x is bounded
between two finite constants, and moreover the linear inequalities (79) still apply:
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as a consequence, convergence of the integral over this region is implied by that of
the integral ∫∫

dµ(r)dµ(s)
||δ1r| − |δjs + βj ||z ,

where the integration is extended to the full domain. This integral has been denoted
l1j(z) in eq. (81), so that convergence of mij(z) is implied by convergence of lij(z),
for all pairs i, j with i 6= j.

Now, let us apply the balance relation eq. (7) to the electrostatic energy
E(µe; z) of the measure µe(s) := µ(s) + µ(−s) defined in paper I:

E(µe; z) =
∫∫

dµ(r)dµ(s)
||r| − |s||z =

∑

i,j

πiπj

∫∫
dµ(r)dµ(s)

||δir + βi| − |δjs− βj ||z . (82)

By definition, the left hand side has divergence abscissa D2(µe) = D2(µ) (see
Lemma 7-I of paper I). We recognize at r.h.s. the integrals lij(z). Therefore, these
are convergent at least as far as D2(µ), and at least one of them diverges at that
value. Collecting all this information in eq. (77) provides the thesis. 2

If we now recall the analysis of Sect. 14 and 15 of paper I, we can draw two
sorts of conclusions. First,

Theorem 5 When assumption 1 is verified for an I.F.S. balanced measure, the
square modulus of the Mellin transform |Gn(µ;x+ iy)|2 decays in Cesaro average,
on lines parallel to the imaginary axis with x < d0(µ), as

1
T

∫ T

−T

|Gn(µ; x + iy)|2dy = o(T−a),

for all a < D2(µ)

Proof follows from Thm. 13-I of paper I, and Thm. 4. 2

This result is noteworthy: for I.F.S. verifying assumption 1, the electrostatic corre-
lation dimension also governs the asymptotic decay, for large imaginary argument,
of the function |Gn(µ; x + iy)|2. A further consequence of this Theorem is the fact
that we can take η(x) = D2(µ) for any x < d0(µ) in the analysis of Sect. 15 of
paper I:

Proposition 6 When assumption 1 is verified for an I.F.S. balanced measure,
one has that Mn(µ; x + iy) ∈ L1(R, dy) for any x < min{d0(µ), 1+D2(µ)

2 }, and
consequently J̄n(µ; t) = t−xo(t), when t →∞.

Proof. This is Thm. 15-I of paper I. 2

10 More on the Fourier Series for F-B. Functions

A useful product of I.F.S. techniques is the following extension of Lemma 3.
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Lemma 8 The Cesaro average of the function |Φn(µ; x + iy)|2 in the variable y
decays as o(t−D2(µ)+ε), t being the range of Cesaro averaging, for any ε > 0, for
all x 6= d0(µ). In addition, for all x such that x 6= d0(µ), x < 1+D2(µ)

2 , the function
Mn(µ;x + iy) belongs to L1(R, dy).

Proof. Let n = 0. The function Φ0(µ; z) is given explicitly in eq. (44). It can be
re-written as a Fourier transform:

Φ0(µ; x + iy) =
∫

dςx(u)e−iyu, (83)

where the measure ςx is defined via the usual technique by:
∫

dςx(u)f(u) =
M∑

i=2

πi

∫
dµ(s)|δis + βi|−xf(log |δis + βi|). (84)

It follows immediately from this definition and from assumption 1 that the measure
ςx is finite, and can be normalized. Its electrostatic energy E(ςx; w) can therefore
be written as:

E(ςx;w) =
M∑

i,j=2

∫∫
dµ(r)dµ(s)

πiπj |δir + βi|−x|δjs + βj |−x

| log |δir + βi| − log |δjs + βj ||w =
M∑

i,j=2

mi,j(w),

(85)
where the functions mi,j(w) have been defined in eq. (74). Repeating the proof of
Thm. 4 one shows that D2(ςx) = D2(µ), now for any value of x. This entails the
decay of the Cesaro average, in the variable y, of the square modulus of Φ0(µ; x +
iy), and proves the first part of the thesis.

Next, eq. (47) gives M0(µ; x + iy) = Φ0(µ;x + iy)H(µ;x + iy)/E(x + iy). If
x 6= d0(µ) the function |E(x + iy)| of the variable y is superiorly bounded, and
inferiorly bounded away from zero. Then, the ratio H(µ;x+iy)

E(x+iy) features the same
asymptotic decay as that of the numerator. A similar analysis to that of Sect. 15 of
paper I can then be carried over, to show that Mn(µ; x+ iy) ∈ L1(R, dy), for all x

such that d0(µ) 6= x < 1+D2(µ)
2 . This ends the proof for n = 0. The case of generic

n can now be treated as in Remark 16-I of paper I, thanks to the observation that
pn(µ; x) are bounded functions on the support of µ. 2

Observe that 1+D2(µ)
2 is necessarily smaller than 1, since D2(µ) ≤ D0(µ) ≤

1. When this quantity is larger than α0(µ) = min{1, d0(µ)}, we can return to
Theorem 3 of Sect. 7, that can be strengthened as follows:

Theorem 6 When assumption 1 is verified for an I.F.S., and d0(µ) = α0(µ) <
1+D2(µ)

2 , one can write

J̄n(µ; t) = t−α0(µ)Ψn(log t) + Nn(t), (86)

where Ψn is a periodic function, and tx̄Nn(t) is infinitesimal, as t → ∞, for any
α0(µ) < x̄ < 1+D2(µ)

2 .
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Proof: develop the same path integral as in the proof of Thms. 2,3, to obtain
eq. (61). Of course, the horizontal contribution HN still vanishes, as N tends to
infinity, and the l.h.s. IN (x, n, τ) tends uniformly to the limit iJ̄n(eτ ). Observe
that, in force of Lemma 8, Eq. (62) holds for x̄ < 1+D2(µ)

2 , and the Fourier series
(63) is then uniformly convergent. 2

Remark 4 Observe that the uniform convergence of the Fourier series (63) in the
region α0(µ) > 1

2 has been obtained without exerting control of the coefficients
H(zm)Φ0(zm). Indeed, since the latter factor is the pointwise result of the Fourier
transform of a measure, it is possible to master its decay as m →∞. We shall do
this in the next section. See also Fig. 5.

11 Discrete Cesaro Averages of F-B. Functions

The Fourier sums appearing in the previous section bring to our attention the
decay of discrete Cesaro averages of F-B. functions. In fact, thanks to eq. (83),
Φ0(zm) can be written as the Fourier transform of the measure ςx, with x = d0(µ),
at the point mω:

Φ0(µ; d0(µ) + imω) =
∫

dςd0(µ)(u)e−imωu. (87)

Consider now the discrete Cesaro averages of the square moduli of these coeffi-
cients:

|̃Φ0|2(N) :=
1

2N + 1

N∑

m=−N

|Φ0(µ; d0(µ) + imω)|2. (88)

These are particular instances of a general problem: let µ be a positive measure,
and Jn(µ; t) the associated F-B. functions. Define their discrete averages as:

J̃n(µ; N, T ) :=
1

2N + 1

N∑

m=−N

Jn(µ;mT ). (89)

It is possible to prove a discrete analogue of Thm 6-I of paper I:

Theorem 7 Let αn(µ) be the divergence abscissa associated with Jn(µ; t). For
all x such that x < αn(µ), for all T > 0, one has J̃n(µ;N, T ) = o(N−x) when
N →∞.

Proof. Computing the discrete average, we find

J̃n(µ;N, T ) =
∫

dµ(s)pn(µ; s)
sin(N + 1

2 )Ts

(2N + 1) sin Ts
2

. (90)
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Figure 5: Partial sums of the Fourier series of j0(µ; t) for the L.I.F.S. of Fig. 1.
The horizontal axis is expressed in the same scaled variable w employed in Fig.
1, and covers the range of the inset (c) of Figure 1. Data are shown for N = 64
(dots), N = 128 (thick dots), N = 256 (dashes) and N = 40, 000 (continuous
line). Since 1/2 < d0(µ) < (D2(µ) + 1)/2 uniform convergence of the Fourier
series is justified by Thm.s 6 and 9. In addition, the inset shows that the discrete
Cesaro averages |̃Φ0|2(N) (lower curve–accompanying line) and |̃Φ0|(N) (upper
curve–accompanying line) decay as N−D2(µ) and N−D2(µ)/2, respectively.
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Therefore,

NxJ̃n(µ; N,T ) =
∫

dµ(s)
|s|x pn(µ; s)|Ns|x sin(N + 1

2 )Ts

(2N + 1) sin Ts
2

.

Let x ∈ [0, 1]. Then for any T > 0 the kernel |Ns|x sin(N+ 1
2 )Ts

(2N+1) sin T s
2

is bounded by a

constant that does not depend on N or s. Since x < αn(µ), the function pn(µ;s)
|s|x is

integrable, and the dominated convergence theorem permits to take the limit for
infinite N inside the integral sign. 2

Consider now the quadratic functions Jn(µ; t)J ∗m(µ; t) that were defined in
paper I and that we shall study extensively in the next section. Their discrete
Cesaro averages can be treated by the same formalism, to obtain

Theorem 8 Let αn,m(µ) be the divergence abscissa associated with Jn(µ; t)J ∗m(µ; t).
For all x such that x < αn,m(µ), for all T > 0, one has J̃nJ ∗m(µ; N, T ) = o(N−x)
when N →∞.

Proof. It is analogous to that of the previous theorem. 2

Notice than when n = m = 0, α0,0(µ) = D2(µ), and the previous theorem is fully
equivalent to Thm. 7 expressed in terms of the correlation measure Ω (see Remark
1-I of paper I). We can therefore determine the asymptotic decay of the coefficients
|̃Φ|2(N), and its effect on the convergence of the Fourier series (63).

Theorem 9 For an I.F.S. verifying assumption 1, one has that |̃Φ|2(N) = o(N−x)
when N →∞, for all x < D2(µ). In addition,

|̃Φ0|(N) :=
1

2N + 1

N∑

m=−N

|Φ0(µ; d0(µ) + imω)| = o(N−x) (91)

when N →∞, for all x < D2(µ)/2. Therefore, the series in eq. (63),
∞∑

m=−∞
ρn

me−iτωm =
∞∑

m=−∞
H(zm)Φ0(zm)qne−iτωm (92)

converges uniformly, whenever d0(µ) = α0(µ) < 1+D2(µ)
2 .

Proof. The first statement follows from Thm. 8 and the previous remark, with the
additional consideration of eq. (87) and of the fact that the correlation dimension
of the measure ςx is D2(µ), proven in Lemma 8. The estimate on the decay of
the sums of the moduli |Φ(zm)| can be obtained as in the proof of Lemma 8-I
of paper I. Finally, the summability of the Fourier coefficients of eq. (92) follows
upon adaptation of the proof of Thm. 15-I of paper I. 2

Before ending this section we remark that an analogous theory to that of
paper I can be developed also for discrete Cesaro averages, by using discrete Mellin
transforms. We shall not pursue this idea any further in this paper, because it is
now time to change the object of investigation.
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12 Quadratic amplitudes for L.I.F.S. Measures

Let us now consider the quadratic amplitudes Anm(µ; t) analyzed in paper I:

Anm(µ; t) :=
1
2t

∫ t

−t

Jn(µ; t′)J ∗m(µ; t′) dt′. (93)

In this section, we shall make the following simplifying assumptions:

Assumption 2 The I.F.S. is disconnected. That is to say, the distance between
`i(A) and `j(A) is strictly positive, for any pair i 6= j. Here A is the attractor of
the I.F.S.

Assumption 3 The I.F.S. is harmonic: the quantities ln δi are rationally related.

We observe that assumption 3 is equivalent to the existence of a real number λ > 0,
and of 2M prime positive integers pi, qi, such that

− log δi = λ
pi

qi
.

When the I.F.S. is disconnected, also assumption 1 holds. The analysis that follows
is a generalization of that for linear quantities. As we have seen in paper I, the
large time behaviour of the quadratic amplitudes Anm(µ; t) is determined by the
range of analyticity of their Mellin transforms, Mmn(µ; z). The main result of this
section are two analogues of Thm.s 2, and 3.

Theorem 10 Let D2(µ) < 1
2 . There exist 2L positive numbers α1, ..., αL and

β1, ..., βL with the property:

D2(µ) = α1 < α2 ≤ ... ≤ αL <
1
2
,

such that the quadratic amplitude can be written as

Anm(t) = t−D2(µ)Ψnm(log t) +
L∑

l=2

t−αle−iβl log tΨnm,l(log t) + Nnm(t) (94)

where Ψnm(ζ), Ψnm,l(ζ) are periodic functions of their argument ζ, and tx̄Nnm(t)
is infinitesimal, when t →∞, for any x̄ such that αL < x̄ < 1

2 .

Theorem 11 Let 1
2 ≤ D2(µ) < 1. There exist 2L positive numbers α1, ..., αL and

β1, ..., βL with the property:

D2(µ) = α1 < α2 ≤ ... ≤ αL < 1,

such that the quadratic amplitude can be written as in (94), where Ψnm(ζ), Ψnm,l(ζ)
are periodic functions of ζ, defined in L2(dζ). Moreover, tx̄Nnm(t) belongs to
L2([0,∞), dt

t ), for any x̄ such that αL < x̄ < 1.
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The method to prove the above theorems is similar to that used for Thms. 2, 3.
According to paper I, we write

Mnm(µ; z) = Gnm(µ; z) H(z). (95)

Let us now apply the balance equation (7) and the expansion (8) to the function
Gnm(µ; z), as defined by the double integral

Gnm(µ; z) :=
∫∫

dµ(r)dµ(s)
pn(r)pm(s)
|r − s|z . (96)

We find
Gnm(µ; z) =

∑

j = 1, .., M
l = 0, .., n
i = 0, .., m

π2
j δ−z

j Γn
jlΓ

m
ji Gli(µ; z) +

+
∑

j 6= k
l = 0, .., n
i = 0, .., m

πjπkΓn
jlΓ

m
ki

∫∫
dµ(s)dµ(r)

pl(µ; s)pi(r)
|`j(s)− `k(r)|z , (97)

where the summation on the indices j and k runs from 1 to M (the number of
I.F.S. maps), and where we have separated the diagonal contribution j = k, which
gives rise to the functions Gli(µ; z). The second grand summation in the above
equation defines an analytic function of z, which we shall denote by Φnm(z). To
prove that this function is analytical, observe that, thanks to the disconnectedness
of the I.F.S., the real numbers |`j(s)− `k(r)| are all strictly larger than zero.

Having so taken care of the second term at r.h.s. of eq. (97), we can focus on
the first, and split off the l = n, i = m term:

Gnm(µ; z) =
M∑

j=1

π2
j δ−z+n+m

j Gnm(µ; z) +
∑

j = 1, .., M
l + i < n + m

π2
j Γn

jlΓ
m
jiδ

−z
j Gli(µ; z) + Φnm(z).

To make this last relation stand out in a more transparent way, introduce the
following functions:

F (z) := 1−
M∑

j=1

π2
j δ−z

j ; and gnm
li (z) :=

M∑

j=1

π2
j Γn

jlΓ
m
jiδ

−z
j . (98)

They are defined in terms of the map parameters πj and δj , for j = 1, . . . ,M , and
of the coefficients Γn

jl, which also depend on the map parameters, although in a
highly non-trivial fashion. Then, the functions Gnm are linked by the relations

Gnm(µ; z) =
1

F (z − n−m)

[ ∑

l = 0, .., n
i = 0, .., m

l + i < n + m

(
gnm

li (z)Gli(µ; z)
)

+ Φnm(z)
]
, (99)

30



which obviously carries over, via eq. (95), to Mnm(µ; z), and permit the recursive
determination of all of them. This recursive determination is the basis of the
following Lemma

Lemma 9 The functions Gnm(µ; z) are meromorphic, and can be analytically con-
tinued in all the complex plane, with the exception of poles at the zeros of F (z−k),
with 0 ≤ k ≤ m + n.

Proof. As we have already remarked, Φnm(z) are analytic functions in all the
complex plane. The same goes for all the functions gnm

li (z). Therefore, singularities
can only occur via the repeated divisions by the denominators F (z − n−m).2

The analogous of Proposition 3 specifies the location of the poles described
in Lemma 9.

Lemma 10 When assumption 2 holds, the poles of Gnm(µ; z) lie in the half plane
<(z) ≥ D2(µ) + n + m. When assumption 3 also holds, there exist three positive
integers W , Q, S and a finite set of complex numbers ul, l = 1, 2, ..., S, u1 = 1 <
|u2| ≤ ... ≤ |uS |, such that the poles of Gnm(µ; z) are located at the points

z = D2(µ) + n + m +
Q

Wλ
(ln ul + 2πikl)

l = 1, 2, ..., S, kl = −∞, ...,∞, 0 ≤ arg(ul) < 2π

Proof. We look for the solutions of F (z−n−m) = 0. We reproduce the solution of
this problem following Makarov [2]. Let us define the frequencies ωj = −ln δj > 0.
By multiplying and dividing by δ

D2(µ)
j , we can rewrite our problem in the form:

M∑

j=1

(
π2

j

δ
D2(µ)
j

) eωj(z−D2(µ)−n−m) = 1. (100)

For disconnected L.I.F.S. measures, the correlation dimension D2(µ) satisfies the
equation

∑
j π2

j δ
−D2(µ)
j = 1; using this result, we have solutions of eq. (100) only

if there exist j such that |eωj(z−D2(µ)−n−m)| ≥ 1, for otherwise the summation in
eq. (100) has modulus strictly less than 1. This implies that the solutions must lie
in the half plane { z | <ez ≥ D2(µ) + n + m}. In particular, there is always the
solution z = D2(µ) + n + m. In fact, in this case eωj(z−D2(µ)−n−m) = 1 for all j.
We now give the general solution of problem (100), under the assumption 3. Let
Z = z −D2(µ)− n−m, and ai = π2

i δ
−D2(µ)
i : Eq. (100) becomes

M∑

i=1

aie
ωiZ = 1,

M∑

i=1

ai = 1. (101)

Following assumption 3, we write ωi = pi

qi
λ, with pi, qi prime integers, i = 1, . . . , M .

Let Q be the minimum common multiple of the denominators q1, . . . , qM , and let
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λZ = QZ ′. Eq. (101) becomes

1 =
M∑

i=1

aie
Q

pi
qi

Z′ =
M∑

i=1

aie
wipiZ

′
, wi =

Q

qi
∈ Z. (102)

The greatest common divisor of the wi’s is 1. Let W be the GCD of pi’s, then, pi =
WPi, Pi ∈ Z, for all i. Let ζ = WZ ′; eq. (102) then becomes an algebraic equation
in the variable u = eζ = exp{W

Q λ(z −D2(µ)− n−m)}, of degree max{wiPi}:

1 =
M∑

i=1

aie
wiPiζ =

M∑

i=1

aiu
wiPi . (103)

Since
∑

ai = 1, ai > 0, the only positive real root is u1 = 1. There is at least an
odd exponent wiPi so that u = −1 is not a root of the equation. All other roots
satisfy

|ul| > 1, l = 2, ..., S; S := max{wiPi}.
The set of roots can be ordered as follows,

u1 = 1 < |u2| ≤ ... ≤ |uS |
so that, going back to the original variable z, the roots of eq. (100) are

z = D2(µ)+n+m+
Q

Wλ
(ln ul+2πi kl), l = 1, . . . , S, kl = −∞, . . . , +∞ (104)

with the restriction 0 ≤ arg(ul) < 2π. 2

We choose a sequence of rectangular paths γN like in Thms. 2, 3, with vertical
sides at <(z) = x and <(z) = x̄, where 0 < x < D2(µ) and D2(µ) < x̄ < 1

2 or
D2(µ) < x̄ < 1, depending on D2(µ) being less than 1/2 or greater or equal to
1/2. The horizontal sides are =(z) = ± Q

Wλ2π
(
N + 1

2

)
. Let κN = {z ∈ C s.t z =

x̃± Q
Wλ2πi

(
N + 1

2

)
, x̃ ∈ [x, x̄]}. We can derive a Lemma equivalent to Lemmas 3

4:

Lemma 11 The functions Ψnm(z) are uniformly bounded on κN .

Proof. Since the I.F.S. is disconnected, there exists δmin > 0 such that when r, s
belong to the support of µ, and i 6= j, |δir +βi− δjs−βj | > δmin. Therefore, when
z ∈ κN ,

|Φnm(µ; z)| ≤
∑

i 6= j
l = 0...n
h = 0..m

πiπj |Γn
il| |Γm

jh| ||pl||∞ ||ph||∞
∫∫

dµ(r)dµ(s)|δir+βi−δjs−βj |−<z

≤ max{1, δ−x̄
min}

∑

i 6= j
l = 0...n
h = 0..m

πiπj |Γn
il| |Γm

jh| ||pl||∞ ||ph||∞ ≤ Bnm,

where Bnm is independent of N and x̃. 2
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Lemma 12 There exist positive constants gnm depending on n, m, but not on N ,
such that |Gnm(µ; z)| ≤ gnm, for all z ∈ κN .

Proof. Let z ∈ κN . Notice that eq. (104) excludes that any root of (100) may lie
on κN . Moreover, compute |F (z − n−m)| =

=

∣∣∣∣∣1−
∑

i

ai exp{±(wiPi) 2πi N} exp{±(wiPi)πi} exp
{

pi

qi
(x̃−D2(µ)− n−m)

}∣∣∣∣∣

=

∣∣∣∣∣1−
∑

i

exp{±(wiPi)πi}ai exp
{

pi

qi
(x̃−D2(µ)− n−m)

}∣∣∣∣∣ . (105)

This shows that |F (z − n − m)| is a continuous function of x̃, independent of
N , characterized by a finite minimum over the closed interval [x, x̄]. Therefore
|F (z − n−m)| ≥ Cnm for z ∈ κN . This fact and lemma 11 yield:

|Gnm(z)| ≤ 1
|F (z − n−m)|

( ∑

i = 1..M
l = 0..n− 1
h = 0..m− 1

π2
i δ−x̄

i |Γn
il| |Γm

ih| |Glh(z)|+|Φnm(µ; z)|
)
≤

≤ 1
Cnm

( ∑

i = 1..M
l = 0..n− 1
h = 0..m− 1

π2
i δ−x̄

i |Γn
il| |Γm

ih| |Glh(z)|+ Bnm

)
. (106)

When n = m = 0, |G00(z)| ≤ C−1
00 B00 := g00 on κN . Then, eq. (106) implies by

induction that there exists a constant gnm independent of N such that |Gnm(z)| ≤
gnm, for all z ∈ κN . 2

As a corollary, we have the following

Lemma 13 The integral of Mnm(z)e−z ln t on the horizontal sides of integration
vanishes as N →∞.

Proof. Recall that |H(zN )| ≤ C
∣∣N + 1

2

∣∣− 3
2+x̄ as N → ∞. Therefore, along

the horizontal paths we have:

∣∣
∫

Mnm(z)e−z ln t dz

2πi

∣∣ ≤ Cgnm e−x ln t |x̄− x|
∣∣∣∣N +

1
2

∣∣∣∣
− 3

2+x̄

→ 0 as N →∞. 2

Our next step is the computation of the residues of Mnm(µ; z) at the poles:

zlkl
= D2(µ) +

Q

Wλ
ln ul + 2πi

Q

Wλ
kl, kl = −∞, . . . , +∞, with |zlkl

| < 1.

For l = 1, the poles z1k1 = D2(µ)+2πi Q
Wλ k1, are simple, because in the recursion

formula for Gnm(µ; z) they are due only to F (z) = 0 in G00(µ; z). For l ≥ 2, only
simple poles give non-zero residues. Non simple poles occur if ul is not a simple
root of (103).
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Lemma 14 Let ρnm,lkl
:= Resz=zlkl

Mnm(µ; z) be the residues of Mnm(µ; z) at
the (simple) poles zlkl

. They have the form

ρnm,lkl
= H(zlkl

) qnm,l Φ00(zlkl
)

where the coefficients qnm,l are independent of kl and are recursively determined
by the relation (107).

Proof: We denote by ηnm,lkl
:= Resz=zlkl

Gnm(µ; z). We preliminary observe that

δ
−zlkl
i = δ

−D2(µ)
i uwiPi

l . Let’s begin with

η00,lkl
= Resz=zlkl

G00(µ; z) = lim
z→zlkl

(z − zlkl
)
Φ00(z)
F (z)

= Φ00(zlkl
) lim

z→zlkl

z − zlkl

F (z)
.

We compute the last limit:

lim
z→zlkl

z − zlkl

F (z)
= lim

z→zlkl

d
dz (z − zlkl

)
d
dz F (z)

=
1∑

i π2
i ln δie

−zlkl
ln δi

=
1

∑
i

π2
i

δ
D2(µ)
i

ln δi uwiPi

l

=: q00,l

Therefore η00,lkl
= q00,lΦ00(zlkl

). Now we turn to

ηnm,lkl
= lim

z→zlkl

(z−zlkl
)Gnm(µ; z) =

1
F (zlkl

− n−m)
(∑

i,r,h

π2
i δ
−zlkl
i Γn

irΓ
m
ihηrh,lkl

+0
)

Moreover

F (zlkl
− n−m) = 1−

∑

i

π2
i δ
−zlkl
i δn+m

i = 1−
∑

i

π2
i

δ
D2(µ)
i

δn+m
i uwiPi

l .

This leads to the recursive procedure

q00,l =
1

∑M
i=1

π2
i

δ
D2(µ)
i

ln δi uwiPi

l

;

qnm,l =
1

1−∑M
i=1

π2
i

δ
D2(µ)
i

δn+m
i uwiPi

l

M∑

i=1

n−1∑
r=0

m−1∑

h=0

π2
i

δ
D2(µ)
i

Γn
irΓ

m
ih uwiPi

l qrh,l, (107)

that permits to determine all quantities ηnm,lkl
= qnm,lΦ00(zlkl

), as well as the
residues of ρnm,lkl

= H(zlkl
)ηnm,lkl

. 2

As a corollary, we have the following

Lemma 15 The residues of Mnm(µ; z) decay, for large kl, as follows:

ρnm,l kl
≤ |qnm,l| C |kl|− 3

2+D2(µ),
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where C is a costant, and

∞∑

kl=−∞
|ρnm,lkl

| < ∞ for D2(µ) <
1
2

∞∑

kl=−∞
|ρnm,lkl

|2 < ∞ for D2(µ) < 1.

Proof: This follows from the decay properties of H(z) and from the uniform bound
|Φ00(zl kl

)| ≤ B00 which was proven above. 2

Proof of Thms. 10, 11: We proceed exactly as in the proof of theorems 2, 3. We
integrate over the paths γN , and we let N →∞ while accounting for the residues
of the poles getting into the integration contour. Note that we are considering the
first L poles zlkl

such that

D2(µ) = <z1k1 < <z2k2 ≤ ... ≤ <zLkL <
1
2

if D2(µ) <
1
2

D2(µ) = <z1k1 < <z2k2 ≤ ... ≤ <zLkL
< 1 if D2(µ) ≥ 1

2
We obtain the following result:

Anm(t) = −t−D2(µ)
∞∑

k1=−∞
ρnm,1k1e

−i(2π Q
W λ ) k1 log t+

−t−D2(µ)
L∑

l=2

t−
Q

W λ log |ul| e−i Q
W λ arg ul log t

∞∑

kl=−∞
ρnm,lkl

e−i(2π Q
W λ ) kl log t+

+Nnm(t). (108)

The series in the above are uniformly convergent if D2(µ) < 1
2 . They converge in

L2(R, d log t) = L2([0,∞), dt
t ) if 1

2 ≤ D2(µ) < 1. Moreover Nnm(t) = t−x̄o(t) in
the first case, or tx̄Nnm ∈ L2([0,∞), dt

t ), in the second case (it is obtained as a
Fourier-Plancherel transform by the limit N → ∞ of the integral on the vertical
line <z = x̄). We note that log |ul| > 0, l ≥ 2. The expansion (108) is eq. (94). 2

In this fashion, we have obtained the Fourier series representation of the
periodic functions Ψnm and Ψnm,l. These latter are generated by the periodic
arrangement of poles in the complex plane.

When the rationality assumption is violated, only a single pole is to be found
with <(z) = D2(µ), and Ψnm becomes a constant. The remaining poles in the
complex plane give contributions that decay faster than t−D2(µ), as t tends to
infinity. An analysis of both the rational and the irrational case for linear I.F.S.
measures and n = m = 0 can be found also in [19, 20, 21, 22].
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13 Conclusions

The properties of the Fourier transform of singular measures have been studied
extensively both in the mathematical literature [2], [4], [22], [23, 24, 25, 26], [27]
and in the physical [1] [28],[29], as described succinctly in paper I. This concept is
generalized by that of Fourier–Bessel functions. In this paper we have examined in
detail the asymptotic properties of the F-B. functions when the orthogonality mea-
sure is the invariant measure of an Iterated Functions System. We have shown that
the analyticity structure of the Mellin transform of F-B. functions fully explains
these properties and brings to light interesting potential theoretic quantities.
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