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Abstract. We consider the Fibonacci Hamiltonian, the central model in the

study of electronic properties of one-dimensional quasicrystals, and provide a

detailed description of its spectrum and spectral characteristics (namely, the
optimal Hölder exponent of the integrated density of states, the dimension of

the density of states measure, the dimension of the spectrum, and the upper

transport exponent) for all values of the coupling constant (in contrast to all
previous quantitative results, which could be established only in the regime of

small or large coupling).

In particular, we show that the spectrum of this operator is a dynamically
defined Cantor set and that the density of states measure is exact-dimensional;

this implies that all standard fractal dimensions coincide in each case. We show
that all the gaps of the spectrum allowed by the gap labeling theorem are open

for all values of the coupling constant. Also, we establish strict inequalities

between the four spectral characteristics in question, and provide the exact
large coupling asymptotics of the dimension of the density of states measure

(for the other three quantities, the large coupling asymptotics were known

before).
A crucial ingredient of the paper is the relation between spectral properties

of the Fibonacci Hamiltonian and dynamical properties of the Fibonacci trace

map (such as dimensional characteristics of the non-wandering hyperbolic set
and its measure of maximal entropy as well as other equilibrium measures,

topological entropy, multipliers of periodic orbits). We establish exact identi-

ties relating the spectral and dynamical quantities, and show the connection
between the spectral quantities and the thermodynamic pressure function.
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1. Introduction

In this paper we study the Fibonacci Hamiltonian. Along with the almost Math-
ieu operator, this particular operator is the most heavily studied Schrödinger oper-
ator, with dozens of mathematics papers and hundreds of physics papers devoted
to it. There are several reasons for this extensive interest in the spectral properties
of the Fibonacci Hamiltonian. The first and perhaps most important reason is that
this operator is a central model in mathematical physics. Namely it is relevant in
the study of electronic properties of quasicrystals. Quasicrystals are materials that
were first discovered by Shechtman in 1982, and this discovery led to a paradigm
shift in materials science. In diffraction experiments they produce patterns consist-
ing of sharp bright spots, the so-called Bragg peaks, while at the same time these
diffraction patterns display symmetries that conclusively prove that the arrange-
ment of atoms in the sample cannot be periodic. This came as a surprise as it had
been believed that Bragg peaks can only be observed in the diffraction of materials
for which the arrangement of atoms is periodic. It therefore took the scientific com-
munity a while until this discovery was properly digested and accepted, and it was
finally published in the 1984 paper [90]. Shechtman has received numerous honors
and distinctions for this discovery, including the 2011 Nobel Prize in Chemistry.

Since the 1980’s mathematicians have studied appropriate models of quasicrys-
tals. Naturally, the choice of these models is guided by the distinctive property
of real-life quasicrystals, namely that of having a pure point diffraction which in
turn displays symmetries that rule out periodicity. The central examples of the
commonly accepted mathematical quasicrystal models are the Fibonacci tilings or
sequences in one dimension and the Penrose tilings in two dimensions. Indeed,
these examples belong to all classes of models that are typically considered in their
respective dimension. In particular, they may be generated both by inflation and
by a cut-and-project scheme.

Mathematical quasicrystal models are studied from many perspectives, including
dynamical systems, harmonic analysis, spectral theory, discrete geometry, combi-
natorics, and algebra; compare [5, 7, 80]. The study of electronic or quantum
transport in quasicrystals, which is the perspective we take in this paper, naturally
leads to the consideration of Schrödinger operators with potentials modeling a qua-
sicrystalline environment. Choosing the environment given by the Fibonacci tiling
or sequence, this leads to the discrete one-dimensional Schrödinger operator

(1) [Hλ,ωu](n) = u(n+ 1) + u(n− 1) + λχ[1−α,1)(nα+ ω mod 1)u(n),

acting in `2(Z), where λ > 0 is the coupling constant, α =
√

5−1
2 is the frequency,

and ω ∈ T = R/Z is the phase. In particular, α is the inverse of the golden ratio

(2) ϕ =

√
5 + 1

2
.

Alternatively, the potential can be generated by the Fibonacci substitution a 7→ ab,
b 7→ a; compare [24, 26, 28]. The operator family (1) is what is usually called the
Fibonacci Hamiltonian. It was proposed and initially studied by Kohmoto et al. [63]
and by Ostlund et al. [82], prior to the publication of [90], as a quasi-periodic model
that can be solved exactly by renormalization group techniques. The relevance to
quasicrystals was only established and discussed later. The first papers on the
model in the mathematics literature belong to Casdagli [20] and Sütő [97].
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The second reason for the extensive interest in this operator family is that it has
exciting spectral properties. Independently of the relevance of the model to physics,
the Fibonacci Hamiltonian also serves as a paradigm for many spectral phenomena
that had been considered exotic prior to the 1980’s. For example, it persistently
displays Cantor spectrum, zero-measure spectrum, purely singular continuous spec-
tral measures, and anomalous transport. That these properties are even possible
for a physically relevant model was surprising prior to discovery, and the fact that
these properties can be rigorously established only adds to the importance of the
model. Specifically, it is often difficult to answer questions about the spectrum
and the spectral type for a given Schrödinger operator with an aperiodic and non-
decaying potential (periodic and decaying potentials are well understood; compare,
e.g., [94] and [47]). In many cases one rather resorts to statements about members
in families of operators that hold generically or with probability one. The operator
families corresponding to the Fibonacci and almost Mathieu cases are special in
that quite detailed and difficult questions about these operators can be answered
for all members of the respective family. Establishing this has been the objective of
many publications in the past three decades focusing on these two operator families;
see, for example, the surveys [24, 26, 27, 28, 59, 61].

In this paper we show that the spectrum of the Fibonacci Hamiltonian is a
dynamically defined Cantor set and that the density of states measure is exact-
dimensional; this implies that all standard fractal dimensions coincide in each case.
We show that all the gaps of the spectrum allowed by the gap labeling theorem
are open for all values of the coupling constant. Also, we consider the optimal
Hölder exponent of the integrated density of states, the dimension of the den-
sity of states measure, the dimension of the spectrum, and the upper transport
exponent, establish strict inequalities between them, and provide the exact large
coupling asymptotics of the dimension of the density of states measure (for the
other three quantities, the large coupling asymptotics were known before). We also
provide the explicit relations between these spectral characteristics and the dynam-
ical properties of the Fibonacci trace map (such as dimensional characteristics of
the non-wandering hyperbolic set and its measure of maximal entropy as well as
other equilibrium measures, topological entropy, multipliers of periodic orbits). We
establish exact identities relating the spectral and dynamical quantities, and show
the connection between the spectral quantities and the thermodynamic pressure
function. Our results not just improve but complete our understanding of many
spectral characteristics and properties of Fibonacci Hamiltonian. In the rest of the
introduction we provide the exact statement of the results and discuss them in the
context of previously known facts.

1.1. The Spectrum of the Fibonacci Hamiltonian. The spectrum of the Fi-
bonacci Hamiltonian Hλ,ω is independent of ω and may therefore by denoted by
Σλ. This follows from strong operator convergence and the minimality of an irra-
tional rotation of the circle. It was shown by Sütő in [98] that Σλ is a Cantor set
of zero Lebesgue measure for every λ > 0. The zero-measure property in turn rules
out any absolutely continuous spectrum for Hλ,ω. Complementing this, Damanik
and Lenz showed that Hλ,ω has no eigenvalues [38], and hence for all parameter
values, all spectral measures are purely singular continuous. This answers the basic
qualitative spectral questions about this operator family.
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Our first result shows that actually Σλ is a dynamically defined1 Cantor set, that
is, it belongs to a special and heavily studied class of Cantor sets that have strong
self-similarity properties (see [83] for the formal definition and a detailed discussion
of the properties of dynamically defined Cantor sets).

Theorem 1.1. For every λ > 0, Σλ is a dynamically defined Cantor set. In
particular, for every E ∈ Σλ and every ε > 0, we have

dimH ((E − ε, E + ε) ∩ Σλ) = dimB ((E − ε, E + ε) ∩ Σλ) = dimH Σλ = dimB Σλ.

Here, dimH(S) (resp., dimB(S)) denotes the Hausdorff (resp., box counting)
dimension of the Borel set S ⊂ R. Stating the identities above contains the implicit
assertion that the box counting dimension of the set in question exists.

This result was previously known for λ ≥ 16 [20] and λ > 0 sufficiently small
[31]. Knowing that the spectrum is a dynamically defined Cantor set not only
establishes the equality of all standard fractal dimensions of the set (and shows
that this common dimension is bounded away from zero and one), it also serves as
the starting point for further studies. For example, higher-dimensional separable
models may be considered and their spectra turn out to be given by the sum of
the one-dimensional spectra; compare, for example, [32, 36]. This leads to a study
of sums of dynamically defined Cantor sets, which is an extensively investigated
problem about which much is known (see, e.g., [55, 81] and references therein).

1.2. Transport Exponents. Given that the operator Hλ,ω has purely singular
continuous spectrum for all parameter values, the RAGE Theorem (see, e.g., [86,
Theorem XI.115]) suggests that when studying the Schrödinger time evolution for
this Schrödinger operator, that is, e−itHλ,ωψ for some initial state ψ ∈ `2(Z), one
should consider time-averaged quantities. For simplicity, let us consider initial
states of the form δn, n ∈ Z. Since a translation in space simply results in an
adjustment of the phase, we may without loss of generality focus on the particular
case ψ = δ0. The time-averaged spreading of e−itHλ,ωδ0 is usually captured on a
power-law scale as follows; compare, for example, [46, 68]. For p > 0, consider the
p-th moment of the position operator,

〈|X|pδ0〉(t) =
∑
n∈Z
|n|p|〈e−itHλ,ωδ0, δn〉|2

We average in time as follows. If f(t) is a function of t > 0 and T > 0 is given, we
denote the time-averaged function at T by 〈f〉(T ):

〈f〉(T ) =
2

T

∫ ∞
0

e−2t/T f(t) dt.

Then, the corresponding upper and lower transport exponents β̃+
δ0

(p) and β̃−δ0(p)
are given, respectively, by

β̃+
δ0

(p) = lim sup
T→∞

log〈〈|X|pδ0〉〉(T )

p log T
,

β̃−δ0(p) = lim inf
T→∞

log〈〈|X|pδ0〉〉(T )

p log T
.

1Sometimes the term “regular” is also used.
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The transport exponents β̃±δ0(p) belong to [0, 1] and are non-decreasing in p (see,

e.g., [46]), and hence the following limits exist:

α̃±l = lim
p→0

β̃±δ0(p),

α̃±u = lim
p→∞

β̃±δ0(p).

Ballistic transport corresponds to transport exponents being equal to one, dif-
fusive transport corresponds to the value 1

2 , and vanishing transport exponents
correspond to (some weak form of) dynamical localization. In all other cases,
transport is called anomalous. The Fibonacci Hamiltonian has long been the pri-
mary candidate for a model exhibiting anomalous transport, going back at least
to the work of Abe and Hiramoto [1]. Many papers have been devoted to a
study of the transport properties of the Fibonacci Hamiltonian; see, for exam-
ple, [15, 23, 25, 37, 41, 42, 43, 44, 45, 60, 66]. For example, it is known that all
the transport exponents defined above are strictly positive for all λ > 0, ω ∈ T;
see [37]. On the other hand, upper bounds for all the transport exponents were
shown in [44] for λ > 8 (see also [15] for a somewhat weaker result). The exact
large coupling asymptotics of α̃±u were identified in [45], where is was shown that

(3) lim
λ→∞

α̃±u · log λ = 2 logϕ,

uniformly in ω ∈ T. In particular, the Fibonacci Hamiltonian indeed gives rise
to anomalous transport for sufficiently large coupling. The behavior in the weak
coupling regime was studied in [35], where it was shown that there is a constant
c > 0 such that for λ > 0 sufficiently small, we have

1− cλ2 ≤ α̃±u ≤ 1,

uniformly in ω ∈ T.
While it is of clear interest to identify the asymptotic behavior of α̃±u in the large

and small coupling regimes, and in particular show that the asymptotic behavior
of α̃+

u coincides with that of α̃−u , the following questions remain. What can we say
for a given value of λ? Can we for example give an explicit expression for α̃+

u or
α̃−u ? Can we even show that α̃+

u and α̃−u coincide for the given value of λ (and ω)?
We will address these questions in this paper. An explicit description of α̃±u will

be given in Theorem 1.6 stated later in this introduction (it will require the trace
map formalism, which will be recalled in Subsection 1.4). A particular consequence
of the description given there is that the desired identity holds:

Theorem 1.2. For every λ > 0, α̃+
u (λ) and α̃−u (λ) are equal and independent of

ω ∈ T.

The interpretation of this statement is that, for all values of the coupling constant
and the phase, the fastest part of the wavepacket travels uniformly on a power-law
scale. That is, there aren’t two different sequences of time scales along which the
“front of the wavepacket” moves at two different power-law rates. To the best of our
knowledge this is the first time this phenomenon has been rigorously established
for a model for which α̃+

u (λ) and α̃−u (λ) take fractional values. The reason for this
is that it is usually very difficult to identify transport exponents exactly (if they
take fractional values) and hence most results only establish estimates for them.
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1.3. Density of States Measure and Gap Labeling. Let us recall the definition
of the density of states measure and some derived quantities. By the spectral
theorem, there are Borel probability measures µλ,ω on R such that

〈δ0, g(Hλ,ω)δ0〉 =

∫
g(E) dµλ,ω(E)

for all bounded measurable functions g. The density of states measure νλ is given
by the ω-average of these measures with respect to Lebesgue measure, that is,∫

T
〈δ0, g(Hλ,ω)δ0〉 dω =

∫
g(E) dνλ(E)

for all bounded measurable functions g. By general principles, the density of states
measure is non-atomic and its topological support is Σλ. The fact that Σλ has
zero Lebesgue measure therefore implies that νλ is singular continuous for every
λ > 0. The density of states measure can also be obtained by counting the number
of eigenvalues per unit volume, in a given energy region, of restrictions of the
operator to finite intervals (which explains the terminology). Indeed, for any real
a < b,

νλ(a, b) = lim
L→∞

1

L
#
{

eigenvalues of Hλ,ω|[1,L] that lie in (a, b)
}
,

uniformly in ω; compare [56]. Here, for definiteness, Hλ,ω|[1,L] is defined with
Dirichlet boundary conditions.

We will be interested in the optimal Hölder exponent γλ of νλ. That is, γλ is
the unique number in [0, 1] such that the following two properties hold.

(1) For any γ < γλ and any sufficiently small interval I ⊂ R, we have ν(I) <
|I|γ ;

(2) For any γ̃ > γλ and any ε > 0, there exists an interval I ⊂ R such that
|I| < ε and ν(I) > |I|γ̃ .

The optimal Hölder exponent of the density of states measure is studied for
other popular discrete Schrödinger operators in numerous papers; see, for example,
[3, 14, 52, 53, 54] and references therein. For the Fibonacci case in the regime of
small or large coupling, it was studied in [34]. In particular, it was shown that
γλ → 1/2 as λ→ 0 and γλ → 0 as λ→∞ (the explicit rate at which it does so is
recalled in Theorem 1.10 below). In all these works only estimates and asymptotics
for the optimal Hölder exponent were established. In this paper, we will express
the optimal Hölder exponent in the Fibonacci case explicitly, for any value of the
coupling constant, in terms of dynamical quantities related to the Fibonacci trace
map (the explicit formula is provided in Theorem 1.6 below). For small values of
the coupling constant λ, this will allow us to give an exact formula for γλ as a
function of λ; see Corollary 5.2.

The distribution function of the density of states measure is called the integrated
density of states and denoted by Nλ. Thus, for E ∈ R, we have

Nλ(E) =

∫
χ(−∞,E] dνλ = lim

L→∞
1

L
#
{

eigenvalues of Hλ,ω|[1,L] that are ≤ E
}
,

uniformly in ω.
Since Σλ is the topological support of νλ, it follows that Nλ is constant on each

gap of Σλ, where any connected component of R\Σλ is called a gap of Σλ. This value
may be used as the label of the gap in question. The gap labeling theorem (see, e.g.,
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[11, 62]) provides a set that is defined purely in terms of the underlying dynamical
system generating the ergodic family of potentials in question (in our case this is
either the irrational rotation of the circle by the (inverse of the) golden ratio, or
the shift transformation on the subshift generated by the Fibonacci substitution),
to which all gap labels must belong. This general gap labeling theorem specializes
in the Fibonacci case to the following statement (see, e.g., [12, Eq. (6.7)]):

(4) {Nλ(E) : E ∈ R \ Σλ} ⊆ {{mϕ} : m ∈ Z} ∪ {1}

for every λ > 0. Here {mϕ} denotes the fractional part of mϕ, that is, {mϕ} =
mϕ − bmϕc. Notice that the set of possible gap labels is indeed λ-independent
and only depends on the value of ϕ from the underlying circle rotation. Since ϕ is
irrational, the set of gap labels is dense.

In general, a dense set of possible gap labels is indicative of a Cantor spectrum
and hence a common (and attractive) stronger version of proving Cantor spectrum
is to show that the operator “has all its gaps open.” For example, the Ten Martini
Problem for the almost Mathieu operator is to show Cantor spectrum, while the
Dry Ten Martini Problem is to show that all labels correspond to gaps in the
spectrum. The former problem has been completely solved [2], while the latter has
not yet been completely settled (it remains open for the case of critical coupling
and non-Liouville frequency; see [2, 4, 21] and references therein). Indeed, it is in
general a hard problem to show that all labels given by the gap labeling theorem
correspond to gaps and there are only few results of this kind.

Here we show the stronger (or “dry”) form of Cantor spectrum for the Fibonacci
Hamiltonian and establish complete gap labeling:

Theorem 1.3. For every λ > 0, all gaps allowed by the gap labeling theorem are
open. That is,

(5) {Nλ(E) : E ∈ R \ Σλ} = {{mϕ} : m ∈ Z} ∪ {1}.

Raymond proved (5) for λ > 4 [85] and Damanik and Gorodetski proved (5) for
λ > 0 sufficiently small [32]. In [32] it was also shown that all gaps open linearly
as the coupling constant is turned on. It was conjectured in [32] that (5) holds for
every λ > 0, and Theorem 1.3 proves this conjecture.

Our next result concerns the exact-dimensionality of the density of states mea-
sure for every value of the coupling constant.

Theorem 1.4. For every λ > 0, the density of states measure νλ is exact-
dimensional. Namely, for every λ > 0, the limit (called the scaling exponent of
νλ at E)

lim
ε↓0

log νλ(E − ε, E + ε)

log ε

νλ-almost everywhere exists and is constant.

In [33] Damanik and Gorodetski had shown the exact-dimensionality of νλ for
λ > 0 sufficiently small. A particular consequence of the exact-dimensionality of
νλ is that virtually all the known characteristics of dimension type of the measure
coincide. In particular, the following four dimensions associated with the measure
νλ, those most relevant to quantum dynamics, coincide (namely with the almost
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everywhere value of the limit above):

dimH νλ = inf{dimH(S) : νλ(S) = 1},
dim−H νλ = inf{dimH(S) : νλ(S) > 0},
dimP νλ = inf{dimP (S) : νλ(S) = 1},
dim−P νλ = inf{dimP (S) : νλ(S) > 0}.

Here, dimP (S) denotes the packing dimension of the Borel set S ⊂ R. These four
dimensions are called the upper and lower Hausdorff dimension and the upper and
lower packing dimension of νλ, respectively; compare; for example, [51].

1.4. Trace Map Dynamics and Transversality. There is a fundamental con-
nection between the spectral properties of the Fibonacci Hamiltonian and the dy-
namics of the trace map

(6) T : R3 → R3, T (x, y, z) = (2xy − z, x, y).

The function G(x, y, z) = x2 + y2 + z2 − 2xyz − 1 is invariant2 under the action of
T , and hence T preserves the family of cubic surfaces3

(7) Sλ =

{
(x, y, z) ∈ R3 : x2 + y2 + z2 − 2xyz = 1 +

λ2

4

}
.

It is therefore natural to consider the restriction Tλ of the trace map T to the
invariant surface Sλ. That is, Tλ : Sλ → Sλ, Tλ = T |Sλ . We denote by Λλ the
set of points in Sλ whose full orbits under Tλ are bounded (it is known that Λλ is
equal to the non-wandering set of Tλ; see ).

Denote by `λ the line

(8) `λ =

{(
E − λ

2
,
E

2
, 1

)
: E ∈ R

}
.

It is easy to check that `λ ⊂ Sλ. The key to the fundamental connection between
the spectral properties of the Fibonacci Hamiltonian and the dynamics of the trace
map is the following result of Sütő [97]. An energy E ∈ R belongs to the spectrum
Σλ of the Fibonacci Hamiltonian if and only if the positive semiorbit of the point
(E−λ2 , E2 , 1) under iterates of the trace map T is bounded. This connection shows
that spectral properties of the Fibonacci Hamiltonian can be studied via an analysis
of the dynamics of the trace map.

Another very important ingredient is the following. For every λ > 0, Λλ is a
locally maximal compact transitive hyperbolic set of Tλ : Sλ → Sλ; see [18, 20, 31].
This fact allows one to use powerful tools from hyperbolic dynamics in exploring
the connection between the operator and the trace map. Actually, this realization
is the driving force behind all of the recent advances (roughly those dating back to
2008, starting with [29]). To fully exploit this, one needs that the stable manifolds
of points in Λλ intersect the line of initial conditions, `λ, transversally. This crucial
fact was known for λ sufficiently large [20] or sufficiently small [31], but open in the
intermediate regime. As a consequence, many of the recent results could only be
shown in the regimes of small and large coupling.

Theorem 1.5. For every λ > 0, `λ intersects W s(Λλ) transversally.

2It is usually called the Fricke-Vogt invariant.
3The surface S0 is known as Cayley cubic.
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Here, `λ denotes the line of initial conditions given in (8) and W s(Λλ) denotes
the collection of stable manifold of points in the locally maximal compact transitive
hyperbolic set Λλ of Tλ : Sλ → Sλ.

Theorems 1.1, 1.3, and 1.4 are consequences of Theorem 1.5. In fact, each of the
statements in Theorems 1.1, 1.3, and 1.4 was previously known for λ > 0 sufficiently
small [31, 32, 33]; but more precisely, these statements were shown in each case to
hold for all values of the coupling constant between zero and the specific value
where a breakdown of transversality first occurs (or ∞ if no such value exists).
Since transversality is easily seen to hold for λ > 0 sufficiently small [31], one could
derive the desired statements unconditionally in the small coupling regime. For
this reason, proving the absence of a breakdown of transversality had been one of
the major goals in the study of the Fibonacci Hamiltonian, and Theorem 1.5 finally
accomplishes this goal.

It is interesting to note that the proof of Theorem 1.5 is not a straightforward
construction of an invariant cone field but rather uses the fact that the trace map
is polynomial as well as spectral arguments (the fact that Σλ does not have isolated
points).

1.5. Connections between Spectral Characteristics and Dynamical Quan-
tities. Recall that we are primarily interested in the following four quantities asso-
ciated with the Fibonacci Hamiltonian: the upper transport exponents α̃±u (λ), the
dimension of the spectrum dimH Σλ, the dimension of the density of states mea-
sure dimH νλ, and the optimal Hölder exponent of the integrated density of states
γλ. Our next main result establishes explicit identities connecting the four spec-
tral/quantum dynamical quantities of interest with dynamical quantities associated
with the trace map. In this theorem, µλ,max denotes the measure of maximal en-
tropy of Tλ|Λλ and µλ denotes the equilibrium measure of Tλ|Λλ that corresponds to
the potential −dimH Σλ · log ‖DTλ|Eu‖. Recall from (2) that ϕ denotes the golden
ratio.

Theorem 1.6. For every λ > 0, we have

α̃±u (λ) =
logϕ

infp∈Per(Tλ) Lyapu(p)
,(9)

dimH Σλ =
hµλ

Lyapuµλ
,(10)

dimH νλ = dimH µλ,max =
htop(Tλ)

Lyapuµλ,max
=

logϕ

Lyapuµλ,max
,(11)

γλ =
logϕ

supp∈Per(Tλ) Lyapu(p)
.(12)

As mentioned earlier, Theorem 1.2 is a direct consequence of (9). Another
consequence of (9) is that we can derive explicit lower bounds for α̃±u (λ) by sim-
ply estimating infp∈Per(Tλ) Lyapu(p) from above using specific choices of periodic
points. By the same token, these specific choices of periodic points will also lead to
upper bounds for γλ due to (12). For example, this leads to the following pair of
explicit lower and upper bounds (the period p of the periodic point leading to this
bound is given in parentheses).
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Figure 1. The two bounds for α̃±u (λ) and γλ from Corollary 1.7.

Corollary 1.7. For every λ > 0, we have

γλ ≤
4 logϕ

log(4λ2 +
√

16λ4 + 56λ2 + 45 + 7)− log 2
≤ α̃±u (λ) (p = 6)(13)

γλ ≤
6 logϕ

log(λ4 +
√

(λ4 + 8λ2 + 18)2 − 4 + 8λ2 + 18)− log 2
≤ α̃±u (λ) (p = 4)(14)

The graphs of these two functions are shown in Figure 1. We see that for α̃±u (λ),
(13) is better for small λ, while (14) is better for large λ, whereas the opposite is
true for γλ.

In fact, a better upper bound for γλ can be derived via a different family of
periodic points (of period two). The associated Lyapunov exponents can also be
given explicitly; for the corresponding expression, see Corollary 5.2. The upper
bounds resulting from the Lyapunov exponents of the families of period two (left
implicit here) and period six (given above) are given in Figure 2.

1.6. Thermodynamical Formalism and Relations between Spectral Char-
acteristics. By general principles, we have

γλ ≤ dimH νλ ≤ dimH Σλ.

This is obvious since Σλ supports the measure νλ, and the almost everywhere
scaling exponent of νλ is at least as big as one that works at every point. On
the other hand, there is no inequality that relates α̃±u (λ) to one of the other three
quantities, which holds for general operators.4 The following theorem shows that
for the Fibonacci Hamiltonian and every value of the coupling constant, the four
quantities satisfy strict inequalities.

Theorem 1.8. For every λ > 0, we have

(15) γλ < dimH νλ < dimH Σλ < α̃±u (λ).

4For example, in our case at hand it turns out that α̃±u (λ) is strictly larger than the other

three quantities, while for random potentials, α̃±u (λ) is strictly smaller than each of them.
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Figure 2. Upper bounds for γλ via periodic points of period 2 and 6.

The particular inequality dimH νλ < dimH Σλ in (15) establishes a conjecture
of Barry Simon, which was made based on an analogy with work of Makarov and
Volberg [73, 74, 99]; see [33] for a more detailed discussion. This inequality was
shown in [33] for λ > 0 sufficiently small, and hence the conjecture had been
partially established there. Our result here settles it in the generality in which it
was stated.5

The inequality

(16) dimH Σλ < α̃±u (λ)

in (15) is related to a question of Yoram Last. He asked in [68] whether in general
dimH Σλ bounds α̃±u (λ) from above and conjectured that the answer is no. The
inequality (16) confirms this. This realization is not new. It was shown in [45]
(resp., [35]) that (16) holds for λ > 0 sufficiently large (resp., for λ > 0 sufficiently
small). What we add here is that it holds for all λ > 0.

The identities in Theorem 1.6 are instrumental in our proof of Theorem 1.8.
Indeed, once the identities (9)–(12) are established, Theorem 1.8 can be proved
using the thermodynamic formalism, which we will describe next. Define φ : Λλ →
R by φ(x) = − log ‖DTλ(x)|Eu‖ and consider the pressure function (sometimes
called the Bowen function) P : t 7→ P (tφ), where P (ψ) is the topological pressure.6

This function has been heavily studied; the next statement summarizes some known
results; compare [16, 65, 84, 88, 100, 101].

Proposition 1.9. Suppose that σA : ΣA → ΣA is a topological Markov chain
defined by a transitive 0 − 1 matrix A, and φ : ΣA → R is a Hölder continuous
function. Then, the following statements hold.

(1) Variational principle: P (tφ) = supµ∈M
{
hµ + t

∫
φdµ

}
.

5The conjecture does not appear anywhere in print, but it was popularized by Barry Simon in

many talks given by him in the past four years.
6There are many classical books on the thermodynamical formalism; for example, [16, 88, 100].

We also refer the reader to the recent introductory texts [8, 58, 89].
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(2) For every t ∈ R, there exists a unique invariant measure µt ∈ M (the
equilibrium state) such that P (tφ) = hµt + t

∫
φdµt.

(3) P (tφ) is a real analytic function of t.
(4) If φ is cohomological to a constant, then P (tφ) is a linear function; if

φ is not cohomological to a constant, then P (tφ) is strictly convex and
decreasing.

(5) For every t0 ∈ R, the line hµt0 + t
∫
φdµt0 is tangent to the graph of the

function P (tφ) at the point (t0, P (t0φ)).
(6) Denote by M the space of σA-invariant Borel probability measures. The

following limits exist:

lim
t→∞

∫
φdµt = sup

µ∈M

∫
φdµ, lim

t→−∞

∫
φdµt = inf

µ∈M

∫
φdµ.

The graph of the function t 7→ P (tφ) lies strictly above each of the lines
t · supµ∈M

∫
φdµ and t · infµ∈M

∫
φdµ.

Now let us return to our case where σA : ΣA → ΣA is conjugate to Tλ|Λλ and
the potential is given by φ(x) = − log ‖DTλ(x)|Eu‖ (suppressing the conjugacy). In
Section 6 we prove that this potential is not cohomological to a constant. For any
t ∈ R, consider the tangent line to the graph of P (t) at the point (t, P (tφ)). Since
P (t) is decreasing, there exists exactly one point of intersection of the tangent line

with the t-axis, at the point t0 = − hµt∫
φ dµ

=
hµt

Lyapu µt
= dimHµt. The last equality

here is due to [75]. In particular, dimHµmax = dimHνλ is given by the point of
intersection of the tangent line to the graph of P (t) at the point (0, htop(Tλ)) with
the t-axis. Also, due to Theorem 1.6 the line htop(Tλ) + t · infµ∈M

∫
φdµ intersects

the t-axis at the point γλ, and the line htop(Tλ) + t · supµ∈M
∫
φdµ intersects the

t-axis at the point α̃±u (λ). Finally, due to [77], the graph of P (t) intersects the t-axis
at the point dimHΣλ. These observations are illustrated in Figure 3 and explain
where the strict inequalities in Theorem 1.8 come from once it is shown that φ is
not cohomological to a constant (we do that in Section 6).

1.7. Large Coupling Asymptotics. For each of the four quantities in question,
the large coupling asymptotics are given in the following theorem.

Theorem 1.10. We have

lim
λ→∞

α̃±u (λ) · log λ = 2 logϕ,(17)

lim
λ→∞

dimH Σλ · log λ = log(1 +
√

2) ≈ 1.83156 logϕ,(18)

lim
λ→∞

dimH νλ · log λ =
5 +
√

5

4
logϕ ≈ 1.80902 logϕ,(19)

lim
λ→∞

γλ · log λ = 1.5 logϕ.(20)

Only (19) is new here, the other results are stated for completeness and com-
parison purposes. Indeed, (17) was shown in [44, 45], (18) was shown in [29],
and (20) was shown in [34]. Thus, our proof of (19) in this paper completes our
understanding of the large coupling asymptotics of the four quantities of interest.

Our results open the door for numerous extensions and generalizations. We
briefly discuss some of them in Section 7.
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Figure 3. Pressure function and spectral characteristics of the
Fibonacci Hamiltonian.

2. Transversality

Recall that an invariant closed set Λ of a diffeomorphism f : M → M is hyper-
bolic if there exists a splitting of the tangent space TxM = Eux ⊕Eux at every point
x ∈ Λ such that this splitting is invariant under Df , the differential Df exponen-
tially contracts vectors from the stable subspaces {Esx}, and the differential of the
inverse, Df−1, exponentially contracts vectors from the unstable subspaces {Eux}.
A hyperbolic set Λ of a diffeomorphism f : M → M is locally maximal if there
exists a neighborhood U of Λ such that

Λ =
⋂
n∈Z

fn(U).

It is known that for λ > 0, Λλ is a locally maximal hyperbolic set of Tλ : Sλ → Sλ;
see [18, 20, 31].

Recall from (8) that we denote the line of initial conditions by `λ. It is easy to
check that `λ ⊂ Sλ. An energy E ∈ R belongs to the spectrum Σλ of the Fibonacci
Hamiltonian if and only if the positive semiorbit of the point (E−λ2 , E2 , 1) under
iterates of the trace map T is bounded; see [97].

It is known that the stable manifolds of points in Λλ intersect the line `λ transver-
sally if λ > 0 is sufficiently small [31] or if λ ≥ 16 [20]. It is also known, based on
[10], that if tangential intersections occur in the intermediate regime, they cannot
occur at more than finitely many points. This, however, is not sufficient to state
uniformly for all values of the coupling constant some of the results that are known
to hold in the small and the large coupling regimes. The purpose of this section is to
prove that transversality holds for all values of the coupling constant, and some of
the immediate consequences; namely, we prove Theorem 1.5, and its consequences
– Theorems 1.1, 1.3, and 1.4.



14 D. DAMANIK, A. GORODETSKI, AND W. YESSEN

Proof of Theorem 1.5. In what follows, given a curve η : K → Kn, with K = R or
K = C and n ∈ N, η∗ denotes the image of the curve.

As we have already mentioned, transversality is known for all λ > 0 sufficiently
small. Let us now assume that λ0 > 0 is such that for all λ ∈ (0, λ0), transversality
holds, while at λ0, `λ0

∩W s(Λλ0
) contains tangential intersections. From [10] it

is known that such tangencies must be isolated; by compactness of `λ ∩W s(Λλ),
there is at most a finite number of such tangencies.

Let p be a point of such a tangency and let U be an open neighborhood of p in Sλ0

such that all the points of `λ0
∩W s(Λλ0

)∩U except p are transversal. Notice that
for each λ, W s(Λλ) and `λ lie on the surface Sλ. Let us first analytically project
the family of laminations W s(Λλ) and curves `λ, onto Sλ0

, which will include,
respectively, the lamination W s(Λλ0

) and the line `λ0
.

Let us consider the complexified surfaces Su, u ∈ U , where U is a small neigh-
borhood of λ0 in C. That is,

Su
def
=

{
(x, y, z) ∈ C3 : x2 + y2 + z2 − 2xyz − 1 =

u2

4

}
.

Let us write Ŝλ for the complexification of the real surface Sλ.
By the complex-analytic version of the implicit function theorem, there exists a

family of biholomorphisms π(·, u) : Su → Ŝλ0
in a neighborhood of p in C3 such

that π(·, λ0) is the identity, π depends holomorphically on u, and for all real u,
π(·, u) maps the real part of Su to Sλ0

.
Now let O be an open neighborhood of p in R3 and let Uλ = Sλ ∩ O. Via

π(·, λ), W s(Λλ) ∩ Uλ is smoothly projected into Uλ0 . Let us denote the resulting
laminations by Fλ, and the lamination W s(Λλ0

)∩Uλ0
by Fλ0

. By abuse of notation,
let us denote the projection of `λ via π(·, λ) by the same symbol, `λ.

Notice that the laminations Fλ consist of real-analytic leaves (see [9, Section 5]),
and can be included into a C1+ε invariant foliation. Let κ be a parameter in the
space of leaves of this foliation, such that the leaves of Fλ depend continuously on
κ in the C2 topology. Moreover, each leaf of Fλ has a canonical continuation in λ
that depends holomorphically on λ (for further details, see [17, Section 2]).

Let us denote by φ
(κ)
λ the leaves of Fλ. By φ

(κ0)
λ0
∈ Fλ0

we denote the leaf that
admits the tangency with `λ0

at p. We will verify that the laminations Fλ satisfy
the following properties.

(i) The leaves φ
(κ)
λ as well as `λ admit holomorphic continuations, φ̂

(κ)
λ and ˆ̀

λ,

respectively, in such a way that for all λ, all intersections between ˆ̀
λ and φ̂

(κ)
λ

are real.
(ii) For every λ in a neighborhood of λ0, the lamination Fλ is locally homeomor-

phic to a product of an interval by a Cantor set.
(iii) Let γ be a transversal to the lamination Fλ. For all κ1, κ2, there exists

∆(κ1, κ2) > 0 such that for all λ sufficiently close to λ0 and the leaves

φ
(κ1)
λ , φ

(κ2)
λ in Fλ, the distance along γ between γ ∩ φ(κ1)

λ and γ ∩ φ(κ2)
λ is

not smaller than ∆.

Verification of (i). The curves `λ are complexified in a natural way (i.e. first com-
plexify the original line of initial conditions, `λ, before projection by π(·, λ), and
then project). As for the leaves of the foliation: it is known that stable manifolds
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admit a suitable complexification as complex submanifolds of the complexified in-
variant surface Ŝλ(see [9]).

To verify that all intersections should be real, we appeal to the argument given
by Sütő in [97]: an energy E belongs to the spectrum if and only if the forward
orbit of the corresponding point on the line of initial conditions is bounded under
the trace map. In fact, we only need the implication one way: boundedness of the
forward orbit implies inclusion in the spectrum. Sütő considered only real values
for the energy (the parameter of the line of initial conditions), since the spectrum
is real. But the same argument applies verbatim to complex-valued energies.

On the other hand, a point has a bounded forward orbit if and only if it belongs
to a stable manifold of Λλ (this is known and has been used since Casdagli’s work
[20]; an explicit proof was given in [39, Corollary 2.5], see also [78]). Since the
spectrum is real and the (complexified) line of initial conditions maps R into the
real subspace of the invariant surface, all intersection points must be real. Now use
the fact that π preserves the real subspace. �

Verification of (ii). This holds since the nonwandering set Λλ for the trace map
restricted to Sλ, λ > 0, is a hyperbolic horseshoe (see [18, 20, 31]). �

Verification of (iii). This follows from a compactness argument (the lamination
depends continuously on λ; restrict λ to some compact interval around λ0, and
note that, by definition, no two distinct leaves of the lamination Fλ0 intersect). �

We will need the following simple lemma, stated here without proof, that could
be derived from, for example, [57, Theorem 1.14].

Lemma 2.1. Suppose that φ, ` : R → R2 are real-analytic, admiting complex-

analytic continuations φ̂, ˆ̀ : C → C2, such that φ̂ and ˆ̀ are injective immersions.

Suppose further that at some p ∈ C, φ̂∗ is tangent to ˆ̀∗ at p and this tangency is
isolated. Then there exists an open neighborhood U of p in C2 and a biholomorphism
ζ : U → D2 = D × D with D being the unit disc centered at the origin in C, with
the following properties.

(1) ζ(p) = (0, 0).
(2) ζ(<(U)) ⊆ <(D2).

(3) ζ maps the connected component of ˆ̀∗ ∩ U that contains p onto D.
(4) There exists a holomorphic function f : D→ C, such that the image of the

connect component of φ̂∗ ∩ U that contains p is the graph of f .

We will consider separately the case when the tangency at p is quadratic, and
when it is of higher order.

Lemma 2.2. If the tangency at p between φ̂
(κ0)
λ0

and ˆ̀
λ0

is of order greater than

two, then there exists λ ∈ (0, λ0) such that `λ contains a point of tangency with
some leaf of the lamination Fλ.

Proof. Let us assume that the tangency at p between φ̂
(κ0)
λ0

and ˆ̀
λ0

is of order k > 2.
Let ζ0 be a rectifying biholomorphism as in Lemma 2.1. Then in a neighborhood

of p, ζ0 maps ˆ̀∗
λ0

onto D and ζ0(φ̂
(κ0)
λ0

) is the graph of a holomorphic function over

D. Let us denote this function by f̂
(κ0)
λ0

and its restriction onto R by f
(κ0)
λ0

. Then

f
(κ0)
λ0

has a root of multiplicity k at the origin.
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f
(κ0)
λ

f
(α)
λ

J
(i)
λ

(a) Some λ ∈ [λ′, λ1)

f
(κ0)
λ

f
(α)
λ

J
(i)
λ

(b) Some λ ∈ (λ2, λ0)

Figure 4.

Now by holomorphic dependence on λ of each leaf of the family Fλ, as well

as of ˆ̀
λ, we can construct a family of rectifying biholomorphisms {ζλ} depending

holomorphically on λ for every λ sufficiently close to λ0 with the same properties
as ζ0 (less the tangency).

Thus ζλ(Fλ) gives a family of laminations in a neighborhood of the origin in R2,

such that for each leaf φ
(κ)
λ ∈ ζλ(Fλ), φ̂

(κ)
λ is given as the graph of an analytic funcion

f̂
(κ)
λ over D. Notice that the resulting functions f

(κ)
λ depend holomorphically on λ

and continuously on κ in the C2 topology. In particular, f̂
(κ0)
λ → f̂

(κ0)
λ0

uniformly
as λ→ λ0.

Hurwitz’s theorem implies that for every λ sufficiently close to λ0, f̂
(κ0)
λ has

precisely k > 2 zeros (counting multiplicity) in a neighborhood of the origin, and
these zeros approach the origin as λ → λ0. Since, by our standing assumptions,
for λ < λ0 these zeros form transverse intersections, they all must be simple. Thus

when λ < λ0, there are precisely k > 2 distinct zeros of f̂
(κ0)
λ in a neighborhood of

the origin which approach the origin as λ↗ λ0. Furthermore, by our assumptions,
these zeros are all real.

Since the biholomorphism ζλ maps R2 to R2, we obtain a family of analytic

functions f
(κ)
λ : J → R over an open interval J ⊂ R with 0 ∈ J , with the following

properties.
Since k ≥ 3, for all λ < λ0 and sufficiently close to λ0, there exist two non-

degenerate compact intervals, J
(1)
λ and J

(2)
λ with disjoint interiors, such that the

endpoints of each are given by zeros of f
(κ0)
λ , on the interior of J

(1)
λ , f

(κ0)
λ < 0 and

on the interior of J
(2)
λ , f

(κ0)
λ > 0, and

∣∣∣J (i)
λ

∣∣∣→ 0 as λ↗ λ0, i = 1, 2.

By continuity, the derivative of f
(κ0)
λ is bounded uniformly in λ on the interval

J . In particular it follows that if M
(i)
λ denotes the maximum of

∣∣∣f (κ0)
λ

∣∣∣ over J
(i)
λ ,

then M
(i)
λ → 0 as λ↗ λ0.

Now fix some λ′ < λ0 sufficiently close to λ0 as above. There exists α among

the parameters κ such that if f
(α)
λ is the continuation of f

(α)
λ0

, then we have the

following. By assumption (iii), there exists ∆0 > 0 such that for all λ ∈ [λ′, λ0], we

have
∣∣∣f (κ0)
λ − f (α)

λ

∣∣∣ > ∆0 on the interval J
(i)
λ . Furthermore, there exists i ∈ {1, 2}

such that for all λ ∈ [λ′, λ0), either f
(κ0)
λ is negative on the interior of J

(i)
λ and

f
(α)
λ > f

(κ0)
λ on J

(i)
λ , or f

(κ0)
λ is positive on the interior of J

(i)
λ and f

(α)
λ < f

(κ0)
λ on

J
(i)
λ . Let us consider the latter case, the former being completely similar.
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Figure 5.

It follows that there exists λ1 < λ2 ∈ (λ′, λ0) such that for all λ ∈ [λ′, λ1), the

maximum of f
(α)
λ over J

(i)
λ is positive and for all λ ∈ (λ2, λ0), the maximum of

f
(α)
λ over J

(i)
λ is negative. As a result, there exists λ ∈ (λ′, λ0) such that f

(α)
λ is

nonpositive on J
(i)
λ and has a zero q ∈ J (i)

λ , and hence q is a point of tangency (see
Figure 4). �

We can now apply Lemma 2.2 to conclude that the tangency at p must either be
quadratic, or for some λ < λ0, `λ intersects Fλ tangentially at some point. On the
other hand, by assumption, tangencies cannot occur for λ < λ0. Thus the tangency
at p must be quadratic.

Assume that we have a quadratic tangency at p between `λ0
and some leaf φλ0

of the Cantor lamination W s(Λλ0
). Assume for a moment that the leaf φλ0

is not a
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boundary of the lamination. Since for λ < λ0 the tangency unfolds, it could either
unfold as shown in Figure 5 (a)-(b), or as in (c)-(d); in either case, arbitrarily
close to φλ0 there exists a leaf of the foliation such that for some λ < λ0, this leaf
intersects the line tangentially.

Assume now that φλ0
is a boundary of the lamination. Since there are no isolated

points in the spectrum, in this case we either have an unfolding shown in Figure 5
(e)-(f) or (g)-(h).

If the tangency unfolds as shown in Figure 5 (e)-(f), then as before, arbitrarily
close to φλ0

there exists a leaf such that for some λ < λ0, the intersection of the
line with this leaf is tangential.

Now suppose that the tangency unfolds as shown in Figure 5 (g)-(h). In this
case the interval along `λ bounded by the intersection points φλ ∩ `λ, as shown in
the picture, corresponds to a gap in the spectrum. We know that for all sufficiently
small couplings λ, all the gaps allowed by the gap labeling theorem are open (see
the discussion preceding the statement of Theorem 1.3). On the other hand, by
assumption, for all λ < λ0, the line `λ intersects the stable lamination transversally;
this allows for continuation of the open gaps from the small coupling regime to all
λ < λ0 with all gaps remaining open; see [32, Theorem 4.3]. In particular, this
also guarantees that for any gap in the spectrum at λ < λ0, its two boundary
points correspond to the intersection of `λ with two stable manifolds of two distinct
periodic points (for further details on gap opening, see [32, Section 3]). Thus an
intersection of `λ for λ < λ0 with a stable manifold cannot form a gap, precluding
the unfolding of a tangency as shown in Figure 5 (g)-(h).

This shows that the tangency at p cannot be quadratic. Together with Lemma
2.2, this proves Theorem 1.5. �

Proof of Theorem 1.1. Given Theorem 1.5, the result follows from [31, Corollary 2]
and its proof. �

Proof of Theorem 1.3. The result is a consequence of Theorem 1.5 and [32, Theo-
rem 4.3]. �

Proof of Theorem 1.4. The assertion of the theorem can be obtained from Theo-
rem 1.5 and [33, Theorem 1.1]; compare the discussion in Remark (e) on [33, p. 978]
of the role of λ0 in the formulation of [33, Theorem 1.1]. �

3. Transport Exponents

In this section we prove the identity (9). We begin by establishing some results
about the dynamics of the trace map.

Proposition 3.1. For every λ > 0, all unstable manifolds of Tλ : Sλ → Sλ are
transversal to the circle Cλ := {z = 0} ∩ Sλ.

Proof. We know that for every λ > 0 and every k ∈ Z+, the curve T kλ (`λ) has the
following properties:

1) T kλ (`λ) is transversal to the plane {z = c} for any c ∈ (−1, 1);

2) If we consider `λ as a complex line in C3, then T kλ (`λ) ∩ {z = 0} consists of
Fk−1 points, and all of them are in the real subspace.
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Indeed, both statements follow from standard results in Floquet theory. Namely,
the z-component of T kλ (`λ(E)) is, as a function of E ∈ C, equal to one-half times
the discriminant of a discrete Schrödinger operator with a periodic potential of
period Fk−1 (see, e.g., [97]).7 Thus, the values of E for which T kλ (`λ(E)) ∈ {z = c}
are precisely the E’s for which one-half the discriminant takes on the value c. If
c ∈ (−1, 1), then due to, for example, [94, Theorem 5.4.2], there are precisely Fk−1

many of them, say E1, . . . EFk−1
, and for every j ∈ {1, . . . , Fk−1}, Ej is real, and

the derivative of the discriminant at Ej is non-zero.

It is known that all unstable manifolds of Tλ : Sλ → Sλ are transversal to Cλ if
λ is sufficiently small. Indeed, this is true for λ = 0 and extends to small values of
λ by continuity. Suppose that Proposition 3.1 does not hold and denote by λ∗ > 0
the smallest value of the coupling constant such that one of the unstable manifolds
of Tλ∗ has a tangency with Cλ. Notice that this tangency cannot be quadratic.
Namely, due to Theorem 1.5 the line `λ is transversal to the stable manifolds of
Tλ∗ , and therefore for any sufficiently large k ∈ Z+, the curve T kλ∗(`λ∗) contains an
arc that is C2-close to an arc of the unstable manifold near the point of tangency.
But in this case this arc would have a point of quadratic tangency with a plane
{z = ε} for some small ε, and this contradicts the properties of the curve T kλ∗(`λ∗)
above.

Therefore the tangency between T kλ∗(`λ∗) and Cλ∗ must be of order m > 2.
There exists a (complex) neighborhood U ⊂ Sλ∗ of the point of tangency and a
biholomorphic change of coordinates F : U → D × D, where D is a unit disc in C,
such that F (U∩{z = 0}) = D×{0}, the point of tangency is mapped into 0, and the
arc of the unstable manifold in U is mapped into the graph of a holomorphic function
g : D → C such that g(0) = 0 is a zero of order m > 2. A holomorphic version
of the Inclination Lemma (which follows, for example, from the graph transform
construction from [57, Lemma 7.5]) implies that for each sufficiently large k ∈ Z+,
there is a connected component of the intersection T kλ∗(`λ∗)∩U such that its image
under F is a graph of a holomorphic function fk : D→ C and fk ⇒ g. Due to the
Hurwitz Theorem, for all large k ∈ Z+, the function fk must have m > 2 zeros in
D, and due to the properties of T kλ∗(`λ∗), all these zeros must be simple and real.
But this once again leads to the existence of a tangency between the curve T kλ∗(`λ∗)
and the plane {z = ε} for some small ε (due to the same arguments that were used
in the proof of Lemma 2.2 above), which is a contradiction. �

For E ∈ C and k ∈ Z, define xk(E) by

T k
(
E − λ

2
,
E

2
, 1

)
= T k(`λ(E)) = (xk+1(E), xk(E), xk−1(E)) .

Then, for k ≥ 0, xk is a polynomial of degree Fk, where F0 = F1 = 1, Fk+1 =
Fk + Fk−1, k ≥ 1. For δ > 0, set

σδk = {E ∈ C : |xk(E)| ≤ 1 + δ}.

Lemma 3.2. For every λ > 0, there exists δ(λ) > 0 such that for every δ ∈ [0, δ(λ))
and every k ≥ 0, σδk has precisely Fk connected components. Denote these connected

components by B
(j)
k (δ), j = 1, . . . , Fk. Each B

(j)
k (δ) is symmetric about the real

7In the theory of periodic Schrödinger operators, the discriminant is the trace of the transfer
matrix over one period.
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line, intersects R in a compact non-degenerate interval, and contains precisely one

E
(j)
k ∈ R such that xk(E

(j)
k ) = 0.

Remark 3.3. (a) We will choose a consistent labeling, namely the one which en-

sures that B
(j)
k (δ)∩R lies to the left of B

(j′)
k (δ)∩R if j < j′. In particular, we have

E
(1)
k < E

(2)
k < · · · < E

(Fk)
k .

(b) Clearly, the zero E
(j)
k does not depend on δ ∈ [0, δ(λ)).

Proof of Lemma 3.2. Since the coefficients of the polynomial xk are real, we have
xk(Ē) = xk(E), and hence in particular |xk(Ē)| = |xk(E)|. This shows that σδk,
and hence each of its connected components, is symmetric about the real line.

Recall that the free spectrum Σ0 is equal to the interval [−2, 2], which corre-
sponds to the line segment

`b0 =

{(
E

2
,
E

2
, 1

)
: E ∈ [−2, 2]

}
⊂ `0.

To study the evolution of `b0 under the trace map, let us recall the following. The
surface

S = S0 ∩ {(x, y, z) ∈ R3 : |x| ≤ 1, |y| ≤ 1, |z| ≤ 1}
is homeomorphic to S2, invariant under T , smooth everywhere except at the four
points P1 = (1, 1, 1), P2 = (−1,−1, 1), P3 = (1,−1,−1), and P4 = (−1, 1,−1),
where S has conic singularities, and the trace map T restricted to S is a factor of
the hyperbolic automorphism of T2 = R2/Z2 given by

(21) A(θ1, θ2) = (θ1 + θ2, θ1) (mod 1).

The semi-conjugacy is given by the map

(22) F : (θ1, θ2) 7→ (cos 2π(θ1 + θ2), cos 2πθ1, cos 2πθ2).

The map A is hyperbolic, and is given by the matrix A =

(
1 1
1 0

)
.

From the explicit form (22) of the semi-conjugacy F , we see that

˜̀b
0 =

{
(θ1, θ2) : θ2 = 0, θ1 ∈

[
0, 1

2

]}
⊂ T2

is mapped by F onto `b0. Since T k(`b0) = F (Ak(˜̀b
0)) and Ak(˜̀b

0) is the line segment
from

Ak
(

0
0

)
=

(
0
0

)
to

Ak
(

1
2
0

)
=

1

2

(
Fk
Fk−1

)
(modulo Z2), we see that T k(`b0) wraps Fk/2 times around S. Now turn on λ. Since
the surfaces Sλ and the lines of initial conditions `λ change continuously, T k(`bλ) still
wraps Fk/2 times around the central part of Sλ. Here, `bλ is the line segment on `λ
that corresponds to the convex hull of Σλ via the map E 7→

(
E−λ

2 , E2 , 1
)
. Moreover,

the extremal values reached during each turn-around (of the second coordinate, say)

are now at least 1 + λ2

4 in absolute value. This implies that (again considering the
second coordinate, say, which determines xk(E)) the value of xk(E) runs at least

from −1 − λ2

4 to 1 + λ2

4 and vice versa. In particular, for every δ ∈ (0, λ
2

4 ), the
preimage of [−1 − δ, 1 + δ] under xk consists of precisely Fk compact mutually
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disjoint intervals. This shows that σδk ∩ R has exactly Fk connected components,
each of which contains precisely one zero of xk. Let us denote these Fk real zeros

of xk by E
(1)
k < E

(2)
k < · · · < E

(Fk)
k .

Let us argue that each E
(j)
k is also the only zero of xk in the complex connected

component B
(j)
k (δ) of σδk, which contains the real connected component that con-

tains E
(j)
k . Suppose this fails. Since σδk is symmetric with respect to the reflection

about the real axis, we can infer that if B
(j)
k (δ) contains another zero of xk, and

hence another connected component of σδk ∩ R, we find that the boundary of this
connected component, on which xk has constant modulus 1 + δ, contains a closed
curve that bounds a bounded region containing points at which xk has modulus
strictly larger than 1 + δ (e.g., points on the real line strictly between the two con-
nected components of σδk ∩R in question). Thus, we obtain a contradiction due to
the maximum modulus principle. It follows that σδk, too, has precisely Fk connected
components, each of which contains precisely one root of xk, which is real. �

Proposition 3.4. For every λ > 0 and every ε > 0, there exists k0 ∈ Z+ such that
for every k > k0 and every p ∈ Λλ, there exists Ek ∈ R such that xk(Ek) = 0 and

1

k
log ‖DT k(p)|Eup ‖ − ε ≤

1

k
log |x′k(Ek)| ≤ 1

k
log ‖DT k(p)|Eup ‖+ ε.

Proof. Denote as before Cλ = {z = 0} ∩ Sλ. Fix a small δ > 0. Then there

exists k′ ∈ Z+ such that T k
′
(Wu

δ (p)) ∩ Cλ 6= ∅ and T−k
′
(W s

δ (p)) ∩ `λ 6= ∅ for any

p ∈ Λλ. Choose any p ∈ Λλ and pick any point p̃ ∈ T−k′(W s
δ (p)) ∩ `λ. Let τ ⊂ `λ

be an interval that contains p̃ and such that T k
′
(τ) is a connected component of

T k
′
(`λ) ∩ Uδ(p). We will denote τk′ = T k

′
(τ) and τk′+n = Uδ(T

n(p)) ∩ T (τk′+n−1)
for n ≥ 1.

Let k be sufficiently large, set n = k−2k′. Then T k
′
(τk′+n) must have some inter-

sections with Cλ. Take any point p∗∗ ∈ Cλ∩T k
′
(τk′+n). Then, p∗ := T−k(p∗∗) ∈ `λ,

so p∗ = `λ(Ek) for some Ek ∈ R. Let us estimate log |x′k(Ek)|. Since Wu(Λλ) is

transversal to Cλ by Proposition 3.1, and T k
′
(τk′+n) is C1-close to T k

′
(Wu

δ (Tn(p))),∣∣log |x′k(Ek)| − log ‖DT k(p∗)|`λ‖
∣∣ < C1,

where C1 is some constant independent of k. On the other hand,∣∣∣log ‖DT k(p∗)|`λ‖ − log ‖DTn(T k
′
(p∗))|τk′‖

∣∣∣ < C2,

where C2 is also independent of k. Using [64, Proposition 6.4.16] and the fact that
τk′+j is C1-close to Wu

δ (T j(τk′)) (see [79]) we conclude that∣∣∣log ‖DTn(T k
′
(p∗))|τk′‖ − log ‖DTn(p)|Eup ‖

∣∣∣ < C3,

also with a k-independent constant C3. But this implies that for large enough
k = n+ 2k′, we have∣∣∣∣1k log |x′k(Ek)| − 1

k
log ‖DT k(p)|Eup ‖

∣∣∣∣ < ε.

�
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Proposition 3.5. For every λ > 0 and every ε > 0, there exists k0 ∈ N such that
for every k > k0 and every Ek ∈ R with xk(Ek) = 0, one can find p ∈ Λλ such that

1

k
log ‖DT k(p)|Eup ‖ − ε ≤

1

k
log |x′k(Ek)| ≤ 1

k
log ‖DT k(p)|Eup ‖+ ε.

Proof. Let us choose a ball Bλ ⊂ R3 of sufficiently large radius so that Λλ ⊂
Bλ,W

s(Λλ)∩ `λ ⊂ Bλ, and Cλ := {z = 0} ∩Sλ ⊂ Bλ. There exist a neighborhood
U(Λλ) and k1 ∈ N such that

(1) if x ∈ Bλ and O+(x) ∩ U(Λλ) = ∅, then Tn(x) 6∈ Bλ for all n > k1;
(2) if x ∈ U(Λλ) and T (x) 6∈ U(Λλ), then O+(T (x)) ∩ U(Λλ) = ∅;
(3) U(Λλ) is inside of δ-neighborhood of Λλ, where δ small enough so

that Anosov Closing Lemma type arguments (more specifically, Proposi-
tion 6.4.16 from [64]) can be applied.

Such a neighborhood U(Λλ) can be constructed by taking a union of open rectangles
around elements of a Markov partition for Λλ so that the usual properties of Markov
partitions that allow one to use coding can be applied. Slightly abusing terminology
we will refer to those rectangles as the elements of a Markov partition. This will
ensure that property (2) holds. Property (1) holds for sufficiently large k1 since Λλ
is the set of bounded orbits of the map Tλ. Indeed, Bλ\U(Λλ) is compact, and if
(1) does not hold, one can find a sequence of points in Bλ\U(Λλ) whose long finite
orbits (both positive and negative) are also in that set. Any limit point would have
to have a bounded orbit, but this is a contradiction since Λλ is the set of bounded
orbits of the map Tλ.

Let k′ ∈ Z+ be such that
⋂
−k′≤n≤k′ T

n(Bλ ∩ Sλ) ⊂ U(Λλ). In this case if

xk(Ek) = 0 for k � max(k1, k
′), then T k

′
(`λ(Ek)) ∈ Uλ, and also Tn(`λ(Ek)) ∈ Uλ

for n = k′ + 1, . . . , k − k1. By the choice of Bλ, we have Cλ ⊂ Bλ, and since
xk(Ek) = 0, we also have T k(`λ(Ek)) ∈ Cλ ⊂ Bλ. Set P = T k

′
(`λ(Ek)), T i(P ) ∈

U(Λλ) for all 0 ≤ i ≤ k − k1 − k′. Let p̄ ∈ Λλ be any point that has the same
symbolic dynamics over the finite time interval of length k − k1 − k′. In other
words, p̄ is such that T i(p̄) and T i(P ) belong to the same element of the Markov
partition of Λλ for i = 0, 1, . . . , k − k′ − k1. In this case dist(T i(p̄), T i(P )) ≤ δ for
i = 0, 1, . . . , k− k′− k1. This implies (see Proposition 6.4.16 from [64]) that in fact
dist(T j(p̄), T j(P )) ≤ Cρmin(j,m−j)δ for some ρ < 1, where m = k − k′ − k1 and
0 ≤ j ≤ m. Distortion estimates imply now that∣∣∣log ‖DTm(p̄)|Eup̄ ‖ − log ‖DTm(P )|Tk′+k1 (`λ)‖

∣∣∣ ≤ C,
where the constant C is independent of m. Take p = T−k

′
(p̄). Then, for some C ′

independent of m, we have∣∣∣log ‖DT k(p)|Eup ‖ − log ‖DTm(p̄)|Eup̄ ‖
∣∣∣+

+
∣∣∣log ‖DT k(`λ(Ek))|`λ‖ − log ‖DTm(P )|Tk′+k1 (`λ)‖

∣∣∣ ≤ C ′
and hence∣∣∣∣1k log ‖DT k(p)|Eup ‖ −

1

k
log ‖DT k(`λ(Ek))|`λ‖

∣∣∣∣ ≤ (C + C ′)
k

≤ ε

if k is sufficiently large. Together with the fact that∣∣log |x′k(Ek)| − log ‖DT k(`λ(Ek))|`λ‖
∣∣ < C1
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with C1 independent of k, this proves Proposition 3.5. �

Lemma 3.6. We have

lim
k→∞

1

k
inf
p∈Λλ

log ‖DT k(p)|Eup ‖ = inf
p∈Λλ

Lyapu(p) = inf
p∈Per(Λλ)

Lyapu(p).

That is, the limit on the left-hand side exists and equals the other two expressions.

Proof. Notice that we certainly have

lim inf
k→∞

1

k
inf
p∈Λλ

log ‖DT k(p)|Eup ‖ ≤ inf
p∈Λλ

Lyapu(p) ≤ inf
p∈Per(Λλ)

Lyapu(p).

Let us show that

(23) A := lim inf
k→∞

1

k
inf
p∈Λλ

log ‖DT k(p)|Eup ‖ ≥ inf
p∈Per(Λλ)

Lyapu(p).

Fix an arbitrarily small ε > 0. There exist kj →∞ and pj ∈ Λλ such that

1

kj
log ‖DT kj (pj)|Eupj ‖ ≤ A+ ε.

The specification property (see, for example, [64, Theorem 18.3.9]) implies that for
any δ > 0, we can find a sequence of periodic orbits {qj} such that

1) T kj+M (qj) = qj , where M ∈ N is independent of j ∈ N;

2) dist(T i(qj), T
i(pj)) ≤ δ for i = 0, . . . , kj − 1.

Now the quantitative version of the Anosov Closing Lemma (see, e.g., [64, Propo-
sition 6.4.16]) implies that in fact for some ρ < 1,

dist(T i(qj), T
i(pj)) ≤ Cρmin(i,kj−i)δ.

The stable and unstable distributions of a two dimensional horseshoe are C1 , see
[64, Corollary 19.1.11]. Now smoothness of the unstable bundle {Eux}x∈Λλ allows
us to use standard distortion estimates and hence to deduce that

log ‖DT kj (qj)|Euqj ‖ ≤ log ‖DT kj (pj)|Eupj ‖+ C ′,

where the constant C ′ is independent of j. Hence for large enough kj , we have

Lyapu(qj) =
1

kj +M
log ‖DT kj+M (qj)|Euqj ‖ ≤

1

kj
log ‖DT kj (pj)|Eupj ‖+ε+

C ′

kj
≤ A+3ε.

This implies that

inf
p∈Per(Λλ)

Lyapu(p) ≤ A+ 3ε,

and since ε > 0 can be chosen arbitrary small, we have

inf
p∈Per(Λλ)

Lyapu(p) ≤ A.

This completes the proof of the inequality (23).
Now we need to show that

(24) B := lim sup
k→∞

1

k
inf
p∈Λλ

log ‖DT k(p)|Eup ‖ ≤ inf
p∈Per(Λλ)

Lyapu(p).
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Once again, fix an arbitrarily small ε > 0. Take a periodic point p0 ∈ Per(Λλ),
Tm(p0) = p0, such that

Lyapu(p0) ≤ inf
p∈Per(Λλ)

Lyapu(p) + ε.

For all sufficiently large k, we have

1

k
log ‖DT k(p0)|Eup0

‖ ≤ Lyapu(p0) + ε ≤ inf
p∈Per(Λλ)

Lyapu(p) + 2ε,

hence
1

k
inf
p∈Λλ

log ‖DT k(p)|Eup ‖ ≤
1

k
log ‖DT k(p0)|Eup0

‖ ≤ Lyapu(p0)+ε ≤ inf
p∈Per(Λλ)

Lyapu(p)+2ε.

Therefore

B = lim sup
k→∞

1

k
inf
p∈Λλ

log ‖DT k(p)|Eup ‖ ≤ inf
p∈Per(Λλ)

Lyapu(p) + 2ε,

and since ε > 0 is arbitrary, we have B ≤ infp∈Per(Λλ) Lyapu(p). Together with
(23) this completes the proof of Lemma 3.6. �

As a direct corollary of Propositions 3.4 and 3.5 and Lemma 3.6 we get the
following statement:

Proposition 3.7. We have

lim
k→∞

1

k
log min

j=1,...,Fk

∣∣∣x′k(E
(j)
k )
∣∣∣ = inf

p∈Per(Λλ)
Lyapu(p).

That is, we have that the limit on the left-hand side exists and that it is equal to
the right-hand side.

Recall that we considered above the sets σδk and their connected components

B
(j)
k (δ). Define further

r
(j)
k (δ) = sup{r > 0 : B(E

(j)
k , r) ⊆ B(j)

k (δ)}, rk(δ) = max
j=1,...,Fk

r
(j)
k (δ),

R
(j)
k (δ) = inf{R > 0 : B(E

(j)
k , R) ⊇ B(j)

k (δ)}, Rk(δ) = max
j=1,...,Fk

R
(j)
k (δ).

The identity (9) will follow from Proposition 3.7 and the following proposition.

Proposition 3.8. (a) For every λ > 0 and δ ∈ (0, δ(λ)), we have

(25) α̃−u ≥
logϕ

lim supk→∞
1
k log 1

rk(δ)

and

(26) α̃+
u ≤

logϕ

lim infk→∞ 1
k log 1

Rk(δ)

.

(b) For every λ > 0 and δ ∈ (0, δ(λ)/2), we have

(27)
1

Rk(δ)
≥
(

δ

(1 + δ)(1 + 2δ)

)2(
min
j
|x′k(E

(j)
k )|

)
and

(28)
1

rk(δ)
≤ (2 + 3δ)2

(1 + δ)(1 + 2δ)2

(
min
j
|x′k(E

(j)
k )|

)
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for every k ≥ 0.
(c) For λ > 0 and δ ∈ (0, δ(λ)/2), we have

α̃−u ≥
logϕ

lim supk→∞
1
k log

(
minj=1,...,Fk

∣∣∣x′k(E
(j)
k )
∣∣∣) .

and

α̃+
u ≤

logϕ

lim infk→∞ 1
k log

(
minj=1,...,Fk

∣∣∣x′k(E
(j)
k )
∣∣∣) .

Proof. (a) The strategy of proving (25) and (26) is inspired by [35, 44, 45]. The
Parseval identity implies (see, e.g., [66, Lemma 3.2])

(29) 2π

∫ ∞
0

e−2t/T |〈δn, e−itHδ0〉|2 dt =

∫ ∞
−∞

∣∣〈δn, (H − E − i
T )−1δ0〉

∣∣2 dE,
and hence for the time averaged outside probabilities, defined by

(30) 〈P (N, ·)〉(T ) =
2

T

∫ ∞
0

e−2t/T
∑
|n|≥N

|〈δn, e−itHδ0〉|2 dt,

we have

(31) 〈P (N, ·)〉(T ) =
1

πT

∑
|n|≥N

∫ ∞
−∞

∣∣〈δn, (H − E − i
T )−1δ0〉

∣∣2 dE.
The right-hand side of (31) may be studied by means of transfer matrices at complex
energies, which are defined as follows. For z ∈ C, n ∈ Z, we set

M(n;ω, z) =

{
T (n;ω, z) · · ·T (1;ω, z) n ≥ 1,

T (n;ω, z)−1 · · ·T (−1;ω, z)−1 n ≤ −1,

where

T (`;ω, z) =

(
z − λχ[1−α,1)(`α+ ω mod 1) −1

1 0

)
.

The following statement follows from [45, Proposition 2]: For every λ, δ > 0, there
are constants C, ξ such that for every k, every z ∈ σδk, and every ω ∈ T, we have

(32) ‖M(n;ω, z)‖ ≤ Cnξ.
for 1 ≤ |n| ≤ Fk. Combining ideas from the proof of [45, Proposition 2] and the
proof of [32, Theorem 5.1], one can show the following for the exponent ξ in (32).
If we denote the largest root of the polynomial x3 − (2 + λ)x− 1 by aλ (note that
for small λ > 0, we have aλ ≈ ϕ+ cλ with a suitable constant c), then for any

(33) ξ > 2
log[(5 + 2λ)1/2(3 + λ)aλ]

logϕ
,

there is a constant C such that (32) holds for z ∈ σδk and ω ∈ T.
Let us now consider λ > 0, δ ∈ (0, δ(λ)), and ε > 0. Consider the value of

j ∈ {1, . . . , Fk} with r
(j)
k (δ) = rk(δ). By definition, E

(j)
k is the only zero of xk in

B
(j)
k (δ).
For ρ > 0 arbitrary, consider

(34) s =
lim supk→∞

1
k log 1

rk(δ)

logϕ
+ ρ.
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Clearly, s is strictly positive. By definition of s, for suitably chosen Cδ > 0, we
have

(35) CδF
s
k ≥

2

rk(δ)

for every k ≥ 0.
Take N = Fk and consider T ≥ CδN

s (which in turn implies T ≥ 2
rk(δ) by

(35)). Due to the Parseval formula (29), we can bound the time-averaged outside
probabilities from below as follows,
(36)

〈P (N, ·)〉(T ) &
1

T

∫
R

(max {‖M(N ;ω,E + i/T )‖, ‖M(−N ;ω,E + i/T )‖})−2
dE.

See, for example, the proof of [42, Theorem 1] for an explicit derivation of (36)
from (29).

To bound the integral from below, we integrate only over those E ∈ (E
(j)
k −

rk(δ), E
(j)
k + rk(δ)) for which E + i/T ∈ B(E

(j)
k , rk(δ)) ⊂ B(j)

k (δ). Since 1
T ≤

rk(δ)
2 ,

the length of such an interval Ik is larger than crk(δ) for some suitable c > 0. For
E ∈ Ik, we have

‖M(N ;ω,E + iε)‖ . Nξ . T
ξ
s .

Therefore, (36) together with (32) gives

(37) 〈P (N, ·)〉(T ) &
rk
T
T−

2ξ
s & T−2− 2ξ

2 ,

where N = Fk, T ≥ CδNs, for any k ≥ k0.
Now let us take any sufficiently large T and choose k maximal with CδF

s
k ≤ T .

Then,
CδF

s
k ≤ T < CδF

s
k+1 ≤ 2sCδF

s
k .

It follows from (37) that〈
P

(
1

2C
1/s
δ

T
1
s , ·
)〉

(T ) ≥ 〈P (Fk, ·)〉(T ) & T−2− 2ξ
s

for all sufficiently large T . It follows from the definition of β̃−(p) and α̃−u that

β̃−δ0(p) ≥ 1

s
− 2

p

(
1 +

ξ

s

)
and

α̃−u ≥
1

s
=

(
lim supk→∞

1
k log 1

rk(δ)

logϕ
+ ρ

)−1

,

by (34). Since ρ > 0 can be taken arbitrarily small, this proves (25).

Let us recall [44, Lemma 4]: Given any δ > 0 and E ∈ C, a necessary and
sufficient condition for {xk(E)}k≥−1 to be unbounded is that

(38) |xK−1(E)| ≤ 1 + δ, |xK(E)| > 1 + δ, |xK+1(E)| > 1 + δ

for some K ≥ 0. This K is unique. Moreover, in this case we have

(39) |xK+k(E)| ≥ (1 + δ)Fk for k ≥ 0.

By definition of Rk(δ), we have

σδk ⊆ {z ∈ C : |Im z| ≤ Rk(δ)}.
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We set

(40) s′ =
lim infk→∞ 1

k log 1
Rk(δ)

logϕ
− ρ′

for ρ′ > 0 small enough so that s′ > 0 (Proposition 3.7 shows that it is possible
to find such a ρ′ since the right-hand side in that proposition is positive as Λλ is a
hyperbolic set), and then choose some suitable C ′δ > 0, so that we have

Rk(δ) < C ′δF
−s′
k ,

for every k ≥ 0. In particular,

(41) σδk ∪ σδk+1 ⊆ {z ∈ C : |Im z| < C ′δF
−s′
k }.

For each ε = Im z > 0, one obtains lower bounds on |xk(E + iε)| which are
uniform for E ∈ [−K,K] ⊆ R. Namely, given ε > 0, choose k minimal with the

property C ′δF
−s′
k < ε. By (41), we infer that |xk(E+iε)| > 1+δ and |xk+1(E+iε)| >

1 + δ. Since |x−1(E+ iε)| = 1 ≤ 1 + δ, we must have the situation of [44, Lemma 4]
(as recalled above) for some K ≤ k. In particular, for k′ > k, (39) shows that

|xk′(E + iε)| ≥ (1 + δ)Fk′−k .

This motivates the following definitions. Fix some small δ > 0. For T > 1,
denote by k(T ) the unique integer with

F s
′

k(T )−1

C ′δ
≤ T <

F s
′

k(T )

C ′δ
and let

N(T ) = F
k(T )+b

√
k(T )c.

Thus, for every ν̃ > 0, there is a constant Cν̃ > 0 such that

(42) N(T ) ≤ Cν̃T
1
s′ T ν̃ .

It follows from [44, Theorem 7] and the argument above that8

〈P (N(T ), ·)〉(T ) . exp(−cN(T )) + T 3

∫ K

−K

(
max

3≤n≤N(T )

∥∥M (
n;ω,E + i

T

)∥∥2
)−1

dE

. exp(−cN(T )) + T 3(1 + δ)
−2Fb

√
k(T )c .

(We can estimate the norm on the left half-line in a completely analogous way.)
From this bound, we see that 〈P (N(T ), ·)〉(T ) goes to zero faster than any inverse
power of T . Therefore we can apply [44, Theorem 1] and obtain from (42) that

α̃+
u ≤

1

s′
+ ν̃ =

(
lim infk→∞ 1

k log 1
Rk(δ)

logϕ
− ρ′

)−1

+ ν̃.

Since we can take ρ′ > 0 and ν̃ > 0 arbitrarily small, (26) follows.

8This estimate obviously works for ω = 0 since then the trace and the norm are directly related.
For general ω, one can use the arguments developed in [25]. The central idea is that the trace
of words of length Fk occurring in the Fibonacci sequence is the same for all but one word and

is given by 2xk. If the word in question is the “bad” one, we can simply shift by one to see a
good word, derive the estimate there and divide by C2, where C bounds the norm of a one-step
transfer matrix.
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(b) Let λ > 0 and choose δ ∈ (0, δ(λ)/2). Fix k and j, and consider the connected

component B
(j)
k (2δ) of σ2δ

k . Since B
(j)
k (2δ) contains exactly one zero of xk, it follows

from the maximum modulus principle and Rouché’s Theorem that

xk : int(B
(j)
k (2δ))→ B(0, 1 + 2δ)

is univalent, and hence

x−1
k : B(0, 1 + 2δ)→ int(B

(j)
k (2δ))

is well-defined and univalent as well. Consequently, the following mapping is a
Schlicht function:

F : B(0, 1)→ C, F (z) =
x−1
k ((1 + 2δ)z)− E(j)

k

(1 + 2δ)[(x−1
k )′(0)]

.

That is, F is a univalent function on B(0, 1) with F (0) = 0 and F ′(0) = 1.
The Koebe Distortion Theorem (see [22, Theorem 7.9]) implies that

(43)
|z|

(1 + |z|)2
≤ |F (z)| ≤ |z|

(1− |z|)2
for |z| ≤ 1.

Evaluate the bound (43) on the circle |z| = 1+δ
1+2δ . For such z, we obtain

(1 + δ)(1 + 2δ)

(2 + 3δ)2
≤ |F (z)| ≤ (1 + δ)(1 + 2δ)

δ2
.

By definition of F this means that

|x−1
k ((1 + 2δ)z)− E(j)

k | ≤
(1 + δ)(1 + 2δ)

δ2
(1 + 2δ)|(x−1

k )′(0)|

and

|x−1
k ((1 + 2δ)z)− E(j)

k | ≥
(1 + δ)(1 + 2δ)

(2 + 3δ)2
(1 + 2δ)|(x−1

k )′(0)|

for all z with |z| = 1+δ
1+2δ . In other words, if |z| = 1 + δ, then

(44) |x−1
k (z)− E(j)

k | ≤
(1 + δ)(1 + 2δ)2

δ2
|(x−1

k )′(0)|

and

(45) |x−1
k (z)− E(j)

k | ≥
(1 + δ)(1 + 2δ)2

(2 + 3δ)2
|(x−1

k )′(0)|.

Note that as z runs through the circle of radius 1 + δ around zero, the point x−1
k (z)

runs through the entire boundary of B
(j)
k (δ). Thus, since |(x−1

k )′(0)| = |x′k(E
(j)
k )|−1,

(44) and (45) yield

B
(
E

(j)
k ,

(1 + δ)(1 + 2δ)2

(2 + 3δ)2
|x′k(E

(j)
k )|−1

)
⊆ B(j)

k (δ) ⊆ B
(
E

(j)
k ,

(
(1 + δ)(1 + 2δ)

δ

)2

|x′k(E
(j)
k )|−1

)
.

In particular, it follows that

(1 + δ)(1 + 2δ)2

(2 + 3δ)2
|x′k(E

(j)
k )|−1 ≤ r(j)

k (δ) ≤ R(j)
k (δ) ≤

(
(1 + δ)(1 + 2δ)

δ

)2

|x′k(E
(j)
k )|−1.

Thus,(
δ

(1 + δ)(1 + 2δ)

)2

|x′k(E
(j)
k )| ≤ 1

R
(j)
k (δ)

≤ 1

r
(j)
k (δ)

≤ (2 + 3δ)2

(1 + δ)(1 + 2δ)2
|x′k(E

(j)
k )|,
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which in turn implies(
δ

(1 + δ)(1 + 2δ)

)2(
min
j
|x′k(E

(j)
k )|

)
≤ 1

Rk(δ)
≤ 1

rk(δ)
≤ (2 + 3δ)2

(1 + δ)(1 + 2δ)2

(
min
j
|x′k(E

(j)
k )|

)
.

This shows (27)–(28).

(c) The estimates in this part follow immediately from the estimates in parts (a)
and (b). This concludes the proof. �

Proof of (9) in Theorem 1.6. The identity is a direct consequence of Proposi-
tions 3.7 and 3.8. �

4. The Density of States Measure

In this section we discuss the density of states measure νλ. Specifically, we
establish the identity (11) and the large coupling asymptotics (19).

The identity (11) was established in [33] for λ > 0 sufficiently small. An inspec-
tion of the proof given there shows that all that is needed to extend the identity
to all λ > 0 is the transversality statement provided by Theorem 1.5. Thus, given
that Theorem 1.5 has now been established, the identity (11) for all λ > 0 follows
as an immediate consequence.

Proving (19) will require significantly more work. We begin with the following
alternative identity for dimH νλ, which we can prove for λ sufficiently large. Recall
that each connected component of σk contains precisely one zero of xk, denoted by

E
(i)
k , 1 ≤ i ≤ Fk.

Proposition 4.1. For every λ > 0 we have

(46) dimH νλ =
logϕ

limk→∞ 1
kFk

log
(∏Fk

i=1

∣∣∣x′k(E
(i)
k )
∣∣∣) .

Proof. Due to (11), we need to show that

Lyapu (µλ,max) = lim
k→∞

1

kFk
log

(
Fk∏
i=1

∣∣∣x′k(E
(i)
k )
∣∣∣) ,

which is equivalent to

Lyapu (µλ,max) = lim
k→∞

1

kFk−1
log

Fk−1∏
i=1

∣∣∣x′k−1(E
(i)
k−1)

∣∣∣
 .

Recall that T kλ (`λ(E)) = (xk+1(E), xk(E), xk−1(E)), and hence the z-component

of T kλ (`λ(E)) is xk−1(E). Let li ∈ `λ be the points such that `λ(E
(i)
k−1) = li. Due to

the uniform in k transversality of T kλ (`λ) to the plane {z = 0} (which follows from
Proposition 3.1 combined with the Inclination Lemma), we have C−1‖DT kλ (vi)‖ ≤∣∣∣x′k−1(E

(i)
k−1)

∣∣∣ ≤ C‖DT kλ (vi)‖ for some uniform C > 1, where vi is a unit vector

tangent to `λ at the point li. Therefore the statement can be reduced to the claim
that

(47) Lyapu (µλ,max) = lim
k→∞

1

kFk−1
log

 ∏
{li∈`λ:Tkλ (li)∈{z=0}}

∥∥DT kλ (vi)
∥∥ .
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We will need the following statement from hyperbolic dynamics.

Lemma 4.2. Let f : M2 → M2 be a C2-diffeomorphism such that f(Λ) =
Λ is a topologically mixing locally maximal totally disconnected hyperbolic set,⋂
n∈Z f

n(U(Λ)) = Λ. Let γ1, γ2 ⊂ U be such that γ1 is transversal to W s(Λ),
and γ2 is transversal to Wu(Λ). For each k ∈ N denote by {li}i=1,...,Nk ⊂ γ1 the
set f−k(fk(γ1) ∩ γ2). Then,

(48) Lyapu(µmax) = lim
k→∞

1

kNk
log

 ∏
{li∈γ1:fk(li)∈γ2}

∣∣Dfk(vi)
∣∣ ,

where µmax is the measure of maximal entropy for f |Λ : Λ → Λ, and vi is a unit
vector tangent to γ1 at the point li.

Proof. First of all, let us notice that if γ1 is represented as a disjoint union of curves
γ′1 and γ′′1 , and (48) holds for both γ′1 and γ′′1 , then it also holds for the initial curve
γ1. Indeed, this just follows from the fact that if {an}, {bn}, {xn}, and {yn} are
sequences of positive numbers such that an

bn
→ c and xn

yn
→ c then an+xn

bn+yn
→ c. The

same statement (due to the same argument) holds for the curve γ2.
Next, let us notice that if (48) holds for some γ1, then it also holds

for f(γ1) ∩ U (and vice versa). Indeed, Nk(γ1) = Nk−1(f(γ1) ∩ U),

and the expression log
(∏
{li∈γ1:fk(li)∈γ2}

∣∣Dfk(vi)
∣∣) differs from the expression

log
(∏
{li∈f(γ1):fk−1(li)∈γ2}

∣∣Dfk(vi)
∣∣) by no more than const · Nk(γ1). Combin-

ing these two observations, we see that it is enough to prove (48) for the case when
γ1 is a curve that is C1-close to a piece of unstable manifold of Λ inside a rectangle
of a Markov partition, and γ2 is a curve that is C1-close to a piece of stable manifold
of Λ inside a rectangle of a Markov partition.

Moreover, we can further reduce the statement to the case when γ1 is a piece of
an unstable manifold in some element of Markov partition, and γ2 is a piece of a
stable manifold in some element of Markov partition. Indeed, let us consider C1-
invariant stable and unstable foliations in U(Λ) that include stable and unstable
laminations W s(Λ) and Wu(Λ) and the curves γ1 and γ2, respectively. For the
existence of these foliations, see [100]. Expansion of the differential of f along
the line tangent to a leaf of the unstable foliation is a C1-function. Exponential
instability of orbits near a hyperbolic set (see Proposition 6.4.16 from [64]) now
implies that if (48) holds for pieces of stable and unstable manifolds as γ1 and γ2,
then it also holds for the initial curves γ1 and γ2 that were sufficiently C1-close to
the pieces of stable and unstable manifolds.

From now on we can assume that γ1 is a piece of an unstable manifold in some
element of Markov partition, and γ2 is a piece of a stable manifold in some element
of Markov partition. The restriction f |Λ is conjugate to a topological Markov shift
σA : ΣA → ΣA with some transitive 0− 1 matrix A of size N ×N .

Lemma 4.3. Let σA : ΣA → ΣA be a transitive topological Markov chain and
denote by νP the measure of maximal entropy (Parry measure). Fix any ω′, ω′′ ∈
{1, 2, . . . , N}, and admissible sequences
. . . sequence1 ω

′ – infinite to the left, and

ω′′ sequence2 . . . – infinite to the right.
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We assume that at least one of the two one-sided sequences is not eventually
periodic.

For each k ∈ N, consider the collection Xk of all the sequences from ΣA of the
form

. . . sequence1

∗
ω′ . . . . . . ω′′︸ ︷︷ ︸

k+1

sequence2 . . .

(where ∗ indicates the origin) and set Sk =
⋃k−1
j=0 σ

j
A(Xk). Then

νk :=
1

#Sk

∑
x∈Sk

δx → νP as k →∞.

Notice that Lemma 4.3 immediately implies (48) in the case when γ1 and γ2

are pieces of stable and unstable manifolds. Indeed, we can assume without loss
of generality that γ1, γ2 do not contain any periodic points (otherwise we deform
them slightly). Let H : ΣA → Λ be the conjugacy between σA and f |Λ. Then
H∗(νP ) = µmax, and if φ : Λ→ R is a continuous function, then∫

φd (H∗(νk)) =
1

#Sk

∑
x∈Sk

φ(H(x))→
∫
φdµmax,

and hence for φ(x) = log |Dfx(v̄x)|, where v̄x is a unit vector tangent to a leaf of
the unstable foliation at the point x, we have∫

φd (H∗(νk)) =
1

kNk
log

 ∏
{li∈γ1:fk(li)∈γ2}

∣∣Dfk(vi)
∣∣

→
∫
φdµmax

= Lyapu(µmax)

as k →∞, and therefore (48) holds.

Proof of Lemma 4.3. First of all, let us recall the construction of the Parry measure
νP . Due to the Perron-Frobenius Theorem, the matrix A = (Aij) has only one
eigenvector v̄ = (v1, . . . , vN ) with positive entries. The eigenvalue λ > 1 that
corresponds to v̄ is larger than the absolute value of any other eigenvalue of A.
Denote by ū = (u1, . . . , uN ) the eigenvector of the transposed matrix AT that
corresponds to the eigenvalue λ. Without loss of generality we can normalize v̄ and
ū in such a way that v1u1 + v2u2 + . . . + vNuN = 1. The Parry measure is the
Markov measure with the stationary probability vector p̄ = (p1, . . . , pN ), pi = viui,

and the transition matrix (pij), pij =
Aijvj
λvj

. An equivalent way to introduce the

Parry measure is to define it on a cylinder C = {ω ∈ ΣA : ω0 = i0, . . . , ωn = in} by

νP (C) =

{
0 if i0 . . . in is not an admissible sequence;

ui0vin
λn if i0 . . . in is admissible.

We need to show that for any continuous function φ : ΣA → R, we have

(49)

∫
φdνk =

1

#Sk

∑
x∈Sk

φ(x)→
∫
φdνP as k →∞.

It is enough to establish this convergence for functions of the form φC = χC ,
where C = {ω ∈ ΣA : ωr = ir, ωr+1 = ir+1, . . . , ωs = is} for some r < s and
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ij ∈ {1, 2, . . . , N} since the linear combinations of these functions are dense in
C(ΣA).

Lemma 4.4. Consider a topological Markov chain σA : ΣA → ΣA and fix some
finite admissible sequence [i0, i1, . . . , it], ij ∈ {1, . . . , N}, and ω′, ω′′ ∈ {1, . . . , N}.
For a given k ∈ N, consider the collection of all admissible sequences ω0, . . . , ωk
of length k + 1 such that ω0 = ω′ and ωk = ω′′, and denote by I[i0,i1,...,it](ω

′, ω′′)
the number of times the string [i0, i1, . . . , it] can be encountered in these sequences
(counting different encounters in the same sequence as separate). If we denote

Ak = (A
(k)
ij ), then

I[i0,i1,...,it](ω
′, ω′′)

kA
(k)
ω′ω′′

→ ui0vit
λt

as k →∞.

Proof. Let us take k � t and represent

I[i0,i1,...,it](ω
′, ω′′) = Ibound

[i0,i1,...,it]
(ω′, ω′′) + I int

[i0,i1,...,it]
(ω′, ω′′),

where Ibound
[i0,i1,...,it]

(ω′, ω′′) is the number of encounters of [i0, i1, . . . , it] starting in

the beginning or in the tail part of length [ln k] of the sequences ω0, . . . , ωk, and
I int
[i0,i1,...,it]

(ω′, ω′′) is the number of encounters of [i0, i1, . . . , it] starting in the middle

part (of length k−2[ln k]) of these sequences. A rough estimate on Ibound
[i0,i1,...,it]

(ω′, ω′′)
gives

Ibound
[i0,i1,...,it]

(ω′, ω′′) ≤ CklnN ln k,

and hence in

I[i0,i1,...,it](ω
′, ω′′)

kA
(k)
ω′ω′′

=
Ibound
[i0,i1,...,it]

(ω′, ω′′)

kA
(k)
ω′ω′′

+
I int
[i0,i1,...,it]

(ω′, ω′′)

kA
(k)
ω′ω′′

,

we have
Ibound
[i0,i1,...,it]

(ω′,ω′′)

kA
(k)

ω′ω′′
→ 0 as k →∞.

For a given l between [ln k] and k− [ln k], denote by I l the number of admissible
sequences ω0, . . . , ωk such that [ωlωl+1 . . . ωl+t] = [i0i1 . . . it]. We have

I l

A
(k)
ω′ω′′

=
∑

ω0=ω′,ωk=ω′′,
[ωlωl+1...ωl+t]=[i0i1...it]

Aω0ω1Aω1ω2 . . . Aωk−1ωk

A
(k)
ω′ω′′

= (Ai0i1Ai1i2 . . . Ait−1it)
A

(l)
ω′i0

A
(k−l−t)
itω′′

A
(k)
ω′ω′′

.

Notice that Ai0i1Ai1i2 . . . Ait−1it = 1 since i0i1 . . . it is an admissible sequence. We

also know that limk→∞A
(k)
ij λ

−k = ujvi (see, e.g., [100, Theorem 0.17]). Since there

are only finitely many pairs (ij), the limit here is uniform in i, j, and therefore we
have

I l

A
(k)
ω′ω′′

=

(
A

(l)
ω′i0

λ−l
)(

A
(k−l−t)
itω′′

λ−(k−l−t)
)

A
(k)
ω′ω′′λ

−kλt
≈ ui0vω′ · uω′′vit

uω′′vω′λt
=
ui0vit
λt

,

uniformly for large k, and hence

I int
[i0,i1,...,it]

(ω′, ω′′)

kA
(k)
ω′ω′′

=
1

k

k−ln[k]∑
l=[ln k]

I l

A
(k)
ω′ω′′

→ ui0vit
λt

as k →∞.
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This proves Lemma 4.4. �

Notice that Lemma 4.4 implies (49) for the function φC . Indeed, if ln k �
max(|s|, |r|), then

I int
[ir,i1,...,is]

(ω′, ω′′) ≤
∑
x∈Sk

φC(x) ≤ I int
[ir,i1,...,is]

(ω′, ω′′) + CklnN ln k,

and (49) follows since #Sk = kA
(k)
ω′ω′′ by the assumption that at least one of the

one-sided sequences (. . . sequence1 ω
′, ω′′ sequence2 . . .) is not eventually periodic.

This proves Lemma 4.3. �

This concludes the proof of Lemma 4.2. �

Now (47) follows directly from Lemma 4.2, and this proves Proposition 4.1. �

For λ sufficiently large, the modulus of x′k(E
(i)
k ) may be estimated with the help

of [29, Lemmas 5 & 6]. Namely, if m denotes the number of spectra σj , 1 ≤ j ≤ k−1,

E
(i)
k belongs to, then

(50) Sl(λ)m ≤ |x′k(E
(i)
k )| ≤ Su(λ)m,

where

(51) Sl(λ) =
1

2

(
(λ− 4) +

√
(λ− 4)2 − 12

)
and Su(λ) = 2λ+ 22.

Here, the first inequality in (50) requires λ ≥ 8 and the second requires λ > 4.
Through the end of this section let us assume that λ > 4. In this case the

Fricke-Vogt invariant implies that

(52) σk ∩ σk+1 ∩ σk+2 = ∅.

The identity (52) is the basis for work done by Raymond [85]. Following [66], we call
a band Ik ⊂ σk a “type A band” if Ik ⊂ σk−1 (and hence Ik ∩ (σk+1 ∪ σk−2) = ∅).
We call a band Ik ⊂ σk a “type B band” if Ik ⊂ σk−2 (and therefore Ik∩σk−1 = ∅).
Then we have the following result (Lemma 5.3 of [66], essentially Lemma 6.1 of
[85]).

Lemma 4.5. For every λ > 4 and every k ≥ 1,

(a) Every type A band Ik ⊂ σk contains exactly one type B band Ik+2 ⊂ σk+2, and
no other bands from σk+1, σk+2.

(b) Every type B band Ik ⊂ σk contains exactly one type A band Ik+1 ⊂ σk+1 and
two type B bands from σk+2, positioned around Ik+1.

We denote by ak the number of bands of type A in σk and by bk the number of
bands of type B in σk. By Raymond’s work, it follows immediately that ak+bk = Fk
for every k. In fact, we have the following result, which follows from Lemma 4.5 by
an easy induction.

Lemma 4.6. The constants {ak} and {bk} obey the relations

(53) ak = bk−1, bk = ak−2 + 2bk−2

with initial values a0 = 1, a1 = 0, b0 = 0, and b1 = 1. Consequently, for k ≥ 2,

(54) ak = bk−1 = Fk−2.
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Let us also denote by ak,m the number of bands b of type A in σk with #{0 ≤
j < k : b ∩ σj 6= ∅} = m and by bk,m the number of bands b of type B in σk with
#{0 ≤ j < k : b ∩ σj 6= ∅} = m. Then, [29, Lemma 4] reads as follows:

Lemma 4.7. We have

(55) ak,m = bk−1,m−1, bk,m = ak−2,m−1 + 2bk−2,m−1

with initial values a0,m = 0 for m > 0, a0,0 = 1, a1,m = 0 for m ≥ 0, b0,m = 0 for
m ≥ 0, b1,m = 0 for m > 0, and b1,0 = 1. Consequently,

(56) ak,m = bk−1,m−1 =

{
22k−3m−1 m

k−m
(
k−m
2m−k

)
when dk2 e ≤ m ≤ b

2k
3 c;

0 otherwise.

In fact, for our purposes here the recursion (55) will be sufficient, and we won’t
make use of the explicit solution (56). Verifying the recursion (55) using the defi-
nition and Lemma 4.5 is straightforward.

Set

Ak =
∑
m

mak,m, Bk =
∑
m

mbk,m, and Ck = Ak +Bk.

Lemma 4.8. We have

Ak = Bk−1 + Fk−2,(57)

Bk = Ak−2 + 2Bk−2 + Fk−1,(58)

Ck = Ck−1 + Ck−2 + 2Fk−2.(59)

Proof. We have

Ak =
∑
m

mak,m

=
∑
m

mbk−1,m−1

=
∑
m

(m− 1 + 1)bk−1,m−1

= Bk−1 + bk−1

= Bk−1 + Fk−2.

Here we used (55) in the second step, (54) in the fifth step, and the definitions in
the other steps. This establishes (57).

Similarly, we have

Bk =
∑
m

mbk,m

=
∑
m

m(ak−2,m−1 + 2bk−2,m−1)

=
∑
m

(m− 1 + 1)ak−2,m−1 + 2
∑
m

(m− 1 + 1)bk−2,m−1

= Ak−2 + ak−2 + 2Bk−2 + 2bk−2

= Ak−2 + Fk−4 + 2Bk−2 + 2Fk−3

= Ak−2 + 2Bk−2 + Fk−1.
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Here we used (55) in the second step, (54) in the fifth step, the Fibonacci number
recursion twice in the sixth step, and the definitions in the other steps. This
establishes (58).

Finally, we have

Ck = Ak +Bk

= Bk−1 + Fk−2 +Ak−2 + 2Bk−2 + Fk−1

= Bk−1 + Ck−2 +Bk−2 + Fk

= Ck−1 −Ak−1 + Ck−2 +Bk−2 + Fk

= Ck−1 − Fk−3 + Ck−2 + Fk

= Ck−1 + Ck−2 + 2Fk−2.

Here we used (57) and (58) in the second step, the definition and the Fibonacci
number recursion in the third step, (57) in the fourth step, and the Fibonacci
number recursion twice in the sixth step. This establishes (59). �

Proposition 4.9. We have

(60) lim
k→∞

Ck
kFk

=
4

5 +
√

5
.

In particular,

logϕ

limk→∞
Ck
kFk

=
5 +
√

5

4
logϕ ≈ 1.80902 logϕ.

Proof. Set

β =
4

5 +
√

5
=

2

ϕ+ 2

and Rk = Ck − βkFk. Then,

Rk −Rk−1 −Rk−2 = Ck − Ck−1 − Ck−2 − βkFk + β(k − 1)Fk−1 + β(k − 2)Fk−2

= 2Fk−2 − βFk−1 − 2βFk−2

= 2Fk−2

(
1− β

2

Fk−1

Fk−2
− β

)
= 2Fk−2

(
1− β

2

(
ϕ+

(
Fk−1

Fk−2
− ϕ

))
− β

)
= 2Fk−2

β

2

(
ϕ− Fk−1

Fk−2

)
= β (Fk−2ϕ− Fk−1)

For the fifth step, note that

1− 1

ϕ+ 2
ϕ− 2

ϕ+ 2
= 0.

By a standard estimate from the theory of continued fractions, this shows that

(61) |Rk −Rk−1 −Rk−2| <
β

Fk−1
.
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Set C = max{|R1|, |R2|} and apply (61) repeatedly to obtain

|R1| ≤ C
|R2| ≤ C

|R3| < 2C +
β

F2

|R4| < 3C +
β

F2
+

β

F3

|R5| < 5C + 2
β

F2
+

β

F3
+

β

F4

|R6| < 8C + 3
β

F2
+ 2

β

F3
+

β

F4
+

β

F5

...

|Rk| < Fk−1C + Fk−2
β

F2
+ Fk−3

β

F3
+ Fk−4

β

F4
+ · · ·+ F0

β

Fk

= Fk

(
Fk−1

Fk
C +

Fk−2

Fk

β

F2
+
Fk−3

Fk

β

F3
+
Fk−4

Fk

β

F4
+ · · ·+ F0

Fk

β

Fk

)
.

This implies |Rk| = O(Fk), and in particular

lim
k→∞

Rk
kFk

= 0.

In view of Rk = Ck − βkFk, this establishes (60) and concludes the proof of the
proposition. �

We are now in a position to prove (19). This result will be an easy consequence
of Proposition 4.1, the estimates (50), and Proposition 4.9.

Proof of (19). By (46), we have

dimH νλ =
logϕ

limk→∞ 1
kFk

log
(∏Fk

i=1

∣∣∣x′k(E
(i)
k )
∣∣∣)

for λ ≥ 16. By (50), we have

Sl(λ)m(E
(i)
k ) ≤ |x′k(E

(i)
k )| ≤ Su(λ)m(E

(i)
k ),

where m(E
(i)
k ) denotes the number of spectra σj , 1 ≤ j ≤ k − 1, E

(i)
k belongs to,

and Sl(λ), Su(λ) are given in (51). Thus,

log

(
Fk∏
i=1

∣∣∣x′k(E
(i)
k )
∣∣∣) =

Fk∑
i=1

log
∣∣∣x′k(E

(i)
k )
∣∣∣ =

b 2k
3 c∑

m=d k2 e

∑
m(E

(i)
k )=m

log
∣∣∣x′k(E

(i)
k )
∣∣∣ ,

and hence

lim
k→∞

1

kFk
log

(
Fk∏
i=1

∣∣∣x′k(E
(i)
k )
∣∣∣) ∈ [ 4

5 +
√

5
logSl(λ),

4

5 +
√

5
logSu(λ)

]
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by (60) in Proposition 4.9. We obtain

lim
λ→∞

dimH νλ · log λ = lim
λ→∞

logϕ · log λ

limk→∞ 1
kFk

log
(∏Fk

i=1

∣∣∣x′k(E
(i)
k )
∣∣∣) =

5 +
√

5

4
logϕ,

which concludes the proof. �

5. The Optimal Hölder Exponent

In this section we provide an explicit expression for the optimal Hölder exponent
of the integrated density of states for the Fibonacci Hamiltonian. It is based on
the following dynamical result.

Theorem 5.1. Let T : M2 →M2 be a C1+α-diffeomorphism with a (topologically)
zero-dimensional basic set Λ, and µmax be the measure of maximal entropy for
TΛ. Let L ⊂ M be a smooth curve transversal to W s(Λ) with parametrization
L : R → M2 such that L ∩W s(Λ) is compact. Let R be an element of a Markov
partition for Λ, and let π : Λ ∩ R → L be a continuous projection along the stable
manifolds. Set ν = L−1 ◦ π(µmax|R), and denote by γ the optimal Hölder exponent
of ν. Then,

γ =
htop(T |Λ)

supp∈Per(T |Λ) Lyapu(p)
.

In other words, we have the following:

(1) For any γ0 < γ and any sufficiently small interval I ⊂ R, we have ν(I) <
|I|γ0 ;

(2) For any γ1 > γ and any ε > 0, there exists an interval I ⊂ R such that
|I| < ε and ν(I) > |I|γ1 .

Proof. Fix any γ0 ∈ (0, γ) and suppose that I = [E0, E1] ⊂ R is sufficiently small
(we will determine the appropriate smallness condition later). Without loss of
generality we can assume that L(E0), L(E1) ∈ W s(Λ) (otherwise we can decrease
the size of I without changing its measure).

Consider the rectangle RI = π−1(L(I)) ⊂ R. Then, µmax(RI) = ν(I). Let
N ∈ Z+ be the smallest value such that TN (RI) ∩ Λ is not a subset of just one
element of the Markov partition (and hence has size of order one). We claim that

C−1 ≤
∣∣∣∣ µmax(RI)

e−Nhtop(T |Λ)

∣∣∣∣ ≤ C
with C uniform for all sufficiently small I. Indeed, consider the topological Markov
chain σA : ΣA → ΣA conjugate to T |Λ : Λ→ Λ. Then,

µmax(RI) = lim
M→∞

#(Fix(TM ) ∩RI)
#Fix(TM )

.

But for large M and N , we have

#Fix(TM ) = Tr(AM ) = eMhtop(T |Λ)(1 + o(1)),

since the largest eigenvalue of A is equal to ehtop(T |Λλ ). At the same time the
number of periodic orbits of period M with prescribed initial segment of length
N < M is given by

#(Fix(TM ) ∩RI) = e(M−N)htop(T |Λ) ·O(1),
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where O(1) is bounded from above and away from zero uniformly in all 1� N �
M , and hence µmax(RI) = e−Nhtop(T |Λ) ·O(1).

On the other hand, |I| = E1 −E0 is of order of the width of RI . Pick any point
p ∈ Λ∩RI and consider Wu

loc(p)∩RI . Since a holonomy map along stable manifolds
is C1, we have

|I| = |Wu
loc(p) ∩RI | ·O(1).

The usual distortion argument shows also that

|Wu
loc(p) ∩RI | =

1

‖DTN (p)|Eu‖
·O(1),

and hence for any ε > 0, ε < γ − γ0,

log ν(I)

log |I|
=
−Nhtop(T |Λ) +O(1)

− log ‖DTN (p)‖+O(1)

>
htop(T |Λ)

Lyapu(p)
− ε

≥ htop(T |Λ)

supp Lyapu(p)
− ε

= γ − ε > γ0

if N is large enough (which can be guaranteed by choosing sufficiently small |I|).
Therefore ν(I) < |I|γ0 .

Let us now take an arbitrary γ1 > γ. There exists a periodic point q ∈ R such
that

htop(T |Λ)

Lyapu(q)
< γ1.

For a given ε ∈ (0, γ1 − γ), consider a narrow rectangle RI ⊂ R, I ⊂ R, RI =
π−1(L(I)), such that |I| < ε and q ∈ RI . If N ∈ Z+ is the smallest number such
that TN (RI) does not belong to one element of the Markov partition, then

|I| = O(1)

‖DTN (q)|Euq ‖
and

ν(I) = µmax(RI) = e−Nhtop(T |Λ) ·O(1).

Hence,

log ν(I)

log |I|
=

−Nhtop(T |Λ) +O(1)

−N( 1
N log ‖DTN (q)|Euq ‖+O(1)

≤ htop(T |Λ)

Lyapu(q)
+ ε < γ1,

and therefore ν(I) > |I|γ1 . �

Proof of (12). The theorem follows as a special case from Theorem 5.1 since the
density of states measure arises from the measure of maximal entropy for the trace
map in the way required for Theorem 5.1 to be applicable. This was shown in [33]
for small values of the coupling constant λ, and due to Theorem 1.5 the same holds
for all λ > 0. �

For small values of the coupling constant, supp∈Per(f |Λ) Lyapu(p) is attained in

the periodic points (of period 2 and 6) born from the singularities of the Cayley
cubic, and therefore it can be calculated explicitly (see, e.g., the proof of [34,
Lemma 3.3]). Hence we get the following
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Corollary 5.2. For λ > 0 sufficiently small, we have

γλ =
2 log

(√
5+1
2

)
log

√2

√
256I2+16

(
2A+3

√
2B+

√
2AB+35

)
I+22A+75

√
2B+21

√
2AB+250+16I+A+2

√
2B+

√
2AB+23

2A+2
√

2B−2


,

where I = λ2

4 , A = A(I) =
√

16I + 25, and B = B(I) =
√

8I −
√

16I + 25 + 5.

These periodic points of period 2 lead to the curve in Figure 2 that is labeled as
“Period two”.

6. Strict Inequalities Between Spectral Characteristics

In this section we prove Theorem 1.8, that is, we establish the strict inequalities
in (15). They will be a consequence of the following general result.

Proposition 6.1. Suppose that σA : ΣA → ΣA is a topological Markov chain
defined by a transitive 0 − 1 matrix A (i.e., some power of A has only positive
entries), and φ : ΣA → R is a Hölder continuous function. If φ is not cohomological
to zero (in other words, there are periodic orbits with different values of averages
of φ over those orbits), then

(62) inf
p∈Per(f)

 1

π(p)

π(p)−1∑
i=0

φ(f i(p))

 = inf
µ∈M

∫
φdµ <

∫
φdµmax <

< sup
µ∈M

∫
φdµ = sup

p∈Per(f)

 1

π(p)

π(p)−1∑
i=0

φ(f i(p))

 ,

where µmax is the measure of maximal entropy, M is the space of all probability
Borel σA-invariant measures, and π(p) is the period of a periodic point p.

Proof. First of all, due to Sigmund’s Theorem [91], the ergodic measures supported
on periodic orbits are (weak-*) dense in M, which implies the equalities in (62).
In order to show the strict inequalities in (62), we apply Proposition 1.9 in the
case where σA : ΣA → ΣA is conjugate to Tλ|Λλ and the potential is given by
φ = − log ‖DTλ|Eu‖.

Since by (5) the line htop(σA) + t
∫
φdµmax is tangent to the graph of P (tφ) at

(0, htop(σA)), the strict convexity, which follows from (4), together with (6) implies
Proposition 6.1. �

In order to prove Theorem 1.8, we will show that Proposition 6.1 applies to
the case at hand. This amounts to proving that there are periodic orbits in Λλ
with different values of the averaged unstable multipliers [64, Proposition 20.3.10].
An averaged unstable multiplier of a periodic point p of period n is defined to be
the nth root of the largest (in absolute value) eigenvalue of the differential DTn|p.
Henceforth, we shall write simply multiplier for averaged unstable multiplier.

Proposition 6.2. For every λ > 0, there exist two periodic points (not necessarily
of the same period) in Λλ, such that their corresponding multipliers are distinct.

This result is known for all λ > 0 sufficiently close to zero. Indeed, in that
case one computes the multipliers for the period-six periodic point p = (0, 0, a),
with suitable a ∈ R such that p ∈ S0, and for the fixed point q = (1, 1, 1) explicitly.
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These multipliers are distinct, and a perturbation argument shows that for all λ > 0
sufficiently small, there exist a period-two periodic point and a period-six periodic
point with different multipliers; see [33] for details.

Proof of Proposition 6.2. In [87] Baake and Roberts calculated a few periodic or-
bits, among which are two families of periodic points of period two and four, re-
spectively. These are given, respectively, by

Pa
def
=

(
a,

a

2a− 1
, a

)
and

Qb
def
=

(
−1

2
, b,−1

2

)
.

Here, a, b ∈ R. On each level surface Sλ, we can find points from these families.
Namely, a and b simply need to be chosen in such a way that

(63) I(Pa) = I(Qb) =
λ2

4
,

where I is the Fricke-Vogt invariant. Note that I(P1) = I(Q1) = 0 and that
lima→∞ I(Pa) =∞ and limb→∞ I(Pb) =∞. Thus, by continuity, for each λ ≥ 0, it
is possible to find a, b ∈ [1,∞) so that (63) holds.

We claim that for every λ ≥ 0, the multipliers of Pa and Qb on Sλ are different.
The proposition obviously follows from this claim.

Assume that this claim fails. Then there exist a, b ∈ [1,∞) so that I(Pa) =
I(Qb) ≥ 0 and the multipliers of Pa and Qb coincide. The identity I(Pa) = I(Qb)
implies that

(64) 2a2 +
a2

(2a− 1)2
− 2a3

2a− 1
=

1

2
+ b2 − b

2
.

On the other hand, it was shown by Baake and Roberts that the unstable eigenvalue
of DT 2|Pa is a root of the equation

(65) µ2 − 8a2 − 2a+ 1

2a− 1
µ+ 1 = 0,

while the unstable eigenvalue of of DT 4|Qb is a root of the equation

(66) µ2 − (8(1− 2b)b+ 1)µ+ 1 = 0;

see [87, p. 850]. Due to Vieta’s formulas, the roots of the equation µ2+(v2−2)µ+1 =
0 are squares of the roots of the equation µ2+vµ+1 = 0. Thus, if the two multipliers
in question coincide, it follows from (65) and (66) that(

8a2 − 2a+ 1

2a− 1

)2

− 2 = −8(1− 2b)b− 1,

or, equivalently,

(67)

(
8a2 − 2a+ 1

2a− 1

)2

− 2 = 16

(
b2 − b

2

)
− 1.

It follows from (64) and (67) that

(8a2 − 2a+ 1)2

(2a− 1)2
+ 7 = 16

4a4 − 6a3 + 3a2

(2a− 1)2
,
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which in turn implies that
8a3 − 4a+ 1 = 0.

Write P (a) = 8a3− 4a+ 1. The critical numbers of this polynomial of degree 3 are
± 1√

6
. Thus, P is strictly increasing on [1,∞). Since P (1) = 5, P does not vanish

for any a ∈ [1,∞); contradiction. This shows that the two multipliers cannot be
equal, and the claim follows. �

Remark 6.3. The two families of periodic points of period two and four, respectively,
used in the proof of Proposition 6.2 are the ones that lead to the curves in Figures 1
and 2 which are labeled with period two and four, respectively.

Proof of Theorem 1.8. The strict inequalities γλ < dimH νλ < α̃±u (λ) follow di-
rectly from Theorem 1.6, Proposition 1.9, and Proposition 6.2. The inequalities
dimH νλ < dimH Σλ < α̃±u (λ) follow from the strict convexity of the pressure func-
tion P (tφ) with φ = − log ‖DTλ|Eu‖, the fact that dimH Σλ is the only zero of
P (tφ) (see [77]), and the expression for α̃±u (λ) from Theorem 1.6. �

7. Extensions and Generalizations

While we have focused up to this point on the classical Fibonacci Hamiltonian,
much of what we do extends either partly or fully to other types of operators. Also,
we strongly believe that the results presented here provide an insight toward and
an opportunity to approach some other more complicated models as well. In this
section we briefly address some of these extensions and generalizations.

• The Off-Diagonal Model. In the present paper we consider the Fi-
bonacci Hamiltonian in the form (1), which is usually called the diagonal
model and which is the one most popular in the mathematics literature. In
the physics literature the so-called off-diagonal model is usually considered.
The spectral properties of the off-diagonal operator as well as the relation
to the dynamics of the Fibonacci trace map are not any different from the
diagonal one; see the appendix in [32] for a detailed discussion of the off-
diagonal model. All the results presented in this paper for the diagonal
model also hold for the off-diagonal one.

• Potentials Generated by Primitive Invertible Substitutions. Dis-
crete Schrödinger operators with potentials generated by primitive invert-
ible substitutions have spectral properties that are very much similar to the
spectral properties of the Fibonacci Hamiltonian. For some of the spectral
properties this was justified in [78]. We expect that all the qualitative
statements (i.e., all the statements mentioned in the introduction except
Corollary 1.7 and Theorem 1.10) of this paper can be generalized to this
case also. As for the large coupling asymptotics, the calculations can be
more complicated, but can likely be carried out for particular potentials
(given the results obtained in [70, 71, 72, 76]).

• Sturmian Potentials. Sturmian potentials are natural generalizations of
the Fibonacci potential. Namely, one simply replaces the specific value of α
in (1) by a general irrational α ∈ (0, 1). It is known that the spectrum of a
discrete Schrödinger operator with a Sturmian potential is a Cantor set of
zero measure [13], but in most cases this Cantor set will not be dynamically
defined [70, 71]. Nevertheless, there is a dynamical presentation of the
spectrum in this case as well [13, 72, 85], and it would be interesting to see
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whether the dynamical approach can add something to the recent results in
[70, 71, 72, 76] that were obtained via the periodic approximation technique.
• Jacobi Matrices. In general, discrete Schrödinger operators form a par-

ticular case of the operators given by Jacobi matrices. In the case where the
coefficients of a Jacobi matrix are modulated by the Fibonacci sequence,
their spectral properties were studied in [102]. Interestingly enough, the
spectrum in this case does not have to be dynamically defined. Neverthe-
less, the relation to the dynamics of the Fibonacci trace map allows one to
give a detailed description of the spectrum in this case, at least in some
regimes, and our results can be used to provide a complete description
throughout the entire parameter space.
• CMV Matrices. CMV matrices are the unitary analog of Jacobi matri-

ces. That is, they are canonical models of unitary operators (just as Ja-
cobi matrices are canonical models of self-adjoint operators) and they arise
naturally in the study of orthogonal polynomials on the unit circle (while
Jacobi matrices arise in the study of orthogonal polynomials on the real
line); compare [92, 93]. In addition, CMV matrices have been effectively
used to study quantum walks and the Ising model in one dimension; see
[19, 40]. Choosing the coefficients defining a CMV matrix according to the
Fibonacci sequence one obtains an interesting model that can be studied
using the trace map formalism as well. Several results for this model were
obtained in [39, 40], both from the perspective of orthogonal polynomials
and the perspective of quantum walks and the Ising model. The results
and tools developed in the present paper will allow one to take the analysis
of the CMV case further.
• Continuum Models. Continuum Schrödinger operators with Fibonacci-

type potentials were considered in [6, 30, 67, 69]. In this case there are
many models (depending on the choice of single-site potentials). The trace
map description of the spectrum is also available in this case (see [30]), and
hence it is reasonable to expect that our results can be used.
• Higher-Dimensional Separable Models. Understanding the spectral

properties of the operators associated with the standard two- and three-
dimensional quasicrystal models is a major problem in the field which is
currently out of reach. One of the ways to get some insight into the problem
is to consider operators with separable potentials; for example, the Square
(and Cubic) Fibonacci Hamiltonian and the labyrinth model [48, 49, 50, 95,
96]. In these models the spectrum of the higher dimensional operator is the
sum (or product) of the spectra of the one dimensional ones. Since studying
the sum of dynamically defined Cantor sets is a classical problem which has
been extensively studied (see, for example, [55, 81] and references therein),
we expect that the current results will be instrumental in understanding
the spectral properties of separable models. There is recent work on these
models that relies on the one-dimensional results in the small and large
coupling regimes [32, 36], and the results of this paper will pave the way
for a study of separable models that does not rely on the small and large
coupling theory.
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[14] J. Bourgain, Hölder regularity of integrated density of states for the almost Mathieu operator

in a perturbative regime, Lett. Math. Phys. 51 (2000), 83–118.

[15] J. Breuer, Y. Last, Y. Strauss, Eigenvalue spacings and dynamical upper bounds for discrete
one-dimensional Schrödinger operators, Duke Math. J. 157 (2011), 425–460.

[16] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lect.

Notes in Math. 470, Springer (1975).
[17] G. Buzzard, K. Verma, Hyperbolic automorphisms and holomorphic motions in C2, Michi-

gan Math. J. 49 (2001), 541–565.
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