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Preface

Since the days of Newton, Leibniz, Euler and Laplace, mathematical
physics has been inseparably bound to differential equations. Phys-
ical and engineering problems continue to provide very important
models for mathematicians studying differential equations, as well
as valuable intuition as to the solutions and properties. In recent
years, advances in computation and in nonlinear functional analysis
have brought rigorous theory closer to realistic applications, and a
mathematical physicist must now be quite knowledgeable in these
areas.

In this volume we have selected several articles on the forefront
of research in differential equations and mathematical physics. We
have made an effort to ensure that the articles are readable as well
as topical, and have been fortunate to include as contributions many
luminaries of the field as well as several young mathematicians doing
creative and important work. Some of the articles are closely tied
to work presented at the International Conference on Differential
Equations and Mathematical Physics, a large conference which the
editors organized in March, 1992, with the support and sponsorship
of the National Science Foundation, the Institute for Mathematics
and its Applications, the Georgia Tech Foundation, and IMACS.
Other articles were submitted and selected later after a refereeing
process, to ensure coherence of this volume. The topics on which
this volume focuses are: nonlinear differential and integral equations,
semiclassical quantum mechanics, spectral and scattering theory, and
symmetry analysis.

These Editors believe that this volume comprises a useful chapter
in the life of our disciplines and we leave in the care of our readers
the final evaluation.

The high quality of the format of this volume is primarily due to
the efforts of Annette Rohrs. The Editors are very much indebted
to her.

W. F. Ames, E. M. Harrell II, J. V. Herod
Atlanta, Georgia, USA

ix
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An Elementary Model of
Dynamical Tunneling

J. Asch

Technische Universitat, Berlin, Germany

P. Duclos

Centre de Physique Théorique, Marseille, France

and Phymat, Université de Toulon et du Var, La Garde, France

Abstract

In the scattering of a quantum particle by the potential V(z) :=
(14+2?)71, we derive bounds on the scattering amplitudes for energies
E greater than the top of the potential bump. The bounds are of the
form cte exp—h~'s(k,k'), where s(k, k') is the classical action of the
relevant instanton on the energy shell E = k? = k'2. The method
is designed to suit as much as possible the n-dimensional case but
applied here only to the case n = 1.

1 Introduction

It is well known that a quantum particle is in general scattered in all
directions by a potential bump even if its energy is greater than the
top of this bump. May be less known is that this phenomenon could
be considered as a manifestation of tunneling. The purpose of this
exposé is twofold: to show how one may treat such a problem with
tunneling methods and to actually give estimates of semiclassical
type on the scattering amplitudes.

Diflerential Equations with Copyright © 1993 by Academic Press, Inc.
Applications to Mathematical All rights of reproduction in any form reserved.
Physics ISBN 0-12-056740-7



2 J. Asch and P. Duclos

After a very active period of studying tunneling through poten-
tial barrier (in the configuration space) there is nowadays a growing
interest for tunneling in phase space (see e.g. [1], [2, and ref. therein],
[4], [10])). It is natural to ask whether the configuration space tech-
niques can be applied or extended to this new field of interest. To
this end we propose the study of a simple model: the reflection of
a one dimensional quantum particle above a potential barrier. This
problem was studied by several authors: [5], [6], [7], [8])- The results
which are more or less complete were derived by O.D.E. methods.
Our aim here is to present a new method based on functional an-
alytic tools created in the study of tunneling in the configuration
space. The hope is that this method can be applied to n dimensional
situations.

In section 2 we introduce our model and explain its tunneling
features. In section 3 we present the estimate on the reflection coef-
ficient of our model and the method that we use; finally we end up
by some concluding remarks in section 4.

2 The Model
2.1 The Dynamical Tunneling Model

A one dimensional quantum particle in an exterior potential V is
described by the Schrodinger operator (& is the Planck constant)

H:=V + Hy, Ho:= —h’A on L}(R) =: H,

and the corresponding classical Hamiltonian reads: h(p,q) := V(¢)+
p?. We further restrict the model by fixing V and the energy E as:

V(z):= (42?7 and E > V(0) =: v. (1)

If one considers scattering experiments with energies £ above the
barrier top we know that a quantum particle sent from the left will
undergo a reflection when crossing the region where the potential
barrier is maximum, whereas the classical one is totally transmitted
to the right.
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If we look at the phase space trajectories of the classical hamil-
tonian h, we see that the energy surface for a given E greater than
v has two disconnected components corresponding to the two pos-
sible movements, the one from the left to the right and the other
one from the right to the left. We interpret the capacity of jumping
from one connected component of the energy shell to the other one
as tunneling, much in the same way as for the case of an energy F
below the barrier top vp. In this latter case the two components of
the energy shell are separated by a classically forbidden region due
to the potential barrier whereas for the case of E above the barrier
top, the classically forbidden region must be read along the momen-
tum axis. Accordingly one speaks of a dynamical barrier between
the two disjoint phase space trajectories on the energy shell which
in turn motivates the terminology dynamical tunneling to mean the
corresponding tunneling process.

To study this reflection we shall estimate the off diagonal terms of
the on (energy) shell transition matriz: T(E) := (2ix)~}(1 - S(E)),
where S(E) stands for the scattering matrix at energy E. S(E)
and T(E) act on L*({—VE,VE}) ~ C? and the quantity we are
interested in, i.e. the reflection coefficient, is

r := T(E)(-VE,VE).

2.2 Tunneling and Complex Classical Trajectories

An equivalent way to define the matrix T'(E) is to solve the equation
—h%Y” 4+ (V — E)9 = 0 with the following boundary conditions

P(z) ~ t ezp(ih"'VEz) as z—

¥(z) ~ exp(ih-'VEz) + 1 ezp(—ih~'"VEz) as z— —o0;

t, the other entry of T(E), is usually called the transmission coeffi-
cient. To solve the Schrodinger equation one may use the method
of characteristics: ¥(z,h) := a(z, h)ezp(—ih~'s(z)), which leads to
the equivalent system

s2:=E-V and - h%a" -ik(as') —ihs'd’=0. (2)
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Obviously the phase s has two determinations on R which asymptotic
forms at +oo are respectively +v/Ez and FvEz. So there is no
way to obtain a term like ezp(—ih~'v/Ez) in 4 starting with the
determination vEz of s at +00. The remedy, as well known, consists
in allowing the variable £ to be complex so that turning around the
complex turning points of E—V will exchange the two determinations
of s. Of course the phase s will become complex during this escapade
on the complex energy surface which will cause an exponentially
small damping factor for the component of ¢ on ezp(—ih~1vEz).

As one can see from (2.5), s is nothing but the action of the
solution of our classical hamiltonian at energy £. Hence by allow-
ing the classical particle to wander on the complex energy surface
h(p,q) = E, it becomes able to jump between the two real compo-
nents of this surface. Thus tunneling in quantum mechanics between
two regions of the phase space is intimately related to the existence of
classical trajectories linking these two regions on the complex energy
surface. Such trajectories are usually called instantons.

According to the above discussion we can predict the exponen-
tially small damping factor in r. The shortest way to join the
two components of the energy shell is described by the instanton:
1+(p) = (B, V"1(E - p?)) = (p,i(1 + (#* — E)')"/? ) for p running
in (—vE = v9,/E — vp). The imaginary part of the corresponding

action is
hd, := Im / o(p)dp = / T L gy,
Y+ -vVE=1 pt—-E

We show in section 3 that r decays at least like d?exp — d, in the
large energy limit. Notice that hd, is usually given rather like

Ix
hd,=Im | \JE - V(it)dt
—qx

which corresponds to a pé.ra.metrisa.tion of v+ in terms of the position
¢, ¢, being the complex turning points.
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3 The Main Theorem

3.1 The Basic Formula for the Reflection Coefficient
We shall use the off (energy) shell transition operator defined by:

T:C\R; = L(H), T(2):=V -VR(2)V

where R(z) := (H — z)~! denotes the resolvent of H; similarly
Ro(2) = (Ho — ).

With our potential V, it is standard to show that T(E + i)
has a limit in £(H~1,H?) as ¢ goes to zero from above where T(z
denotes the Fourier transform of T(z) and H" the domain of V-3
equipped with its graph norm. Notice that H is just the Sobolev
space H'(R). The Fourier transform we use in this exposé is the one
which exchanges ¢ and —ihd,. Moreover if one introduces the trace
operators

r+ : H((R) = C, 7+(u) := w(xVE),
the operator 7_T(E + i0)7} makes sense and one has:
r:= T(E)(-VE,VE) = T_T(E + i0)r%. (3)
A key formula for our method is
T(z) = (V™' + Ro(2))™", z€C\Ry

which is valid first for z such that ||V Ro(z)|| < 1 and then for all z in
C \ R, by analyticity. Then if we introduce the family of operators

A(z) ;== V™1 4 Ro(2) so that A(z) = -h? !

we see that the reflection coefficient is nothing but the Green func-
tion of A(E + i0) evaluated at FvE with zero value of its spectral
parameter

r=1_(A(E + i0) - 0)7 7. (4)
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3.2 The Operator A(E +i0) and the Dynamical Barrier

A convenient way to study /T(E + ¢0) is to use the sectorial form [24,
p. 310] associated to A(z) for zin C\ Ry:

telu] = W2 4l + (), D) o= A = HA(R).
Since for each z in C\ Ry, (22 — 2)7! is bounded, ¢, is obviously
closed and sectorial and moreover A(z) is a type A analytic family
of m-sectorial operators [24, p. 375].

Let W(z) := 1+ =14, then the following lemma is nothing
but a rephrasing of the limiting absorption principle with an Agmon
potential.

Lemma 1. As € goes to zero from above the operator A(E+ze), E >
0, converges in [,('H1 ~1) to the m-sectorial operator associated to
the form defined on H! by:

tesiolu] := B2||/||2 + (Wu, u) + ir|u(—VE)[? + ir|u(VE)[?.

Notice that W in the above formula must be understood in the sense
of its Cauchy principal value. The operator A(E + i0) can be repre-
sented symbolically by

A(E 4 i0) = —K%A + W + iré(z? - E).

Its real part is a Schrodinger Hamiltonian which exhibits for E
greater than vg = 1 two potential wells in the vicinity of +/F sepa-
rated by a potential barrier. W plays the role of an effective potential
for our auxiliary non selfadjoint Schrédinger operator A(E + 10).

Thus the Green function of A(E + 10) evaluated at ++/E must
contain an exponentially small overall factor due to tunneling
through this potential barrier. This potential barrier w4 is actually
the dynamical barrier we were speaking of in section 2.

3.3 Estimate of the Reflection Coeflicient

We have shown in section 3.1 that the estimate of the reflection co-
efficient r is reduced to the one of the Green function of A(E + i0)
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evaluated at +v/E. As was argued in section 3.2, +v/E being sepa-
rated by the dynamical barrier w; we expect an exponentially small
behavior of r in the size of w;. To prove it we resort to our familiar
methods developed in the context of tunneling in configuration space
(see e.g. [10, and ref. therein]).

As usual we define the auxiliary function

p(z) := d(-VE,z) if z > —V'E and 0 otherwise
where d denotes the pseudo-distance in the Agmon metric ds? =
h~ 2w (z)dz? and wy(z) := Wi (z) if 22 < E and 0 otherwise. Since
exp p(— \/_) equals 1 one gets: r = _e P A(E + i0)~ letrie -A(VE)

= e~ r_A,(E +i0)"! T}, Where d, is the diameter of the dynamlcal
barrier in the Agmon metric,

VE-T
d, := d(~VE,VE) = h"/ 1+ 2; dz
—VE-1 T —E

and A, denotes the boosted operator: A,(E +i0) := e=? A(E + i0)e’.
_Thus it remains to find a suitable bound on the Green function
T_A,(E + i0)~'r}. We shall do it as follows. Using the standard

bound: |[r4(—A+ 1)'5“ < 1, we are led to estimate A,(E+i0)~! as
an operator from H-1 into 'Hl One possible way is to find a lower
bound on the real part of A »(E +1i0) as an operator from H! to H~1:

~ , h2
ReA,(E+i0)= -RPA+ W —h%p2 > sp(—A+D. (9)

This last estimate will be explained in the next subsection. Due to
the method we are using, it will be valid only in the large energy
limit and more precisely for values (h, F) in the following domain:

vi= {(h,E) €ER; xRy, E>max {(Clh"4,Czhz}} ,

where C1 := 121 and C; := 3. So we have proven the

Theorem 2. For every (h,E) in the domain v defined above one
has

2F
|r|< = w7 exp —d,.
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3.4 Estimate of the Boosted Resolvent

To show (15) it is sufficient to obtain a lower bound on the real part
of 2,, of the type 7(—A + 1) with 4 strictly positive. Let wp =
W — w4 =:wp + w1 be a splitting of the potential part of ReA, so
that w; contains the Cauchy principal part of W:

) we(x) ifz?< E
wi(2) := { —w(x2VE - 2) if +2>VE. (7)

Then with 0 < o? < 1, one has
ReA,(E +i0) > —(1 - o®)K?A + w; — a?h2A + &g (8)

where we have estimated wg from below by the square well potential:
@o(z) := 1 if 22 > E and @p(z) := 0 otherwise. This allows to
estimate from below the second Schrédinger operators on the r.h.s
of (8) by C(ah, E) := a?i?x? E~1(1 — ahE~1/2) under the condition

2h2 2
2 E” <1 (9)

For the first Schrodinger operators on the r.h.s. of (8) we use the
following inequality:

(w1, u)| < 2B/ |[3/||u||/? (10)
to deduce with |ju|| = 1 that:
ReA,u,u) > (1 - o®)R2||'||2 + 2E34||u/|¥/? + C(ah, E). (11
p

To derive (10) we have used Sobolev inequalities. Choosing for the
moment v := C(ah,E)/2 and fixing a by a? := 4(x% + 4)7! it
remains to check that for (%, E) in the domain v defined in (6) one
has: az? 4 bz%/2 + ¢ > 0 for every non-negative z, with a := (1 —
a?)k? — C(ah,E)[2, b:= 2E~3/4 and ¢ := C(ah, E)/2. Finally we
are allowed take a smaller but better looking v := 2%2; since due to (9)

C(ah,E) > h2E~!. Hence we have proven the statement contained
in (15) and (6).
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4 Concluding Remarks

In addition to the explanation of section 2.2 one can also understand
tunneling as a transition between different subspaces of the Hilbert
space of physical states. For example in our model, the quantum
reflection is a transition between the two subspaces Ranx+ where X+
are the sharp characteristic functions of +(v/E — 1,V E). Therefore
all the processes exhibiting non-adiabatic transitions may be called
dynamical tunneling as well.

The adiabatic method has been used extensively in the study of
the quantum reflection coefficient by transforming the Schrédinger
equation into a system of two coupled first order equations, see [6],
[7]. More recently in [11] the exact asymptotics of the reflection coef-
ficient has been given in the true adiabatic case. At the time we are
writing these lines T. Ramon has announced the same kind of result
for the quantum reflection; his method using exact complex WKB
method combined with micro analysis techniques is an adaptation of
the one developed in [12] for the study of the asymptotics of the gaps
of one dimensional crystals.

Both of these two results show that our upper bound has at least
the correct exponential behaviour. If one wants to consider higher
dimension problems, the hope to be able to derive exact asymp-
totics on the scattering amplitude is small because of the complicated
structure of the caustics and singularities of the underlying classical
Hamiltonian system. But deriving upper bounds for a suitable range
of the parameters in the spirit of [10] should be possible with the
method presented here.

Acknowledgments

One of us, P.D., has greatly benefitted during the progress of this
work from the hospitality of the Bibos at the University of Bielefeld
(RFA) and of discussions with D. Testard who was visiting Bibos at
that time.



10 J. Asch and P. Duclos

Bibliography

[1] M. Wilkinson, Tunneling between tori in phase space, Physica
21D, 1986, p. 341-354.

[2] B. Helffer, and J. Sjostrand, Semiclassical analysis for the
Harper’s equation III. Cantor structure of the spectrum, Mém.
Soc. Math. France, 39, 1989.

[3] A. Martinez, Estimates on complez interactions in phase space,
Prep. 92-5, Lab. Anal. Geom. Applic., Université Paris-Nord,
1992.

[4] A. Barelli, and R. Fleckinger, Semiclassical analysis of Harper-
like models, Prep. Centre de Physique Théorique, Marseille,
1992.

[5] N. Froman, and P. O. Fréman, JWKB Approzimation, contri-
bution to the Theory, North holland Amsterdam 1965.

[6] M. V. Berry, Semiclassical weak reflexions above analytic and
non-analytic potential barriers, J. Phys. A: Math. Gen., 15,
1982 p. 3693-3704.

[7] J. T. Hwang, and P. Pechukas, The adiabatic theorem in the
complez plane and the semiclassical calculations of the Non-
adiabatic transition Amplitudes, Journ. Chem. Phys. 67, 1977,
p. 4640-4653.

[8] G. Benettin, L. Chiercha, and F. Fass6, Ezponential estimates
on the one-dimensional Schrédinger equation with bounded ana-
lytic potential, Ann. Inst. Henri Poincaré, 51(1), 1989, p. 45-66.

[9] T. Kato, Perturbation theory for linear operators, Berlin Hei-
delberg, New York, Springer, 1966.

[10] Ph. Briet, J. M. Combes, and P. Duclos, Spectral stability under
tunneling, Commun. Math. Phys. 126, 1989, p. 133-156.



An Elementary Model of Dynamical Tunneling 11

[11] A. Joye, H. Kunz, and Ch. E. Pfister, Ezponential decay and
geometric aspect of transition probabilities in the adiabatic limit,
Ann. Phys. 208, 1986, p. 299-332.

[12] T. Ramon, Equation de Hille avec potentiel méromorphe, to ap-
pear in the Bull. Soc. Math. France.



This page intentionally left blank



Discrete Schrodinger
Operators with Potentials
Generated by Substitutions

Jean Bellissard

Laboratoire de Physique Quantique, Université Paul Sabatier,
118 Route de Narbonne, Toulouse, France

Anton Bovier

Institit fir Angewandte Analysis und Stochastik,
Hausvogteiplatz 5-7, Berlin, Germany

Jean-Michel Ghez

Centre de Physique Théorique, Luminy Case 907, Marseille,
France and Phymat, Université de Toulon et du Var, La Garde,
France

Abstract

In the framework of the theoretical study of one-dimensional
quasi-crystals, we present some general and particular results about
the gap labelling and the singular continuity of the spectrum of
Schrodinger operators of the type Hy¢n = ¥nt1 + ¥n-1 + Un¥n,
where (vy),¢z is an aperiodic sequence generated by a substitution.

1 Introduction

The quasi-crystals, discovered in 1984 [1], are studied in one di-
mension by means of tight-binding models, described by discrete
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14 J. Bellissard, A. Bovier and J.-M. Ghez

Schrédinger operators of the type

HV‘/’n = 1/’n+1 + 1/’n—l + 'Und’n (d’n)nez € EZ(Z) (1)

where (v, )nez is a quasi-periodic sequence. A very interesting case,
both mathematically and physically, is that of a sequence (vn)nez
generated by a substitution [2] (see sect. 2 for a definition). This is a
rule which allows to construct words from a given alphabet or, from
a physical point of view, a quasi-crystal from elementary pieces of a
tiling of the space.

Such operators are in general expected to have a singular contin-
uous spectrum, supported by a Cantor set of zero Lebesgue measure.
This has been already proven for the Fibonacci [3], [4], [5] and Thue-
Morse [6], [7] sequences. We show liere how to obtain the same result
for the period-doubling sequence [7].

In all these cases, the method which is used is that of transfer ma-
trices. It can be summarized as follows: one writes the Schrédinger
equation in matrix form:

¢n+1 - d’n _ E—-v, -1
( iy ) =P, ( ool )wherePn = ( 1 0 ) y  (2)

defines the transfer matrices as products of the form []9_, Py and
deduces the spectral properties of Hy from those of their traces.

This method was first developed in the Floquet theory of periodic
Schrodinger operators [8] and recently generalized to the Anderson
model [9] and then to the quasi-periodic case [10] and in particular
to quasi-crystals [11], [12]. These last models exhibit Cantor spectra,
which gaps are labelled by a set of rational numbers, depending of
the particular example one considers, their opening being studied in
details, for instance for the Mathicu equation [13] or the Kohmoto
model [14], [15].

The program, still in progress, which results are described in this
lecture, is the investigation of the particular class of one-dimensional
substitution Schrodinger operators. A substitution is a map £ from a
finite alphabet A to the set of words on A. A substitution sequence or
automatic sequence is a £-invariant infinite word u [2]. A substitution
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Schrédinger operator is an operator of type (1) defined by a sequence
(vn)nez obtained by assigning numerical values to each letter of u.

In this case, the substitution rule implies a recurrence relation
between the transfer matrices, which itself gives a recurrence relation
on their traces, called the “trace map” [16]. Then one proves that
the spectrum of Hy is obtained as the set of stable conditions of this
dynamical system, which also coincides with the set of zero Lyapunov
exponents of Hy. Finally, a general result of Kotani implies that the
spectrum is singular continuous and supported on a Cantor set of
zero Lebesgue measure. This has been done for the Fibonacci [5],
Thue-Morse [7] and period-doubling [7] sequences. In the last two
cases, a detailed study of the trace map allows also to compute the
labelling and the opening mode of the spectral gaps [6], [7].

Now, one is naturally led to try to generalize these results to a
large class of substitutions. For primitive substitutions, an easy way
of computing the label of the gaps is obtained - and applied to some
examples - [17] combining the K-theory of C*-algebras [18], [19], [20]
and the general theory of substitution dynamical systems [2] (there
are only perturbative conjectures for their real opening [21]).

The second expected common feature of substitution Schrédinger
operators, that is the singular continuity of their spectrum, can also
be obtained, by extending to a general situation the analysis of the
trace map. Indeed, for primitive substitutions which trace map sat-
isfies a simple supplementary hypothesis, two of us proved this result
recently and applied it to the same examples as before [22].

The plan of this contribution is the following. In section 2, we
define what are substitution hamiltonians and we show how K-theory
of C*-algebras provides with a general gap labelling theorem for such
operators. In section 3, we apply the method of transfer matrices to
the case of the period-doubling sequence, namely we prove that the
spectrum is singular continuous and has a zero Lebesgue measure and
we study the labelling and opening of the spectral gaps. In section
4, we generalize the singular continuity of their spectrum to a rather
large class of substitutions.
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2 Gap Labelling Theorem [17]

We show in this section how K-theory of C*-algebras provides with
a simple way of computing the values of the integrated density of
states in the gaps of the spectrum of a substitution hamiltonian.
We first summarize some basic definitions on substitutions [2].
Given a finite alphabet A, a substitution £ is a map from A to
A* =kL>,l1 A*. ¢ induces in a natural way a map from AN to AN,

which admits a fixed point u if it satisfies the conditions:
(C1) there is a letter 0 in A such that the word £(0) begins with 0;
(C2) for any 3 € A, the length of £*(8) tends to infinity as n — oo.
We say that a Schrédinger operator Hy of type (1) is generated by
¢ if v, = £V following the n — th letter of u = £°°(0). For example,
the period-doubling substitution defined by é(a) = ab, £(b) = aa has
a fixed point given by u = £*°(a) = ebaaabab... Assigning the values
V to v, =V to vy, V to v, v3 and v4, —V to vs... and completing by
symmetry for negative n, we obtain the period-doubling hamiltonian.
The integrated density of states (IDS) N(E) of Hy is the number
per unit length of eigenvalues of Hy smaller than E in the infinite
length limit. A gap labelling theorem consists in the determination
of the set of values that the IDS takes in the spectral gaps of Hy.
We prove it for primitive substitutions, that is substitutions £ such
that there is a k such that for any a and A in A, £€*(a) contains 3.
For £ = 1,2, the matrices M,(§) of a substitution £ are defined
by putting Mg;; equal to the number of times the letter i occurs
in the image of the letter j by &, where & = £ and &; is defined
on the alphabet of the words of length 2 appearing in the §(af3)
by setting {2(wow1) = (Yoy1)(¥1¥2)--(Yje(wo)|-1Ylé(wo))) if €(wow1) =
YoU1---Yje(wowr)|-1+ If & is primitive, the Perron-Frobenius theorem
implies that M; and M; have a strictly positive simple maximal
eigenvalue @ (the same for both), which corresponding eigenvectors
vg, normalized such that the sums of their components equal 1, can
be chosen strictly positive [2].
Now we can state our gap labelling theorem:

THEOREM 2.1 : Let Hy be a 1D discrete Schrédinger operator of
type (1) generated by a primitive substitution on a finite alphabet.
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Then the values of the integrated density of states of Hy on the spec-
tral gaps in [0,1] belong to the Z-module generated by the density of
words in the sequence u, which is equal to the Z[§~! ]-module gener-
ated by the components of the normalized eigenvectors vy and vy with
the mazimal eigenvalue 8 of the substitution matrices My, and M,.

The proof of theorem 2.1 is divided in four steps.

Step 1: Shubin’s formula: N (F) = r {x(H < E)}, the trace per
unit length 7 of the projector x(/I < E) in the infinite length limit.

Step 2: Abstract gap labelling theorem 1: Let Ay, be the
C*-algebra of Hy, that is the C*-algebra generated by the translates
of Hy. Shubin’s formula, together with general results about the
K-theory of C*-algebras (referenced in {17]), implies the

Abstract gap labelling theorem 1: The values of N(E) in the spec-
tral gaps of Hy belong to the countable set {0,7(1)] N (Ko(Amy ),
where T, is the group homomorphism RNo(An,) — R induced by .

Step 3 : Abstract gap labelling theorem 2: Let T be the two-
sided shift on AZ,Q the closure of the orbit of u by T in AZ ((Q,T) is
called the hull of u) and g the unique (by primitivity [2]) T-invariant
ergodic probability measure on Q. The study of the K-theory of C(£2)
leads to the

Abstract gap labelling theorem 2: 7*(Ko(Ap,)) = p(C(R, Z)).

Step 4: Computation of u: Every function in C(2,Z) is an inte-
gral linear combination of characteristic functions of cylinders [B] in
(B being a word in u). Since the y([B]) are of the form g times
(integral linear combination of the components of v; and v3) [2], our
gap labelling theorem is proved, putting together the results of these
four steps.

3 The Period-Doubling Hamiltonian [7]

The period-doubling sequence (see sect. 2) defines two sequences of

unimodular transfer matrices (Té")((t))neN and (Tz(sn)(b))neN» corre-
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sponding to the two numerical sequences associated to £*°(a) and
£2°(b). The substitution rule implies a recurrence relation between
their traces z,, and yy:

T4l = Tnln — 2
{ Ynt1 = 25 — 2 ®
with initial conditions zo = F — V,yo = F + V. _
The unstable set of (3) is defined as &/ = {(zo,¥%0) € R?s.t. AN >

0 s.t. |zn| > 2 Vo > N}. The identification of the set E(U)° =
{E s.t.(E~-V,E+V) € U} of stable initial conditions of (3), and also

of the set Oy of zero Lyapunov exponents y(E) = nh_’rrgo %Ln||T}gn)||

of Hy, with the spectrum of Hy gives us its properties. We need
first the following more convenient description of U:

Lemma: U = U, {(:vo,yo) s.t. (Zn,Yn) € D(_}c}, where
DY = {(z,y) st. £> 2,y > 2}

3.1 Cantor Spectrum of Hy

THEOREM 3.1 : The spectrum of Iy is purely singular continuous
and supported on a Cantor set of zero Lebesgue measure.

Our method is similar to those of [4] and [5]. First, by a general
result based on Floquet theory [6], o(/Iy) C (int £(U))°. Then we
use the lemma to prove an exponential upper bound for the norm of
T™ for E € £@U)°, which implies that )¢ C Oy. Finally, the
general fact that (o(Hv))® C Of [23] allows to write the following
sequence of inclusions, £(I) being open in our case:

a'(Hv)CS(U)CCOV C o(Hy) (4)

Therefore o(Hy) = E(U)® = Oy. Now |Oy| = 0. This is ob-
tained in two steps. First, let 2 be the hull of the period-doubling
sequence, ¥,(E) the Lyapunov exponent of the hamiltonian Hy(w)
generated by w € Q, u the unique T-invariant ergodic probability
measure on  and y,(F) = [ pu(dw)y,(E) the mean Lyapunov expo-
nent (see sect. 2). By Kotani [24], the set O, = {E s.t. 7,(E) = 0}
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has zero Lebesgue measure. Then, to complete the proof of theorem
3.1, we have to show that 0,4 0,| = 0 Vw € Q. This is achieved by
using a lemma of Herman [25] to extend to substitution potentials a
proof of Avron and Simon {26] about almost periodic potentials.
Finally, |o(Hy)| = 0. Since we can prove that Hy has no eigen-
values and no generalized eigenfunctions tending to zero at infinity,
this implies theorem 3.1.
Remark 1: |Oy| = 0 is a general result for primitive substitutions,
used in sect. 4 to extend theorem 3.1 to a large class of substitutions.

3.2 Labelling and Opening of the Gaps

Let 74+ be the two inverses of the trace map (3) and 7, = To,...Tw, if
w = (wg, ...,wn) and w; = £1,¢ = 0,...,n. Since o(Hv) = E(U)°, the
lemma implies that

[c(HV)°={F st. Jw st. (E-V,E+ V)€ 1.,(DL)}, (5)

where DP = (DY)
This gives the two families of spcctral gaps constructed from DE:

THEOREM 3.2 :

i) The gaps at the points 7,,(0,0) open linearly, with opening angle
of order 2711, and are labelled by N(E) = £;

1) The gaps at the points 7,(—1,—1) open ezponentially, with

width of order e =3V VLn2 and are labelled by N(E) = 5.

Remark 2: These values of A'(E) come for the formula for the free
1

laplacian: N(E) = - arccos(—E [2)

Remark 3: Similar results were obtained for the Thue-Morse se-

quence defined by £(a) = ab, £(b) = ba, with the difference that the

gaps labelled by purely dyadic N(E) (except 1/2) remain closed, due
to the symmetry of the potential [6].

4 Singularity of the Spectrum [22]

We have seen in section 2 that a general gap labelling theorem can
be proven for substitution hamiltonians Hy. Here, we show how,
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under a simple supplementary hypothesis, which can be verified al-
gorithmically, the second general result, that is the singularity of the
spectrum of Hy, has been very recently generalized by two of us
[22]. This is achieved by extending the analysis of the stable set of
the trace map performed for the period-doubling sequence.

We start with a primitive substitution £ defined on a finite alpha-
bet A. For w € AN, let (™ (w) be the trace of the transfer matrix
associated to w. By construction, there is a finite alphabet B, in-
cluding A, such that the trace map of £, that is the map (f3,)i<|B
defined by z™+t1)(8;) = f;, (:c(")(ﬂ,-),...,x(")(ﬂ|3|)), is a dynamical
system on RIBl [27]. It is clear that the essential role in the van-
ishing of the Lyapunov exponent is played by the dominant terms
in the fg,. Therefore its crucial property is the existence for each ¢
of a unique monomial of highest degree fg'., called the reduced trace
map, and of the associated substitution ® on B. Actually, defining
a semi-primitive substitution as a substitution satisfying:

i) 3C C B s.t. ®|¢ is a primitive substitution from C to C*;

ii) Ik s.t. VB € B, ®*(B) contains at least one letter from C,
we can prove:

THEOREM 4.1 : Let Hy be a 1D discrete Schrédinger operator gen-
erated by a primitive substitution € on a finite alphabet. Assume that
there is a trace map such that the substitution ® associated to its
reduced trace map is semi-primitive and also that there is a finite k
s.t. £¥(0) contains the word BB for some B € B. Then the spectrum
of Hy is singular and supported on a set of zero Lebesgue measure.

The proof of theorem 4.1 can be summarized as follows: Let Uc
U be the open “generalized” unstable set of £ (see [22] for a precise
definition). Generalizing the proof of theorem 3.1, we use the crucial
fact that, for primitive £, the lengths of the words |€"a| (o € A)
grow with n exponentially fast with the same rate ", where 8 is the
Perron-Frobenius eigenvalue of the substitution matrix [2], [17], to
show that, for semi-primitive &, £(I)° C Oy.

As in sect. 2, this implies the following sequence of inclusions:

EWU)° C Oy C o(Hy) C (Int(E(V)) C EU)* (6)
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and thus o(Hy) = Oy, which concludes the proof of theorem 4.1
(see Remark 1 after the proof of theorem 3.1).

Remark 4: If we assume that £¥(0) begins with the word 383, we can
prove that Hy has no eigenvalues and therefore that the spectrum
of Hy is singular continuous and supported on a Cantor set of zero
Lebesgue measure.
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Wave Packets Localized on
Closed Classical Trajectories

S. De Biévre, J.C. Houard and M. Irac-Astaud
L.P.T.M. Université Paris 7

Abstract

In the classical limit eigenfunctions of Hamiltonians tend to lo-
calize in phase space on energy surfaces if the system is ergodic, or
on invariant tori for completely integrable systems. In cases when
the energy levels are highly degenerate, one may hope to construct
eigenstates that localize on lower dimensional flow invariant mani-
folds such as closed orbits. This is known to be true for the Kepler
problem. We establish the same result for n-dimensional harmonic
oscillators. The construction generalizes to yield states well-localized
on closed orbits of more general Hamiltonians.

1 Introduction

Let Ho be a C* Ilamiltonian on phase space R?® = T*R™. Let
v :t € [0,T) — v(t) = (¢(t),p(t)) € R?*™ be a periodic solution
(7(0) = 4(T)) of the corresponding Hamiltonian equations of motion.
We shall write Eq = Ho(q(t),p(t)). We then consider

1 T
< >4 fo € C®(R™) =< fo >4= T/o dtfo(q(t),p(t)).  (1.1)

This defines a classical state, i.e. a probability measure on phase
space, which is concentrated on 4 and flow invariant in the sense
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that
< foods >4=< fo >4, VIER, (1.2)
where we wrote ¢; for the flow defined by Hj.
Consider then self-adjoint operators H(k), F(h) on L2(IR™), which

have Hg, respectively fo, as their principal Weyl symbols. The eigen-
states 1y of H(h) satisfy the quantum equivalent of (1.2), i.e.

< Yy e AR F(R)e Ry >=< gn, F(R)gn > . (1.3)

It is then natural to ask whether it is possible to construct a family
of eigenstates

H(R)yn = E(R)yn, (1.4a)
with
E(hy— Ey as h—0 (1.4b)
and such that
1 T
< ¥n, F(R)gn > = /0 dt fo(a(t), p(t)), (1.5)

for all F(h) as above.

In general, this is impossible. Indeed, as a first example, think
of the double symmetric potential well. In that case, all eigenstates
satisfy | ¥a(z) |2=| ¥n(~z) |2. Hence they can never concentrate on
a classical trajectory in one of the two wells in the limit £ — 0. More
generally, consider the case when Hj is completely integrable. The
classical limit of energy eigenstates for such systems has been studied
extensively in the literature [8] [1]. Let T*IR™ = R™ x R™ be the
classical phase space and P : T*R" — R™ n commuting constants
of the motion for the Hamiltonian Hy, i.e.

{P§,P{}=0 (1.6a)

and
Hy = P(}. (1.6b)

In the corresponding quantum system, one has self-adjoint opera-
tors P;(h) having P? as their principal Weyl symbol. They form a
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complete set of commuting observables on the Hilbert space L2(IR™).
As a result, fixing their eigenvalues \;(%) determines a unique eigen-
state of the quantum Hamiltonian H(%) and one expects that, as
h — 0, this eigenstate concentrates - in phase space - uniformly on
the corresponding classical torus I_’.'l(;\.o). This is indeed established
in [1], under suitable conditions on Ho. The results in [1] lead one to
conclude that non-degenerate eigenstates of H (%), which are auto-
matically eigenstates of all the P;(%), cannot in general be expected
to satisfy (1.5). In fact, one expects that (1.4)-(1.5) can only be
satisfied if H(h) admits highly degenerate eigenspaces so that one
can construct many eigenstates of H(h) that are not simultaneously
eigenstates of the other P;(h).

There are two known examples where (1.4)-(1.5) can be satisfied
for all the classical closed trajectories. They are the hydrogen atom
[3] and the isotropic harmonic oscillator [2]. In both cases the method
of construction is based on group-theoretical arguments using the
hidden symmetries of the problem.

In section 2, we construct eigenstates of the anisotropic harmonic
oscillator satisfying (1.5). Symmetry arguments cannot be used in
this case, but instead we propose a very natural construction using
coherent states.

Since the requirement that 15 is an eigenstate is in general in-
compatible with (1.5), it is customary to replace it by the weaker
condition

I (H(R) = E(R))¥(h) ||= O(KY) (1.7)

for some N € IN. One then says that v is a quasimode. Quasimodes
localized on closed classical trajectories were constructed by Ralston
[6] for a class of partial differential operators under certain natural
stability conditions on 7 which determine N and supposing ¢(t) #
0,vt € [0,T].

In section 3 we show how our construction of section 2 can be
generalized very simply to construct states satisfying (1.5) and hence
(1.7) with N = 1, without any stability conditions on 7. In the
absence of stability requirements, one can probably not hope to do
better than this. While this work was in progress, we learned of
recent results of Paul and Uribe [5], who use the same construction
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to prove (1.7) for all N in the case where n = 1 and H(h) is an
ordinary differential operator with polynomial coefficients.

2 The Anisotroﬁic Oscillator

Let
(2.1)

be the usual harmonic oscillator Hamiltonian on L?(IR™). Its spec-
trum is given by

1
E,, = h(wimy + woma + ... + wymy, + §(w1 + .o twn))  (2.2)

The corresponding classical system, with Hamiltonian function

n

Ho(g,p) =3 5—
i=1 '

1 1
P+ Smaite? (2.9

always admits closed classical trajectories. If all w; are two by two
incommensurate, the only such trajectories are the ones in which
only one mode of the oscillator is excited. If, on the other hand,
Wiy y Wiz y oo, Wi, (k < 1) are two by two commensurate, the others being
incommensurate, then all trajectories in which only the degrees of
freedom 1, ...,t; are excited, will be periodic. They then have a
common period, which is the least common multiple of the T;; = ‘377;

Let us now fix a closed trajectory
7:t€[0,T] — (q(t), p(t)) € R*" (2.4)
of the Hamiltonian in (2.3). We shall write

Eo = Ho(q(t),p(t)) (2.5)

for the corresponding energy. In the rest of this section, we construct
an fi-dependent sequence of eigenfunctions of H, all with energy Ey,
concentrating on v as i — 0 in the sense explained in section 1.



Wave Packets Localised on Closed Classical Trajectories 29

First, we briefly recall the definition of coherent states. We define

_ detK .prz 1 ip-q
<z|q)p>_ [(ﬂ-h)n]exp(z h h <(z q)’I((z q)> 2 h )
(2.6a)
where K is the matrix
K;; = miw;éij. (2.6b)
It is then well known that
e | gt),p(t) >= e F | q(t + ), p(t+9) >  (2.7a)
where we introduced the notation
n
|w|= Zw;. (2.7b)
=1

The coherent state | ¢,p > being optimally localized around the
phase space point (g, p), it is natural to construct a state

T . ot
lv>=7 [ dt @ % | q(t), ) > (28)

which is a superposition of coherent states localized on points of the
trajectory 7. Taking

¢(t) = Ept (2.9a)
a(t) = exp —il w2| i (2.9b)
it is easily verified that, Vs € R,
et fy>= e R |y > (2.10a)
provided 3n € 7Z so that
[Eo — hl—%—l-] = 2%1—@ (2.100)

Furthermore one verifies readily that | ¥ > in (2.11) is identically
zero, unless Im;,,...,m;, € IN so that
2w

Tn = mj,wi; + ... + M, wi,, (2.11)
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where we recall that i;,...,4x label the degrees of freedom of the
oscillator that are excited on the trajectory 4. We conclude that
| ¥ > in (2.8)-(2.9) is an eigenstate of H with eigenvalue Eq provided
h is chosen so that (2.10b) and (2.11) are satisfied.

In the next section, we prove a general result which implies that
| ¥ > in (2.8), after normalization, satisfies (1.5).

3 Localized Wave Packets

Let 4 be a closed C* curve in T*IR". We construct
T it
lv>= 1 [ dt alt) Rk g0 > (3)
0

where a(t) is a C*® function on [0,T]. Now let f; be a strongly
h-admissible symbol on T*IR™ and F(h) the corresponding Weyl-
quantized operator, i.e.

F(h) = Op} fs. (3.2)

For precise definitions of “strongly admissible” and Op;V we refer to
[7]. Let us just say that fx(g,p) depends smoothly on % and on (g, p),
is polynomially bounded in (g,p) for each A and has an asymptotic
expansion

o0

fh ~ Z fn R" (33)

n=0
where each f, is again C* and polynomially bounded. Formally, for
% in the Schwartz space

dydp
(2nR)”

O (b(a) = [ [ <> (oG +9), (W) - (3.0

We then have the following result.

Theorem 3.1 For h such that

a(t)en Jo (Pda=adr) (3.5)
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is periodic with period T and provided

| a(t) [>= (< 4(2), K4(t) > + < (), K~p(t) >)*, (3.6)
we have that

<A [FR)[v> _
<7lv>

| a0 +om). @1

Sketch of the proof: We first remark that ([7], Proposition 11.56)

<y|F(h)|y> = TrF(h)|y><7]|

(;:ZI)’,, fu(a,p)W,(q, p; ) (3.8)

where W, is the Weyl symbol of | ¥ >< v |. The latter can be
written

(o [ da( e et GO-6E)
Wala,pi ) = 7 /o dt fo dt'a(t)a(t’')er t,(q,p3 h),
(3.9a)

where

#(t) = % /0 t(pdq — gdp). (3.9b)

and Wy (q,p; k) is the Weyl symbol of | ¢(t),p(t) >< ¢(t'),p(t) |-
Computing the latter explicitly and inserting the result into (3.8),
one gets

T T 1 '
<y|F(R) |7 >= / dt / dt’ / dqdp k(g, p; R)es%(99) (3.10a)
0 0

with
R o L VACK NI (LD

The phase ) is a smooth function of (¢, ¢, p) having a unique critical
point at t' = t,¢ = ¢(t),p = p(t). Applying a stationary phase
argument ([4], Theorem 7.7.5), the result then follows.

The claim made at the end of section 2 is now an easy consequence
of the above result.
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Abstract

We give upper and lower bounds on the difference AE = E;— E;,
of the first two Dirichlet eigenvalues for a dumbbell region in R".
These bounds are exponentially small in the diameter ¢ of the straight
tube connecting two identical bounded cavities as € — 0. The proof
relies on a lower bound for the first Dirichlet eigenfunction for one
cavity with a thin tube attached.
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1 Introduction

The purpose of this note is to discuss some recent results on lower
bounds for eigenvalue differences for Dirichlet Laplacians on domains.
We present an alternative proof of one of the main results of [2]. The
problem we consider here is the following. Let C C R" be a bounded
domain and let T(¢) be a tube of diameter € > 0 described as fol-
lows. Let D; C R™! be a bounded, connected region containing
the origin. We assume 9D, is smooth, see [2] for more general sit-
uations. For € > 0, let D, = ¢D; be the scaled cross-section of the
tube T'(¢) = D, x (=6, £+ 6), for some & > 0 small and independent
of e. We choose coordinates (z’,z,) € R*™! x R = R" such that
(0,0) € 8C. We take R to be the reflection of the half-space z,, < /2
in the z, = €/2 plane, to obtain a symmetric dumbbell region with
C1 =C and C; = RCy, defined by Q(¢) = C1 UT(e)UC,. That is, (¢)
consists of two symmetric cavities (with respect to z,, = £/2) joined
by a straight tube of diameter €. Note that (0,£) € 9C,.

Let P(¢) = —Agq() be the Dirichlet Laplacian on Q(e). Let
0 < E4(e) < Ez(¢) < ... be the Dirichlet eigenvalues and define
AE(e) = Eq(e) — E1(e). We refer to this difference as the splitting
of the first two Dirichlet eigenvalues. Our goal is to bound AE(e)
from above and from below in terms of the tube diameter € and the
tube length £. Note that when ¢ = 0, the two cavities are identical
and disjoint. We also have that —Agq(,) — —Ac¢, ® —A¢, in an
appropriate sense as € — 0. For the limit operator AFE = 0, i.e. the
first eigenvalue is doubly degenerate. Let a® be the first Dirichlet
eigenvalue of D;. By scaling, (%) is the first Dirichlet eigenvalue of
D,. For the case of a straight tube, as described above, our main
result is the following.

THEOREM 1.1 Let Q(¢) C R" be a symmetric dumbbell region with a
straight tube of length £. Let AE(¢) = E3(e)— E1(€) be the difference
of the first two Dirichlet eigenvalues. For any { < { there exists
€0 > 0 and constants C;,C7 > 0 such that for € < g9

Cie™8e=2t/e < AE(e) < Cre~olle (1)
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We will sketch the proof of Theorem 1.1 in the following two
sections. The upper bound in (1.1) relies on L2-exponential de-
cay estimates on the Dirichlet eigenfunctions for the region C(¢) =
IntC UT(e), i.e. one cavity with a tube attached. These estimates
were obtained using Agmon-type [1] positivity arguments in [6]. We
note here that for the n** Dirichlet eigenfunction u, . those estimates
can be improved to give

L _o(t—6)/e
lun.ellL2(riey) < Coe?e (€-8)/ )

for any 6 > 0 in the case of a straight tube with cross-section D,.
For this, it suffices simply to replace the weight p in [6] with p(z,) =
Tny (%)2 — En(e), za €]0,4].

Here we concentrate on the lower bound in (1.1). It depends
upon a lower bound on the first Dirichlet eigenfunction (which is non-
negative) in C(g). In [2], we obtain a lower bound using a Harnack
inequality and a comparison principle for parabolic equations. Here,
we give a different proof which results in an L?-lower bound for
Ue = U3, in the tube.

THEOREM 1.2 Let u, be the first normalized Dirichlet eigenfunction
on C(e) C R™. For all 22 €]0,£[ 3Co = Co(z2) > 0 such that for any
6 > 0 and for all e > 0 small enough

ntd —azx®
elIL2(Dex [28,6]) = “O ’
el g) 2 Coe' T +oemasnle 3)

where a? is the first Dirichlet eigenvalue for D; C R"™1,

We mention that more general results are given in [2]. Although
lower bounds on the splitting are well-known for the Schrédinger op-
erator —h?A+V on R" in the semi-classical regime (see, for example,
[9] and references therein) not that much is known for the Dirichlet
Laplacian on bounded domains. One such result is due to Singer,
Wong, Yau and Yau [12]). If Q is a bounded convex domain with
diameter d and D = max{§ | B(§,2) C 2}, then they prove

%wd‘z < AE < 47x%nD7?
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(which is a special case of a more general result).

In section 2 of this note, we derive Theorem 1.1 from Theorem
1.2. This derivation is rather well-known (see {5], [10],[11]) so we
simply sketch the proof. In section 3, we prove Theorem 1.2.

2 Bounds on AFE : Proof of Theorem 1.1

We sketch the derivation of Theorem 1.1 given Theorem 1.2. We use
the method of Helffer and Sjéstrand [5] which reduces the estimation
of AFE for §(¢) to that of estimating the first Dirichlet eigenfunction
for C(¢) in the tube (see also [10], [11]). Let M; = IntC; UT(¢), i =
1,2, be the left and right cavities with the tube attached, respectively.
We consider the Dirichlet Laplacian P; = —A; on L%(M;), i = 1,2.
Let ¢£i) be the first Dirichlet eigenfunction for P; with eigenvalue
Eo(e). Let x; € C°(R™) denote cut-off functions such that Vx; is
supported in {(z',2,) | £ — n < 2, < £} and Vy3 is supported in
{(z";2) | 0 < 25 < 7} for some > 0 small, and such that x; is
identically one on the rest of M;. Then 9; = Xi¢£') € D(P(g)) and

P(e)yi = Eo(e)w; — (2Vx: - Vo) + (Axi)¢l), (4)

for ¢ = 1,2. Let E be the subspace of L%(2(¢)) spanned by {11, %2}.
Let u; be the first two eigenfunctions of P(¢) on L?(Q(e)) and let
F be the subspace spanned by these eigenfunctions. Since the error
terms in (2.4) are localized far from the cavities where ¢£') are small,
E should be a good approximation to F. To quantify this statement,
we need the following result of [6] (modified as described in section

1).

ProrosITION 2.1 For 8 = 0,1, for all K > 0, there exist constants
Csx, Cpx >0 and an €9 > 0 such that for e < gg and i = 1,2,

-K)azl) e i ~ -
eGP gD 21y < Cpuce™0PK (5)

where a:g) =2z, and :cg) =z,-Land Cox =0, C1 x = 1.
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We conclude from Proposition 2.1 that
bt 80l = 0 (e (6)
for any <. Consequently, following Helffer-Sjostrand [5] we easily
obtain

ProPOSITION 2.2 Let Ip : L2((e)) — E be the projection onto E
along FL. For £ < ¢, the matriz o P(¢) |g, in the basis {¢1,%2} for
E, has the form

Eq 0 5 -270:/3
(% )+ W)+ 0(ere) ™
where, for 1 < 1,5 <2, W;; =0 and
Wi = [ xi (9o - efvel) v @)

Furthermore, W;; = O(e""’T/‘).

We analyze the interaction matrix (W;;) in the usual manner (see
(10], {11], [2]) and omit the details here. We mention only that we
use the symmetry of the eigenfunctions and the Poincaré inequality
for D,.

ProProsITION 2.3 For any f<tandalle sufficiently small,
2 2 -
AE(e) >4 ((2) - Eo(e)) / dzn/ dzl¢§2)(z)2 ¥ 0(6—2011/3).
€ 0 Ds
9)

Proof of Theorem 1.1 (given Theorem 1.2)

1) Lower bound. We obtain directly from (3) (using symmetry,
1) = R¢{D) that

£/2 n
/ dz,./ dz'¢§2)(z)2 > Coez(l+—;f—5+6)e—az/e, (10)
0 Dg

so the result follows from (2.11) and the fact that | Eg(e) —
Ey |< C, where Ej is the first Dirichlet eigenvalue for C.
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2) Upper bound. From (2.8), it is easy to find an upper bound on

AFE :
42 (2) 12 (2) 2
AE < 4/ d:c,./ da' {| 3ug) | +Eofe) | 4 I}

0 Dg

+0(e—2at/e)’\ (11)
for any i<t Consequently, from Proposition 2.1, we obtain

AE < Cye=olle, (12)

for any £ < £. This proves the theorem. o

3 Proof of Theorem 1.2: Lower Bounds for
Straight Tubes

We sketch the proof of Theorem 1.2 in this section. We refer to [2]
for a different proof and more general results. Our goal is to derive
an L%-lower bound for the first Dirichlet eigenfunction restricted to a
small tube. Let C be a bounded, connected, open region in R™ with
a C%-boundary (this can be relaxed, see [2]). We choose coordinates
so 0 € 8C. Let D; C R""! be an open connected bounded region
with smooth boundary and define D, = D1, a scaled cross-section.
Let the tube T(¢) be defined by D, x [—8,£], for § > 0 small so that
{(z',-8) | z' € D.} C C. We also define T(¢) = C° N T(e) and set
i = max{z, | (', %) € C N T(¢)}, the first point of contact, along
the z,,-axis from z,, = £, of the tube T'(¢) with 8C. We also require an
obvious transversality condition: ¥(0)-Z, > 0, where v(p), p € 8C, is
the outward normal. We define C(g) = IntC U T(¢), the cavity with
a small tube attached.

We need notation for several operators associated with these re-
gions

1) —A is the Dirichlet Laplacian on C(¢) with first eigenfunction
e @ —Au, = Eq1(e)ug;

2) —Ac is the Dirichlet Laplacian on C with first eigenfunction
Upg - —Acuo = El’lLo;
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3) —A, is the Dirichlet Laplacian on D; with eigenfunctions b,
and —Apb, = a;‘;bp, p=12,...

Note that if —A,/ . denotes the Dirichlet Laplacian on D,, then
the corresponding eigenvalues are (ap/¢)? and the eigenfunctions are
bpe(a') = e~ (T )by (2 /).

We prove Theorem 1.2 by contradiction. We suppose 3 z2 € ]0, £,
a constant Cp > 0 and a sequence £,, — 0 such that, for each € = ¢,

l|tellz2(De x[22,4) < Coe™ e=oen/e (13)

where Ny = 1+ (n + 5)/2 + §, for any § > 0. We propagate this
estimate back to a neighborhood of zero in dC. There, we compare
u, with ug. We conclude that in an e-neighborhood of zero in C,
B(0,en) N C, n sufficiently small,

llwoll L2(B(o,cm)nc) < Coe? 1+ (14)

On the other hand, we have the following special case of a lemma
of Hopf (see [4], section 3.2).

LEMMA 3.1 Suppose L is a uniformly elliptic operator on Q0 and
Lu > 0 on Q with u(zg) = 0 for some zg € IN. Suppose O is
sufficiently smooth (C? suffices), u is continuous at zo, and u(z) < 0
on Q. Then the outer normal derivative of u at zo satisfies a strict
inequality:

du
a—u(zo) > 0.

We apply this lemma to L = A¢c+ F and u = —ug on C. Since ug
is the first Dirichlet eigenfunction, u satisfies the hypotheses of the
lemma. We conclude from the positivity of the normal derivative at
zo that 3 Co > 0 such that for 7 sufficiently small

ug(z) > Cod(z,8C), Y z € B(0,en)NC.
Consequently, we conclude that for ¢ sufficiently small

Coe™*% < |luollz2(B(o,enmne)- (15)
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This contradicts (14).

We now prove estimate (14) in 4 steps. In the first, we obtain
some a priori estimates on u, following from (13). Next, in the
second, we expand . in T(¢) in the eigenfunctions b, of —A,r,
and show by ODE techniques that (13) implies that u. is small near
z, = . We use Harnack and other inequalities in step 3 to extend
these estimates for u, and Vu, into a neighborhood of zero in C away
from the corners 0C N T (¢). Finally, we compare ug and u,. in such
a region and derive (14).

Step 1

We begin with some a priori estimates on %, in T'(¢). Recall from [6)
that E1(€) g El as £ — 0.

LEMMA 3.2 For each a € N™ 3 N, > 0 such that |0%u.(z)| =
O(e~Ne) for z € D.X]p, 4.

ProOF These estimates follow from the Sobolev embedding theorem
for T(¢) and a scaling argument. (=]

LEMMA 3.3 Fork = 0,1, llarlfusllH‘([a:?&e'l]ch) < COEN'_k—le_a”?'/’.

PrOOF Let x. € C®, x. > 0, be s.t. x.|[z2+¢,€] = 1 and supp x. C
[22,00). Then xt¥)(z) = O(e~*)V k. We consider

A(Xete) = —Ey(€)Xete + 2VXVu, + (Ax.)u. (16)
which implies

IV(xewe)ll> = Ei(e)lIxete]l* — 2 (XcOnties (OnXe)u)
- (“n (3ﬁxs)u=)
=E (€)||X¢u¢”2 = 2(0n(Xete), (OnXe)te)
+2”(6an)“¢“2 - (“e, (33.Xe)ue) .

It follows from this and (13) that

Vel 2D x (e 4o,y = O™~ e0%/%), (17)
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from which the result for ¥ = 0 is evident. For & = 1, it suffices to
estimate
Hvue”iqp,x[zgﬂ,q) < Cillxeuell* + Call(0nxe)Onue|l?
+C3”(812;X=)"€”2v

which follows from (13) and (17). o

Step 2

In this part of the proof, we use the assumption (13) to obtain esti-
mates on 8%, in a small cylindrical region near z,, = . We use ODE
techniques to estimate the coefficients occurring in the expansion of
u. in T'(e) in the eigenfunctions of —A,.

For all z with z, > u, we expand u.(z) as

ue(z) = E < ue(*yZn), bpe >D, bpe(z'). (18)
p21

The coefficient B, (25) =< u.(*,Zs), bp,e >p, satisfies the ODE

d? a,\?
o7 Brelen) = ((?) - Bie)) Bl
n
for z,, > u, so we obtain
Bpe(zn) = acereEn—nle | B e~ilzn—n)/e (19)

where .
Toe = @} — 2 Ey(€))z.

Evaluating B, . at z, = u, we obtain
20 = Bpo(1) + €70 By (1) (20)

20 = Bpe(1) — €5 By (i) (21)
where
B;),c(/»‘) =< aut("ﬂ)/axm bP,E >.



42 R. M. Brown, P. D. Hislop and A. Martinez

It follows from Lemma 3.2 that for some N > 0,
Joce| + 18e| = O(e™™) (22)
The Dirichlet boundary condition u(z’,£) = 0 and (22) imply that
a, = O(e~2ep/5¢~N), (23)

Next, we express Bp.(z,) in terms of B, (u) plus a small re-
mainder. From (19), we have

Bye(2n) = Bpe(w)e <=0 4 ro(z,)
where
re(zn) = e Pe @ IIE(BL (u)esh - o) + e ne,
Evaluating this at z,, = p and using (23) we find
re = O(e~Ne=o¢/?),
so that
Bpe(2n) = Bpe(u)e ool 4 O(e~Nemewle).  (24)

Since {b,.} is a complete orthonormal set for L%(D.), we compute
forz, > u

||u¢("-"7ﬂ)"i2(1),) = Z IBz’.c(-"’rt)'2

p21

= Z | < u¢("“)’bp,¢ >D, |2e—2'7p.¢'(3n—#)/¢
r21

+0 (e‘Na;-?e“"’/"“P’"/‘) } )

(25)
where we used the fact that 4 = O(¢) and

|Bye(1)| < Koeg, (26)
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as follows, for example, from the formula (35) below. We extract the
2

p = 1 term from (26). Note that by Weyl’s law, o, = O (pF:T) We

obtain

|Iue(-,rn)||L2(D,) = < u(yp)bie >p, e—M,(Tn—u)le
+0(e—ala:,,/e)

for z, > u + 8. The error term depends on §, but is uniform in e,
even if § = O(¢).

We combine this result with the hypothesis (13). For ¢t > 0, z’ €
DE’

(27)

.1:9,+e
u(z',28 +¢) = / Oue (', zn)dzy + u.(z',1)
t azn

and, upon integrating over t € [z + ¢,£], we get

’r .0 ¢ Ou, , , 2 ’ 2
u(z',z, +e)<C / ('y20)| + lue(z',zn)|* | dzy | -
z0+e azn
This implies
lue(-s 29 + €)llz2(p,) < Clltelln (D, x (o8 +e,0))- (28)

From the hypothesis (13) and the expansion (27), we conclude that
< ue(',l‘)abl,c >D.= 0(5Nl-1)- (29)

In [13], Davies gives a general estimate on boundary behavior
of eigenfunctions provided the boundary is smooth. Applied to the
present situation, we have the following: 3 C > 0 s.t.

/
sup 1@

< Coal. 30
z'eD, bl,c(z’) = 0T ( )

Using this result together with (29) gives

< u () bpe >p,= O (eN“la,?)
and, combining this with (24) gives

< u(yp + c€),bpe >p,= O (a,?e"’P/ceN"l) . (31)
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Again, using the fact that {b,.} is an orthonormal basis for L?(D,)
and the above estimate on a,, we obtain

Nue(-, 1 + cellz2(p,y = O€™1) (32)

For k > 2, we consider u. in a cylinder near z, = u of the form
Dge X [n + €[k, p + ¢x], for 6 €]0,1[. From a local boundedness
theorem for W1+2-solutions (see [4], Theorem 8.17), we have

sup te < €73 Col|tel|L3(Dyepx 1) (33)
Dge x[ute/(245),u+ex]

where Co = Co(8,u,k) and I, = [p+¢/(2+ k), + €(k + 0)]. This
result, together with (32), yields

sup u, =0 (EN"L';?*'&) . (34)
Dge x[u+e/(245),u+ex]

Step 3

We extend estimate (34) to an e-neighborhood of 0 in C(g). For a
constant C > 0, define

Ace = B(0,Ce)NC(e).

We note the following well-known bound on Dirichlet eigenfunctions
¢« for a bounded domain,

|$u(@)] < €3N f4m)™/2, (35)

which is proved, for example, in [2]. This allows us to derive the
bound

lleellzaqac,) = O(™?) (36)
which, for n > 2, is stronger than the bound which follows from

the Poincaré inequality. We first use the Harnack inequality in the
interior of Ag.. For Cg > 0, we define

Boye = Ace \ {z]d(z,C(¢)) < Coe}.
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Estimate (34) and a version of the Harnack inequality due Jerison
[7] (see also [2]) yield

sup u, = O (eN‘_l;d') . 37

BCol

To extend (37) from Bg,. to Ac. we have to use the boundary
Harnack inequality developed for non-negative solutions to parabolic
equations of the form Lu = Au — d;u = 0, where A is an elliptic
operator (see [3] for a discussion). This estimate applied to u, states
that 3 C; > 0 depending only on the Lipschitz character of dC(¢)
such that for any z € 9C(¢),

sup ue < Crue(z + Coe). (38)

B(x,Coe)nC(e)

This immediately implies

supu, = O (EN‘_%J') . (39)
Ac.

We next obtain an L%-estimate for Vu, in A¢c. \ 3, JC» Where

/o = {.z- € C(e)\d(z,0C N T (¢)) > ée}

It is known that the gradient is poorly behaved near the corners.
We must assume that the boundary set 3C(¢) N (Ace \ >, /C) is C2.

We need the following lemma, which is a version of a Caccioppoli
inequality (see [14], for example, for a proof).

LEMMA 3.4 Letu € (H NH)(Q). Letr >0,z € Q, andn>0,n€

C>, be a smooth cut-off function such that n|B(z,r) = 1, supp n C
B(z,2r). Then

/ Vu|2 < C (e"l/ |Vu|2u? +/ nzuAu)
B(z,r)N B(z,2r)NQ B(z,2r)nQ

foranye > 0.
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To continue the proof of the theorem, we apply, the lemma to
#.. From estimate (39) and the fact that Au, = O(1)}, we obtain a

boundary estimate for r = Xe,z € 8C(e) N (Acc \ E:{C):

f |Vu[? = O(e27172). (40)
Bz, fC)NC(e)

Finally, we obtain an interior L%-estimate on Vu, as in (40) by
choosing z in Lemma 3.4 such that B{z,2r) C Ag, (so r = O(¢) as
above). These results yield

Ve f? = 02N, 41
S, 170l = 0 (4

Step 4

We now relate estimate (39) on u, and the L2-estimate (41) on Vu,
to ug. Let x € C§°(B(0,2)) be a smooth cut-off function such that
x 2 0,x|B(0,1) = 1. Define a function in C by

te(z) = (1 — x(z/Coe)Jue (2},

where Cp > 0 is chosen such that T(e)ndC C B (0, Qgi) We have
that @, € H*(C) N H}(C) and hence

which follows by a simple calculation. The remainder r, has the form
e = 2(Coe) X Vx. Ve + (Coe) 2 (Ax)u,

and, due to the support of x’ and estimates (39) and (41}, the re-
mainder r, satisfies

lirell 2y = O™ =*2). (43)

Let T’ be a simple closed contour about E; independent of £. We
take ¢ small enough so F;(¢) lies inside I'. By a simple calculation
based on (42), we have for z € T

(=Ac = 2)" '8, = (Eq(e) — 2) 718, — T, (44)
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where
Te = (Er(e) - z)‘l(—Ac - z)'lr,,

and
IFellzac) = O =5/%). (45)

Since E; is a simple eigenvalue, the integral of (44) along I' and
estimate (45) yield

e =< U, up > up + O(M~5/2), (46)
Note that |C\{z|x(z) = 1}| = O(e") so
IZell2(cy = 1+ O(e™~%/2). (47)
These two results, (46) and (47), imply that
Te = ug + O(eM~%/2)

in L*(C) and for each ¢ = €, — 0 as in (13). We take z € {z €
C|d(z,0) < Coe}, so there %, = 0 and

ug(z) = O(eM~5/2), (48)

Since ug is independent of ¢, this estimate holds for all € sufficiently
small. We now recall from Lemma 3.1 that ug(z) > Cod(z,08C), for
Co > 0 independent of €. This lower bound and (48) imply

Cie™t? < / ud = O(e2M1-%).
B(0,Ce)nC
Since Ny =1+ 52'—5 + &, we obtain a contradiction for ¢ sufficiently
small. This concludes the proof. m]
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1 Introduction

The study of nonlinear diffusion and free boundary value problems
frequently leads to a Volterra integral equation of the form

u(z) = /Oz k(z — s)g(u(s))ds (1.1)

either by consideration of a special case or by choice of similarity
variables. For such applications see, for example, Keller (1981) and
the many references given by Okrasiriski (1989).

We suppose that for some ¢ > 0:

(g) gisan increasing absolutely continuous function on [0, ¢], g(0) =
0 and u/g(u) — 0 as u — 0t}

(k) k is a monotone absolutely continuous integrable function on
(0,d] with k(z) >0for 0 < z < d.

Equation (1.1) has the trivial solution u = 0, but since g does not
satisfy a Lipschitz condition in [0, ¢}, there may be other nontrivial
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solutions, that is, a solution u with « > 0 in (0,d)] for some d > 0.
These are the physically interesting solutions.
For the important special case

T
wz) = / (z - ) lg(u(s))ds (o >0) (1.2)
0
we have the following result.

Theorem 1 Let

¢ u l/adu
I(a) = ‘/0+ (M) 7

Then there ezists a nontrivial solution of (1.2) if, and only if, I(a) <
00.

This condition was discovered by Gripenberg (1981), the hy-
potheses relaxed by Okrasiriski (1990) and Gripenberg (1990), and a
simpler and more general approach provided by Bushell and
Okrasiziski (1990) and (1992).

Thus a non-trivial solution of (1.2) exists if g(u) = u!/? with

p>1andif g(u) = (ln -};)p with 8 > a, but there is only the trivial
solution u = 0 for (1.2) if g(u) = u or if g(u) = (ln %)p with 8 < a.

To generalize Theorem 1 we use the comparison method for pos-
itive integral operators, that is, under very general conditions, if

T
Tiu(z) = / ki(z,s,u(s))ds fori=1,2,
0

where
ki(z,s,u) < ko(z,8,u),

and there exists a nontrivial solution to the equation u < Tju, then
the same is true for the equation u = Tyu (see Gripenberg (1981) or
Zeidler (1986)).

The comparison equations are found using inequalities estab-
lished with the help of an identity due to Apéry (1953).
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Let K(z) = J3 k(s)ds and I{ ! denote the inverse function to K.
Let

I = [ lo(e)k o K"(s/g(s))]ds
and let

k= [ (6(s)/9(s) ™ (s/9())ds.

Theorem 2 (Necessary conditions). Let g and k satisfy conditions
(9) and (k), and suppose that equation (1.1) has a nontrivial solution
u in [0, d] with ¢ = u(d).

(i) If k is increasing and In k is concave, then I < oo.
(i1) If k is decreasing I3 < 0.

Theorem 3 (Sufficient conditions). Let g and k satisfy conditions
(g9) and (k). Then equation (1.1) has a nontrivial solution in [0,d]
with d > 0 if

either (i) k is increasing and I3 < oo,

or (i) k is decreasing, In k is convez and I) < oo.

The proofs of these results are given in Bushell and Okrasifiski (1992).
Following the remark in Bushell and Okrasiniski (1989) we can
suppose that the nontrivial solution is nondecreasing.

2 The Apéry Identity and Steffensen
Inequalities

An elementary calculation verifies the following version of Apéry’s
identity:

T A
/a f()h(s)ds = / £(8)d(s)ds
+ [ 1) - Sligs) - s)ds
+ [C156) - SOO()ds
+F0) [ / " h(s)ds ~ / > ¢(s)ds] . (@1)
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It is easy to deduce the Steffensen inequalities:

Lemma 2.1 Suppose that 0 < h(s) < h(z) fora < s < z and let

A=a+ / “[h(s)/h(<))ds.

(i) If f is increasing,

T A
/a f(s)h(s)ds > h(z) / f(s)ds. (2.2)

(ii) If f is decreasing

F A
/., F()h(s)ds < h(z) / f(s)ds. (2.3)

The full details of the proofs of Theorems 2 and 3 are somewhat
lengthy, but the main idea can be illustrated easily. Suppose that we
can find a nontrivial solution v to the equation

JECOEFCON S COVEON

Then, from Lemma 2.1 (i),
| He - oguends = [ k(s)g(o(a - ))ds
> g(w@NK ( [ lotols)/s(o(@)lds)

= v(2),

and the existence of a non-trivial solution to equation (1.1) follows
from the classical comparison theorem.

3 Power Nonlinearity

The function g(u) = u!/? (p > 1) is of particular interest in applica-
tions. In this case, if ’17' + % =1, then

I = gK~Y(9)
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and y
I AN
Ig_p-/m O
If k(0) = k(l)(O) == k(’“‘)({]) and k(“)(O) > 0, it is easy to

establish the a priori bounds on a solution,
ma(te < y(z) < Melntie

and existence and unigqueness of a nontrivial solution follows using
weighted metric fixed point methods as in Askhabov and Betilgiriev
(1990) or projective metrics as in Bushell and Okrasitiski (1989).

Kernels such as ky(z) = exp(-1/z%) and ky(z) =
exp(— exp(1/z™)) are not covered by the theorems given above, How-
ever, Okrasinski (1991) has shown that nontrivial solutions exist for
ke with 0 < & < 1 but do not exist if & > 1. Very different conditions
which apply to these extremely flat kernels have been given recently
by Szwarc (1992),

4 Estimates and Bounds for Solutions

A second identity due to Apéry leads to a simple proof of further
inequalities due to Steffensen. The identity is as follows:

T z o—X
[ 1neds = [ e - [T (- X) - fo)lats)ds

x

— [ 1) 1z - MI8(6) = Aol
~ fa =0 { [ #ys - ["nsyis}.

Lemma 4.1 Suppose that § < h(s) < h(z) fora < s < z and let
A= [7[h(s)/h(z))ds.
(i) If f is increasing

[ 1 s)ds < ba) [ ss)ds.
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(ii) If f is decreasing
/az f(s)h(s)ds > h(z) /I:\ f(s)ds.

The inequalities in Lemmas 2.1 and 4.1 provide bounds on solu-
tions to equation (1.1).

Example. Bernis and McLeod (1991) consider a fourth order
nonlinear diffusion equation. Using similarity solutions they reduce
the problem to an equation of our type. An important step in their
analysis is the establishment of a lower bound for a solution of the
equation

u(z) > (k/6) /b “(z = Pu()mdt

with k>0, m>1and 2 >b>0.
Consider the slightly more general problem

u(z) > ad /b " — )= Lu(t)/mdt

with A > 0 and a, m > 1. Assuming, as usual, that the solution u
is non—decreasing, it follows from Lemma 4.1 (ii) that

u(z) > adu(z)/™ (z — ) 1dt
A

r—

and hence that
x
u(z)m=1+e)/em Al/a/ w(s)/mds = w(z), say.
b
From the last inequality it follows easily that
w'(z) > AYow(z)™/ (m-1+e)

and hence that

s

When a = 4 we obtain

m—1 4m/m~-1
> - m/m—1/, _ pydm/m—1
u(z) > (m - 3) A= — gy,

which is a constant multiple of the function found by Bernis and
McLeod.

m—1 ma/m—1
—— a) {Al/a(z _ b)}ma/m—l'
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Abstract

Lower bounds for time averages of mean square displacement are
discussed in terms of the Hausdorff dimension of the spectrum.

1 Introduction

A few decades ago D. Ruelle [10] stated the first general result relat-
ing space-time behaviour for solutions of the Schrodinger equation
with the spectral type of the corresponding quantum Hamiltonian.
Equipped with technical refinements this result became the well-
known RAGE theorem [11] which supports the conventional wisdom
that continuous spectrum manifests itself in the time decay of local
space averages whereas point spectrum implies localisation in con-
figuration space. Variants of this theorem have been proved by Enss
and Veselic for time periodic forces [3) and Jauslin and Lebowitz for
quasi periodic time dependent forces [8]; here point spectrum of the
Floquet operator (or more generally the quasi-energy operator) is
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Floquet operator (or more generally the quasi-energy operator) is
related to quantum stability whereas a continuous spectrum implies
unbounded growth of the energy. The need for quantitative refine-
ments of these general connections appeared in the last ten years with
the investigation of models in solid state physics exhibiting “extraor-
dinary spectra” (in the terminology of Avron and Simon [1]) like
dense point spectrum or continuous singular spectrum supported on
Cantor sets. Such models reveal in addition “unusual” dynamical be-
haviours as opposed to what is “usual” for well-behaved potentials;
to be more precise let

(A(t)) = (1, Apr) (1)

with 9, the solution of the Schrédinger equation with %,—¢ = %o and
A a self-adjoint operator such that v; € D(A) Vt € R if 1 does. For
A = |X|?, the mean square displacement, one thinks of “ordinary”
dynamics as either the localisation regime where < |X|%(t) >< C Vt
or the ballistic regime where |X|?(t) >~ Ct3(t — o0), which are
supposed to correspond respectively to discrete or absolutely con-
tinuous spectrum from our experience of well-behaved (locally and
asymptotically) potentials (although this has no general mathemat-
ical ground). On the other hand it is well-known that intermediate
behaviours between these two exist. For example in the hierarchical
models considered by Jona-Lasinio et al. [9] one has < |X|%(¢) >~
C(Logt)? for some 8 > 0; but more generally the importance of
these intermediate regimes is due to the relation between the “diffu-
sion constant”:

_—H 1 2
Dy, = lim 3 <|XP(t)> (2)

and static conductivity. Without going into the details of this connec-
tion (see e.g. [4], [15]) let us just mention that one electron models of
metals (resp. insulators) should have 0 < Dy, < oo (resp. Dy, = 0).
Thus in particular diffusive behaviour is the rule in models of con-
ducting media and one would like to know which type of spectra is
responsible for this. Clearly connections between these “extraordi-
nary” spectral and dynamical properties go beyond the mere RAGE
theorems which might not even provide the right intuition. For ex-
ample think of the naive conjecture that Dy, = 0 corresponds to
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a pure point spectral measure for 1g; although it is correct that
< |X)3(t) >< C Vt implies that 1o has no continuous component
the only general result about the converse is a recent one by B. Si-
mon [12] stating that in this last case tl-ggtl? < |X|3(t) >= 0 which
is far from the expected answer Dy, = 0. One of the reasons why
our intuition might be misleading is that unusual spectra like dense
pure point or singular continuous are very unstable. As shown e.g. by
Simon and Wolff [14] and Howland [6] even a rank one perturbation
with arbitrary small norm can induce a transition from one type to
the other. On the other hand one does not expect that the dynamics
should be strongly affected by such perturbations. Thus if one be-
lieves in this last argument any “extraordinary” dynamics produced
by some singular continuous spectral measure should also show up
with some pure point measure obtained from the first one by a small
perturbation; in other words Simon’s result might be optimal!

The interest into such questions is not limited to the choice
A = |X|?; when considering external time-periodic forces it is nat-
ural to let A be the internal energy operator. Then one considers
< A(nT) >, n € Z, where T is the period so that A(nT) = FrAF~"
with F the Floquet operator. Boundedness of < A(nT) > is related
to quantum stability and this problem has attracted considerable
interest recently in connection with quantum chaos since classically
chaos manifests itself through a diffusive growth of energy. It would
be of course of primary interest to have criteria allowing to deduce
such a diffusive growth from spectral properties of the Floquet oper-
ator (conditions for F' to have pure point spectrum will be discussed
by J. Howland [7] in this conference).

It turns out that the first step towards a refined RAGE theorem
obtained by I. Guarneri [5] was motivated in fact by the investiga-
tion of dynamical localization for the kicked rotator. This problem
is one particular aspect of quantum diffusion on a one dimensional
lattice; Guarneri provides arguments, both heuristic and rigorous,
to connect time asymptotic regimes with what he calls “spectra of
peculiar type”. More precisely he obtains remarkable lower bounds
on < A(t) > in terms of the lattice dimension d, counting func-
tion for A and Hausdorff dimension of the support of spectral mea-
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sures with respect to the evolution operator over one period of time.
These results will be described in §2 below; they imply in the case
A= XXX € Z%) that

N
3 <IXP(r) >2 CN™/4/(log NY/* (3)

n=0

where o is the dimension of the spectral measure for o (see def.
below) and the time period is chosen equal to one. Forgetting about
the logarithmic term, which seems to be a technically irrelevant con-
sequence of Guarneri’s method, we notice that for d = 1 the time
behaviour is at least ballistic for the absolutely continuous spectrum
(a = 1) and localized for point spectrum whereas diffusion requires

a < 7" This is no more true for d > 2 and diffusive behaviour does

not seem anymore incompatible with absolutely continuous spec-
trum. One might think that this is due to the fact that Guarneri
considers only lattice dynamics and Floquet spectrum instead of the
Hamiltonian spectrum as in the RAGE theorem. Surprisingly it ap-
pears that Guarneri’s bounds can be extended to quantum dynamics
on R? this follows from recent results of R. Strichartz [13] about
Fourier transform of a-dimensional measures which provide a sub-
stitute to Guarneri’s Dirichlet like estimates for Fourier series; this
will be described in §2 below.

2 Spectral Dimension and Quantum
Diffusion
Let us first describe Guarneri’s lower bounds [5] for the spreading of

wave-packets in terms of the Hausdorff dimension of the spectrum.
Consider time averages:

1 N
<<A>>r= % 3= < Fypo, AF™ g > (4)

n=0
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where F is the evolution operator over an interval of time Ty, T =
NTjy and A is a self adjoint operator having a spectral decomposition

A=) (lk])lex >< el (5)
keZd
where ||ex|| = 1Vk € Z4, the function ¢ being positive non decreasing,

(If To is one period of some time periodic perturbation then F is
just the Floquet operator.) For ordinary lattice dynamics of tight
binding models one takes A = | X|2(X € Z%)so that ¢(]k|) = |k|?> and
ex(m) = §km¥m € Z2. For the kicked rotator the dynamics is given
by periodic kicks and A is the kinetic energy A = 3 ;2.7 k%lex ><

ex) where ex(0) = (27r)"%e”‘9 are the angular momentum eigenstates
etc... The counting function for A is defined as:

v(z) = # {k € 2%, ¢(|K|) < =} (6)

To state Guarneri’s result one needs to make a very specific assump-
tion about the spectral measure puy, of the initial state 1o with re-
spect to the unitary operator F.

DEFINITION 2.1 A positive measure p on R is said to be locally uni-
formly a-dimensional if for some positive constant C

#(B:(2)) < Cr® (7)

for every ball B,(\) of center A and radius r,0 < r < 1.
(The measures considered here as defined on the Borel sets of R
and are only assumed to be locally finite.)

We refer to [13] for the properties of such measures. In particular
one can show that they are absolutely continuous with respect to the
a-dimensional Hausdorff measure p, and admits a Radon-Nikodym
decomposition p = pdus + v where v is null with respect to pus in
the sense that ¥(B) = 0 for any B such that u,(B) < oo.

Examples of such measures have been constructed e.g. by Avron
and Simon [1] in connection with their analysis of recurrent abso-
lutely continuous spectrum.

We can now state Guarneri’s main result:
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PROPOSITION 2.1 If py, is locally uniformly o dimensional then for
sufficiently large T and for allz > 0

<< A>>1>z[l1-Civ(z)T *log T| (8)
for some constant Cy.

A remarkable consequence of (8) follows from its application to A =
|X|2, X € Z4 here one has v(z) ~ Cz#?2 from which it immediately
follows that for T" large enough:

<< A>>1> C T*/4/(log T)Y? (9)

The basic ingredient in the derivation of (8) is the following in-
equality obtained by Guarneri by elementary Dirichlet like estimates:

<K< P >>r<CT %log T (10)

where P, = |ex X ex]. Such an inequality is in fact a weak form of
a result of R. Strichartz [13] stating that if y is a locally uniformly
a-dimensional measure on R and f € L?%(du) then the Fourier trans-
form fdu satisfies:

T —
supT>~" [ |fdul)Pat < CIf1E (1
T>1 0
This suggests to consider now time averages
1 (T
<< A>>r= -T—/ < A(t) > dt (12)
0

with < A(t) > given by (1) and A of the form (5). Let P be the
projection operator on the cyclic subspace generated by {¢,t € R};
then Vk:

Poex = [ fu(NdExto (13)

where E) is the spectral family for the Hamiltonian (or quasi-energy)
operator.
Furthermore fi € L?(duy,) with

[1£llZ = |Poexl|* < 1. (14)
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Since fk@%(t) =< ¢,e; > inequality (11) implies the stronger
form of (10):
<< Pr>>rLCT™* (15)

From this it follows as in [5] that if py, is locally uniformly a dimen-
sional then Ve > 0 and T > 1:

<< A>>12 2 (1 - Civ(z)T™°) (16)

which is a generalized form of Guarneri’s inequality (8).

There is an obvious difficulty if one wants to apply (16) to the
investigation of quantum dynamics on R? instead of Z¢ as Guarneri
did since then A = |X|? is obviously not of the form (5). This can
be easily overcome if we make the extra assumption that g has
bounded energy; then one has for example:

PROPOSITION 2.2 Let the quantum Hamiltonian have the form H =
—A +V on L*(R?) where V is real and bounded below. Let v €
D(ef!) be such that if po = ef ey then duy, is locally uniformly a-
dimensional; then for T > 1:

<< | X2 >>7> ¢ T/ (17)

Let us mention briefly how one can obtain (17) from (16); one has:

<IXP@) >2 Y (K <y, xxpr > (18)
keZ4d

where x; is the characteristic function of {X € Rd,kj < X; <
kj+1,7=1,...,d}. Then write

(lbn Xk¢t) = (‘Pta Ak%) (19)

with ¢; = ey, and Ay = e Hyie H; using e.g. semi-group kernel
inequalities it is easy to see that Ay is trace-class and denoting by
||Ak||1 it’s trace norm one has

14kll: < Clle®xxe®(lx = lle®x0e[l1 < 00 (20)

so that ||Ax||1 is uniformly bounded in k € Z4.
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Then (11) implies easily that:

sup << Ax >>7< C T7°|| Ay (21)
T>1

for some constant Co < co. Returning to (18) one has Vz € N:

<< |X]2>>7 T Vinpsz 72 << Xn >>T
z|1- EI"PSx]nP << Xn >>T]

z|(1-C :cd/zT"']

vV IV IV

where we have used (19) and (21) in the last step; this gives (17).

Remark: The arguments developed above can also be used to derive
directly inequalities like

<< 1+ X P>>p<CT? (22)

2
for any 6 < 22 under the same assumptions as in Prop. 2.1; details
will appear elsewhere [2].

3 Concluding Remarks

The dependence of bounds like (17) or (22) on space dimension, in
particular in the case of absolutely continuous spectrum is somewhat
unexpected from the conventional wisdom inherited from RAGE the-
orem. However this appears as natural if one thinks that in disor-
dered media trajectories should look more like random walks rather
than the well-behaved asymptotic straight lines of potential scatter-
ing models which motivated Ruelle’s initial work. Of course there
remains the question of whether these bounds are sharp; in partic-
ular Definition 4 of the dimension of a measure is somewhat am-
biguous. As emphasized by Strichartz [13] a-dimensional measures
with 0 < @ < 1 need not exhibit any fractal behaviour; however if
in the Radon-Nikodym decomposition of an a-dimensional measure
with respect to Hausdorff measure p, the coefficient of pu, is the
characteristic function of a quasi-regular set then the upper-bound
(21) has an associated related lower-bound. This is enough to get
directly lower-bounds e.g. for << (1 + |X|?)™" >>r for y > %.
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In this note we discuss an idealized model of irreversible chemical
reaction. Actual chemical reactions involve a large number of chem-
ical species and many intermediate chemical reactions. For example,
it is argued in [20] that the production of water by combination of
molecular hydrogen and molecular oxygen is described by a reaction
sequence involving eight chemical species and a minimum of sixteen
reactions whereas a more complicated process such as methane oxi-
dation involves twelve chemical species and twenty two reactions. In
an effort to make such processes analytically and computationally
tractable various idealized models have been put forth. The model
which we consider describes an irreversible exothermic chemical of
the form,

A+B — 2B
2B — Products.

This is the idealized two step reaction of Zeldovich [26] as formulated
by Niioka [18]. Here it is assumed that the first reaction has a high
activation energy and negligible heat release and that the second
has negligible temperature dependence and high heat release. If we
account for diffusion the partial differential equations modelling this
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reaction sequence are of the form:

Oufot -V - dy(z,u,v,0)Vu = —uv f(6), (1)
Ou/0t — V - dy(z,u,v,0)Vv = uv f() — uv?, (2)
00/6t — V - d3(z,u,v,0)V0 = uv?, (3)

for z € Q,t > 0. We impose homogeneous Neumann boundary con-
ditions,

0uf0n = Ov/On =08/0n =0 (4)
for z € 0N2,t > 0 and require that the initial data

u(z,0) = uo(z) v(2,0) = w(z) O(z,0) = bo() (5)

for z € Q be continuous and nonnegative on . We stipulate Q is
a bounded region in IR™ with smooth boundary 952 such that §
lies locally on one side of 3f2. Admittedly only n = 1,2, or 3 have
any physical significance, however, assumption of arbitrary spatial
dimension does not change our analysis.

We assume that there exists a,b > 0 so that

0 < a < max{d;(...),d2(...),d3(...)} < b

and that each d; € C*({ x R3). The nonlinear function f() rep-
resents a prototypical Arrhenius temperature dependence. It is non-
negative, monotone increasing, smooth and uniformly bounded. It
has the form,

0 if6<0
f (0){‘ Ke El® if 9> 0,

where K and E are positive constants. Roughly speaking the vari-
ables u and v represent concentrations of A and B respectively with
@ representing a nondimensional temperature of the reaction vessel.
The homogeneous boundary conditions require that the vessel is in-
sulated and that these chemical species remain confined to the vessel
for all time.

Extensive treatments of chemical reaction kinetics may be found
in [6, 8, 9, 14, 20]. In the note at hand we extend semilinear results
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appearing in [10] and argue that solutions are globally well posed and
detail their asymptotic convergence. The mathematical literature on
this type of reaction diffusion system is extensive and the interested
reader is referred to (3, 4, 5, 7, 4, 11].

If u: @ — IR we shall denote the n—dimensional gradient by Vu
and its Euclidean norm by |Vu|. The space time cylinder  x [0,?)
will be denoted by Q: with Qo denoting © x [0,00). We shall use
the standard Lp(Q?) spaces (p > 1) whose norms will be denoted by
|  ||p,@ With the norm on C(Q) being denoted by || % {|oo, -

Our first result provides global existence of solutions and precom-
pactness of their trajectories.

Theorem 1 There ezists an unique classical solution to (1 - 3) on
Qo such that u(z,t) > 0, v(z,t) > 0 and 6(z,t) > 0, and a constant
M > 0 so that

zuog{u(:c,t),v(z,t),0(:c,t)} <M. (6)

Finally the trajectories I'(uo, vo,8) = {u(,t),v(,t),6(,t) | t > 0} are
precompact in C(2).

Proof: Local existence, uniqueness and continuous dependence fol-
low from arguments of abstract parabolic theory due to Amann, [2].
The non-negativity of solutions is a established by standard max-
imum principle arguments. If one can establish the existence of
uniform a priori bounds for solution components on [0, Tjax) then
Amann’s continuation arguments’, [2], yield global wellposednessed.

Adding the components and integrating on Q7,,,, we immediately
obtain

/Q(u(:c,t) + v(z,t) + 0(z,t))dz = /Q(uo(:c) + vo(z) + bp(z))dz (7)

and the non-negativity of solutions yields the existence of uniform
a priori L; bounds for the solution components on [0, Tiax). It is
straightforward to observe that

Il 2(:2) lloo,@ <1l #0() lloo0 for ¢ € [0, Trnax)-
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To obtain uniform a priori bounds for the second component we
observe that,

f(@)uv — pv? = v[uf() — po)
< vfuf(6))

a.lld fOl' (z,t) € QTmax

u(z’t)f(o(z’t)) S K ” Uo ”oo,Q .

It is now possible to utilize Moser-Alikakos iteration, cf. Alikakos,
(1], to bootstrap the L, to a uniform L., bound. This is a lengthy
and complicated argument which will not be reproduced here. The
reader is referred to [11] for the application of the argument to a
similar system. Uniform a priori Lo, bounds for 8(,) are produced
in a similar manner. The existence of these bounds allows us to
conclude that Ti,ax = 0o and that (6) holds. Furthermore, the fore-
mentioned work of Amann guarantees uniform a priori bounds imply
precompactness of tractories.

If one knows that trajectories, I'(ug, vp,0) are precompact one
may draw upon the powerful results of abstract LaSalle-Lyapunov
theory, cf [15]. We have the following result:

Theorem 2 If uo(z), vo(z),00(z) > 0 for v € Q then the following
are lrue

Jim | (,2) [loo,0= 0 (8)
Jim | o(,8) lloo0= 0 (9)
lim | 6(,1) ~ wo [loe,0= 0 (10)

where wo = |Q|™Y| fo(uo + vo + bo)dz.

Proof: Let w denote the w-limit set for ug,vo,0p. By virtue of the
precompactness of trajectories we know [15] that each trajectory
I'(uo,vo,00) has a compact, connected forward invariant w-limit set.
Our verification of (8 - 10) subdivides into several parts. We first
argue that if (u*,v*,0*) € w(uo,vo,0) then v* = 0 establishing (8).
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Using v* = 0 as initial data we establish that u* is really a con-
stant function ¢, and that this ¢ is uniquely determined and that
¢ = 0 establishing (1.6a). By similar techniques we show that 6* is
a constant function. Therefore if strictly positive initial data is cho-
sen for this system the one-dimensional subspace of IR of the form
{(0,0,a) | a € R*} acts as a global attractor.

If we add the first two components and integrate on §;, we obtain

/n(u(:c,t) + v(z,t))dz +/0t/nMvz(:c,s)d:c < /n(uo + vo)dz, (11)

Therefore, the improper integral [7° || v(,3) [|3q ds exists. If we
multiply (2) by v() and integrate on  we obtain

%d/dt || v(,t) ||§,9 +/n dg(z,u,v,0)|Vv|2d:c

< K | o) IZall G 0) lleo + 1l 9(: 1) 30,0

Consequently, there is a uniform upper bound for the quantity
d/dt(|| v(,t) I3 q)- This together with the finiteness of the improper
integral and the boundedness of || v(,t) ||2,0 imply that

lim || o(,1) [ls0= 0 (12)

We can bootstrap the Ly(£2) convergence of v to L (§2) convergence
by closely examining the estimates produced by the Moser-Alikakos
iteration scheme. If we retrace the argument of Theorem 2 [11], we
can construct a constant N > 0 so that,

([ oae]™ <[] )

and (9) follows immediately from (12) and (13) by taking the limit
as k — oo.

To establish (8) we point out that trajectories I'(ug,vo,0g) are
precompact in Ly(2) as well as being precompact in C(2). We shall
argue u(,t) converges to an unique constant function in Ly(2) as ¢t —
0o. Therefore any convergent subsequence u(,t;) must also converge
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to this constant function in L(§2). We thereby establish a constant
function in the first spatial component of w(ug,vo, ) in Lo (§2). We
then argue that this constant function must be zero. We point out
that if (2., v.,0.) € w(up,vo,0p) then the previous argument insures
that v, = 0. If we multiply (1) by u() and integrate on @; we observe
that

40,2 la<ll o Il

and we may observe that || u(,t) ||2,0 is nonincreasing in ¢ and
bounded below. We let r = lim;—,o || u(,?) [l2,0 - It is clear that
if (u.,0,0.) € w(ug,vo,00) then || u. [|20= r. We solve the ini-
tial value problem (1-3) with initial data (u.,0,6.) € w(uo,vo, o).
Parabolic uniqueness implies the reaction terms decouple and solu-
tions are given by (u(,1),0,8(,t))T where u and 8 satisfy,

0ufdt —V -dy(u,0,0)Vu=0 (14)
06/8t — V - d3(u,0,0)V8 =0 (15)
with
Oufdn =00/0n =0 forz € AN
and

u(z,0) = u.(z) and 6(z,0) = O.(z) forz € Q.

Forward invariance of w(ug, vo,8p) implies that for ¢ > 0 ||u(,t)||2,0 =
r =|| u(z,0) ||2,0 - Thus if we multiply (14) by u(,) and integrate on
(J: we obtain

t
/ / d1(u,0,0)|Vu|’dzds = 0
0 JQ

We thereby conclude that || |[Vu| ||2,0= 0 and deduce that u(z,t) =
u(t) is spatially homogeneous. However, || u(t) ||2,0= r and thus does
not evolve in time. Moreover because lim;—,o || u(,t) ||2,0= r this
constant is unique. Hence w(uo,v0,600) = (c,0,0.). We now sketch
the argument insuring ¢ = 0.

We assume for the sake of contradiction that lim;—, o, u(,2) = ¢ >
0 in C(Q). The comparison principle implies that there exists an
a > 0 so that

f(0(z,t)) >a>0 for (z,t) € Qo-
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Consequently there exists a t; > 0 and a o > 0 so that if ¢ > ¢;, then

u(z,1)f(6(z,1)) > o.

Because v(,t) converges to zero, there exists a ¢ > 0 so that ¢t > {;
implies

0 < pv(z,t) < a/f2.
Thus, if ¢ > max{t;,¢,} then

Ov/ot — V -daVv > ov/2

This inequality precludes convergence of v( ) to zero.
To establish (10) we first argue that there exists an 7> 0 so that

r= lim [1661) ll20 (16)

Toward this end we select M > 0 so that sup || 8(,¢) ||c,a< M and
set
y(z,t) = M - 0(z,t).

We observe that y(z,t) > 0 for (z,t) € Q(o0). Moreover
Qy/0t — V - d3Vy = —pv?

If we multiply the above equation by y and integrate on 2 to observe
that

1
24/4(01 960 I30) + [ dslVyPdz <o0.

Consequently, || ¥(,¢) ||3 o is nonincreasing and we are assured of the
existence of r, = lim;_.o || ¥(,2) |3 o and we thereby deduce the exis-
tence of r satisfying (16). Thus if 6, € w(uo, vo,00) then || 6. ||2,0= 7.
We then solve (1-5) with initial data (0,0,6.) € w(uo,vo,8) and ar-
gue that d/dt(]| 6(,t) ||2) = d/dt(r) = 0. It is then not difficult to see
that @ is constant and that the value of the constant is determined
by

|2e = /n(uo + vg + bg)dz.
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We point out that our methods apply equally well to the case of
general quasilinear divergence from operators,

o ( znj d{"(z,u,v,o)a()/az,-) /0zy.

Jik=1

From a physical point of view it is perhaps most important that the
diffusivities are allowed to be nonlinear functions of the temperature.
Our results agree with those obtained for semilinear models, [10] and
we are lead to the conjecture that nonlinear diffusion does not effect
the wellposedness or the longterm asymptotics. However, numerical
experiments indicate that nonlinear diffusion does qualitatively effect
the intermediate dynamics of the system.

Physically, our results are perhaps not too surprising. General
principles of chemical thermodynamics postulate that closed bal-
anced systems attract to constant steady states. In forthcoming
work we shall treat quasilinear models with nonhomogeneous Robin
boundary conditions. We point out that ideas contained herein will
be central.
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Abstract

We give here some conditions for having a Maximum principle
for cooperative systems with variable coefficients. They are stated in
terms of the first eigenvalue for cooperative systems. This yields a
necessary and sufficient condition in the case of a symmetric system.

1 Introduction

The Maximum Principle is a very important tool for many questions
concerning partial differential equations, not only for proving exis-
tence and uniqueness of solutions, but also for studying their quali-
tative properties as positivity, symmetry,... (see e.g. [14]). In recent
years there has been some progress concerning Maximum Principles
for linear elliptic systems. The results in [14] for the cooperative case
have been extended in (8], [9] (see also [15]), improving the sufficient
conditions given in [14] and providing a necessary and sufficient con-
dition in the constant coefficient case; this last result has been ex-
tended by the present authors to nonlinear problems involving the
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p-Laplacian A u:= div(| Vu |72 Vu),1 < p < 400, instead of A
(see interesting Maximum Principle for non cooperative systems was
given in [7)], see [4] for a general presentation of these developments).

A closely related problem is the existence of principal eigenvalues
(eigenvalues having positive eigenfunctions) for linear non coopera-
tive systems; we mention in this direction the results in [2], [12], [1],
(3], see also [5], [4].

In this short note, we give some conditions for having a Maximum
Principle for cooperative systems with variable coefficients. They
are stated in terms of the first eigenvalue for symmetric cooperative
systems. This yields a necessary and sufficient condition in the case
of a symmetric system.

2 The Symmetric Case

We study first the symmetric case. Let Q be a smooth bounded
domain in IR®, we consider the following problem

(S) —Au; =37 aij(2)u; + fiin Q
u; = 0 on 09,

where the coefficients a;;(1 < ¢,j < n) are bounded and
a;j 2 0 for ¢ # ;. (1)

Such systems are called cooperative (or quasi-monotone). We assume
that f; € L%(Q).

We say that (S) satisfies the Maximum Principle if f; > 0 implies
u; > 0,7 = 1,...,n, for any solution (u;,...,%,). System (S) can
also be written as

—AU = AU + F in Q, U =0ond9Q,

where U (resp. F') denotes a column matrix with elements u; (resp.
fi) and A = (a;;) € M, ,. We also consider the eigenvalue problem
associated with (S): Find (A, U) € € x (H3(2))" such that

AU =AU + MU in Q, ()
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in the distributional sense.

The usual spectral theory for linear operators with compact in-
verse can be applied here (see [6]).

We consider first the case where A is symmetric:

aj; = ai;Vi,j=1,..., n. 3)
We can introduce the bilinear form defined on (H3(2))" by

L(U,V)= A [EVU,‘ - Vu; — E aij(:v)u;vj]. (4)
i=1

i,j=1

It follows from (1) and (3) that £ is continuous and coercive on
(H3(Q))™; more precisely, there exist positive constants ¢;,i = 0,1,2
such that:
L(U,V) < eo((U,V))
LU, U)+ e1(U,U) 2 e2((U,U))

where (U, V) (resp. ((U,V))) denotes the scalar product in (L3(Q))"
(resp. (H}(S2))*). Hence by applying the Riesz Theorem, we can
define self-adjoint compact linear operator associated to (4) in the
usual way. Therefore (2) admits an infinite sequence of real eigen-
values and the first one, which is simple, is given by the variational
characterization

M(S) = inf{L(U,U)/(U, U} U € (H3(2))"}. (5)

The existence of an eigenvalue of (2) which is simple and has a posi-
tive eigenfunction has been studied (also for non necessarly symmet-
ric systems) in [2], [12], [1], [3]; the main tools used there are the
Maximum Principle and the Krein-Rutman Theorem. Here (sym-
metric case), the fact that principal eigenfunctions do not change
sign follows from L(| U |,| U |) £ L(U,U), where | U |= (] u; |).

Theorem 1 If (1) and (3) are satisfied, then (S) satisfies the Maz-
imum Principle if and only if \1(S) > 0.

Proof The condition is necessary. Consider the “principal eigenvec-
tor” ® > 0. We have

—-A(=®) = A(-®) + M(S)(—®) in 2, and & = 0 on 9.
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When A;(S) < 0,2(S)(—®) > 0 and (S) does not satisfy the Maxi-
mum Principle.
The condition is sufficient. Multiplying (S) by u] = max(—wu;,0)

we get
n
/QVu.--Vu,-' =/Qj2=;¢lij(z)ujug-+/nfiui_'

Hence using classical results by Stampacchia

f1ve P = = [ S - v - [ g

n
< /Ea,-j(z)u;ui‘.
i

By adding these inequalities, L(U~,U™) < 0, so that, by (5),
/\l(S)’(U_7 U—) S 0.

Since by hypothesis, A1(.5) > 0, we obtain (U~,U~) = 0 and hence

It is very easy to check that the condition given in Theorem 1
coincides with the one in [8] in the constant coefficient case and n = 2.
If one looks for positive solutions of

—Au=au+bv+6uin
-Av=bu+dv+évin Q (6)
u=v=0 on 991

of the form (a1, Bp1), where (A1 (—A), 1) is the principal eigenpair
associated with the Dirichlet Laplacian on 2, one obtains the linear
system
[M(=A)=A—ala-b8=0
—ba + [/\1(—A) -A- d]ﬂ = 0;
the first eigenvalue A, of (6) which ensures that a > 0,8 > 0 is given
by

M= (-8)- 2242 fla—ap+ 4w

Now, it is easy to see that A; > 0 if and only if
[M(=4) = a]M(-4) - d] > 87,
which is the condition obtained in (8], [9].




Maximum Principle for Linear Cooperative Elliptic Systems 83

3 The General Case

When A is not symmetric, we can introduce £(U,V) as above and
still apply Lax-Milgram’s Theorem in order to treat the eigenvalue
problem (2); for doing this the symmetry of £ is not required. But
the associated compact linear operator is not self-adjoint, and the
corresponding general theory asin [6] cannot be applied; in particular
the variational characterization (5) is lost.

However, it is shown in [1] that there exists a unique principal
eigenvalue (eigenvalue associated with a positive eigenfunction) by
using a result of Krasnosel’skii ([13], Th. 2.5, p. 67). The results in
[12], [3], concern classical solutions and cannot apply directly to the
weak solutions of (2).

It is possible to obtain necessary and/or sufficient conditions for
the Maximum Principle by considering symmetric systems associated
to (S). Let us define the matrices

AV = (a,-jVaj,-) and A" = (aij"a’ji)
where

pvq := sup(p,q) and p-q := inf(p,9),
and let us denote by SV and S~ the associated (symmetric) systems.

Theorem 2 If the Mazimum Principle holds for (S), then A1(S) > 0
and A1(S°) > 0.

Theorem 3 If A\;(SY) > 0, then the Mazimum Principle holds for
(s) -

Proof of Theorem 2. The proof of the first part of Theorem 2
is exactly the same as the proof of the first part in Theorem 1 (the
condition is necessary). For proving the second part we adapt the

same proof. Denote by ®" the principal eigenvector associated to
A1(S"). Then, we have:

~A(-9")= A(-®")+ F in Q,8&" = 0 on 9

where F = [A1(S7)+ (A" = A)(—®") > 0if A;(S") < 0 and (S) does
not satisfy the Maximum Principle.
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Proof of Theorem 3. Multiplying (S) by u; and integrating by
parts, we get:

/Q|Vu: |2

-3 festest =i = [ g

i /n a;j(a:)u;u,-'

J=1

< jgl/n(a.-jVaj.-)(a:)u;ui_.

IA

By adding these inequalities,we obtain by (5)
M(SY).(UT,UT) <.

Since by hypothesis, A;(SY) > 0, we obtain (U~,U~) = 0 and hence
U>o.
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Abstract

By means of a similarity-like variable transformation we reduce
the model governing flows in fluid filled elastic tubes to the form of a
2 X 2 quasilinear nonhomogeneous autonomous hyperbolic system of
first order partial differential equations. By requiring the latter to be
consistent with a pair of additional equations which define Riemann-
like invariants along the concerned characteristic curves, we carry out
a reduction approach for determining exact solutions to the model
under interest.

1 Introduction and General Remarks

Several methods of approach have been proposed in order to de-
termine exact solutions to nonlinear partial differential equations.
Among others, group analysis and Backlund-like transformations
have shown to be an useful tool for the study of a number of problems
encountered in engineering and industrial applications of mathemat-
ics as well as in theoretical investigations of wave propagation. An
exhaustive list of recent references on this subject can be found in
(1] and [2]. Without the afore-mentioned framework a great deal of
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attention has been paid to work out reduction techniques for quasi-
linear systems of first order of the form

U, + A(U)U, = B(V) (1.1)

o=[3] as[amam] e-[R]
v az az2 b2

z and t are space and time coordinates, respectively. Here and in
the following a subscript means for derivative with respect to the
indicated variable. Furthermore we asume the system (1.1) to be
strictly hyperbolic [3]. That is tantamount to require the matrix A
to admit two real distinct eigenvalues A and p (characteristic wave
speeds) to which there correspond two left eigenvectors 1) 1(#) a5
well as two right eigenvectors d(*), d(#) spanning the Euclidean space
E2.

When B = 0 (e.g., source absence) a standard way to look for
solutions to the model in point is represented by the hodograph trans-
formation which is obtained by interchanging the role of dependent
and independent variables. The integration of the resulting linear
second order equation in the hodograph plane can be investigated
by means of the reduction approach to canonical forms developed
in [4]. That permits to characterize special classes of material re-
sponse functions to governing models of physical interest which can
be relevant to simple wave interactions [5], [6].

In cases where a source term like B must be taken into account
in the governing system there has been proposed [7], [8] a variable
transformation in order to link (1.1) to a model of a similar form.
Hence a procedure to reduce nonhomogeneous 2x 2 systems to canon-
ical form allowing for a close integration or to linear form has been
carried out and model constitutive laws concerning different physical
contexts have been deduced [9-11].

As far as wave propagation is concerned, it is to be remarked that
the term B does not allow the Riemann field variables defined by

where

r(U) = / I . 4y, s(U) = / W .4 (12)



Flows in Fluid Filled Elastic Tubes 89

to be invariant along the characteristic curves associated to (1.1).
Such a circumstance recently motivated in [12] an “ad hoc” technique
to search for exact solutions to (1.1). The leading idea of this method
of approach lies in the investigation of the consistency of (1.1) with
a pair of additional equations of the form

Fo+ A(r,8)F; =0 (1.3)

Gt + p(r,8)Gz =0 (1.4)

where the functions F(r,s) and G(r,s) are to be determined and
they satisfy the condition

a(F,G)
a(rs) *

(1.5)

It is very easy to ascertain that the functions F' and G fulfilling
(1.3) and (1.4) play a role similar to that of the standard Riemann
invariants r and s of the homogeneous case. However in the present
case only particular solutions of (1.1) are to be expected to satisfy
also the additional equations (1.3) and (1.4) since the latter act as
“constraints.” In other words, for admissible F and G we will deter-
mine the solution r(z,t), s(z,t) (or U(z,t)) for which (1.3) and (1.4)
hold.

As most of the reduction techniques based upon hodograph-like
transformations, the approach proposed in [12] can be used for de-
termining exact solutions to 2 X 2 autonomous models. The main
aim of the present paper is to show, in a specific case, that the
afore-mentioned method of approach in combination with a similar-
ity reduction suggested by group analysis permits to obtain exact
solutions to 2 X 2 nonautonomous systems as well. We illustrate the
procedure for the model governing flows in fluid—filled elastic tubes
[13] supplemented by constitutive laws involving response functions
of suitable form.
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2 The Governing Model and Similarity
Reduction

Flows in fluid—filled elastic tubes can be described by the following
system of equations [13]

S vS;+ ¥
ot vy = 222t ¥ 2.1
Pt + vp +Spv A (2.1)
ve+ kps +vvp, = f— kP, (2.2)

where p is the transmural pressure, v is the fluid velocity, S = S(p, )
is the cross—sectional area and it is assumed S/S, > 0, P = P(z,t)
is the external pressure, ¥ = 1/p with p being (constant) density,
¥ = ¥(p,v,z) represents the outflow function and f = f(p,v,z,t) is
the viscous retarding force. S, ¥ and f are the concerned material
response functions which have to be specified in the present case. In
general they depend upon the field variables p and v as well as upon
the independent variables z and/or t so that the governing model
(2.1), (2.2) results to be nonautonomous.

In [14] there has been shown that the system of equations un-
der interest is invariant with respect to infinitesimal transformation
groups if the involved response functions obey the restrictions

S = So(z)exp [ / E%] 2.3)
¥ =S [——d(h:i(f“)) +2]+ e w) (2.4)

f=k(ap+0b)+ gvz + kP, + H(II,w)exp (/%dm) (2.5)

where

II = (p—po) exp (—/a(z)dm) —/b(a:)exp (-/a(z)dz) dz (2.6)

w = vexp (—/ gdz) (2.7)



Flows in Fluid Filled Elastic Tubes 91

a(z), b(z), So(z), g(I1), Q(II,w) and H(II, w) are arbitrary functions
with g(II) > 0. Moreover pp = const. and b = b — pq.

It is possible to show [15], [16] that by means of the similarity
transformation

p= [H(i‘,t) +/5exp (—/adz) dz] exp (/adz) (2.8)

v = w(Z,t)exp (/ gdz) (2.9)

z= /exp (-— /%dz) dz (2.10)
the system (2.1), (2.2) can be reduced to the autonomous form
I, + wllz + g(INw;z = —g(INQ(IT, w) (2.11)

we + kH_-E + wwz = H(H,w) (212)

which falls into the class (1.1).
The characteristic wave speeds associated to (2.11), (2.12) are
given by

A=w+ k(D] p=w—[kg(M)'/? (2.13)
so that in the present case we have
1 = [(k/g)1/2a 1], 1) = [_(k/g)lﬂ’ 1]

whereupon the Riemann variables (1.2) specialize to
r=w+ /[k/g]l/zdII s=w-— /[k/g]l/zdl'l. (2.14)

According to the analysis carried on in [12] for later convenience

we write the system (2.11), (2.12) in terms of the variables (2.14),
namely

re+ Arp = 5y (2.15)

¢+ psg = P (2.16)

where

B=1Y.B=H-Q[kg]'/* f2=1".B=H+Qlkg)"/? (2.17)
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3 Existence of Riemann—Like Invariant
Quantities and Exact Solutions

It is well known that if the wave speeds A and pu satisfy the excep-
tionality conditions [3]

VA-dV =0 Vu.d® =0 (3.1)

where V = (3%, 33;) then r = u and s = A. Consequently, for 2 x 2
homogeneous hyperbolic and completely exceptional (CEX) systems
the Riemann invariants are given by the characteristic speeds. A
classical example is given by the system of isentropic fluid—dynamics
supplemented by a Vén-Karman-like p — p law.

Bearing in mind (2.15) and (2.16) the afore-mentioned result con-
cerning Riemann invariants is no longer true for 2 X 2 nonhomoge-
neous CEX systems (otherwise it turns out to be B = 0). Within the
theoretical framework outlined in the introduction let us require the
system (2.15), (2.16) to be consistent with two additional equations
of the form (1.3) and (1.4) where F = p and G = A, respectively,
so that (1.5) is fulfilled. Of course, taking into account the remark
made above about nonhomogeneous 2 x 2 systems, we assume that
the characteristic wave speeds do not satisfy the exceptionality con-
ditions (3.1).

Looking for solutions of (2.11), (2.12) (or equivalently of (2.15),
(2.16)) such that g—}%‘:} # 0 and owing to (1.5) we can perform the
following change of variables

F=2F,G)=i\p) t=tFG) =ty  (3.2)

whereupon the set of equations (2.11), (2.12), (1.3), (1.4) takes the
form

T 8

h=7 p=F (3.3)
A 7

Iy = A Z, = ut, (3.4)

Cross differentiation in (3.4) produces the wave-like equation

tay =0 (3.5)
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so that the functions Z(A,u) and t(, u) satisfying the pair of equa-
tions (3.4) are given by

z = AM'(A)+pN'(n) - M(X) — N(p)
tdu) = M)+ N(p) (3.6)

where M(A) and N(pu) are arbitrary functions and upper prime means
for derivative with respect to the indicated variable. The next step
in our approach is to insert (3.6) into the pair of equations (3.3) and
to determine appropriately the functions M(A) and N(u) in order
that the resulting conditions are satisfied. Thus, from (3.6) we will
get the particular solution w(Zz,t),II(Z,t) of the system (2.11), (2.12)
for which (1.3) and (1.4) hold with F = p and G = ), respectively.
The solution in point, by means of the transformation (2.8) to (2.10)
will prove a particular solution p(z,t),v(z,t) to the nonautonomous
governing system (2.1), (2.2).
In the present case we have

A+ p
2

A+ p

+T(¢)  s(Ap)=——-T() (3.7)

r(A,p) = 5

where

=20 < k(P 1) = (/g (3.9)

In order to show some possible solutions to the model under in-
vestigation, as far as the relations (2.3) to (2.5) defining the response
functions are concerned, in the following we assume that the viscous
retarding force is of the form [13]

f(p,v,2) = ¢(p, z)v (3.9)

as well as that _
a=20 b+ P, =0. (3.10)

According to (3.9) and (3.10) in (2.5) we set

H(Il,w) = HM)w. (3.11)
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Relations (2.17) yield Q = 'Q?{—Eﬂ‘- and H = Q‘%& so that owing
to (3.6), (3.7) the pair of equations (3.3) specializes to

1 dl
@ = e {1+ G} 10l = m()} (312)
BOO+m =3 {1+ G} W40} G1)

where m(/\) = MT:'L(XT and n(p) = N%(‘—J.
A direct inspection shows that the system of equations (3.12),
(3.13) are satisfied if M(A) and N(u) fulfill the relations

m(A) = mo + mid+ med®  n(p) = —mo+ map — map® (3.14)

where mg, m;, my are constant and in turn the functions Q and H
involved there adopt the form

QUl,w) = —% {% + di%]-l} {mo + m1€ + ma(w? + €%)} (3.15)
H(I) = {% + [5—191]— }(m1 + 2my¢) (3.16)

with g(II) arbitrary. In deducing (3.15) and (3.16) use has been made
of relations (3.8).

By prescribing g(II), i.e., through (2.3) the cross—sectional area
law, the insertion of (3.15) and (3.16) into (2.4) and (2.5) will define
possible model laws for the outflow functions ¥ and for the viscous
force f (linearly dependent upon velocity according to (3.9)).

In particular by assuming

o = 3 (3.17)

with h # 0 constant, (2.3) specializes to

h
S(z,p) = So(@) { [P - 2o + P(&)]} (3.18)
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with So(z) and Il = const. arbitrary, whereas (2.4) and (2.5), re-
spectively, reduce to

. dS P—P0+P}h (1 )(ﬁ)‘” 12
v = —vdz{ T + 2+h 5 (P—po+P)
k 1/2
{rotma (5) " G-m 2
k 1/2
x[(z) (p—po+P)1/2+1]+m202} (3.19)

f(p,v,z) = (% + h) {m1 + 2ma(kTlo/R)/2(5/50)/% } v, (3:20)

Within the present framework as far as the exact solutions to
system of equations (2.11), (2.12) are concerned, from (3.6) several
possibilites arise in connection with different choices of the parame-
ters mo, m; and m; involved in relations (3.14) as well as in (3.19)
and (3.20). Here we will consider only two cases where explicit solu-
tions to the system under investigation can be obtained.

i) mo = 0, m; # 0 and my arbitrary. By inverting (3.6) and
making use of the variable transformation (2.8) to (2.10) we gain

m[(1 — e™2X)? — 4m2em2xtmi7]
16m2e?max(1 + miemi7)2

X{((l _ emgx)2 _ 4mgemzx+myr]l/2

p(:r,t) = po—P($)+

£(1+ )} (3.21)

my(1 — e~™2X)

t) =
’U(z$ ) 4m2(1+m§e"‘1")

{14 e™X £ [(1 — emax)?

—4mZemxtmiT|l/2} (3.92)
where ) .
x=z+M r=t—-N (3.23)

and M and N are arbitrary constants coming out from integrating
(3.14).
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ii) mg = 0,m; = 0,my arbitrary. Here an approach similar to
that above yields

h (e(’"z/z)x - e—(7"2/2)x)4

4ls:m§1'2

p(z,t) = po — P(z) + (3.24)

em2x -_— e—m‘ZX

v(z,t) = (3.25)

2myT

In both cases i) and ii) considered above there are no restrictions

on the function P(z) simulating external pressure in the governing
model (2.11), (2.12).

4 Conclusions and Final Remarks

The method of approach we developed herein in order to determine
exact solutions to the nonautonomous system governing flows in
fluid—filled elastic tubes was essentially based on two steps. First, by
considering the general classes of material response functions (2.3)
to (2.5) allowing for the existence of group symmetries to the model
in point as shown in [14], we used the similarity-like variable trans-
formation (2.8) to (2.10) in order to reduce the system of equations
(2.1), (2.2) to the autonomous form (2.11), (2.12). Furthermore for
the latter system we worked out a procedure for finding out the con-
cerned solutions for which the model (2.11), (2.12) is consistent with
two additional equations like (1.3) and (1.4) with a prescribed form
of F and G suggested by a well established result for 2 x 2 quasilinear
homogeneous hyperbolic systems of first order. Of course, along the
same lines of the analysis worked out hitherto other forms of F' and G
can be considered. In these cases a leading idea to prescribe F and G
is to achieve, by means of the transformation (3.2), a hodograph-like
system (see (3.4)) which can be reduced to a canonical form allowing
for an explicit integration [4], [5]. In the process we have been able to
provide a vehicle for characterizing possible model constitutive laws
to the governing system under interest. About that concern we re-
mark that we have some freedom to choose the function g(II) which
characterizes the cross—sectional area law and which is involved also
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in (3.15) and (3.16). Finally, we showed some (explicit) exact solu-
tions to (2.1), (2.2) which can be obtained by means of the present
method of approach. Nevertheless, the relations (3.6) with M(A)
and N(u) defined by (3.12) may provide further exact solutions to
the model in point although they will be determined in general in an
implicit way. Apart their own theoretical value these solutions can
be used for testing numerical procedures to the system (2.1), (2.2) as
well as for studying wave propagation into nonconstant states repre-
senting nonuniform tube flow regimes where dissipation is taken into
account.
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1 Introduction

The main purpose of this paper is to describe the construction of new
solutions V of the Korteweg—deVries (Kd V) hierarchy of equations by
deformations of a given finite-gap solution V. In order to describe
the nature of these deformations we assume for a moment that the
given real-valued quasi-periodic finite-gap solution Vp is described
in terms of the Its—Matveev formula [34] (see, e.g., (3.43)). The basic
ingredients underlying this formula are a compact hyperelliptic curve
K, of genus n,

2n

m=0

and an associated Dirichlet divisor

Dy (z0)+++iin(z0)> (1.2)
Differential Equations with Copyright © 1993 by Academic Press, Inc.
Applications to Mathematical All rights of reproduction in any form reserved.
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2n 1/2
fij(zo) = (uj(wo), (H (Em - ﬂj(-"«’o))) ) ,

m=0
w;i(zo) € [E2j-1,FE2), 1<j<n, zo € R fixed
(see Section 3). Here the parameters {Em}?" , in (1.1) (charac-
terizing the branch points of K;) and the projections {u;(z0)}7=,
in (1.2) are spectral parameters of the underlying one-dimensional
Schrédinger differential expression

d2

o=~

+ W (13)

in the following sense: The spectrum o(Hp) of the self-adjoint oper-
ator

d? 2
Hy = —.d.'l,—'z +Vo on H (IR) (1.4)
in L?(R) is given by
o(Ho) = | J[Ex(j-1ys E2j-1] U [E2n, 00) (1.5)

ji=1

and the spectrum a(Hé?xo) of the Dirichlet operator H(fro associated
with 79 and an additional Dirichlet boundary condition at zo € R
d2

Heyy = gz TV (1.6)

D(Hs,) = {9 € H'(R)N H*(R\{z0}) |g(zo0) = 0}

is given by
0(Hgme) = {1i(20)}}=1 U o(Ho). (1.7)

Deformations of the spectral parameters F,,, m = 0,...,2n and
ui(zo), 7 = 1,...,n in the corresponding Its—Matveev formula then
yield new solutions V' of the KdV hierarchy. In particular, it follows
from (1.5) that deformations of {E,,}?"_, produce non-isospectral
deformations of solutions of the KdV hierarchy, whereas deforma-

tions of {f1;(20)}}=, are isospectral with respect to Hp.
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Perhaps the simplest and best known non-isospectral deforma-
tion is the one where one or several spectral bands are contracted
into points, e.g.,

[E2(mo—1)’ E?mo—l] —_— A‘mg- (1.8)

In this case K, degenerates into the singular curve K,

2n
Kn— Ky : 4% = O — 2)? II (Em —2), (1.9
m=0
m#2me—1,2mg

Vo — Vi(Am,) (1.10)

and the resulting solution Vj(An,,) represents a one-soliton solution
on the background of another finite-gap solution V, corresponding
to the hyperelliptic curve

2n
Kooy: y? = II (Em — 2) (1.11)
m=0
m#2mo—~1,2mo
of genus n — 1. Applying this procedure n—times finally yields the
celebrated n—soliton solutions V;(Ay,...,A,) of the KdV hierarchy
(see [48], [49)).

On the other hand, varying fi;(zo), 1 < j < nindependently from
each other traces out the isospectral manifold of solutions associated
with the base solution Vj.

In Section 2 we give a brief account of the KdV hierarchy using
a recursive approach. Section 3 describes real-valued quasi—periodic
finite-gap solutions and the underlying Its—Matveev formula in some
detail. (It also describes the mathematical terminology in connection
with hyperelliptic curves needed in our main Section 5.) Section 4
introduces isospectral and non-isospectral deformations in a system-
atic way by alluding to single and double commutation techniques. In
Section 5 we present our main new result on the isospectral set I|r(Vo)
of smooth real-valued quasi—periodic finite-gap solutions of a given
base solution V5. (To be precise, we only represent the stationary,
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i.e., time-independent case since the insertion of the proper time-
dependence poses no difficulties.) Finally, in Section 6 we sketch
some generalizations and open problems in connection with infinite-
gap solutions and consider the limit of N—soliton solutions as N — oo
in some detail.

Throughout this paper we confine ourselves to the KdV hierarchy.
However, our methods extend to other 1+ 1-dimensional completely
integrable nonlinear evolution equations and to higher—dimensional
systems such as the KP hierarchy. Work on these extensions is in
progress and will appear elsewhere.

2 The KdV Hierarchy

In order to describe the hierarchy of KdV equations we first recall
the recursive approach to the underlying Lax pairs (see, e.g., [3], [44],
[46] for details). Consider the differential expressions

2

L) = —a 4 V(a0 (2.1)

1, . d .
Z%[—§fj,1: (:E,t) + fj(z’t)d_z]L(t)n—Jv

P2n+1(t)

where the { fj }7—o satisfy the recursion relation

~

fo = 1, (2.2)
A 1. - - .
2fj,1: = "‘2‘fj—1,1:1:1: + 2ij--l,:z: + szj—la 1<j<n.

Define also fn+1 by
A 1. . .
2fn+1,z = _ifn—l,:c:c:c + 2an-—1,1: + V:z:fn——l- (2'3)

Then one can show that

[P271+17L] = 2fn+1,1:7 (24)
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where [.,.] denotes the commutator. Explicitly one computes from
(2.2) for the first few f,

fo =1, (2.5)
2 1
fl = §V + ¢, (2'6)
2 _ 1 3 2 CI
f2 = 8 zz T 8V + 2V+C2, (27)
f3 - 32 V:z::z::z::z: 16VV;,;;,; 32V + 6V
Cl 1 3 2
+351 4VM+4V]+2V+c3, (2.8)

where {c;};cy are integration constants. We shall use the conven-
tion that all homogeneous quantities, defined by ¢; = 0,1 € N, are
denoted by f; := fJ(cl =0), Popy1 := P2n+1(cz =0),l € N, ie,

fO = 1, (29)
1
ho= 5V (2.10)
1 3
fr = -3 u+§V2, (2.11)
1 5 5., 5.3
f3 = 32Va::c:c:c 16VV.7:1: 32V +16V (2-12)

The KdV hierarchy is then defined as the sequence of evolution equa-
tions

KdV,(V): = Vi—[Pu-1,L]=Vi —2fn41(V) =0,
n € IN U {0}. (2.13)
(Since the fn+41 are differential polynomials in V we somewhat abuse

notation by writing foy1 (V) for foy1 (z,t).) The first few equations
of the KdV hierarchy (2.13) then read

KdVe(V) = Vi-V, =0, (2.14)
KdW(V) = Vit i—vm - gvvr =0, (2.15)
KdVy(V) = V= 2 Vessas + 3V Virs

+Z-VIVN — 185 ViV, =0, (2.16)
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with KdV;(.) the usual KdV equation. The inhomogeneous version
associated with (2.13) is

Vi = [Pony1, L] = Vi—2fns12 (V) (2.17)
= Vt - 22 Cn—j fj+1,_-,;(V) = 0, Co = 1.
=0

The special case of the stationary KdV hierarchy characterized by
V: = 0 then reads

fa+1,2(V) =10, resp. Z en—jfi+1,(V) = 0. (2.18)

j=0

Particularly simple solutions of (2.18) for n = 1,2 are

V(z) = 2P(z + v'; g2, 93), (2.19)
KdVy(2P) = 0, (2.20)

V(z) = 6P(z + v'; 92,93), (2.21)
KdVy(6P) - 28—1g2KdV0(6”P) 0, (2.22)

where P(z; g2,93) denotes the Weierstrass elliptic function with in-
variants g2, g3 and half-periods w, ', w > 0, —iw' > 0 (2].
Next define the polynomial F), in z

n

ﬁ‘n(z,:v,t) = Z Z fn—j(v(x’t)) = f[ [z = pj(z,t)], n € NU {0},

3=0 7=1
(2.23)
whose zeros we denote by {u;(z,?)}7,. Then (2.17) becomes
1- N -
‘/t = _5 n,rrx + 2(V - Z)Fn,z + Van. (2.24)

In the following we specialize to the stationary case V; = 0. However,
as will become clear from the paragraph following (3.42) (see also
the end of Sections 4 and 6), corresponding solutions for any time—
dependent element of the KdV hierarchy can easily be obtained.
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Assuming V; = 0 we get

Frges + 20V —2)Eng + Vo En = 0. (2.25)

BN | =

Integrating (2.25) once results in

Fn,zr Fn - 'I‘F2 - 2(V - Z)Fz = —2R2n+1(2), (226)

2 n,r

where the integration constant —2Rj,41(2) is easily seen to be a
polynomial in z of degree 2n + 1. Thus we may write

2n
Ron1(z) = ] (Bm - 2) (2.27)

denoting by {En}*_, the zeros of R2n+1. A comparison of powers

of z in (2.26) then yields the trace relation

2n n
V()= Y. Em—2)_ pj(z) (2.28)
m=0 i=1
and the first-order system of differential equations

(2) = 2R (s (e)Y? TL (@) - (@))%, 1< 5 < e (2:29)
=1
I#j
Since V; = 0 implies )
[Pant+1, L] =0 (2.30)

the (inhomogeneous) stationary KdV hierarchy is defined in terms
of commuting ordinary differential operators. By a result of Burch-
nall and Chaundy [7], [8], (2.30) implies that P,,; and L fulfill an
algebraic equation. One readily verifies that the polynomial R2n+1
enters this algebraic equation in the form

2n
P22n+1 = Ront1(L) = H (Em — L). (2.31)
m=1
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Hence one is led to hyperelliptic curves

2n
y? = Rant1(2) = [ (Bm —2) (2.32)
m=0

in a natural way. Returning to our simple examples (??)-(?7), one
computes for n=1:

V(z) = 2P(z+u'; 92,93), (2.33)
P = -I%+ %L - 243 (2.34)

(an elliptic curve), and for n=2:

V(IL') = 6’P(x +wl; g27g3)’ (2.35)
5 21
Ps =P5——8-92P1, (2.36)

21 9 27
(Ps— 592 P1)" = (L*=3g3)(-L°+ 7 2L + - 93)-(2:37)

3 Finite-Gap Potentials, Its—Matveev
Formula

Any V satisfying a stationary higher order KdV equation of the type

farreV) =3 enj fixr (V) =0 (3.1)
j=0

will be called a (stationary) finite-gap potential. In order to explain
this terminology we make the following two hypotheses:

(H.3.1) V € C*(R) is real-valued.

(H32) Eg<Ey << By,

In particular, (H.3.2) implies simple zeros of Ran41 and hence
yields a nonsingular hyperelliptic curve (??). In addition one can
show that (3.1) together with (H.3.1) and (H.3.2) imply quasi—perio-
dicity and hence boundedness of V (see (3.36)). Hypotheses (H.3.1)
and (H.3.2) will be assumed throughout the end of Section 5. More-
over, the one-dimensional Schrédinger operator H in L%(R) defined
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by
H = —ji +V on H%*(R) (3.2)
dz?
(HP(Q), @ C R, p € N the usual Sobolev spaces) is self-adjoint with

spectrum o(H) given by
a(H) = |J [Eaj-1)» E2j-1]U [E2n, ). (3.3)
J=1
Thus H has finitely many spectral gaps pn,
po = (=0, Eo), pj = (Ea2j-1, Epj), 1<j <. (3.4)

Moreover, u;(y) defined in (2.23) are the eigenvalues of the Dirichlet
operator Hf in L?(R)

HP ’Ed;? +V, (3.5)
D(H)) = {ge H'(R)n H*(R\{y})| g(y) = 0}

with a Dirichlet boundary condition at y € IR. In addition,
pi(y) €p;, yER, 1<j<n. (3.6)

(See, e.g., [57] for proofs of (3.3)—(3.6).)

In order to describe the Its-Matveev formula [34] for potentials
satisfying (3.1) and Hypotheses (H.3.1) and (H.3.2) we need to dis-
cuss the hyperelliptic curve

2n
v'=Bon1(2) = [[ (Bm—2), Bo<Ey<--<Ezn (3.7
m=0
in more detail. (See [15]-[17], [24], [26], [30], [44], [46], [48], [50], [57]
for reviews on the remaining material of Section 3. Our terminology
will follow the one in [24] and [26].)
We employ the usual topological model associated with (3.7) by
considering two copies of the cut plane

o =0\ | p; (3.8)
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and joining the upper and lower rims of the cuts p; crosswise. This
leads to the compact hyperelliptic curve K, consisting of points

P = (z, R2n+1 (2)1/2), z €Q and P (3.9)

(P the point at infinity obtained by one-point compactification)
with branch points

(Em,0), 0<m < 2n, Py. (3.10)

We also need the projection

K, — QU {oo}
M:{ P=(z,Ronp1(2)"?) — 2 (3.11)
P — 00

and the involution (sheet exchange map)

. K, — K,
" P=(2 Rans1(2)"?) — P* =(z, —Rans1 (2)/?).
(3.12)
The upper sheet I of K, is then declared as follows. Define

lim Rony1(M + 1) = —|Rpnpa(A +30) /3|, A< Ey  (3.13)
€

on II, and analytically continue with respect to A. Local coordinates
¢ near Py = (20, Rant1 (20)'/?), P then read

(z - 20), 20 €Q\{En}or,
(={ (z=E)Y? z%=E, 0<m<2n (3.14)
2‘1/2, 20 = 00.

A convenient homology basis {a;,b;}}_; on K, n € N is then chosen
as follows: the cycle a; surrounds the cut p; clockwise on II while
bj starts at the lower rim of 5, on Il,, intersects a;, then encircles
Ey clockwise thereby changing into the lower sheet II_, and returns
on II_ to its initial point. The cycles are chosen in such a way that
their intersection matrix reads

ajob =651, 1<j,1<n. (3.15)
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A basis for the holomorphic differentials (Abelian differentials of the
first kind, DFK) on K, is given by

M= Ropy1 ()27 Vdz, 1<j< . (3.16)
We choose the standard normalization
w; = z c;ym with / w=6y; 1Lj4l<n (3.17)
=1 aj

and define the b—periods of w; by

Tj,l=/b w, 1<4,1<n. (3.18)

]
Riemann’s period relations and (H.3.2) then imply
Tii =15 t=1iT, T=(T;)>0. (3.19)

Abelian differentials of the second kind (DSK) w(?) are characterized
by vanishing residues and conveniently normalized by

/ w® =0, 1<j<n. (3.20)

3
The Riemann theta-function § and Jacobi variety J(I,) associated
with IK,, are then defined as

8(z) = z e2rilma)trilmrm)  , eqn (3.21)
meZ"

and
J(K,) =Q"/L,, (3.22)

where L, denotes the period lattice
Ln={z2=(N+7M)el"|M,N €Z"}. (3.23)
Divisors D on K, are defined as integer—valued maps

DK, —Z (3.24)
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where only finitely many D(P) # 0. The degree deg(D) of D is
defined by
deg(D)= > D(P). (3.25)
PeK,
The set of all divisors on I, is denoted by Div(K,) and forms an

Abelian group under addition. The set of positive divisors will be
denoted by Divy (I(,),

Divy(Kn) = {D € Div(Ky,)| D : Kn — NU{0}} (3.26)

(one writes D > 0 for D € Div, (K,)) and the set of positive divisors
of degree r € N is as usual identified with the r—th symmetric product
0" K, of K,. We also use the notation

K. — NU{0)
m  if P occurs m—times in {Py,..., P}
0 ifPg{P,...,P}

'DP1+...+Pr H P

(3.27)
for divisors in 6" K,. The Abel (Jacobi) map with base point Py € K,
is then defined by

Kn — J(K»)
Ap iy P _>{ /P wj} (modL,) (3.28)

P i=1
respectively by
Div(K,) — J(I&,)
ap, iy D — Y. D(P)Ap, (P). (3.29)
PeKy

If f # 0 is a meromorphic function on K, the divisor (f) of f is
defined by

() { o :i(},)’ (3.30)

where v;(P) denotes the order of f at P. Divisors of the type (3.30)
are called principal. Two divisors D, £ € Div(k,) are called linearly
equivalent, D ~ & iff they differ by a principal divisor, i.e., iff

D=£+(f) (3.31)
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for some meromorphic f # 0 on K,. The equivalence class of D
is denoted by [D] (if D > 0, |D| usually denotes the set of positive
divisors linearly equivalent to D). By Abel’s theorem,

. deg(D) = deg(&)
D~ Eiff 3.32
{ Apy(D) = Ap (£). (3:32)
The Jacobi inversion theorem states
ap (0" K,) = J(IKy). (3.33)

Finally, a positive divisor D € o™ K, is called nonspecial iff the equiv-
alence class |D| of positive divisors of D only consists of D itself, i.e.,
iff

ID| = {D}. (3.34)
Otherwise D > 0 is called special. One can show that Dp, +..4+p, €
o™ K, is special iff there exists at least one pair (P, P*) such that

(P,P*) € {P,...,P.}. (3.35)

After these preliminaries we can describe in detail the Its—Matveev
formula [34] for real-valued finite-gap potentials V satisfying (3.1).
It reads

2n n
V(@)=Y Emn-2)_J; (3.36)
m=0 j=l
d? (z — zo)
~255Ind (pr + ap,, (D (so)+-+in(z)) T 5= Qo) :
Here n
1(. & ,
CPw =3 {J +> Tj,l} eq (3.37)
=1 j=1

denotes the vector of Riemann constants, U, given by

U"":/b wi?, /w§,2):0, 1<j<n (3.38)
2;

i
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denotes the vector of b—periods of the normalized DSK

W = 22V Rpea (VT[N - 2)dz (3.39)

j=1

= [¢T?40(1)]d¢ near Py

with a single pole at P. (3.39) also identifies the numbers {A;}7_,
in (3.36). (One infers A; € p;, 1 < j < n.) Moreover, the Dirichlet
divisor Dy, (z)4-4an(c) i Obtained as follows.

Aj(@) = (45(2), Ronir (@)D, 1<ji<n,  (3.40)

where {u;(z)}7., satisfy the system (2.29) with prescribed initial
conditions

23 (z0) = (4j(z0), Rant1 (ui(z0))/?), 1<j<n (341)

at zg. In particular, the Abel map linearizes the system (2.29) since
(modulo L,)

ap, (Ppy(@)4+-4in(z) = 2Py (Diy(zo)4-tiin(zo))
-2
4 - O)QO, z€R. (3.42)

So far we have only discussed the stationary case. However, (3.36)
easily extends to the time-dependent situation [34]. E.g.,

m=0

V(z,t) = in: Ep — 22,1: Aj (3.43)
i=1

—283 1n0 (QPOO + —q—Poo (Dﬁ'l(I07t0)+“'+ﬁn(1‘01t0))

(z ~ z0) 3(t —to)
t o Lot 27 Qz)

satisfies the KdV; equation (see (2.16)), i.e.,

KdVi(V) =V, + %Vm - gvvz =0, (3.44)
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where U, is the vector of b-periods of the normalized DSK wgz) with
a single pole at Py, of the type

W = [¢("*+0(1)]d¢ near P, (3.45)
Uy; = / wgz), / wgz) =0, 1<j<n. (3.46)
b ay
In this case the Dirichlet divisor Dy, (z,t)4-.44n(z,t) i Obtained as

follows.

ﬂj(ﬂ:,t) = (y’j(mat)a R2ﬂ+1 (.u'j(xat))l/z), 1<j5< (3'47)

where {1;(z,t)}7_, satisfy the system

Oz pj(e,t) = 2Rzn+1(uj(w,t))l’zf[[uz(w,t)-uj(m,t)]‘l,

i=1
1%
2n n
6t/l'j (x»t) = 2[2 E, -2 Z Hi (.’L‘,t)] 61'/‘]' (:z:,t),
m=0 =1
I#3

1<j<n (348)
with prescribed initial conditions
iti(20,%0) = (1§(20,%0), Rong1 (pj(20,20))"?), 1<j<n (349)

at (zo,%0). Again the Abel map linearizes the system (3.48) since

ap,, (Dﬁl(r,t)+---+ﬁn(r,t)) = Qap, (Dfu(ro,to)+~~~+ﬁn(ro.to))

+(:1: — o) 3(t - to)

IR? .
= —2U,, (a1)€ (3:50)

Uy +
(modulo L,).

4 Spectral Deformations, Commutation
Techniques
Since virtually all explicitly known solutions of the KdV hierarchy,

such as soliton solutions, rational solutions, and solitons on the back-
ground of quasi-periodic finite-gap solutions, can be obtained from
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the Its-Matveev formula upon suitable deformations (singulariza-
tions) of the underlying hyperelliptic curve K, (see e.g. [17]-[20],
(26], [48], [49], [64] and the references therein), we propose a system-
atic study of such deformations in this section. Our main strategy
will be to exploit single and double commutation techniques to be
explained below.

We illustrate the main idea by the following simple example. Con-
sider again the potential (2.19)

V(z) =2P(z + 5 g2,93) + P(&'; 92,93) (4.1)

associated with the nonsingular elliptic curve (see (2.34))

y? = (—e1+e3—z)(—ex+e3—2)(—2), (4.2)
e1 = P(w; g2,03), e2 = P(w +'; g2,93), es = P(W'; g2,93)-
(For convenience we added P(w’) in (4.1) in order to guarantee E; =

2

0.) Then H = -—-:1—_2 + V has spectrum (see (3.3))

o(H) =[~e1 + e3, —ez + e3] U [0,00). (4.3)
Fix k > 0 and deform
[—e1+e3, —ez + €3] — —K? (4.4)

by taking w — o0, w’ = (i7/2x). Then V in (4.1) converges to the
one-soliton potential V)

V(z) = 2P(z + ' 92,93) + P(w'; g2,93) (4.5)
— Vi(z) = —2x%(cosh(kz)]~?

and the associated elliptic curve (4.2) degenerates into a singular
curve

y2 = (—e1+e3—2z)(—eatez—2)(—2) — y? = (—k*—2)*(~2). (4.6)

The corresponding operator Hy = —9 + V; then has the spectrum
z

a(H,) = {-k*} U[0,0). (4.7)
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A further degeneration £ — 0 finally yields
V(z)=0 and 3% =(-2)% (4.8)

This point of view has been adopted in [48] and [49] and the general
n-soliton potentials have been derived from the Its-Matveev formula
by a singularization of K, where all compact spectral bands degen-
erate into a single point

[E2(j_]), E2j—1] — —K?, 1<j<n, K1 >Ky> +> Ky, E2,=0
(4.9)
(see (3.3)).

Here we shall in a sense reverse the above point of view. Instead
of starting with a finite-gap potential such as (4.1) and degenerating
compact spectral bands into single points (such as in (4.4) with the
result (4.5)—(4.7)), we shall start with a finite-gap potential V, and
insert eigenvalues into its spectral gaps. In the context of the above
example this amounts to starting with

Vo(z) =0, y2=—z (4.10)

and inserting the eigenvalue —k? into the spectral gap po = (—00,0)
of Vy to arrive at

Vi(z) = —2k*[cosh(kz)]72, y% = (—k? - 2)*(-2). (4.11)

The spectral deformations described so far were clearly non-isospec-
tral. In addition we will also discuss various isospectral deformations
of potentials below. In short, these isospectral deformations either
“insert eigenvalues” at points where there were already eigenvalues
or they formally insert eigenvalues with certain “defects” such as
zero or infinite norming constants. In either case no new eigenvalue
is actually inserted and the deformation is isospectral. A systematic
and detailed approach to these ideas can be found in [25]-[27).

We start with the single commutation method or Crum-Darboux
method [11]-[14], [18], [19], [36], [61]. Assume that V{ € Llloc (R) is
real-valued and that the differential expression

2

d
To = T2 + Vo(z) (4.12)
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is nonoscillatory and in the limit point case at £oc. Consider the
self-adjoint realization Ho of 79 in L2(IR)

d?
Hy = —:i—:-c—i--{-Vo, (413)

D(Ho) = {g€ L*R)| g, € ACl,c(R), Tog € L*(R)}

(here ACjoc(+) denotes the set of locally absolutely continuous func-
tions) with

Ey = inf[O'(Ho)] > —00. (4.14)
The basic idea behind the single commutation method is the follow-

ing: choose
A1 € po = (—0o0, Ep) (4.15)

and factor \

}10=AA*+/\1 = —m

+ Vo (4.16)
with

A= % + ¢, ¢(z) = ¥'o(M,2)/ (M, ), Hoto(M) = M1 o (M)
(4.17)

for some real-valued distributional solution ¥g(A;1,z). Commuting
A and A* yields

2

Hi=A"A+ )\ :—W+V1, (418)
d?
Vl(iL) = Vo((l)) - 2@ In 11)0(/\1,23). (419)
d?
We note that 1 = 13 + Vi(z) is in the limit point case at +oo
and that
o(H1)\{\} = o(Ho). (4.20)

Depending on the choice of 9o(A1,2), A1 either belongs to o(H,)
and one has inserted an eigenvalue A; into pg = (—o0, Ep) which
represents the non-isospectral case, or Ay ¢ o(Hy), ie., o(Hy) =



Spectral Deformations and Soliton Equations 119

o(Hp) which is the isospectral case. The above procedure can easily
be iterated and we only summarize the final results.
Consider weak solutions g + (A1, z) such that

0 < o+ (A,.) € LA(R,£0)), R € R, )X < Eq,

4.21
Ho 1/’0,:!:(’\) = ’\1/}0,:t (/\), A< Eo. ( )
Pick
A <A< ---<AN< Ey (4.22)
and define in L?(IR)
d2
H(/\l,fl,... ,AN,GN) = —d? + V(Al,fl,...,/\N,GN), (423)
V(A1 €1,..., AN, en,2) = Vo(2)
d2
"2m In W(%o,e; (A1), -+ - s Yo,en (AN))(2),
qe{t =), 1<I<N.  (424)
2
Then Ty = —(—g:—?- + V(A1,€1,...,AN, €N, ) is in the limit point case
at oo and H(Aq,€1,...,AN,en) and Hy are isospectral, i.e.,
U(H(’\lsfla"'»’\N,eN)) = U(HO) (425)

(in fact, one can show that they are unitarily equivalent {13]). If on
the other hand one replaces g, (A, 2) in (4.24) by a genuine linear
combination of 19 +(Ar, z) and o, (A, z)

1[}0,61(’\!’2:) i a"l,[)o’+(/\[,$) + ﬂd)o,—(’\l’x)’ a > 0’ ﬂ >0 (426)

then \; € po = (—o00,Ep) becomes actually an eigenvalue of the
resulting operator. Since we are going to use the single commutation
method only in the isospectral context in Section 5 we shall not give
any further details on the non-isospectral case.

In the special case of Vj in (4.13) being a finite—gap potential of
the type (3.36),

2n n
Vo(g)= Y Em—2)_ A (4.27)
=0 j=1

d? (z — zg)
2z In ¢ (QPM + 2, (Dig (wo)+-+i(e0) + 57 Qo) ,
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(4.24) becomes

2n n
V(My€ry s ANy eN,2) = O B —=2) A (4.28)
d
25 8¢y - ap, (Doi+-+on)
(z — z0)

+Q.P°° (Dﬁ?(ro)++ﬁ2(zo)) + o Qﬂ)v
Qi = (N, —a| Rz (N +i0)/?]), @€ {+, -}, 1IN

In this particular context it can be shown that (4.23)-(4.25) extend
to the case Ay < Ep (in addition to (4.22)).

The single commutation method has the obvious drawback that
A1 in (4.15) is confined to being below Eg = inf[o(Ho)] since for
A1 > inf[o(Ho)], Yo in (4.17), (4.19) would have at least one zero by
Sturm’s oscillation theory and hence V; in (4.19) would necessarily be
singular. In order to overcome this drawback and insert an eigenvalue
A1 into any spectral gap of Hg one is led to the double commutation
method (going back at least to [23] and described in detail in [13],
[14], [22], [25-27], [38]), a refinement of two single commutations at
the same spectral point A;.

Assuming
A1 € R\o(Hop) (4.29)
one factors again

d2
Hy=As AL+ M = 7 + Vo, (4.30)

d2
It =AyAr + N = gt Vis, (4.31)

d2

Vlyi(a:) Vo(z) 2— In ’lpo :l:(Alv .’E), (432)

where

d
Ay = =T b+, ¢+(z) =¥o1(Mz)/P0,£(M,2), (4.33)
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Po,£(M1,.) € LA((R,£0)), R € R, Hotox,(M) = M vo.(M)

and Vi 4 are now singular in general. Introducing

Ui(e) = vor(rnz)  [1F na /i dz’ o, (M1, ")),

T, + 2 Ov (434)
di(z) = \Ilfn,i(a:)/\I/,h'i(a:), (4.35)
B —d+<I> Bf = d+<I> (4.36)
+ = d:l: +, 4+ = d:l: +, *
one infers by inspection that
-HI,:I: = A;:A:h + /\1 = B:h BI + /\1. (437)

A further commutation of By and BI then leads to

2

d
H‘Yl,:t :BIB:}:+/\1=—

5+ Ve (4.38)

d? =
Vi s(2) = Vo(2) = 205 In[1 F 11,2 /i dz' o +(A1,2)?). (4.39)

d?
One can prove that 7, , = e + V4, 1 is in the limit point case
at oo and that
U(H‘n,i) = U(IIO) U{A} iff 0< 7,4 < O0. (4.40)

Hence 71+ € (0,00) represents the non-isospectral case. The two
cases 71,+ = 0,00 on the other hand represent the isospectral case,
i.e.,

0(Hoo,t) = a(Ho), (4.41)
where

Hoox = -"'w—'*'voo:i:v (4.42)

& =
Veo,t(2) = Vol2) = 22 In[3 /i de' Yo.s(M,2').  (4.43)
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This procedure can easily be iterated and we summarize again the
final results.
Consider weak solutions 9y +(A, z) such that

Yo.+(),.) € L*((R,£00)) is real-valued, R € R,

Hotox(A) = Mpo,x(A), A € R\o(Ho). (4.44)
Pick

N ER\G(Ho), 1<G<N, M#N for j£I  (445)

and define in L%(RR)
2

d_172. + V'yl,...,’yN,:I: (’\19 [RRR) ’\N)7 (446)

Hy vzt (A,..AN) = —

V,y] »--w‘YNyi (/\1, Y /\N,(I:) = Vo(x)
2

d : N
~2=— In det { [51,1' F Nz / dz’ o+ (M, 2') dfo,i(f\f,l")] }’
z too Li'=1

M+ 20, 1IN (4.47)

2
Then rny = ——= + V., . ~v 4 (A1,...,AN, ) is in the limit point
’ dx2 Y1y-esIN

case at 00 and

U(H'n.---mv,i (M5---5AN)) = o(Ho)U {’\l}{-\lzl iff Y, € (0, 00),
1<I<N, (4.48)

illustrating the nonisospectral case. Similarly, defining
2

Hoo,i (/\1,. ..,/\N) = —-W

+ Voot (A1,---5AN), (4.49)

Voo,:l: (’\lw"”\Naz) = VO(z) (450)
2

d X
—2—— In det { [;/ dz'dfo,i(/\l,z')dfo,i(/\u,l")] }
dz +o00 1< SN
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yields the isospectral counterpart, i.e.,

0(Hoo,t (A1, ..., AN)) = o(Ho) (4.51)

(actually, one can show that He +(A1,...,An) and Ho are unitarily
equivalent [25]).

In the particular case where V; is the finite—gap potential (4.27),
equation (4.50) becomes

Vot (A1, .-+, AN, T) = ZE —22,\ (4.52)

m=0
d2
2550 (me ¥ 2ap, (D@, +-+Qn)

(z — z0)
+2po (Pig@)t-tid@o) + 5, Lo
Q= (A= [Bonpa(M +i0)72)), 1<I<N.
A comparison of (4.52) and (4.28) reveals that in the finite-gap
context one double commutation at A; corresponds to two single
commutations at A; and Az in the limit Ay — A;. Actually this fact

is independent of the finite—gap context and holds in general. Indeed,
taking into account the identity

/: dz’ o,+(A1, 2" )0 2(A2,2") (4.53)

= (A1 = A2) T W (go,£(M), Yo,x(A2))(2),
/\1, Ay € |R\0'(H0), A1 75 A2

and the fact that W (%o4+(A1),%0,—(A1)) is a nonzero constant, one
infers, e.g.,

V(A &, A2, 62,2) = Wo(z) - 2-— d —5 1In W(to,¢, (A1), Y0,e,(A2))(2)

— Vo(z), €1 = —€
A2 — A { Voo,q(/\l,x), €1 = €. (4.54)

Finally, with a slight adjustment only, one can also use directly
formulas (4.39) resp. (4.47) to produce potentials isospectral to V.
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E.g., if Ay is already an eigenvalue of Hy,
A1 € op(Ho) (4.55)

then H., , in (??) and (?7?), with ¥o4+(A1,2) = ¢, (A1, 2) the
corresponding eigenfunction of Hy, are well defined. In this case
one only changes the corresponding norming constant of the eigen-
function of H., , associated with A; and hence H., , and Hp are
isospectral

o(H,, ,) = o(Ho). (4.56)

(A further extension, allowing 71,4 = —|[¢0,+(A1)||3, removes the
eigenvalue A\ from Hy, ie., o(H,, ,) = o(Ho)\{A} in this case.)
These facts are illustrated, e.g., in 1], [58].

It should perhaps be pointed out again at this occasion that the
substitution

¢0.i(’\j7m) - ¢0,i(’\jaz’t) (457)

in (77), (27), (?7), where %g 1(Aj,z,t) satisfies

Ho$o,£(A;) = Aj ¥o,£(Aj), Octo,£(A;) = Pony1¥o,a(As), 1<JSN
(4.58)
and Vj satisfies the n—th KdV equation

I(an(V()) = 0$ (459)

produces again solutions V(Ay,€y,...,AN,€N,2,t) and
Voo (A1, AN, 2, 1), Vot (A1, AN, 2, 1) of the n—th KdV equa-

.....

5 Isospectral Sets of Quasi—Periodic
Finite—-Gap Potentials

In this section we fix a real-valued quasi—periodic finite-gap potential
Vo(z) satisfying Hypotheses (H.3.1) and (H.3.2) and

fn+1,z(Vo) = E n—j fi+1,: (Vo) =0 (5.1)
=0

for some fixed {¢;}7_o CR, ¢ =1
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with the associated nonsingular compact hyperelliptic curve K, =
K,.(Vo)

2n
Kn:y*=Ron1(2)= [[ (Bm—2), Eo<Ei1 << Ezn (52)

m=0

(cf. (2.23), (2.26), and (2.27)). Thus Vp can be represented by the
Its—Matveev formula (4.27)

Vo(z) = f: En— 22,1: by (5.3)

d? (z — z0)
_22;,;—2 In 6 (QPoo + ap, (D (zo) 4428 (z0)) + o7 Qo) .

The isospectral set Ig(Vp) of real-valued quasi-periodic finite-gap
potentials of Vp is then defined by

IR(Vo) = {V € C=(R), real-valued |fn41.(V)=0,
En(V)= K.(Vo)},  (5.4)

where fn+l,a: is given in terms of the sequence {c;}7_4, co = L in (5.1)
and K,(V) = K,(Vo) denotes the fixed hyperelliptic curve (5.2).

In order to give an explicit realization of Ig(Vp) we need to in-
troduce the following sets DR, Co™ Ky of positive divisors in “real
position” (see Section 3 for the terminology employed)

DR_ ={Drit-tp, € 0" Kn |II(P;) € Py = [~00, Eo), 1 < j < n},
(5.5)

DR+ = {DP1++P7| e OnI{n

II(P;) € Pris) = [E2n()-15> E2e(5))s
1<j<n}, (56)

where 7 denotes some permutation of {1,...,n}.

The Its—Matveev formula (3.36) and the fact that Dirichlet divi-
$0rS D, (z)+.+in(2) ar€ nonspecial then yields the following theorem
(see, e.g., [4], 5], {17], [21], [35], [44], 48], [50], [57]).
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Theorem 5.1 The map
In(V, — D
iy { }R( ) Ry (5.7)
Vit st > Djiy (z0)+ -+ iin(z0)
is bijective, where

Vig it (2) = Z Ep—2 Z : (5.8)
i=1

m=0

< (z — z0)
—QW In 0(§_p°° + Q-Poo(Dﬁl(Io)+--.+ﬁn(zo)) + 2—7|——0)

and the associated Dirichlet divisor Dy, (z)4...44,(z) 15 0btained from
(3.40) by solving the system (2.29) with initial conditions (3.41).

Next we state the following “real” version of the Jacobi inversion
theorem (3.33).

Lemma 5.2 Denote by [z] the equivalence class of z €Q™ in J(K,) =
Q"/Ln. Then

ap(DR_) = {lz] € J(K.) |z € R"}. (5.9)

Sketch of proof. Due to the fact that Rani1(2)'/? is real-valued
iff z€ U p; and
=0

1
Ap,, ((E2j,0)) = 5 [(0,---,\9/,1,---,1)+(Tj,1,---,Tj,n)} ;

J

N =

Ap,, (E2j-1,0)) = l(o,...,\p/,1,...,1)+(Tj,,,...,rj,n)](s.m)

1—1

one can show that

ap,, (Do +-+Q,) € {[z] € J(Kr) |z € R*} iff D, 4.+, € PR_-
(5.11)
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(5.9) then follows from (3.33) by restricting ap_ to DR_.

Next we introduce the notion of admissibility of divisors: a pos-
itive divisor Dp, + +-- + P, € 0" K, is called admissible iff there is
no pair (P,P*) € {P1,...,P,} with P € K,\{Pw}. The set of all
admissible divisors is denoted by .A.

We note that admissible divisors Dp, 4. +p, € A are either non-

special or their speciality stems from one or more points P, con-
tained in {Py,..., P}

Lemma 5.3 Given 'Dﬁo+_”+ﬁ% € DIR+ and Dp, 4t i, € DIR+ there
exists a unique divisor Do, 4..40, € DRr_ N A such that

QP (Dﬂ1+"'+ﬁn) =ap ('D[‘?+...+[‘9‘) —ap (DQ1+...+Qn). (512)

Sketch of proof. Since R2n+1(z)1/2 is real-valued if 2z € LnJ Pjs
i=1
(5.12) is equivalent to

ap. (Dgrioran) = = 3 Ass (ingy) € {l2) € J(K2) |2 € RY)
1=1

(5.13)
for some permutation 7 of {1,...,n}. Thus the existence of some
Dg,+-+0. € DR_ satisfying (5.12) follows from Lemma 5.2. If
DQ,+--+Qn is nonspecial then Dg, 4..4q, € A is clearly the unique
solution of (5.12). If on the other hand n > 2 and {Q1,...,Qn}
contains a pair (P, P*) with II(P) € (—o0, Eg),say Q1 = P, Q2 = P*,
then simply replace @1 and @2 by Py, since

DQ14Q:4Qs+4Qn ~ PP+ PootQat++Qn (5.14)

by Abel’s theorem (3.32). By continuing this process of replacing

pairs (P, P*), P # Py, by (Peo, Peo) one finally ends up with a unique

admissible divisor linearly equivalent to the original Dg, +..40,-
Our new main result on I|g(Vo) then reads

Theorem 5.4 [27] The map

AN
i { Ir(V0) Dr_nA (5.15)
Viryiin - ™ D@14+-4Qn
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is bijective, where Dg, +..+0, € Dr_N A is the unique solution of
ap, (Dgi+.4@n) = 2P (Do(2g) 4448 (20)) (5.16)
—ap, (D (zo)+-+in( 1‘0))'

Moreover,

Viriin(T) = Z E,, —22 A
& (z — zo)
—2-—Iné (Qp,,o +ap,, (D) (zo)+-+in(zo)) T - Qo)
2n n
d2
“2ga Mt (QPm —ap, (DQ,+--+Qn)
(z = 20) U )

+Q-Poo (D (1‘0)+ +ﬂ. (.’L‘o)) 27r ——0
= V(Ai€ir oy Ajmr €ims T)

d?
= Vo(@) = 2 In W(¥oe;, (Mn), - Yo, (Ri))(@),  (517)

{Ql""aQn}:{Poov""POO’le""’Qjm}’ (5'18)
Qic = (Mo =6 | Rania (X, +i0)V7])
Aj, € (—00,Eg), 1<I<m<n.

Sketch of proof. Existence and uniqueness of Dg, 4..+9, € DRr_N
A in (5.15) associated with Vj, . by (5.16) follows from Lemma
5.3. (5.17) and (5.18) are a consequence of (4.24) and (4.28).

Remark 5.5 An explicit realization of Ig(V) in the case where Vg
is a real-valued periodic finite-gap potential has first been derived by
Finkel, Isaacson, and Trubowitz [21]. We also refer to [9], [35], [37],
[51]-[53], [59], and [62] for further investigations in this direction.
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Our realization (5.17) of I|g(V,) differs from the one in [21] in two
respects. First of all, for fixed genus n, (5.17) involves at most an
n X n Wronskian as opposed to a 2n x 2n Wronskian in [21] (involving
n additional Dirichlet eigenfunctions) and secondly, (5.17) does not
assume periodicity but applies to the quasi—periodic finite-gap case.
The upshot of (5.17) is the following: the entire isospectral torus
IR(Vo) of the given base potential V4 is generated by at most n—single

commutations associated with (A1,€1,...,Aq,€,), where the points
Q; = (M\j, —€|Rant1 (A + i0)1/2]), 1 < j < n vary independently of
each other on both rims of the cut 5, = [—o0, Ey] (avoiding pairs of

the type (Q,Q"), @ # Peo in {Q1,-..,Qn}).

One can prove an analogous representation for Iig(Vp) by using
the isospectral double commutation approach (4.49)-(4.52) [27].

6 Some Generalizations

In our final section we comment on some natural generalizations of
the approach in Sections 4 and 5 and mention some open problems.

a) Infinitely Many Spectral Gaps in o(H,):

The case where V; € C*°(IR) is real-valued and periodic of period
a > 0 with infinitely many spectral gaps in o(Hp) is well understood
[21], [35), [37], [46], [47], [54], [55], [59), [62]. If

a(Ho) = | [Eag-1), E2j-1), (6.1)
selN

then V; can be approximated uniformly on IR by a sequence of real-
valued finite-gap potentials Vp, (of the same period @) associated
with I{, in (5.2) as n — oo. In this context determinants of the type
(4.24) and (4.50) converge to Fredholm determinants as n — oo (we
shall illustrate this in some detail in a similar context at the end of
this section).

These results have been extended to particular classes of real-
valued almost periodic potentials Vo € C*°(RR) with suitable condi-
tions on the asymptotic behavior of E; as j — oo in [10], [39]-[44].
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It should perhaps be pointed out that with the exceptions of [4]-
[6], [31], [32], [60], the corresponding complex—valued analog received
much less attention in the literature. In particular, the Jacobi inver-
sion problem on the noncompact Riemann surface K, associated
with Vi in the complex-valued periodic or almost—periodic infinite—
gap case (a crucial step in the corresponding generalization of the
Its—Matveev formula) appears to be open.

b) Harmonic Oscillators etc:

The double commutation approach in connection with (4.55) and
(4.56) can be used to produce families of isospectral unbounded po-
tentials with purely discrete spectra. In order to see the connection
with spectral deformations in Section 4 consider the harmonic oscil-
lator example

Vo(z) = 2% -1 (6.2)

and the (suitably scaled) Mathieu potential
(z) = 2€7%[1 — cos(ex)] — 1, €> 0. (6.3)

As is well known [57], all periodic and anti-periodic eigenvalues of

2
~5 + V, restricted to [zg, o + (27 /€)], € > 0 are simple and hence
d? 9
]1( = _(l—xi + I/( on H (IR), e>0 (64)

has infinitely many spectral gaps for all € > 0

o(He) = {J [Eai-1)(€), Ezj-1(e))- (6.5)
jelN
Ase ] 0,
Ve(2) = Vo(z) =22 -1 (6.6)
el0
and, since
Eqi-1)(€), Ezj1(e) — 2(j -1), jeN, (6.7)

€l0
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one infers
o(He) Py o(Ho) = {2(j — D},en (6.8)

(see, e.g., [33], [63]). In this scaling limit € | 0, the noncompact
Riemann surface K (€) associated with V., € > 0 degenerates into
a highly singular curve consisting of infinitely many double points
{2(j — D)};en. A careful study of this limit on the level of degen-
erating hyperelliptic curves and their 8—functions, to the best of our
knowledge, has not been undertaken yet. Isospectral families of the
limit potential Vp(z) = 22 — 1 have been constructed in [45] and [56]
but apart from the harmonic oscillator case we are not aware of any
other detailed study of isospectral families for unbounded potentials
with purely discrete spectra.

Finally, we mention another possible generalization in a bit more
detail:

c) N-Soliton Solutions as N — oo:

Here we choose

2

d 2
Ho = —— on H*(R), Vo(z)=0 (6.9)

and choose double commutation to insert N eigenvalues
{Aj=-rl, k>0, 1<j<N,kj#kp for j#5 (6.10)

into the spectral gap pg = (—00,0) of Hg. The result is the N-soliton
potential [22], [38]

d2
Vn(z) = —2W In det[ly + Cn(z)], (6.11)

Cn(z) = _aer e-(~z+~u)r] (6.12)

b
Kl + Ky 1<L,I<N

where
>0, 1<I<N (6.13)
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are (norming) constants (related to 4 in (4.47) by ¢f = 4,1 <
I<N,ie, Vn(z)=Va 2 4 (M,..-,AN,z)). Introducing

d2

Hy = - prs

+ Vi on H?*(R), (6.14)
one verifies that
o(Hn) = {-~3}L U[0,00) (6.15)

with purely absolutely continuous essential spectrum of multiplicity
two

Ocss (HN) = 00 (HN) = [0,00), (6.16)
o, (HN)N[0,00) = 05 (HN) =0 (6.17)

and simple discrete eigenvalues {—x? N V1 (Here 0es5(.), 0ac(.)s sc(.),
and o,(.) denote the essential, absolutely continuous, singularly con-
tinuous, and point spectrum (the set of eigenvalues) respectively.)
The unitary scattering matrix Sy (k) in@? associated with the pair
(Hn, Hp) is reflectionless and reads

Sw(k) = ((?N(’“) ‘}N(k)), (6.18)

N )
k+ik; . AN
I (F2), kenyimity

j=1 i

Tn(k)

(A = k? the spectral parameter of Hp). As briefly mentioned in
Section 4, the singular curve associated with Hy is of the type

(=2) (6.19)

N
Kon: 9° l:H K, - z)?

which can be obtained from the nonsingular curve

En: v¥*=TJ] (Em-2), Es<Ei<--<En=0 (620)

m=0
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by degenerating the compact spectral bands [Ez(j_l), E3;—1] into the

eigenvalues —n?

[Es(j-1), B2j1] — —K3, 1<j<N. (6.21)

At this point it seems natural to ask what happens if N — oo.
This can be answered as follows.

Theorem 6.1 [28], [29] Assume {k; > 0}y € I°(N), &; # &ji for
7 # 3" and choose {c; > 0}y such that {c}/k;};cpy € I'(N). Then
VN converges pointwise to some Voo, € C®(IR)N L*(R) as N — oo
and

(i) liT Veo(2) = 0 and

lim sup [V{(2)- Vi) =0, meNU{0} (6.22
N

=0 reK
for any compact K C R.
(i) Denoting

2
Hye = —d—2 + V, on H(R) (6.23)

dz

we have

Uess(}Ioo) = {—Kf ,,i€|N U [0,00), (624)
Oac(Hoo) = [0,00), (6.25)
[03( o) U 04e(Hoo)] M (0,00) = D, (6.26)
{~#3};emn € oP(Hoo) € {=K2} je- (6.27)

The spectral multiplicity of H,, on (0,00) equals two while
0p(Hs) is simple. In addition, if {Ki}jen is a discrete subset of
(0,00) (i.e., 0 is its only limit point) then

0sc(Hoo) = 0, (6.28)

0(Hoo) N (=00,0) = 04(Hoo) = {—K3}en- (6.29)
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More generally, if {x; };elN is countable then (6.28) holds.

Here A’ denotes the derived set of A C R (i.e., the set of accumu-
lation points of A) and o4(.) denotes the discrete spectrum (cf. also
the paragraph following (6.17)).

We refer to [29] for a complete proof of this result. Here we only
mention that the condition {¢?/x;};cy € I'(IN) implies convergence
in trace norm topology of the N x N matrix Cn(z) (see (6.12))
embedded into [?(IN) to the trace class operator Coo(z) in I?(IN) given
by

acr
Coo(z)=|———¢ ("’+"")’] . 6.30
o(2) = | e el (6.30)
Moreover, one has in analogy to (6.11),
d2
Voo () = ——2—(11—‘2 In det[1 + Coo(2)], (6.31)

where det;(.) denotes the Fredholm determinant associated with
I2(N).

We emphasize that Theorem 6.1 solves the following inverse spec-
tral problem: Given any bounded and countable subset {_’{?}jelN of
(—00,0), construct a (smooth and real-valued) potential V such that

2

H = ~ a2 + V' has a purely absolutely continuous spectrum equal
z

to [0,00) and the set of eigenvalues of H includes the prescribed set
{=«?};en- (In particular, {—«2};cy can be dense in a bounded
subset of (—00,0).)

Under the stronger hypothesis {x;};.y € I'(IN) one obtains

Theorem 6.2 (28], [29] Assume {k; > 0},¢py € '(N), k; # Kjr for
j # 3" and choose {c; > 0};¢p such that {c2/K;};eny € I'(IN). Then
in addition to the conclusions of Theorem 6.1 we have

(i)

Ji_.“éollefrm) -V, =0, 1<p<oo, meNU{0}.
(6.32)
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(i)
Oess (Hoo) = Uac(Hoo) = [0700)’ (633)
0p (Hoo) N (0,00) = 05(Heo) = 9, (6.34)
04 (Hoo) = {_K‘?}jEIN’ (6.35)

The unitary scattering matrix Soo(k) in € associated with the
pair (H, Hp) is reflectionless and given by

Seulk) = (OToo(k) gw(k)), (6.36)
Tulk) = ﬁ(’;fjﬁj),ke¢\{{i~j}jenu{0}}.

Note that Theorem 6.2 constructs a new class of reflectionless
potentials involving an infinite negative point spectrum of H, accu-
mulating at zero.

For a detailed proof of Theorem 6.2 see [29]. We remark that
the condition {k;};cy € {*(IN) implies that Vo, € L'(R) (but Voo &
LY(IR; (1+|z|) dz)) and that the product Tnx(k) converges absolutely
to To(k) as N — oo.

We conclude with the observation that the simple substitution

c; — ¢j et jeN (6.37)

in (6.30) and (6.31), denoting the result in (6.31) by Vi (z,1), pro-
duces solutions of the KdV; equation (see (2.8))

1 3
KdVi(Vo) = Vot + 1 Voo zzz — 3 Voo Voo,e = 0. (6.38)
In particular, substitutions of the type (6.37) together with Theorem

6.2 provide new soliton solutions of the KdV hierarchy [28],[29].
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1 Introduction

Conventional Thomas-Fermi theory is concerned with minimizing the
functional

E(p) = Co / p@Cdr+ [ V@i ()

p(z)p(y)
+3 Rs/ms AL sy

subject to the constraints p > 0, fgs p(z)dx = N (where N > 0 is
given), and each of the three integrals in (1) is finite. The function
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p which minimizes F is the ground state electron density in Thomas-
Fermi theory corresponding to the potential V. More precisely, if H
is the Hamiltonian of a quantum mechanical system of N electrons
under the influence of a potential V, then if % is a normalized wave
function and p is its corresponding density, then E(p) is an approxi-
mation to the energy expectation value (H1,9) (cf. [13], [6]). Thus
minimizing E(p) gives an approximation to the ground state energy
and the density corresponding to the ground state wave function.
Ever since the original rigorous treatment of the minimization
problem for E by E. Lieb and B. Simon [12], [13], much attention
has focussed on various extensions. Of particular concern here is
the nuclear cusp condition, which we now prepare to describe. The
Euler-Lagrange equation for the convex functional E given by (1) is

5
Q= §Cop2/3 + Gp+V+A=0. (2)

on the set where {p > 0} and @ > 0 on {p = 0}. Here —\ is the
chemical potential, which is a Lagrange multiplier corresponding to
the constraint s p(z)dz = N, and

1 (y)
Gp(z) := (— * p)(z =/ .
(=) (|.| p)(z) R Tz = 7]
Consider an atom, so that V(z) = —Z/|z| where Z is the positive

charge of the nucleus, which is located at the origin. Since

jvl<1 |z — y] lyl<1 ly|

for z close to zero and (by Holder’s inequality)

() 3/5 2/5
/ PVdy < (/ p(y)"’/sdy) (/ Iyl's/zdy)
lvl<t ly| jul<1 lyl<1

1
= llpllszad | r5/2 1% dr = xlpllsss < oo,

it follows that Gp + A is bounded near z = 0, whence (see (2))

p(z) ~ const|z|™3/? (3)
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near z = 0. Thus p is unbounded near the nucleus, which is physically
incorrect. The behavior of the true quantum mechanical density was
pointed out by T. Kato in 1957 [11]; namely

p(z) = const - exp {—2Z|z|}

as |z| — 0. (Cf. also Thirring [16, 240] and the Hoffmann-Ostenhofs,
et al [9], [10].)

An explanation for this is that the true ground state density is
continuous at the origin but its gradient Vp has a jump discontinu-
ity there; thus Ap should exist (near the origin) as a finite signed
measure. R. Parr and S. Ghosh [16] formally suggested how to in-
corporate the nuclear cusp condition (3) into Thomas-Fermi theory,
and J. Goldstein and G. Rieder* [4] established this rigorously. See
the monograph of R. Parr and W. Yang [17] for more details.

Now consider the case of an atom but let a magnetic field be
present. The magnetic field will spin polarize the system, so the
density becomes p= (p;,ps) where p; [resp. po] is the density of the
spin up [resp. spin down] electrons. If p = p; + p, is the total electron
density, then the Thomas-Fermi energy is

2
E() = zcl [ pi@* P + [ V(@) (4)

3 o fro B2 sty + [ B@)or(a) - )i
r® Jre |o — R?
where the function B describes the magnetic field. This problem was
treated in detail recently by Goldstein and Rieder [7]. The purpose
of the present paper is to incorporate the nuclear cusp condition into
the context of (4).

Section 2 is devoted to an explanation of the solution to this
problem. In Section 3 we discuss the Lavrentiev phenomenon aspect
of our results and make further remarks.

*G. R. Rieder is now G. R. Goldstein.
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2 The Nuclear Cusp Condition

Of concern is (4), where Cj is a positive constant and V(z) = —Z/|z]
with Z > 0. We want to consider only those p for which p;,p; > 0
and each of the integrals in (4) is finite. We have [gs pi(z)dz = N,
and N = N; + N3 is the total number of electrons. We may specify
only N or we may specify both Ny and N,. This defines the domains
of E, denoted by Dy[N]and D[Ny, N3] respectively, and we consider
the problem of minimizing E over each of them. These problems
were solved in [7]. Near the origin, the Euler-Lagrange equations
(i.e., E/0py = 0 = OF [8p2) are
gclpj/a - rf‘l +G(mtp2)=(-1Y)B+A;=0
for j = 1,2. Here A\; = A\, = A is the Lagrange multiplier correspond-
ing to the constraint fps p(z)dz = N when N is given or else A;
corresponds to [ps pj(z)dz = N; when both N; and N, are speci-
fied. Here is the key idea which originated with Parr and Ghosh.
Assume that Ap is a tempered distribution on IR3. Then for each
k > 0 it is not difficult to show that [ps e 2klel Ap(z)dz exists; call
it M € IR. (For a proof of the existence of M see [14].) Integration
by parts gives

/ Ale” 1 Np(2)de = M. (5)
IRS

Now let D;[N; M], D2[Ny, No; M] be the domains Dy[N], Da[Nq, N2},
further restricted by requiring that (5) holds. (These domains de-
pend on k£ > 0 which is fixed.) Of concern is E acting on the do-
main U{D[N;M] : M € R} and U{Dz[N,No; M] : M € IR}
The Lagrange multiplier u corresponding to the constraint (5) has

the effect in the Euler-Lagrange equations of replacing the potential
V() = —Z/|z| by

~ VA
V(z)= Gt pA (e~ 1l
If u = Z/4k?, this becomes

. -7 .
V(z) = |—1|—-(1 — e?kl=ly _ kZe~ k=l
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thus lin}) V(z) = —3kZ and the singularity at the origin has disap-
T
peared. Thus (recall the argument involving (2)) we expect p to be
bounded near the origin. The arguments of [4] can now be extended
to handle the present case.
We now stop being informal and state some precise results. Con-
sider

2
BB = G, Sataraty [ [ B a0

p(z)
-z [ Bt [ B - @)

where 3/2 < p < 00,Cp > 0,Z > 0,B(z) = by + by(z) with b, €
IR, bz(:t) — 0 as |17| — 00, Aby € L‘(1R3) and fR:s AbQ(iB)dl? =0,b; €
L=(IR3) N L¥?(IR%), and finally V(z) + |b(z)] is negative on a set
of positive measure. (Note that V(0) = —3kZ < 0, so that this last
condition holds if by is small near the origin.) The earlier definitions
of D[Ny, M] etc. involved the choice of p = 5/3; these definitions
should be modified in the obvious way to accommodate the power p
appearing in the kinetic energy integral in the definition of E(p).

Theorem 1 Let the conditions in the above paragraph hold. Let
k> 0andlet0 < N < Z. Then E given by (6) has a uniqgue minimum
P on the domain U{Dy[N;M]: M € IR}. Moreover, p has compact
support if N < Z. Furthermore, p = p1 + p2 is radially symmetric
and is nonincreasing on [0,00) if the magnetic field B is constant. If
B is a C! function of |z| only in a neighborhood of the origin, then
one may choose

- 1/
=[S () oyt 4 prtopt)]

and conclude that
p(z) ~ const e221l (7)

(to first order) near z = 0.

In the above theorem, E fails to have a minimum on U{Dy[N; M] :
M € R} when N > Z.
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Theorem 2 Let the conditions of the paragraph preceding Theorem
1 hold. Let k > 0 and let Ny,N; > 0 be given and satisfy Ny +
Ny < Z. Then E given by (6) has a unique minimum on the domain
U{Dy[N1,No; M] : M € R}. Moreover, if N = N1 + Ny < Z, then
both p1,p2 have compact support while if N = Z and N1 < N, [or
N2 < Nij, then py [or pa] has compact support. If B is a C? function
of |z| only in a neighborhood of the origin, then k may be chosen so
that p = py + p2 satisfies the nuclear cusp condition (7) near z = 0,
to first order.

Here E fails to have a minimum on U{D,[Ny,No; M]: M € R}
if
1 -~
N> [ AT+ B,

where the subscript denotes “positive part”. When B is a constant
(and thus by = 0), this condition can be replaced by

N>Z=i AT=L [ av
47 JR3 47 JR3

By making different choices of k, we can make p, or p; (rather than
p) satisfy the nuclear cusp condition. But it is not clear if we can
make both p; and pg (and hence p) satisfy it simultaneously. We
conjecture that this can be done.

3 The Lavrentiev Phenomenon

Of concern is the classical calculus of variations. Consider the func-
tional

Bl = [ 10, utr), ()i ®
with two domains
D1(€7) = {u€ Lip [a,b] : u(a) = A,u(b) = B}
Dy(E) = {u€ AC[a,b]:u(a) = A,u(b) = B}.

Here —00 < a < b < 00, A and B are given, L is a given function, and
“Lip”, “AC” denote Lipschitz continuous and absolutely continuous
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functions, respectively. The Lavrentiev phenomenon is said to occur
when

inf{E(u) : w € D;(E)} > inf {E(u) : u € Dy(E)}. (9)

See, for example [15] or [8] for a nice discussion of this notion. It
only occurs for very special integrands L.

The nuclear cusp condition in Thomas-Fermi theory gives rise
to a similar phenomenon, which may also be termed a Lavrentiev
phenomenon. For simplicity we work with the functional F defined
by (1) rather than (4). Consider an atom, and define E[p] by (1)
with V(z) = —Z/|z|. Thus E can be written as

Elp]

[T W@ + v
0
+/0 /o F(r1,m2)p(r1)p(r2)riridrydr,

/(;00 Lyi(r,p(r))dr + /:o /(;00 Lo(ry,72)p(r1)p(r2)dridry.

Here J(s) is Cos%/3 or Cps? (p > 3/2), and F is obtained as follows.
The ground state density p is radially symmetric; for such radial
functions p, a spherical coordinate representation gives

/ P(IL‘l)P(IL'z)dxldz2 —
R JR® |21 — 22|

L[ Ferntrprayed o dryar,

where z; = (7;,0;,¢;) in spherical coordinates and

27 2w pmw pm
F(rir) = / / / / @ sin 1 sin padp1dp2db, db;
o Jo Jo Jo
with

Q = [7? + 7‘% — 27172 {sin ¢ sin @z[cos B cos B + sin 6, sin 8;]

+ cos 1 cos ()02}]1/2.
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Let u(r) = f; p(s)ds and consider u as a basic variable rather than
p. Thus u' = p. Define E{u] to be E[p]. Then

E[) = /Ooo Ly(r,u/(r))dr
+ /0°° /0°° L2(7‘1, T2)UI(T1)UI(T2)dT1dT2. (10)

This has two domains (at least), namely (given N > 0)

Di(E) = {ue€ Lip[0,00]: u(0) = 0,u(c0) = N,u is nondecreasing,
u’ € L'(0,00), and each integral in (10) exists}.

Dy(E) = {u€ AC[0,00] : u(0) = 0,u(c0) = N, u is nondecreasing,
u' € L}(0,00), and each integral in (10) exists}.

Minimizing E over Dy(E) [resp. D1(E)] with N < Z gives the usual
Thomas-Fermi ground state (resp. the one satisfying the nuclear cusp
condition). We get a different ground state (namely v’ = p is un-
bounded as r — 0 in the D;(E) case but is bounded as r — 0 in the
D,(E) case). Thus (taking into account uniqueness) (9) holds.

In minimizing (8), when L(r,u,u’) = L(u,u’) is independent of
the r variable, the Lavrentiev phenomenon normally does not hold
[3]. This is not the case with (10).

4 Remarks, Open Problems, and
Acknowledgements

In the case when one specifies both Ny and N3 it would be of inter-
est to show that both p; and p; satisfy the nuclear cusp condition.
Also, in the case of a constant magnetic field, Bénilan, Goldstein and
Rieder (1], [2] found a critical point of the energy functional E given
by a modification of (4) incorporating the Fermi-Amaldi correction.
This allows one to find p whenever Ny + N, < Z + 1, that is, singly
negative ions are allowed. It would be of interest to incorporate the
nuclear cusp condition into this context.

The results of this paper can be easily extended from atoms
to molecules. In this case V(z) = —Z/|z| is replaced by V(z) =
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M
— Y Zj/lx — R;|. The nuclear cusp condition says that
=

p(z) = const- exp {-2Z;/|z — R;|}

near R forj=1,2,...,M.

It would be of mtelest to study the Lavrentiev phenomenon for
(10) simply as a problem in the calculus of variations.

We gratefully acknowledge that all three authors were partially
supported by two NSF grants. We also thank Peter Wolenski for
some stimulating and helpful discussions concerning the Lavrentiev
phenomenon.
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Abstract

In this article we announce three results concerning semi-classical
techniques in statistical mechanics. The two first results concern
the Schrédinger equation and are obtained in collaboration with
J. Sjostrand. The last one is a stationary phase theorem and can
be considered as an adaptation of a result of J. Sjéstrand in a differ-
ent context.

1 Introduction

If V(™) is a suitable family of C® potentials on IR™ parametrized by
m, there appears to be three connected problems related to the prop-
erties of the thermodynamic limit in different contexts of statistical
mechanics.

(I) Study the asymptotic behavior of the quantity:

[ln ((l/hw)(’"/z)/exp(—V(’")(m)/h)dz)] /m

Differential Equations with Copyright © 1993 by Academic Press, Inc.
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as m tends to oo and control this limit with respect to h as h
tends to +0.

(IT) If py(m,h) is the largest eigenvalue of the operator:

K™(h) = exp(-V™)(2)/2) - exp(h?AM™) - exp(~V ™)(z)/2),

(1)
study the asymptotic behavior of the quantity — ln gy(m,h)/m
as m tends to oo and control this limit with respect to h as h
tends to +0.

(III) If Ay(m,h) is the smallest eigenvalue of the Schrédinger oper-
ator:

S™(h) = —h2A™) L v(m)(g), 4(2)

what is the asymptotic behavior of the quantity A;(m,h)/m
as m tends to oo and control this limit with respect to h as h
tends to +07?

These three questions are of course strongly related. If you think
of a potential which is invariant by circular permutation of the vari-
ables and “near” in a suitable sense of the harmonic oscillator, all
these questions are well analyzed for fixed m as h tends to zero.
(I) can be treated by application of the stationary phase theorem,
(IIT) corresponds to a semiclassical analysis of the Schrédinger op-
erator at the bottom (see [8] and {20]) and the study of (II) can be
considered as a pseudo-differential extension of (II) (see [2] or [5]).
In particular this study gives for example that

— In(ui(m, k) = M(m, h) + Om(R?). 3)

One can get better by proving first (using Segal’s lemma) (cf [18])
the universal inequality:

— In(u1(m, h)) < Aj(m,h). (4)

By monotonicity, one observes also (in the strictly convex case) that
if Vo(m) is a quadratic potential s.t. Vo(m) < V(™) | then we have also:

—In(uQ(m, b)) < ~ In(pz(m, b)) (5)
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where pl(m,h) (the largest eigenvalue of K™ (h; Vo(m))) is explicitly
computable. Equations (4) and (5) give for example (in the case
when the limits exist):

~ lim_In(ud(m,h))/m < — lim In(u(m,k))/m  (6)

- Jim In(ua(m,h)/m < lim (w(m,)/m (7)

in the strictly convex case.
Another link is that, by Golden Thompson inequality (cf [16]),
we have:

Tr(exp —(—A + W))

IA

Tr(exp(—W/2) - exp A - exp(-W/2))
Cm/exp(—W)dz’".

The difficult problem is of course a good control with respect to
m as m is large. Another interesting (and more difficult) problem
appears in the same context, in the cases (II) and (III):

(IV) Study the liminf and the lim sup of m — p2(m,h)/pu1(m,h) as
m — oo where ua(m,h) is the second eigenvalue of K™(h).

(V) Study the lim inf and the lim sup of m — (A2(m,h)— A1(m,h))
as m — oo where Az(m,h) is the second eigenvalue of S™(h).

The problem (V) corresponds to the well known problem of the study
of the splitting between the two first eigenvalues. Our motivation
comes from the reading of a course of M. Kac ([13]) in which he
develops partially heuristical ideas in order to prove the existence of
phase transition by semi-classical techniques. The results we shall
present here correspond to a class containing the model potential:

V) (z0) = (1/4) i i In cosh((#/2)"?(zx + zk41)),

with the convention (z,41 = 21).



156 Bernard Helffer

Let us briefly recall how M. Kac arrived at this potential. He
studied the following model (called Model A in section 7 in [13])
whose hamiltonian is given by:

Evv(0) = = 2 UPQIP " 9Q
(PQ)EVINM)xV(N,M)

with V(N,M) = [1,...,N|x(Z/xZ)in Z?,0p € {-1,+1},J € IR},
h e IR}, vpp =0 and

vpq = Jhexp(—hlk — K'){8iy + (1/2)(6v 141 + 6v4-1)}
if P = (k1) # Q = (W, 1),
He observes that the free energy per spin in the thermodynamic
limit —¢/kT can be computed as:
—-¢/kT =In2 - h/2 + mh:_r’noo(lnyl(m,h)/m)

where p;(m, h) is the largest eigenvalue of the m-dimensional integral
operator I given by:

K = exp(—Q™)/2) - exp(—h(-A™)) - exp(-Q™ /2)
with
Q™ (y) = (tanh(h/2)/2) i T zmj In cosh((vh/2)"*(yx + Ykt1)),
k=1 k=1

v = J/kT. A scaling argument z; = h'/2?y; permits one to arrive
essentially to the problem posed in (II).

The detailed proofs are or will be given elsewhere ([2], [5], [6], [7],
[9], [10], [23], [24], [23]).

2 Schrodinger Equation in Large Dimension
Let us consider

S (@, hDg;v) = =h2AM) + V™) (z;0) (8)
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with

VN (aiv) = (1/4) 352 - 3 In cosh(vh/2) s + 2s1))y (9

k=1 k=1

with the convention: (zm41 = z1). If v < 1/4, the potential is convex
(single well) but, if v > 1/4, we are in the situation of a double well.
Let A\;(m,h;v) be the sequence of the eigenvalues of S(m): we are
interested by the problems (III) and (V). Let us present the results
which were obtained in this case.

Theorem 2.1 (Cf [9], [25]) For every v in IR, the limit A(h,v) =
limy,—oo(A1(m; h,v)/m) exists.

This is not surprising and it is proved following the ideas of sta-
tistical mechanics (see {18]). Let us observe that

IA(R,v) = (Aa(m; h,v)/m)| = hO(1/m)

by easy arguments and that J. Sjéstrand [25] proves recently an ex-
ponentially rapid convergence to the thermodynamic limit.

Theorem 2.2 (Cf [9],{25]) If v # 1/4,
A(h,v) = "!imoo(,\l(m; h,v)/m)
admits a complete asymptotic ezpansion: A(h,v) = hy ;5 A;(v).h

as h tends to 0. Moreover, if we denote the corresponding semiclas-
sical expansions for Ay(m;h,v)/m by:

A(m;hw)/m=xh- Z /\j(m,u).hj
j20

there ezists ko(v) > 0 s.t. for each j, there ezists a constant C;(v),
s.t. |Aj(v) = Aj(m,v)| £ C;j(v).exp(—kom). ko(v) and C;(v) can be
chosen locally independent of v in IR, \ {1/4}.

The study around v = 1/4 is not complete (see however [13], [6]
for partial result for fixed m).
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Theorem 2.3 (Cf[24],[10]) Ifv < 1/4 then the splitting between the
two first eigenvalues Ay and A, is controlled by:

h(1 = 4)Y/% < Ay(m, h,v) = Ai(m, h,v) < 4A(m, h,v)/m. (10)

The majorization is easily obtained by estimates of the type used
in the proof of [17] (see [9]) and is true for any v in IR;. The
minorization ([24]) can be obtained by using the maximum Principle
(see [22]) or the Brascamp-Lieb inequalities [1] as explained in [10]
and the strict convexity of the potential is the decisive and unique
assumption.

Theorem 2.4 (Cf[9]) Let v > 1/4 and let us consider N the set in
IN x IRy defined by
m<C-h™No, (11)

(we write shortly m = O(h™™°)) for some C and No; then there
exists C,,, h, and €, > 0 such that for all the (m,h) in N satisfying
0<h<Lhy:

A2(m, h,v) — A (m, h,v) < C, -exp —(e, - m/h). (12)

Remark 2.5 Here we observe a very different behavior in compari-
son with the case v < 1/4 (cf Theorem 2.3) but we have unfortunately
a restriction on m. This is probably a technical difficulty. We were
hoping to prove simply that (conjecture given by M. Kac):

771}i_r'noo(/\rz(m, h,v) = A(m,h,v)) =0.
This property would have been a sign of a “transition of phase”.

The proof of Theorem 2.3 and Theorem 2.4 is based on the fol-
lowing strategy initiated in [23] and [24]. We can distinguish four
steps.

Step 1: Control in the WKB approximation (just look for approx-
imate eigenfunctions of the type exp(—f(z,h)/h)) the dependence
on the dimension m as initiated in [23] and [24]). Of course it is a
construction which depends only of the germ of the potential at the
bottom, but in order to have reasonable estimates we have to assume
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holomorphy in a complex open {*°-ball. This will give us the formal
expansion of the first eigenvalue.

Step 2: One compares the WKB approximation of the one well
problem and the first eigenvalue of the Dirichlet problem in a suf-
ficiently small [*°-ball around the point where the minimum of the
potential was attained.

Step 3: One compares the first eigenvalue of the Dirichlet problem
in this small [*°-ball with the first eigenvalue of the global problem
in IR™.

In these three steps, one works modulo m.On(h") (for any N)
but the dimension is possibly limited by m = O(h~™o).

Step 4: One eliminates the restriction on the dimension, because
one controls the rate of convergence in the thermodynamic limit. In
order to analyze the splitting between the two first eigenvalues, let us
recall the following classical formula for the splitting (see for example
[8], [15], [20] and [21]):

Ag— A1 = mf ((/ |hV 0|2 (w1 m )*( z)dz) (/|<p|2 Ug,m) (z)dz))
(13)

where
M= {99 € C{)’°;/<,0(u1,m)2(z)dz = 0}

and u; ,, is the first positive normalized eigenfunction.

The estimates about the splitting are then deduced from a ju-
dicious choice of ¢ and of the information on the decay of u;, in
suitable domains. We observe that, under the assumption v > 1/4,
the potential admits two minima and that there exists § s.t. the
region (§) defined by:

Q(6) = {.’ceﬂzm,—éﬁz:cgﬁé} (14)
does not contain these two wells.
A2(m,h) — A(m,h) < C, mh2( (m, h 6) )/ (1= a(m,h 6) ) (15)

with a(m h 6) = ||u1 m||L2 (8))
Theorem 2.4 will be a consequence of the following theorem:
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Theorem 2.8 (cf [9]) There exists C, hg and § > 0 s.t. a(m,h,6) <
C exp(—=m/Ch) for (m,h) in N and 0 < h < ho.

This theorem is obtained by Agmon’s type estimates with a very
careful control with respect to the dimension.

3 Thermodynamic Limit in Small
Temperature: A Stationary Phase
Theorem in Large Dimension

In this section, we shall explain briefly how similar techniques can be
used for connected problems. Actually, these theorems are frequently
implicitly proved in [23}, [24] or [9], [10].

We just consider the “classical” problem introduced as Problem
(I). Let us consider

J(B,m,V) = (8/x)™? / exp(-BV ™ (z))dz. (16)

The normalization is chosen in order to get J(8,m, V(m)) = 1 in the
case where V(™)(z) = "™ z?. Let us very briefly state why we
meet in this context the stationary phase theorem. We assume that

V(™) is convex and admits a unique non-degenerate mini- (17)
mum at 0 with V(™)(0) = 0.

It is well known that:
(8™ / exp(—AV ™ (2))a™)(2)dz ~ (f: aj(m)ﬂ‘j) (18)
Jj=0

as 3 — oo but the problem is to control the behavior of the differ-
ent coefficients and of the remainder. Actually, we can have a very
bad behavior with respect to m as j increases (also in the “physical
cases”); however, under suitable assumptions,

(in (/7 [ exp(-pv™(@)ydz) ) fm
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has an expansion in powers of 3~! with coefficients which are bounded
independently of m!

Let us write down possible assumptions in order to obtain such a
result (see [23]). Let us introduce a set V as the disjoint union over
IN of sets Vit V = U, Vm where Vy, is a subset of C* potentials
on IR™. Let us assume that for all V in V:

(H1) V is holomorphic in B(0,1) with |[VV(z)]e = O(1) uniformly
in V and B(0,1). (Here B(0,1) is the open unit ball in ¢™
with respect to the norm ||, = sup|z;|.)

(H2) V(0) = 0, V/(0) = 0, V"(0) = D + A, where D is diagonal
(positive definite).

(H3) There exists r; and r¢ (independent of V in V) such that:
[Allceery £ 71 < 710 £ Amin(D) for all psit. 1 < p < o0.
We also assume:

(H4) [[V®V||c@esy = O(1) uniformly in V and p. Here we write:
[z], = (T )z;[P)!/? for 1 < p < 00 and |z]eo = sup; |z;].

Then we see that:

(V'O =D+ A (19)

with D diagonal and
lAllggery < 71 < 7o € Amin(D) (20)
for all p s.t. 1 < p < o0 and uniformly in V.

Theorem 3.1 (cf Sjéstrand ([23]) Under assumptions (H1)-(H4),
then there ezists

f(z,m,h) = ij(:v,m)hj (21)

and an expansion

E(h;m) ~ h-Y_ Ej(m)h’ (22)
720
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s.l. in the sense of the formal series in h but in a fized sufficiently
small £ -neighborhood of B(0,1), the following equation is satisfied:

|IVf|2 =V — hindet(V2f) ~ E(h;m). (23)

Moreover, the functions f; satisfy:
fi(0)=0, |Vfi(z)|<C;inB (24)
and the E; (which of course depend on m through V in V) satisfy:
|Ej(m)| < Cj-m (25)

This problem is quite analogous to the problem of solving the
equation:

|VfI? -V —hAf =~ E(h) (26)

in order to construct a WKB solution of the type exp(— f(z,h)/h)
for S(m) = —h2A + V™),

Of course this statement could appear mysterious and it is prob-
ably better to give the following “formal” corollary:

Corollary 3.2 If J(8,m) is defined by (4), then, formally,
(InJ(8,m))/m = Z(Ej(m)/m)ﬂ_j (27)
j

as [ tends to oo.

“Proof of the Corollary” This is just a “formal” proof of the
stationary phase theorem with a uniform control with respect to m
(i.e. V(m) in V,,). In the formal integral giving J(m, g):

(B/x)™*%. (/ exp(—ﬂV("‘)(z))dz) ,

we reduce the integral to a small £*-path in IR™. We are then
looking for a change of variable y = f(z,3~!). Then the integral
becomes:

(B2 ( [ exp(=v™(a) - ndet v?f(z,ﬂ-‘))dy)
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and, at least formally, it is then clear that the Theorem 3.1 gives:

(8/m)"? - (/ exp (-BY y?+8- E_(ﬂ'l)) dy) -

So finally:
In JI(m, B) x BE(m, 7).

Of course everything is for the moment formal but the control of the
coefficients is what is basic for the future.

By adding assumption (5), invariance by permutation and other
assumptions needed for the proof of Theorem 2.3, one can prove
(for a class containing the model V{(™)(z,v) (with v < 1/4)) the
exponentially rapid convergence of the coefficients (E;(m)/m) and
control the remainder terms. In fact the proof is parallel (and easier !)
to the proof for the Schrédinger equation (steps 2, 3, 4), and we can
prove the Corollary:

Corollary 3.3 (Cf [7]) If J(8,m) is defined by (4) as § — oo, then,

Jim (InJ(8,m))/m ~ Y lim (E;(m)/m))8~  (28)

j

as 3 tends to co.
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Abstract

Applying Kato’s inequality to locally integrable solutions of —(V —
ib)2u+qu = 0 leads to (A+q¢-)|u] > 0, which allows for a mean value
inequality for |u|, as in the case of subharmonic functions. The local
Kato condition on g. enters naturally as one tries to provide local
bounds on u. This in turn is the base for other regularity properties
of u, such as the existence of square integrable first derivatives.
But also quantitative results can be obtained from the mean value
inequality. Here we were led to introduce non-local Kato classes
K, , where p is some positive, Lipschitz continuous function on IR"™
which reflects the behavior of ¢ at infinity, possibly depending on
directions. Self-adjointness of T := —(V — ib)? + ¢ is another easy
consequence of this approach. The main result is that T is essentially
self-adjoint on C§°, if it is bounded from below and g. fulfills the
local Kato condition. The famous result of Simon, Kato and Jensen,
based on the assumption g_ € K (our Kj), follows immediately; but
we also get self-adjointness of T' if ¢ € K, with p(z) = (1+]z|)!,
which contains the case q- € K + O(|z|?). Finally, we can specify
the connections between the position of A in the spectrum of 7' and
the behavior at infinity of corresponding eigensolutions.
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0 Introduction

Twenty years ago, Tosio Kato presented his famous inequality which
opened a new way to deal with the positive part of potentials of
Schrédinger operators in questions of regularity of weak eigensolu-
tions. In the same paper [5] a condition on the negative part was
introduced to establish self-adjointness of the operator. In the se-
quel, however, the global aspect of this Kato condition, employed for
instance to prove mean value inequalities, has been overemphasized.
We therefore consider less restrictive global conditions on the poten-
tials to point out which properties of the operator and its eigensolu-
tions depend on local assumptions only and to get more quantitative
results globally. The material comes from [2], where supplementary
and more detailed information can be found, and from a collabora-
tion with Giinter Stolz [4].

We consider the Schrédinger operator T' = —(V —ib)?+ ¢, where
q is a real-valued, measurable function on IR® and b: R* — IR™
will be continuously differentiable. (In {2] there is no magnetic po-
tential b at all, while in [4] we have weaker, in fact weakest, assump-
tions on b; this latter approach requires some different techniques,
however.) A solution for the corresponding (generalized) eigenvalue
equation for A€ R isa u € Lyjoc with qu € Ly o, and

V¢EC§°:/HT¢=/\/E¢;

we write Tu = Au. By putting XA into ¢, we may assume A = 0.
Now Kato’s inequality ([5], Lemma A) yields:

Alu| > re (sign(ﬁ) (V= ib)2u) = qlu| > —q-|u|

in the distributional sense, ¢_ := max{0,—¢} denoting the negative
part of ¢. Writing v for |u| and p for g_, we are left with the
differential inequality Av+pv > 0, with non-negative v and p. We
will show that the mean value inequality for subharmonic functions
(i.e. the case p = 0) extends to our situation and can serve as a base
for establishing local boundedness of u, self-adjointness of T, and
connections between the spectrum of T' and the behavior of eigenso-
lutions at infinity. We will, of course, need some extra assumptions
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on ¢, but as shown only on ¢_. These conditons, both local and
global ones, will emerge quite naturally from our discussion of mean
value inequalities.

1 Mean Value Inequalities

The following lemma is the basic tool in this report.

Lemma 1.1 Letv € Ly, be real-valued; f € Ly .. be non-negative
and such that Av+ f >0, ie.

Vo e Cgp20: [(vhw+ fe) 20,
Then for almost every z € IR™ and for any r > 0:

n 1 /(y)
v(z) < ot / v(y)dy + n =20 / E:—:-yln—_zdy ) (1)

B(z;r) B(z;r)

where g, is the area of the unit sphere in IR™,

The proof can be found in ([2], p. 117f). The price we have to pay
for the help of f in the case of negative Av is the second term on
the right-hand side. Since our goal is local boundedness of v = |u|
for an eigensolution u, we somehow have to get rid of this term,
for which there is no a priori bound, when f = ¢q_|u|. This can be
achieved by replacing |u| here by inequality (1) once again. Then
the integral

p(y)l

o~y
B(z;r)nw

has to vanish for » — 0, uniformly in =z € IR", for any compact
w CIR™. A p with this property is said to belong to the local Kato
class Kj,.. By a method developed in Hinz and Kalf [3] one can
then show that for almost every r € w and small r:

=)
@) s CEER oty + ey fotwptiidy .

Ont
W3ar War

where w,. denotes the set obtained from w by adding an e-rim ar-
round. So we arrive at:
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Theorem 1.2 Let p € K, be real-valued, v € L 1, non-negative
with pv € Ly, and (A +p)v > 0. Then v € Lo oc -

As an immediate consequence we get the most fundamental reg-
ularity properties of weak solutions for the Schrédinger equation:

Corollary 1.3 Let q be real-valued and measurable with q_ € Ko ;
be C'. Let u € Lijoc with qu € Ly, be a solution of

—(V-ib)u+qu=0.
Then u € Leojoc N Wy

Jdoc *

Proof. As shown in the Introduction, Alu|+g-|u| > 0 by Kato’s
inequality. Since 0 < q-|u| < |qu| € Lijoc, Theorem 1.2 applies,
whence u € L toc -

Furthermore (V — ib)2u = qu € Ly o, and an interpolation ar-
gument ([4], Lemma 2.2) yields Vu € Lg o - o

Another look at inequality (2) reveals that apart from this quali-
tative result, the right-hand side provides quantitative upper bounds
for v, as soon as one can estimate [ p(y)v(y)dy. The same approach
which led from (1) to (2), carried out with some more sophistication,
shows that in fact the second term in the right-hand side of (2) is
completely subordinate to the first term, such that we can reach a
mean value inequality

v(z) < 02:11 / v(y)dy .

" B(z;r)

Since the method depends on some estimates of Caccioppoli type
(see [3], Lemma 4), we have to assume v € W2l,loc , which in view of
applications to eigensolutions u and Corollary 1.3 is no restriction
at all. As for p, in order to allow for an r as large as possible, we
have to controll the decay rate of

|p(y)}

z —y|"?
B(:t:;r)l"\u)l JI

dy

when 7 goes to 0. This can be done through the following definition
of a global Kato class:
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Definition 1.4 Let p : IR® —]0,00[ be globally Lipschitz continu-
ous. Then

k—oo z¢Rn

K, := ¢ p measurable on IR"; lim sup / l——-———d
x —
B(:c;ﬁkil)
Note that this coincides with the definition of the classical Kato
class K if p is constant and that K, C Kj,c C Lj,joc.-The mean
value inequality then reads:

Theorem 1.5 Let p € K, be real-valued. Then there isa K € IN
such that for any non-negative solution v € Wzl, with pv € Ly joc
of (A+pw>0:

loc

n p(z) 2n
< —=: < .
VzelR"VO<r< Ve v(z) < prap (/ )v(y)dy
B(z;r

As pointed out, the proof depends on Theorem 1 in [3], where a
mean value inequality for v? has been obtained. The estimate on v
then follows by a kind of reserve Holder inequality. We refer to ([2],
p.123-127) for details.

Typical applications of Theorem 1.5 are Harnack’s inequality (see
[3]) and pointwise decay of eigenfunctions.

Corollary 1.6 Let q be real-valued and measurable on IR™ with
qg- € K,; b € C'. Then for every u € Ly with qu € Ly, and
which is a solution of —(V —ib)?u+qu=10:

u=o0(p~™?) at 0o, i.e. p"*(z)|u(z) -0 , as|z] - co.

Proof. Since q_ € Ki,, Corollary 1.3 yields u € Wy, and so
is |u| because 9;|u| = re(sign(%)- d;u). Again by Kato’s inequality
we know that Alu|+ g-|u| > 0, whence Theorem 1.5 applies:

2nK™
— u(y)|dy -
oy |

B(z;p(x))

VzeR™: |u(z)| <
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Holder’s inequality yields

anK*

V:EEIRn:u:Z:2<—n-—
lu(z)l* < onp (2)

[ )iy

B(zip(z))

As K, = K,, for any constant a > 0, we may assume the Lipschitz
constant of p to be 1, such that |z| — p(z) > L;;l — p(0), and the
last integral goes to 0 as |z| — oo, since u € Ls. O

Genuine examples are obtained from p(z) = (1 + |z|)® with a
§ < 1, including the classical case (§ = 0) of ¢- € K, where
|u(z)| — 0, but giving faster decay for § > 0 and weaker bounds if
§ < 0 (these are potentials ¢ which might go to —o0 as |z| — o0).
If p is not spherically symmetric, we get direction depending bounds
on eigenfunctions.

2 Self-Adjointness

Based on the results of the last section, the following general criterion
for essential self-adjointness of T' on C§° is easy to derive. To get a
well-defined symmetric operator in L, we have to assume g € Lg ¢
real-valued from now on.

Theorem 2.1 Let q € Ly, with q_ € Ko, b € C', and let

T :=—(V-ib)?+q|C&
be bounded from below. Then T is essentially self-adjoint in L.

Proof. Without loss T > 1. We show TCg® = Ls.

Consider u € —T—C?J', whence u € L, and Tu = 0. By Corollary
13, u € Leotoc N Wy, For € >0 and k € IN consider v :=
uen?, where u, denotes the classical regularization of u, and 7 is
obtained from a smooth cut-off function 7 (i.e. n(t) =1 for t < 3, 0
for t > 1 and otherwise in [0,1]) by putting m(z) = 77(1%1) Then
a thorough calculation shows that
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o
Il

(v, T (%))

(ueme, T(ueme)) — || Ve + 26 - im(ne Ve, u. Vi)

+(({=iV b+ B + g}u)e = {=iV - b+ [b* + g}ue , uenf)

+2iz ((bju)e - bju., aj(uen,?)) + 2i(ueni, uch - Vi) .
Jj=1

The first two terms on the right-hand side are real and can be esti-
mated from below by

maXInl

lluelt® -

The sum of the other terms must be real too and tends to
2i(im(mVu, uVne) + /|u|27lkb - V)

as € — 0, which thus must be 0. Hence we arrive at

——ull?,

and letting £k — co,u =0 follows. o

Another way to establish essential self-adjointness of T is by
imposing global conditions on ¢_ such as q_ € K or K + O(|z[?)
(i.e. g~ = q1 + gz with ¢, € K, and (1 +]|-|)"%¢2 is bounded).
Theorem 2.1 allows to consider the even larger class K, with p(z) =
(14|z|)~1, although T will not be bounded from below in that case.

llemel|* -

e < 2T

Corollary 2.2 Let q¢ € Lyjoc with - € Kqyp-1, b € C'. Then
T is essentially self-adjoint in L, .

Proof. Let us first assume that g € K. Then g¢- is rela-
tively form bounded with respect to —A ([2], Lemma 3.2) and con-
sequently also with respect to —(V — ib)? with the same bound ([4],
Lemma 2.3), namely 0. Hence for all ¢ € C§°:

(0, Te) = [l IV = i)l I* + (¢, q¢) > const [l
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i.e. T is bounded from below. By Theorem 2.1 T is essentially
self-adjoint.

The transition to general g_ € K(;4}-1 by cutting ¢_ off out-
side balls and recourse to the first case is done as in ([2], Section
3.2), where A has to be replaced by (V — ib)? in Lemma 3.5; the
necessary changes are straightforward. o

3 Bounds on Eigensolutions and the
Spectrum

A classical subject of spectral theory of Schrodinger operators T
is the discussion of connections between the behavior at infinity of
eigensolutions for A\ and the position of A in the spectrum o(T).
Apart from extreme cases, the discrete spectrum o4(T) is associ-
ated with exponentially decaying eigenfunctions, whereas a A in the
essential spectrum o.(T") has only (polynomially) bounded eigenso-
lutions. We will make this precise with the aid of a method of Em-
manuil Eh. Shnol’, based on the following lemma, which is an easy
extension of the well-known Weyl criterion for the essential spectrum:

Lemma 3.1 Let T be a self-adjoint operator in a Hilbert space;
A € R. Then for any sequence (ux)ren C D(T) withVk € IN :
lux|| =1 and up =0, as k — o0

dist(A,0.(T)) < lilgninf (T = A)ug|.

For the proof see ([1], p. 174).

We will now assume T = —(V — ib)? + q with ¢ € Laj,c and
b € C! throughout. Starting from an eigenfunction u € Lo for
A € 04(T) (a polynomially bounded eigensolution u € Lgjoc\L2 for
a A € IR) one can construct the sequence (ux) by cutting off inside
(outside) balls of increasing diameters. The bounds on dist(),g.(T'))
obtained from Lemma 3.1 can then be used to derive upper bounds
for u (prove A € 0.(T)).
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Theorem 3.2 Let q- € Ky -+ with a v € [0,1]. Then for
A€0y(T) there is a p>0 such that for any eigenfunction u for A:

[ o(eHTYy i 0<y <1
u(e) "{ O(lz|=1/Dy | if y=1.

Theorem 3.3 Let q- € K + o|z|?) (i.e. g- € K + O(|z|?) and
|z|~2¢2(z) = 0, as |z] — o0 ). Iffora A € IR there is a polynomially
bounded solution u € Ly 1,c\L2 of Tu = Au, then X € a.(T).

The technical details of the proofs depend on the regularity re-
sults of Corollary 1.3, on the observation that

A(Jul?) = 2(g = Mul® + 2|(V ~ ib)ul?

({4], Lemma 3.9) and on form boundedness. We refer to ([2], Section
4.2) and ([4] Section 3.2), respectively.

In the proof of Theorem 3.2 the mean value inequality Theorem
1.5 enters in a step where Lj-bounds on u are transferred into the
desired pointwise bounds. This procedure is also used in proving a
kind of converse of Theorem 3.3, namely the fact that o(T) is the
closure of the set of those A € IR for which there is a polynomially
bounded non-trivial eigensolution. One starts from an expansion in
generalized eigenfunctions u which lie in some weighted L,-spaces
(see ([4], Section 3.1) for details). This L,-bound can then be turned
into a pointwise bound by Theorem 1.5. We thus arrive at:

Theorem 3.4 Let q- € K + o(|z|?). Then

o(T)={reR: Is>03Fu#0, (14| ]|)*u € Loo(IR™) : Tu=Au}.

The fact that g-(z) = O(|z|?) is excluded here and turns up
as an exception in Theorem 3.2 is explained by the existence of an
example due to Halvorsen, where 0 is a discrete eigenvalue with
an only polynomially decaying eigenfunction and where there is a
bounded eigensolution to every A € IR, including those in the neigh-
borhood of 0 which are not in the spectrum. Halvorsen’s example
isin IR!, and it is an open question if this phenomenon extends to
higher dimensions (see the discussion in ([2], Chapter 5)).
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Abstract

Lie group approach is discussed to linearization of second and
first order ordinary differential equations. For first order equations
we use changes of the dependent variable only while for second order
equations general changes of dependent and independent variables
are considered.

1 Second Order Equations

One can extract, from several results of S. Lie [1], [2], the following
statement [3]:

Theorem 1 The following assertions are equivalent:
(i) a second order ordinary differential equation

" !
y' = f(z,9,9) (1)
Differential Equations with English translation copyright © 1993
Applications to Mathematical by Academic Press, Inc.
Physics ISBN 0-12-056740-7
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178 Nail H. Ibragimov
can be linearized by a change of variables T = ¢(z,y), ¥ = ¥(z,y);
(ii) equation (1) has the form
'+ F3(2,9)y° + Fa(z, )y + Fi(e,9)y' + F(z,9) =0 (2)

with coefficients F3, Fy, Fy, F satisfying the integrability conditions of
an auziliary overdetermined system

g% = 22—Fw—Flz+g—§+FF2,
%Zi = zw—FFs—%aa—Fy]-I"g%,
Z_ZJ = —w'4+ FBw+ F3z+ %—FIFB; (3)

(1ii) equation (1) admits an 8—dimensional Lie algebra;
(iv) equation (1) admits a 2-dimensional Lie algebra with a basis

J s}
Xa :éa(l‘,y)g.';-fﬂa(l',y)—az, o= 1’2’
such that their pseudoscalar product
X1V Xy =Gm—mé (4)

vanishes.
Example 1. The equation
y// = e—y'

is not linearized since it is not of the form (2).
Example 2. Let’s consider equations of the form

¥ = f(¥) (5)

from Table 2, and inspect when they are linearized. In accordance
with Theorem 1(ii) it is necessary that the function f(y’)is a polynom
of the third degree, i.e., the equation (5) has the form

¥+ Azy® + Ay + A1y’ + Ag =0 (6)
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with constant coefficients A;. One can easily verify that the auxiliary
system (3) for Eq. (6) is integrable. Therefore, Eq. (6) is linearized
for arbitrary coeflicients A;.

Example 3. Let’s take, from Table 2, equations of the form

V' = ). @

When are they linearized? Again, by Theorem 1(ii) we have to con-
sider only equations of the form

1
v+ ;(AayB + Ay + A1y’ + Ag) =0

with constant coefficients A;. In this case we have from the inte-
grability conditions of the corresponding system (3) the following
equations:

A2(2 - A]) + 9AOA3 =0, 3A3(1 + Al) - A% =0.

We put As = —a, A2 = —b and obtain A; = — (1 + %), Ag =

- (% + %,-) Hence, Eq. (7) is linearized iff it is of the form (see
also [4])

y":l[ay'3+by'2+<1+£2->y'+—b-—+i] (8)
z 3a 3a  27a%|°
A linearizing change of variables can be found via statement (iv) of
Theorem 1.

For example, we find a linearization of Eq. (8) in the case a = 1,
b=0, i.e., of the equation

1
y' = +9). (9)
This equation admits L, with the basis

1oy, 80 (10)

Xl.—;;');’ z 0z’
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which satisfies the condition X; V X3 = 0 of Theorem 1(iv). The op-
erators (10) are of the type II from Table 2. Therefore a linearization
is obtained by turning to the canonical variables

- —_ 14
T=y, Y=o
in which the operators (10) become
- 0 — 0
Xy = — X, = —'_‘,
Loy *T oy

in accordance with Table 2. Then, excluding the special solution
y = const., we have the transformed equation (9):

7' +1=0.
Example 4. We now take equations

y" = F(z,y) (11)

and verify that the

Question: When a nonlinear equation of the form (11) is lin-
earized? has the

Answer: Never.

Indeed, our equation (11) is a particular case of Eq. (2) with
coefficients F; = F = F3 = 0. The system (3) is

z; =22+ Fw— Fy, wg = zw,

= — 2
zy = —zw, wy = —w*,

and one of the integrability conditions, namely

Zzy = Zyz

yields
F,y =0.

It follows that Eq. (11), where F(z,y) is nonlinear in y, is not lin-
earizable.
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Example 5. Here we discuss in detail a construction of a lin-
earization. One can readily find that the equation

v=(v-2)1(Y) (12)

with an arbitrary function f admits the 2-dimensional Lie algebra
spanned by

0 i} 0 i}
— 2 . 2
X1=¢2 0w+ly6y’ Xg—a:y(9 +y 3y (13)

This algebra belongs to the type II of Table 2. Therefore Eq. (12)
can be linearized and a linearizing change of variables T = ¢(z,y),
T = 9¥(z,y) is obtained from the conditions

0 2

X1(¢) +X1(¢) =5 X2(¢) +X2(¢) =f (14)

We have from (14) the following four equations to determine ¢, :
X1(¢)=0, Xi(¥)=1 (15)

X2(¢)=0, Xao(¥)=¢. (16)
The general solution of Egs. (15) is

¢=g(%), ¢=—%+h(g).

By these functions the first Eq. (16) is satisfied identically while the
second one gives ¢ = y/z. We choose h = 0 to obtain the following
change of variables:

i 1
z

) y—_—

T = .
T

After this transformation the equation (12) becomes

7'+ f(@) =0.
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2 First Order Equations

In the case of first-order equations Theorem 1 is replaced by the
following.

Theorem 2 Given a first-order ordinary differential equation

Yy = f(z,y) (17)
one can by means of an appropriate change of variables
z=¢(z,9), §=19(z9) (18)
transform (17) into any given equation
7 =9(z,79) (19)

We consider here, instead of general changes (18) of both inde-
pendent and dependent variables, transformations of the dependent
variable only:

7= 9%(y) (20)

If Eq. (17) is linear, then after transformation (20) we have, in

general, a nonlinear equation (19). This equation will be a particular

case of equations possessing a fundamental system of solutions, or a

nonlinear superposition principle ([5]-[9]). Further, any first-order

ODE possessing a nonlinear superposition can be written after a
transformation (20) in the form of a Riccati equation

y' = P(z)+ Q(z)y + R(z)y’. (21)

So, the question is when is Eq. (21) linearized by a transformation
of the form (20)? We formulate an answer as follows ({10]):

Theorem 3 If the Riccati equation (21) possesses one of the follow-
ing four properties, then it should possess all of them:

(i) Eq. (21) is linearized by a transformation (20):

(ii) Eq. (21) can be written in the form

v = Ti(2)61(y) + Ta(2)€2(y) (22)
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so that the operators

d d
= - = - 2
Xi El(y)dy, X, Ez(y)dy (23)
span a 2-dimensional Lie algebra, i.e.,
(X1, X2] = aX; + 8X,

(if [X1,X2] = 0 we have one-dimensional algebra and the variables
in the Riccati equation are separated);
(iti) Eq. (21) is either of the form

v = Q(z)y + R(z)y® (24)

or
y' = P(z) + Q(2)y + k[Q(z) - kP(2)]y? (25)
with any coefficients P(z),Q(z), R(z) and a certain constant k (in

general, complez);
(iv) Eq. (21) admits a constant (in general, complez) solution.

Remark. Eq. (25) has the constant solution y = —1/k. There-
fore a linear equation being a particular case of Eq. (25) with £ = 0,
can be considered as a Riccati equation having the point at infinity
as its constant solution.

Example 1. The equation

y'=z+y2

is neither of the form (24) nor (25). Hence it cannot be linearized.
We also notice that it is of the form (22) with coefficients T} = =z,
& =1; Ty =1, & = y? so that operators (23) are

d d
X; = — Xy = y*—.
1 2 ydy

The two-dimensional vector space spanned by these operators is not
a Lie algebra since the commutator

d
(X1, X2) = 2yd_y
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is not a linear combination of X; and Xj.
Example 2. The equation

¥ =2+ (z+ v2)’y + 2v2(2 + 2*)y? (26)

is not of the form (22). But, it would be erroneous to make a con-
clusion that this equation cannot be linearized. Indeed it has the
following constant solution:

1
Yy=——m=
Y 2\/_:2-

and thus Eq. (26) is lincarizable. This is not in a contradiction with
Theorem 3(ii). In fact one can represent Eq. (26) in the form (22)
as follows:

v = z(14+2vV29) + (2 + 1) (y + 2vV24?). (27)

The corresponding operators (23) for Eq. (27) are equal to
d d
X =(1 2y)— = 2v2y°) —
1= ( +2fy)dy, Xo=(y+ \/_y)dy
and form a 2-dimensional Lie algebra since

(X1, X2] = X1 + 2v2X,.

Example 3. Now we discuss details of a linearization. Consider
the equation

v = P(2) + Q(z)y +[Q(z) - P(2)]y? (28)

which is of the form (25) with & = 1. It is written in the form (22)
with Ty = P, To =Q, & = 1— 9%, & = y+ y2. Hence the operators
(23) are

d d
= —yHy— = 2 P
X=0-v)g. X=@+y)g (29)
They span L, since

[JY],X2] = /\,1 + 2X2
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To find the linearizing transformation we first choose the new basis
of L, as follows:

—_ d —_
X1 =X1+2X2=(1+y)2@, X2 = X, (29')

Then [X1, X2] = X; and therefore we seek for a transformation (20)
such that the operators (29’) become

- d - d
X = — Vs = __-
1 d?/_’ Y'Z yd@'

This transformation is found from the equation
-~ dy
Xi(m=(1 22 -
(7)) =(1+y) ay

and is given by
1
J=——0. 30
7= -177 (30)

After this Eq. (28) becomes

¥ =Q(z) - P(z) + [Q(z) — 2P(2)]7 (28")
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Table 1. Lie Group Classification of Second Order Equations

“ Group ] Basis of Lie Algebra l

Equation H

Gl Xl = 56; y// — f(y,y’)
Ga Xy = ;_Z,Xg = % v = f(y)
J
o :38—3/’ 9 n__ 1
X2=$6—z+y517 y =;f(y')
Ga | Xi=ge 4y,
Xo=of +v5,
Xs=2*Z +y*4 |y 20 < g
X = Z,
X =203 + vz,
X3= xz‘—% + xy% y// = Cy_3
X1 =%, X2 = 5,
X3 = IL% +(z + y)% y" = Ce—V'
Xl = ;—I,Xg = Bi’ y” — Cyr(k..z)/(k_l)’
X3=zg%,+ky% k#0,1,1,2
Gs X, = 86_1;,X2 — %’
X3 = -"’33—,)(4 = x%,
X5 = ygal;,Xs = y%, y// =0
Xr=alg + wy%,
Xg = xy.a%. + yZ%
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Table 2. Canonical Form of 2-Dimensional Lie Algebras
and Invariant Second Order Equations

Basis of L, in
Type | Structure of Ly | Canonical Variables | Equation

I [Xl,X2]=0,
XiVX:#0 | Xi=£,X%=2 | v'=/)

I | [X1,X2)=0,
X1VXe=0 | Xi=2,X2=22 | ¢ = f(z)

I | [X1,X2] = X, X,

X1V X, #0 X2=1358— Yoy y”: %f(yl)

IV [XI,X2] = X],
X1VXe=0 | Xi=£,Xo=y% | ¢ = fa)y
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1 Introduction

Eigenfunction expansions are at the heart of the picture of quantum
mechanics which was developed by Dirac. The idea is to expand
states which change with time as they evolve under the Schrédinger
equation d¥/dt = i/ ¥ in terms of those which do not, in the sense
that they give the same expectation values for all observables. How-
ever, in quantum mechanics, observables in the physical sense cor-
respond to operators in a Hilbert space. The operator which maps
the initial condition ¥(0) for the Schrodinger equation to the solu-
tion ¥(t) at time t is denoted by e*Ht. Since this is the fundamental
operator of quantum mechanics, it makes sense to expand it in terms
of simple operators; the most natural way of doing this is to expand
in terms of operators of the form e** Py, where Py is a projection
onto a one-dimensional space of eigenfunctions with eigenvalue A.
This turns the operator exp(:H¢) of time evolution into a diagonal
matrix; unfortunately, it in general has uncountably many entries.
For many physical problems, such as those connected with scattering
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theory, H is not known, or is only known up to a small perturba-
tion; the object is to find it, from measurements involving the time
evolution of the physical system. If exp (¢Ht) is considered as a ma-
trix with uncountably many entries, it would take uncountably many
measurements in general to find it. Ideally, the matrix would have
only finitely many entries; this is of course not possible unless we per-
form an approximation. In this note we discuss how to approximate
exp(iHt), where H is a self-adjoint operator with arbitrary spec-
trum, in terms of eigenprojections of multiplicity one. These terms
of course must be defined rigorously as part of the program. We
concentrate on the approximation of spectral projections by finitely
many eigenprojections, since once this is done the spectral theorem
can be used to do the rest.

Our approach is self-contained, and involves developing the the-
ory of continuous spectrum eigenfunctions afresh and paying very
careful attention to convergence; in fact, new results on convergence
are contained in the paper. Outside of related papers by the author
[4], with Edmunds [1] and with Hinton [3], it is probably closest in
spirit to the recent paper of [5], though it also harks back to work
of Gelfand and others in the 1950’s. The purpose of our approach
is to give a very concrete answer to the question of what the eigen-
functions are and how the expansion converges. This paper gives
new convergence results, which hold even in situations where no rea-
sonable a priori estimates on the domain of the self-adjoint operator
are available; one such situation would be the Laplace-Beltrami op-
erator on a semi-Riemannian manifold. However, even when the a
priori estimates needed to apply the results of [1], [3], and [4] hold
for the operator in question, the results of Theorem 11 and Theorem
13 are not implied by these other results. The difference is that the
convergence we study is uniform on the proper hull of appropriate
sets; the concepts of hull and proper hull are given in Definition 6
and are introduced in this paper.
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2 Definitions and Results

Eigenfunctions will be defined as elements of the dual space of a
topological vector space W, which we call the space of attainable
states. This space is a background space, which is in the domain of
any reasonable self-adjoint operator. Since in quantum mechanics,
there are good reasons for wishing the self-adjoint operators to be a
ring, it is natural to expect the attainable states to be a subset of the
C® functions in many applications. This indicates that W is more
likely to be a topological vector space than a Banach space.
Spectral projection operators arise as operators from W into W’
with range contained in the eigenfunctions of the self-adjoint opera-
tor H being studied. These are in turn defined to be solutions in W’
to the equation H'F = AF. It is interesting to observe that one of
the most difficult convergence questions arises from the decomposi-
tion of the entire Hilbert space into a direct sum of cyclic subspaces.
A cyclic subspace Ry is the linear span of {e!''f : t € R}, where
f is a fixed vector in the Hilbert space. Thinking of f as an im-
pulse, the decomposition into orthogonal cyclic subspaces breaks the
Hilbert space into invariant subspaces corresponding to orthogonal
impulses; on each subspace the possibly non-normalizable eigenfunc-
tions corresponding to a given eigenvalue have multiplicity one. The
projection onto a cyclic subspace then seems to have physical mean-
ing. However, the space W of attainable states is not in general
closed under projections onto subspaces R¢; or under the group e'F*.
Especially this latter property is a major physical defect. It is desir-
able to have a larger subspace than W which is closed under these
operations, but which is small enough that everything still converges.
The hull of W, introduced in Definition 6, has these properties.

Definition 1 A locally convez topological vector space is said to be
a nuclear space if, for any convez balanced neighborhood V' of 0,
there exists another convez balanced neighborhood U C V of 0 such
that the canonical mapping T : Xy — Xy is nuclear. A nuclear
operator from a locally convex topological vector space X into a
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Banach space Y is an operator of the form

Tz =s— nh-I.Eo Zc_,-fj(z)yj

i=1

where {f;} is an equicontinuous sequence of continuous linear func-
tionals on X, {y;} is a bounded sequence of elements of Y, and {c;}
is a sequence of non-negative real numbers such that 3332, ¢; < 0.
The spaces Xy and Xy are defined as follows: let U be a conver bal-
anced neighborhood of 0 in X. Let ky be the Minkowski functional
onU. Let Ny={z€ X:Xxe€UVX>0}. Then Ny is a closed
subspace of X, and the quotient space 1—\{—, s a normed linear space

Xy under the norm induced by xy . Xy is the completion of Xy.

Definition 2 Let Q be a separable Hilbert space. Let H be a (possibly
unbounded) self-adjoint operator in Q. A space W of attainable
states for H is defined to be a locally convez topological vector space
with the following properties:

1. H takes W continuously into W;
2. W is a nuclear space;

3. W is a dense subspace of Q, such that the injection from W
into ) is continuous;

4. W is the inductive limit of a finite or infinite sequence {V,}
of separable Frechet spaces such that {V,.} is algebraically and
topologically contained in Vyo41.

Definition 3 The space of idealized states is defined to be the dual
space W' of the space of attainable states. W' is given the topology
B(W,W"), where a subbase for the neighborhoods of 0 in W' is defined
to be sets of the form A° = {F € W' : |F(z)| <1V z € A}, where A
ranges over the balanced convex bounded subsets of W.

Note: We naturally embed Q into W’; this causes complex con-
jugates to appear in various formulae.
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Remark: The standard topological vector spaces of analysis, such
as the rapidly decreasing functions, C§°(R™), and many others, sat-
isfy the hypotheses of Definition 2; see [6], page 74.

Theorem 4 A locally convez topological vector space X is nuclear if
and only if for any convez balanced neighborhood V of 0, the natural
mapping Iy from X into Xy is nuclear.

Proof: This is Theorem 1, p. 291, [7].

Theorem 5 FEvery space W satisfying the hypotheses of Definition
2 is a Montel space, which is by definition a separated barrelled space
such that closed and bounded subsets are compact.

Remark: The proof is not difficult, and will be omitted.

Definition 6 Let ¢ € W; let {e;} be an orthonormal set in §; as-
sume that the cyclic subspaces R.; generated by e; have the property
that Re, LR, for i # j. Let P; be the projection onto Re,. Let H be
as in Definition 2; let A — P(A) be the spectral measure for H. Let
0., (A) = [P(A)es, e;]. By the spectral theorem there exists a unique
isometry T; taking the range of P; into La(o.,) such that Tie;(A) =1
and such that for any g € domain(H), T;(HP;g)(A) = ATig(}A).
An element e € Ly is said to be in the hull h(¢) of ¢ € W if
V i, T;Pie(A) = fei(A)Tid(A) for some Borel measurable function
B; of modulus one; the proper hull is the set of elements of the hull
where the functions ; are equicontinuous when restricted to compact
sets. The hull h(A) of a set A is {h(¢) : ¢ € A}; the proper hull of
A is defined analogously.

Lemma 7 Let e € Q). There ezists a neighborhood Uy of the origin
in W, and a positive constant 8, with the following property: for
any disjoint family {£(r)}2~, of subsets of R, and any set {6} of
elements of Uy,

s k
> D IP(E(r))6ri, Pell < B

r=1i=1

> PEr)e
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Proof: Since the embedding from W into € is continuous, it
follows that if V' is the intersection of the unit ball of  with W,
then V is a neighborhood in W. If we let Ny denote the subspace of
W consisting of elements which are contained in all multiples of V,
then Ny is the trivial subspace. The Minkowski functional ky is the
norm of €, and the space Xy defined in Definition 1 is the normed
linear space formed by giving W this norm. The mapping Iy is the
identity mapping from W into Xy. We then see that

k s

DD T PE(T))bys, Prell

i=1r=1

2 |y 8s 5, P(E(r)) Pee]l

= YIS cjay8,485, PE() Pl

g =1
= >3 lejoj(0r,)B5, br ;i P(E(T)) Pie]
=1
oS} k
< e D2 @i(8r,:)bn i P(E(r)) Pie
1=1 =1

for some summable sequence ¢; of complex numbers, and for some
equicontinuous sequence a; of elements of W', some set {b,;;} of
complex numbers of modulus one, and some bounded sequence {3;}
with norm less than v of elements of the normed space Xy, which
of course is just @ N W. In fact, the last inequality is proved as
follows: since {a;} is equicontinuous, there exists a neighborhood U
of the origin in W such that |e;(z)| < 1 for all z € U. But, if P;, =
P(&(r))P;, then {P;,} is a set of mutually orthogonal projections,
since P; commutes with P(£(r)). Hence, if {#;} is chosen from UNV,
the conclusion is established, where 8 = v3°32, |¢;|.

Definition 8 Assume the following for the rest of the paper. Let
{ei} be an orthonormal set in Q such that the cyclic subspaces Re;
generated by e; have the property that R, LR, for i # j, and such
that for all j > 1 o, is absolutely continuous with respect to o, ;
using the spectral theorem such an orthonormal set may be selected.
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Let
do.; = 6;(A)do.,.

Note that W has a countable dense subset. Let S; be a countable
dense subset of W, which is also a subspace over the rational num-
bers. Let S = S1 + HSy. For each ¢ € S, T; P;¢p()) is well defined
for all i, except on a set of A which has measure 0 with respect to o.;.
Define F\.; to be zero on the exceptional set, which may be chosen
independently of . On the complement of this set, define F) . for
each i by F) ¢, (¢) = TiPi¢p()); this defines a linear functional on S,
or more precisely a function from S into the real numbers which is
linear over the field of rational numbers. We extend this functional
to all of W.

Lemma 9 For almost every A with respect to o1, there ezists a
unique element F) ., of W' which agrees with the previously defined
functional Fy ., on S, and which has the following properties:

1. H'Fye; = AF)¢;;

2. for each ¢ € W, there exists a set A depending on ¢, such
that P(A) = I (the identity operator), and such that for all
A€ A) F)\,e.‘ (¢) = ﬂP1¢(’\) v th

3. the function a; : a;(A) = F)., is a measurable function from R
into W' with respect to oy, in the sense that ¥V € > 0, 3 a closed
set A, such that o.,(R\A,) < €, and such that the restriction
of a; to A¢ is a continuous function from R to W',

Proof: We extend F) ., from S to W by continuity. We show
that there exists a neighborhood U of zero in W such that for almost
every A with respect to o, F\ ¢, is bounded on U N §. In fact, take
U = Uy, where Up is the neighborhood defined in Lemma 7. Let

YU(Fare;) = sup |FA,6;(0)| .
feUnS

Note that yy(F)e;) = sup{Fy¢;(8) : 6 € SN U}. It follows from
Lemma 7 that defining 9y by

’?U(L ’\) = sup ITIR¢(’\)| ’
oclU
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Ju(i,+) € Li(oe). Thus o {A : yu(i,A) = oo} = 0. Hence for
almost every A with respect to o, yu(F\e;) is finite. It is now
elementary to extend F)., uniquely to be an element of W’; the
fact that H'F) ., = AF) ., follows from the fact that for all ¢ € S,
T:(HP;¢)(A\) = ATi(Pi¢)(A). It is easy to see that for any element
¢ € W, for almost every A with respect to o¢;, T;(Pi¢)(A) = Fi (),
although the exceptional set can now depend on ¢. It follows that
F)¢;,(¢) is a Borel measurable function for each ¢ € W. It is also
clear that, except for a set of measure 0, {F).,} is contained in a
bounded subset of W’, in the given topology S(W',W). A Montel
space is reflexive; see page 74 of [6]. Hence, in the terminology of [2],
page 558, the function a(A) = F) ¢, is scalarwise measurable from R
into W’. Since the functions F) ., are in W/, they are also in the dual
space of each of the Frechet spaces in the inductive limit which forms
W. By Proposition 8.15.3, page 575, [2] it follows that the function «
is continuous on a closed set whose complement has arbitrarily small
measure with respect to o.,, as a function with range contained in
the weak dual of each Frechet space. Picking the sets of measure
0 corresponding to each Frechet space, we see that « is measurable
considered as a function with range in W’ where W’ is given the
weak topology. But on closed, bounded subsets of the Montel space
W’, the injection from the given topology into the weak topology
is a continuous one-to-one function defined on a compact Hausdorff
space, which is therefore a homeomorphism. It follows that o is a
measurable function with values in W', under the given topology.
The lemma is proved.

Definition 10 A series ) o, F; of elements of W' will be said to
converge absolutely if, for every continuous seminorm p, the series
2, p(Fy) converges.

Theorem 11 Let §; be as in Definition 8. There exists a conver, bal-
anced neighborhood V of 0 in W such that if py (F') = supgey |F()],
then for almost every A with respect to spectral measure there ezists
an element Fy., of W' for each i such that H'F\,, = AF\., and
such that the following properties hold:
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1. define the measure I' on RXxN, where N denotes the natural
numbers, by I' = 0., X un, where un denotes counting measure;
then for any ¢ € W, the function fy € L1(T'), where

fo(A1) = 8i(A)Fx e (#)pv (Fi e, )s

2. for almost every A with respect to oo,, 350, 6:(A)Fx e, (@) F e,
converges absolutely in W' for every ¢ in h(W);

3. for every Borel set A and every ¢ € h(W),
P(A)g = /A (Z F,\'ei(¢)f‘,\,e,.) 6i(A) do1(N).

4. for almost every A with respect to o.;, there is a sequence A,
of Borel sets such that A, is supported in (A — %,)\ + %) and
the sequence ¥,, = P(Ar)e;i/oe,(Ay) converges to F ., in W,
so that by the continuity of H' as a linear transformation of
W' into itself, H'¥, converges in W' to AF) ;.

Remark: The above formulae show how to spectrally decompose
projection operators. From these, one can spectrally decompose all
functions of H.

Proof of the Theorem: Note that py(F);) is the supremum of
countably many Borel measurable functions of A, and is thus mea-
surable. The first assertion follows from Lemma 7, upon selecting 6, ;
carefully; the method of proof is that of assertion iii), Lemma 1.6,
[4]. The second assertion follows from Fubini’s theorem. Note that
by the spectral theorem and the definition of F) ., for any ¢,0 € W,

(P(2)6.0) = ¥ [ Frei()Fe.(6) do(3).

The third assertion follows immediately. The fourth assertion follows
from the formula

P(A)e; = /A P., do, (1)

together with assertion 3 of Lemma 9. Equation 1 follows from the
third assertion by passing to the closure and noting that T;Pe; = 1
by the spectral theorem.
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Lemma 12 Let V be a bounded convez balanced subset of W. Then
Ve>03 N >0 and compact subsets {A;}7' of R such that the
function a(A) = Fy., is a continuous function from A; into W' and

VoeV:

L Y2N [ ov(Fe) | Fre(9)l doe <€
2. T frya ov(Fre) [Fae(9)l doe < e

Proof: V is compact in W and therefore in Lo(€2). It follows that
Ve>03IN>0 32N IIPol* < eV ¢ € V. The first conclusion
follows from picking 8, ; carefully and using Lemma 7, together with
the preceding theorem. (Recall that since V is bounded, V is con-
tained in some multiple of the neighborhood U of Theorem 11.) The
second conclusion follows in the same fashion.

Theorem 13 For any bounded conver balanced subset V of W, if
ph(V) denotes the proper hull of V, and pv(F) = supgey |F(0)|, and
A is any Borel set, then for every € > 0 there exists a subset J of the
positive integers and for each j € J a finite set {Ai; : i < n(j)} of
real numbers and {a;;} of positive real numbers such that for every

¢ € ph(V),

PV {P(A)¢ - Z Z ai,jF/\.‘”_,',ej(¢)F,\."j,ej} < €.

i€t i<n(j)

Remark: We need to use the proper hull instead of the hull to
control the sets of measure zero, and pick the A;; independently of
é.

Proof: We may use the preceding lemma to cut down to a finite
set of e; and compact sets A; on which a is continuous. The integral
then becomes a Riemann integral. (This is the method of proof of
the implication ii) = iii) of Theorem 3.3 of [4]; more details are given
there.)

Remark: The preceding theorem shows the importance of us-
ing the largest possible space W. For example, if W = C§°(R"),
bounded subsets of W must be supported in some fixed compact
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subset of R™; however, bounded subsets of the rapidly decreasing
functions are much larger. Larger bounded sets give better conver-
gence. The obstacle to using large spaces W is that H must take
W continuously into itself, in order to make the eigenfunctions F)
satisfy the equation

H,F/\,e,‘ = /\F/\,e." (2)

It is this last equation which gives legitimacy to the eigenfunc-
tions, because it leads to conclusion 4 of Theorem 11. When H is
a partial differential operator arising from a hypoelliptic differen-
tial expression, equation 2 leads to regularity results and Sobolev
inequalities for the eigenfunctions F) , .
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On Unique Continuation
Theorem for Uniformly
Elliptic Equations with
Strongly Singular Potentials

Kazuhiro Kurata
Gakushuin University

Abstract

We prove unique continuation properties for solutions of uni-
formly elliptic equations: ~—div(A(z)Vu) + b(z) - Vu + (V(z)
+ W(z))u = 0 with Lipschitz continuous A(z) and singular b(z),
W(z) and V(z).

The principal assumptions on b(z), W(z) and V(z), in our the-
orems, are V,(2V + z - VV)~, W+, (|z|]W*)? € Qi(Q), [W=(z)| <
C/|z|?,|b(z)| € C/|z| for some constant C > 0, where Q,(2) =
K.(Q) + F(Q) for some 1 < t < n/2, V- = max(0,-V),V*t =
max(0, V). Here K,(Q) is the Kato class and F;(Q) is the Fefferman-
Phong class.

1 Introduction

We consider the second order uniformly elliptic equation with real
coefficients:

Lu = —div(A(z)Vu) + b(z) - Vu+ V(z)u + W(z)u=0 (1)

Differential Equations with Copyright © 1993 by Academic Press, Inc.
Applications to Mathematical All rights of reproduction in any form reserved.
Physics ISBN 0-12-056740-7
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in a domain @ C R™ (n > 3). Here A(z) = (a;;(z))i<i,j<n i 2
symmetric matrix which satisfies, for some A € (0,1] and T' > 0,
MEP < D aij(2)6€ S ATHER, z€Q, £€R, (2)
t,7=1
|a,'j(.’17) - al](y)| < FIIE - yl’ Za] = 1a2»' M T,y € Qv (3)

and b(z) = (bi(z))i<i<n- The following two types of unique con-
tinuation property for solutions of (1) are well known for bounded
coefficients b, V, W.

(W) Let u € W1 2(Q) be a weak solution of L =0in Qand u =0
on some open subset Q' of , then u = 0 in Q.

(S) Let u € W”(Q) be a weak solution of Lu = 0 in  and
u vamshes of mﬁmte order at a point z, € Q in the sense
fBr(zo) u?dy — 0 as 7 — 0 for every m > 0 at a point

T, € Q, then u =0 in Q.

Recently these results are extended to various classes of
unbounded coefficients. When A(z) = (§;;), see e.g. [10], (7], [12],
[3], [2). In particular, Jerison and Kenig [7] showed the property (S)
for W € L?O/E(Q) (b,V = 0) and Stein [12] extended this result to

the weak-L™/? class. Sawyer [10] and Fabes, Garofalo and Lin (3]
studied it for W of the Kato class K,(f?) and Chanillo and Sawyer
[2] for W in the Fefferman and Phong class F; with ¢ > (n — 1)/2.

As is well-known (cf. [9]), in general, the Holder continuity of
the coefficients a;;j(2) does not suffice for solutions of (1) to have
the property (W). Therefore, the regularity condition (3) is optimal.
Under general conditions (2), (3), the unique continuation theorem
for (1) was shown under different assumptions on b and V, W by [1],
[6], [4] and [S].

Hérmander proved the property (W) for (1), when n > 4, V =
0,WelLj (R"),p>(4n—2)/Tandbe L] (R"),q> (3n-2)/2;
(S) at the origin, when n > 3, V =0, |b(a:)[ S C/lz|*%, |W(z)| <
C/|z|?=% for some § > 0. When A(z) € C*(Q), Sogge [11] proved
(S) for (1), if |b(z)] < C/|z|'~* for some § > 0 and V = 0,W €
w— Ll 2 (see also [13]).
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The standard approach for the unique continuation problem is
to establish an appropriate Carleman estimate and almost all results
was shown by this method ([1], {2], [6], [7], [10], [12], [11], [13]).
Garofalo and Lin found a new approach to this problem and par-
tially improved the result of [6]: they proved (S) at the origin, when
n >3,V =0,b@)| < Cfllzl)/lel, W@) < Cf(lal)/lal? with
0’ f(t)/tdt < +oo.

In this paper we shall extend these results to several directions
under an additional assumption on the quantity (2V +z-VV)~. In
particular, we shall generalize the results of [4], [5] and show (W) for
(1) with b = 0 under the assumptions (i) V, |z||VV |, W+, (Jz|[W*)? €
K.(Q) + Fy(Q) for some 1 < t < n/2, (ii) W~ (z)] < é/|z|® for
sufficientlly small 6§ > 0, (iii) certain smallness condition on V~; (S)
under additional technical conditions. We also deal with the case
b # 0 and basically our assumption on b is the same as in [5].

2 Main Results

To state our results we first recall the definitions of K, () and Fy(£2).
V e L} (R™)is said to be of the Kato class I(,, if

loc
V(y)l
(=) |z —y|"=2

lim ™ (V) =0, #"(r;V)= SUP/ (4)
r— B

zeRn
where B,(z) = {y € R*||]z —y| < r} forr > 0. For 1 <t < n/2,
V € Lt (R™) is said to be of the Fefferman and Phong class F; if

loc

— 2 1 t 1
Vg sesup T (IBr(a:)l oo 14 dy) < +00. (5)
We say V € K,(2) (resp. V € F,(2)) if xqV € K, (resp. xaV € F),
where xq is the characteristic function of 2. We note that Fy,j, =
L™?*R") C F, C F, for 1 < s <t < n/2and weak-L"?(R") C F
for every t €: 1,n/2); V € K,(Q) implies V € F;(Q); and that
L™?(Q) and K,(Q) are incomparable for n > 3.

We introduce some functional spaces. For 1 < t < n/2, we
define the function space Q;(Q) by Q:(2) = {V =Vi+ Vp; V1 €
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K,.(Q), V, € Fi()} and set

VY : Ky,
n(r;z; V) = v=vl+132feq¢(n){n (ri xB(z)naV1)+ | xB,(z)naV2 ||lF}
(6)

For1<t<mn/2and e >0,V € Qi) is said to be in M(£;1,¢) if;
(a) V™ satisfies lim,_,o(sup,eq n(r;2; V7)) L e

(b) For every z, € Q, there exists r, > 0 such that |z —z,||VV(z)|
€ QB (z,)N Q).

For b, V, (for W, see REMARK 2), we assume
AssuMPTION (A.1):

(i) V € M(;t,¢) for a sufficiently small € = ¢(n,t, A, T).
(ii) For every z, €
lin}’ n(r;ze; (2V + (2 —z,)- VV)7) =0,
klﬂgo n(ro;a:o;‘/_X{V">k}) = 0. (7
(iii) When b(z) # 0, for every z,, € §, there exists f : (0,7,) —» R*

and C > Osuch that f is nondecreasing on (0,7,), lim,—o f(r) =
0, and for every z € B, (z,)NQ

flz — =) - ¢

b(z)| < C— V7 ()| < —— 8
|b(z)] o 2o V= ()| Iz = o (8)

To obtain the property (S) for L, we require an additional

AssuMPTION (A.2): For every z, € Q
o f(r )dr< o0, /°n(r;xo;(2V+(:—wo)-VV)“)dT< +oo.
0

(9)

Theorem 1 Suppose that (A.1) and (A.2) are satisfied. Then L has
the property (S) in Q for Wllo'zc(ﬂ)—solutions.
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Theorem 2 Suppose that (A.1) is satisfied. Then L has the fol-
lowing property (P) in Q for I/V1 2(Q) solutions: If u € loc(Q) is
a weak solution of (1) in Q and satisfies, for some z, € § and

A,a >0,
/ utdz =0 (exp(-—%)) (10)
B, (zo) r

ast — 0, thenu=0 in Q.

To obtain the property (W) for L, we can weaken our conditions.
AssumpTiON (C):

(i) V € M(Q;t,¢) for some 1 < ¢t < n/2 and a sufficiently small
€ =¢€(n,t,A\T).

(ii) When b(z) £ 0, for every z, € 2, there exist r, > 0, C > 0
and a sufficiently small ¢(n,A,T') > 0 such that

e(n, A, T)

|z — 2]

Theorem 3 Suppose that (2), (3) and Assumptlon (C) is satisfied.

Then L has the property (W) in Q for W; (Q) solutions.

Ib(z)] < L V(@) < I—_C_I 2 € Byy(2,) N Q. (11)

We should mention several remarks on Theorems 1, 2 and 3.

REMARK 1: We obtain Theorems 1, 2 and 3 by strong quantita-
tive estimates; for example, under (A.1) and (A.2), for weak solutions
u of (1), we have

/ Wdz < (11/ W do (12)
Bzr(ro) Br(Io)

for 0 < r < 7*/2, where C; depends on u,n,t, A\, T, and the local
properties of b, V, and W at z, and r*(< 7,) on =»,¢t, A\, T, and
the local properties of b, V, and W at z,. For the details, see [8,
Theorem 1.1, 1.2, 1.6).

REMARK 2: When W # 0, the property (W) for L also holds un-
der W+, (|z—2,|]W*)? € Qi(B,,(z,)NN) and [W ()| < %’l’—;\j} for a
sufficiently small §(n, A, T') > 0; (P) under lim,—o n(r; zo; W + (|2 -
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To|W+)?) = 0 and [W—(z)| < CLUz==al (S) under fJ°(n(r;zo; W)

T—=To

+Vn(r;zo; (Jz — z,|WT)?%))/rdr < +o0.

REMARK 3: For solutions u € VVIZO'Z(Q), the condition

limg o0 (705 Zo; V™ X{v->k)) = 0 in (A.1) can be removed, because
we do not need (STEP 2) in the proof of Theorems (see section 3).

REMARK 4: When 2V + (z — z,) - VV > 0 a.e. = € B, (z,),
then the property (S) is satisfied without the smallness assumption
lim,_,o sup,eq M(r;z; V™) < € on V™ in some special case (see [8,
Theorem 1.5]). However, in general, this smallness condition cannot
be removed (see [14]).

REMARK 5: For A(z) = (6;;), the condition (b) in the definition
of M(;1;€) can be relaxed by (2 — z,) - VV(2) € Q¢(Br (z,)) N Q).

Theorems 1, 2, 3 extend the results in [4], [5] which assumes
V = 0 and stronger pointwise condition (see section 1) on W in
our terminology; Theorem 1 is a partial extension of the result in
[2] to general A(z); the property (P) is studied in [5] and [3], and
Theorem 2 extends their results to the operator L with more singular
V.

Let us clarify how do our theorems extend the previous works by
using the following example.

EXAMPLE 1: Let V(z) = K18 1I|z ~ ~, where
Ks,Ly,6,7 > 0 are constants. When v > 0, V satisfies (A.1) and
(A.2) and Theorem 1 yields the property (S) for general A and b
satisfying (2)-(3), (8) with f5° f(¢)/tdt < +oco. The results in [4], [5]
only assure (W) (see [5, Theorem 1.3]) for general elliptic equations
with this potential V in the case 0 < §,7 < 1; the ones in [2] are
applicable for 8,7 > 0 and sufficiently small Lg, Ko, but those are
restricted in the special case A(z) = (6ij)1<i,j<n and b = 0 (cf. [11]).

EXAMPLE 2: Consider the operator L=-YN, A, +VinQC
R*and V =-%N, g Where o, R € RY, v 23,i=1,---,N
(N>1)and n=vN. Since V, (z —z,)-VV € Kn(zQ) we can apply
Theorem 3, and Theorem 2 for solutions u € IZO'C(Q) of Lu = 0.
However, for N > 1 previous results do not yield unique continuation
property for L.

6 log(1/|z])}—
_L,y P
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3 Sketch of the Proof of Theorems

The basic idea of the proof is to combine Garofalo and Lin’s varia-
tional method and the inequality:

2 1 2 2
[ Vintds < ClVxs, i (; Lo s+ [, 1o dz),
(13)
for Ve F; (1 <t £ n/2) and for every r > 0,y € R*, and u €
C*®(R"). See [8] for the extension of this inequality and its proof.
(STEP 1) First we use the geometric reduction procedure of [1]. We
fix a point z, in €, then the equation (1) is reduced to

- divM(,u(a:)VMu) + bpr - Vayu + VM(:L‘)U, + WM(.’E)U =0, (14)

where M is the Riemannian manifold (B, (z,),G) for sufficiently
small 7, > 0 and by = G(b/\/7), VM = V/\/3, Wm = W/ /g, and
u(z) is a Lipschitz function satisfying u(z,) = 1, |%‘r-‘(r,t)| <Ay L
u(z) < po for some positive constants Ay,p;, and po which depend
only on n,A, and I'. Here G(z) = (gi;(z))1<i,j<n is determined by
A(z) as follows:

gij(z) = a"(x)(det A(z))"/ "2,

r(2)? = 3 Gii(2e)(® = 20)i(z = 20)j

s]

P(a) = 3 "(e) g () (o),

k)i
gij(z) = P(2)gij(=),
where g = |det(G)|, A™'(z) = (¢¥(2))igijzn, (§7) = (§)i;", and
divpr, Vs are the intrinsic divergence and gradient in the metric G.
Note that r(z) is the geodesic distance from z, to z in the metric g;;
(cf. [1, p. 427)).
Therefore, to prove Theorems we may assume z, = O and study

the local properties of solutions for the equation (14) on M = (B,,,G),
BTo = BTO(O)‘



208 Kazuhiro Kurata

(STEP 2) We approximate the solution u of (14) by the ones of
the following boundary value problem:

~divpr(pVmv) + (be)m - Vo + (Vi)mv + (Wi)mv =0 in Bg,,

v=u on 0Bg,, (15)
where fi, for each k > 0, is defined by fi(z) = f(z) (if |f(z)| £ k),
= k (if f(z) > k), = —k (if f(z) < —Fk) for any function f, and

b = ((bj)k)1<ji<n-

There exists a sufficiently small R; > 0 depending only on n, t,
A, T, and the local properties of b and V at O such that the problem
(15) has a unique weak solution v = uj € lec;i(BRl) and uy satisfies
|luk = ullgr2(pp ) — 0 as k — +o0 (see [8, Lemma 4.2]).

(STEP 3) Define

I(r) = /B eIV arul? + (bas - Vagu)u + (Vag + War)u?) dog, (16)

_ 2 N ) __/ 24
A(r)= [ mldSw, N@) =G, D= [l Tal? dow,
(1)
2 n—-2 2
(W) = / Waru? dSas — / W dops
4By T B,

_2/ (z - Varu)Warudop,

TJB
and Hi(r), It(r) and Ni(r) by using (16), (17) for functions by, Vi,
Wi, and uy, instead of b, V, W, and u. We use the following identity
(see [8, Lemma 4.1]) for uy obtained in (STEP 2).

Let u € W22(B, ) satisfy (14) a.e. on B,,. Assume that V, W, |b|?
€ Qi) for some 1 < t < n/2, and there exists r, > 0 such that
|z||VV(z)] € Qi(By, N ). Then, for a sufficiently small By =
Ry(n,A,T) > 0 and for a.e. 7 € (0,;), we have

rer) = "2

I(r)+2 / w2 dSns + J(r; W) + Ro(r)
T 8B,

+/ (bar - Varw)u dSas
0B,
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+%/B (2Vig + T - VagVar)u? dons

n—2

/ (bag - Vagu)u dopg
B.

T

_%/Br(x.vMu)(bM - Varu) dvag, (18)

where u, = (z/|z]) - Vamu, |Ro(r)| £ C(f5, [Va|u? dvas + D(r)).
(STEP 4) Let (A.1) and (A.2) be satisfied. By using (13), 3,
Lemma 1.1] and (18), we compute N/(r)/Ni(r) and obtain

C. max(1, Ne(R1)) ro Cf(r) + C.0(r)
TC-ﬂ(Rl;V_X{v—>k)) exp( A r d’l" + C'f'a) ’
(19)

r € (0,Ry), k = 1,2,--, for some C,C. > 0, where n(r;U) =
7(r;O;U) and

O(r) = n(r;(2V + 2 - VV)7) + n(r WF) + /n(r; (|2|W*)?).

STEP 5) By using 4 log @'S_—r,) = glNklr) + O(1), we have
dr T r

N(r) <

c max(l, Nk(Rl))
7,C.'n(R1 ;V_X{V">k])

Hy(2r)
Hy(r)

Taking kK — +00 of (20), we obtain

<ot exp( ) 0<r<Ri/2. (20)

/ u?dS < Crexp(Cs 1na.x(1,N(R1)))/ u?dS, 0<r < R/2,
8B;, B, 1)

where C; depends only on n,t,A, T and Cs on n,t, A, T, and the local
properties of b, V, and W at 0. This implies Theorem 1. Theorem 2
and Theorem 3 can be proved in the same way.
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Topics in the Spectral Methods
in Numerical Computation —
Product Formulas

S. T. Kuroda

Department of Mathematics
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Mejiro, Tokyo 171 Japan

1 Introduction

This article is a brief account on some aspects of the combined use of
product formulas of Lie-Trotter type and the Fast Fourier Transform
(FFT) for solving the Schrodinger evolution equation

.0
i g2 u(2,1) = (=8 + V(@)u(z, 1) (1)

and for computing eigenfunctions and eigenvalues of the operator
—A + V. Here, V() is a real valued function. The use of the
product formula for this purpose goes back to [4] and the combined
use with the FFT is due to [2].

The idea of {2] is as follows. Let A = —A and B = V. Then
exp(—itA) and exp(—itB) are multiplication operators, one in the
Fourier (£-)space and the other in the configuration (z-)space, re-
spectively. Therefore, products like {exp(—i(t/n)A)exp(-(t/n)B)}"
can be computed easily by going back and forth between these spaces.
The transformation between z— and £-spaces can be implemented

Differential Equations with Copyright © 1993 by Academic Press, Inc.
Applications to Mathematical All rights of reproduction in any form reserved.
Physics ISBN 0-12-056740-7
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very efficiently by means of the FFT, which requires only O(N log N)
multiplications for a problem with N mesh points. Using this idea
for solving (1), [2] develops a method, which may be called “numer-
ical spectroscopy,” for simultaneously computing all eigenvalues in a
wide energy range. Motivated by [2], [5] proposed a method, which
may be called “numerical resonant excitation” for computing a par-
ticular eigenfunction and the associated eigenvalue very accurately.
[2] and [5] also contain ample numerical examples.

In this article we shall focus our attention on product formulas
and shall exploit various product formulas which may be used for
the numerical procedure mentioned above. Not only a formula itself
but the order of error is of interest. In Section 2.2 we shall list a few
formulas with the order of error (for bounded generators). Some of
these formulas seem not to have been noticed in the literature. Pos-
sibilities of applying these formulas will also be discussed in Section
2.3. Some remarks given in the talk on the methods developed in [2]
and [5], especially on a way of handling remote eigenvalues in [2] will
be reported elsewhere.

2 Product Formulas

2.1 Preliminaries

In this section we consider an abstract evolution equation in a Banach
space X. The equation and its solution with the initial data uo are
written as

%u(t) = Cu(t), t>0; u(t)=-exp(tC)uo. (2)
We assume that the generator C' and other operators appearing later
are all bounded linear operators in X. The reason for assuming the
boundedness is twofold. Firstly, it makes the error estimate simpler,
and secondly, in applications, product formulas will be applied after
discretization, i.e., in a finite-dimensional space.

The product formulas we shall discuss are written generally as

exp(tC) = Jim F(t/n)". (3)



Topics in the Spectral Methods in Numerical Computation 215

Here, F(t) is an approximation of exp(tC) for small . We may call
it a unit increment of the product approximation. The order of error
(for large n) in (3) is related to the order of error (for small ¢) in the
unit increment. Namely, it can be seen by a standard argument (cf.
(6], p- 295) that

lexp(tC) ~ F@)| = O(t*), t—o0, p>1, (4)

implies

lexp(tC) = F(t/n)"|| = 70 (n=G-D)). (5)

2.2 List of Formulas

We are interested in two cases C = A + B and C = [4, B] and shall
list several product formulas. Since F is related to A and B we write
F(t; A, B) instead of F(t). In this list we use e4 instead of exp(A).
No. 1-No. 5 and No. 8 are main formulas. No. 6 and No. 7 will be
used in the proof of No. 3, p in the last column is p of O(t?) in (4).

et® F(t; A, B) p
1 el(A+B) tA B 9
et(A+B) etA/2ptB gtA/2 3

3 eHA+B)  tA[2,tB tA[2

+fl_;(etA/2etBe-—tA/2e—2tBe-—tA/2etBetA/2 ~-I) 4

4 ellABl  ViAgViBe—\iA-ViB 3/2
5 ¢ll4,B] %(e\/fAe\/iBe—\/fAe—\/fB
+e‘\ﬂAe‘\ﬂBe\ﬁAe\ﬂB) 2
6 elA+B)  et4/2¢1BtAl2 4 143[A/2 + B,[A/2, B]] 4
7 0 etAl2¢tB g—tA[2o—2tB o~ tA[2 ;1B ,tA[2
~t’[A/2 + B,[A/2, B]| 4

8 etA+B) e:r:tA, eutBoytA utB oytA Jut B owtA 4
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In No. 8 u,v,z,y are given as

1
u:§<2+\3/§+ ):1.351---, v=1-2u=-1702---,

L
\3/:2'

1 /1 1
.’E—a(l-{- 6_11.)—0675, y—§—z——0.175---.

No. 1 is the classical Lie formula and No. 2 is its symmetrized
form used in [4] and [2]. No. 4 is also well-known ([8], p. 99; see also
(1] [3] for more recent developments).

No. 3 is a fourth order formula. Its feature is that the unit incre-
ment F' contains only operators which remain bounded even when
A and B are unbounded. (There are fourth order formulas with F’
containing A, B outside exponential factors. One example is (2.10) of
[4] which has terms with double commutators sandwiched by expo-
nential factors. Or, even the Taylor expansion up to the third order
term may be regarded as such a formula.)

A few words on the proof of No. 3 and No. 5. Our only tool is
brutal computations of Taylor coefficients. First, we try to improve
the order of error of No. 2 by 1 and obtain No. 6. On the other
hand, as suggested by (2.2.10) of [8], which is a third order formula,
we obtain No. 7. No. 6 and No. 7 contain the same double commu-
tator. They cancel each other to give No. 3. The remainder of the
approximation No. 4 is computed as —271t%/2[A + B,[A, B]]+ O(t?).
We can replace A,B by —A,—B without changing [A, B]. Adding
these two formulas we obtain No. 5.

When A and B are both skew-adjoint, F' in No. 1 and No. 2
are unitary. No. 3 does not have this advantage. Recently we have
found an order 4 formula in which F is a product of seven exponential
factors, so that it is unitary in skew-adjoint case. That is No. 8. The
proof of No. 8 requires systematic computation of Taylor coefficients.

Remark 1. The Baker-Campbell-Hausdroff formula expresses
exp(tA;)---exp(tA,) as exp(C(t)) where the coefficients of the ex-
pansion of C(t) in ¢ involves multi-commutators of A;. The Zassen-
haus formula and its generalization (cf. [7]) is a kind of product for-
mula, but again multi—-commutators appear in exponential functions.
For our application it is important that only scalar multiples of A
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or B appear in each exponential factor. It is true that, say, No. 2
is easily derived from the B-C-H formula, and possibly others, too.
We found, however, that a simple minded manipulation of Taylor
coefficients will be less (or at most equally) complicated for a quick
derivation of higher order formulas.

A more systematic analysis of these formulas with estimates will
be published elsewhere.

2.3 An Application

Formula No. 5 may be used to solve numerically a Schrédinger oper-
ator with variable higher order coefficients by the method mentioned
in Section 1. In this subsection we pretend that formulas like No. 3
and No. 5 remain valid also for unbounded operators. In fact, un-
der suitable assumptions on the smoothness of the coefficients, these
formulas are valid if O(t?) is interpreted with respect to a suitable
norm.

Assuming for simplicity that the second order terms have con-
stant coefficients, we consider the operator

H

S (=it + bi(2))? + 4(a)
k=1

= —-A- i(%bk(x)ak + iOkbi — b}) + ¢() (6)

k=1

acting in L2(R"™). Here, J; = 3?:_:: and bg, ¢ are real functions. We
put

Tk k
Bi(z) = be(z1y.--yty. .. 2n)dt, (M

b(z) = (hi(2),...,bn(2)),  B(z) = (Bi(2),...,Bn(z)). (8)
Then H is expressed as
H=-A-iM0LBl+QE), Q@) =b@l+ek) (9)
k=1

We now apply No. 5. Using the notation
F(t; A, B) = e'Ae!Bet4e'B (10)
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and noting that repetitions of No. 1 also give rise to an error of order
O(t?), we obtain

n
i L0 it T B 4 Oz
k=1
1 A —i0 T
— B0 H{F\/—:t—; %, B)
k=1

271

+F(—v/=%0%, B } + O(£?). (11)

The result of a numerical test of this formula for n = 2 is promising,.
The details will be left to future research.

Even when second order coefficients are variable, a similar for-
mula can be derived, but it becomes rather complicated. We have
not yet tested the feasibility of such a formula in the numerical com-
putation.
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Atoms in the Magnetic Field
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Abstract

The ground state energy of an atom of nuclear charge Ze and
in a magnetic field B is evaluated exactly in the asymptotic regime
Z — 0o. We present the results of a rigorous analysis that reveals the
existence of 5 regions as Z — o0: B« Z¥3, B~ 743, 74* « B <«
Z3, B =~ Z3, B > Z3. Different regions have different physics and
different asymptotic theories. Regions 1,2,3,5 are described exactly
by a simple density functional theory, but only in regions 1,2,3 is it of
the semiclassical Thomas-Fermi form. Region 4 cannot be described
exactly by any simple density functional theory; surprisingly, it can
be described by a simple density matriz functional theory.

1 Introduction

In these talks we shall discuss the effect on matter, specifically the
ground state of atoms, of a very strong magnetic field. Results ob-
tained in collaboration with J. Yngvason will be summarized and
details will appear elsewhere [9]. The physical motivation for study-
ing extremely strong magnetic fields of the order of 1012-10'3 Gauss

'Work supported by U.S. National Science Foundation grant no. PHY90-
19433.
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is that they are supposed to exist on the surface of neutron stars.
This study was essentially begun in the early 70’s with the work of
Kadomtsev [5], Ruderman [12] and Mueller, Rau and Spruch [11]; see
(1] and [2] for further references. The argument given to explain these
strong fields is that in the collapse, resulting in the neutron star, the
magnetic field lines are trapped and thus become very dense. The
structure of matter in strong magnetic fields is, therefore, a question
of considerable interest in astrophysics. Mathematically, the problem
turns out to involve an interesting exercise in semiclassical analysis.

We use units in which e = i = 2m, = 1. The natural unit of
length is h2/2meez, i.e., half the Bohr radius. The natural unit of
magnetic field strength that we shall use is (2m,)?e3c/h® = 9.4 x 10°
Gauss. This is the field for which the magnetic length \/ch/eB equals
half the Bohr radius. Thus, in our units, B = 10% — 10® for some
neutron stars.

The atomic nucleus of principal interest on the surface of a neu-
tron star is presumably iron with Z = 26. This number is large and
hence it is sensible to ask (rigorously) about the limit of the ground
state energy of an atom as Z — oo. We shall calculate this limit
exactly; its application to Z = 26 instead of Z = oo will entail some
errors — for which we can give bounds.

2 Main Results

To give the quantum mechanical energy of a charged spin-% particle
in a magnetic field B, we have to make a choice of vector potential
A(z), satisfying B = V x A. The energy is then given by the Pauli
Hamiltonian

Ha=(p-A() o). 1

Here p = —iV and o = (01,02,03), are the Pauli matrices. We can
also write Hp = (p — A)? — B - 0. We shall here concentrate on the
case where B is constant, say B = (0,0, B), with B > 0. We choose
A=}Bxaz.

The Hamiltonian describing an atom with N electrons and nu-
clear charge Z (with fixed nucleus) in a constant magnetic field B



Atoms in the Magnetic Field of a Neutron Star 223

is

N .
Hy=Y(HY - zlsl™) + Y ozl (2)

i=1 1<i<G<N

N
The operator Hy acts on the Hilbert space Hy = A L%(R3;C?) of

antisymmetric (i.e., fermionic) spinor-valued functions. We are in-
terested in E(N, B, Z) = inf specy, Hy, the ground state energy
of Hy.

We want to let B and Z go to infinity. It is surprising, but true,
that there are five different regimes in B and Z, depending on the
relative magnitudes of B and Z. In the following p(z) is the electron
density in the ground state :

p(z) = N/||1/)(:v,z2,...,z1v)||2d3zg...dszN. 3)
The five regions are the following.

1. B € Z*/3, Z large: The effect of the magnetic field is negligible.
Standard Thomas-Fermi (TF) theory is exact as Z — o0, and
therefore the electron density is spherical to leading order.

2. B ~ Z*B  Z large: The magnetic field becomes important
but the density is still almost spherical and stable atoms are
almost neutral (see [14]). A modified TF theory (depending on
the constant B/Z4/3), in which the energy, as in standard TF
theory, is approximated by a functional of the density p alone,
is exact as Z — oo. We call this functional the Magnetic
Thomas-Fermi (MTF) functional (see Sect. 4 below).

3. Z43 « B « Z3, Z large: The magnetic field is increasingly
important. To leading order all electrons will be confined to
the lowest Landau band. The modified TF theory is still ex-
act as Z — oo0. In fact, the modified TF theory simplifies
somewhat in this region compared to the MTF functional from
the previous region. We call the new functional the Strong
Thomas-Fermi (STF) functional. The only difference between
STF and standard TF theory is that the usual p®/3 is replaced
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by p3/B?, while in the MTF theory from the previous region
the function that replaces p°/3 is more complicated (see (8)
below). The density is almost spherical and stable atoms are
almost neutral. Furthermore, the atom is getting smaller. The
atomic radius behaves like Z1/5B-2/5 = Z-1/3(B/74/3)=2/5,
The energy behaves like Z%/3B2/5 = Z7/3(B[Z4/3)%5,

. B ~ Z3, Z large: The modified TF theories are no longer

applicable. Indeed, we shall in general not approximate the
energy by functionals of the density p alone. The energy is
approximated by a more complicated functional to be described
below in Sect. 4 depending on a one particle density matrix. We
call this functional the Density Matrix (DM) functional. When
B/Z3 is large enough this functional again reduces to a density
functional. For the first time the atom is no longer spherical to
leading order. The length scale of the atom behaves like Z~!
and the energy like Z3.

. B > Z3, Z large: In this hyper-strong case the atom is es-

sentially one-dimensional. We can find a new functional, the
Hyper-Strong (HS) functional depending only on the one-di-
mensional density p obtained from p by integrating p over the
directions perpendicular to the field B, i.e.,

p(z3) =/ p(z1,z2,23)dz1dzy .

The energy behaves like Z3[In(B/Z3)]? and the length scale
along the magnetic field is Z~![In(B/Z3)]~1, while the radius
perpendicular to the field is Z~1(B/2%)~1/2,

The mathematically more precise statements of these results in-

volve two energy functions Eyrr(N, B, Z) and Epm(N,B,Z). The
energy EMTF is obtained as the minimum of the magnetic Thomas-
Fermi functional mentioned under 2 above, and Eppy is the minimum
of the density matrix functional mentioned under 4. The exact defi-
nitions of these functionals are given in Sect. 4 below.

The energies EpmTF and Epy correspond to unique minimizers

for the respective functionals. We denote the densities for these
minimizers by pmMTF and ppM respectively.
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In the case when B = 0 the energy EmTr(NV,0,Z) is the energy
of standard TF theory. It is known [8] (see also [6]) that TF theory
is asymptotically ezact as Z — oo with N/Z fixed, i.e.,

Em1r(N,0,Z)/E(N,0,Z) > 1 as Z — oo.

Is the same true when B # 0?7 The answer, surprisingly, depends
on the relative magnitudes of B and Z, according to the 5 regions
outlined above.

THEOREM 1 Let N/Z be fized and suppose B/Z3 — 0 as Z — cc.
Then

Emtr(N,B,Z)/E(N,B,Z) > 1 as Z — 0.

This theorem covers the regions 1-3 above. For the regions 4 and
5 we have

THEOREM 2 Let N/Z be fived and suppose B/Z4/3 — o0 as Z —
0o. Then

Epm(N,B,Z)/E(N,B,Z) — 1 as Z — oo.

Notice that there is an overlap of the regions of validity of the
two theorems. In fact, both theorems cover region 3 above.
The energy functions satisfy the scalings

Emrr(N, B, Z) = Z7/3Emtr(N/Z, B[ 2/3,1)

and
EDM(NaBaZ) = ZBEDM(N/Z’B/ZB,I)

In region 2 there is a non-trivial parameter B/Z4/3, Likewise in
region 4 there is B/Z3. In the other three regions these parameters
enter in a trivial way since they are tending either to 0 or oo.

Region 1 corresponds to B/Z*3 — 0 and B/Z® — 0 in which
case

Emtr(N/Z,B[Z*/3,1) — Entr(N/Z,0,1),
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which is the energy of standard TF theory.
Region 3 corresponds to B/Z*%/3 — oo, in which case we have the
asymptotic expansion

Enmtr(N/Z,B|Z*3 1) ~ (B/2%/3)/5 Esrp(N/Z) as B/Z%/® - o,

where EgTr is an energy function obtained from the simplified TF
theory described under 3 above.

The overlap of the regions of validity of Theorems 1 and 2 implies
that

Epm(N/2,B[Z3,1) ~ (B/Z®)*5Este(N/Z) as BJ/Z% -0

Finally, region 5 corresponds to B/Z® — oo, where the following
asymptotic formula holds

Epm(N/Z,B[Z3,1) =~ [In(B/Z®)|?Eys(N/Z) as B/Z® — o0 ,

where Eys is an energy function obtained from the one-dimensional
functional mentioned in 5 above.

The energies EmTr, Epm, Estr and Eys correspond to unique
minimizers for the respective functionals. We denote the densities
for these minimizers by pmTF, PDM, psTF and pyg respectively. We
can prove that these densities approximate the quantum density p.
However, to state these approximations we have to introduce different
scalings in the different regions. In fact, the above approximating
densities satisfy the following scaling relations
pMTF(z; Nv B7 Z) = Z2PMTF (Zl/al' ) ]_‘;—, E?/—a" 1)

B \%/5 B 2/5 N
. _ 72 1/3,,.
pstr(2;N,B,Z2) = Z (24/3) PSTF ((24/3) zY z,‘Z-,l,l

i N B
Z*ppm (Zz;z,ﬁ,l)
N

— B\ _ B
pHS($3;N,B,Z) = Z2ln (-Z—3>pHS (Zln(—z—§)$3;7,1,1)

THEOREM 3 (Convergence of the density) In the five differ-
ent regions the following relations hold as Z — oo. These limits are
all in weak L} :

pom(z; N, B, Z)
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(1-2) If B/Z43 — B, where 0 < B < o0 and if NfZ = X is fized
then
Z72p(Z27Pz) — pmrr(z; A, 6, 1) .

(3) If B/Z*/® - 0 and N|Z = ) is fized then

- B \~¢/5 N B \~2%5
Z-? (24/3) P (Z 1/3 (24/3) z)| — PSTF(iL‘;/\, 1, 1) .

(4) If B/Z3 - 5, where 0 < n < 00 and N/Z = X is fized then

Z 'opm(Z 7 z) — ppom(z; A, 1, 1) .

(8) If B/Z® = 00 and N/Z = ) is fized then

1 _ z o
Z%In(B/Z3) P (Zln(;/ZS)) — Pus(e3; A,l,}) .

3 The One-Body Hamiltonian

The spectrum of the one-body Hamiltonian Hp is described by the
Landau bands ¢,, = 2Bv + p?, where p is the momentum along the
field and v = 0,1,2,... is the index of the band. Owing to the spin
degeneracy, the higher bands, v > 1, are twice as degenerate as the
lowest band v = 0.

To calculate the energy of a large, complex atom one must first
study the one-body Hamiltonian H = Hp + V(z), where V is an
external potential. As usual, to calculate the ground state energy of a
fermionic system we need to know the sum of the negative eigenvalues
of the operator H (with V < 0 for simplicity).

In order to estimate accurately the sum of the negative eigenval-
ues of Hy + V(z) we need two things: (i) a lower bound for this
quantity and (ii) an asymptotic (or semiclassical) limit formula for
the quantity. These are provided by Theorems 4 and 5 below. The
bound (i) is needed to control errors between the true answer and
the semiclassical approximation. The semiclassical limit turns out to
be relevant here (after some suitable scaling) because it is equivalent
to the limit Z — oo.
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There is an important difference between Hp and the operator
(p — A)? which has no spin dependence. While the spectrum of
(p — A)? is (B, 00) the spectrum of Hp is (0,00). Indeed, one can
bound the sum of the negative eigenvalues of (p — A)? — V(z) by
—L [|V(2)|*/? dz, (where L is some fixed constant) according to the
standard Lieb-Thirring inequality (even with a magnetic field the
proof of this inequality given in [10] is still correct if one appeals to the
diamagnetic inequality). However, in the case of Hp +V the question
is somewhat more subtle. In fact, if [|V|3? < oo, the operator
(p — A)? + V has a finite number of negative eigenvalues, while
the operator Hp + V can have infinitely many negative eigenvalues
(compare [4]). We can, however, prove [9] the following bound which
is important in our proofs.

THEOREM 4 There exist universal constants Ly, L, > 0 such that
if we let e;(B,V), j = 1,2,... denote the negative eigenvalues of
Hp+V withV <0 then

SleiBVIS LB [IV@P o+ Ly [V . @)

We can choose Ly as close to 2/31 as we please, compensating with
L, large.

The first term on the right side is a contribution from the lowest
band, v = 0. For large B this is the leading term.

We now ask the question of a semiclassical analog of (4). Thus,
consider the operator

[(hp - ba(z)) - 0] + v(z), (5)

where a(z) = 12 x z, 2= (0,0,1) and v < 0.

If one computes the leading term in 2~ of the sum of the negative
eigenvalues of (5) for fixed b one finds as in [3] that there is no b
dependence. In our case, however, we shall not assume b fixed, or
more precisely not assume that b is small compared with A=1. The
reason for this is that in the application to neutron stars it is not
true, as we shall discuss below, that b < A1,
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The interesting fact is, however, that we can prove ([9]) a semi-
classical formula for the sum of the negative eigenvalues of the oper-
ator (5), which holds uniformly in b (even for large b).

THEOREM 5 Let e;j(h,b,v), j =1,..., denote the negative eigen-
values of the operator (5), with v < 0. Then

lim (; ej(h,b,v)/ Esa(h,b,v)) = 1,

uniformly in b, where F is the semiclassical approzimation defined
by

Eaa(h,b,v) = ——h 2 / (lo(=)*/? + 2Z[|v(z)l — 2wbh)Y?) &2
(6)

Here [t]4 =t ift > 0, zero otherwise.

The formula (6) was already implicitly noted in [14]. The inte-
grand in (6) looks peculiar, but it has the following simple physical
interpretation. Take a cubic box of volume L® in IR? and let the
number u > 0 be some fixed Fermi level (or chemical potential).
Then add together all the negative eigenvalues of Hy — u. In the
thermodynamic limit (large L) we can do this addition simply by us-
ing the known Landau levels, and the total energy per unit volume
is the integrand in (6) in which |v(z)| is set equal to p.

For bh < 1, the right side of (6) reduces to the standard semi-
classical formula from [3],

- ot [ 1@ 8% ™

(Recall that we are counting the spin which accounts for the 2 in
front of the sum in (6).) For bh > 1, the sum in (6) is negligible,
and we are left with the first term.

Formula (6) (with h replaced by 1) can be compared with the
Lieb-Thirring inequality (4), which holds even outside the semiclas-
sical regime. The two terms in (4) correspond to respectively the
b — oo (first term) and b — 0 (last term) asymptotics of (6) .
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As we know from elementary thermodynamics, the energy per
unit volume as a function of the particle density (p(z) in our case)
is the Legendre transform of the pressure as a function of the chem-
ical potential (Jv(z)|). Thus, corresponding to —(2/1572)|v(z)|3/?
in (7), there is the energy (3/5)(372)*3p(z)3/3, which is the usual
kinetic energy expression in TF theory. Likewise, corresponding to
(6) there is a kinetic energy which we call wg(p(z)). It is no longer
proportional to p(x)3/3 but it is still a convex function of p(z). It is
proportional to p(z)3/B? for small p, while it is asymptotically equal
to (3/5)(372)¥3p(z)*/3 as p(z) — oo.

4 The Many-Electron Atom

The essential ingredient in the study of the many-electron Hamilto-
nian Hy is to reduce it to a one-electron problem Hp + Veg(z) with
an effective mean field potential Vog(z) = —Z/|z|+ [ |z—y| ™ o(y)d%y.
This reduction involves approximating the repulsive energy

/”1,[)(:1:1,...,:1:N)||2 Z I:r,-—-:rj|'1d3z1...d3zN ,

1<i<j<N

in the ground state 9 by

3 [[ p@pwle -yl Pady

In standard TF theory the justification of this approximation is
done by using the correlation inequality of Lieb and Oxford (see [6]
and {7]). This very same argument (and inequality) work in the pres-
ence of a magnetic field. If B is not too large compared with Z it
continues to be effective. However, in the hyper-strong case B > Z3
the argument is no longer effective, the reason being that the corre-
lation estimate is three dimensional in nature, while the atom is now
effectively one-dimensional. The proof of a correlation estimate ap-
plicable in the hyper-strong case is difficult and will appear elsewhere
(19D)-

The density p appearing in the mean field potential Vg will not
be taken to be the exact (unknown) density of the ground state,
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but rather an approximation to the exact density obtained from the
density functionals that we shall now define.

Armed with the foregoing, we introduce a (magnetic field depen-
dent) TF theory by means of the following functional of the unknown
electron density p(z):

eure(p) = [wp(p@)ds - [ Zlal " pa)d

+3 / / p(z)lz — y| 7 ply) Pz d’y. (8)

It differs from the usual TF functional only in the replacement of
(const.)p()3/3 by wp(p(z)). We call this functional the Magnetic
Thomas-Fermi Functional. It is studied in detail in [9]. The
paper [13] seems to be the earliest reference that uses a Thomas-
Fermi theory that takes all Landau levels into account. This theory
was also studied in [2] and put on a rigorous basis in [14] for the
regime B ~ Z4/3,

We now choose our density p to be the unique minimizer for émtr
constrained to the set [ p < N. We define the energy function that
appears in Theorem 1 to be the infimum

Emtr(N,B,Z) = inf Emtr(p).
JosN

Theorems 4 and 5 play an essential role in the proof of Theorem 1.
What makes the proof work when B « Z3 is the fact that in the
analysis of the mean-field, one-particle Hamiltonian, Hpy + Veg(z),
with Vg(z) = —Z/|z| + [ |z — y|~'p(y)d®y, and with p being the
density that minimizes the TF energy, we are in the semiclassical
regime. The potential Ve(z) has the following behavior in Z and B

Ver(z) = 2ZPvw(zY3z) if Bg 23
Var(z) = ZY5BYSy(z7'5B¥5z) if B 243,  (9)

where v is a function that does not depend significantly on B and Z.
Concentrating on the case B 3 Z4/3 we see, by a simple rescal-
ing, that the Hamiltonian H 4 + Ve(2) is unitarily equivalent to the

operator
Z*/* B**[((hp - ba(2)) - )* + v(2)), (10)
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where

h=(B/Z®Y5 and b= (B%*Z)/5. (11)

In the opposite case, when B $ Z4/3, we get Z4/3 in place of Z4/5B2/5
in (10) and
h=2" and b= B/Z. (12)

When h is small we can study (10) by semiclassical methods.
If B> Z*/3 we can replace wg(p) by its asymptotic form and
we define the Strong Thomas-Fermi functional

Etr(p) = $7'B7 [ p(a)'ds - [ Zlal " pla)ds
¥ %/ / p(2)lz — 47 ply)d’zd’y.

The analysis of Epyrr and Estr, which is a separate story in itself,
leads to the conclusions stated in 1, 2 and 3 of Sect. 2. Conclusions 1
and 2 were proved by Yngvason [14]; 3 is new. Since the TF energy
functional has a unique minimizing p(z) (because Eprrr is strictly
convex in p) this p must be spherically symmetric. Thus we are led
to the following remarkable conclusion:

If B/Z® - 0 as Z — oo, the atom is always spherical (to leading
order) despite the fact that B has a leading order effect on the ground
state energy.

In region 2, B ~ Z4/3, we cannot say that all the electrons are in
the lowest Landau band, but if B 3> Z*%/3, they are - as the following
theorem states precisely.

THEOREM 6 IfI1Y is the projection in the physical Hilbert space
onto the subspace where all electrons are in the lowest Landau band,
we can define the confined energy

E onf(N,B,Z) = ground state energy of oy ymy. (13)
Then, if N < AZ for some fized X > 0, we have that

Econt(N,B,Z)/E(N,B,Z) —1 if B— oo andif Z'3/B - 0.
(14)
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What happens if B ~ Z37 Semiclassical analysis breaks down
(in the sense of being no longer asymptotically exact as Z — oo).
The atom is no longer spherical. However, the atom is so non-
semiclassical (one person called it post-modern) that another analysis
becomes possible. This analysis, which we discuss next, is reminis-
cent of Hartree theory for bosons - even though it is relevant for
fermionic electrons!

It is only the motion parallel to the magnetic field which can
no longer be described semiclassically. The motion perpendicular to
the field is still well approximated classically. To be more precise,
the atom consists of a bundle of one dimensional quantum systems
indexed by the position z; = (z1,z2) perpendicular to the field B.
The state of one of these one-dimensional systems is described by
a finite family of orthogonal functions eg;ﬁ), j = 1,2...in L}R)
which are not normalized but satisfy ||e(J)“ < B/2x. This condition
follows from the Pauli principle and the fact that the two-dimensional
density of states in the lowest Landau band is exactly B/2r.

We can combine the functions eﬁ,’j, Jj = 1,2,... into a density
matrix

v 1zs o ey (z3,) = 3 e (23)el) (1)

i
Then + satisfies

(a) 0 <7z, <(B/2r)I as an operator on L?(R)
(b) fr2 TrLZ(R)[7zL]d2z_L = N = the total number of electrons

We can now approximate the energy by the functional
fom(y) = /R2 TrLz(R)[(_ag - lel_l)7IL]d2zJ.
+ %//pw(z)pw(y)lw -y Pzd’y

where p,(z) = 7;, (z3,%3).
We denote

Epm(N, B, Z) = inf{€(7) : v satisfies (a) and (b) above}.
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This is the function appearing in Theorem 2. The Pauli principle
comes into play in this theory only in condition (a). The proof of
Theorem 2 is straightforward as soon as one has made the reduction
to a one body problem and realized that condition (a) follows from
the confinement to the lowest Landau band.

The Euler-Lagrange equation for the £pM minimization prob-
lem implies that the functions e:(fl) are eigenfunctions of the one-

. . v 1e 2
dimensional Schrédinger operator h;, = —i—:,— — Vemr(z) where, as
3

before, the effective potential is Veg(2) = —Z/|z|+ [ |2—y| o4 (y)dy
with p, being the density corresponding to the minimizer v for £pm

5 The Super Strong Case B > Z°

We shall present here the correct energy functional of the density
when B > Z3, and very briefly indicate what is involved in proving
the correctness of the approximation.

The first step is to show that when B/Z3 is larger than some
critical value then the minimizing 4 for £ppm is rank one for every
r. Since the eigenfunction of 74,, must be the ground state of h;
we can conclude that it is a positive function. In this case we can
write 7z, (23,¥a) = v/p(81,83)v/P(z1, ¥a) where p(z) = po(2).

The functional &y thus becomes a density functional when B/Z3
is large enough.

Eom(7) = Ess(p) = /(%\/E)stx—/%p(x)d"x

+5 [ o@lle = sl o)y, (15)

with the condition that

/p(zl,a:g,x;)dx;; < gr- for all (z4,z5). (16)
Then
Epm(N,B,Z) = Ess(N,B,2))
= inf {{,'ss(p) : /p < N, p satisfies (16)} (17)
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We can now ask for the limit of £ss if B/Z® — 00, Z — oo and
N/Z is fixed. With some effort one can prove that £sg then simplifies
to another functional, which we call the hyper-strong functional
of a one-dimensional density p;(z),z € IR. That is, the atom is now
so thin compared to its length that only the average density and its
variation along the direction parallel to B matter.

It is convenient, in defining this average density, to rescale the
variables. Thus, setting 7 = B/(27rZ3), and taking (ZInn)~! as the
unit of length, we define

(z) = 1 "( 1 x)=;/ (:c z —-l—z)dzdz
PR = g \Zlan") = Z2an ) P\ "V Zmgy ) 1R
(18

which has the normalization [ pi(z)dz = N/Z. The hyper-strong
functional is

Eus(pr) = 7 (L /@) o=+ 7m(z)2dz. (19)

—00

In other words, apart from some scalings, the Coulomb potential is
replaced by a Dirac delta function! Using (19) we define a rescaled
energy
Eys(N/Z)= inf Eus(pr). (20)
[m=N/zZ

p1=
We assert that under the conditions stated above,
Z3(Inn)?Eus(N/Z)/E(N,B,Z) — 1

as Z — 00,B/Z3 — oo and N/Z is fixed.

A remarkable fact is that the minimizing p; can be evaluated
exactly. The Euler-Lagrange equation is (with 1 = p; and Lagrange
multiplier p)

— () — ¥(0)b(z) + ¥*(z) = —p3(2). (21)

With A = N/Z, there are solutions only for A < 2 (not A <1 asin
TF theory):

= V2(2-2) for A < 2
¥(=) 2enhi @Mt (22)
(z) = V22+|[z])7! for A =2,



236 Elliott H. Lieb and Jan Philip Solovej

with tanh ¢ = (2 — A)/2. The energy is

1 1 1
Eys(A) = g}[s(¢2) = —-Z/\ + g)\z - E/\a. (23)
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