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Preface 

Since the days of Newton, Leibniz, Euler and Laplace, mathematical 
physics has been inseparably bound to differential equations. Phys- 
ical and engineering problems continue to  provide very important 
models for mathematicians studying differential equations, as well 
as valuable intuition as to the solutions and properties. In recent 
years, advances in computation and in nonlinear functional analysis 
have brought rigorous theory closer to realistic applications, and a 
mathematical physicist must now be quite knowledgeable in these 
areas. 

In this volume we have selected several articles on the forefront 
of research in differential equations and mathematical physics. We 
have made an effort to ensure that the articles are readable as well 
as topical, and have been fortunate to include as contributions many 
luminaries of the field as well as several young mathematicians doing 
creative and important work. Some of the articles are closely tied 
to work presented at  the International Conference on Differential 
Equations and Mathematical Physics, a large conference which the 
editors organized in March, 1992, with the support and sponsorship 
of the National Science Foundation, the Institute for Mathematics 
and its Applications, the Georgia Tech Foundation, and IMACS. 
Other articles were submitted and selected later after a refereeing 
process, to  ensure coherence of this volume. The topics on which 
this volume focuses are: nonlinear differential and integral equations, 
semiclassical quantum mechanics, spectral and scattering theory, and 
symmetry analysis. 

These Editors believe that this volume comprises a useful chapter 
in the life of our disciplines and we leave in the care of our readers 
the final evaluation. 

The high quality of the format of this volume is primarily due to 
the efforts of Annette Rohrs. The Editors are very much indebted 
to  her. 

W. F. Ames, E. M. Harrell 11, J. V. Herod 
Atlanta, Georgia, USA 
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An Elementary Model of 
Dynamical Tunneling 

J. Asch 
Technische Universitat, Berlin, Germany 
P. Duclos 
Centre de Physique Thkorique, Marseille, France 
and Phymat,  Universitk de Toulon et du  Var, La Garde, France 

Abstract 

In the scattering of a quantum particle by the potential V(z) := 
(1 t z2)-l, we derive bounds on the scattering amplitudes for energies 
E greater than the top of the potential bump. The bounds are of the 
form cte e z p -  h-'s(k, k'), where s (k ,  k') is the classical action of the 
relevant instanton on the energy shell E = k2 = kI2. The method 
is designed to suit as much as possible the n-dimensional case but 
applied here only to the case n = 1. 

1 Introduction 

It is well known that a quantum particle is in general scattered in all 
directions by a potential bump even if its energy is greater than the 
top of this bump. May be less known is that this phenomenon could 
be considered as a manifestation of tunneling. The purpose of this 
expos6 is twofold: to show how one may treat such a problem with 
tunneling methods and to actually give estimates of semiclassical 
type on the scattering amplitudes. 

Differential Equations with Copyright @ 1993 by Academic Press, Inc. 
Applications to Mathematical All rights of reproduction in any form reserved. 
Physics ISBN 0-12456740-7 
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2 J .  Asch and P. Duclos 

After a very active period of studying tunneling through poten- 
tial barrier (in the configuration space) there is nowadays a growing 
interest for tunneling in phase space (see e.g. [l], [2, and ref. therein], 
[4], [lo]). I t  is natural to ask whether the configuration space tech- 
niques can be applied or extended to this new field of interest. To 
this end we propose the study of a simple model: the reflection of 
a one dimensional quantum particle above a potential barrier. This 
problem was studied by several authors: [5], [6], [7], [S]. The results 
which are more or less complete were derived by O.D.E. methods. 
Our aim here is to  present a new method based on functional an- 
alytic tools created in the study of tunneling in the configuration 
space. The hope is that this method can be applied to n dimensional 
situations. 

In section 2 we introduce our model and explain its tunneling 
features. In section 3 we present the estimate on the reflection coef- 
ficient of our model and the method that we use; finally we end up 
by some concluding remarks in section 4. 

2 The Model 

2.1 The Dynamical Tunneling Model 

A one dimensional quantum particle in an exterior potential V is 
described by the Schrodinger operator ( h  is the Planck constant) 

H := V + HO , HO := -h2A on L2(R) =: 7t, 

and the corresponding classical Hamiltonian reads: h(p ,  q )  := V(q)  + 
p 2 .  We further restrict the model by fixing V and the energy E as: 

V(Z) := (1  + z2)-l and E > V(0)  =: VO. (1) 

If one considers scattering experiments with energies E above the 
barrier top we know that a quantum particle sent from the left will 
undergo a reflection when crossing the region where the potential 
barrier is maximum, whereas the classical one is totally transmitted 
to  the right. 
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If we look at the phase space trajectories of the classical hamil- 
tonian h, we see that the energy surface for a given E greater than 
vo has two disconnected components corresponding to the two pos- 
sible movements, the one from the left to the right and the other 
one from the right to the left. We interpret the capacity of jumping 
from one connected component of the energy shell to the other one 
as tunneling, much in the same way as for the case of an energy E 
below the barrier top vo. In this latter case the two components of 
the energy shell are separated by a classically forbidden region due 
to the potential barrier whereas for the case of E above the barrier 
top, the classically forbidden region must be read along the momen- 
tum axis. Accordingly one speaks of a dynamical barrier between 
the two disjoint phase space trajectories on the energy shell which 
in turn motivates the terminology dynamical tunneling to mean the 
corresponding tunneling process. 

To study this reflection we shall estimate the off diagonal terms of 
the on (energy) shell transition matrix: T ( E )  := (2 i7r ) - l ( l -  S ( E ) ) ,  
where S ( E )  stands for the scattering matrix at energy E .  S ( E )  
and T ( E )  act on L 2 ( { - f l , f i } )  z C2 and the quantity we are 
interested in, i.e. the reflection coefficient, is 

T := T ( E ) ( - d E , d E ) .  

2.2 Tunneling and Complex Classical Trajectories 

An equivalent way to define the matrix T ( E )  is to solve the equation 
-ti 2 + 9, + (V - E)+ = 0 with the following boundary conditions 

+(z) N t e z p ( i t i - l d Z z )  as x + 00 

+(z) N e z p ( i h - ' f i z )  + T ezp ( - i t i - ' dEz )  as z --+ -00; 

t ,  the other entry of T ( E ) ,  is usually called the tmnsrnission coefi- 
cient. To solve the Schrodinger equation one may use the method 
of characteristics: +(z, ti) := a(z, h)exp(- i t i - l s (x) ) ,  which leads to 
the equivalent system 

sn := E - V and - h2a" - ih(as')' - itis'a' = 0. (2) 
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Obviously the phase s has two determinations on R which asymptotic 
forms at f o o  are respectively f f i z  and r a z .  So there is no 
way to obtain a term like e z p ( - i A - ' a z )  in II, starting with the 
determination f i x  of s at +oo. The remedy, as well known, consists 
in allowing the variable x to be complex so that turning around the 
complex turning points of E-V will exchange the two determinations 
of s. Of course the phase s will become complex during this escapade 
on the complex energy surface which will cause an exponentially 
small damping factor for the component of II, on e x p ( - i A - ' f l z ) .  

As one can see from (2.5), s is nothing but the action of the 
solution of our classical hamiltonian at energy E. Hence by allow- 
ing the classical particle to wander on the complex energy surface 
h(p ,q)  = E, it becomes able to jump between the two real compo- 
nents of this surface. Thus tunneling in quantum mechanics between 
two regions of the phase space is intimately related to the existence of 
classical trajectories linking these two regions on the complex energy 
surface. Such trajectories are usually called instantons. 

According to the above discussion we can predict the exponen- 
tially small damping factor in r .  The shortest way to join the 
two components of the energy shell is described by the instanton: 
7 + ( p )  = ( ~ , v - ' ( E  - p 2 ) )  = ( p , i ( l +  (p2 - E)- ' ) ' /~  ) for p running 
in (-JG,JG). The imaginary part of the corresponding 
action is 

We show in section 3 that r decays at least like d:exp - d,  in the 
large energy limit. Notice that lid, is usually given rather like 

Ad, = Im/'* { . d t  

which corresponds to a parametrisation of 7+ in terms of the position 
q, f q ,  being the complex turning points. 

-9* 
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3 The Main Theorem 

3.1 

We shall use the 08 (eneryy) shell transition operator defined by: 

The Basic Formula for the Reflection Coefficient 

T : C \ R+ --+ C('H), T ( z )  := V - VR(t)V 

where R(z)  := (H - z)-' denotes the resolvent of H; similarly 

With our potential V, it is standard to show that ! f ( E  + i ~ )  
has a limit in L(%-l,G1) as E goes to zero from above where ?(z) 
denotes the Fourier transform of T ( z )  and %" the domain of Q-T 
equipped with its graph norm. Notice that %' is just the Sobolev 
space H'(R). The Fourier transform we use in this expos6 is the one 
which exchanges 2 and -iti&. Moreover if one introduces the trace 
operators 

the operator T-?(E + ~ O ) T $  makes sense and one has: 

Ro(z) := (HO - $1. 

T* : H'(R) -+ c , Q(~J) := u(MZ), 

T := T ( E ) ( - d E , d E )  = &(E + iO)+ (3) 

A key formula for our method is 

T ( z )  = (V-' + Ro(z))- ' ,  z E C \ R+ 

which is valid first for z such that IlVRo(z)II < 1 and then for all z in 
C \ R+ by analyticity. Then if we introduce the family of operators 

1 
A^(z) = -h2A t 1 t - 

2 2  - z 
A ( z )  := V-' t Ro(z)  so that 

we see that the reflection coefficient is nothing but the Green func- 
tion of A^(E + i0) evaluated at F& with zero value of its spectral 
parameter 

T = T-(A^(E 4- i0) - o)-%;. (4) 
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3.2 The Operator A^(E+iO) and the Dynamical Barrier 

A convenient way to study A^(E + i0) is to use the sectorial form [24, 
p. 3101 associated to A^(z) for z in C \ R+: 

Since for each z in C \ R+, (a? - z)-l is bounded, t ,  is obviously 
closed and sectorial and moreover Â (*) is a type A analytic family 
of rn-sectorial operators [24, p. 3751. 

Let W ( z )  := 1 + A, then the following lemma is nothing 
but a rephrasing of the limiting absorption principle with an Agmon 
potent id .  
Lemma 1. As c goes to zero from above the operator A^(E+ ic), E > 
0 ,  converges in L(@,f?-') to the m-sectorial operator associated to 
the form defined on %' by: 

tE+;O[U] := ti211U'112 + (WU, U) + i 7 r l U ( - f i ) l 2  t i 7 r l U ( f i ) 1 2 .  

Notice that W in the above formula must be understood in the sense 
of its Cauchy principal value. The operator i ( E  + i0) can be repre- 
sented symbolically by 

A^(E + i0) = -h2A + W + ir6(z2 - E ) .  

Its real part is a Schrodinger Hamiltonian which exhibits for E 
greater than vo = 1 two potential wells in the vicinity of k f l  sepa- 
rated by a potential barrier. W plays the role of an eflective potential 
for our auxiliary non selfadjoint Schrodinger operator A^(E + i0). 

Thus the Green function of A^(E + i0) evaluated at k f l  must 
contain an exponentially small overall factor due to tunneling 
through this potential barrier. This potential barrier w+ is actually 
the dynamical barrier we were speaking of in section 2. 

3.3 

We have shown in section 3.1 that the estimate of the reflection co- 
efficient T is reduced to the one of the Green function of A^(E t i0) 

Estimate of the Reflection Coefficient 
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evaluated at fa. As was argued in section 3.2, fa being sepa- 
rated by the dynamical barrier w+ we expect an exponentially small 
behavior of T in the size of w+.  To prove it we resort to our familiar 
methods developed in the context of tunneling in configuration space 
(see e.g. [lo, and ref. therein]). 

As usual we define the auxiliary function 

p(z)  := d(-&,x) if x 2 -a and 0 otherwise 

where d denotes the pseudo-distance in the Agmon metric ds2 = 
h-2w+(z)dx2 and w + ( x )  := W+(x) if x 2  < E and 0 otherwise. Since 

= e-d*T-&(E + i O ) - l ~ $ ,  where d* is the diameter of the dynamical 
barrier in the Agmon metric, 

e x p p ( - a )  equals 1 one gets: r = .r-e-PA(E + io) -1 e P T+e * - P ( d E )  

d* := d ( - a ,  a) = ti-' J" JA 2 2  - dx, 
-" 

and &, denotes the boosted operator: &(E + i0) := e - P i ( E  + i0)eP. 
Thus it remains to find a suitable bound on the Green function 

T - X ~ ( E  + iO)-l~?. We shall do it as follows. Using the standard 
bound: IIT*(-A+l)-i11 5 1, we areled to estimate &(E+iO)-' as 
an operator from G-' into G1. One possible way is to find a lower 
bound on the real part of &(E+ i0) as an operator from 6' to 6-l: 

This last estimate will be explained in the next subsection. Due to 
the method we are using, it will be valid only in the large energy 
limit and more precisely for values (ti, E) in the following domain: 

u := { ( h , E )  E R+ x R+ , E > ma~{(C1A-~,C~fi~}},  ( 6 )  

where C1 := 121 and C2 := 3. So we have proven the 
Theorem 2 .  For every ( h , E )  in the domain u defined above one 
has 

2E I r I5 p e x p  -4. 
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3.4 

To show (15) it  is sufficient to obtain a lower bound on the real part 
of Ah, of the type r(-A + 1) with 7 strictly positive. Let wl := 
W - w+ =: wo + w1 be a splitting of the potential part of ReA, so 
that w1 contains the Cauchy principal part of W: 

Estimate of the Boosted Resolvent 

if x 2  < E 
W ' ( X )  := 

Then with 0 < a2 < 1, one has 

ReA^,((E + i0) 2 - (1 -  a2)h2A + w1 - a2h2A + Go (8) 

where we have estimated wo from below by the square well potential: 
L;)o(x) := 1 if x 2  > E and Go(.) := 0 otherwise. This allows to 
estimate from below the second Schrlidinger operators on the r.h.s 
of (8) by C(ah, E) := a2h2n2E-'( 1 - c ~ h E - ' / ~ )  under the condition 

For the first Schrodinger operators on the r.h.s. of (8) we use the 
following inequality: 

(10) 
i ( w l u , u ) i  I 2 ~ - ~ / ~ 1 1 ~  I 11 3 / 2  iiuii1/2 

To derive (10) we have used Sobolev inequalities. Choosing for the 
moment 7 := C ( a h , E ) / 2  and fixing a by a2 := 4(n2 + 4)-l it 
remains to check that for ( h , E )  in the domain u defined in (6) one 
has: uz2 + bx3l2 + c 2 0 for every non-negative x ,  with u := (1  - 
a2)h2 - C(ah, E ) / 2 ,  b := 2E-3/4 and c := C(ah, E ) / 2 .  Finally we 
are allowed take a smaller but better looking -y := & since due to (9) 
C(ati,E) 2 h2E-'. Hence we have proven the statement contained 
in (15) and (6). 
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4 Concluding Remarks 

In addition to the explanation of section 2.2 one can also understand 
tunneling as a transition between different subspaces of the Hilbert 
space of physical states. For example in our model, the quantum 
reflection is a transition between the two subspaces Ran?* where & 
are the sharp characteristic functions of f ( d m ,  a). Therefore 
al l  the processes exhibiting non-adiabatic transitions may be called 
dynamical tunneling as well. 

The adiabatic method has been used extensively in the study of 
the quantum reflection coefficient by transforming the Schrodinger 
equation into a system of two coupled first order equations, see [6], 
[7]. More recently in [ll] the exact asymptotics of the reflection coef- 
ficient has been given in the true adiabatic case. At the time we are 
writing these lines T. Ramon has announced the same kind of result 
for the quantum reflection; his method using exact complex WKB 
method combined with micro analysis techniques is an adaptation of 
the one developed in [12] for the study of the asymptotics of the gaps 
of one dimensional crystals. 

Both of these two results show that our upper bound has at least 
the correct exponential behaviour. If one wants to consider higher 
dimension problems, the hope to be able to derive exact asymp- 
totics on the scattering amplitude is small because of the complicated 
structure of the caustics and singularities of the underlying classical 
Hamiltonian system. But deriving upper bounds for a suitable range 
of the parameters in the spirit of [lo] should be possible with the 
method presented here. 
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Abstract 

In the framework of the theoretical study of one-dimensional 
quasi-crystals, we present some general and particular results about 
the gap labelling and the singular continuity of the spectrum of 
Schrodinger operators of the type Hv& = +n+l i- i- On$n, 
where ( o ~ ) ~ ~ z  is an aperiodic sequence generated by a substitution. 

1 Introduction 

The quasi-crystals, discovered in 1984 [l], are studied in one di- 
mension by means of tight-binding models, described by discrete 
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Schrodinger operators of the type 

where is a quasi-periodic sequence. A very interesting case, 
both mathematically and physically, is that of a sequence 
generated by a substitution [2] (see sect. 2 for a definition). This is a 
rule which allows to construct words from a given alphabet or, from 
a physical point of view, a quasi-crystal from elementary pieces of a 
tiling of the space. 

Such operators are in general expected to have a singular contin- 
uous spectrum, supported by a Cantor set of zero Lebesgue measure. 
This has been already proven for the Fibonacci [3], [4], [5] and Thue- 
Morse [6], [7] sequences. We show here how to obtain the same result 
for the period-doubling sequence [7]. 

In all these cases, the method which is used is that of transfer ma- 
trices. It can be summarized as follows: one writes the Schrodinger 
equation in matrix form: 

defines the transfer matrices as products of the form n",=, Pk and 
deduces the spectral properties of l iv from those of their traces. 

This method was first developed in the Floquet theory of periodic 
Schrodinger operators [8] and recently generalized to the Anderson 
model [9] and then to the quasi-periodic case [lo] and in particular 
to quasi-crystals [l l] ,  [la]. These last models exhibit Cantor spectra, 
which gaps are labelled by a set of rat.iona1 numbers, depending of 
the particular example one considers, their opening being studied in 
details, for instance for the Mathicu equation [13] or the Kohmoto 
model [14], [15]. 

The program, still in progress, which results are described in this 
lecture, is the investigation of the particular class of one-dimensional 
substitution Schrodinger opemtors. A substitution is a map from a 
finite alphabet A to the set of words on A .  A substitution sequence or 
automatic sequence is a t-invasiant infinite word u [2]. A substitution 
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Schrodinger operator is an operator of type (1) defined by a sequence 
( v ~ ) ~ ~ z  obtained by assigning numerical values to each letter of u. 

In this case, the substitution rule implies a recurrence relation 
between the transfer matrices, which itself gives a recurrence relation 
on their traces, called the “trace map” [ lG] .  Then one proves that 
the spectrum of Hv is obtained as the set of stable conditions of this 
dynamical system, which also coincides with the set of zero Lyapunov 
exponents of Hv. Finally, a general result of Kotani implies that the 
spectrum is singular continuous and supported on a Cantor set of 
zero Lebesgue measure. This has been done for the Fibonacci [5], 
Thue-Morse [7] and period-doubling [7] sequences. In the last two 
cases, a detailed study of the trace map allows also to compute the 
labelling and the opening mode of the spectral gaps [6], [7]. 

Now, one is naturally led to try to generalize these results to a 
large class of substitutions. For primitive substitutions, an easy way 
of computing the label of the gaps is obtained - and applied to some 
examples - [17] combining the K-theory of C*-algebras [18], [19], [20] 
and the general theory of substitution dynamical systems [2] (there 
are only perturbative conjectures for their real opening [21]). 

The second expected common feature of substitution Schrodinger 
operators, that is the singular continuity of their spectrum, can also 
be obtained, by extending to a general situation the analysis of the 
trace map. Indeed, for primitive substitutions which trace map sat- 
isfies a simple supplementary hypothesis, two of us proved this result 
recently and applied it to the same examples as before [22]. 

The plan of this contribution is the following. In section 2, we 
define what are substitution hamiltonians and we show how K-theory 
of C*-algebras provides with a general gap labelling theorem for such 
operators. In section 3, we apply the method of transfer matrices to 
the case of the period-doubling sequence, namely we prove that the 
spectrum is singular continuous and has a zero Lebesgue measure and 
we study the labelling and opening of the spectral gaps. In section 
4, we generalize the singular continuity of their spectrum to a rather 
large class of substitutions. 
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2 Gap Labelling Theorem [17] 

We show in this section how K-theory of C*-algebras provides with 
a simple way of computing the values of the integrated density of 
states in the gaps of the spectrum of a substitution hamiltonian. 

We first summarize some basic definitions on substitutions [2]. 
Given a finite alphabet A, a substitution 5 is a map from A to 

A* = U Ak. 5 induces in a natural way a map from AN to AN, 

which admits a fixed point u if it satisfies the conditions: 
(Cl) there is a letter 0 in A such that the word t(0) begins with 0; 
(C2) for any p E A,  the length of tn(p) tends to infinity as n + 00. 

We say that a Schrodinger operator Ilv of type (1) is generated by 
( if vn = f V  following the n - t h  letter of u = too(0). For example, 
the period-doubling substitution defined by < ( a )  = ab, t ( b )  = aa has 
a fixed point given by u = too(a)  = cibannbab ... Assigning the values 
V to vo, -V to v1, V to v2, v3 and w4, -V to 2)5... and completing by 
symmetry for negative n ,  we obtain the period-doubling hamiltonian. 

The integrated density of states (IDS) N ( E )  of Hv is the number 
per unit length of eigenvalues of Hv smaller than E in the infinite 
length limit. A gap labelling theorem consists in the determination 
of the set of values that the IDS takes in the spectral gaps of Hv. 
We prove it for primitive substitutions, that is substitutions 5 such 
that there is a k such that for any a and p in A, tk (a)  contains p. 

For l! = 1,2, the matrices Me(( )  of a substitution 5 are defined 
by putting Mt,ij equal to the number of times the letter i occurs 
in the image of the letter j by ( e ,  where 51 = 5 and 52  is defined 
on the alphabet of the words of length 2 appearing in the ((a@) 

yoy1 ...yl~(wowl 11-1. If 5 is primitive, the Perron-Frobenius theorem 
implies that MI and Mz have a strictly positive simple maximal 
eigenvalue 8 (the same for both), which corresponding eigenvectors 
ve, normalized such that the sums of their components equal 1, can 
be chosen strictly positive [2]. 

k 3 1  

by setting G(WOW1) = (?/0?/1)(1JI 32 I... (Yl((wo)l-l Yl((W0)l) if t(WOWl1 = 

Now we can state our gap labelling theorem: 

THEOREM 2.1 : Let Hv be a 1D discrete Schrodinger operator of 
type (1) generated by  a primitive substitution on a finite alphabet. 
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Then the values of the integrated density of states of Hv on the spec- 
tral gaps in [ O , l ]  belong to the Z-niodtile generated by  the density of 
words in the sequence u, which is eqtrnl to the Z[t?-']-module gener- 
ated by the components of the nornialixd eigenvectors v1 and v2 with 
the maximal eigenvalue 8 of the substitution matrices it41 and M2. 

The proof of theorem 2.1 is divided in four steps. 

Step 1: Shubin's formula: N ( E )  = T { , x ( N  5 E ) }  , the trace per 
unit length r of the projector x ( I I  5 E )  in the infinite length limit. 

Step 2: Abstract gap labelling theorem 1: Let d H v  be the 
C*-algebra of Hv, that is the C*-algebra generated by the translates 
of Elv. Shubin's formula, together with general results about the 
K-theory of C*-algebras (referenced in  [17]), implies the 
Abstract PaD labellin? theorem 1: The values o f N ( E )  in the spec- 
tral gaps of Hv belong to the countrible set [0,  ~ ( l ) ]  i l  r,(l io(dH,)),  

where r, is the group homoniorpliisru IiO(AH,) + R induced by  r .  

Step 3 : Abstract gap labelling theorem 2: Let T be the two- 
sided shift on AZ,R the closure of the orbit of u by T i n  AZ ((R,T) is 
called the hull of t i )  and p the unique (by primitivity [2]) T-invariant 
ergodic probability measure on R. The study of the K-theory of C(R) 
leads t o  the 
Abstract FraD labelling theorem 2: T*(KO(dH,,))  = p ( C ( 0 ,  Z)). 

Step 4: Computation of p:  Every function in C(R,Z) is an inte- 
gral linear combination of characteristic functions of cylinders [B] in 
R ( B  being a word in u).  Since the p ( [ B ] )  are of the form & times 
(integral linear combination of the components of v l  and v2) [2], our 
gap labelling theorem is proved, putting together the results of these 
four steps. 

3 The Period-Doubling Hamiltonian [7] 

The period-doubling sequence (see sect. 2) defines two sequences of 
unimodular transfer matrices ( T ~ ) ( u ) ) ~ ~ N  and (T#)(b))nEN, corre- 
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sponding to  the two numerical sequences associated to (OO(a) and 
(""(b). The substitution rule implies a recurrence relation between 
their traces z, and 9,: 

with initial conditions 20 = E - V, yo = E + V .  
The unstable set of (3) is defined as U = {(Q, y o )  E R2 s.t. 3N > 

0 s.t .  lznl > 2 Vn > N } .  The identification of the set Z(U)" = 
{ E  s.t. (E-V,E+V) E U"} of stable initial conditions of (3), and also 

1 of the set c3v of zero Lyapunov esponents y(E) = lim -LnllZ'P)II 
of Hv, with the spectrum of /Iv gives us its properties. We need 
first the following more convenieiit description of U: 

Lemma: U = U,>O - {(zo,g,-,) s.t. (xn,yn)  E Di}, where 

n-oo n 

Di = {(z, y )  s.t. 2k > 2, y > 2} 

3.1 Cantor Spectrum of IIv 

THEOREM 3.1 : The spectrum of I Iv  is purely singular continuous 
and supported on a Cantor set of zeZel.0 Leksgue measure. 

Our method is similar to those of [4] and [5 ] .  First, by a general 
result based on Floquet theory [GI, a(1Iv) c (int f(U))'. Then we 
use the lemma to  prove an exponential upper bound for the norm of 
T g ) ,  for E E E(U)", which implks that t'(U)" C Ov. Finally, the 
general fact that ( ~ ( H v ) ) "  c C)$ [23] allows to write the following 
sequence of inclusions, € ( Z A )  being open in our case: 

a(&) c Z(IA)" c OV c a ( H v )  (4) 

Therefore a(Hv)  = Z(U)" = 0v. Now JOvl = 0. This is ob- 
tained in two steps. First, let R be the hull of the period-doubling 
sequence, 7, (E)  the Lyapunov exponent of the hamiltonian H v ( w )  
generated by w E R, p the unique T-invariant ergodic probability 
measure on R and r , ( E )  = J p(dw)y,( E )  tlie mean Lyapunov expo- 
nent (see sect. 2). By Kotani 1241, the set 0, = { E  s.t. y,(E) = 0) 
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has zero Lebesgue measure. Then, to complete the proof of theorem 
3.1, we have to  show that [Op~Owl  = 0 Vw E 0. This is achieved by 
using a lemma of Herman [25] to extend to substitution potentials a 
proof of Avron and Simon [26] about almost periodic potentials. 

Finally, Io(Hv)l = 0. Since we can prove that Hv has no eigen- 
values and no generalized eigenfunctions tending to zero at  infinity, 
this implies theorem 3.1. 
Remark 1: lOvl = 0 is a general result for primitive substitutions, 
used in sect. 4 to  extend theorem 3.1 to a large class of substitutions. 

3.2 

Let rf be the two inverses of the trace map (3) and rw = run...rwo if 
w = (wg, ..., wn) and wi = f l , i  = 0, ..., n.  Since a(Hv)  = &(U)", the 
lemma implies that 

Labelling and Opening of the Gaps 

[ ~ ( H V ) ] "  = { E  s . t .  3 w s.t. ( E  - V,E  -t V )  E ~ w ( D z ) } ,  ( 5 )  

where DT = r r ( D $ )  

THEOREM 3.2 : 

of order 2-lwl, and are labelled By N ( E )  = 8; 

width of order e*VLn2, and are labelled by N ( E )  = &. 
Remark 2: These values of N ( E )  come for the formula for the free 
laplacian: N ( E )  = - arccos( -E/2)  
Remark 3: Similar results were obtained for the Thue-Morse se- 
quence defined by [ ( a )  = ab,((b)  = Ba, with the difference that the 
gaps labelled by purely dyadic N ( E )  (except 1/2) remain closed, due 
to the symmetry of the potential [6]. 

This gives the two families of spectral gaps constructed from Dz: 

i )  The gaps at the points r,(O, 0) open linearly, with opening angle 

ii) The gaps at the points rw(-l, -1) open exponentially, with 
-3L 2 

1 
n- 

4 Singularity of the Spectrum [22] 

We have seen in section 2 that a general gap labelling theorem can 
be proven for substitution hamiltonians H v .  Here, we show how, 
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under a simple supplementary hypothesis, which can be verified al- 
gorithmically, the second general result, that is the singularity of the 
spectrum of Hv, has been very recently generalized by two of us 
[22]. This is achieved by extending the analysis of the stable set of 
the trace map performed for the period-doubling sequence. 

We start with a primitive substitution ( defined on a finite alpha- 
bet A .  For w € A N ,  let &"(W) be the trace of the transfer matrix 
associated to w. By construction, there is a finite alphabet B, in- 
cluding A ,  such that the trace map of (, that is the map ( fpi)illBl 
defined by dn+')(pj) = fpi (d" ) (p j ) ,  ..., d n ) ( p p l ) ) ,  is a dynamicd 
system on RIBI [27]. It is clear that the essential role in the van- 
ishing of the Lyapunov exponent is played by the dominant terms 
in the f p i .  Therefore its crucial property is the existence for each i 
of a unique monomial of highest degree Ypi, called the reduced truce 
map, and of the associated substitution @ on B. Actually, defining 
a semi-primitive substitution as a substitution satisfying: 

i) 37 C B s.t. @lc is a primitive substitution from C to C"; 
ii) 3k s.t. Vp E B, &(p) contains at least one letter from C, 
we can prove: 

THEOREM 4.1 : Let Hv be a 1D discrete Schrijdinger operator gen- 
erated by a primitive substitution t on a finite alphabet. Assume that 
there is a trace map such that the substitution iD associated to its 
reduced truce map is semi-primitive and also that there is a finite k 
s.t. ('(0) contains the word pp for some p E B .  Then the spectrum 
of Hv is singular and supported on a set of zero Lebesgue measure. 

The proof of theorem 4.1 can be summarized as follows: Let 6 C 
U be the open "generalized" unstable set of ( (see [22] for a precise 
definition). Generalizing the proof of theorem 3.1, we use the crucial 
fact that, for primitive 6, the lengths of the words Itnal (a  E A )  
grow with n exponentially fast with the same rate O n ,  where 8 is the 
Perron-Frobenius eigenvalue of the substitution matrix [2], [17], to 
show that, for semi-primitive iD,f(6)' C Ov. 

As in sect. 2, this implies the following sequence of inclusions: 

E(6)' c OV c a(&) c (Int(E(U))' c E(fi) '  (6) 
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and thus a(Hv) = Ov, which concludes the proof of theorem 4.1 
(see Remark 1 after the proof of theorem 3.1). 
Remark 4: If we assume that ('(0) begins with the word pp, we can 
prove that Hv has no eigenvalues and therefore that the spectrum 
of Hv is singular continuous and supported on a Cantor set of zero 
Lebesgue measure. 
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Wave Packets Localized on 
Closed Classical Trajectories 

S. De Bikvre, J.C. Houard and M. Irac-Astaud 
L.P.T.M. Universitb Paris 7 

Abstract 

In the classical limit eigenfunctions of Hamiltonians tend to lo- 
calize in phase spa.ce on energy surfaces if the system is ergodic, or 
on invariant tori for completely integrable systems. In cases when 
the energy levels are highly degenerate, one may hope to construct 
eigenstates that localize on lower dimensional flow invariant mani- 
folds such as closed orbits. This is known to be true for the Kepler 
problem. We establish the same result for n-dimensional harmonic 
oscillators. The construction generalizes to yield states well-localized 
on closed orbits of more general Hamiltonians. 

1 Introduction 

Let HO be a C" IIamiltonian on phase space R2" = T*R". Let 
y : t E [O,T] --f y(2) E ( q ( t ) , p ( t ) )  E R2" be a periodic solution 
(y(0) = y(T)) of the corresponding Hamiltonian equations of motion. 
We shall write EO = H o ( q ( t ) , p ( t ) ) .  We then consider 

< >,: fo E Crn(IR2") +< fo >+ 

This defines a classical state, i.e. a probability measure on phase 
space, which is concentrated on y and flow invariant in the sense 
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that 
< f o  0 4t >y=< f o  >y, Qt E R, (1.2) 

where we wrote 
Consider then self-adjoint operators H ( h ) ,  F(h)  on L2(IR"), which 

have Ho, respectively f o ,  as their principal Weyl symbols. The eigen- 
states $a of H ( h )  satisfy the quantum equivalent of (1.2), i.e. 

for the flow defined by Ho. 

It is then natural to ask whether it is possible to construct a family 
of eigenstates 

H(f i )$h = W + b h ,  (1.4a) 

with 
E ( h ) - + E o  as h+O (1.4b) 

and such that 

for all 
In 

of the 

F ( h )  as above. 
general, this is impossible. Indeed, as a first example, think 
double symmetric potential well. In that case, all eigenstates 

satisfy I $h(z) 1 2 = 1  +h(-z) 12. Hence they can never concentrate on 
a classical trajectory in one of the two wells in the limit h + 0. More 
generally, consider the case when HO is completely integrable. The 
classical limit of energy eigenstates for such systems has been studied 
extensively in the literature [8] [l]. Let T'R" = IR" x R"* be the 
classical phase space and : T'R" -+ R" n commuting constants 
of the motion for the Hamiltonian Ho, i.e. 

{Pi, P,"} = 0 (1.6a) 

and 
Ho = PJ.  (1.6b) 

In the corresponding quantum system, one has self-adjoint opera- 
tors Pi(h) having P: as their principal Weyl symbol. They form a 
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complete set of commuting observables on the Hilbert space L2(R"). 
As a result, fixing their eigenvalues &(ti) determines a unique eigen- 
state of the quantum Hamiltonian H ( h )  and one expects that, as 
h + 0, this eigenstate concentrates - in phase space - uniformly on 
the corresponding classical torus ?-'(&). This is indeed established 
in [l], under suitable conditions on Ho.  The results in [l] lead one to 
conclude that non-degenerate eigenstates of H ( h ) ,  which are auto- 
matically eigenstates of all the Pi(h), cannot in general be expected 
to satisfy (1.5). In fact, one expects that (1.4)-(1.5) can only be 
satisfied if H ( h )  admits highly degenerate eigenspaces so that one 
can construct many eigenstates of H ( h )  that are not simultaneously 
eigenstates of the other P;(h). 

There are two known examples where (1.4)-(1.5) can be satisfied 
for all the classical closed trajectories. They are the hydrogen atom 
[3] and the isotropic harmonic oscillator [2]. In both cases the method 
of construction is based on group-theoretical arguments using the 
hidden symmetries of the problem. 

In section 2, we construct eigenstates of the anisotropic harmonic 
oscillator satisfying (1.5). Symmetry arguments cannot be used in 
this case, but instead we propose a very natural construction using 
coherent states. 

Since the requirement that $Jh is an eigenstate is in general in- 
compatible with (1.5), it is customary to replace it by the weaker 
condition 

II (m4 - Jw))$J(h) II= WN) (1.7) 
for some N E IN. One then says that $JA is a quasimode. Quasimodes 
localized on closed classical trajectories were constructed by Ralston 
[6] for a class of partial differential operators under certain natural 
stability conditions on 7 which determine N and supposing q(t) # 

In section 3 we show how our construction of section 2 can be 
generalized very simply to construct states satisfying (1.5) and hence 
(1.7) with N = 1, without any stability conditions on 7. In the 
absence of stability requirements, one can probably not hope to do 
better than this. While this work was in progress, we learned of 
recent results of Paul and Uribe [5], who use the same construction 

0,Vt E [O,T]. 



28 S. De BiBvre, J.C. Houard, M .  Irac-Astaud 

to prove (1.7) for all N in the case where n = 1 and H ( h )  is an 
ordinary differential operator with polynomial coefficients. 

2 The Anisotropic Oscillator 

Let 
" P ?  1 2 2  

H = - + -m;wjQj  
2mi 2 i= l  

be the usual harmonic oscillator Hamiltonian on L2(lR"). Its spec- 
trum is given by 

1 
2 Em = h(wlm1 + w2m2 + ... + w,m, + -(w1 + ... + w,)). (2.2) 

The corresponding classical system, with Hamiltonian function 

" 1  1 
2m; 2 H o ( q , p )  = -p: + -m;w;q; 

i=l  

always admits closed classical trajectories. If all w; are two by two 
incommensurate, the only such trajectories are the ones in which 
only one mode of the oscillator is excited. If, on the other hand, 
wjl ,  w;, , ..., w;, (k 5 n)  are two by two commensurate, the others being 
incommensurate, then all trajectories in which only the degrees of 
freedom i l ,  ..., ik are excited, will be periodic. They then have a 
common period, which is the least common multiple of the Ti, = $. 

> 
Let us now fix a closed trajectory 

of the Hamiltonian in (2.3). We shall write 

for the corresponding energy. In the rest of this section, we construct 
an h-dependent sequence of eigenfunctions of H ,  all with energy Eo, 
concentrating on 7 as ti -+ 0 in the sense explained in section 1. 
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First, we briefly recall the definition of coherent states. We define 

where K is the matrix 

It is then well known that 

where we introduced the notation 
n 

I w I= c w ; .  (2.76) 
i= 1 

The coherent state I q , p  > being optimally localized around the 
phase space point ( q , p ) ,  it is natural to construct a state 

which is a superposition of coherent states localized on points of the 
trajectory 7. Taking 

4 0 )  = Eot ( 2 . 9 ~ )  

. I W P  a ( t )  = exp -2- 
2 

it is easily verified that, Vs E R, 

provided 3n E Z so that 

1 0  I 27rnh 
[EO - h-] = - 

2 T .  

(2.9b) 

(2.10a) 

(2.1 Ob) 

Furthermore one verifies readily that I 7 > in (2.11) is identically 
zero, unless h j 1 ,  ..., mik E N so that 

(2.11) 
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where we recall that il, ..., ik label the degrees of freedom of the 
oscillator that are excited on the trajectory 7. We conclude that 
I 7 > in (2.8)-(2.9) is an eigenstate of H with eigenvalue EO provided 
ti is chosen so that (2.10b) and (2.11) are satisfied. 

In the next section, we prove a general result which implies that 
17 > in (2.8), after normalization, satisfies (1.5). 

3 Localized Wave Packets 

Let 7 be a closed C" curve in T*Rn. We construct 

where a ( t )  is a C" function on [O,T]. Now let f h  be a strongly 
ti-admissible symbol on T*Rn and F(h)  the corresponding Weyl- 
quantized operator, i.e. 

F ( h )  = O P F f t i .  (3.2) 

For precise definitions of "strongly admissible" and O p r  we refer to 
[7]. Let us just say that f h ( q , p )  depends smoothly on ti and on ( q , p ) ,  
is polynomidy bounded in ( q , p )  for each ti and has an asymptotic 
expansion 

00 

f t i  N C f n  tin (3.3) 
n=O 

where each fn is again C" and polynomially bounded. Formally, for 
$ in the Schwartz space 

We then have the following result. 

Theorem 3.1 For ti such that 
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is  periodic with period T and provided 

I a ( t )  12= (< f j ( t ) ,  K f j ( t )  > t < P( t ) ,  K - lp ( t )  >)i, (3.6) 

we have that 

Sketch of the proof: We first remark that ([7], Proposition 11.56) 

where W, is the Weyl symbol of I 7 >< 7 I. The latter can be 
writ ten 

t 
W,(q,p; h)  = $1‘ dt 1 d t ’ a ( t ) ~ e ~ ( 4 ( t ) - 4 ( t ’ ) ) ~ ~ , ~ ’ ( q , p ;  ti), 

(3.9a) 
where 

(3.9b) 

and WtItt(q,p;ti) is the Weyl symbol of I q( t ) , p ( t )  >< q(t’),p(t‘) I. 
Computing the latter explicitly and i,nserting the result into (3.8), 
one gets 

with 
(3.10 b )  

The phase y5t is a smooth function of (t’, q , p )  having a unique critical 
point at t’ = t , q  = q ( t ) , p  = p ( t ) .  Applying a stationary phase 
argument ([4], Theorem 7.7.5), the result then follows. 

The claim made at the end of section 2 is now an easy consequence 
of the above result. 

2n 
IC(q,p, ‘> = T2(2.1rh)n a(t ) W h  ( q 7  PI * 
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1 Introduction 

The purpose of this note is to discuss some recent results on lower 
bounds for eigenvalue differences for Dirichlet Laplacians on domains. 
We present an alternative proof of one of the main results of [2]. The 
problem we consider here is the following. Let C c Rn be a bounded 
domain and let T ( E )  be a tube of diameter E > 0 described as fol- 
lows. Let D1 C Rn-' be a bounded, connected region containing 
the origin. We itssume dD1 is smooth, see [2] for more general sit- 
uations. For E > 0, let D, = tD1 be the scaled cross-section of the 
tube T ( E )  3 D, x (-6, t + 6), for some 6 > 0 small and independent 
of E .  We choose coordinates ( x ' , ~ , )  E R"-' x R = Rn such that 
(0,O) E dC. We take R to be the reflection of the half-space x ,  < t / 2  
in the x ,  = t / 2  plane, to obtain a symmetric dumbbell region with 
C1 = C and C 2  = X I ,  defined by O(E)  = C1 ~ T ( E )  U C 2 .  That is, O ( E )  
consists of two symmetric cavities (with respect to x ,  = t / 2 )  joined 
by a straight tube of diameter E .  Note that ( 0 , t )  E dC2. 

Let P ( E )  = -An(c) be the Dirichlet Laplacian on O ( E ) .  Let 
0 < El(&)  < & ( E )  5 ... be the Dirichlet eigenvalues and define 
AE(E) E & ( E )  - E l ( & ) .  We refer to this difference as the splitting 
of the first two Dirichlet eigenvalues. Our goal is to bound AE(E) 
from above and from below in terms of the tube diameter E and the 
tube length t .  Note that when E = 0, the two cavities are identical 
and disjoint. We also have that -An(,) --t -Ac, @ -Ac, in an 
appropriate sense its E + 0. For the limit operator AE = 0, i.e. the 
first eigenvalue is doubly degenerate. Let cr2 be the first Dirichlet 
eigenvalue of D1. By scaling, ( f ) 2  is the first Dirichlet eigenvalue of 
D,. For the case of a straight tube, as described above, our main 
result is the following. 

THEOREM 1.1 Let O(E)  c R" be a symmetric dumbbell region with a 
straight tube of length t .  Let AE(E) = E ~ E )  - El(&)  be the diflerence 
of the first two Dirichlet eigenvalues. For any 2 < t there exists 
EO > 0 and constants C1,C2 > 0 such that for E < EO 
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We will sketch the proof of Theorem 1.1 in the following two 
sections. The upper bound in (1.1) relies on L2-exponential de- 
cay estimates on the Dirichlet eigenfunctions for the region C ( E )  = 
IntC U T(E) ,  i.e. one cavity with a tube attached. These estimates 
were obtained using Agmon-type [l] positivity arguments in [6]. We 
note here that for the nth Dirichlet eigenfunction Un,, those estimates 
can be improved to give 

for any 6 > 0 in the case of a straight tube with cross-section D,. 
For this, it suffices simply to replace the weight p in [6] with p ( x n )  = 

Here we concentrate on the lower bound in (1.1). It depends 
upon a lower bound on the first Dirichlet eigenfunction (which is non- 
negative) in C ( E ) .  In [2], we obtain a lower bound using a Harnack 
inequality and a comparison principle for parabolic equations. Here, 
we give a different proof which results in an L2-lower bound for 
ue = ul,c in the tube. 

x n d m ,  xn  E I O , ~ [ .  

THEOREM 1.2 Let u, be the first normalized Dirichlet eigenfunction 
on C ( E )  c Rn. For all x: E]O,e[ 3Co = Co(x~) > 0 such that for any 
6 > 0 and for all E > 0 small enough 

where a2 is the first Dirichlet eigenvalue for D1 c R"-'. 

We mention that more general results are given in [2]. Although 
lower bounds on the splitting are well-known for the Schrodinger op- 
erator -h2A t V on Rn in the semi-classical regime (see, for example, 
[9] and references therein) not that much is known for the DiricNet 
Laplacian on bounded domains. One such result is due to Singer, 
Wong, Yau and Yau [12]. If R is a bounded convex domain with 
diameter d and D = max(6 I B(6,x) C R}, then they prove 

i s d - 2  5 AE 5 4n2nD-2 
4 
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(which is a special case of a more general result). 
In section 2 of this note, we derive Theorem 1.1 from Theorem 

1.2. This derivation is rather well-known (see [5], [10],[11]) so we 
simply sketch the proof. In section 3, we prove Theorem 1.2. 

2 Bounds on AE : Proof of Theorem 1.1 

We sketch the derivation of Theorem 1.1 given Theorem 1.2. We use 
the method of Helffer and Sjostrand [5] which reduces the estimation 
of A E  for O(E)  to  that of estimating the first Dirichlet eigenfunction 
for C ( E )  in the tube (see also [lo], [ll]). Let Mi = IntC; U T ( E ) ,  i = 
1,2, be the left and right cavities with the tube attached, respectively. 
We consider the Dirichlet Laplacian P; = -A; on L2(M;) ,  i = 1,2. 
Let be the first Dirichlet eigenfunction for Pi with eigenvalue 
Eo(E). Let xi E Co3(Rn) denote cut-off functions such that Vx1 is 
supported in {(X’yxn) I t - q 5 x ,  5 t }  and Vx2 is supported in 
{(X’,x,) I 0 5 2 ,  5 q}  for some q > 0 small, and such that x;  is 
identically one on the rest of Mi. Then $i E xi4:) E D ( P ( E ) )  and 

P(E)$i = Eo(E)$i - (2vxi  * v+?’ +  AX;)^:)), (4) 

for i = 1,2. Let E be the subspace of L2(O(&))  spanned by {$1,$2}. 

Let u; be the first two eigenfunctions of P ( E )  on L2(O(&))  and let 
F be the subspace spanned by these eigenfunctions. Since the error 
terms in (2.4) are localized far from the cavities where 4:) are small, 
E should be a good approximation to  F.  To quantify this statement, 
we need the following result of [6] (modified as described in section 
1). 

PROPOSITION 2.1 For p = O,l, for all K: > 0 ,  there exist constants 
Cp,n, (?p,n > 0 and an EO > 0 such that for E < EO and i = 1,2, 
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We conclude from Proposition 2.1 that 

for any F < t .  Consequently, following Helffer-Sjostrand [5] we easily 
obtain 

PROPOSITION 2.2 Let I I O  : L2(St(&)) + E be the projection onto E 
along F’-. For ?< t ,  the matrix IIoP(E) I E ,  in the basis { + 1 , & }  for 
E ,  has the form 

where, for 1 5 i, j 5 2, W;i = 0 and 

Furthermom, Wij = O(e-aF/c). 

We analyze the interaction matrix (W;j) in the usual manner (see 
[lo], [ll], [2]) and omit the details here. We mention only that we 
use the symmetry of the eigenfunctions and the Poincarb inequality 
for D,. 

PROPOSITION 2.3 For any F< t and all E suficiently small, 

Proof of Theorem 1.1 (given Theorem 1.2) 

1) Lower bound. We obtain directly from (3) (using symmetry, 
4:) = R @ )  that 

so the result follows from (2.11) and the fact that I Eo(E) - 
EO I< C, where EO is the first Dirichlet eigenvalue for C. 
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2) Upper bound. From (2.8), it is easy to find an upper bound on 
AE : 

for any z< 1. Consequently, from Proposition 2.1, we obtain - 
AE 5 C2e-aeI', ( 12) 

for any F <  1. This proves the theorem. 0 

3 Proof of Theorem 1.2: Lower Bounds for 
Straight Tubes 

We sketch the proof of Theorem 1.2 in this section. We refer to [2] 
for a different proof and more general results. Our goal is to derive 
an L2-lower bound for the first Dirichlet eigenfunction restricted to a 
small tube. Let C be a bounded, connected, open region in Rn with 
a C2-boundary (this can be relaxed, see [2]). We choose coordinates 
so 0 E dC. Let D1 C Rn-' be an open connected bounded region 
with smooth boundary and define D, =  ED^, a scaled cross-section. 
Let the tube F ( E )  be defined by D, x [-6,1], for 6 > 0 small so that 
{(x', -6) I x' E D,} C C. We also define T ( E )  E Cc n P ( E )  and set 
/A = max{xn I ( x ' , ~ , )  E dC n P ( E ) } ,  the first point of contact, along 
the Sn-axis from x, = t ,  of the tube F ( E )  with dC. We also require an 
obvious transversality condition: v(O).2, > 0, where ~ ( p ) ,  p E dC, is 
the outward normal. We define C ( E )  = IntC U T ( E ) ,  the cavity with 
a small tube attached. 

We need notation for several operators associated with these re- 
gions 

1) -A is the Dirichlet Laplacian on C(E) with first eigenfunction 

2) -Ac is the Dirichlet Laplacian on C with first eigenfunction 

U, : -AIL, = E~(E)u,; 

uo : -ACUO = Eluo; 
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3) -AZl is the Dirichlet Laplacian on D1 with eigenfunctions bp 
and -Azibp = a;bp,  p = 1,2, .  . .. 

Note that if -A=I,, denotes the Dirichlet Laplacian on D,, then 
the corresponding eigenvalues are ( a p / e ) 2  and the eigenfunctions are 
bp,,(x') = & - ( v ) b p ( z ' / & ) .  

We prove Theorem 1.2 by contradiction. We suppose 3 x: E lo,![, 
a constant CO > 0 and a sequence En 4 0 such that, for each E = En, 

where N1 = 1 + ( n  + 5)/2 + 6, for any 6 > 0. We propagate this 
estimate back to a neighborhood of zero in dC. There, we compare 
uc with UO. We conclude that in an &-neighborhood of zero in C, 
B(0, ~ q )  n C, q sufficiently small, 

I I uo I I L2 (B ( 0 , C l l ) n c )  - < C0&8+1+6 (14) 

On the other hand, we have the following special case of a lemma 
of Hopf (see [4], section 3.2). 

LEMMA 3.1 Suppose L is a uniformly elliptic operator on R and 
Lu 2 0 on R with u(x0) = 0 for some xo E do. Suppose dR is 
suficiently smooth (C2 sufices), u is continuous at 20,  and u ( x )  < 0 
on R. Then the outer normal derivative of u at xo  satisfies a strict 
inequality: 

We apply this lemma to L = Ac + E and u = -UO on C. Since uo 
is the first Dirichlet eigenfunction, u satisfies the hypotheses of the 
lemma. We conclude from the positivity of the normal derivative at 
xo  that 3 CO > 0 such that for 71 sufficiently small 

u ~ ( x )  2 C o d ( x ,  X), V x E B ( o , E ~ )  n C. 

Consequently, we conclude that for E sufficiently small 
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This contradicts (14). 
We now prove estimate (14) in 4 steps. In the first, we obtain 

some a priori estimates on u, following from (13). Next, in the 
second, we expand u, in T ( E )  in the eigenfunctions b,,, of -Ar),, 
and show by ODE techniques that (13) implies that u, is small near 
2, = p. We use Harnack and other inequalities in step 3 to extend 
these estimates for u, and Vu, into a neighborhood of zero in C away 
from the corners dC n ~ T ( E ) .  Finally, we compare uo and u, in such 
a region and derive (14). 

Step 1 

We begin with some a priori estimates on u, in T ( E ) .  Recall from [6] 
that El(&) + El as E + 0. 

LEMMA 3.2 For each a E Nn 3 N ,  2 0 such that lPu,(z)1 = 
o ( E - N a )  fo r  2 E D , x ] p , t [ .  

PROOF These estimates follow from the Sobolev embedding theorem 
for T ( E )  and a scaling argument. 0 

< C ~ ~ N ~ - ~ - I ~ - C X Z O , / C  LEMMA 3.3 Fork = 091, ll~~u&llH'([=0,+&,clxo,) - 

PROOF Let X, E C", 2, 1 0, be s.t. xeI[z;+~,t] = 1 and supp X, c 
[z;, w). Then xLk'(z) = O(E-~)V k. We consider 
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from which the result for k = 0 is evident. For k = 1, it suffices to 
estimate 

I I vuC I I Lz (D, x [st +elf]) 5 ClIIXc~c112 + C2ll(~nxc)~nuc1I2 
+c3 I I (a:xC>uc I l2 7 

which follows from (13) and (17). 0 

Step 2 

In this part of the proof, we use the assumption (13) to obtain esti- 
mates on dpuc in a small cylindrical region near x,, = p. We use ODE 
techniques to estimate the coefficients occurring in the expansion of 
uc in T ( E )  in the eigenfunctions of -As1. 

For ad x with 2, > p, we expand uc(z) as 

%(x) = < uc(',xn), bp,c >D, bp,c(z')- (18) 
P 1 1  

The coefficient Bp,c(xn) -< uc(-,x,,), b , ,  >D, satisfies the ODE 

for x,, 2 p, so we obtain 

where 
1 

7p,c = [a; - a2E1(a)]5.  

Evaluating B , ,  at x,, = p,  we obtain 
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It follows from Lemma 3.2 that for some N 2 0, 

The Dirichlet boundary condition u(x', t)  = 0 and (22) imply that 

(y, = o ( e - ' a p / & & - N ) .  (23) 

Next, we express Bp,&(Zn)  in terms of Bp,,(p) plus a small re- 
mainder. From (19), we have 

B ~ , , ( X , )  = B p , a ( p ) e - ~ p ~ r ( x " - p ) / c  t rc(xn> 

where 

so that 

where we used the fact that p = U(E)  and 
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as follows, for example, from the formula (35) below. We extract the 
p = 1 term from (26). Note that by Weyl's law, ap = 0 ( p z ) .  We 
obtain 

2 

(27) 
I luc(',  zn)11L2(DC) = < u c ( ' , P ) , h , c  > D c  e-'l'c(zn-')'c 

+O(e-"lzn/C) 

for zn > p + 6. The error term depends on 6, but is uniform in E ,  

even if 6 = O(E).  
We combine this result with the hypothesis (13). For t > 0, X I  E 

DC , 

and, upon integrating over t E [z: + &,el, we get 

This implies 

I Iuc<',z: + E)IIL2(D.) 5 C 1 l u c I ( H l ( D c ~ [ ~ + ~ , e ] ) .  (28) 

(29) 

From the hypothesis (13) and the expansion (27), we conclude that 

< u c ( ' , P ) , h , c  > D , =  O(& N i - 1 )  - 
In [13], Davies gives a general estimate on boundary behavior 

of eigenfunctions provided the boundary is smooth. Applied to the 
present situation, we have the following: 3 C > 0 s.t. 

Using this result together with (29) gives 

and, combining this with (24) gives 
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Again, using the fact that {bp ,= )  is an orthonormal basis for L2(De)  
and the above estimate on ap, we obtain 

IIUe(',p + cE)IILz(D,) = O(EN1-l) (32) 

For K > 2, we consider ue in a cylinder near x,, = p of the form 
Dee x [p + E / K ,  p + EK], for 8 €10, +[. From a local boundedness 
theorem for W1t2-solutions (see [4], Theorem 8.17), we have 

S U P  
DeC X [ C ( + ~ / ( ~ + ) ~ , C ( + E % ]  

ue I E-  ' co I Iue I 1 L2(Dzc 0 x 1,) (33) 

where CO = C o ( O , p , K )  and 1% 3 [p + ~ / ( 2  + ~ ) , p  + E ( K  + O)]. This 
result, together with (32), yields 

SUP 11, = 0 ( E N 1 - Y ) .  (34) 
Dee X [ P + . / ( ~ + K ) , C ( + ~ ~ ]  

Step 3 

We extend estimate (34) to an &-neighborhood of 0 in C ( E ) .  For a 
constant C > 0, define 

Ace G B(0, CE)  f l  C(E) .  

We note the following well-known bound on Dirichlet eigenfunctions 
4% for a bounded domain, 

I4%(.)I 5 e ' / 2 ( L  /4.)"14, (35) 

which is proved, for example, in [2]. This allows us to derive the 
bound 

IIUcllL2(A~,)  = 0(E"/2> (36) 

which, for n > 2, is stronger than the bound which follows from 
the Poincarh inequality. We first use the Harnack inequality in the 
interior of Ace. For CO > 0, we define 
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Estimate (34) and a version of the Harnack inequality due Jerison 
[7] (see also [2]) yield 

To extend (37) from Bcoc to Ace we have to use the boundary 
Harnack inequality developed for non-negative solutions to parabolic 
equations of the form Lu = Au - Otu = 0, where A is an elliptic 
operator (see [3] for a discussion). This estimate applied to u, states 
that 3 C1 > 0 depending only on the Lipschitz character of X ( E )  
such that for any x E ~ C ( E ) ,  

This immediately implies 

We next obtain an L2-estimate for Vu,  in Ace \ Cc/c, where 

It is known that the gradient is poorly behaved near the corners. 
We must assume that the boundary set X ( E )  n (Ac ,  \ Cc/c> is C2. 
We need the following lemma, which is a version of a Caccioppoli 
inequality (see [14], for example, for a proof). 

LEMMA 3.4 Let u E ( H 2 n H i ) ( n ) .  Let r > 0,z E n, and q 2 0, q E 
C", be a smooth cut-o# function such that qIB(z,r) = 1, supp q C 
B(x ,  2r). Then 

/ IVuI2 5 C (E-' / ~ V U ~ ~ U ~  + / B ( q 2 r ) n n  q2uAu 
B (z,r)nn B(r,Sr)nn 

for any E > 0. 



46 R. M .  Brown, P. D. Hislop and A. Martinez 

To continue the proof of the theorem, we apply, the lemma to 
u,. From estimate (39) and the fact that Au, = 0(1), we obtain a 
boundary estimate for r = &E, z E X ( E )  n (Ace  \ &c) : 

L(x,c /cw Ivu,12 = O(E2N1-2). (40) 

Finally, we obtain an interior L2-estimate on Vu, as in (40) by 
choosing x in Lemma 3.4 such that B(z,2r)  C Ac, (so r = O(E) as 
above). These results yield 

Step 4 

We now relate estimate (39) on u, and the L2-estimate (41) on Vu, 
to uo. Let x E Cr(B(O,2) )  be a smooth cut-off function such that 
x 2 O,xIB(O, 1) = 1. Define a function in C by 

Z&) = (1 - X(./CoE))uc(z), 

where CO > 0 is chosen such that T ( E )  n dC c B ( 0 , y ) .  We have 
that Z, E H 2 ( C )  n H,'(C) and hence 

- ACE, = E l ( ~ ) i i ,  + re,  (42) 

which follows by a simple calculation. The remainder r, has the form 

r, = ~(CO&)- 'XVX.VU,  + ( C o ~ ) - ~ ( A x > u ,  

and, due to the support of x' and estimates (39) and (41), the re- 
mainder r, satisfies 

Let I' be a simple closed contour about El independent of E .  We 
take E small enough so El(&) lies inside I'. By a simple calculation 
based on (42) ,  we have for z E I' 

(-Ac - z)-'Z, = ( E l ( & )  - z)-'ii, - r,, (44) 
- 
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where 
Fc = ( E l ( & )  - z)-’(-Ac - Z ) - ’ T ~ ,  

and 
~ ~ F c ~ ~ ~ 2 ( q  = 0 ( & ” - - 5 / 2 ) .  (45) 

Since El is a simple eigenvalue, the integral of (44) along I’ and 
estimate (45) yield 

zc =< uc,uo > 210 + O ( a N l - 5 1 2 ) .  (46) 

Note that IC\{zlx(z) = 1}1 = O ( P )  so 

IlZeIIL2(C) = 1 + 0 ( & ” - - 5 / 2 ) .  

iic = 210 + O ( E N 1 - - 5 / 2 )  

(47) 

These two results, (46) and (47), imply that 

in L2(C) and for each E = En + 0 as in (13). We take x E {z E 
Cld(z,O) < COE}, so there Gc = 0 and 

uo(z) = O ( E ” - 5 / 2 ) .  (48) 

Since uo is independent of E ,  this estimate holds for all E sufficiently 
small. We now recall from Lemma 3.1 that uo(x) 2 Cod(z,aC), for 
CO > 0 independent of E .  This lower bound and (48) imply 

C 1 & n + 2  5 J 21; = O ( E 2 N 1 - 5 ) .  
B(0,Ce)nC 

Since Nl = 1 + 9 + 6, we obtain a contradiction for E sufficiently 
small. This concludes the proof. 0 
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Nonlinear Volterra Integral 
Equations and the Ap&y 
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1 Introduction 

The study of nonlinear diffusion and free boundary value problems 
frequently leads to a Volterra integral equation of the form 

X 

4%) = J, + - M u ( s ) ) d s  (1.1) 

either by consideration of a special case or by choice of similarity 
variables. For such applications see, for example, Keller (1981) and 
the many references given by Okrasiliski (1989). 

We suppose that for some c > 0: 

(9) g is an increasing absolutely continuous function on [O,c], g(O) = 
0 and u /g (u )  --+ 0 as u --t O+; 

(k) k is 2~ monotone absolutely continuous integrable function on 
(O,d] with k(z) > 0 for 0 < z 5 d. 

Equation (1.1) has the trivial solution u = 0, but since g does not 
satisfy a Lipschitz condition in [O,c], there may be other nontrivial 

Differential Equations with Copyright @ 1993 by Academic Press, Inc. 
Applications to Mathematical All rights of reproduction in any form reserved. 
Physics ISBN 0-12-056740-7 

51 



52 P. J .  Bushell and W. Okrasiriski 

solutions, that is, a solution u with u > 0 in (O,d] for some d > 0. 
These are the physically interesting solutions. 

For the important special case 

u(z) = l Z ( z  - s)Q-'g(u(s))ds (a  > 0 )  (1.2) 

we have the following result. 

Theorem 1 Let 

Then there exists a nontrivial solution of (1.2) if, and only if, I ( a )  < 
00. 

This condition was discovered by Gripenberg (1981), the hy- 
potheses relaxed by Okrasihski (1990) and Gripenberg (1990), and a 
simpler and more general approach provided by Bushel1 and 
Okrasihski (1990) and (1992). 

Thus a non-trivial solution of (1.2) exists if g(u)  = ul/P with 
p > 1 and if g(u)  = (In i) with p > a, but there is only the trivial 

solution u = 0 for (1.2) if g(u)  = u or if g(u)  = (In i) with p a. 

To generalize Theorem 1 we use the comparison method for pos- 
itive integral operators, that is, under very general conditions, if 

P 

P 

~ ; u ( z )  = 1 k;(z,s, u(s))ds for i = 1,2, 

where 
h ( z ,  s,.) I k2(z,s,  4, 

and there exists a nontrivial solution to the equation u 5 Tlu, then 
the same is true for the equation u = Tzu (see Gripenberg (1981) or 
Zeidler (1986)). 

The comparison equations are found using inequalities estab- 
lished with the help of an identity due to Ap&y (1953). 
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Let 
Let K ( x )  = k(s)ds and I<-' denote the inverse function to I<. 

[g(s)k o I<-'(s/g(s>)]-'ds 
I1 = Lf 

and let 
I2 = J,f [g ' (s) /g(s) l I~- l  (s /g(s))ds .  

Theorem 2 (Necessary conditions). Let g and k satisfy conditions 
(9 )  and (k), and suppose that equation (1.1) has a nontrivial solution 
u in [O,d]  with c = u(d). 

(i) If k is increasing and Ink is concave, then I1 < 00. 

(ii) If k is decreasing I2 < 00. 
Theorem 3 (Sufficient conditions). Let g and k satisfy conditions 
( 9 )  and ( k ) .  Then equation (1.1) has a nontrivial solution in [0,4 
with d > 0 i f  

(ii) 

either (i) k is increasing and 1 2  < 00, 
or k is decreasing, In k is convex and I1 < 00. 

The proofs of these results are given in Bushell and Okrasiliski (1992). 
Following the remark in Bushell and Okrasiriski (1989) we can 

suppose that the nontrivial solution is nondecreasing. 

2 The Ap&y Identity and Steffensen 
Inequalities 

An elementary calculation verifies the following version of ApBry's 
identity: 
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It is easy to deduce the Steffensen inequalities: 

Lemma 2.1 Suppose that 0 < h(s) 5 h ( z )  for a < s 5 z and let 

(i) I f f  is increasing, 

(ii) Iff is decreasing 

x [ f (s)h(s)ds 5 h(4 1 f ( s W .  (2.3) 

The full details of the proofs of Theorems 2 and 3 are somewhat 
lengthy, but the main idea can be illustrated easily. Suppose that we 
can find a nontrivial solution v to the equation 

Then, from Lemma 2.1 (i), 

and the existence of a non-trivial solution to equation (1.1) follows 
from the classical comparison theorem. 

3 Power Nonlinearity 

The function g(u)  = ul/P (p > 1) is of particular interest in applica- 
tions. In this case, if i + = 1, then 

11 = pK-'(c'/Q) 
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and 
dt  

If k(0) = k(')(O) = -.. = k("-')(O) and k(n)(0) > 0, it is easy to 
establish the a priori bounds on a solution, 

mz(n+')9 - < +) < - M2("+')9 

and existence and uniqueness of a nontrivial solution follows using 
weighted metric fixed point methods as in Askhabov and Betilgiriev 
(1990) or projective metrics as in Bushel1 and Okrasiliski (1989). 

Kernels such as kl(x) = exp(-l/xq) and k2(z) = 
exp( - exp( l/za)) are not covered by the theorems given above. How- 
ever, Okrasiliski (1991) has shown that nontrivial solutions exist for 
k2 with 0 < Q < 1 but do not exist if a! 2 1. Very different conditions 
which apply to these extremely flat kernels have been given recently 
by Szwarc (1992). 

4 Estimates and Bounds for Solutions 

A second identity due to Ap4ry leads to a simple proof of further 
inequalities due to Steffensen. The identity is as follows: 

Lemma 4.1 Suppose that 0 < h(s) I h(z )  for a < s 5 x and let 

(i) Iff is increasing 
x = J3h(s)/h(z)]ds. 
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(ii) Iff is decreasing 

The inequalities in Lemmas 2.1 and 4.1 provide bounds on solu- 
tions to  equation (1.1). 

Example. Bernis and McLeod (1991) consider a fourth order 
nonlinear diffusion equation. Using similarity solutions they reduce 
the problem to  an equation of our type. An important step in their 
analysis is the establishment of a lower bound for a solution of the 
equation 

u(x) 2 ( lc /6)  /'(x - t)3u(t)1/mdt 
b 

with k > 0, m > 1 and x 2 b > 0. 
Consider the slightly more general problem 

~ ( x )  2 a A  [(x - t )a- lu( t ) l /mdt  

with A > 0 and a, m > 1. Assuming, as usual, that the solution u 
is non-decreasing, it follows from Lemma 4.1 (ii) that 

X 

u(x) 2 a A ~ ( z ) ' / ~  

and hence that 

From the last inequality it follows easily that 
~ ' ( x )  2 Al/aw(z)m/(m-'+") 

and hence that 

When a = 4 we obtain 

which is a constant multiple of the function found by Bernis and 
McLeod. 
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Abstract 

Lower bounds for time averages of mean square displacement are 
discussed in terms of the Hausdorff dimension of the spectrum. 

1 Introduction 

A few decades ago D. Ruelle [lo] stated the first general result relat- 
ing space-time behaviour for solutions of the Schrodinger equation 
with the spectral type of the corresponding quantum Hamiltonian. 
Equipped with technical refinements this result became the well- 
known RAGE theorem [ll] which supports the conventional wisdom 
that continuous spectrum manifests itself in the time decay of local 
space averages whereas point spectrum implies localisation in con- 
figuration space. Variants of this theorem have been proved by Enss 
and Veselic for time periodic forces [3] and Jauslin and Lebowitz for 
quasi periodic time dependent forces [8]; here point spectrum of the 
Floquet operator (or more generally the quasi-energy operator) is 
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Floquet operator (or more generally the quasi-energy operator) is 
related to quantum stability whereas a continuous spectrum implies 
unbounded growth of the energy. The need for quantitative refine- 
ments of these general connections appeared in the last ten years with 
the investigation of models in solid state physics exhibiting “extrmr- 
dinary spectra” (in the terminology of Avron and Simon [l]) like 
dense point spectrum or continuous singular spectrum supported on 
Cantor sets. Such models reveal in addition “unusual” dynamical be- 
haviours as opposed to what is “usual” for well-behaved potentials; 
to be more precise let 

with $t the solution of the Schrodinger equation with $t=o = $0 and 
A a self-adjoint operator such that $t E D ( A )  V t  E R if $0 does. For 
A = 1XI2, the mean square displacement, one thinks of “ordinary” 
dynamics as either the localisation regime where < 1XI2(t) >< C Vt  
or the ballistic regime where 1XI2(t) >N Ct2(t -, oo), which are 
supposed to correspond respectively to discrete or absolutely con- 
tinuous spectrum from our experience of well-behaved (locally and 
asymptotically) potentials (although this has no general mathemat- 
ical ground). On the other hand it is well-known that intermediate 
behaviours between these two exist. For example in the hierarchical 
models considered by Jona-Lasinio et al. [9] one has < IX12(t) >N 
C(Logt)o for some p > 0; but more generally the importance of 
these intermediate regimes is due to the relation between the “diffu- 
sion constant”: 

and static conductivity. Without going into the details of this connec- 
tion (see e.g. [4], [15]) let us just mention that one electron models of 
metals (resp. insulators) should have 0 < D+o < 00 (resp. D+o = 0). 
Thus in particular diffusive behaviour is the rule in models of con- 
ducting media and one would like to know which type of spectra is 
responsible for this. Clearly connections between these “extrmrdi- 
nary” spectral and dynamical properties go beyond the mere RAGE 
theorems which might not even provide the right intuition. For ex- 
ample think of the naive conjecture that D+o = 0 corresponds to 
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a pure point spectral measure for $0; although it is correct that 
< IXI2(t) >< C Vt  implies that $0 has no continuous component 
the only general result about the converse is a recent one by B. Si- 
mon [12] stating that in this last case lim - < IX12(t) >= 0 which 
is far from the expected answer Q,j0 = 0. One of the reasons why 
our intuition might be misleading is that unusual spectra like dense 
pure point or singular continuous are very unstable. As shown e.g. by 
Simon and Wolff [14] and Howland [6] even a rank one perturbation 
with arbitrary small norm can induce a transition from one type to 
the other. On the other hand one does not expect that the dynamics 
should be strongly affected by such perturbations. Thus if one be- 
lieves in this last argument any "extraordinary" dynamics produced 
by some singular continuous spectral measure should also show up 
with some pure point measure obtained from the first one by a small 
perturbation; in other words Simon's result might be optimal! 

The interest into such questions is not limited to the choice 
A = [XI2;  when considering external time-periodic forces it is nat- 
ural to let A be the internal energy operator. Then one considers 
< A(nT) >, n E Z, where T is the period so that A(nT) = FnAF-" 
with F the Floquet operator. Boundedness of < A(nT) > is related 
to quantum stability and this problem has attracted considerable 
interest recently in connection with quantum chaos since classically 
chaos manifests itself through a diffusive growth of energy. It would 
be of course of primary interest to have criteria allowing to deduce 
such a diffusive growth from spectral properties of the Floquet oper- 
ator (conditions for F to have pure point spectrum will be discussed 
by J. Howland [7] in this conference). 

It turns out that the first step towards a refined RAGE theorem 
obtained by I. Guarneri [5] was motivated in fact by the investiga- 
tion of dynamical localization for the kicked rotator. This problem 
is one particular aspect of quantum diffusion on a one dimensional 
lattice; Guarneri provides arguments, both heuristic and rigorous, 
to connect time asymptotic regimes with what he calls "spectra of 
peculiar type". More precisely he obtains remarkable lower bounds 
on < A( t )  > in terms of the lattice dimension d ,  counting func- 
tion for A and Hausdorff dimension of the support of spectral mea- 

1 
t+oo t 2  
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sures with respect to the evolution operator over one period of time. 
These results will be described in $2 below; they imply in the case 
A = 1XI2(X E Z d )  that 

where a is the dimension of the spectral measure for $0 (see def. 
below) and the time period is chosen equal to one. Forgetting about 
the logarithmic term, which seems to be a technically irrelevant con- 
sequence of Guarneri's method, we notice that for d = 1 the time 
behaviour is at  least ballistic for the absolutely continuous spectrum 
(a = 1) and localized for point spectrum whereas diffusion requires 

1 
a 5 -. This is no more true for d 2 2 and diffusive behaviour does 2 
not seem anymore incompatible with absolutely continuous spec- 
trum. One might think that this is due to the fact that Guarneri 
considers only lattice dynamics and Floquet spectrum instead of the 
Hamiltonian spectrum as in the RAGE theorem. Surprisingly it ap- 
pears that Guarneri's bounds can be extended to quantum dynamics 
on Rd; this follows from recent results of R. Strichartz [13] about 
Fourier transform of a-dimensional measures which provide a sub- 
stitute to Guarneri's Dirichlet like estimates for Fourier series; this 
will be described in $2 below. 

2 Spectral Dimension and Quantum 
Diffusion 

Let us first describe Guarneri's lower bounds [5] for the spreading of 
wave-packets in terms of the Hausdorff dimension of the spectrum. 
Consider time averages: 

N 1 
N << A >>T= - C < F"$o,AF"$o > 

n=O 
(4) 
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where F is the evolution operator over an interval of time To,T = 
NTo and A is a self adjoint operator having a spectral decomposition 

A = c 4(lkl)l.k >< ekl ( 5 )  
k E Z d  

where llekll = lVk  E Z d ,  the function 4 being positive non decreasing. 
(If To is one period of some time periodic perturbation then F is 
just the Floquet operator.) For ordinary lattice dynamics of tight 
binding models one takes A = IX12(X E Z d )  so that 4( Ikl) = lkI2 and 
ek(m)  = Sk,Vrn E Zd.  For the kicked rotator the dynamics is given 
by periodic kicks and A is the kinetic energy A = &2E~k21ek >< 
ek) where ek(0) = (27r)-Seeike are the angular momentum eigenstates 
etc ... The counting function for A is defined as: 

1 

To state Guarneri’s result one needs to make a very specific assump- 
tion about the spectral measure p+, of the initial state $0 with re- 
spect to the unitary operator F. 

DEFINITION 2.1 A positive measure p on R is said to be locally uni- 
formly a-dimensional if for some positive constant C 

for every ball Br(X) of center X and mdius r,O < T I 1. 

and am only assumed to be locallyfinite.) 
(The measures considered here as defined on the Bore1 sets of R 

We refer to [13] for the properties of such measures. In particular 
one can show that they are absolutely continuous with respect to the 
a-dimensional Hausdorff measure pa and admits a Radon-Nikodym 
decomposition p = (pdpQ + u where u is null with respect to pa in 
the sense that u ( B )  = 0 for any B such that pa(B)  < 00. 

Examples of such measures have been constructed e.g. by Avron 
and Simon [l] in connection with their analysis of recurrent abso- 
lutely continuous spectrum. 

We can now state Guarneri’s main result: 
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PROPOSITION 2.1 If p , ~ ~  is locally uniformly CY dimensional then for 
suficiently large T and for all x > 0 

<< A >>T? x [l- C1v(x)T-alog T] (8) 

for some constant C1. 

A remarkable consequence of (8) follows from its application to A = 
IXI2,X E Zd;  here one has v(x) N CxdI2 from which it immediately 
follows that for T large enough: 

<< A >>T> C TZaId/(log T)'ld (9) 

The basic ingredient in the derivation of (8) is the following in- 
equality obtained by Guarneri by elementary Dirichlet like estimates: 

<< Pk >>TS c T-Qlog T (10) 

where Pk = lek x ekl. Such an inequality is in fact a weak form of 
a result of R. Strichartz [13] stating that if p is a locally uniformly 
a-dimensional measure on R and f E L2(dp) then the Fourier trans- 
form f f p  satisfies: 

This suggests to consider now time averages 

<< A >>T= - < A ( t )  > dt (12) LT 
with < A ( t )  > given by (1) and A of the form (5 ) .  Let PO be the 
projection operator on the cyclic subspace generated by {?+!+,t E R}; 
then Vk:  

Pock = J f k ( W E A + O  (13) 

where Ex is the spectral family for the Hamiltonian (or quasi-energy) 
operator. 

Furthermore fk E L 2 ( d p ~ o )  with 
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Since fk&i+o(t) =< $'t,ek > inequality (11) implies the stronger 
form of (10): 

<< Pk >>TI c T-O (15) 

From this it follows as in [5] that if p+o is locally uniformly a dimen- 
sional then Vx  > 0 and T 2 1: 

<< A >>T> z [ l -  C ~ V ( X ) T - " ]  (16) 

which is a generalized form of Guarneri's inequality (8). 
There is an obvious difficulty if one wants to apply (16) to the 

investigation of quantum dynamics on Rd instead of Zd as Guarneri 
did since then A = IXI2 is obviously not of the form (5). This can 
be easily overcome if we make the extra assumption that $0 has 
bounded energy; then one has for example: 

PROPOSITION 2.2 Let the quantum Hamiltonian have the form H = 
-A + V on L 2 ( R d )  where V is real and bounded below. Let $0 E 
V ( e H )  be such that i f  cpo = eH$o then dpvo is locally uniformly a- 
dimensional; then for T 2 1: 

<< /XI2 > > ~ 2  C T2"ld (17) 

Let us mention briefly how one can obtain (17) from (16); one has: 

where X k  is the characteristic function of {X E R d , k j  I Xj < 
kj  + 1 , j  = 1 , .  . . , d}. Then write 

($ t ,  X k $ t )  = (vt, Ak(Pt )  (19) 

with (Pt = eH$t and A k  = e-HXke-H; using e.g. semi-group kernel 
inequalities it is easy to see that Ak is trace-class and denoting by 
l lAkl l1  it's trace norm one has 

l lAkl l1  5 ClleAxkeAlll = ))eAXOeAII1 < 00 (20) 

so that l lAkl l1  is uniformly bounded in k E Zd.  
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Then (11) implies easily that: 

sup << AI, >>TI C T-*llAklli (21) 
TLI 

for some constant CO < 00. Returning to (18) one has Va: E N: 

<< IX12 >>T 2 ZClnlZ>z In12 << Xn >>T 

2 2 1 - Cln12sz 1n12 << Xn >>TI 

2 2 I 1 - c dm-q 
where we have used (19) and (21) in the last step; this gives (17). 

Remark: The arguments developed above can also be used to derive 
directly inequalities like 

<< (1 + 1Xl2)-' >>T< c T-6 (22) 
2a 
d 

for any S < - under the same assumptions as in Prop. 2.1; details 
will appear elsewhere [2]. 

3 Concluding Remarks 

The dependence of bounds like (17) or (22) on space dimension, in 
particular in the case of absolutely continuous spectrum is somewhat 
unexpected from the conventional wisdom inherited from RAGE the- 
orem. However this appears as natural if one thinks that in disor- 
dered media trajectories should look more like random walks rather 
than the well-behaved asymptotic straight lines of potential scatter- 
ing models which motivated Ruelle's initial work. Of course there 
remains the question of whether these bounds are sharp; in partic- 
ular Definition 4 of the dimension of a measure is somewhat am- 
biguous. As emphasized by S trichartz [ 131 a-dimensional measures 
with 0 < a < 1 need not exhibit any fractal behaviour; however if 
in the Radon-Nikodym decomposition of an a-dimensional measure 
with respect to Hausdorff measure pa the coefficient of pa is the 
characteristic function of a quasi-regular set then the upper-bound 
(21) has an associated related lower-bound. This is enough to get 
directly lower-bounds e.g. for << (1 + IX(2)-y  >>T for y > 4 .  
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In this note we discuss an idealized model of irreversible chemical 
reaction. Actual chemical reactions involve a large number of chem- 
ical species and many intermediate chemical reactions. For example, 
it is argued in [20] that the production of water by combination of 
molecular hydrogen and molecular oxygen is described by a reaction 
sequence involving eight chemical species and a minimum of sixteen 
reactions whereas a more complicated process such as methane oxi- 
dation involves twelve chemical species and twenty two reactions. In 
an effort to make such processes analytically and computationally 
tractable various idealized models have been put forth. The model 
which we consider describes an irreversible exothermic chemical of 
the form, 

A + B  --f 2B 
213 --+ Products. 

This is the idealized two step reaction of Zeldovich [2G] as formulated 
by Niioka [18]. Here it is assumed that the first reaction has a high 
activation energy and negligible heat release and that the second 
has negligible temperature dependence and high heat release. If we 
account for diffusion the partial differential equations modelling this 
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reaction sequence are of the form: 

a u p t  - v - d 2 ( x ,  U ,  V, e)vv = u v f ( e )  - pv2, (2) 

(3) aelat - v . d3(2,  U ,  V ,  e)ve = 

for x E Q,t > 0. We impose homogeneous Neumann boundary con- 
di tions, 

for x E aQ,t 2 0 and require that the initial data 

au/dn = &/an = M/an = 0 (4) 

u(z, 01 = uo(z)  +, 0) = vo(z:) e(z, 0) = eo(z) ( 5 )  

for x E Q be continuous and nonnegative on 0. We stipulate R is 
a bounded region in IR" with smooth boundary dQ such that R 
lies locally on one side of aQ. Admittedly only n = 1,2, or 3 have 
any physical significance, however, assumption of arbitrary spatial 
dimension does not change our analysis. 

We assume that there exists a ,b  > 0 so that 

0 < a < max{dl(. . . ) ,d2(.  . . ) ,d3( .  . .)} < b 

and that each di E Cm(n x IR:). The nonlinear function f( ) rep- 
resents a prototypical Arrhenius temperature dependence. It is non- 
negative, monotone increasing, smooth and uniformly bounded. It 
has the form, 

where K and E are positive constants. Roughly speaking the vaxi- 
ables u and v represent concentrations of A and B respectively with 
B representing a nondimensional temperature of the reaction vessel. 
The homogeneous boundary conditions require that the vessel is in- 
sulated and that these chemical species remain confined to the vessel 
for all time. 

Extensive treatments of chemical reaction kinetics may be found 
in [6, 8, 9, 14, 201. In the note at hand we extend semilinear results 
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appearing in [lo] and argue that solutions are globally well posed and 
detail their asymptotic convergence. The mathematical literature on 
this type of reaction diffusion system is extensive and the interested 
reader is referred to [3, 4, 5, 7 ,4 ,  111. 

If u : R + IR. we shall denote the n-dimensional gradient by Vu 
and its Euclidean norm by IVul. The space time cylinder R x [ O , t )  
will be denoted by Qt with QoO denoting 52 x [O,oo). We shall use 
the standard Lp(R) spaces (p 2 1) whose norms will be denoted by 
11 u Ilp,n with the norm on C(a) being denoted by 11 u IloO,n . 

Our first result provides global existence of solutions and precom- 
pactness of their trajectories. 

Theorem 1 There exists an unique classical solution to (1 - 8) on 
Qoo such that u(z,t) 2 0 ,  v ( x , t )  2 0 and O(z,t) 2 0 ,  and a constant 
A4 > 0 so that 

Finally the trajectories I'(uo,vo,Oo) = {u(,t),v(,t),O(,t) I t 2 0) are 
precompuct in C(fi). 

Proof: Local existence, uniqueness and continuous dependence fol- 
low from arguments of abstract parabolic theory due to Amann, [2]. 
The non-negativity of solutions is a established by standard m a -  
imum principle arguments. If one can establish the existence of 
uniform a priori bounds for solution components on [O,T,,) then 
Amann's continuation arguments', [2], yield global wellposednessed. 

Adding the components and integrating on QT,,,,, we immediately 
obtain 

and the non-negativity of solutions yields the existence of uniform 
a priori L1 bounds for the solution components on [O,Tm,). It is 
straightforward to observe that 
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To obtain uniform a priori bounds for the second component we 
observe that, 

It is now possible to utilize Moser-Alikakos iteration, cf. Alikakos, 
[l], to bootstrap the L1 to a uniform L ,  bound. This is a lengthy 
and complicated argument which will not be reproduced here. The 
reader is referred to [ll] for the application of the argument to a 
similar system. Uniform a priori L ,  bounds for 8 ( , )  are produced 
in a similar manner. The existence of these bounds allows us to 
conclude that T', = 00 and that (6) holds. Furthermore, the fore- 
mentioned work of Amann guarantees uniform a priori bounds imply 
precompactness of tractories. 

If one knows that trajectories, r(u0, vo, 8,) are precompact one 
may draw upon the powerful results of abstract LaSalle-Lyapunov 
theory, cf [15]. We have the following result: 

Theorem 2 I fu0(z ) ,vo(z ) ,80(~)  > 0 for v E fi then the following 
are true 

t+oo lim II 4 , t )  Iloo,n= 0 (8) 

where w0 = I Q l - f l  Jn(uo + vo + O0)dz. 

Proof: Let w denote the o-limit set for uo,v0,80. By virtue of the 
precompactness of trajectories we know [15] that each trajectory 
r(u0, vo, 00) has a compact, connected forward invariant w-limit set. 
Our verification of (8 - 10) subdivides into several parts. We first 
argue that if (u*, v*, 8*) E w(u0, vo, 80)  then v* = 0 establishing (8). 
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Using v* = 0 as initial data we establish that u* is really a con- 
stant function c, and that this c is uniquely determined and that 
c = 0 establishing (1.6a). By similar techniques we show that 8* is 
a constant function. Therefore if strictly positive initial data is cho- 
sen for this system the one-dimensional subspace of R3 of the form 
{(O,O, u )  I u E R+} acts as a global attractor. 

If we add the first two components and integrate on Qt,  we obtain 

Therefore, the improper integral 11 v( ,s)  ds exists. If we 
multiply (2) by v() and integrate on R we obtain 

1 
Zd/dt  I I  v ( , t )  Il&2 + J ,  ddz, u, v, 8)IVvI2dz 

5 K II v ( 4  II;,nII u(J )  Ilm,n +P II 44 Il20,n 
Consequently, there is a uniform upper bound for the quantity 
d/dt( I I  v(,t) II;,,). This together with the finiteness of the improper 
integral and the boundedness of 11 v ( , t )  1 1 2 , ~  imply that 

We can bootstrap the Lz(fl2) convergence of v to L,(R) convergence 
by closely examining the estimates produced by the Moser- Alikakos 
iteration scheme. If we retrace the argument of Theorem 2 [ll], we 
can construct a constant N > 0 so that, 

and (9) follows immediately from (12) and (13) by taking the limit 
a s k + o o .  

To establish (8) we point out that trajectories I'(u0, vo, 80)  are 
precompact in Lz(Q)  as well as being precompact in C(n). We shall 
argue u(, t) converges to an unique constant function in &(R) as t -, 
00. Therefore any convergent subsequence u(, t k )  must also converge 
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to this constant function in L,(f2). We thereby establish a constant 
function in the first spatial component of w(u0, vo, 80)  in L,(R). We 
then argue that this constant function must be zero. We point out 
that if (u,,v,,B,) E w(uo,vo,Bo) then the previous argument insures 
that v, = 0. If we multiply (1) by u( )  and integrate on Qt we observe 
that 

I1 4 , t )  Il2,nlll 210 Il2,n 

and we may observe that 11 u( , t )  Il2,n is nonincreasing in t and 
bounded below. We let T = lim+oo 11 u( , t )  Il2,n . It is clear that 
if (u,,O,O,) E w(uo,v0,80) then 11 u, [[z,n= T. We solve the ini- 
tial value problem (1-3) with initial data (u,, 0, 8,) E w(uo, vo, 80). 

Parabolic uniqueness implies the reaction terms decouple and solu- 
tions are given by (u(,  t ) ,  0,8(, t ) )T  where u and 8 satisfy, 

aupt  - v . d l (u ,~ , e )vu  = o 

aelat - v . d3@,  0, qve = o 
(14) 

(15) 

with 
du/dn = aO/an = 0 for x E as2 

and 

Forward invariance of w(u0, vo, 80) implies that for t > 0 I!.(, t)ll2,n = 
T =I[ u(z,O) 112,~  . Thus if we multiply (14) by u(,)  and integrate on 
Qt we obtain 

U(Z,O) = ~ ~ ( 2 )  and O(Z,o) = e , ( x )  for x E 0. 

J,’ J, d+, 0, e)Ivupzds = o 

We thereby conclude that 11 lVul 112,~= 0 and deduce that u(z,t) = 
u(t)  is spatially homogeneous. However, 11 u( t )  I12,n= T and thus does 
not evolve in time. Moreover because limt+, 11 u(, t )  112,n= T this 
constant is unique. Hence w(uo,v0,80) = (c,O,O,). We now sketch 
the argument insuring c = 0. 

We assume for the sake of contradiction that limt+oo u(, t) = c > 
0 in C(n). The comparison principle implies that there exists an 
a > 0 so that 

f(e(z,t)) > (Y > 0 for ( z , t )  E Q,. 
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Consequently there exists a t l  > 0 and a u > 0 so that if t > t l ,  then 

Because v(,t) converges to zero, there exists a t2 > 0 so that t > t2 
implies 

Thus, if t > max{tl,t2} then 

0 < pv(z , t )  < 4 2 .  

This inequality precludes convergence of v( ) to zero. 
To establish (10) we first argue that there exists an T > 0 so that 

Toward this end we select M > 0 so that sup 11 8 ( , t )  Iloo,n< M and 
set 

y ( z , t )  = M - e(z, t ) .  

ay /at  - v . d3vy = -pv2 

We observe that y(z, t )  > 0 for (z, t )  E Q(oo). Moreover 

If we multiply the above equation by y and integrate on s2 to observe 
that 

1 
-d/dt(ll 2 Y ( , t )  Il&-J + J, d31VyI2dz I 0. 

Consequently, 11 y( , t )  is nonincreasing and we are assured of the 
existence of T* = Ernt+- 11 y ( ,  t )  I[;,* and we thereby deduce the exis- 
tence of T satisfying (16).  Thus if 8, E w(u0, vo,eo) then 11 8, Ilz,n= T. 

We then solve (1-5) with initial data (0,0,8,) E 'w(uo,v0,80) and ar- 
gue that d/dt(ll 8 ( , t )  1 1 2 )  = d/dt(r)  0. It is then not difficult to see 
that 8 is constant and that the value of the constant is determined 
by 

laic = J (uo + vo + eo)dz .  
n 
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We point out that our methods apply equally well to the case of 
general quasilinear divergence from operators, 

From a physical point of view it is perhaps most important that the 
diffusivities are allowed to be nonlinear functions of the temperature. 
Our results agree with those obtained for semilinear models, [lo] and 
we are lead to  the conjecture that nonlinear diffusion does not effect 
the wellposedness or the longterm asymptotics. However, numerical 
experiments indicate that nonlinear diffusion does qualitatively effect 
the intermediate dynamics of the system. 

Physically, our results are perhaps not too surprising. General 
principles of chemical thermodynamics postulate that closed bal- 
anced systems attract to constant steady states. In forthcoming 
work we s h d  treat quasilinear models with nonhomogeneous Robin 
boundary conditions. We point out that ideas contained herein will 
be central. 
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Abstract 

We give here some conditions for having a Maximum principle 
for cooperative systems with variable coefficients. They are stated in 
terms of the first eigenvalue for cooperative systems. This yields a 
necessary and sufficient condition in the case of a symmetric system. 

1 Introduction 

The Maximum Principle is a very important tool for many questions 
concerning partial differential equations, not only for proving exis- 
tence and uniqueness of solutions, but also for studying their quali- 
tative properties a.s positivity, symmetry,. . . (see e.g. [14]). In recent 
years there has been some progress concerning Maximum Principles 
for linear elliptic systems. The results i n  [14] for the cooperative case 
have been extended in [S], [9] (see also [15]), improving the sufficient 
conditions given in [14] and providing a necessary and sufficient con- 
dition in the constant coefficient case; this last result has been ex- 
tended by the present authors to nonlinear problems involving the 
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pLaplacian Apu:= div(1 Vu lPe2 V U ) , ~  < p < +m, instead of A 
(see interesting Maximum Principle for non cooperative systems was 
given in [7], see [4] for a general presentation of these developments). 

A closely related problem is the existence of principal eigenvalues 
(eigenvalues having positive eigenfunctions) for linear non coopera- 
tive systems; we mention in this direction the results in [2], [12], [l], 
[3], see also [5] ,  [4]. 

In this short note, we give some conditions for having a Maximum 
Principle for cooperative systems with variable coefficients. They 
are stated in terms of the first eigenvalue for symmetric cooperative 
systems. This yields a necessary and sufficient condition in the case 
of a symmetric system. 

2 The Symmetric Case 

We study first the symmetric case. Let R be a smooth bounded 
domain in Rd, we consider the following problem 

-Aui = cy=l aij(2)uj + f i  in R 
ui = 0 on a R ,  

where the coefficients aij(1 5 i, j 5 n) are bounded and 

Such systems are called cooperative (or quasi-monotone). We assume 
that f; E L2(R). 

We say that (S) satisfies the Maximum Principle iff; 2 0 implies 
u; 2 0 , i  = I,. . . ,n, for any solution (211,. . . ,un). System (S) can 
also be written as 

-AU = AU + F in R, U = 0 on aR,  

where U (resp. F )  denotes a column matrix with elements ui (resp. 
f i )  and A = (aij) E We also consider the eigenvalue problem 
associated with (S): Find (A, U )  E e x  (H;(R))" such that 

- AU = AU + XU in 0, (2) 
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in the distributional sense. 

verse can be applied here (see [6]). 
The usual spectral theory for linear operators with compact in- 

We consider first the case where A is symmetric: 

a,; = ajjQi, j = 1,.  . . , n. (3) 

We can introduce the bilinear form defined on ( H i ( Q ) ) n  by 

It follows from (1)  and (3) that L is continuous and coercive on 
(Ho(Q))n; more precisely, there exist positive constants c;, i  = 0,1,2 
such that: 

L ( K  V )  I CO((U, V ) )  
L(U, U) + Cl(U, U) 1 C2((U, U)) 

where (U, V) (resp. ((U, V))) denotes the scalar product in (L2(Q)) .  
(resp. (Hi(f l ) )n).  Hence by applying the Riesz Theorem, we can 
define self-adjoint compact linear operator associated to (4) in the 
usual way. Therefore (2) admits an infinite sequence of real eigen- 
values and the first one, which is simple, is given by the variational 
characterization 

x~(s)  = inf{L(U, u)/(u, u); u E ( ~ o ( S 2 ) ) ~ ) .  ( 5 )  

The existence of an eigenvalue of (2) which is simple and has a posi- 
tive eigenfunction has been studied (also for non necessarly symmet- 
ric systems) in [2], [12], [l], [3]; the main tools used there are the 
Maximum Principle and the Krein-Rutman Theorem. Here (sym- 
metric case), the fact that principal eigenfunctions do not change 
sign follows from L(l U 1, I U I) 5 L(U, U), where I U I= (I uj I). 
Theorem 1 If (1) and (3) are satisfied, then ( S )  satisfies the Max- 
imum Principle if and only if &(S) > 0. 

Proof The condition is necessary. Consider the “principal eigenvec- 
tor” @ > 0. We have 

-A(-@) = A(-@) + Xl(S)(-@) in Q, and 9 = 0 on 80. 
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When XI(S) 5 O,Xl(S)(-@) 2 0 and (S) does not satisfy the Maxi- 
mum Principle. 

The condition is sufficient. Multiplying (S) by u i  = mu(-ui,O) 
we get 

n 

J, v U ~  * VUY = / c aij(x)ujur + J, fi.T. ' j=1  

Hence using classical results by Stampacchia 

By adding these inequalities, .C(U-, U-) 5 0, so that, by ( 5 ) ,  

X,(s).(u-,u-) 5 0. 

Since by hypothesis, X1(S) > 0, we obtain (U-, U-) = 0 and hence 
It is very easy to check that the condition given in Theorem 1 

coincides with the one in [8] in the constant coefficient case and n = 2. 
If one looks for positive solutions of 

-Au = au + bv + 6u in 0 
- A v = b u + d v + 6 v i n R  (6) I u = v = O  o n a R  

of the form (acpl,Pcpl), where (Xl(-A),cpl) is the principal eigenpair 
associated with the Dirichlet Laplacian on 0, one obtains the linear 
system 

[X,(-A) - X - U]CY - bp = 0 
-ba + [X,(-A) - X - d]p = 0; 

the first eigenvalue A, of (6) which ensures that CY > 0,p > 0 is given 
bv 

Now, it is easy to see that A, > 0 if and only if 

[Xl(-A) - u][X,(-A) - d] > b2, 
which is the condition obtained in [8], [9]. 
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3 The General Case 

When A is not symmetric, we can introduce L( U, V) as above and 
still apply Lax-Milgram's Theorem in order to treat the eigenvalue 
problem (2); for doing this the symmetry of L is not required. But 
the associated compact linear operator is not self-adjoint, and the 
corresponding general theory as in [6] cannot be applied; in particular 
the variational characterization ( 5 )  is lost. 

However, it is shown in [l] that there exists a unique principal 
eigenvalue (eigenvalue associated with a positive eigenfunction) by 
using a result of Krasnosel'skii ([13], Th. 2.5, p. 67). The results in 
[12], [3], concern classical solutions and cannot apply directly to the 
weak solutions of (2). 

It is possible to obtain necessary and/or sufficient conditions for 
the Maximum Principle by considering symmetric systems associated 
to (S). Let us define the matrices 

AV := ( a j j V ~ j ; )  and A" := (aj j -aj i )  

where 
pvq := sup(p,q) and p-q := inf(p,q), 

and let us denote by Sv and S" the associated (symmetric) systems. 

Theorem 2 If the Maximum Principle holds for (S), then X1(S) > 0 
and X1(S^) > 0.  

Theorem 3 If X1(Sv) > 0 ,  then the Maximum Principle holds for 
(S) * 

Proof of Theorem 2. The proof of the first part of Theorem 2 
is exactly the same as the proof of the first part in Theorem 1 (the 
condition is necessary). For proving the second part we adapt the 
same proof. Denote by @ *  the principal eigenvector associated to 
X1(SA). Then, we have: 

-A(-@-) = A ( - $ ^ )  + F in 0,9* = 0 on 80 

where F = [X1(S*)+(A^ - A)](-@^) 2 0 if Xl(S^) 5 0 and (S) does 
not satisfy the Maximum Principle. 
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Proof of Theorem 3. Multiplying (S) by uf and integrating by 
parts, we get: 

n 

J ,  j=1 
n .  

By adding these inequalities,we obtain by ( 5 )  

x , ( s V ) . ( u - ,  u-) 5 0. 

Since by hypothesis, X,(Sv) > 0, we obtain (17-, U-) = 0 and hence 
u 2 0. 
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Abstract 

By means of a similarity-like variable transformation we reduce 
the model governing flows in fluid filled elastic tubes to the form of a 
2 x 2 quasilinear nonhomogeneous autonomous hyperbolic system of 
first order partial differential equations. By requiring the latter to be 
consistent with a pair of additional equations which define Riemann- 
like invariants along the concerned characteristic curves, we carry out 
a reduction approach for determining exact solutions to the model 
under interest. 

1 Introduction and General Remarks 

Several methods of approach have been proposed in order to de- 
termine exact solutions to nonlinear partial differential equations. 
Among others, group analysis and Backlund-like transformations 
have shown to be an useful tool for the study of a number of problems 
encountered in engineering and industrial applications of mathemat- 
ics as well as in theoretical investigations of wave propagation. An 
exhaustive list of recent references on this subject can be found in 
[l] and [2]. Without the afore-mentioned framework a great deal of 
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attention has been paid to work out reduction techniques for quasi- 
linear systems of first order of the form 

where 

U =  [ :] A = [  ::: B = [  

z and t are space and time coordinates, respectively. Here and in 
the following a subscript means for derivative with respect to the 
indicated variable. Furthermore we asume the system (1.1) to be 
strictly hyperbolic [3]. That is tantamount to require the matrix A 
to admit two real distinct eigenvalues X and p (characteristic wave 
speeds) to  which there correspond two left eigenvectors Z(A) ,Z (@)  as 
well as two right eigenvectors d(’), d(@) spanning the Euclidean space 
E 2 .  

When B = 0 (e.g., source absence) a standard way to look for 
solutions to  the model in point is represented by the hodograph trans- 
formation which is obtained by interchanging the role of dependent 
and independent variables. The integration of the resulting linear 
second order equation in the hodograph plane can be investigated 
by means of the reduction approach to canonical forms developed 
in [4]. That permits to characterize special classes of material re- 
sponse functions to  governing models of physical interest which can 
be relevant to simple wave interactions [5], [6]. 

In cases where a source term like B must be taken into account 
in the governing system there has been proposed [7], [8] a variable 
transformation in order to  link (1.1) to a model of a similar form. 
Hence a procedure to reduce nonhomogeneous 2 x 2 systems to  canon- 
ical form allowing for a close integration or to  linear form has been 
carried out and model constitutive laws concerning different physical 
contexts have been deduced [9-111. 

As far as wave propagation is concerned, it is to be remarked that 
the term B does not allow the Ftiemann field variables defined by 
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to be invariant along the characteristic curves associated to (1.1). 
Such a circumstance recently motivated in [12] an “ad hoc” technique 
to search for exact solutions to (1.1). The leading idea of this method 
of approach lies in the investigation of the consistency of (1.1) with 
a pair of additional equations of the form 

Ft 4- X ( T , S ) F ,  = 0 

Gt + P(T,  s)G, = 0 (1.4) 

where the functions F(T,s)  and G(T,s)  are to be determined and 
they satisfy the condition 

It is very easy to ascertain that the functions F and G fulfilling 
(1.3) and (1.4) play a role similar to that of the standard Riemann 
invariants T and s of the homogeneous case. However in the present 
case only particular solutions of (1.1) are to be expected to satisfy 
also the additional equations (1.3) and (1.4) since the latter act as 
“constraints.” In other words, for admissible F and G we will deter- 
mine the solution r(z , t ) ,s(z , t )  (or U ( z , t ) )  for which (1.3) and (1.4) 
hold. 

As most of the reduction techniques based upon hodograph-like 
transformations, the approach proposed in [12] can be used for de- 
termining exact solutions to 2 x 2 autonomous models. The main 
aim of the present paper is to show, in a specific case, that the 
aforementioned method of approach in combination with a similar- 
ity reduction suggested by group analysis permits to obtain exact 
solutions to 2 x 2 nonautonomous systems as well. We illustrate the 
procedure for the model governing flows in fluid-filled elastic tubes 
[13] supplemented by constitutive laws involving response functions 
of suitable form. 
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2 The Governing Model and Similarity 
Reduct ion 

Flows in fluid-filled elastic tubes can be described by the following 
system of equations [13] 

S v s x  + Q 

SP SP 
Pt + vpx + - v, = - 

vt + kpx + VVX = f - kPx (2.2) 

where p is the transmural pressure, v is the fluid velocity, S = S(p ,  x) 
is the cross-sectional area and it is assumed S/S, > 0, P = P ( z , t )  
is the external pressure, k = l / p  with p being (constant) density, 
Q = Q ( p ,  v, z) represents the outflow function and f = f ( p ,  v, x, t) is 
the viscous retarding force. S, Q and f are the concerned material 
response functions which have to be specified in the present case. In 
general they depend upon the field variables p and v as well as upon 
the independent variables x and/or t so that the governing model 
(2.1), (2.2) results to be nonautonomous. 

In [14] there has been shown that the system of equations un- 
der interest is invariant with respect to infinitesimal transformation 
groups if the involved response functions obey the restrictions 

f = k ( a p + b ) +  :v2+kPx+H(II,w)exp (/+) (2.5) 

where 

l-I = (P-Po)exP (- J a ( z ) d x )  -1 b ( z )  exp (- / a(x)dz) dx (2.6) 

w = vexp ( - / i d x )  
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a(x), b ( z ) ,  So(z), g(II), Q(II, w) and H ( I I ,  w) are arbitrary functions 
with g(II) > 0. Moreover po = const. and 6 = b - po.  

It is possible to  show [15], [16] that by means of the similarity 
transformation 

p =  [n(z , t )+ /6exp(- /odx)dx]  exp(/adx) (2.8) 

v = w(3, t) exp (1 ; dx) 

5 = /exp (-/:dx) dx (2.10) 

the system (2.1), (2.2) can be reduced to the autonomous form 

nt + w n z  + g(n)wz = -g(n)Q(n, w) 

wt + kIIz + wwz = H ( I I , w )  

(2.11) 

(2.12) 

which falls into the class (1.1). 

given by 
The characteristic wave speeds associated to  (2.11), (2.12) are 

x = w + [kg(II)]'/2 /I = w - [kg(II)]1/2 (2.13) 

so that in the present case we have 

P)  = [(k/g)l/2,1], I(@) = [-(k/g)1/2,1] 

whereupon the Riemann variables (1.2) specialize to 

T = 20 + /[k/g]1/2dII s = w - /[k/g1112dn. (2.14) 

According to  the analysis carried on in [12] for later convenience 
we write the system (2.11), (2.12) in terms of the variables (2.14), 
namely 

rt + xr, = PI (2.15) 

St + / Is2 = P2 (2.16) 

where 
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3 Existence of Riemann-Like Invariant 
Quantities and Exact Solutions 

It is well known that if the wave speeds A and p satisfy the excep- 
tionality conditions [3] 

VA * &) = 0 vp * d ( P )  = 0 (3.1) 

where V = z, then T = p and s = A. Consequently, for 2 x 2 
homogeneous hyperbolic and completely exceptional (CEX) systems 
the Riemann invariants are given by the characteristic speeds. A 
classical example is given by the system of isentropic fluid-dynamics 
supplemented by a V6n-Karman-like p - p law. 

Bearing in mind (2.15) and (2.16) the aforementioned result con- 
cerning Riemann invariants is no longer true for 2 x 2 nonhomoge- 
neous CEX systems (otherwise it turns out to be B = 0). Within the 
theoretical framework outlined in the introduction let us require the 
system (2.15), (2.16) to be consistent with two additional equations 
of the form (1.3) and (1.4) where F = p and G = A, respectively, 
so that (1.5) is fulfilled. Of course, taking into account the remark 
made above about nonhomogeneous 2 x 2 systems, we assume that 
the characteristic wave speeds do not satisfy the exceptionality con- 
ditions (3.1). 

Looking for solutions of (2.11), (2.12) (or equivalently of (2.15), 
(2.16)) such that # # 0 and owing to (1.5) we can perform the 
following change of variables 

( a  a )  

Z = 2(F,G) = i i (A,p) t = t(F,G) = t (A ,p )  (3.2) 

whereupon the set of equations (2.11), (2.12), (1.3), (1.4) takes the 
form 

(3.3) P1 = - 

zx = X t x  i3P = pt, (3.4) 

TA 5 P  
P 2  = - 

tx t P 

Cross differentiation in (3.4) produces the wavelike equation 

tx, = 0 (3.5) 
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so that the functions i?(X,p) and t ( X , p )  satisfying the pair of equa- 
tions (3.4) are given by 

where M(X) and N ( p )  are arbitrary functions and upper prime means 
for derivative with respect to  the indicated variable. The next step 
in our approach is to  insert (3.6) into the pair of equations (3.3) and 
to determine appropriately the functions M(X) and N ( p )  in order 
that the resulting conditions are satisfied. Thus, from (3.6) we will 
get the particular solution w(i?,t), n(i?,t) of the system (2.11), (2.12) 
for which (1.3) and (1.4) hold with F = p and G = A, respectively. 
The solution in point, by means of the transformation (2.8) to (2.10) 
will prove a particular solution p ( z ,  t ) ,  v(z, t )  to the nonautonomous 
governing system (2.l), (2.2). 

In the present case we have 

where 

In order to  show some possible solutions to the model under in- 
vestigation, as far as the relations (2.3) to (2.5) defining the response 
functions are concerned, in the following we assume that the viscous 
retarding force is of the form [13] 

as well as that 
a = O  5 + P z = 0 .  (3.10) 

According to (3.9) and (3.10) in (2.5) we set 

H(l l ,w) = @(n)w. (3.11) 
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Relations (2.17) yield Q = &@ and H = 9 so that owing 
to (3.6), (3.7) the pair of equations (3.3) specializes to 

(3.12) 

(3.13) 

where m(X) = MTJ 1 and n(p) = 
A direct inspection shows that the system of equations (3.12), 

(3.13) are satisfied if M(X) and N ( p )  fulfill the relations 

m(X) = mo + mlX + m2X2 n(p) = -mo + mlp - m2p2 (3.14) 

where mo,ml,m2 are constant and in turn the functions Q and fi 
involved there adopt the form 

(3.16) 

with g(n) arbitrary. In deducing (3.15) and (3.16) use has been made 
of relations (3.8). 

By prescribing g(II), i.e., through (2.3) the cross-sectional area 
law, the insertion of (3.15) and (3.16) into (2.4) and (2.5) will define 
possible model laws for the outflow functions and for the viscous 
force f (linearly dependent upon velocity according to (3.9)). 

In particular by assuming 

(3.17) 
n 

= 

with h # 0 constant, (2.3) specializes to 

(3.18) 
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with SO(X) and IIo = const. arbitrary, whereas (2.4) and (2.5), re- 
spectively, reduce to 

dx } + (f + h )  (t ) 112 ( p  - po + P)+ 

1 x [ (t> ( p  - Po + P)l12 + 1 t m2v2) 
1/2 

(3.19) 

f ( p ,  0, x) = (f + h)  {m, + 2mz(Ln0/h)'/~(S/So)'IZh) v. (3.20) 

Within the present framework as far as the exact solutions to 
system of equations (2.11), (2.12) are concerned, from (3.6) several 
possibilites arise in connection with different choices of the parame- 
ters mo, ml and m2 involved in relations (3.14) as well as in (3.19) 
and (3.20). Here we will consider only two cases where explicit solu- 
tions to  the system under investigation can be obtained. 

i) mo = 0, ml  # 0 and m2 arbitrary. By inverting (3.6) and 
making use of the variable transformation (2.8) to (2.10) we gain 

where 
x = x + M  r = t - N  (3.23) 

and i$f and fi are arbitrary constants coming out from integrating 
(3.14). 
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ii) mo = 0,ml = O,m2 arbitrary. Here an approach similar to 
that above yields 

emZx - e-mZX 
v(x,t) = 

2m2r 
(3.25) 

In both cases i) and ii) considered above there are no restrictions 
on the function P ( x )  simulating external pressure in the governing 
model (2.11), (2.12). 

4 Conclusions and Final Remarks 

The method of approach we developed herein in order to determine 
exact solutions to the nonautonomous system governing flows in 
fluid-filled elastic tubes was essentially based on two steps. First, by 
considering the general classes of material response functions (2.3) 
to (2.5) allowing for the existence of group symmetries to the model 
in point as shown in [14], we used the similarity-like variable trans- 
formation (2.8) to (2.10) in order to reduce the system of equations 
(2.1), (2.2) to the autonomous form (2.11), (2.12). Furthermore for 
the latter system we worked out a procedure for finding out the con- 
cerned solutions for which the model (2.11), (2.12) is consistent with 
two additional equations like (1.3) and (1.4) with a prescribed form 
of F and G suggested by a well established result for 2 x 2 quasilinear 
homogeneous hyperbolic systems of first order. Of course, along the 
same lines of the analysis worked out hitherto other forms of F and G 
can be considered. In these cases a leading idea to prescribe F and G 
is to achieve, by means of the transformation (3.2), a hodograph-like 
system (see (3.4)) which can be reduced to a canonical form dowing 
for an explicit integration [4], [5]. In the process we have been able to 
provide a vehicle for characterizing possible model constitutive laws 
to the governing system under interest. About that concern we re- 
mark that we have some freedom to choose the function g(n) which 
characterizes the cross-sectional area law and which is involved also 
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in (3.15) and (3.16). Finally, we showed some (explicit) exact solu- 
tions to (2.1), (2.2) which can be obtained by means of the present 
method of approach. Nevertheless, the relations (3.6) with M(X) 
and N ( p )  defined by (3.12) may provide further exact solutions to 
the model in point although they will be determined in general in an 
implicit way. Apart their own theoretical value these solutions can 
be used for testing numerical procedures to the system (2.1), (2.2) as 
well as for studying wave propagation into nonconstant states repre- 
senting nonuniform tube flow regimes where dissipation is taken into 
account. 

This work was partially .supported by 
M.U.R.S.T. through “Fondi per la Ricerca Scientifica 40% and 60%” 
and by C.N.R. through G.N.F.M. 
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1 Introduction 

The main purpose of this paper is to describe the construction of new 
solutions V of the Korteweg-deVries (KdV) hierarchy of equations by 
deformations of a given finite-gap solution VO. In order to describe 
the nature of these deformations we assume for a moment that the 
given real-valued quasi-periodic finite-gap solution VO is described 
in terms of the Its-Matveev formula [34] (see, e.g., (3.43)). The basic 
ingredients underlying this formula are a compact hyperelliptic curve 
K n  of genus IZ, 

m=O 

and an associated Diriclilet divisor 
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(see Section 3). Here the parameters {Em}z=o in (1.1) (charac- 
terizing the branch points of Kn) and the projections {pj(x~)}jn,~ 
in (1.2) are spectral parameters of the underlying one-dimensional 
Schrodinger differential expression 

d2 
To = -- + v, 

d x 2  

in the following sense: The spectrum a(&) of the self-adjoint oper- 
ator 

d2 
dx2 HO = -- + VO on H ~ ( R )  (1.4) 

in .L2(IR) is given by 

and the spectrum a(H&,) of the Diriclilet operator H&, associated 
with TO and an additional Dirichlet boundary condition at xo E IR 

is given by 
.w:,,) = {Pj(XO)}jn=l u 4 H o ) .  (1.7) 

Deformations of the spectral parameters Em, m = 0, ..., 2n and 
pj(xo), j = 1, ..., n in the corresponding Its-Matveev formula then 
yield new solutions V of the KdV hierarchy. In particular, it follows 
from (1.5) that deformations of produce non-isospectral 
deformations of solutions of the KdV hierarchy, whereas deforma- 
tions of {jij(~O)}jn=~ are isospectral with respect to Ho. 



Spectral Deformations and Soliton Equations 103 

Perhaps the simplest and best known non-isospectral deforma- 
tion is the one where one or several spectral bands are contracted 
into points, e.g., 

In this case Kn degenerates into the singular curve I?,, 

2n 

I<, - f i n  : y2 = ( ~ m ~  - n ( E m  - z), (1.9) 

VO - Vl(Xrn0) (1.10) 

m=O 
m#2mo-l,2rno 

and the resulting solution V1(Xmo) represents a one-soliton solution 
on the background of another finite-gap solution VO corresponding 
to  the hyperelliptic curve 

2n 

Rn-1 : y2 = n ( E r n - 4  (1.11) 
m=O 

m#2rno-l,2rno 

of genus n - 1. Applying this procedure n-times finally yields the 
celebrated n-soliton solutions V,(Xl,. . . ,An)  of the KdV hierarchy 

On the other hand, varying bj(zo), 1 5 j 5 n independently from 
each other traces out the isospectral manifold of solutions associated 
with the base solution Vi. 

In Section 2 we give a brief account of the KdV hierarchy using 
a recursive approach. Section 3 describes real-valued quasi-periodic 
finite-gap solutions and the underlying Its-Matveev formula in some 
detail. (It also describes the mathematical terminology in connection 
with hyperelliptic curves needed in our main Section 5.) Section 4 
introduces isospectral and non-isospectral deformations in a system- 
atic way by alluding to single and double commutation techniques. In 
Section 5 we present our main new result on the isospectral set IIR(VO) 
of smooth real-valued quasi-periodic finite-gap solutions of a given 
base solution Vo. (To be precise, we only represent the stationary, 

(see [48l, W1). 
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i.e., time-independent case since the insertion of the proper time- 
dependence poses no difficulties.) Finally, in Section 6 we sketch 
some generalizations and open problems in connection with infinite 
gap solutions and consider the limit of N-soliton solutions as N -, 00 

in some detail. 
Throughout this paper we confine ourselves to  the KdV hierarchy. 

However, our methods extend to other 1 + 1-dimensional completely 
integrable nonlinear evolution equations and to higher-dimensional 
systems such as the KP hierarchy. Work on these extensions is in 
progress and will appear elsewhere. 

2 The KdV Hierarchy 

In order to  describe the hierarchy of I<dV equations we first recall 
the recursive approach to  the underlying Lax pairs (see, e.g., [3], [44], 
[46] for details). Consider the differential expressions 

d2 
dx W )  = -2 + V(x , t ) ,  

where the { j j } y = o  satisfy the recursion relation 

f o  = 1, (2.2) 

Define also jn+l by 

Then one can show that 

[i)zn+l, 4 = 2L+l ,z ,  (2.4) 
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where [., .] denotes the commutator. Explicitly one computes from 
(2.2) for the first few fn  

f o  = 

f l  = 

f2 = 

f3 = 

1, 

-v + c1, 
1 
2 

1 3 C1 

8 8 2 --vxx + -v2 + -v + c2,  

-vxxxx - -vvxx - -v,2 + -v3 
+-[--vxx + -V2] + - v + c3, 

1 5 5 5 
32 16 32 16 

C l  1 3 c2 

2 4  4 2 
where { C ~ } ~ ~ W  are integration constants. We shall use the conven- 
tion that all homogeneous quantities, defined by cl E 0, 1 E IN, are 
denoted by fj := f j (C1  0), Pzn+1 := P2n+l(~l 0), 1 E IN, i.e., 

fo = 1, (2.9) 
1 

f l  = -v, 2 (2.10) 

(2.11) 
1 3 
8 8 f2 = --v,, + -v2, 

1 5 5 5 
f3 = -vv,,x, 32 - -vvxx 16 - -v; 32 + -v3. 16 (2.12) 

The KdV hierarchy is then defined as the sequence of evolution equa- 
tions 

IidI/,(V) : = IG - [&-I, L]  = & - 2 fn+l,x(v) = 0, 
n E IN U (0). (2.13) 

(Since the fn+l are differential polynomials in V we somewhat abuse 
notation by writing jn+l (V) for fn+1 (z, t ) . )  The first few equations 
of the KdV hierarchy (2.13) then read 

IidVo(V) = 

IidVl(V) = 

IidV2(V) = 

vt - v, = 0, (2.14) 
1 3 vt + ,vxxx - -vvx 2 = 0, (2.15) 

1 5 vt - --xxxxx + - v v x x x  16 8 

+-v v - -v2vx 8 = 0, (2.16) 
5 15 
4 
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with KdVl(.) the usual KdV equation. The inhomogeneous version 
associated with (2.13) is 

vt - [?2n+l, ~1 = vt - 2.fn+1,z (v) (2.17) 
n 

- - V, - 2 C cn-j fj+l,Z(V) = 0, CO = 1. 
j = O  

The special case of the stationary KdV hierarchy characterized by 
V, = 0 then reads 

Particularly simple solutions of (2.18) for n = 1,2  are 

(2.22) 21 
8 

KdV2(SP) - -g2#dVo(GP) = 0, 

where P ( z ;  g2,93) denotes the Weierstrass elliptic function with in- 
variants g2, g3 and half-periods w ,  w', w > 0, -iw' > 0 [2]. 

Next define the polynomial Fn in z 

n n 

&(z,z , t )  = C 2' .fn-j(V(z,t)) = n [Z - ~ j ( z , t ) ] ,  n E M u (01, 
j = O  j=1 

(2.23) 
whose zeros we denote by { p j ( ~ , t ) } ? = ~ .  Then (2.17) becomes 

(2.24) 

In the following we specialize to the stationary case = 0. However, 
as will become clear from the paragraph following (3.42) (see also 
the end of Sections 4 and G), corresponding solutions for any time- 
dependent element of the KdV hierarchy can easily be obtained. 

1 -  
2 vt = --Fn,zzz + 2 ( v  - z)kn,z + K i n -  
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Assuming Vt = 0 we get 

Integrating (2.25) once results in 

where the integration constant -2&n+1(z) is easily seen to  be a 
polynomial in z of degree 272 + 1. Thus we may write 

denoting by {Em}$=o the zeros of &n+l. A comparison of powers 
of z in (2.26) then yields the trace relation 

2n n 

and the first-order system of differential equations 

(2.30) 

the (inhomogeneous) statioimry KdV hierarchy is defined in terms 
of commuting ordinary differential operators. By a result of Burch- 
nall and Chaundy [7], [8], (2.30) implies that and L fulfill an 
algebraic equation. One readily verifies that the polynomial k2n+1 

enters this algebraic equation in the form 

m=l 
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Hence one is led to  hyperelliptic curves 

in a natural way. Returning to  our simple examples (??)-(??), one 
computes for n=l :  

(an elliptic curve), and for n=2: 

v(z) = Gp(X + u'; 9 2 7 9 3 ) ~  (2.35) 

(2.36) 21 
8 

P5 = P5 - -g2P*, 

3 Finite-Gap Potentials, Its-Matveev 
Formula 

Any V satisfying a stationary higher order KdV equation of the type 

will be called a (stationary) finite-gap potential. In order to explain 
this terminology we make the following two hypotheses: 
(H.3.1) V E C"(IR) is real-valued. 
(H.3.2) Eo < El < * * .  < Ezn. 

In particular, (H.3.2) implies simple zeros of &2n+l and hence 
yields a nonsingular hyperelliptic curve (??). In addition one can 
show that (3.1) together with (H.3.1) and (H.3.2) imply quasi-perio- 
dicity and hence boundedness of V (see (3.36)). Hypotheses (H.3.1) 
and (H.3.2) will be assumed throughout the end of Section 5 .  More- 
over, the one-dimensional Schrodinger operator H in L2( IR) defined 
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by 

(3.2) 
d2 

dx2 
H = -- + V on H2(IR) 

(Hp(R), R S IR, p E IN the usual Sobolev spaces) is self-adjoint with 
spectrum a ( H )  given by 

n 

~ ( E I )  = U [ ~ ( j - l ) ,  ~ 2 j - 1 1  u [ ~ 2 n ,  (3.3) 
j=1 

Thus I1 has finitely many spectral gaps pn, 

PO = (-00, Eo), Pj = (E2j-1, &j), 1 I .i I TI,. (3.4) 

Moreover, /ij(y) defined in (2.23) are the eigenvalues of the Dirichlet 
operator H /  in L2(IR) 

with a Dirichlet boundary condition at y E IR. In addition, 

P .~(Y)  E Pj, Y E R, 1 I .i I (3.6) 

(See, e.g., [57] for proofs of (3.3)-(3.6).) 
In order to  describe the Its-Matveev formula [34] for potentials 

satisfying (3.1) and Hypotheses (H.3.1) and (H.3.2) we need to  dis- 
cuss the hyperelliptic curve 

2n 

y2 = h 2 n + l ( ~ )  = IT (Em - z), EO < ~1 < * * * < ~ 2 n  (3.7) 
m=O 

in more detail. (See [15]-[17], [24], [26], [30], [44], [46], [48], [50], [57] 
for reviews on the remaining material of Section 3. Our terminology 
will follow the one in [24] and [2G].) 

We employ the usual topological model associated with (3.7) by 
considering two copies of the cut plane 

n 

no =a\ U pj 
j = O  
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and joining the upper and lower rims of the cuts pj crosswise. This 
leads to  the compact hyperelliptic curve I<, consisting of points 

P = ( z ,  & . + I  ( z ) ' / ~ ) ,  z €a  and P, (3.9) 

(P" the point a t  infinity obtained by one-point compactification) 
with branch points 

(Em,O), O S m 5 2 n ,  P,. (3.10) 

We also need the projection 

I<, -a u 
n : { P = (Z,k2,+1 ( z ) q  - 2 (3.11) 

P" - w  

and the involution (sheet exchange map) 

I<, - I(, 
P = (2, &,+I (z) ' /2)  - P* = ( z ,  -R2,+1 (z) ' /2) .  

* : {  
(3.12) 

The upper sheet n+ of K, is then declared as follows. Define 

lim &,+'(A -t ie)'I2 = -I&,+l(A + iO)1/217 A < EO 
L 10 

(3.13) 

on II+ and analytically continue with respect to A. Local coordinates 
f, near PO = (zo,  k2n+l ( z ~ ) ' / ~ ) ,  P" then read 

(. - %), t o  E a \ { E m ) 2 = 0  
f, = ( z  - Em)'/2,  zo = Em, 0 5 m 5 2n (3.14) i *-w, 20 = 00. 

A convenient homology basis {aj, bj}y=l on I<,, n E N is then chosen 
as follows: the cycle aj surrounds the cut pj clockwise on n+ while 
b j  starts at the lower rim of pj on II+, intersects aj, then encircles 
Eo clockwise thereby changing into the lower sheet rI- , and returns 
on n- to its initial point. The cycles are chosen in such a way that 
their intersection matrix reads 

aj o bl = 6j,i7 1 5 j , l  5 n. (3.15) 



Spectral Deforrna tions and Soliton Equations 111 

A basis for the holomorphic differentials (Abelian differentials of the 
first kind, DFK) on li, is given by 

qj = R2n+l (z)-1/2 2j-l dz, 1 5 j 5 n. (3.16) 

We choose the standard normalization 

and define the b-periods of w[  by 

(3.18) 

Riemann’s period relations and (€1.3.2) then imply 

Tj,l = T1j, T = i T, T = (Tj,l) > 0. (3.19) 

Abelian differentials of the second kind (DSK) w ( ~ )  are characterized 
by vanishing residues and conveniently normalized by 

I ,  w(2) = 0, 1 1  j 5 n. (3.20) 

The Riemann theta-function tl and Jacobi variety J ( K , )  associated 
with Ii, are then defined as 

qZ) = C e24m,z)t4m,7m) 9 -  2 can (3.21) 
- menn 

and 
J(lin) =an/L,, 

where L ,  denotes the period lattice 

(3.22) 

Divisors 2) on K, are defined as integer-valued maps 

2) : Ii, - z (3.24) 
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where only finitely many D(P) # 0. The degree deg(2)) of 2) is 
defined by 

deg(2)) = D(P). (3.25) 

The set of all divisors on l i n  is denoted by Div(Kn) and forms an 
Abelian group under addition. The set of positive divisors will be 
denoted by Div+(K,,), 

P€ Kn 

Div+(Kn) = {D E DiV(Kn) I 2) : Kn + IN U (0)) (3.26) 

(one writes 2, 2 0 for 2) E Div+(Kn)) and the set of positive divisors 
of degree r E N is as usual identified with the r-th symmetric product 
arKn of Kn.  We also use the notation 

K, - N u (0) 

0 if P 4 {PI, ..., Pr}  
(3.27) 

for divisors in g r K n .  The Abel (Jacobi) map with base point Po E K n  
is then defined by 

respectively by 

Div(K,) - J(Iin) 
(3.29) 

If f f 0 is a meromorphic function on Kn,  the divisor ( f )  of f is 
defined by 

GPO: 2) - c W ) A P O ( P ) *  { P€Kn 

(3.30) 

where v j ( P )  denotes the order o f f  at P.  Divisors of the type (3.30) 
are called principal. Two divisors D, & E Div(Kn) are called linearly 
equivalent, Z, N & iff they differ by a principal divisor, i.e., iff 

- z  
(f) : ( Iin 

P - q ( P ) ,  

2) = E t (f) (3.31) 
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for some meromorphic f $ 0 on Kn. The equivalence class of D 
is denoted by [V] (if V 2 0, ID1 usually denotes the set of positive 
divisors linearly equivalent to ’0). By Abel’s theorem, 

deg(V) = deg(&) 
A P o ( W  = Lip,(&)* 

V - & i f f  (3.32) 

The Jacobi inversion theorem states 

- apo (onKn) = J ( K , ) .  (3.33) 

Finally, a positive divisor 2) E onKn is called nonspecial iff the equiv- 
alence class ID1 of positive divisors of D only consists of D itself, i.e., 
iff 

PI = P I .  (3.34) 

Otherwise 2, 2 0 is called special. One can show that Vp,+ ...+p, E 
onKn is special iff there exists at least one pair (P,P*) such that 

(P ,P*)  E {Pl,...,Pn}. (3.35) 

After these preliminaries we can describe in detail the Its-Matveev 
formula [34] for real-valued finite-gap potentials V satisfying (3.1). 
It reads 

2n n 

V(X)= C E m - 2 C X j  
m=O j=1 

(3.36) 

n n 
Here 

(3.37) 

denotes the vector of Riemann constants, &, given by 
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denotes the vector of bperiods of the normalized DSK 

with a single pole at P,. (3.39) also identifies the numbers {Xj}y=l 
in (3.36). (One infers X j  E pj, 1 5 j 5 n.) Moreover, the Dirichlet 
divisor Dfi ,  (,I+ ...+fin(,) is obtained as follows. 

bj(x> = ( p j ( X ) ,  f i zn+l  (pj(X))”’), 1 I j I 12, (3.40) 

where {p j (~) ) j”=~ satisfy the system (2.29) with prescribed initial 
conditions 

at 20. In particular, the Abel map linearizes the system (2.29) since 
(modulo Ln) 

So far we have oiily discussed the stationary case. However, (3.36) 
easily extends to  the time-dependent situation [34]. E.g., 

2n n 
V(x,t) = c Em - 2 c  x j  

m=O j=1 

satisfies the KdVl equa.tion (see (2.1G)), i.e., 

1 3 
4 2 

lidVl(V) = v, t -v,,, - -vv, = 0, 

(3.43) 

(3.44) 
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where U2 is the vector of &periods of the normalized DSK w p )  with 
a single pole at P, of the type 

up) = [c-‘ + 0(1)14 near P,, (3.45) 

J 
1=1 
l#j 

1 5  j I n (3.48) 

with prescribed initial conditions 

Pj(zo,to> = (pj(zo,to), &2n+1 (pj(zo,to))’/2), 1 I j I n (3.49) 

at (z0,to). Again the Abel map linearizes the system (3.48) since 

(modulo Ln). 

4 Spectral Deformations, Commutation 
Techniques 

Since virtually all explicitly known solutions of the KdV hierarchy, 
such as soliton solutions, rational solutions, and solitons on the back- 
ground of quasi-periodic finite-gap solutions, can be obtained from 
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the Its-Matveev formula upon suitable deformations (singulariza- 
tions) of the underlying hyperelliptic curve K ,  (see e.g. [17]-[20], 
[26], [48], [49], [64] and the references therein), we propose a system- 
atic study of such deformations in this section. Our main strategy 
will be to  exploit single and double commutation techniques to be 
explained below. 

We illustrate the main idea by the following simple example. Con- 
sider again the potential (2.19) 

v(5) = 2 p ( x  + w‘; 92793) + p(w’;  92793) (4.1) 

y2 = (-el + e3 - z)(-e2 + e3 - z)(-.t.), ( 4 4  

associated with the nonsingular elliptic curve (see (2.34)) 

el = p(u;  92,93),  e2 = p ( u  + u‘; 92793)~  e3 = p(w’ ;  92,931. 

(For convenience we added P(w‘) in (4.1) in order to  guarantee E2 = 

0.) Then H = -- + V has spectrum (see (3.3)) 
d2 

dx2 

a(EI) = [-el + e3, -e2 + e3] u [O,m). (4.3) 

Fix K > 0 and deform 

(4.4) 
2 

[-el + e3, -2 + e3] - -n 
by taking w + 00, w‘ = (i7r/26). Then V in (4.1) converges to the 
one-soliton potential 1’1 

v(x) = 2p(,  +w’ ;  92793) + p(w’ ;  92793) - Vl(5) = - 2 6 2 [ c o s h ( K 2 ) ] - 2  

(4.5) 

and the associated elliptic curve (4.2) degenerates into a singular 
curve 

y2 = ( - e l + e s - z ) ( - e 2 + e 3 - z ) ( - ~ )  - y2 = ( - K ~ - z ) ~ ( - z ) .  (4.6) 

d2 
da: 

The corresponding operator H1 = -2 + V, then has the spectrum 

a(&) = { - K 2 }  u [O,w). (4.7) 
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A further degeneration K + 0 finally yields 

V(z) = 0 and y2 = ( - z ) ~ .  (4.8) 

This point of view has been adopted in [48] and [49] and the general 
n-soliton potentials have been derived from the Its-Matveev formula 
by a singularization of K ,  where all compact spectral bands degen- 
erate into a single point 

2 [E2(j4), E2j-11 - - K j ,  1 I j 5 12, K1 > K2 > * - .  > K,, E2n = 0 
(4.9) 

(see (3.3)). 
Here we shall in a sense reverse the above point of view. Instead 

of starting with a finite-gap potential such as (4.1) and degenerating 
compact spectral bands into single points (such as in (4.4) with the 
result (4.5)-(4.7)), we shall start with a finite-gap potential VO and 
insert eigenvalues into its spectral gaps. In the context of the above 
example this amounts to starting with 

V&) = 0, y2 = --z (4.10) 

and inserting the eigenvalue -tc2 into the spectral gap po = ( - o o , O )  
of Vo to  arrive at 

VI(X) = - 2 K ~ [ C O S h ( K x ) ] - 2 ,  y2 = ( - 6 2  - -z)+). (4.11) 

The spectral deformations described so far were clearly non-isospec- 
tral. In addition we will also discuss various isospectral deformations 
of potentials below. In short, these isospectral deformations either 
“insert eigenvalues” at points where there were already eigenvalues 
or they formally insert eigenvalues with certain “defects” such as 
zero or infinite norming constants. In either case no new eigenvalue 
is actually inserted and the deformation is isospectral. A systematic 
and detailed approach to  these ideas can be found in (251-[27]. 

We start with the single commutation method or Crum-Darboux 
method [11]-[14], [18], [19], [3G], [ G l ] .  Assume that VO E Lioc (IR) is 
real-valued and that the differential expression 

(4.12) 



118 F.  Gesztesy & R.  Weikard 

is nonoscillatory and in the limit point case at f o o .  Consider the 
self-adjoint realization Ho of TO in L2(IR) 

d 2  
dx2 

(4.13) Ho = --+v 0 ,  

’ W H O )  = (9 E L2(IR) 19, 9’ E ACloc(lR), Tog E L2(IR)} 

(here ACloc(-) denotes the set of locally absolutely continuous func- 
tions) with 

Eo = inf[a(Ho)] > -m. (4.14) 

The basic idea behind the single commutation method is the follow- 
ing: choose 

A1 E Po = (-00, Eo) (4.15) 

and factor 
(4.16) 

d 2  
dx2 

110 = AA* + A1 = -- + Vo 
with 

for some real-valued distributional solution $o(A1, z). Commuting 
A and A* yields 

d2 
dx2 

Vl(x) = Vo(x) - 2- In $‘~(Al,x). 

(4.18) 

(4.19) 

d2 
dx2 

We note that TI = -- + V~(X) is in the limit point case at Aoo 
and that 

a(H1)\{A1} = a(H0). (4.20) 

Depending on the choice of $‘o(A1,x), A1 either belongs to  a(H1)  
and one has inserted an eigenvalue A1 into po = (-oo,Eo) which 
represents the non-isospectral case, or A1 @  HI), i.e., a(H1) = 
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a ( H 0 )  which is the isospectral case. The above procedure can easily 
be iterated and we only summarize the final results. 

Consider weak solutions $o,* ( X I ,  x) such that 

(4.21) 0 < $o,k ( A ,  .) E L 2 ( ( R , f ~ ) ) ,  R E IR, A < Eo, 
Ho $o,k(x) = w o , *  (A),  < Eo. 

Pick 

and define in L2( IR) 
< A2 < < AN < Eo (4.22) 

d2 
dx2 H(Ai,ci , .  . . ,XN,EN) = -- + V(xi ,c i , .  . . , XN,CN), (4.23) 

V(Xl,El, - - - 7 A N ,  EN, x) = vO(x) 
d2 

- 2 ~ 1 n W ( $ O , c l ( ~ 1 ) , - .  * ,'$'0,c~(AN))(x), 

€1 E {+,-}, 1 5  15 N .  (4.24) 

d2 
dx2 

Then TN = -- + V(X1, € 1 , .  . . , AN, EN,  x) is in the limit point case 
at f-00 and H(A1,€1,. . . , AN, EN) and HO are isospectral, i.e., 

B(H(xl,El,...,XN,EN)) = o(H0) (4.25) 

(in fact, one can show that they are unitarily equivalent [13]). If on 
the other hand one replaces $o,cl(X~,z) in (4.24) by a genuine linear 
combination of $o,+(&, x) and $o,-(A[,z) 

$O,€&X) - @O,+(h,X) + P$O,-(Xl,Z), > 0, P > 0 (4.26) 

then XI E po = (--00, Eo) becomes actually an eigenvalue of the 
resulting operator. Since we are going to  use the single commutation 
method only in the isospectral context in Section 5 we shall not give 
any further details on the non-isospectral case. 

In the special case of VO in (4.13) being a finite-gap potential of 
the type (3.36), 

2n n 

m=O j=1  

(4.27) 
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(4.24) becomes 

(4.28) 

Q I  = ( X I ,  -61 Ikin+l(XI + iO)”2J) 61 E {t, ->, 1 5 1 I N .  

In this particular contest it can be shown that (4.23)-(4.25) extend 
to  the case AN 5 Eo (in addition to  (4.22)). 

The single commutation method has the obvious drawback that 
A1 in (4.15) is confined to being below EO = inf[a(IIo)] since for 
A1 > inf[a(Ho)], $0 in (4.17)’ (4.19) would have at least one zero by 
Sturm’s oscillation theory and hence Vl in (4.19) would necessarily be 
singular. In order to overcome this drawback and insert an eigenvalue 
A1 into any spectral ga.p of If0 one is led to the double commutation 
method (going back at least to [23] and described in detail in [13], 
[14], [22], [25-271, [38]), a refinement of two single commutations at 
the same spectral point XI. 

Assuming 

one factors again 

A1 E R\o(Ho) (4.29) 

(4.30) 
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$O,*Pl,.) E L 2 ( ( K  *4>, E IR, Ho $O,*,(Al) = A1 $O,*(Al) 

and V1,* are now singular in general. Introducing 

@f(4 = q1,*(4/%,*(4? (4.35) 

B* = - d + a*, B f  = -- d + a*, (4.36) 
dx dx 

one infers by inspection that 

A further commuta.tion of Bh and Bf then leads to 

(4.38) 

+ Vrl,* is in the limit point case 
d2 

One can prove that T?],* = -- 
dx2 

at foo and that 

Hence 71,k E (0,oo) represents the non-isospectral case. The two 
cases 71,k = 0,oo on the other hand represent the isospectral case, 
i.e., 

a(Hm,*) = W o ) ,  (4.41) 

where 
(4.42) 

d2 Hm,* = -- dx2 + Vm,f, 
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This procedure can easily be iterated and we summarize again the 
final results. 

Consider weal; solutions $o,*(X, x )  such that 

X j  E IR\a(Ho), 1 5 j 5 N ,  X j  # XI for j # 1 (4.45) 

and define in L2( IR) 

71,k 2 0, 1 5 1 5 N .  (4.47) 

y1 ,..., yr,f (XI,.. . , AN, x )  is in the limit point Then T N , ~  = -- + V 
case at f o o  and 

d2 
dx2 

illustrating the nonisospectral case. Similarly, defining 
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yields the isospectral counterpart, i.e., 

(actually, one can show that H , , i ( X 1 , .  . . ,A,) and Ho are unitarily 
equivalent [25]). 

In the particular case where VO is the finite-gap potential (4.27), 
equation (4.50) becomes 

In n 

V o o , i ( X 1 , * * . , X N , x )  = C E m  - 2 C  X j  (4.52) 
m=O j = 1  

Q I  = (XI,- I i 2 n + 1 ( ~ 1  t , 1 I 1 5 N .  

A comparison of (4.52) and (4.28) reveals that in the finite-gap 
context one double commutation at  X1 corresponds to  two single 
commutations at  A1 and X2 in the limit X2 + X I .  Actually this fact 
is independent of the finite-gap context and holds in general. Indeed, 
taking into account the identity 

dx’ +O,&(Al , X / ) $ O , i ( X 2 , X / >  (4.53) 

= (A1  - x 2 1 - l  W + O , & ( X l ) ,  + O , i ( X 2 ) ) ( 2 > ,  

X1, A2 E IR\a(ffo), A 1  # A 2  

L 
and the fact that l V ( + o , + ( X l ) ,  &, - (XI ) )  is a nonzero constant, one 
infers, e.g., 

(4.54) 
€1 = -€2  

X z f X l  { 7::l)iAl,2), €1 = €2.  

Finally, with a slight adjustment only, one can also use directly 
formulas (4.39) resp. (4.47) to produce potentials isospectral to VO. 
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E.g., if A 1  is already an eigenvalue of Ho, 

A1 E a,(Ho) (4.55) 

then Ifrl,* in (??) and (??), with $o,+(Xl,z) = c$o,- (A~,z)  the 
corresponding eigenfunction of H o ,  are well defined. In this case 
one only changes the corresponding norming constant of the eigen- 
function of Hrl,* associated with A1 and hence ITrl,* and Ho are 
isospectral 

W r 1 , * )  = W o ) .  (4.56) 

(A further extension, allowing = - I[$o,*(A1)11~, removes the 
eigenvalue A1 from 110, i.e., a(Hrl,*) = a(Ho)\{A} in this case.) 
These facts are illustrated, e.g., in [l], [58]. 

It should perhaps be pointed out again at  this occasion that the 
substitution 

$o,i(  A j  3 z) - $o,* (Aj 9 2, t ) (4.57) 

in (??), (??), (??), where +o,*(Aj,z,t) satisfies 

HO $o,&(Aj) = A j  $ o , ? ~ ( ~ j ) 7  at +o,*(Aj) = P2n+1 $o,k(Aj), 1 I j I N 
(4.58) 

and Vo satisfies the n-th KdV equation 

lidVn(Vo) = 0, (4.59) 

Vr1 ...., 9 ?N,f (A1 ,..., A N ,  2, t ) ,  voo* ( A 1  ,..., A N ,  2, t )  ofthe n-th KdV equa- 
produces again solutions V(A1, €1,. . . , AN,CN, z , t )  and 

tion. 

5 Isospectral Sets of Quasi-Periodic 
Finite-Gap Potentials 

In this section we fix a real-valued quasi-periodic finite-gap potential 
Vi(z) satisfying Hypotheses (H.3.1) and (H.3.2) and 

n 

in+l,z(vO) = C cn-j  fj+l,z (1’0) = 0 ( 5 4  
j = O  

for some fixed {cj}Y=o c IR, co = 1 
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with the associated noiisingular compact hyperelliptic curve Kn = 
Icn ( VO ) 

(cf. (2.23), (2.26), and (2.27)). Thus VO can be represented by the 
Its-Matveev formula (4.27) 

2n n 

VO(Z) = c Em - 2 c  x j  
m=O j=1 

The isospectral set IIR( I+,) of real-valued quasi-periodic finite-gap 
potentials of VO is then defined by 

I ~ ( v 0 )  = {V E Cm(IR), real-valued fn+1,i(V) = 0 ,  I *  
I<n(V) = Iin(Vo)}, (5.4) 

where fn+l , ,  is given in terms of the sequence {~j} j” ,~ ,  co = 1 in (5.1) 
and Iin(V) = I<,(Vo) denotes the fixed hyperelliptic curve (5.2). 

In order t o  give an explicit realization of I ~ ( v 0 )  we need to  in- 
troduce the following sets DR* c on I<,, of positive divisors in “real 
position” (see Section 3 for the terminology employed) 

where K denotes some permutation of { 1, .  . . , n}. 
The Its-Matveev formula (3.36) and the fact that  Dirichlet divi- 

sors D;,(,)+...+8n(r) are nonspecial then yields the following theorem 
(see, e.g., [4], [51, [IT], [211, WI, [441, [48l, [5Ol, [571). 
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Theorem 5.1 The map 

is bijective, where 

2n n 

m=O j=1 

and the associated Dirichlet divisor Dbl ( t ) + . . . + f i n ( l )  is obtained from 
(3.40) b y  solving the system (2.29) with initial conditions (3.41). 

Next we state the following "real" version of the Jacobi inversion 
theorem (3.33). 

Lemma 5.2 Denote by [4] the equivalence class ofg €an in J ( K n )  = 
an/L,. Then 

Sketch of proof. Due to the fact that I[i2n+l(t)1/2 is real-valued 
iff z E U ijj and 

n 

j = O  

one can show t1ia.t 

(5.10) 
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(5.9) then follows from (3.33) by restricting 'ypm to  DR - . 
Next we introduce the notion of admissibility of divisors: a pos- 

itive divisor Dpl + e - + Pn E onKn is called admissible iff there is 
no pair (P ,P*)  E {PI,  ..., Pn} with P E lin\{P,}. The set of all 
admissible divisors is denoted by A. 

We note that admissible divisors Dp,+...+p, E A are either non- 
special or their speciality stems from one or more points P, con- 
tained in {&, . . . , P,}. 

Lemma 5.3 Given D f i ~ + . . . + f i ~  E DR, and Dcl+ ...+I;, E DR, there 
exists Q unique divisor ~ Q ~ + . . . + Q , ,  E DR - f l  A such that 

gPm (Dfi1+...+fin) = EPm ('by+ ...+fi 0 , )  - EPm (DQI+. . .+Qn) .  (5.12) 

n 

j=1 
Sketch of proof. Since i2n+l(t)1/2 is real-valued if z E U p j ,  

(5.12) is equivalent to 
n 

'YP- (DQ~+. . .+Q~) = - C ~ f i y  ( L r ( j ) )  E {[:I E J ( I { ~ )  I z E IRn } 
j=l 

(5.13) 
for some permutation A of (1 , .  . . , n}. Thus the existence of some 
D Q ~ +  ...+Q, E DIR - satisfying (5.12) follows from Lemma 5.2. If 
DQ]+ ...+Q, is nonspecial then DQ]+ ...+Q~ E A is clearly the unique 
solution of (5.12). If on the other hand n 2 2 and {QI, ... ,Qn}  
contains a pair (P, P * )  with II(P) E (-00, Eo], say Q1 = P ,  Q2 = P*, 
then simply replace Q1 and Q2 by P, since 

'Ql+Qz+Q3+..*+Qn 'f'-+pm+Q3+.*.+Qn (5.14) 

by Abel's theorem (3.32). By continuing this process of replacing 
pairs (P ,  P*) ,  P # P, by (P,, P,) one finally ends up with a unique 
admissible divisor linearly equivalent to  the original DQ]+ ...+Q,. 

Our new main result on I ~ ( l f 0 )  then reads 

Theorem 5.4 [27] The n1a.p 

(5.15) 
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is bijective, where D Q ~ +  ...+Q~ E VR- n A is the unique solution of 

h!foTeoveT, 

2n n 

= c E m - 2 C X j  
m=O j = 1  

where 

Sketch of proof. Existence and uniqueness of D Q ~ +  ...+Q,, E DR- n 
A in (5.15) associated with Vfilr...,fin by (5.16) follows from Lemma 
5.3. (5.17) and (5.18) are a consequence of (4.24) and (4.28). 

Remark 5.5 An explicit realization of I*(Vo) in the case where VO 
is a real-valued periodic finite-gap potential has first been derived by 
Finkel, Isaacson, and Trubowitz [21]. We also refer to [9], [35], [37], 
[51]-[53], [59], and [G2] for further investigations in this direction. 
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Our realization (5.17) of I ~ ( v 0 )  differs from the one in [21] in two 
respects. First of all, for fixed genus n, (5.17) involves at  most an 
n x n Wronskian as opposed to a 2n x 2n Wronskian in [all (involving 
n additional Dirichlet eigenfunctions) and secondly, (5.17) does not 
assume periodicity but applies to  the quasi-periodic finite-gap case. 
The upshot of (5.17) is the following: the entire isospectral torus 
I~(v0) of the given base potential Vo is generated by at most n-single 
commutations associated with ( X I ,  €1,. . . ,A,, en), where the points 
Q j  = ( A j , - ~ j I & ~ + l  ( X j  + iO)li21), 1 5 j 5 n vary independently of 
each other on both rims of the cut Po = [-00,Eo] (avoiding pairs of 
the type (QYQ'), Q # f'co in {Q1,.- . ,Qn)).  

One can prove an analogous representation for I ~ ( v 0 )  by using 
the isospectral double commutation a.pproach (4.49)-(4.52) [27]. 

6 Some Generalizations 

In our final section we comment on some natural generalizations of 
the approach in Sections 4 and 5 and mention some open problems. 

a) 

The case where Vo E (I"(IR) is real-valued and periodic of period 
a > 0 with infinitely many spectral gaps in a ( H 0 )  is well understood 

Infiiiitely Many Spectral Gaps in c(W,,): 

WI, WI, [371, WI, P71, [541, P51, [591, If 

~(110) = IJ [ ~ 2 ( j - 1 ) ,  ~ 2 j - 1 1 ,  (6.1) 
jclN 

then Vo can be approximated uniformly on IR by a sequence of real- 
valued finite-gap potentials T ~ o , ~  (of the same period u )  associated 
with K, in (5.2) as n -+ 00. In this context determinants of the type 
(4.24) and (4.50) converge to Fredholm determinants as n + 00 (we 
shall illustrate this in some detail in a similar context at the end of 
this section). 

These results have been extended to particular classes of real- 
valued almost periodic potentials VO E P ( R )  with suitable condi- 
tions on the asymptotic behavior of Ej as j -+ 00 in [lo], [39]-[44]. 
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It should perhaps be pointed out that with the exceptions of [4]- 
[6], [31], [32], [GO], the corresponding complex-valued analog received 
much less attention in the literature. In particular, the Jacobi inver- 
sion problem on the noncompact Riemann surface Km associated 
with Vo in the complex-valued periodic or almost-periodic infinite- 
gap case (a  crucial step in the corresponding generalization of the 
Its-Matveev formula) appears to be open. 

b) Harmonic Oscillators etc: 

The double commutation approa.ch in connection with (4.55) and 
(4.56) can be used to  produce families of isospectral unbounded po- 
tentials with purely discrete spectra. In order to see the connection 
with spectral deforma.tions in Section 4 consider the harmonic oscil- 
lator example 

l’&) = x 2  - 1 (6.2) 
and the (suitably scaled) Mathieu potential 

I<(.) = 2 c 2 [ 1  - COS(€X)] - 1, € > 0. (6.3) 

As is well known [57], all periodic and anti-periodic eigenvalues of 

i- V, restricted to [xo, xo + (27r/~)], E > 0 are simple and hence 
d2 

d x 2  
-- 

d2  
(1x2 

11, = -- i- V, on H2(IR), 6 > 0 

has infinitely ma.ny spectral g 

a ( K )  = u 
j E N  

As € 1 0, 

and, since 

,ps for all E > 0 

K(X) d v q x )  = 2 2 -  1 
10 
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(see, e.g., [33], [63]). In this scaling limit 6 1 0, the noncompact 
Riemann surface K w ( c )  associated with V,, 6 > 0 degenerates into 
a highly singular curve consisting of infinitely many double points 
{ 2 ( j  - l )}jEw. A careful study of this limit on the level of degen- 
erating hyperelliptic curves and their &functions, to  the best of our 
knowledge, has not been undertaken yet. Isospectral families of the 
limit potential Vo(x )  = x 2  - 1 have been constructed in [45] and [56] 
but apart from the harmonic oscillator case we are not aware of any 
other detailed study of isospectral families for unbounded potentials 
with purely discrete spectra. 

Finally, we mention another possible generalization in a bit more 
detail: 

c) N-Soliton Solutioiis as N + 00: 

Here we choose 

d 2  
dx2 110 = -- on H2( IR) ,  V 0 ( x )  = 0 

and choose double commutation to insert N eigenvalues 

{ X j  = - K ~ } K ~ ,  tcj > 0, 1 5  j 5 N ,  ~j # K ~ I  for j # j' (6.10) 

into the spectral gap po = (-w,O) of Ho. The result is the N-soliton 
potential [22], [38] 

d2 
dx2 

V N ( X )  = -2- In det[lN + CN(Z)], (6.11) 

(6.12) 

where 
(6.13) 
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are (norming) constants (related to TI,+ in (4.47) by cf = 71,+, 1 5 
I 5 N ,  i.e., V N ( X )  = Vc: ,..., c ~ , +  ( A I , .  . . ,AN, x ) ) .  Introducing 

d2 
dx2 

H N  = -- + VN on H’(IR),  (6.14) 

one verifies that  

O ( I 1 , )  = u [O, CQ) (6.15) 

with purely absolutely continuous essential spectrum of multiplicity 
two 

o e s s  ( I - T N )  = o a c  ( H N )  = [O, 001, (6.16) 

up (fh) n [o, CQ) = oSc (HN) = 0 (6.17) 

and simple discrete eigenvalues { -.;}K1. (Here oess(.), oat(.), osc( .), 
and up( .) denote the essential, absolutely continuous, singularly con- 
tinuous, and point spectrum (the set of eigenvalues) respectively.) 
The unitary scattering ma.trix S N ( ~ )  ilia2 associated with the pair 
( H N ,  Ho)  is reflectionless a.nd reads 

(6.18) 

( A  = k2 the spectral parameter of Ho).  As briefly mentioned in 
Section 4, the singular curve associated with H N  is of the type 

which can be obtained from the nonsingular curve 
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by degenerating the compact spectral bands [Ez(j-1), E2j-11 into the 
eigenvalues - 63 

[ ~ 2 ( j - 1 1 ,  ~ 2 j - 1 1 -  -62 3 '  1 5 j 5 N .  (6.21) 

At this point it seems natural t o  ask what happens if N + 00. 

This can be  answered as follows. 

Theorem 6.1 [as], [29] Assume { ~ j  > O } j E ~  E P ( I N ) ,  K j  # ~ j l  for  
j # j' and choose {cj > O } j E l ~  such that { c j / ~ j } ~ ~ ~  E ll(IN). Then 
VN converges pointwise to some V, E C"(IR) n LW(IR) as N -+ 00 

and 

(i) liin V,(x) = 0 and 
X d + W  

lim sup IV$m)(x) - V p ) ( x ) l  = 0 ,  rn E IN U (0) (6.22) 
X E  I< n--.co 

for any compact IC c IR. 

(ii) Denoting 

(6.23) 

we have 
O e s s ( f I ~ )  = { - K ~ } S E ~ N  u [o, m), (6.24) 

a a c ( K Q )  = [ O F ) ,  (6.25) 

(6.26) 

{ - l C ; } j ~ i N  OP(EIco) { -Kjz} j~N-  (6.27) 

The spectral multiplicity of EI, on ( 0 , ~ )  equals two while 
ap(H,) is simple. In addition, if { K j } j E N  is a discrete subset of 
(0,00) (i.e., 0 is its only limit point) then 

[opW,) u o ~ ~ ( I L , ) ]  n (0, 00) = 0, 

% C ( H , )  = 0, (6.23) 

o ( H ~ )  n (-00,o) = Q(H,) = { - ~ j z } ~ ~ N .  (6.29) 
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More generally, if { ~ j } ' .  

Here A' denotes the derived set of A c IR (i.e., the set of accumu- 
lation points of A )  and ad(.) denotes the discrete spectrum (cf. also 
the paragraph following (6.17)). 

We refer to [29] for a complete proof of this result. Here we only 
mention that the condition { C , ~ / K ~ } ~ ~ N  E 1 ' ( I N )  implies convergence 
in trace norm topology of the N x N matrix CN(Z) (see (6.12)) 
embedded into Z2(IN) to the trace class operator C,(z) in 1 2 ( I N )  given 

c,(x) = ~ e-(nl+"l')z I .  (6.30) 

is countable then (6.28) holds. 
I € N  

by 

[ Kl  c lc l '  + Kl I  l , l I € l N  

Moreover, one has in analogy to (G.ll), 

(6.31) Vm(x) = -2- In det 1[1 t C,(x)], 

where detl(.) denotes the Fredholm determinant associated with 

We emphasize that Theorem 6.1 solves the following inverse spec- 
tral problem: Given any bounded and countable subset { - K ; } ~ € ~ N  of 
(-oo ,O) ,  construct a (smooth and real-valued) potential V such that 

+ V has a purely absolutely continuous spectrum equal 
d2 
dx2 

to [ O , o o )  and the set of eigenvalues of H includes the prescribed set 
{ - K ; } ~ ~ ~ N .  (In paaticular, { - K ? } ~ € N  can be dense in a bounded 
subset of ( -00,  O).) 

d2 
d X 2  

P( IN). 

H = -- 

Under the stronger hypothesis { K ~ } ~ € I N  E Z'(IN)  one obtains 

Theorem 6.2 [28], [29] Assume { ~ j  > O } j E l ~  E ll(IN), ~j # r ; j ~  for 
j # j' and choose {cj  > O } j E l ~  such that { c ? / ~ j } ~ € ~  E I1(IN).  Then 
in addition to  the conclusions of Theorem 6.1 we have 
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(ii) 
a e s s  (Hm) = a a c ( H o o )  = [0700)7 

up (KO) n (07 ..) = asc(HC0) = 0, 
(6.33) 

(6.34) 

a d  (Hco)  = {-";)jclN* (6.35) 

The unitary scattering matrix S,(k)  ins' associated with the 
pair (H, ,  H o )  is reflectionless and given by 

(6.36) 

Note that Theorem 6.2 constructs a new class of reflectionless 
potentials involving an infinite negative point spectrum of H ,  accu- 
mulating at zero. 

For a detailed proof of Theorem 6.2 see [29]. We remark that 
the condition { ~ j ) ~ ~ ~ v  E I'(1N) implies that V, E L'(IR) (but V, 6 
L'(1R; (1+ 1x1) dz ) )  and that the product T N ( ~ )  converges absolutely 
to  T,(k)  as N -+ 00. 

We conclude with the observation that the simple substitution 

(6.37) 63 t 

in (6.30) and (6.31), denoting the result in (6.31) by V,(z,t), pro- 
duces solutions of the KdV1 equation (see (2.8)) 

cj + cje  J , j E IN 

(6.38) 
3 1 

4 03*xxx 2 
In particular, substitutions of the type (6.37) together with Theorem 
6.2 provide new soliton solutions of the I<dV hierarchy [28],[29]. 

- - v, V,,x = 0. KdV'(V,) = I/,,t + - v 
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1 Introduction 

Conventional Thomas-Fermi theory is concerned with minimizing the 
functional 

subject to the constraints p 1 0, J”3 p(z)dz = N (where N > 0 is 
given), and each of the three integrals in (1)  is finite. The function 
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p which minimizes E is the ground state electron density in Thomas- 
Fermi theory corresponding to the potential V. More precisely, if H 
is the Hamiltonian of a quantum mechanical system of N electrons 
under the influence of a potential V, then if $J is a normalized wave 
function and p is its corresponding density, then E ( p )  is an approxi- 
mation to  the energy expectation value ( H $ J , $ )  (cf. [13], [6]). Thus 
minimizing E(p) gives an approximation to  the ground state energy 
and the density corresponding to the ground state wave function. 

Ever since the original rigorous treatment of the minimization 
problem for E by E. Lieb and B. Simon [la], [13], much attention 
has focussed on various extensions. Of particular concern here is 
the nuclear cusp condition, which we now prepare to describe. The 
Euler-Lagrange equation for the convex functional E given by (1) is 

(2) 
5 
3 

Q := -C0p2/3 + Gp + V + X = 0. 

on the set where { p  > 0) and Q 2 0 on { p  = O}. Here -X is the 
chemical potential, which is a La.grange multiplier corresponding to 
the constraint JR3 p(z)d 5 = N ,  and 

Gp(z)  := (- 1 * p>(z )  = IR dy. 1 . 1  " - Y I  

Consider an atom, so that I/(") = -Z/lxI where 2 is the positive 
charge of the nucleus, which is located at the origin. Since 

for z close to zero a.nd (by Holder's inequality) 

it follows that G p  + X is bounded near 2 = 0, whence (see (2)) 

p(.) M const121-3/2 (3) 
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near z = 0. Thus p is unbounded near the nucleus, which is physically 
incorrect. The behavior of the true quantum mechanical density was 
pointed out by T. Kato in 1957 [ll]; namely 

p ( x )  x const - exp (-221x1) 

as 1x1 -+ 0. (Cf. also Thirring [ l G ,  2401 and the Hoffmann-Ostenhofs, 
et a1 [9], [lo].) 

An explanation for this is that the true ground state density is 
continuous at the origin but its gradient V p  has a jump discontinu- 
ity there; thus Ap should exist (near the origin) as a finite signed 
measure. R. Parr and S. Ghosh [ l G ]  formally suggested how to in- 
corporate the nuclear cusp condition (3) into Thomas-Fermi theory, 
and J. Goldstein and G. Rieder* [4] established this rigorously. See 
the monograph of R. Parr and W. Yang [17] for more details. 

Now consider the case of an atom but let a magnetic field be 
present. The magnetic field will spin polarize the system, so the 
density becomes ;= (p1,p2) where p1 [resp. p2] is the density of the 
spin up [resp. spin down] electrons. If p = p1 +p2 is the total electron 
density, then the Thomas-Fermi energy is 

where the function B describes the magnetic field. This problem was 
treated in detail recently by Goldstein and Rieder [7]. The purpose 
of the present paper is to incorporate the nuclear cusp condition into 
the context of (4). 

Section 2 is devoted to an explanation of the solution to  this 
problem. In Section 3 we discuss the Lavrentiev phenomenon aspect 
of our results and make further remarks. 
‘G. R. Rieder is now G .  R. Goldstein. 
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2 The Nuclear Cusp Condition 

Of concern is ( 4 ) ,  where C1 is a positive constant and V ( z )  = -Z/ lxI  
with Z > 0. We wa.nt to coiisider only those for which p 1 , p 2  2 0 
and each of the integrals in ( 4 )  is finite. We have J& p;(z)dz = Ni,  
and N = N1 + N2 is the total number of electrons. We may specify 
only N or we may specify both N1 and N2. This defines the domains 
of E ,  denoted by D 1 [ N ]  and D1[N1, N z ]  respectively, and we consider 
the problem of minimizing E over each of them. These problems 
were solved in [7]. Near the origin, the Euler-Lagrange equations 
(i.e., a E / a p 1  = 0 = d E / d p 2 )  are 

for j = 1,2. Here X 1  = X 2  = X is the Lagrange multiplier correspond- 
ing to the constraint JR3p(z)dz = N when N is given or else X j  
corresponds to Jn3 p j (z )dz  = Nj when both N1 and N2 are speci- 
fied. Here is the key idea which originated with Parr and Ghosh. 

Assume that Ap is a tempered distribution on R3. Then for each 
k > 0 it is not difficult to show that JR3 e-2klzlAp(z)da: exists; call 
it M E R. (For a proof of the existence of A4 see [14] . )  Integration 
by parts gives 

L t 3  A (e -2k l z l )p ( z )dz  = M .  ( 5 )  

Now let D2[A';A4] ,D, [Nl ,Nz;Ad]  be the domains D I [ N ] , D ~ [ N I , N ~ ] ,  
further restricted by requiring that (5) holds. (These domains de- 
pend on k > 0 which is fixed.) Of concern is E acting on the do- 
main U { D 2 [ N ; A 4 ]  : Ad E a} and U{&[N1,Nz;M] : A4 € a}. 
The Lagrange multiplier p corresponding to the constraint ( 5 )  has 
the effect in the Euler-Lagrange equations of replacing the potential 
V(Z) = - Z / l ~ l  by 

z 
t ( z )  = -- + pA(e-2klz l ) .  

1x1 

%(.) = -(1- -2 

If p = Z / 4 k 2 ,  this becomes 

e2klEl) - kZe-2klzl; 
I4 
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thus lim v(z)  = - 3 k Z  and the singularity at  the origin has disap- 
peared. Thus (recall the argument involving (2)) we expect p to be 
bounded near the origin. The arguments of [4] can now be extended 
to  handle the present case. 

We now stop being informal and state some precise results. Con- 
sider 

x-+o 

where 3 / 2  < p < m,CP > 0 , Z  > O,B(x)  = bl + b 2 ( 2 )  with bl E 
IR, b2(z) -+ 0 as 1x1 + co, Ab2 E L'(IR3) and JR3 Abz(s)dz = 0, b2 E 
L"(IR3) n L3I2(IR3), and finally v ( x )  + lb2(z)1 is negative on a set 
of positive measure. (Note that F(0) = - 3 k Z  < 0, so that this last 
condition holds if b2 is small near the origin.) The earlier definitions 
of D z [ N l , M ]  etc. involved the choice of p = 5 / 3 ;  these definitions 
should be modified in the obvious way to  accommodate the power p 
appearing in the kinetic energy integral in  the definition of E ( Z ) .  

Theorem 1 Let the conditions in the above paragraph hold. Let 
k > 0 and let 0 < N 5 2. Then E given by  (6) has a unique minimum 
p on the domain U{D2[N;  h,f] : h4 E IR}. Moreover, 3 has compact 
support i f  N < 2. Furthermore, p = p 1  + p2 is radially symmetric 
and is nonincreasing on  [O,co) if the magnetic field B is constant. If 
B is a C' function of 1x1 only in a neighborhood of the origin, then 
one may choose 

-+ 

and conclude that 
p(x) x const e-2Zlrl (7) 

(to first order) near x = 0. 

In the above theorem, E fa.ils to have a minimum on U{D2[N;  M ]  : 
M E R} when N > 2. 
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Theorem 2 Let the conditions of the paragraph preceding Theorem 
1 hold. Let k > 0 and let N1, N2 > 0 be given and satisfy N1 + 
N2 5 2. Then E given by ( 6 )  has a unique minimum on the domain 
U { D ~ [ N I , N ~ ; A ~ ]  : A4 E R}. Moreover, if N = N1 + N2 < 2, then 
both p1,p2 have compact support while if N = Z and N1 < N2 [or 
N2 < N I ] ,  then p1 [or p2] has compact support. If B is a C’function 
of 1x1 only in a neighborhood of the origin, then k may be chosen so 
that p = p1 + p 2  satisfies the nuclear cusp condition (7) near x = 0 ,  
to first order. 

Here E fails to have a minimum on U{D2[N1,  N2; A41 : A4 E R} 
if 

where the subscript denotes “positive part”. When B is a constant 
(and thus b2 = 0), this condition can be replaced by 

A V = -  AV. - 47r ‘ J  IR3 

By making different choices of k ,  we can make p1 or p 2  (rather than 
p )  satisfy the nuclear cusp condition. But it is not clear if we can 
make both p1 and p2 (and hence p )  satisfy it simultaneously. We 
conjecture that this can be done. 

3 The Lavrentiev Phenomenon 

Of concern is the classical calculus of variations. Consider the func- 
tional 

~ [ u ]  = J,” L ( r ,  u ( r> ,  u’(r))dr (8) 

with two domains 

Dl( ,?)  = 
D2(,?) = 

{u E Lip [a,b] : u(u)  = A,u(b) = B }  
{u E AC[u,b] : .(a) = A,u(b) = B} .  

Here --oo < a < b < 00, A aad B are given, L is agiven function, and 
“Lip”, “AC” denote Lipschi tz continuous and absolutely continuous 
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functions, respectively. The Lavrentiev phenomenon is said to  occur 
when 

See, for example [15] or [S] for a nice discussion of this notion. It 
only occurs for very special integrands L. 

The nuclear cusp condition in Thomas-Fermi theory gives rise 
to  a similar phenomenon, which may also be termed a Lavrentiev 
phenomenon. For simplicity we work with the functional E defined 
by (1) rather than (4). Consider ail atom, and define E[p] by (1) 
with V(z) = -Z/lzI. Thus E can be written as 

Here J ( s )  is or CPsP ( p  > 3/2), and F is obtained as follows. 
The ground state density p is radially symmetric; for such radial 
functions p, a spherical coordinate representation gives 

P(z1)Wz) dzlc~xz = 
JR3 In3 ixl - 2'1 

where xj = (rj,Oj,vj) in spherical coordinates and 

with 

Q = [r: i- 1.22 - 2rlr2{sin y1 sin cp2[c0s O1 cos 02 + sin O1 sin 021 

+ cos 91 cos 'p2}]1/2. 
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Let U ( T )  = J:p(s)ds and consider u as a basic variable rather than 
p.  Thus u' = p. Define E[u] to be E [ p ] .  Then 

E[u] = Lrn Ll(T, U ' ( T ) ) d T  

+ Lrn Lrn LZ(T1, .Z).'(T1)~'(~Z)d~ld~Z. (10) 

This has two domains (at least), namely (given N > 0) 

D1(E) = { u  E Lip[O,oo] : u(0) = O,u(oo) = N , u  is nondecreasing, 

D z ( E )  = { u  E AC[O,oo] : u(0) = O,u(oo) = N , u  is nondecreasing, 

- 
u' E L'(O,co), and each integral in (10) exists}. 

u' E L'(O,oo), and each integral in (10) exists}. 

Minimizing 3 over D z ( E )  [resp. Dl(&)] with N 5 2 gives the usual 
Thomas-Fermi ground state (resp. the one satisfying the nuclear cusp 
condition). We get a different ground state (namely u' = p is un- 
bounded as T --+ 0 in the Dl(E)  case but is bounded as r + 0 in the 
D2(E) case). Thus (taking into account uniqueness) (9) holds. 

In minimizing (8), when L ( T , U , U ' )  = L(u,u') is independent of 
the T variable, the Lavrentiev phenomenon normally does not hold 
[3]. This is not the case with (10). 

4 Remarks, Open Problems, and 
Acknowledgements 

In the case when one specifies both N1 and Nz it would be of inter- 
est to show that both p1 and p2 satisfy the nuclear cusp condition. 
Also, in the case of a constant magnetic field, BCnilan, Goldstein and 
Rieder [l], [2] found a critical point of the energy functional E given 
by a modification of (4) incorporating the Fermi- Amaldi correction. 
This allows one to find 3 whenever N1 + NZ 5 2 + 1, that is, singly 
negative ions are allowed. It would be of interest to incorporate the 
nuclear cusp condition into this context. 

The results of this paper can be easily extended from atoms 
to molecules. In this case V(z) = -Z/lzI is replaced by V(z) = 
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M 

j=1 
- C Zj/lx - Rjl. The nuclear cusp condition says that 

p ( 2 )  M const * exp {-2Zj/la: - Rjl} 

near Rj for j = 1, 2, . . . , A4. 
It would be of interest to study the Lavrentiev phenomenon for 

( lo )  simply as a problem in the calculus of variations. 
We gratefully acknowledge that  all three authors were partially 

supported by two NSF grants. We also thank Peter Wolenski for 
some stimulating and helpful discussions concerning the Lavrentiev 
phenomenon. 
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Abstract 

In this article we announce three results concerning semi-classical 
techniques in statistical mechanics. The two first results concern 
the Schrodinger equation and are obtained in collaboration with 
J. Sjostrand. The last one is a stationary phase theorem and can 
be considered as an adaptation of a result of J. Sjostrand in a differ- 
ent context. 

1 Introduction 

If is a suitable family of C" potentials on Ern parametrized by 
m, there appears to be three connected problems related to the prop- 
erties of the thermodynamic limit in different contexts of statistical 
mechanics. 

(I) Study the asymptotic behavior of the quantity: 
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as rn tends to  00 and control this limit with respect to h as h 
tends to +O. 

(11) If pl(rn,h) is the largest eigenvalue of the operator: 

Kn(h)  = exp( -V(m)(2)/2) exp(h2A(m)) . e ~ p ( - V ( ~ ) ( z ) / 2 ) ,  

study the asymptotic behavior of the quantity - In pl(rn, h) /m  
as m tends to 00 and control this limit with respect to  h as h 
tends to  +O. 

(1) 

(111) If Al(rn,h) is the smallest eigenvalue of the Schrodinger oper- 
ator: 

Sm(h) = -h2A(") t V ( m ) ( z ) ,  (2) 
what is the asymptotic behavior of the quantity Al(rn,h)/m 
as rn tends to  00 and control this limit with respect to h as h 
tends to  +O? 

These three questions are of course strongly related. If you think 
of a potential which is invariant by circular permutation of the vari- 
ables and "near" in a suitable sense of the harmonic oscillator, all 
these questions are well analyzed for fixed rn as h tends to zero. 
(I) can be treated by application of the stationary phase theorem, 
(111) corresponds to a semiclassical analysis of the Schrodinger op- 
erator at the bottom (see [8] and [20]) and the study of (11) can be 
considered as a pseudo-differential extension of (11) (see [2] or [5]). 
In particular this study gives for example that 

- 111(p1(m7h)) = Al(m,h) t om(h2) .  (3) 

One can get better by proving first (using Segd's lemma) (cf [18]) 
the universal inequality: 

- lIl(/L1 (my h ) )  5 ( h).  (4) 

By monotonicity, one observes also (in the strictly convex case) that 
if Vim' is a quadratic potential s.t. Vim) 5 V(") , then we have also: 

- 1n(/Ly(rn7 h ) )  5 - ln(pl(rn, h) )  (5) 
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where &(m, h )  (the largest eigenvalue of Km(h;  V:”’)) is explicitly 
computable. Equations (4) and (5) give for example (in the case 
when the limits exist): 

- m+m lim ln(pl(m,h))/m 5 m-+m lim (&(m,h))/m 

in the strictly convex case. 

we have: 
Another link is that, by Golden Thompson inequality (cf [IS]), 

Tr(exp -(-A + W ) )  5 
= C, Jexp(-W)dzm. 

Tr(exp(-W/2) - exp A - exp(-W/2)) 

The difficult problem is of course a good control with respect to 
m as m is large. Another interesting (and more difficult) problem 
appears in the same context, in the cases (11) and (111): 

(IV) Study the liminf and the limsup of m -+ p 2 ( m , h ) / p l ( m , h )  as 
m -+ 00 where p2(m, h )  is the second eigenvalue of K m ( h ) .  

(V) Study the lim inf and the limsup of m -+ (X2(m, h)  - Xl(m, h ) )  
as m -+ 00 where Xz(m,h) is the second eigenvalue of Sm(h) .  

The problem (V) corresponds to the well known problem of the study 
of the splitting between the two first eigenvalues. Our motivation 
comes from the reading of a course of M. Kac ([13]) in which he 
develops partially heuristical ideas in order to prove the existence of 
phase transition by semi-classical techniques. The results we shall 
present here correspond to a class containing the model potential: 

m m ... 

V(m)(z; v )  = (1/4) c - c In C O S ~ ( ( V / ~ ) ’ / ~ ( X C  + z ~ + l ) ) ,  

with the convention (z,+1 = X I ) .  
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Let us briefly recall how M. Kac arrived at this potential. He 
studied the following model (called Model A in section 7 in [13]) 
whose hamiltonian is given by: 

E V ( N , M ) ( 4  = - c v(P,Q)ap aQ 
( P , Q ) € V ( N , W  xV(N,W 

with V ( N , M )  = [l,. . . , N ] x ( Z / n Z )  in Z2,  ap E {-l,+l}, J E lR;, 
h E lR$, vp,p = 0 and 

if P = ( k , l )  # Q = (a ' , / ' ) .  

limit -$/kT can be computed as: 
He observes that the free energy per spin in the thermodynamic 

-$/kT = In 2 - h/2 + lim (lnpl(rn, h)/rn) 
m - w  

where pl(rn, h) is the largest eigenvalue of the rn-dimensional integral 
operator K given by: 

Ir' = e ~ p ( - Q ( ~ ) / 2 )  - exp(-h(-A(m))) . e ~ p ( - Q ( ~ ) / 2 )  

u = J / k T .  A scaling argument 21, = h'/2yk permits one to  arrive 
essentially to the problem posed in (11). 

The detailed proofs are or will be given elsewhere ([2], [5], [6], [7], 
~91, POI, ~ 3 1 ,  [24]7 ~ 5 1 ) .  

2 Schrodinger Equation in Large Dimension 

Let us consider 



Schriidinger Equation in Large Dimension 157 

with 
m m 

V(") (x;  u )  = (1/4) c x i  - In ~osh((uh/2)'/~(xk t xk+i)), (9) 
k = l  k=1 

with the convention: (xm+l = X I ) .  If v < 1/4, the potential is convex 
(single well) but, if u > 1/4, we are in the situation of a double well. 
Let Xj(m, h; u )  be the sequence of the eigenvalues of S("); we are 
interested by the problems (111) and (V). Let us present the results 
which were obtained in this case. 

Theorem 2.1 (Cf [9], [as]) For every v in lR+, the limit A(h,v) = 
limm4m(A1(m; h, v ) / m )  exists. 

This is not surprising and it is proved following the ideas of sta- 
tistical mechanics (see [IS]). Let us observe that 

b ( h 7  u )  - (Ai(m; h ,  v)/m)l = hO(l/m) 

by easy arguments and that J. Sjostrand [25] proves recently an ex- 
ponentially rapid convergence to the thermodynamic limit. 

Theorem 2.2 (Cf [9],[25]) I f u  # 1/4, 

A(h,u) = lim (Al(m; h,v)/rn) 
m+m 

admits a complete asymptotic expansion: A(h, u )  x h Cjm Aj(u).hj 
as h tends to 0.  Moreover, i f  we denote the corresponding semiclas- 
sical expansions for X1 (m; h, u ) / m  by: 

Al(m; h , v ) / m  M h - c Xj(m, .).hi 

there exists Ico(v) > 0 s.t. for each j ,  there exists a constant Cj(v) ,  
s.t. IAj(V) - Xj(m,v)l 5 Cj(u).exp(-kom). ko(v) and Cj(u) can be 
chosen locally independent of u in IR+ \ { 1/4}. 

2 0  

The study around u = 1/4 is not complete (see however [13], [6] 
for partial result for fixed m). 
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Theorem 2.3 (Cf [24],[10]) If v < 1/4 then the splitting between the 
two first eigenvalues A2 and A1 is controlled by: 

h ( l - 4 ~ ) ” ~  5 Xz(m,h,v) - Xl(m,h,v) I 4Xl(m,h,v)/m. (10) 

The majorization is easily obtained by estimates of the type used 
in the proof of [17] (see [9]) and is true for any v in lR+. The 
minorization ([24]) can be obtained by using the maximum Principle 
(see [22]) or the Brascamp-Lieb inequalities [l] as explained in [lo] 
and the strict convexity of the potential is the decisive and unique 
assumption. 

Theorem 2.4 (Cf [9]) Let v > 1/4 and let us consider N the set in 
IN x lR+ defined by  

(we write shortly m = O(hWNO)) for some C and No; then there 
exists C,, h, and E” > 0 such that for all the (m,  h )  in n/ satisfying 
0 < h 5 h,: 

m L C . h - N o ,  (11) 

Remark 2.5 Here we observe a very diflerent behavior in compari- 
son with the case v < 1/4 (cf Theorem 2.3) but we have unfortunately 
a restriction o n  m. This is probably a technical dificulty. W e  were 
hoping to prove simply that (conjecture given by M .  Kac): 

lim (X;z(m,h,v) - Xl(m,h,v))  = 0. 
rn-oo 

This property would have been a sign of a “transition of phase”. 

The proof of Theorem 2.3 and Theorem 2.4 is based on the fol- 
lowing strategy initiated in [23] and [24]. We can distinguish four 
steps. 

Step 1: Control in the WKB approximation (just look for approx- 
imate eigenfunctions of the type exp(- f (x ,  h ) / h ) )  the dependence 
on the dimension m as initiated in [23] and [24]. Of course it is a 
construction which depends only of the germ of the potential at the 
bottom, but in order to have reasonable estimates we have to  assume 
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holomorphy in a complex open /"-ball. This will give us the formal 
expansion of the first eigenvalue. 

Step 2: One compares the WKB approximation of the one well 
problem and the first eigenvalue of the Dirichlet problem in a suf- 
ficiently small l"-ball around the point where the minimum of the 
pot en t id was at t ai lied. 

Step 3: One compares the first eigenvalue of the Dirichlet problem 
in this small 1"-ball with the first eigenvalue of the global problem 
in lR". 

In these three steps, one works modulo m.Olv(hN) (for any N )  
but the dimension is possibly limited by m = O(h-"J).  

Step 4: One eliminates the restriction on the dimension, because 
one controls the rate of convergence in the thermodynamic limit. In 
order to analyze the splitting between the two first eigenvalues, let us 
recall the following classical formula for the splitting (see for example 
[8] ,  [15], [20] and [21]): 

where 
7-1 = y E cF* P(ul,m)2(Z)dx = o { 7 1  

and ~ 1 , "  is the first positive normalized eigenfunction. 
The estimates about the splitting are then deduced from a ju- 

dicious choice of p and of the information on the decay of Ul,m in 
suitable domains. We observe that, under the assumption u > 1/4, 
the potential admits two minima and that there exists 6 s.t. the 
region R(6) defined by: 

does not contain these two wells. 

&(m,h) - xi(m,h)  5 C,.m.h2.(a(m,h,S)2)/(1 - ~ ( m , h , S ) ~ )  (15) 

with 477% h76) = II~l,mllLZ(n(s)). 
Theorem 2.4 will be a consequence of the following theorem: 
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Theorem 2.6 (cf [9]) There ezists C ,  ho and 6 > 0 s.t. a(m,h,S)  5 
Cexp(-m/Ch) for (m,  h)  in and 0 < h < ho. 

This theorem is obtained by Agmon’s type estimates with a very 
careful control with respect to the dimension. 

3 Thermodynamic Limit in Small 
Temperature: A Stationary Phase 
Theorem in Large Dimension 

In this section, we shall explain briefly how similar techniques can be 
used for connected problems. Actually, these theorems are frequently 
implicitly proved in [23], [24] or [9], [lo]. 

We just consider the “classical” problem introduced as Problem 
(I). Let us consider 

J(P, m, V) = (~/.)“/2 J exp(-PV(m)(t))dz. (16) 

The normalization is chosen in order to get J(p, m, V‘”)) = 1 in the 
case where V(”)(z) = Cg”=,f. Let us very briefly state why we 
meet in this context the stationary phase theorem. We assume that 

(17) 
V(”) is convex and admits a unique non-degenerate mini- 
mum at 0 with V(”)(O) = 0. 

It is well known that: 

as P + 00 but the problem is to control the behavior of the differ- 
ent coefficients and of the remainder. Actually, we can have a very 
bad behavior with respect to m as j increases (also in the “physical 
cases”); however, under suitable assumptions, 
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has an expansion in powers of p-' with coefficients which are bounded 
independently of rn! 

Let us write down possible assumptions in order to obtain such a 
result (see [23]). Let us introduce a set V as the disjoint union over 
IN of sets V,: V = U, V ,  where V ,  is a subset of C" potentials 
on IRm. Let us assume that for all V in V :  

V is holomorphic in B(0,l) with lVV(x)l, = O(1) uniformly 
in V and B(0,l). (Here B(0,l) is the open unit ball in 6' 
with respect to the norm 1x1, = sup Ixjl.) 

V(0)  = 0, V'(0) = 0, V"(0) = D + A ,  where D is diagonal 
(positive definite). 

There exists r1 and TO (independent of V in V )  such that: 
IIAllqe~) I TI < TO I Xmin(D) for all p s.t. 1 5 p 5 00. 

We also assume: 

I(V2Vllqep) = O(1) uniformly in V and p. 
Ixlp = (C IxjlP)'/P for 1 5 p < 00 and lxloo = supj 1xjl. 

Here we write: 

Then we see tha,t: 

(V''(0))1/2 = D + A (19) 

with diagonal and 

IIAIlLcoP) L ~1 < PO I Xrnin(B) (20) 

for all p s.t. 1 I p I 00 and uniformly in V .  

Theorem 3.1 (cf Sjostrand ([23]) Under assumptions (Hl)-(H4), 
then there exists 

and an  expansion 
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s.t. in the sense of the formal series in h but in a fixed suficiently 
small P'-neighborhood of B(0, l),  the following equation is satisfied: 

l V f I 2 - V -  h lnde t (V2f)=  E(h;m). (23) 

Moreover, the functions f j  satisfy: 

fj(0) = 0, IV fj(x)l 5 Cj in B (24) 

and the Ej (which of course depend on  m through V i n  V m )  satisfy: 

IEj(m)l I Cj * m (25) 

This problem is quite analogous to the problem of solving the 
equation: 

in order to construct a WKB solution of the type exp(- f ( x ,  h)/h) 
for S(") = -h2A + V("). 

Of course this shteinent could a,ppear mysterious and it is prob- 
ably better to  give the following "formal" corollary: 

Corollary 3.2 If J(p,m) is defined by  (4), then, formally, 

l V f I 2 - V - h A f  M E(h)  (26) 

(1n J(P, m>>/m M C(E j (m) /m>P- j  (27) 
i 

as p tends to 00. 

"Proof of the Corollary" This is just a "formal" proof of the 
stationary phase theorem with a uniform control with respect to m 
(i.e. V(m) in V"). In the formal integral giving J(m,P): 

we reduce the integral to a small P - p a t h  in LR". We are then 
looking for a change of variable y = f ( x ,P - ' ) .  Then the integral 
becomes: 

( p / ~ ) " / ~ .  (/exp(-pV(")(x) - lndet V2 f ( s , P - ' ) ) d y )  
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and, at least formally, it  is then clear that the Theorem 3.1 gives: 

So finally: 
In ~ f ( m ,  p)  = P E ( ~ ,  p-'). 

Of course everything is for the moment formal but the control of the 
coefficients is what is basic for the future. 

By adding assumption (5), invariance by permutation and other 
assumptions needed for the proof of Theorem 2.3, one can prove 
(for a class containing the model V(") (z ,u)  (with u < 1/4)) the 
exponentially rapid convergence of the coefficients (E j (m) /m)  and 
control the remainder terms. In fact the proof is parallel (and easier !) 
to the proof for the Schrodinger equation (steps 2, 3, 4), and we can 
prove the Corollary: 

Corollary 3.3 (Cf [7]) If J ( P ,  m)  is defined by (4) as /3 + 00, then, 

3 

a s p  tends to 00. 
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Abstract 

Applying Kato's inequality to locally integrable solutions of -(V - 
ib)2u+qu = 0 leads to (A+q-)lul 2 0 ,  which allows for a mean value 
inequality for lul , as in the case of subharmonic functions. The local 
Kato condition on q- enters naturally as one tries to provide local 
bounds on u .  This in  turn is the base for other regularity properties 
of u ,  such as the existence of square integrable first derivatives. 
But also quantitative results can be obtained from the mean value 
inequality. Here we were led to introduce non-local Kato classes 
Iip , where p is some positive, Lipschitz continuous function on R" 
which reflects the behavior of q- at infinity, possibly depending on 
directions. Self-adjointness of T := -(V - ib)2 4- q is another easy 
consequence of this approach. The main result is that T is essentially 
self-adjoint on C r  , if it is bounded from below and q- fulfills the 
local Kato condition. The famous result of Simon, Kato and Jensen, 
based on the assumption q- E K (our Kl),  follows immediately; but 
we also get self-adjointness of T if q- E Iip with p ( z )  = (1 t Izl)-' , 
which contains the case q- E Ii + 0(1zl2). Finally, we can specify 
the connections between the position of X in the spectrum of T and 
the behavior at  infinity of corresponding eigensolutions. 
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0 Introduction 

Twenty years ago, Tosio Kato presented his famous inequality which 
opened a new way to  deal with the positive part of potentials of 
Schrodinger operators in questions of regularity of weak eigensolu- 
tions. In the same paper [5] a condition on the negative part was 
introduced to establish self-adjointness of the operator. In the se- 
quel, however, the global aspect of this Kato condition, employed for 
instance to prove mean value inequalities, has been overemphasized. 
We therefore consider less restrictive global conditions on the poten- 
tials to  point out which properties of the operator and its eigensolu- 
tions depend on local a.ssumptions only and to  get more quantitative 
results globally. The material comes from [2], where supplementary 
and more detailed information can be found, and from a collabora- 
tion with Giinter Stolz [4]. 

We consider the Schrodinger operator T = -(V - ib)'+ q , where 
q is a real-valued, measurable function on IR," and b : IR," - IR," 
will be continuously differentiable. (In [2] there is no magnetic po- 
tential b a t  all, while in [4] we have weaker, in fact weakest, assump- 
tions on b ; this latter approach requires some different techniques, 
however.) A solution for the corresponding (generalized) eigenvalue 
equation for X E IR, is a u E Ll,lOc with qu E Ll,loc and 

v ~ E c ~ :  J Z T ~ = X J E ~ ;  

we write T u  = Xu. By putting X into q ,  we may assume X = 0 .  
Now Kato's inequality ( [ 5 ] ,  Lemma A) yields: 

in the distributional sense, q- := max(0, - q }  denoting the negative 
part of q .  Writing v for IuI and p for q- , we are left with the 
differential inequality Av+pv 2 0 ,  with non-negative v and p .  We 
will show that the mean value inequality for subharmonic functions 
(i.e. the case p = 0) extends to our situation and can serve as a base 
for establishing local boundedness of u , self-adjointness of T ,  and 
connections between the spectrum of T and the behavior of eigenso- 
lutions at infinity. We will, of course, need some extra assumptions 
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on q ,  but as shown only on q- . These conditons, both local and 
global ones, will emerge quite naturally from our discussion of mean 
value inequalities. 

1 Mean Value Inequalities 

The following lemma is the basic tool in this report. 

Lemma 1.1 Let v E Ll,loc be real-valued; f E Ll,loc be non-negative 
and such that Av t f 2 0 ,  i.e. 

V q J E C ~ , p L O :  vAcp+ fqJ)2O. I( 
Then for almost every x E R" and for any r > 0: 

where u,, is the area of the unit sphere in EL". 

The proof can be found in ( [ 2 ] ,  p. 117f). The price we have to pay 
for the help of f in the case of negative Av is the second term on 
the right-hand side. Since our goal is local boundedness of v = 1.1 
for an eigensolution u ,  we somehow have to get rid of this term, 
for which there is no a priori bound, when f = q-lul.  This can be 
achieved by replacing IuI here by inequality (1) once again. Then 
the intecral 

has to  vanish for r --t 0 ,  uniformly in z E Rn, for any compact 
w c IR" . A p with this property is said to belong to  the local Kato 
class By a method developed in Hinz and Kalf [3] one can 
then show that for almost every x E w and small T :  

where we denotes the set obtained from w by adding an &-rim ar- 
round. So we arrive at: 
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Theorem 1.2 Let p E I<loc be real-valued, v E L1,ioc non-negative 
with pv E L1,iOc and (A + p)v 2 0 .  Then v E Loo,loc. 

ularity properties of weak solutions for the Schrodinger equation: 

Corollary 1.3 Let q be real-valued and measurable with q- E Kioc ; 
b E C' . Let u E Ll,loc with qu E Ll,ioc be a solution of 

As an immediate consequence we get the most fundamental reg- 

-(V - ib)% + qu = 0 .  

Proof. As shown in the Introduction, A(ul +q-(uI >_ 0 by Kato's 
inequality. Since 0 5 q-1~1 5 Iqul E L1,ioc, Theorem 1.2 applies, 
whence u E Loo,lOc. 

Furthermore (V - ib)2u = qu E Ll,loc and an interpolation ar- 
0 

Another look at  inequality (2) reveals that apart from this quali- 
tative result, the right-hand side provides quantitative upper bounds 
for 'u , as soon as one can estimate Jp(y)v(y)dy . The same approach 
which led from (1) to (2), carried out with some more sophistication, 
shows that in fact the second term in the right-hand side of (2) is 

gument ([4], Lemma 2.2) yields Vu E Lz,ioc. 

completely subordinate to  the first term, such 
mean 

Since 

value inequality 

the method depends on some estimates 

that we can reach a 

of Caccioppoli type 
(see [3], Lemma 4), we have to  assume v E W&oc, which in view of 
applications to  eigensolutions u and Corollary 1.3 is no restriction 
at all. As for p ,  in order to allow for an r as large as possible, we 
have to  control1 the decay rate of 

when T goes to 0 .  This can be done through the following definition 
of a global Kato class: 
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Definition 1.4 Let p : IR" -10, w[ be globally Lipschitz continu- 
ous. Then 

Note that this coincides with the definition of the classical Kato 
class IC if p is constant and that I<, C Kloc C L1,loc .The mean 
value inequality then reads: 

Theorem 1.5 Let p E I<, be real-valued. Then there is a IC E IN 
such that for any non-negative solution v E Wi,loc with pv E Ll,ioc 
of (A t p)v 2 0 : 

As pointed out, the proof depends on Theorem 1 in [ 3 ] ,  where a 
mean value inequality for v2 has been obtained. The estimate on v 
then follows by a kind of reserve Holder inequality. We refer to  ( [ 2 ] ,  
p. 123-127) for details. 

Typical applications of Theorem 1.5 are Harnack's inequality (see 
[3]) and pointwise decay of eigenfunctions. 

Corollary 1.6 Let q be real-valued and measurable on R" with 
q- E IC,; b E C ' .  Then for every u E Lz with qu E Ll,lOc and 
which is a solution of -(V - ib)2u + qu = 0 : 

u = ~ ( p - " / ~ )  at m, i.e. pn/2(x>1u(x>1 + o , as 1x1 + 00.  

Proof. Since q- E I<lOc, Corollary 1.3 yields u E W&oc and so 
is IuI because 8jlul = re(sign(a) - 8 ju ) .  Again by Kato's inequality 
we know that Alul -+ q- 1.1 2 0 ,  whence Theorem 1.5 applies: 
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Holder's inequality yields 

As K ,  = Iiap for any constant a > 0 ,  we may assume the Lipschitz 
constant of p to  be $ ,  such that 1x1 - p(z)  2 - p ( O ) ,  and the 

0 

Genuine examples are obtained from p(z)  = (1 + 1 ~ 1 ) ~  with a 
6 5 1, including the classical case (S = 0) of q- E K ,  where 
Iu(z)I + 0 ,  but giving faster decay for S > 0 and weaker bounds if 
S < 0 (these are potentials q which might go to --oo as 1.1 -+ 00). 

If p is not spherically symmetric, we get direction depending bounds 
on eigenfunctions. 

last integral goes to 0 as 1.1 -+ 00, since u E L 2 .  

2 Self- Adjointness 

Based on the results of the last section, the following general criterion 
for essential self-adjointness of T on Coo0 is easy to derive. To get a 
well-defined symmetric operator in Lz , we have to  assume q E L2,iOc 
real-valued from now on. 

Theorem 2 . 1  Let q E L2,lOc with q- E Iiloc, b E C' , and let 

T := -(V - ib )2  + 41 Coo0 

be bounded from below. Then T is essentially self-adjoint in L 2 .  

Proof. Without loss T 2 1. We show TC,"O = L2. 
Consider u E TCF', whence u E L2 and T u  = 0. By Corollary 

1.3, u E Loo,loc n Wi,loc. For E > 0 and k E IN consider II, := 
ueqt ,  where u, denotes the classical regularization of u , and q k  is 
obtained from a smooth cut-off function 77 (i.e. q ( t )  = 1 for t 5 f ,  0 
for t 2 1 and otherwise i n  [0,1] ) by putting qk(z)  = q( F). Then 
a thorough calculation shows that 
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The first two terms on the right-hand side are real and can be esti- 
mated from below by 

The sum of the other terms must be real too and tends to 

2i(im(qkVu 7 u v q k )  -k 1 IuI2qkb * Vqk) 

as E + 0 ,  which thus must be 0 .  Hence we arrive at 

and letting k ---f w , u  = 0 follows. 0 

Another way to establish essential self-adjointness of T is by 
imposing global conditions on q- such as q- E K or K t 0 ( 1 x l 2 )  
(i.e. q- = q1 + q2 with q1 E li, and (1 + I 1)-2q2 is bounded). 
Theorem 2.1 allows to consider the even larger class KP with p(x )  = 
(1 t Izl)-' , although T will not be bounded from below in that case. 

Corollary 2.2 Let q E L2,lOc with q- E K(l+l.l)-l, b E C' . Then 
T is essentially self-adjoint in L 2 .  

Proof. Let us first assume that q- E I < .  Then q- is rela- 
tively form bounded with respect to -A ([2], Lemma 3.2) and con- 
sequently also with respect to -(V - ib)2 with the same bound ([4], 
Lemma 2.3) ,  namely 0 .  Hence for all p E C r  : 

(cp,Tcp) = II ((0 - W9I 112 + (9,qCr') L const llV1l2 9 
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i.e. T is bounded from below. By Theorem 2.1 T is essentially 
self- adjoint. 

The transition to  general q- E KQ+~.~.)-I by cutting q- off out- 
side balls and recourse to  the first case is done as in ([2], Section 
3.2), where A has to  be replaced by (V - ib)* in Lemma 3.5; the 
necessary changes are straightforward. 0 

3 Bounds on Eigensolutions and the 
Spectrum 

A classical subject of spectral theory of Schrodinger operators T 
is the discussion of connections between the behavior at infinity of 
eigensolutions for X and the position of X in the spectrum a ( T ) .  
Apart from extreme cases, the discrete spectrum ad(T) is associ- 
ated with exponentially decaying eigenfunctions, whereas a X in the 
essential spectrum ae(T) has only (polynomially) bounded eigenso- 
lutions. We will make this precise with the aid of a method of Em- 
manuil Eh. Shnol', based on the following lemma, which is an easy 
extension of the well-known Weyl criterion for the essential spectrum: 

Lemma 3.1 Let T be a self-adjoint operator in a Hilbert space; 
X E IR. Then for  any sequence ( u k ) k c ~  c D ( T )  with V k  E IN : 
11ukll= 1 and uk 4 0,  as k -+ 00: 

dist(X,a,(T)) 5 liminf ll(T - X)uk I I .  
k+oo 

For the proof see ([l], p. 174). 
We will now assume T = -(V - ib)2 + q with q E L2,lOc and 

b E C' throughout. Starting from an eigenfunction u E L2 for 
X E ad(T) (a polynomially bounded eigensolution u E L2,iOc\L2 for 
a X E IR) one can construct the sequence (uk) by cutting off inside 
(outside) balls of increasing diameters. The bounds on dist(X, ae(T)) 
obtained from Lemma 3.1 can then be used to  derive upper bounds 
for u (prove X E ae(T))  . 
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Theorem 3.2 Let q- E I<(,+I.I)- .  with Q y E [0,1]. 
X E a d ( T )  there is Q p>O such that for any eigenfunction u for A: 

Then for 

O(e-filzll-') , if o 5 7 < 1 ;  { ~ ( l x l ( ~ - f i ) / ~ ) )  , if y = 1 .  
u(x) = 

Theorem 3.3 Let q- E I< t o(lx12) (i.e. q- E K t O(1~1~)  and 
1x1-242(2) + 0 ,  QS 1x1 + 00 ). If for Q X E R there is Q polynornially 
bounded solution u E L2,lOc\L2 of T u  = Xu, then X E ae(T)  . 

The technical details of the proofs depend on the regularity re- 
sults of Corollary 1.3, on the observation that 

A([u12) = 2(q - X)1uI2 + 2l(V - ib)uI2 

([4], Lemma 3.9) and on form boundedness. We refer to ([2], Section 
4.2) and ([4] Section 3.2), respectively. 

In the proof of Theorem 3.2 the mean value inequality Theorem 
1.5 enters in a step where L2-bounds on u are transferred into the 
desired pointwise bounds. This procedure is also used in proving a 
kind of converse of Theorein 3.3, namely the fact that a(T)  is the 
closure of the set of those X E IR for which there is a polynomially 
bounded non-trivial eigensolution. One starts from an expansion in 
generalized eigenfuiictions u which lie in some weighted &-spaces 
(see ([4], Section 3.1) for details). This &bound can then be turned 
into a pointwise bound by Theorem 1.5. We thus arrive at: 

Theorem 3.4 Let q- E I< -+ o(lx12). Then 

u (T )  = { A  E IR: 3 ~ > 0 3 ~ # 0 ,  (1 -+ I * I ) - ' u  E L,(IR") : Tu=XU}. 

The fact that q - ( x )  = O(1x12) is excluded here and turns up 
as an exception in Theorem 3.2 is explained by the existence of an 
example due to Halvorsen, where 0 is a discrete eigenvalue with 
an only polynomially decaying eigenfunction and where there is a 
bounded eigensolution to  every X E IR, including those in the neigh- 
borhood of 0 which are not in the spectrum. Halvorsen's example 
is in IR' , and it is an open question if this phenomenon extends to 
higher dimensions (see the discussion in ([2], Chapter 5 ) ) .  
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Abstract 

Lie group approach is discussed to linearization of second and 
first order ordinary differential equations. For first order equations 
we use changes of the dependent variable only while for second order 
equations general changes of dependent and independent variables 
are considered. 

1 Second Order Equations 

One can extract, from several results of S. Lie [l], [2], the following 
st at ement [ 31 : 

Theorem 1 The following assertions are equivalent: 
(i) a second order ordinary diJewntial equation 
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can be linearized by  a change of variables F = 4(x ,  y), B = $(x, Y); 

Y" + F3(2, y)yn + F2(z,  Y)YO t Fi (x ,  Y)YI + F ( 2 ,  Y) = 0 ( 2 )  

with coeficients F3, F2, Fl, F satisfying the integrability conditions of 
an auxiliary overdetermined system 

(ii) equation (1) has the fo rm 

at aF 
- = . z ~ - F w - F ~ z + - + F F ~ ,  

1 dF2 2 d F 1  
-ZW + FF3 - -- + --, 

zw - FF3 - -- + --, 

a x  dY 
at 
dY 3 ax 3 ay 
d X  3 d y  3 d x  
aw 
aY d X  

= - 

d W  1 dl;; 2 d F 2  = - 

a F3 F1 F3 ; - = - w 2 + F 2 w + F 3 z + - -  (3) 

(iii) equation (1) admits an 8-dimensional Lie algebra; 
(iv) equation (1) admits a 2-dimensional Lie algebra with a basis 

such that their pseudoscalar product 

x1 v x 2  = 11772 - 77112 

vanishes. 

(4) 

Example 1. The equation 
yll = e-Y' 

is not linearized since it is not of the form (2). 
Example 2.  Let's consider equations of the form 

Y" = f ( Y 9  ( 5 )  

from Table 2 ,  and inspect when they are linearized. In accordance 
with Theorem l(ii) it is necessary that the function f(y') is a polynom 
of the third degree, i.e., the equation ( 5 )  has the form 

y" + A3yt3 + A2yt2 + Aly' + A0 = 0 (6) 
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with constant coefficients A;. One can easily verify that the auxiliary 
system (3)  for Eq. (6) is integrable. Therefore, Eq. (6) is linearized 
for arbitrary coefficients A;. 

Example 3. Let's take, from Table 2, equations of the form 

When are they linearized? Again, by Theorem l(ii) we have to  con- 
sider only equations of the form 

1 
y" + --(A3yI3 t A2yI2 + Aiy' + Ao) = 0 

with constant coefficients Ai. In this case we have from the inte- 
grability conditions of the corresponding system (3)  the following 
equations: 

A2(2 - A l )  + gAoA3 = 0, 3A3(1 + A l )  - A: = 0. 

We put A3 = -a ,  A2 = - b  and obtain A1 = - 1 t , Ao = 

- (& + 6). Hence, Eq. (7) is linearized iff it is of the form (see 
( '1 

also [41) 

y" = 1 [ ay" 4- byt2 + (1 + g) yl + - + - b3 ] . (8) 
X 3a 27a2 

A linearizing change of variables can be found via statement (iv) of 
Theorem 1. 

For example, we find a linearization of Eq. (8) in the case a = 1, 
b = 0, i.e., of the equation 

1 
y" = $1 + y3). 

This equation admits L2 with the basis 

Ya x2 = -- l a  XI = -- 
x ax, x ax, 

(9) 



lS0 Nail H .  Ibragimov 

which satisfies the condition X1 V X2 = 0 of Theorem l(iv). The op- 
erators (10) are of the type I1 from Table 2. Therefore a linearization 
is obtained by turning to  the canonical variables 

in which the operators (10) become 

in accordance with Table 2. Then, excluding the special solution 
y = const., we have the transformed equation (9): 

-/I y + 1 = 0 .  

Example 4. We now take equations 

and verify that the 
Question: When a nonlinear equation of the form (11) is lin- 

earized? has the 
Answer : Never. 
Indeed, our equation (11) is a particular case of Eq. (2) with 

coefficients F1 = F 2  = F3 = 0. The system (3) is 

2, = z2 + FW - F y ,  
zy = -zw, 

W, = ZW, 
wy = -w2, 

and one of the integrability conditions, namely 

yields 
Fyy = 0. 

It follows that Eq. (ll),  where F ( x , y )  is nonlinear in y, is not lin- 
earizable. 
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Example 5. Here we discuss in detail a construction of a lin- 
earization. One can readily find that the equation 

with an arbitrary function f admits- the 2-dimensional Lie algebra 
spanned by 

(13) 
2 a  a a 2 8  

X I =  x - +  xy-, x2 = xy-+ y -. 
dX aY a x  a y  

This algebra belongs to the type I1 of Table 2. Therefore Eq. (12) 
can be linearized and a linearizing change of variables Z = 4(x, y), 
g = $(x, y) is obtained from the conditions 

We have from (14) the following four equations to determine 4, $: 

m = g ( : ) ,  $ = - - + h ( x ) .  1 
X X 

By these functions the first Eq. ( l G )  is satisfied identically while the 
second one gives 4 = y/x. We choose h = 0 to  obtain the following 
change of variables: 

After this transformation the equation (12) becomes 

y” + f ( T )  = 0. 
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2 First Order Equations 

In the case of first-order equations Theorem 1 is replaced by the 
following. 

Theorem 2 Given a first-order onlinary differential equation 

one can by  means of an appropriate change of variables 

transform (17) into any given equation 

We consider here, instead of general changes (18) of both inde- 
pendent and dependent variables, transformations of the dependent 
variable only: 

B = +(Y). (20) 

If Eq. (17) is linear, then after transformation (20) we have, in 
general, a nonlinear equation (19). This equation will be a particular 
case of equations possessing a fundamental system of solutions, or a 
nonlinear superposition principle ([5]-[9]). Further, any first-order 
ODE possessing a nonlinear superposition can be written after a 
transformation (20) in the form of a Riccati equation 

y l  = P ( x )  + Q ( x ) y  + R(x)y2. (21) 

So, the question is when is Eq. (21) linearized by a transformation 
of the form (20)? We formulate an answer as follows ([lo]): 

Theorem 3 If the Riccati equation (21) possesses one of the follow- 
ing four properties, then it should possess all of them: 

(i)  Eq. (21) is linearized by  a transformation (20): 
(ii) Eq. (21) can be written in the form 
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so that the operators 

d d 
x1 = & ( Y ) - ,  x2 = ( 2 ( Y ) -  

dY dY 
(23)  

span a 2-dimensional Lie algebra, i.e., 

[ X l ,  x21 = ax1 + PX2 

(if [ X l , X 2 ]  = 0 we have one-dimensional algebra and the variables 
in the Riccati equation are separated); 

(iii) Eq. (21)  is either of the form 

Y l =  Q W Y  + R ( X ) Y 2  (24)  

Or 

Yl = P ( x >  + Q ( 4 Y  + “(4 - W X C > l Y 2  ( 2 5 )  

with any coefficients P ( x ) ,  Q ( x ) ,  R ( z )  and a certain constant k (in 
general, complex); 

(iv) Eq. (21)  admits a constant ( in general, complex) solution. 

Remark. Eq. (25)  has the constant solution y = - l / k .  There- 
fore a linear equation being a particular case of Eq. (25)  with k = 0, 
can be considered as a Riccati equation having the point a t  infinity 
as its constant solution. 

Example 1. The equation 

y ’ = x + y  2 

is neither of the form (24 )  nor (25).  Hence it cannot be linearized. 
We also notice that it is of the form (22 )  with coefficients TI = 2, 
( 1  = 1; T2 = 1, ( 2  = y 2  so that operators (23)  are 

The two-dimensional vector space spanned by these operators is not 
a Lie algebra since the commutator 
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is not a linear combination of X1 and X2. 
Example 2. The equation 

is not of the form (22). But, it would be erroneous to make a con- 
clusion that this equation cannot be linearized. Indeed it has the 
following constant solution: 

and thus Eq. (26) is linearizable. This is not in a contradiction with 
Theorem 3(ii). In fact one can represent Eq. (26) in the form (22) 
as follows: 

Y l  = x ( 1 +  2 J z y )  + (2 + x2)(y + 2Jzy2) .  (27) 

The corresponding operators (23) for Eq. (27) are equal to 

d d 
x1 = (1 + 2JZY)-, x2 = (Y + 2JzYZ); i ; ;  

dY 

and form a 2-dimensional Lie algebra since 

[Xl, XZ] = x1 + 2 h X 2 .  

Example 3. Now we discuss details of a linearization. Consider 
the equation 

Y' = P ( x )  t Q(x)y + [ Q ( x )  - P(x)]y2 (28) 

which is of the form (25) with k = 1. It is written in the form (22) 
with TI = P ,  T2 = Q ,  (1 = 1 - y2, (2 = y + y2. Hence the operators 
(23) are 

(29) 
d d x1 = (1 - y2)-, x2 = (y + y2)-. 
dY dY 

They span L2 since 

[X, , X2] = XI + 2x2.  
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To find the linearizing transformation we first choose the new basis 
of L2 as follows: 

- 
(29') 

- d x1= XI + 2x2 = (1 + y)2-, 
dY 

x2 = x2. 

- -  
Then [Xl, X,] = XI and therefore we seek for a transformation (20) 
such that the operators (29') become 

This transformation is found from the equation 

and is given by 
1 

After this Eq. (28) becomes 
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Table 1. Lie Group Classification of Second Order Equations 

Group 
G1 
G2 

G3 

G8 
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Table 2. Canonical Form of 2-Dimensional Lie Algebras 
and Invariant Second 0 rd er Equations 

Type 
I 

I1 

I11 

IV 

Structure of L2 

[Xl, x21 = 0, 
XI v x2 # 0 
[Xl , x21 = 0, 
x1 v x2 = 0 

[Xl, X2] = x1, 

x1 v x2 # 0 
[Xl,X21 = x1, 

x1 v x2 = 0 

Basis of L2 in 
Canonical Variables 

X I =  &,x2 = -$ a 

x1= g,x2 a = y g  a 

Equation 

Ytl = f ( Y ' )  
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1 Introduction 

Eigenfunction expansions are at the hea.rt of the picture of quantum 
mechanics which was developed by Dirac. The idea is to expand 
states which change with time as they evolve under the Schrodinger 
equation dQ/dt = iH!P in terms of those which do not, in the sense 
that they give the same expectation values for all observables. How- 
ever, in quantum mechanics, observables in the physical sense cor- 
respond to operators in a Hilbert space. The operator which maps 
the initial condition 9(0) for the Schrodinger equation to the solu- 
tion Q(t)  at time t is denoted by e i H t .  Since this is the fundamental 
operator of quantum mechanics, it makes sense to expand it in terms 
of simple operators; the most natural way of doing this is to expand 
in terms of operators of the form eiA'PA, where PA is a projection 
onto a one-dimensional space of eigenfunctions with eigenvalue A. 
This turns the operator exp(iHt) of time evolution into a diagonal 
matrix; unfortunately, it in general has uncountably many entries. 
For many physical problems, such as those connected with scattering 
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theory, H is not known, or is only known up to a small perturba- 
tion; the object is to  find it, from measurements involving the time 
evolution of the physical system. If exp (iHt) is considered as a ma- 
trix with uncountably many entries, it would take uncountably many 
measurements in general to find it. Ideally, the matrix would have 
only finitely many entries; this is of course not possible unless we per- 
form an approximation. In this note we discuss how to  approximate 
exp(iHt), where 11 is a self-adjoint operator with arbitrary spec- 
trum, in terms of eigenprojections of multiplicity one. These terms 
of course must be defined rigorously as part of the program. We 
concentrate on the approximation of spectral projections by finitely 
many eigenprojections, since once this is done the spectral theorem 
can be used to  do the rest. 

Our approach is self-contained, and involves developing the the- 
ory of continuous spectrum eigenfunctions afresh and paying very 
careful attention to  convergence; in fact, new results on convergence 
are contained in the paper. Outside of related papers by the author 
[4], with Edmunds [l] and with Hinton [3], it is probably closest in 
spirit to the recent paper of [5], though it also harks back to work 
of Gelfand and others in the 1950's. The purpose of our approach 
is to give a very concrete answer to the question of what the eigen- 
functions are and how the expansion converges. This paper gives 
new convergence results, which hold even in situations where no lea- 
sonable a priori estimates on the domain of the self-adjoint operator 
are available; one such situation would be the Laplace-Beltrami op- 
erator on a semi-Riemannian manifold. However, even when the a 
priori estimates needed to apply the results of [l], [3], and [4] hold 
for the operator in question, the results of Theorem 11 and Theorem 
13 are not implied by these other results. The difference is that the 
convergence we study is uniform on the proper hull of appropriate 
sets; the concepts of hull and proper hull are given in Definition 6 
and are introduced in this paper. 
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2 Definitions and Results 

Eigenfunctions will be defined as elements of the dual space of a 
topological vector space I+', which we call the space of attainable 
states. This space is a background space, which is in the domain of 
any reasonable self-adjoint operator. Since in quantum mechanics, 
there are good reasons for wishing the self-adjoint operators to be a 
ring, it is natural to  expect the attainable states to  be a subset of the 
C" functions in many applications. This indicates that W is more 
likely to be a topological vector space than a Banach space. 

Spectral projection operators arise as operators from W into W' 
with range contained in the eigenfuiictions of the self-adjoint opera- 
tor H being studied. These are in turn defined to be solutions in W' 
to  the equation H'F = XF. It is interesting to  observe that one of 
the most difficult convergence questions arises from the decomposi- 
tion of the entire Hilbert space into a direct sum of cyclic subspaces. 
A cyclic subspace !Jlj is the linear span of { e i H t f  : t E R}, where 
f is a fixed vector in the IIilbert space. Thinking of f as an im- 
pulse, the decomposition into orthogonal cyclic subspaces breaks the 
Hilbert space into invaria.nt subspaces corresponding to  orthogonal 
impulses; on each subspace the possibly non-normalizable eigenfunc- 
tions corresponding to a given eigenvdue have multiplicity one. The 
projection onto a cyclic subspace then seems to  have physical mean- 
ing. However, the space W of attainable states is not in general 
closed under projections onto subspaces ?Rj;  or under the group eiHt. 
Especially this latter property is a major physical defect. It is desir- 
able to  have a larger subspace than W which is closed under these 
operations, but which is small enough that everything still converges. 
The hull of W ,  introduced in Definition 6, has these properties. 

Definition 1 A locally convex topological vector space is said to be 
a nuclear space if, for any convex balanced neighborhood V of 0, 
there exists another convex balanced neighborhood U C V of 0 such 
that the canonical mapping T : X u  -, Xv is nuclear. A nuclear 
operator from a locally convex topological vector space X into a 
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Banach space Y is an opemtor of the form 

n 

TX = s - lim C c j  f j ( x ) y j  
n+oo 

j=1 

where { f j }  is an equicontinuous sequence of continuous linear func- 
tionals on X ,  { y j }  is a bounded sequence of elements of Y ,  and { c j }  
is a sequence of non-negative real numbers such that Cg, C j  < 00. 

The spaces X u  and Xu are defined as follows: let U be a convex bal- 
anced neighborhood of 0 in X .  Let KU be the Minkowski functional 
on U .  Let NU = {x E X : Ax E U V X > O } .  Then Nu is a closed 
subspace of X ,  and the quotient space is a normed linear space 
Xu under the norm induced by  KU. Xu is the completion of X u .  

Definition 2 Let s2 be a separuble Iiilbert space, Let H be a (possibly 
unbounded) self-adjoint operator in 0. A space W of attainable 
states for H is defined to be a locally convex topological vector space 
with the following properties: 

1. H takes W continuously into W ;  

2. W is a nuclear space; 

3. W is a dense subspace of Q, such that the injection from W 
into R is continuous; 

4. W is the inductive limit of a finite or infinite sequence {Vn} 
of separable Frechet spaces such that {Vn} is algebraically and 
topologically contained in Vn+l. 

Definition 3 The space of idealized states is defined to be the dual 
space W' of the space of attainable states. W' is given the topology 
p( W, W'), where a subbase for the neighborhoods of 0 in W' is defined 
to be sets of the form A' = { F  E W' : IF(.)[ 5 1 V x E A } ,  where A 
ranges over the balanced convex bounded subsets of W .  

Note: We naturally embed R into W'; this causes complex con- 
jugates to appear in various formulae. 
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Remark: The standard topological vector spaces of analysis, such 
as the rapidly decreasing functions, Cr(Rn), and many others, sat- 
isfy the hypotheses of Definition 2; see [ G I ,  page 74. 

Theorem 4 A locally convex topological vector space X is nuclear if 
and only i f  for any convex balanced neighborhood V of 0, the natural 
mapping IV from x into Xv is nuclear. 

Proof: This is Theorem 1, p. 291, [7]. 

Theorem 5 Every space W satisfying the hypotheses of Definition 
2 is a Monte1 space, which is by definition a separated barrelled space 
such that closed and bounded subsets are compact. 

Remark: The proof is not difficult, and will be omitted. 

Definition 6 Let 4 E W ;  let {e;} be an orthonormal set in 52; as- 
sume that the cyclic subspaces gei generated by  ej have the property 
that %eiL%eJ for  i # j .  Let P; be the projection onto Sei. Let H be 
as in Definition 2; let A -+ P ( A )  be the spectral measure for H .  Let 
aei(A)  = [P(A)e ; , e ; ] .  By the spectral theorem there ezists a unique 
isometry T; taking the range of P; into L2(aei)  such that Tie;(X) 1 
and such that for any g E dornain(H),  T i (HPjg) (X)  = XT;g(X). 
An element e E Lz is said to be in  the hull h ( 4 )  of 4 E W if 
V i ,  TjP;e(X) = Pe,j(X)T;4(X) for some Bore1 measurable function 
P; of modulus one; the proper hull is the set of elements of the hull 
where the functions 0; are equicontinuous when restricted to compact 
sets. The hull h(A)  of a set A is { h ( 4 )  : 4 E A } ;  the proper hull of 
A is defined analogously. 

Lemma 7 Let e E Q. There exists a neighborhood UQ of the origin 
in W ,  and a positive constant p, with the following property: for 
any disjoint family {t(r)}:=l of subsets of R, and any set { O r , i }  of 
elements of UQ, 
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Proof: Since the embedding from W into R is continuous, it 
follows that if V is the intersection of the unit ball of R with W ,  
then V is a neighborhood in W .  If we let N v  denote the subspace of 
W consisting of elements which are contained in all multiples of V, 
then N v  is the trivial subspace. The Minkowski functional IEV is the 
norm of R, and the space X v  defined in Definition 1 is the normed 
linear space formed by giving IV this norm. The mapping Iv is the 
identity mapping from IV 

k s  

i=l r=l 

into Xv. We then see that 

for some summable sequence cj of complex numbers, and for some 
equicontinuous sequence aj of elements of W’, some set {br2,;} of 
complex numbers of modulus one, and some bounded sequence {Pj} 
with norm less than 7 of elements of the normed space X v ,  which 
of course is just il n W .  In fact, the last inequality is proved as 
follows: since {aj} is equicontinuous, there exists a neighborhood U 
of the origin in W such that laj(x)l 5 1 for all 2 E U. But, if P;,T = 
P(<(r) )Pi ,  then {P+} is a set of mutually orthogonal projections, 
since Pi commutes with P ( < ( r ) ) .  Hence, if {ej} is chosen from U n V ,  
the conclusion is established, where /3 = y Cj”=, Icjl. 

Definition 8 Assume the following for the rest of the paper. Let 
{e ;}  be an  orthonormal set in 52 such that the cyclic subspaces $lei 

generated by  e; have the property that ?ReiL?ReJ for  i # j ,  and such 
that f o r  all j > 1 ere, is absolutely continuous with respect to uel; 
using the spectral theorem such an orthonormal set may be selected. 
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Let 
duei = S;( X)da,, . 

Note that W has a countable dense subset. Let S1 be a countable 
dense subset of W ,  which is also a subspace over the rational num- 
bers. Let S = S1 + HSI. For each 4 E S ,  T;P,d(X) is well defined 
fo r  all i, except o n  a set of X which has measure 0 with respect to a,,. 
Define FA,,, to be zero on the exceptional set, which may be chosen 
independently of 4. O n  the complement of this set, define Fx,ei for 
each i by F ~ , ~ ~ ( q 5 )  = TiPi4(X); this defines a linear functional on S ,  
or more precisely a function from S into the real numbers which is 
linear over the field of rational numbers. W e  extend this functional 
to all of W .  

Lemma 9 For almost every X with respect to u1, there exists a 
unique element  FA,^, of W' which agrees with the previously defined 
functional Fx,ei on S, and which has the following properties: 

1. HIFA,,, = XFA,~,; 

2. for  each 4 E W, there exists a set A depending on  4, such 
that P ( A )  = I (the identity operator), and such that for all 
A E A, Fx,e,(d) = T'Pi+(X) V i; 

3. the function a; : q ( X )  =  FA,^, is a measurable function from R 
into W' with respect to u1, in the sense that V 6 > 0, 3 a closed 
set A, such that ae,(R\Ac) < E ,  and such that the restriction 
of a; t o  A,  is a continuous function from R to W'. 

Proof: We extend  FA,^, from S to W by continuity. We show 
that there exists a neighborhood U of zero in W such that for almost 
every X with respect to u,,, Fx,ei is bounded on U n S. In fact, take 
U = UO, where UO is the neighborhood defined in Lemma 7. Let 

yu(Fx,e,) = SUP IFx,ei(e)l- 
ewns 

Note that yu(Fxlei) = sup{Fx,ei(8) : 0 E S n U}. It follows from 
Lemma 7 that defining f ~ u  by 
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yu(i,.) E L1(Oel)- Thus ae,{A : yu( i ,X)  = CO} = 0. Hence for 
almost every X with respect to gel, yu(F~,, ,)  is finite. It is now 
elementary to extend FA,,, uniquely to be an element of W’; the 
fact that HIFA,,, = XFx,,, follows from the fact that for all 4 E S1, 
T;(HPiqh)(X) = XTi(Pi4)(X). It is easy to see that for any element 
4 E W ,  for almost every X with respect to a,,, T;(P;4)(X) = F’,el(4), 
although the exceptional set can now depend on 4. It follows that 
 FA,,,(^) is a Bore1 measurable function for each 4 E W. It is also 
clear that, except for a set of measure 0, {FA,,,} is contained in a 
bounded subset of I+’’, in the given topology /?(I+”,W). A Montel 
space is reflexive; see page 74 of [GI. Hence, in the terminology of [2], 
page 558, the function a(A) = FA,,, is scalarwise measurable from R 
into I V .  Since the functions FA,,, are in W’, they are also in the dual 
space of each of the Frechet spaces in the inductive limit which forms 
14’. By Proposition 8.15.3, page 575, [2] it follows that the function a 
is continuous on a closed set whose complement has arbitrarily small 
measure with respect to o,,, as a function with range contained in 
the weak dual of each Frechet space. Picking the sets of measure 
0 corresponding to each Frecliet space, we see that a is measurable 
considered as a function with range in IV’, where W‘ is given the 
weak topology. But on closed, bounded subsets of the Montel space 
W’, the injection from the given topology into the weak topology 
is a continuous one-to-one function defined on a compact Hausdorff 
space, which is therefore a homeomorphism. It follows that a is a 
measurable function with values in T V ,  under the given topology. 
The lemma is proved. 

Definition 10 A series Czl F; of elements of 14‘‘ will be said to 
converge absolutely if, for every continuous seminorm p, the series 
Czl p(Fi) converges. 

T h e o r e m  11 Let 6i 6e as in Definition 8. There exists a convex, bal- 
anced neighborhood V o f 0  in IV such that i fpv(F)  = supecv IF(O)l, 
then for almost every X with respect to spectral measure there exists 
an element FA,,, of I+’’ for each i such that II‘FX,,, = XFA,e, and 
such that the following properties hold: 
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1. define the measure r o n  RxN,  where N denotes the natural 
numbers, by  I' = g e l  X ~ N ,  where p~ denotes counting measure; 
then for any 4 E W, the function fd E Ll(I') ,  where 

f+(X, i) = S;(X)Fx,e,(4)pv(Fx,e;); 

2. for almost every X with respect to gel, Cgl ~;(X)FX,~~(~)FX,,, 
converges absolutely in W' for every 4 in h(W);  

3. for every Borel set A and every 4 E A(W), 

4. for  almost every X with respect to ue,, there is a sequence A,, 
of Borel sets such that An is supported in  (A - i, X + i) and 
the sequence Qn  = P ( A n ) e ; / a e , ( A n )  conveves to FX,e, in W', 
so that by  the continuity of €I' as a linear transformation of 
W' into itself, H'Qn converges in W' to XFx,e,. 

Remark: The above formulae show how to spectrally decompose 
projection operators. From these, one can spectrally decompose all 
functions of H .  

Proof of the Theorem: Note that pv(Fx,, ,)  is the supremum of 
countably many Borel measurable functions of A, and is thus mea- 
surable. The first assertion follows from Lemma 7, upon selecting Or,; 
carefully; the method of proof is that of assertion iii), Lemma l.G, 
[4]. The second assertion follows from Fubini's theorem. Note that 
by the spectral theorem and the definition of FxIe, , for any 4,O E W ,  

The third assertion follows immediately. The fourth assertion follows 
from the formula 

together with assertion 3 of Lemma 9. Equation 1 follows from the 
third assertion by passing to the closure and noting that TiPje; = 1 
by the spectral theorem. 
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Lemma 12 Let V be a bounded convex balanced subset of W .  Then 
V 6 > 0 3 N > 0 aiid compact subsets {Ai}:;' of R such that the 
function Q(X) =  FA,,^ is a continuous function from A; into W' and 
v4 E v: 

Proof: V is compact in W and therefore in Lz(Q).  I t  follows that 
V 6 > 0 3 N > 0 3 CZN IIP;$l12 < 6 V 4 E V .  The first conclusion 
follows from picking Or,; carefully and using Lemma 7, together with 
the preceding theorem. (Recall that since V is bounded, V is con- 
tained in some multiple of the neighborhood U of Theorem 11.) The 
second conclusion follows in the same fashion. 

Theorem 13 For any bounded convex balanced subset V of W ,  if 
ph(V)  denotes the proper lid1 of V ,  and p v ( F )  = supO,v IF(O)l) and 
A is a n y  Bore1 set, then for every E > 0 there exists a subset J of the 
positive integers and for each j E J a finite set {X;j : i 5 n ( j ) }  of 
real numbers and { ~ ; , j }  of positive real numbers such that for every 
4 E Ph(V),  

Remark: We need to use the proper hull instead of the hull to 
control the sets of mea.sure zero, and pick the X ; j  independently of 
4. 

Proof: We may use the preceding lemma to cut down to a finite 
set of ej and compact sets Aj on which Q is continuous. The integral 
then becomes a Rieinann integral. (This is the method of proof of 
the implication ii) + iii) of Theorem 3.3 of [4]; more details are given 
there.) 

Remark: The preceding theorem shows the importance of us- 
ing the largest possible space W .  For example, if W = Cr(Rn), 
bounded subsets of 14' must be supported in some fixed compact 
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subset of R"; however, bounded subsets of the rapidly decreasing 
functions are much larger. Larger bounded sets give better conver- 
gence. The obstacle to using large spaces W is that H must take 
W continuously into itself, in order to make the eigenfunctions  FA,^^ 
satisfy the equation 

H'J'A,e; = XJ'A,~,. (2) 

It is this last equation which gives legitimacy to the eigenfunc- 
tions, because i t  leads to conclusion 4 of Theorem 11. When H is 
a partial differential operator arising from a hypoelliptic differen- 
tial expression, equation 2 leads to regularity results and Sobolev 
inequalities for the eigenfunctions  FA,^^ . 
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On Unique Continuation 
Theorem for Uniformly 
Elliptic Equations with 
Strongly Singular Potentials 

Kazuhiro Kura ta  
Gakushuin University 

Abstract 

We prove unique continuation properties for solutions of uni- 
formly elliptic equations: -div(A(z)Vu) + b(z) - V u  + ( V ( z )  
+ lV(z))u = 0 with Lipschitz continuous A ( z )  and singular b(z), 
W ( z )  and V ( z ) .  

The principal assumptions on b(z), W(z) and V ( z ) ,  in our the- 
orems, are V,(2V + z . V V ) - , W + , ( ~ Z I W + ) ~  E Q t ( Q ) ,  IW-(z)l I 
C/lz12,1b(z)I 5 C/lzl for some constant C > 0, where Q t ( 0 )  = 
K,(0) + Ft (0 )  for some 1 < t 5 n/2, V -  = max(0,-V),V+ = 
max(0, V ) .  Here IC,(Q) is the Kato class and Ft(Q) is the Fefferman- 
Phong class. 

I Introduction 

We consider the second order uniformly elliptic equation with real 
coefficients: 

LU = - d i v ( A ( z ) V ~ )  + b(z) * V U  + V ( Z ) U  + W(Z)U = 0 ( 1 )  
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in a domain R c Rn (n 2 3). Here A(z)  = ( u i j ( z ) ) l < i , j s n  is a 
symmetric matrix which satisfies, for some X E (0,1] and r > 0, 

n 

xIt12 5 C aij(z) t i t j  I X-'M~, z E 0, t E R" 9 (2) 

(3) 

i ,j=1 

iaij(x) - aij(y)l I rlz - Y I ,  i , j  = 1,2,- ,n z,Y E a, 
and b(z) = (6i(z))l<isn. The followiiig two types of unique con- 
tinuation property for solutions of (1) are well known for bounded 
coefficients b, V, 14'. 
(W) Let u E WtL(R) be a weak solution of Lu = 0 in R and u = 0 

(S) Let u E 14'/$!R) be a weak solution of Lu = 0 in R and 
u vanishes of infinite order at a point z, E R in the sense 

SB,(Z,) u2dy 4 0 as r --f 0 for every m > 0 at a point 
x, E 0, then u =- 0 in R. 

Recently these results are extended to various classes of 
unbounded coefficients. When A ( x )  E (6ij), see e.g. [lo], [7], [12], 
[3], [2]. In particular, Jerison and Kenig [7] showed the property (S) 
for W E LyL:(R) (b,V E 0) and Stein [12] extended this result to 
the weak-Lni2 class. Sawyer [lo] and Fabes, Garofalo and Lin [3] 
studied it for W of tlie I<ato class Kn(R)  and Chanillo and Sawyer 
[2] for 14' in tlie Fefferman and Phong class Ft with t > ( n  - 1)/2. 

As is well-known (cf. [9]), in general, tlie Holder continuity of 
the coefficients a i j ( x )  does not suffice for solutions of (1) to  have 
the property (W). Therefore, tlie regularity condition (3) is optimal. 
Under general conditions (2), (3), tlie unique continuation theorem 
for (1) was shown under different assumptions on b and V,W by [l], 

Hormander proved tlie property (W) for (l), when n > 4, V = 
0 , W  E LFoc(Rn), p 2 (4n - 2)/7 and b E L&,(R"), q > (3n - 2)/2; 
(S) a t  the origin, when n 2 3, V = O,lb(z)I 5 C/1z1'-6, IW(z)I I 
C/1x12-6 for some 6 > 0. When A(z) E C"(R), Sogge [ll] proved 
(S) for (l), if lb(z)I 5 C / l ~ l ' - ~  for some 6 > 0 and V = 0,W E 
w-L"'~ (see also [13]). 

on some open subset R' of R ,  then u = 0 in R. 

[GI, [41 and [51. 

1 oc 
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The standard approach for the unique continuation problem is 
to establish an appropriate Ca.rleman estimate and almost all results 
was shown by this method ([l], [2], [GI,  [7], [lo], [12], [ll], [13]). 
Garofalo and Lin found a new a.pproach to this problem and par- 
tially improved the result of [GI: they proved (S) a t  the origin, when 
n 2 3, v = O,lb(.)I I Cf(1~1)/1.1, IW(.)l I Cf(l.l)/l.I2 with 
so'" f ( t ) / t d t  < +oo. 

In this paper we shall extend these results to several directions 
under an additional assumption on the quantity (2V + z . VV)-. In  
particular, we shall generalize the results of [4], [5] and show (W) for 
(1) with b = 0 under the assumptions ( i )  V,I.lIVVI,W+,(la:IW+)2 E 
Ii,(R) t F~(R)  for some 1 < t 5 n/2, (ii) I T Y - ( Z ) ~  5 6/lx12 for 
sufficientlly small 6 > 0, (iii) certain smallness condition on V - ;  (S) 
under additional technical conditions. We also deal with the case 
b + 0 and basically our assumption on b is the same as in 151. 

2 Main Results 

To state our results we first recall the definitions of Iin(Q) and Ft(R). 
V E Lio,(Rn) is said to be of the Kate class Kn if 

where BT(5) = {y E Rnllz - yI < r }  for r > 0. For 1 5 t 5 n/2, 
V E Lfo,(R") is said to be of the Fefferman and Phong class Ft if 

We say V E Kn(R)  (resp. V E Ft(s2)) if xnl' E I i n  (resp. xnV E Ft), 
where XQ is the characteristic function of R. We note that Fn/2 = 
L"12(R") C F; C F, for 1 6 s 6 2 6 71/2 and weak-L"12(R") C Ft 
for every t E: 1,n/2);  1' E K,(R) implies V E Fl(R); and that 
L"12(R) and K,(R) are incomparable for n 2 3. 

For 1 < t 5 n/2, we 
define the function space Qt(R)  by Qt(R) = {V = V1 + V2; V1 E 

We introduce some functional spa.ces. 
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Kn(R), V2 E &(a)} and set 

v= vl+ vz EQ t (0) 
q(r; 2; V) = inf { q K ( r ;  XE,(z)nRVl)+ II xE,(z)nnV2 IIF~) 

For 1 < t 5 n/2 and E > 0, V E Qt(R)  is said to be in M ( Q ; t , e )  if; 
(6) 

(a) V -  satisfies limr,o(supzER q ( ~ ;  x; V-)) 5 E .  

(b) For every z, E R7 there exists ro > 0 such that Ix-z,lIVV(z)l 
E Q t ( B r , ( x o )  n 0). 

For b, V,  (for W ,  see REMARK 2), we wsume 
ASSUMPTION (A.1) :  

(i) V E M(R; t ,  E )  for a sufficiently small E = ~ ( n ,  t ,  A, r). 
(ii) For every x, E R 

lim q(r ;  x,; (2V + (x - 2,) - VV)-)  = 0, 
r+O 

k-ca liin q(r,; 2,; V - x ( V - > k ) )  = 0. (7) 

(iii) When b(x) + 0, for every x, E 52, there exists f : (O,r,) + R+ 
and C > 0 such that f is iiondecreasing on (0, r,), lim,,o f ( r )  = 
0, and for every x E BTO(xo) n 52 

To obtain the property (S) for L ,  we require an additional 
ASSUMPTION (A.2): For every zo E R 

Theorem 1 Suppose that (A. l )  and (A.2) are satisfied. Then L has 
the property ( S )  in R for lV:L(R)-solutions. 
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Theorem 2 Suppose that (A . l )  is satisfied. Then L has the fol- 
lowing property (PI in 52 for 1V:L(R)-soZutions: If u E W;;(R) is 
a weak solution of (1) in S2 and satisfies, for some x, E R and 
A , a  > 0, Lo, u2dz = o(exp(-$)) (10) 

as T + 0, then u 3 0 in 0. 

To obtain the property (W) for L ,  we can weaken our conditions. 
ASSUMPTION (C): 

(i) V E A 4 ( 5 2 ; t , c )  for some 1 < t 5 n/2 and a sufficiently small 
= +, t ,  A, r). 

(ii) When b(x) f 0, for every z, E 52, there exist r ,  > 0, C > 0 
and a sufficiently small c(n, A, I?) > 0 such that 

Theorem 3 Suppose that (2), (3) and Assumption ( C )  is satisfied. 
Then L has the property ( 1 4 ' )  in R for lV/$(R)-solutions. 

We should mention several remarks on Theorems 1, 2 and 3. 
REMARK 1: We obtain Theorems 1, 2 and 3 by strong quantita- 

tive estimates; for example, under (A.l) and (A.2), for weak solutions 
u of (l) ,  we have 

for 0 < r 5 r*/2, where C1 depends on u,n,t,A,I' ,  and the local 
properties of b, V ,  and 14' at x, and r*(< r,) on n, t ,  A, I', and 
the local properties of b, V ,  and 1V at 2,. For the details, see [8, 
Theorem 1.1, 1.2, l.G]. 

REMARK 2: When 1V + 0, the property (W) for L also holds un- 
der W+,(lx-x,lTV+)* E Qt(B,,(z,)nS2) and lIV-(z)l 5 -j Ix-xol for a 
sufficiently small S( n,  A, I?) > 0; (P) under lim,.,o q( r ;  so; W+ + ((2 - 

6 n,XJ 
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Z,IW+)~) = 0 and lW-(z)l 5 C w ;  I - z o  (S) under Ji '"(q(r; x,; W+)  
+Jq(r;  xo; (Iz - ~ , l l Y + ) ~ ) ) / r  dr < +oo. 

REMARK 3: For solutions u E Wfg(R), the condition 
limk,, ~ ( r , ;  x,; V-x(v-,k)) = 0 in ( A . l )  can be removed, because 
we do not need (STEP 2) in the proof of Theorems (see section 3). 

REMARK 4: When 2V + (z - z,) - VV 2 0 a.e. x E B,.o(xO), 
then the property (S) is satisfied without the smallness assumption 
lim,+o suprEn q ( ~ ; z ; V - )  5 E on V- in some special case (see [8, 
Theorem 1.51). However, in general, this smallness condition cannot 
be removed (see [14]). 

REMARK 5: For A ( z )  = ( & j ) ,  the condition (b) in the definition 
of M(R;  t ;  6 )  can be relaxed by (z - 2,) - VV(z) E Qt(BTo(zO))  n R). 

Theorems 1, 2, 3 extend the results in [4], [5] which assumes 
V z 0 and stronger pointwise condition (see section 1)  on W in 
our terminology; Theorem 1 is a partial extension of the result in 
[2] to general A ( z ) ;  the property (P) is studied in [5] and [3], and 
Theorem 2 extends their results to tlie operator L with more singular 
V. 

Let us clarify how do our theorems extend the previous works by 
using the following example. 

EXAMPLE 1: Let V ( z )  = Ii'hl- - L , v , ,  X where 
1i'6,L7,6,7 2 0 are constants. When y > 0, V satisfies ( A . l )  and 
(A.2) and Theorem 1 yields the property (S) for general A and b 
satisfying (2)-(3), (8) with f ( t ) / t  dt < t o o .  The results in [4], [5] 
only assure (W) (see [5, Theorem 1.31) for general elliptic equations 
with this potential V in the case 0 5 6,7 5 1; the ones in [2] are 
applicable for 6,7 2 0 and sufficiently small Lo,li'o, but those are 
restricted in the special case A ( z )  = ( b i j ) l < i , j < n  and b 3 0 (cf. [ l l ] ) .  

EXAMPLE 2: Consider the operator L = - Egl AZi + V in R C 
Rn and V = -xEl &,, where zi,R; E R", u 2 3, i = l , - . - , N  
( N  2 1) and n = vN. Since V,  (z - 2,) .VV E I<, we can apply 
Theorem 3, and Theorem 2 for solutions u E IY&(R) of Lu = 0. 
However, for N > 1 previous results do not yield unique continuation 
property for L. 

$9 
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3 Sketch of the Proof of Theorems 

The basic idea of the proof is to combine Garofalo and Lin's varia- 
tional method and the inequality: 

for V E Ft (1 < t 5 n/2)  and for every T > 0,y E R", and u E 
Cm(Rn). See [8] for the extension of this inequality and its proof. 
(STEP 1) First we use the geometric reduction procedure of [l]. We 
fix a point x, in  0, then the equt ion (1) is reduced to 

where M is the Riemannian manifold (BTo(xo) ,  G) for sufficiently 
small T ,  > 0 and bAf = G(b/JTj),V, = V/,/ij, WM = W/JTj, and 
p(z )  is a Lipschitz function satisfying p(z,) = 1, I%(., t ) l  5 A I ,  1-11 5 
p(x) 5 1-12 for some positive constants A l , p l ,  and 1-12 which depend 
only on n,X, and I'. Here G(x) = ( g i j ( ~ ) ) ~ ~ j , j ~ , - ,  is determined by 
A(z) as follows: 

. .  
j ; j (  x) = arJ( z)(detA(z))'l(n-2), 

gij (z) = P( z)gij( z), 

where g = Idet(G)I, A-'(x) = (aij(z))l<i,jsn, (@) = (g)ij-', and 
d i v M ,  VM are the intrinsic divergence and gradient i n  the metric G. 
Note that ~ ( x )  is the geodesic distance from z, to x in the metric gjj 
(cf. [ l ,  p. 4271). 

Therefore, to prove Theorems we may assume x, = 0 and study 
the local properties of solutions for the equation (14) on M = (B,,, G), 
B,, = BTo(0). 
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(STEP 2 )  We approximate the solution u of (14) by the ones of 
the following boundary value problem: 

-divM(pVMv) + ( b k ) M  * VMV + ( & ) ~ v  -k ( 1 v k ) ~ v  = 0 in B R ~ ,  

v = u on ~ B R ~ ,  (15) 

where fk, for each k > 0, is defined by fk(z) = f(z) (if lf(z)I 5 k), 
= k (if f(z) > k), = -k (if f(z) < -k) for any function f, and 
b k  = ( (b j )k ) l< j<n-  

There exists a sufficiently small R1 > 0 depending only on n ,  t ,  
A ,  r, and the local properties of b and V at  0 such that the problem 
(15) has a unique weak solution v = uk E W l ; c ( B ~ l )  and uk satisfies 
l l u k  - u ~ ~ H I , ~ ( B ~ , )  4 0 as b -+ +oo (see [8, Lemma 4.21). 

2 2  

(STEP 3) Define 

- 1 (2 - VMU)1/V,jfU dvM, 
T J% 

and H k ( r ) , I k ( r )  and N ~ ( T )  by using (lG), ( 1 7 )  for functions bk, Vk, 
W k ,  and uk instead of b , V , W ,  and u. We use the following identity 
(see [8, Lemma 4.11) for uk obtained in (STEP 2 ) .  

Let u E 1V2*2(Dr,) satisfy (14) a.e. on Bra. Assume that V, W, lbI2 
E Q t ( 0 )  for some 1 < t 5 n / 2 ,  and there exists r ,  > 0 such that 
IzllVV(z)I E Qt(Br, n 0). Then, for a sufficiently small R1 = 
Rl(n,A,r) > 0 and for a.e. T E (O,R1), we have 

n - 2  
I'( T )  = ---I( T ' )  + 2 puz d S M  -f J (  T ;  w) + &( T )  

T 
r 
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where up = ( X / I X I )  * V M U ,  InO(r)I 5 ~ ( S B ,  1vM1U2 dvM + D(r ) )*  
(STEP 4) Let ( A . l )  and (A .2)  be satisfied. By using (13), [3, 

Lemma 1.11 and (18), we compute N i ( r ) / N k ( r )  and obtain 

T E (O,R1), k = 1,2,..., for some C,C, > 0, where ~ ( r ;  U )  = 
~ ( r ;  0; U )  and 

O ( T )  = q(r;  (2V -t X * vv)-) + q(r;  W+) + Jq(r ;  (I.lw+)2). 

(STEP 5) By using -$(log(*)) = 2 F  -I- O( l) ,  we have 

Taking k + +oo of (20), we obtain 

where C2 depends oiily 011 n, t ,  A ,  I' and C3 on n, t ,  A, r, and the local 
properties of b, V ,  and IV at 0. This implies Theorem 1. Theorem 2 
and Theorem 3 can be proved in the same way. 
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Topics in the Spectral Methods 
in Numerical Computation - 
Product Formulas 

S. T. Kuroda 
Department of Mathematics 
Gakushuim University 
Mejiro, Tokyo 171 Japan 

1 Introduction 

This article is a brief account on some aspects of the combined use of 
product formulas of Lie-Trotter type and the Fast Fourier Transform 
(FFT) for solving the Schrodinger evolution equation 

(1) 
a 
at 

i - ~ ( z , t )  = (-A -t V ( X ) ) U ( Z , ~ )  

and for computing eigenfunctions and eigenvalues of the operator 
-A + V .  Here, V(z) is a real valued function. The use of the 
product formula for this purpose goes back to [4] and the combined 
use with the FFT is due to 121. 

The idea of [2] is as follows. Let A = -A and B = V .  Then 
exp(-itA) and e>cp(-itB) are multiplication operators, one in the 
Fourier ((-)space and the other in the configuration (z-)space, re- 
spectively. Therefore, products like {exp( - i ( t /n )A)  exp(-(t/n)B)}n 
can be computed easily by going back and forth between these spaces. 
The transformation between 2- and (-spaces can be implemented 
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very efficiently by means of the FFT, which requires only O ( N  log N )  
multiplications for a problem with N mesh points. Using this idea 
for solving (l), [a] develops a method, which may be called “numer- 
ical spectroscopy,’’ for simultaneously computing all eigenvalues in a 
wide energy range. Motivated by [2], [5] proposed a method, which 
may be called “numerical resonant excitation” for computing a par- 
ticular eigenfunction and the associated eigenvalue very accurately. 
[2] and [5] also contain ample numerical examples. 

In this article we shall focus our attention on product formulas 
and shall exploit various product formulas which may be used for 
the numerical procedure mentioned above. Not only a formula itself 
but the order of error is of interest. In Section 2.2 we shall list a few 
formulas with the order of error (for bounded generators). Some of 
these formulas seem not to have been noticed in the literature. Pos- 
sibilities of applying these formulas will also be discussed in Section 
2.3. Some remarks given i n  the talk on the methods developed in [2] 
and [5], especially on a way of handling remote eigenvalues in [2] will 
be reported elsewhere. 

2 Product Formulas 

2.1 Preliminaries 

In this section we consider an abstract evolution equatioii in a Banach 
space X. The equation and its solution with the initial data uo are 
written as 

d 
- u ( t )  = Cu(t ) ,  t > 0; u ( t )  = exp(tC)uo. 
dt 

We assume that the generator C and other operators appearing later 
are all bounded linear operators in X. The reason for assuming the 
boundedness is twofold. Firstly, it  makes the error estimate simpler, 
and secondly, in applications, product formulas will be applied after 
discretization, i.e., in a finite-dimensional space. 

The product formulas we shall discuss are written generally as 

exp(tC) = lim F( t /n )n .  
n-+w (3) 
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Here, F ( t )  is an approximation of exp(tC) for small t .  We may call 
it  a unit increment of the product approximation. The order of error 
(for large n)  in ( 3 )  is related to the order of error (for small t )  in the 
unit increment. Namely, it can be seen by a standard argument (cf. 
[6 ] ,  p. 295) that 

2.2 List of Formulas 

We are interested in two cases C = A t B and C = [ A , B ]  and shall 
list several product formulas. Since F is related to A and B we write 
F( t ;  A ,  B )  instead of F( t ) .  In this list we use eA instead of exp(A). 
No. 1-No. 5 and No. 8 are main formulas. No. 6 and No. 7 will be 
used in the proof of No. 3, p in the last column is p of O ( P )  in (4). 

F( t ;  A ,  B )  P 

e tAe tB  2 
e tA /2e tBe tA/2  3 

I )  4 +& 

d" 
t e- &A - 4 1 3  e J t ~  e J t ~  1 
etAI2etBetAl2 + i t 3 [ A / 2  t B ,  [ A / 2 ,  B ] ]  

- t 3 [ A / 2  + B ,  ( 4 2 ,  B ] ]  

e tA/2e tBetA12 

1 t A / 2  ,t B -1 A / 2  -2t B e-  t A / 2  ,t B ,t A / 2  - 

3 / 2  e , I l ~ e J t ~ e - J t ~  e - d 7 ~  

I \ / ~ A ~ J ~ B ~ - J ~ A ~ - J ~ B  

2 

4 

, tA /2 , tBe - tA /2 , -2 tBe- tA /2e tBe tA/2  

4 

4 extA eu tB ,y tAev tBey tAeu tBex tA  



216 S .  T .  Kuroda 

In No. 8 u, v, x, y are given as 

= 1 . 3 5 1 * * * ,  = 1 - 221 = - 1 . 7 0 2 * * . ,  

No. 1 is the classical Lie formula and No. 2 is its symmetrized 
form used in [4] and [2]. No. 4 is also well-known ( [ 8 ] ,  p. 99; see also 
[l] [3] for more recent developments). 

No. 3 is a fourth order formula. Its feature is that the unit incre- 
ment F contains only operators which remain bounded even when 
A and B are unbounded. (There are fourth order formulas with F 
containing A,  B outside exponential factors. One example is (2.10) of 
[4] which has terms with double commutators sandwiched by expo- 
nential factors. Or, even the Taylor expansion up to the third order 
term may be regarded as such a formula.) 

A few words on the proof of No. 3 and No. 5. Our only tool is 
brutal computations of Taylor coefficients. First, we try to improve 
the order of error of No. 2 by 1 and obtain No. 6. On the other 
hand, as suggested by (2.2.10) of [S], which is a third order formula, 
we obtain No. 7. No. G and No. 7 contain the same double commu- 
tator. They cancel each other to give No. 3. The remainder of the 
approximation No. 4 is computed as -2-'t3/*[A + B ,  [A, B ] ]  + O(t2) .  
We can replace A,  B by - A ,  -B  without changing [A, B].  Adding 
these two formulas we obtain No. 5. 

When A and B are both skew-adjoint, F in No. 1 and No. 2 
are unitary. No. 3 does not have this advantage. Recently we have 
found an order 4 formula in  which F is a product of seven exponential 
factors, so that it is unitary in skew-adjoint case. That is No. 8. The 
proof of No. 8 requires systematic computation of Taylor coefficients. 

Remark 1. The Baker-Campbell-Hausdroff formula expresses 
exp(tA1) ".exp(tA,) as exp(C(t)) where the coefficients of the ex- 
pansion of C(t )  in t involves multi-commutators of Ak. The Zassen- 
haus formula and its generalization (cf. [7]) is a kind of product for- 
mula, but again mu1 ti-commu tators appear in  exponential functions. 
For our application it is important that only scalar multiples of A 
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or B appear in each exponential factor. It is true that, say, No. 2 
is easily derived from the B-C-H formula, and possibly others, too. 
We found, however, that a simple minded manipulation of Taylor 
coefficients will be less (or a t  most equally) complicated for a quick 
derivation of higher order formulas. 

A more systematic analysis of these formulas with estimates will 
be published elsewhere. 

2.3 An Application 

Formula No. 5 may be used to solve numerically a Schrodinger oper- 
ator with variable higher order coefficients by the method mentioned 
in Section 1. In this subsection we pretend that formulas like No. 3 
and No. 5 remain valid also for unbounded operators. In fact, un- 
der suitable assumptions on the smoothness of the coefficients, these 
formulas are valid if O(tp)  is interpreted with respect to a suitable 
norm. 

Assuming for simplicity that the second order terms have con- 
stant coefficients, we consider the operator 

n 

H = C(-i& + b k ( z ) ) 2  + q(z) 
k=l 

n 

= -A - C ( 2 i b k ( X ) a k  + i a k b k  - b i ) + q ( z )  (6) 
k= 1 

acting in L2(Rn). Here, a k  = & and b k ,  q are real functions. We 
D U t  

We now apply No. 5. Using the notation 

~ ( t ;  A ,  B )  = e f A e t E e - f A e - t B  
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and noting that repetitions of No. 1 also give rise to an error of order 
O ( t z ) ,  we obtain 

n 

k=I 

+ F ( - G ;  a;, B k ) }  + O(t2) .  

The result of a numerical test of this formula for n = 2 is promising. 
The details will be left to  future research. 

Even when second order coefficients are variable, a similar for- 
mula can be derived, but it becomes rather complicated. We have 
not yet tested the feasibility of such a formula in the numerical com- 
putation. 
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Abstract 

The ground state energy of an atom of nuclear charge Z e  and 
in a magnetic field B is evaluated exactly in the asymptotic regime 
Z + 00. We present the results of a rigorous analysis that reveals the 
existence of 5 regions as Z + 00: B << Z4I3, B M Z4I3, Z4I3 << B << 
Z 3 ,  B M Z 3 ,  B >> Z 3 .  Different regions have different physics and 
different asymptotic theories. Regions 1,2,3,5 are described exactly 
by a simple density functional theory, but only in regions 1,2,3 is it  of 
the semiclassical Thomas-Fermi form. Region 4 cannot be described 
exactly by any simple density functional theory; surprisingly, it can 
be described by a simple density matrix functional theory. 

1 Introduction 

In these talks we shall discuss the effect on matter, specifically the 
ground state of atoms, of a very strong magnetic field. Results ob- 
tained in collaboration with J. Yngvason will be summarized and 
details will appear elsewhere [9]. The physical motivation for study- 
ing extremely strong magnetic fields of the order of 10'2-1013 Gauss 
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is that they are supposed to exist on the surface of neutron stars. 
This study was essentially begun in the early 70’s with the work of 
Kadomtsev [5], Rudernian [12] and Mueller, Rau and Spruch [ll]; see 
[l] and [2] for further references. The argument given to  explain these 
strong fields is that in the collapse, resulting in the neutron star, the 
magnetic field lines are trapped and thus become very dense. The 
structure of matter in strong magnetic fields is, therefore, a question 
of considerable interest in astrophysics. Mathematically, the problem 
turns out to involve an interesting exercise in semiclassical analysis. 

We use units in which e = h = 2me = 1. The natural unit of 
length is h2/2mee2, i.e., half the Bohr radius. The natural unit of 
magnetic field strength that we shall use is (2me)2e3~/h3 = 9.4 x lo9 
Gauss. This is the field for which the magnetic length d m  equals 
half the Bohr radius. Thus, in our units, B z lo2 - lo3 for some 
neutron stars. 

The atomic nucleus of principal interest on the surface of a neu- 
tron star is presumably iron with 2 = 2G. This number is large and 
hence it is sensible to ask (rigorously) about the limit of the ground 
state energy of an atom as 2 + 00. We shall calculate this limit 
exactly; its application to 2 = 26 instead of 2 = 00 will entail some 
errors - for which we can give bounds. 

2 Main Results 

To give the quantum mechanical energy of a charged spin-f particle 
in a magnetic field B, we have to make a choice of vector potential 
A(z), satisfying B = V x A. The energy is then given by the Pauli 
Hamil tonian 

Here p = -iV and cr = (01, u2, us), are the Pauli matrices. We can 
also write H A  = (p - A)2 - B - cr. We shall here concentrate on the 
case where B is constant, say B = (O,O, B ) ,  with B 2 0. We choose 
A = fB x X. 

The Hamiltonian describing an atom with N electrons and nu- 
clear charge 2 (with fixed nucleus) in a constant magnetic field B 
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N 
The operator H N  acts on the Hilbert space ' H N  = A L2(R3; C2) of 
antisymmetric (i.e., fermionic) spinor-valued functions. We are in- 
terested in E ( N ,  B ,  2 )  = inf specx, H N ,  the ground state energy 
Of H N .  

We want to let B and 2 go to infinity. It is surprising, but true, 
that there are five different regimes in B and 2, depending on the 
relative magnitudes of B and 2. In the following p(z)  is the electron 
density in the ground state +: 

The five regions are the following. 

1. B << Z413, 2 large: The effect of the magnetic field is negligible. 
Standard Thomas-Fermi (TF) theory is exact as 2 -, 00, and 
therefore the electron density is spherical to leading order. 

2. B N Z4I3, 2 Zurge: The magnetic field becomes important 
but the density is still almost spherical and stable atoms are 
almost neutral (see [14]). A modified TF theory (depending on 
the constant B/Z413), in which the energy, as in standard TF 
theory, is approximated by a functional of the density p alone, 
is exact as 2 + 00. We call this functional the Magnetic 
Thomas-Fermi (MTF) functional (see Sect. 4 below). 

3. Z413 << B << Z3, 2 large': The magnetic field is increasingly 
important. To leading order all electrons will be confined to 
the lowest Landau band. The modified TF theory is still ex- 
act as 2 -, 00. In fact, the modified TF theory simplifies 
somewhat in this region compared to the MTF functional from 
the previous region. We call the new functional the Strong 
Thomas-Fermi (STF) functional. The only difference between 
STF and standard TF theory is that the usual p513 is replaced 
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by p3/B2, while in the MTF theory from the previous region 
the function that replaces p5/3 is more complicated (see (8) 
below). The density is almost spherical and stable atoms are 
almost neutral. Furthermore, the atom is getting smaller. The 
atomic radius behaves like Z'I5 B-2/5  = Z-'I3( B/Z4/3)-2/5. 

4. B N Z3, 2 large: The modified TF theories are no longer 
applicable. Indeed, we shall in general not approximate the 
energy by functionals of the density p alone. The energy is 
approximated by a more complicated functional to be described 
below in Sect. 4 depending on a one particle density matrix. We 
call this functional the Density Matrix (DM) functional. When 
BIZ3 is large enough this functional again reduces to a density 
functional. For the first time the atom is no longer spherical to 
leading order. The length scale of the atom behaves like 2-' 
and the energy like Z3. 

5. B > Z3, 2 large: In this hyper-strong case the atom is es- 
sentially one-dimensional. We can find a new functional, the 
Hyper-Strong (HS) functional depending only on the one-di- 
mensional density 7 obtained from p by integrating p over the 
directions perpendicular to the field B, i.e., 

The energy behaves like 29/5B2/5 = Z7I3(B/Z  4/3 ) 2/5 . 

p ( 2 3 )  = //p(xl,X?,X3)d2ld+2 - 
The energy behaves like 23[ln(B/23)]2 and the length scale 
along the magnetic field is 2-'[1n(B/Z3)]-', while the radius 
perpendicular to the field is Z- ' (B /Z3) - ' /2 .  

The mathematically more precise statements of these results in- 
volve two energy functions E M T F ( N ,  B ,  2) and E D M ( N ,  B ,  2). The 
energy EMTF is obtained as the minimum of the magnetic Thomas- 
Fermi functional mentioned under 2 above, and EDM is the minimum 
of the density matrix functional mentioned under 4. The exact defi- 
nitions of these functionals are given in Sect. 4 below. 

The energies EMTF and EDM correspond to unique minimizers 
for the respective functionds. We denote the densities for these 
minimizers by PMTF and PDM respectively. 
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In the case when B = 0 the energy EMTF(N,O,Z) is the energy 
of standard TF theory. It is known [8] (see also [ S ] )  that TF theory 
is asymptotically exact as Z + 00 with N / Z  fixed, i.e., 

E M T F ( N , O , Z ) / E ( N , O , Z )  -+ 1 as Z -+ 00. 

Is the same true when B # O? The answer, surprisingly, depends 
on the relative magnitudes of B and 2, according to the 5 regions 
outlined above. 

THEOREM 1 Let N / Z  be fixed and suppose BIZ3 -+ 0 as Z -+ 00. 

Then 

E M T F ( N ,  B ,  Z ) / E ( N ,  B ,  2)  -+ 1 as Z -+ 00. 

This theorem covers the regions 1-3 above. For the regions 4 and 
5 we have 

THEOREM 2 Let N / Z  be fixed and suppose B/Z4I3 -+ 00 as Z -+ 

00. Then 

Notice that there is an overlap of the regions of validity of the 

The energy functions satisfy the scalings 
two theorems. In fact, both theorems cover region 3 above. 

E M T F ( N ,  B ,  z) = z7/3~MTF(~/z ,  B / z ~ / ~ ,  1) 

and 
EDM(N,B,Z) = Z3EDM(N/Z,B/Z3,1) 

In region 2 there is a non-trivial parameter B/Z4I3. Likewise in 
region 4 there is BIZ3. In the other three regions these parameters 
enter in a trivial way since they are tending either to 0 or 00. 

Region 1 corresponds to B/Z4I3 + 0 and B/Z3 -+ 0 in which 
case 

EMTF(N/Z, 1 )  + EMTF(N/Z, 0 ,1 ) ,  
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which is the energy of standard TF theory. 

asymptotic expansion 

E M T F ( N / Z , B / Z ~ / ~ ,  1) X (B/z4/3)2/5E~~~(N/Z) as + 00 , 
where E ~ T F  is an energy function obtained from the simplified TF 
theory described under 3 above. 

The overlap of the regions of validity of Theorems 1 and 2 implies 
that 

Region 3 corresponds to B/Z4i3  -, 00, in which case we have the 

E D M ( N / Z , B / Z ~ ,  1) X ( B / z 3 ) 2 / 5 E s ~ ~ ( N / z )  as B I Z 3  -+ 0 . 
Finally, region 5 corresponds to BIZ3 -+ 00, where the following 
asymptotic formula holds 

E D M ( N / Z , B / Z ~ ,  1) X [~I~ (B/Z~) ]~EHS(N/Z)  as B I Z 3  -+ 00 , 
where EHS is an energy function obtained from the one-dimensional 
functional mentioned in 5 above. 

The energies EMTF, EDM, E ~ T F  and EHS correspond to  unique 
minimizers for the respective functionals. We denote the densities 
for these minimizers by PMTF, PDM, p s ~ ~  and pHs respectively. We 
can prove that these densities approximate the quantum density p. 
However, to state these approximations we have to introduce different 
scalings in the different regions. In fact, the above approximating 
densities satisfy the following scaling relations 

THEOREM 3 (Convergence of the density) In the five difler- 
ent regions the following relations hold as Z -, 00. These limits are 
all in weak L:,,= : 
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(1-2) If B/Z4I3 -+ /3, where 0 5 /3 < 00 and if N I Z  = A is fixed 
then 

z - ~ ~ ( z - ' / ~ x )  ~MTF(x; X,P, 1) . 
(3) If B/Z4I3 + 00 and N I Z  = X is fixed then 

(4) If BIZ3 + q, wh.ere 0 < q < 00 and N I Z  = X is fixed then 

z - 4 P D M ( z - ' 2 )  P D M ( x ;  A, 7 ~ 1 )  - 
(5) If BIZ3 + 00 and N I Z  = X is fixed then 

1 
Z21n(B/Z3)' ( Zln(B/Z3) 

3 The One-Body Hamiltonian 

The spectrum of the one-body Hamiltonian H A  is described by the 
Landau bands cpv = 2Bu + p2, where p is the momentum along the 
field and u = 0 , 1 , 2 , .  . . is the index of the band. Owing to the spin 
degeneracy, the higher bands, v 2 1, are twice as degenerate as the 
lowest band u = 0. 

To calculate the energy of a large, complex atom one must first 
study the one-body Hamiltonian H = H A  + V(x), where V is an 
external potential. As usual, to calculate the ground state energy of a 
fermionic system we need to  know the sum of the negative eigenvalues 
of the operator H (with V 5 0 for simplicity). 

In order to estimate accurately the sum of the negative eigenval- 
ues of H A  -+ V ( x )  we need two things: (i) a lower bound for this 
quantity and (ii) an asymptotic (or semiclassical) limit formula for 
the quantity. These are provided by Theorems 4 and 5 below. The 
bound (i) is needed to control errors between the true answer and 
the semiclassical approximation. The semiclassical limit turns out to 
be relevant here (after some suitable scaling) because it is equivalent 
to  the limit Z -+ 00. 
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There is an important difference between H A  and the operator 
(p - A)2 which has no spin dependence. While the spectrum of 
(p - A)2 is ( B ,  m) the spectrum of H A  is (0, m). Indeed, one can 
bound the sum of the negative eigenvalues of (p - A)2 - V ( z )  by 
- L  J I V ( Z ) ~ ~ / ~  dx, (where L is some fixed constant) according to the 
standard Lieb-Thirring inequality (even with a magnetic field the 
proof of this inequality given in [lo] is still correct if one appeals to the 
diamagnetic inequality). However, in the case Of HA+V the question 
is somewhat more subtle. In fact, if JIV13/2 < 00, the operator 
(p - A)2 + V has a finite number of negative eigenvalues, while 
the operator H A  + V can have infinitely many negative eigenvalues 
(compare [4]). We can, however, prove [9] the following bound which 
is important in our proofs. 

THEOREM 4 There exist universal constants L1, L2 > 0 such that 
if we let e j (B ,  V ) ,  j = 1,2, .  . . denote the negative eigenvalues of 
H A  + V with V 5 0 then 

We can choose L1 as close to 2/3n as we please, compensating with 
L2 large. 

The first term on the right side is a contribution from the lowest 

We now ask the question of a semiclassical analog of (4). Thus, 
band, u = 0. For large B this is the leading term. 

consider the operator 

W P  - ba(4) - gl2 t w 9 ( 5 )  

where a($) = t i  x x, i = (O,O, 1) and v 5 0.  
If one computes the leading term in h-’ of the sum of the negative 

eigenvalues of ( 5 )  for fixed b one finds as in [3] that there is no b 
dependence. In our case, however, we shall not assume b fixed, or 
more precisely not assume that b is small compared with h-’. The 
reason for this is that in the application to neutron stars it is not 
true, as we shall discuss below, that b << h-l. 
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The interesting fact is, however, that we can prove ([9]) a semi- 
classical formula for the sum of the negative eigenvalues of the oper- 
ator ( 5 ) ,  which holds uniformly in 6 (even for large 6 ) .  

THEOREM 5 Let e j (h ,  6 ,  v), j = 1,. . . , denote the negative eigen- 
values of the operator (5), with v 5 0. Then 

uniformly in 6 ,  where Escl is the semiclassical approximation defined 
6Y 

00 

Esd(h, b, 4 = - 3 h-26/(Iv(x)13/2 + 2 x [ l v ( x ) l  - 2v6h]y2)  d3x . 

Here [t]+ = t if t > 0, zero otherwise. 

u=l  

(6) 

The formula (6) was already implicitly noted in [14]. The inte- 
grand in ( 6 )  looks peculiar, but it has the following simple physical 
interpretation. Take a cubic box of volume L3 in R3 and let the 
number p > 0 be some fixed Fermi level (or chemical potential). 
Then add together all the negative eigenvalues of H A  - p. In the 
thermodynamic limit (large L )  we can do this addition simply by us- 
ing the known Landau levels, and the total energy per unit volume 
is the integrand in (G)  in which Iv(x)I is set equal to p. 

For 6h < 1, the right side of (6) reduces to the standard semi- 
classical formula from [3], 

(Recall that we are counting the spin which accounts for the 2 in 
front of the sum in ( G ) . )  For bh >> 1, the sum in (6) is negligible, 
and we are left with the first term. 

Formula (6) (with h replaced by 1) can be compared with the 
Lieb-Thirring inequality (4), which holds even outside the semiclas- 
sical regime. The two terms in (4) correspond to respectively the 
b + 00 (first term) and 6 + 0 (last term) asymptotics of (6) . 
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As we know from elementary thermodynamics, the energy per 
unit volume as a function of the particle density (p(z )  in our case) 
is the Legendre transform of the pressure as a function of the chem- 
ical potential (Iv(z)I). Thus, corresponding to -(2/15~~)1v(z)1~/~ 
in (7), there is the energy ( 3 / 5 ) ( 3 ~ ~ ) ~ / ~ p ( z ) ~ / ~ ,  which is the usual 
kinetic energy expression in TF theory. Likewise, corresponding to 
(6) there is a kinetic energy which we call w ~ ( p ( z ) ) .  It is no longer 
proportional to p ( ~ ) ~ / ~  but it is still a convex function of p(z) .  It  is 
proportional to p(z)”lB2 for small p,  while it is asymptotically equal 
to  ( 3 / 5 ) ( 3 ~ ’ ) ~ / ~ p ( z ) ~ / ~  as p(s)  -+ 00. 

4 The Many-Electron Atom 

The essential ingredient in the study of the many-electron Hamilto- 
nian HN is to reduce it to a one-electron problem H A  -t l&(z) with 
an effective mean field potential V e ~ ( z )  = -Z/lzI+J lz-yl-’p(y)d3y. 
This reduction involves approximating the repulsive energy 

in the ground state + by 

In standard TF theory the justification of this approximation is 
done by using the correlation inequality of Lieb and Oxford (see [6] 
and [7]). This very same argument (and inequality) work in the pres- 
ence of a magnetic field. If B is not too large compared with Z it 
continues to  be effective. However, in the hyper-strong case B >> Z 3  
the argument is no longer effective, the reason being that the corre- 
lation estimate is three dimensional in nature, while the atom is now 
effectively one-dimensional. The proof of a correlation estimate ap- 
plicable in the hyper-strong case is difficult and will appear elsewhere 
“91). 

The density p appearing in the mean field potential V e ~  will not 
be taken to  be the exact (unknown) density of the ground state, 
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but rather an approximation to the exact density obtained from the 
density functionals that we shall now define. 

Armed with the foregoing, we introduce a (magnetic field depen- 
dent) TF theory by means of the following functional of the unknown 
electron density p(z): 

It differs from the usual TF functional only in the replacement of 
( c ~ n s t . ) p ( z ) ~ / ~  by w ~ ( p ( z ) ) .  We call this functional the Magnetic 
Thomas-Fermi Functional. It is studied in detail in [9]. The 
paper [13] seems to be the earliest reference that uses a Thomas- 
Fermi theory that takes all Landau levels into account. This theory 
was also studied in [a] and put on a rigorous basis in [14] for the 
regime B N Z4I3. 

We now choose our density p to be the unique minimizer for EMTF 
constrained to the set J p  5 N .  We define the energy function that 
appears in Theorem 1 to be the infimum 

Theorems 4 and 5 play an essential role in the proof of Theorem 1. 
What makes the proof work when B << Z 3  is the fact that in the 
analysis of the mean-field, one-particle Hamiltonian, H A  + V,s(z), 
with V,n(z) = -Z/ lzI + JIz - ~ I - ~ p ( y ) d ~ y ,  and with p being the 
density that minimizes the TF energy, we are in the semiclassical 
regime. The potential 'I/er(z) has the following behavior in Z and B 

V,ff(z) = Z4/3v(2'/3z) if B 6 Z4i3 
veff(z) = z 4/5B2/5v(Z- ' /5B2/5z)  if B 2 Z4I3, (9) 

where v is a function that does not depend significantly on B and 2. 
Concentrating on the case B 2 Z4I3 we see, by a simple rescal- 

ing, that the Hamiltonisn I€A + Vem(z) is unitarily equivalent to the 
operator 

Z4/5B2/5[((hp - ba(z)) t v(z)], ( 10) 
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where 

In the opposite case, when B & Z4f3, we get Z413 in place of Z4f5B2f5 
in (10) and 

h = (B/Z3)'/' and b = (B2/Z)l15. (11) 

h = Z-'13 and b = B/Z. (12) 

When h is small we can study (10) by semiclassical methods. 
If B >> Z413 we can replace W B ( ~ )  by its asymptotic form and 

we define the Strong Thomas-Fermi functional 

The analysis Of  EMTF and ESTF, which is a separate story in itself, 
leads to  the conclusions stated in 1 , 2  and 3 of Sect. 2. Conclusions 1 
and 2 were proved by Yngvason [14]; 3 is new. Since the TF energy 
functional has a unique minimizing p(z)  (because &MTF is strictly 
convex in p )  this p must be spherically symmetric. Thus we are led 
to the following remarkable conclusion: 

If BIZ3 --+ 0 as Z + 00, the atom is always spherical (to leading 
order) despite the fact that B has a leading order eflect on the ground 
state energy. 

In region 2, B x Z413, we cannot say that all the electrons are in 
the lowest Landau band, but if B >> Z413, they are - as the following 
theorem states precisely. 

THEOREM 6 If I I f  is the projection in the physical Hilbert space 
onto the subspace where all electrons are in the lowest Landau band, 
we can define the confined energy 

Econf(N, B, 2 )  E ground state energy of I I ~ H N I I ~ .  (13) 

Then, i f  N < XZ for some fixed X > 0,  we have that 

E,-,,d(N, B, Z ) / E ( N ,  B, Z) --+ 1 i f  B --+ 00 and if Z4f3/B --+ 0. 
(14) 
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What happens if B M Z3? Semiclassical analysis breaks down 
(in the sense of being no longer asymptotically exact as 2 + 00). 

The atom is no longer spherical. However, the atom is so non- 
semiclassical (one person called it post-modern) that another analysis 
becomes possible. This analysis, which we discuss next, is reminis- 
cent of Hartree theory for bosons - even though it is relevant for 
fermionic electrons! 

It is only the motion parallel to the magnetic field which can 
no longer be described semiclassically. The motion perpendicular to 
the field is still well approximated classically. To be more precise, 
the atom consists of a bundle of one dimensional quantum systems 
indexed by the position 21 = (21,~) perpendicular to the field B. 
The state of one of these one-dimensional systems is described by 
a finite family of orthogonal functions e,,, ( j )  j = 1 , 2 . .  . in L2(R) 

which are not normalized but satisfy lle?)ll 5 B/27r. This condition 
follows from the Pauli principle and the fact that the two-dimensional 
density of states in the lowest Landau band is exactly B/27r. 

We can combine the functions eg) ,  j = 1,2, .  . . into a density 

Then 7 satisfies 

(a) 0 5 r,, 5 (B/27r)I as an operator on L2(R) 

(b) Jn2 T r ~ z p q [ ~ , , ] d 2 x ~  = N = the total number of electrons 

We can now approximate the energy by the functional 

E D M ( N ,  B ,  2)  = inf{€(y) : 7 satisfies (a) and (b) above}. 
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This is the function appearing in Theorem 2. The Pauli principle 
comes into play in this theory only in condition (a). The proof of 
Theorem 2 is straightforward as soon as one has made the reduction 
to a one body problem and realized that condition (a) follows from 
the confinement to  the lowest Landau band. 

The Euler-Lagrange equation for the &DM minimization prob- 
lem implies that the functions e$j are eigenfunctions of the one- 

before, the effective potential is V&(z) = -Z/lzI+J Iz-yl-’p.y(y)d3y 
with pr being the density corresponding to the minimizer 7 for &DM 

dimensional Schrodinger operator h,, = -q d2 - V e ~ ( z )  where, as 

5 The Super Strong Case B >> Z 3  

We shall present here the correct energy functional of the density 
when B >> Z 3 ,  and very briefly indicate what is involved in proving 
the correctness of the approximation. 

The first step is to show that when BIZ3 is larger than some 
critical value then the minimizing 7 for &DM is rank one for every 
21. Since the eigenfunction of T,, must be the ground state of h,, 
we can conclude that it is a positive function. In this case we can 

The functional &M thus becomes a density functional when BIZ3 
write 7&3, Y3) = J p m d m  where P ( 2 )  = P.y(.)’ 

is large enough. 

with the condition that 

Then 

= inf {&ss(p) : / p  5 N , p  satisfies (16) (17) I 
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We can now ask for the limit of &ss if BIZ3 -+ 00, Z -, 00 and 
N / Z  is fixed. With some effort one can prove that &ss then simplifies 
to another functional, which we call the hyper-strong functional 
of a one-dimensional density pl(x), x E IR,. That is, the atom is now 
so thin compared to its length that only the average density and its 
variation along the direction parallel to B matter. 

It is convenient, in defining this average density, to rescale the 
variables. Thus, setting 77 = B/(27rZ3), and taking (2 In q)-' as the 
unit of length, we define 

which has the normalization Jpl(x)dx = N / Z .  The hyper-strong 
functional is 

00 

1 
EHS(P1) - - Jm (-&dz)2dx - P d O )  t 2 J Pl(x)2dx. (19) 

--oo --oo 

In other words, apart from some scalings, the Coulonzb potential is 
replaced by a Diruc delta function! Using (19) we define a rescaled 
energy 

We assert that under the conditions stated above, 

Z3(h  T ~ ) ~ E H s ( N / Z ) / E ( N ,  B, 2)  + 1 

as Z + 00, BIZ3 - 00 and N / Z  is fixed. 
A remarkable fact is that the minimizing p1 can be evaluated 

exactly. The Euler-Lagrange equation is (with $2 = p1 and Lagrange 
multiplier p )  

- li;(x) - +(O)S(X) t $3(x) = -p$,(x). (21) 
With X = N / Z ,  there are solutions only for X 5 2 (not X 5 1 as in 
TF theory): 

+(x) = + for x < 2 

$(x) = d ( 2 +  for X = 2, 
2 S l n h [ ~ ( 2 - - X ) ~ Z ) + C ]  (22) 
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with tanhc  = (2 - X)/2. The energy is 

1 1  1 
4 48 EHS(X) = = - -A + E X 2  - --A3. 
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Algebraic Riccati Equations 
Arising in Game Theory and 
in IP-Control Problems for a 
Class of Abstract Systems 

C. McMillan and R. Triggiani 
University of Virginia 

Abstract 

We consider the abstract framewoin of [4, class , )] whic I 
models a variety of mixed partial diflerential equation problems in 
a smooth bounded doma.in R c R", arbitrary n, with boundary 
L2(0, T ;  aO)-control. These include second-order hyperbolic equa- 
tions, first-order hyperbolic systems, Euler-Bernoulli, Kirchhoff, 
Schroedinger equations, etc. For these dynamics we set and solve 
a min-max game theory problem - a fortiori the Hoo-robust stabi- 
lization problem - in terms of an algebraic Riccati equation to express 
the optimal quantities in pointwise feedback form. 

1 Introduction 

1.1 Problem Setting 

Let U (control) and Y (state) be separable Hilbert spaces. We in- 
trod u ce the following abstract state equation 

G(t)  = Ay(2) t Bu(t)  t Gw(2) in [D(A*)]';  y(0) = yo E Y (1) 

Differential Equations with Copyright @ 1993 by Academic Press, h c .  
Applications to Mathematical All rights of reproduction in any form reserved. 
Physics ISBN 0-12-056740-7 

239 



240 C. McMillan and R. Trigiani 

Here, the function u E L2(0,00; U )  is the control and w E Lz(0, oo; Y) 
is a deterministic disturbance. The dynamics (1) is subject t o  the 
following assumptions, which will be maintained throughout the pa- 
per: 

(H.l) A : Y C D ( A )  - Y is the infinitesimal generator of a strongly 
continuous (s.c.) semigroup eAt on the Hilbert space Y ;  

(H.2) B: continuous U - [D(A*)] ' ;  or, equivalently, A-lB E 
,C(U,Y), where [D(A*)]' denotes the dual of D ( A * )  with re- 
spect to  the Y-topology, and A* is the Y-adjoint of A ;  

(H.3) the following abstract trace regularity holds (see Remark 1.1): 
the operator B*eAlt admits a continuous extension, denoted by 
the same symbol, from Y - L2(0, T ;  V ) :  

where B* is the dual of B ,  satisfies B* E ,C(D(A*),U) after 
identifying [D(A*)]" with D ( A * ) .  

(H.4) G and R are bounded operators on Y, i.e. G, R E L(Y); 

The solution to  the state equation (1) is given explicitly by 

Y( t )  = y(t; Y o )  = eAtYo t (Lu) ( t )  t ( W w ) ( t )  (3) 

where, for the problem (1) defined on the interval [0, TI, 

( ~ u ) ( t )  = J' eA(t-T)Bu(.r)dr (4) 

( W w ) ( t )  = 1 eA(t-T)Gw(.r)d.r ( 5 )  

0 

: continuous L2(0,00; U )  - C([O,T]; Y )  

by duality on (2), and 
1 

: continuous L2(0,00; Y) - C( [o, TI; Y) 

Remark 1.1: Assumption (H.3) = (2) is an abstract trace theory 
property. Over the past ten years, this property has been proved 
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to hold true for many classes of partial differential equations by 
purely P.D.E.’s methods (energy methods either in differential or in 
pseudo-differential form), including: second order hyperbolic equa- 
tions; Euler-Bernoulli, Kirchhoff, and Schroedinger equations; first 
order hyperbolic systems, etc., all in arbitrary space dimensions and 
on explicitly identified spaces; see e.g. [4, class (H.2)]. 

1.2 Game Theory Problem 

For a fixed y > 0, we associate with (1) the cost functional 

4% 4 = 4% 20, Y(U, 4) 
= 1- [IIRY(t>ll; -I- Ilu(t)ll?J - r211w(t>112yldt (6) 

where y ( t )  = y( t ;yo)  is given by (3). The aim of this paper is to 
study the following game-theory problem: 

sup inf J (u ,  w) 
w u  

where the infimum is taken over all u E Lz(0,oo; U), for w fixed, 
and the supremum is taken over all w E L2(O,oo;Y). This problem 
is known to  be equivalent to the so-called Hoo-robust stabilization 
problem [l]. 

In our approach here to problem (7),  we shall critically rely on 
the treatment of [l; sect 51, [a] in the case w E 0. The case where 
eAt exponentially stable (add damping to the mixed partial differen- 
tial equation problems of Remark 1.1) admits a much simpler, fully 
explicit, and more informative treatment [5] .  Here, we shall consider 
the general case [6] .  Another treatment is in [l], which also critically 
falls into [2]. 

1.3 Main Results 

Theorem 1.3.1 Assume (H.l) - (H.4) as well as the “Finite Cost 
Condition” and the “Detectability Condition” (see 141: dl these as- 
sumptions are automatically satisfied for mixed partial diflerential 
equation problems of Remark 1.1). There exists an intrinsic value 
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(critical) 7= > 0 of 7 ,  explicitly defined in terms of the problem data 
in Eq. (29) below, such that: 

(a) if 0 < 7 < yC,  then the supremum in w in (7) leads to +co 
and the min-max problem has no finite solution. 

(b) if 7 > yC, then: 
(i) there exists a unique optimal solution {u*( .  ;yo),w*(.  ; y o ) ;  

Y*( .  ;Yo)> of problem (7); 

(ii) u*(t; YO) = -B*Py*(t;  YO) E L 2 ( 0 , ~ ;  U )  (8) 

where P is the unique bounded, nonnegative self-adjoint operator 
which satisfies the following Algebraic Riccati Equation, ARE7 for 
all x , z  E D(A) :  

with the property 

B*P  E L ( D ( A ) ; Y ) ;  (10) 
(iii) the operator (F stands for “feedback”) 

AF = A - BB*P + T - ~ G G * P  (11) 

is the generator of a S.C. semigroup on Y and, in fact, for yo E Y :  

( A -  BB’ P+ 7-2GG* P ) t  y*(t; YO) = e Yo, t L 0 

and, moreover, the semigroup is uniformly (exponentially) stable on 
Y .  

( 4  y2w*(t;  Y o )  = G*Py*(t; Yo); (13) 

(v) for Y O  E y 

(PYo,Yo) = J * ( y o )  = J(u*,w*,y*)  = s u p i n f J ( u , w , y )  (14) 
w u  

Other properties are given in [GI. 0 
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2 Scheme of Proof of Theorem 1.3.1 

Naturally, the proof proceeds along two main steps, (i) and (ii) below. 

(i) First, one studies the minimization problem inf, J holding 
w E L2(0,00; Y )  fixed. This is a standard, quadratic (strictly con- 
vex) problem, which, for the present abstract class, can be studied 
following the methods of [2, sects 4, 51: one first studies the min- 
imization in u over a finite time interval [O,T], characterizes here 
the optimal solution, and then considers the limit process as T 1 00, 

as in [2, sect 41. Now, however, due to the presence of w, it is 
technically important to  adapt to present circumstances, the idea of 
“decoupling” (expressed by Eq. (15) below) between the known case 
w 3 0, and a convenient formulation of the case w # 0, see (19). As 
a result of a technical treatment [6], one culminates the limit process 
T t 00 with the following formulas 

(15) 
0 

uw,,(* ;Yo) = -B*Pw,w(. ; Yo) 

0 
Pw,C&Yo) = PO,coYw,OO(.  ;Yo) + %+l(t), t > 0, in y (16) 

where {u:,,,(- ;yo),y~,,(- ;yo)} is the unique optimal pair of the 
inf J-process in u, holding w fixed. In Eq. (16), Po,, is the unique 
Algebraic Riccati operator corresponding to the case w 3 0, and 
guaranteed by [2] via the Finite Cost Condition and the Detectabil- 
ity Condition. Thus, Po,m is a bounded, nonnegative self-adjoint 
operator in Y ,  and 

is the generator of a S.C. uniformly stable semigroup: there exist 
M 2 1 and 6 > 0 such that 

~ l e ~ ~ ~ ~ - ~ l l q y )  5 Me-6t ,  t 2 o (18) 

A key feature of the function ~ ~ , ~ ( t ) ,  which unlike Po,oo, refers now 
to the 0 # w fixed, is that rw,,(t) satisfies a differential equation 

+w,, = -AFo,m%,,(t) - Po,,Gw (19) 
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with stable generator A:,,, . Similarly, pW,- and the optimal dynam- 
ics can be rewritten as to  satisfy differential equations by stable 
semigroups: 

Pw,00(t; Yo) = -A:,,,Pw,,(t; Yo) + P o , o o ~ ~ w , , ( t ;  Yo) 

-R*Ryw,m(t;  Yo) (21) 

(22) 

B*Gu,00(t) E L2(0,0O; U) (23) 

Yw,oo(t; YO) = A ~ o , ~ ~ w , o o ( t ;  YO) - BB*~w,oo(t)  + Gw(t) 

where, in addition, one can prove the technical result that 

A related technical issue [GI, which employs the Algebraic Riccati 
Equation satisfied by (case w = 0) [2] is that: 

t 
( ~ p , , ~ u ) ( t )  = J 0 eApop-(f-T)Bu(r)dr (24) 

: continuous L2(0,0O; U) - L2(0,0O; Y )  

with La-adjoint continuous Lz(O, 00; Y )  + L2(0, 00; U): 

We similarly introduce the operator 

and its L2-adjoint 

both continuous L2(0,00; Y )  - itself. With these preliminaries, we 
now introduce the self-adjoint operator in L(L2(0,00; Y ) )  by: 

S = G*PO,~~L~,,,~~,,,PO,,G - [G*Po,rnW~o,, + w>,,,P~,ooG] 
(28) 
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We now define the critical value of 7, yC > 0, by 

A critical technical result [6], is that the optimal cost Jg(y0) corre- 
sponding to  the infimum in u can be expressed as 

(ii) The second step is to study the infimum of -Jt(yo) over w E 
L2(0,00;Y).  Eqs. (29) - (31) reveal that for 7 > yC, the dominant 
quadratic term in (30) is coercive and then a unique optimal w*(. ; yo) 
can be asserted. Because of the stability property of the generator in 
(19) (or (20)), (21), and (22), one can then characterize directly such 
optimal w* over the infinite time interval [O,m], via, say, Lagrange 
Multiplier Theory (Liusternik's Theorem). The result is 

y2w*( t ;  yo) = G*p*(t; YO), 7 > 7 c  (32) 

where p*( t ;  yo) = pw,,*,,(t; yo). Moreover, it is possible to express 
w* explicitly in terms of the problem data via Ey-': 

w*(* ;yo) = Er-*[G*Po,,eApO~m' 901, 7 > yc (33) 

From here, then, one first finds (as in [3]) the transition property for 
w* when 7 > yC: 

w*(t + (7; yo) = w*(u; y * ( t ;  yo)) (34) 

for t fixed, the equality being intended in L2(0,00;Y) in u. Next, 
using (34) and (20), one finds a transition property for 7 > yC: 
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Finally, using (34) and (35), one finds the semigroup property for 
7 > 7 c :  

for y*(t; yo )  = @(t)yo, whereby @ ( t )  is then a S.C. semigroup on Y .  
An analogous transition property for p* is likewise valid for y > yc: 

Y*(t + 0;  Y o )  = Y*(a; y* ( t ;  Y o ) )  (36) 

via (35), (36), and (19). The operator P is defined by 

P x  = p * ( O ; z )  ( 38) 

and the semigroup @ ( t )  is then, in fact, 

One then can fall into the technical treatment of [2, sect 41, replacing 
the operator AF there with the operator 

here, t o  complete the proof of Theorem 1.3.1. 
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Computation 
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Abstract 

In this paper we show some applications of our interactive RE- 
DUCE programs for calculating classical, non-classical, and Lie- 
Backlund symmetries of differential equations. These programs are 
easy to use and do not require an in-depth knowledge of LISP or 
REDUCE. They were designed for the unsophisticated user who is 
knowledgeable in the area of symmetries of differential equations. 

1 Introduction 

It is well-known that the main obstacle to the application of the Lie 
group theories [as], [l], [4], [22], [GI, [24] is the extensive calcula- 
tions they involve. At present many computer algebra softwares are 
available, such as MAPLE by B. Char at  Waterloo, MACSYMA by 
the Mathlab Group at  MIT, REDUCE by A.C. Hearn at the Rand 
Corporation, SMP by S. Wolfram, and SCRATCHPAD I1 by R.D. 
Jenks and D. Yun at II3M. Also ad-hoc programs were developed to 
find the classical symmetries of differential equations*, i.e. perform 
the so-called “group analysis” [23]. 

These programs may be divided into the following two groups: 
‘A comprehensive list is given in [9]. 
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1. automatic packages where you put in your equation and get the 
answer without any interaction with the computer. Perhaps 
the best example is SPDE by F. Schwarz [25] which runs with 
REDUCE version 3.3 and higher [la]; 

2. interactive programs which require the user to make specific 
choices a t  different stages of the computation. An example is 
[13] which also runs with REDUCE. 

In the following we emphasize the differences between these two 
methods. For this purpose we make a comparison of SPDE and 
[13]. The former is able to find classical symmetries of many type of 
differential equations with the following exceptions: 

0 equations with arbitrary functions of the unknown and its 
derivatives, as utt = [f(u)uZ], [2]; 

0 overdetermined system of equations. 

Unfortunately, because SPDE is not reliable all the time, interactive 
programs must be used. In [13] such programs were developed. They 
should be able to  handle the above equations and also find their Lie- 
Backlund symmetries [4], [22], [6], but: 

0 they require a good knowledge of LISP [ll]; 

0 the non-expert user cannot modify them for his own needs (e.g. 
finding the non-classical symmetries 151, [IS]). 

In an effort to overcome these problems, we have developed [17] easy 
to use interactive programs which do not require an in-depth knowl- 
edge of LISP or REDUCE. In fact, to  use them one only needs 
to know a single LISP command and have a very basic familiar- 
ity with REDUCE (version 3.3 or higher). The programs labelled 
GA automatically construct the determining equations for the clas- 
sical symmetries; with only minor modifications, all the other pro- 
grams are derived. They calculate the non-classical (SGA), and the 
Lie-Backlund (GS) symmetries of any differential equation. When 
any of these programs is loaded, REDUCE will automatically run 
it and construct the determining equations. At this point the user 
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will begin to interact with the computer. In [17] we presented sev- 
eral computer sessions for calculating classical, non-classical, and 
Lie-Backlund symmetries of known equations, including the classical 
symmetries of utt = [f(u)uxIx.  Further applications can be found in 
various articles [3], [18], [19], [20], [21]. Here we show some other 
results obtained by using our interactive REDUCE programs: the 
classical symmetries of an overdetermined system in fluid mechanics, 
the nonclassical symmetries of Burgers' equation, and the third or- 
der Lie-Backlund symmetries of sine-Gordon equation and nonlinear 
reaction-diffusion equation [7]. Although our programs were origi- 
nally developed for a mainframe IBM 4381, the following outputs 
were obtained by running our programs on a S U N  SPARCstation I 
of the School of Mathematics at Georgia Institute of Technology, At- 
lanta (U.S.A). We underline the importance of a REDUCE-LaTeX 
translator [lo] in reporting the results. 

2 Classical Symmetries of an 
Overdetermined System 

The following system of 7 first order differential equations with 3 in- 
dependent ( t ,  5, y) and 6 dependent variables (u ,  v, h, u', v', h') mod- 
els the motion of two shallow immiscible inviscid incompressible flu- 
ids subject to the force of gravity and contained in a rigid basin ro- 
tating with the Earth. More details can be found in U. Ramgulam's 
Ph.D. thesis supervised by C. Rogers at  Loughborough University of 
Technology, Loughborough (U.K.). 

u t + u u x + v u y -  f v + f ( Z + h ' )  P X + ( I - L ) ( Z + h )  P X = O  (1) 

ht + (uh) 2 + (Vh)Y = 0 

U: + U ' U ~  + V'U& - f v ' +  (2 + h')x = 0 

(3) 

(4) 
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vi + u'v: + v'vb + f u' i- ( Z  + h') Y = 0 

hi + (u'h') X t (v'h')y = 0 

(h' - h)  t + (u'(h' - h))  X + (v'(h' - h ) )  Y = 0 

( 5 )  

(6) 

(7) 

Note that z = Z ( x ,  y) is the equation of the basin surface, f is the 
constant Coriolis parameter, (u,v) and (u',v') the x and y compo- 
nents of the velocity of the first and second fluid, respectively, p and 
p' the density of the first and second fluid, respectively, h and h' 
the vertical distance from the free surface to the basin of the first 
and second fluid, respectively. The classical symmetry analysis of 
the partial differential equations which model the motion of a rotat- 
ing shallow liquid in a rigid basin was performed in [15] by using a 
MACSYMA program [8]. Here we perform the classical symmetry 
analysis of (1-7) by using our interactive REDUCE program, and 
after having solved the system (1-7) algebraically for ut, vt, ht, ui, 
vb, v:, and hi, i.e.: 

p' az az 
P a x  P a x  

p' a 2  p' az 
P a Y  P a Y  

U t  = -(u% + Vuy - f v +  -(- + h:) +- (1 - f) (- + h,)) (8) 

V t  = - (UVX t vvy + fu + -(- + h i )  + (1 - -) (- + h y ) )  (9) 

The classical symmetry analysis consists of looking for the Lie group 
of infinitesimal transformation which leaves (1-7) invariant. We find 
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that for a basin of general form z = Z(Z,Y) the generator of the Lie 
group is given by the following operator: 

Q = fiat + V2az + G a y  + GI& 
+ G2av + G3& + G4& + G5& + GG&’ (15) 

with: 
v, = a (16) 

(17) 

(18) 

G1 = ( j -px  - -U + -Y f + 2- + 2 ~ ~ 1 +  ~ a f  + 2 ~ ~ 2 ) / 2  (19) 

d a  

d a  

v2 = ((z + 2Cl)Z + (af + 2C2)Y + 2P)/2 

v3 = ((x + 2Cl)Y - (af + 2C2)Z + 27)/2 

d 2 a  d a  d a  d P  
d t  d t  d t  

d t  
Ga= (=g--v- d 2 a  d a  Z x f  d a  + 2 - - u a f  d 7  -2uc2+2vc1)/2 (20) 

G4 = (wx d 2 a  - z u  d a  I + -yf d a  + 2- d P  + 221‘c1+ v‘af + 2v’cz) /2  (22) 

(21) 
d a  G3 = -(- - 2 q ) h  
d t  

d t  d t  

d y  2v‘c1)/2 (23) G5 = - ( ( v ’ + ~ f ) z + a f + 2 ~ 2 u ’ -  d a  -y-2-- d 2 a  
d t2  d t  

(24) 
d a  GG = -(- - 2cl)h’ 
d t  

where c1 and c2 are constants, whereas a = a ( t ) ,  
7 = 7( t )  are functions of time, subject to the constraints: 

= p( t ) ,  and 

?f!)z = 0 $y = 0 (25) 

d a  az 
with: 

$ = 2[ ( a f  + 2C2)Z - -p - 2yc1 - 271 
Y 
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3 Non-Classical Symmetries of Burgers’ 
Equation 

The non-classical symmetry analysis of the Burgers’ equation [l]: 

U t  = Uxz + 2121, 
consists in adding another “restriction” on u given by the invariant 
surface condition: 

(27) 

Vi(t,x,U)Ut + Vz(t,X,u)uz - G(t,x,u) = 0 

Vi at t Vzaz + G& 

(28)  

(29 )  

which is associated with the symmetry generator, i.e.: 

By using our interactive REDUCE programs, we obtain three cases 
in addition to the classical one: 
CASE 1 

v, = 1 15 = -u G=O (30) 
CASE 2 

v, = 1; v, = (. + 2 4  12; G = - (2 + 2u2a - 4up - 47) 14 

(31)  
where ct ,p,y are functions of ( t , z )  which must satisfy the Burgers- 
heat system [5]: 

aa  a2a aCY a p  
a t  ax, ax dX 

aa  a p  azp a y  2-0 + - - - - - 
a x  a t  ax2 a x  

a a  a7 a 2 7  

a x  a t  a x 2  

+ 2-CY + 2- = 0 

= o  

2-7 + - - - = 0 

CASE 3 

(33) 

(34) 

v, = 0 V, = 1 G = G ( ~ , x , u )  (35)  

(36 )  

where G must satisfy: 

2GG,, + G’G,, t G,, + uG, - Gt + G2 = 0 
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4 Third Order Lie-Backlund Symmetries 

4.1 Sine-Gordon Equation 

Here we compute the third order Lie-Backlund symmetries of the 
sine-Gordon equation: 

The corresponding infinitesimal generator is given by: 
uzt = sin(u) (37) 

( 38) w, t ,  u, U t ,  uz, U t t ,  uzz, w i t ,  uzzz)& 

By using [17] we obtain: 

= (2tutC4 - 2XUzC4 + U:C2 + 2utC5 + 
+2uzc3 + 2UtttC2 + 2uzzzc1) /2 (39) 

where c; ( i  = 1,2 ,3 ,4)  are arbitrary constants. This Lie-Backlund 
symmetry generator contains as particular cases those found by 
Kumei [14]. In [22] (Exercise 5.21, pag. 372), Olver noticed that the 
explicit dependence on the independent variables is required if one 
wants to generate a non-trivial conservation law of the sine-Gordon 
equation. 

4.2 Nonlinear Reaction-Diffusion Equation 

Here we find the conditions under which third order Lie-Backlund 
symmetries exist for nonlinear reaction-diffusion equation of the type: 

ut = [H(u)~z]z + J(u)uz + l ( ( x , t , u )  

w, t ,  U, uz, U z z ,  uzzz)& 

(40) 

(41) 

The symmetry generator is given by: 

The third order Lie-Backlund symmetries of (39) were found in [7] 
in the case where J' = 0. By using [17] we find that third order 
Lie-Backlund symmetries of (39) exist if H ,  J ,  Ii' are of the following 
form: 

2 
H = 1/(uA1 + A2) (42) 
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J = ((.A1 + A2)'A4 + A3)/(UA1+ A z ) ~  (43) 

d a  d a  
K = -(2a2/3eA3(A4t+x)A3~2 - -uA1 d t  - -A2)/(3aA1) d t  (44 )  

where A; (i = 1,2,3,4) and c2 are constants, and a = a ( t )  is a 
function of time. The symmetry operator (40 )  is given by: 
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+ ~ ~ $ ~ G u , u , , c Y * A : A ~  - 12 G u X C ~ ~ A ~ A ~  A: 

- G $ ~ G u , c Y ~ A ~ A ~ A ~  - ~ $ ‘ Z U , Q A ~ A : C ~  

- 1 8 f i ~ , , ~ ~ ~ A 3 A l A i  - 6*u,,~ypAlAi 
5 

- G ~ ~ , , , ~ ~ A ~ A ~ ) / ( G ~ ( u A ~  + A ~ )  a ~ ~ )  (45) 

where c1 is a constant and /3 = P( t )  is a function of time which must 
satisfv: 

dcr d P  2-/3 - 3-CY - ~ c Y A ~ c ~  = 0 
d t  d t  

Bibliography 

W. F. Ames, Nonlinear Partial Differential Equations in Engi- 
neering,Vol. 2 Aca.demic Press, New York (1972). 

W. F. Ames, E. Adams and R. J. Lohner, New classes of symme- 
tries for partial differential equations, Int. J. Non-Linear Mech. 
16 (1981) 439. 

W. F. Ames and M. C. Nucci, Waves in hole enlargement: sym- 
metry analysis, in IMACS ’91, Proceedings of the 13th World 
Congress on Computation and Applied Mathematics, Vol.1, 
Clarion Press, Dublin (1991) 343. 

R. L. Anderson and N. H.  Ibraghimov, Lie-Bicklund Transfor- 
mations in Applications, SIAM, Philadelphia (1979). 

G. W. Bluman and J. D. Cole, The general similarity solution 
of the heat equation, J. Math. Mech. 18 (1969) 1025. 

G. W. Bluman and S. Kumei, Symmetries and Diferential 
Equations, Springer-Verlag, Berlin (1989). 

P. Broadbridge and C. Rogers, On a nonlinear reaction-digusion 
boundary-value problem: application of Q Lie-BEcklund symme- 
try, Preprint (1991). 



Symmetries and Symbolic Computation 259 

[8] B.  Champagne and P. Winternitz, A MACSYMA progmm for 
calculating the symmetry group of a system of diflerential equa- 
tions, Report CRM- 1278 (1985). 

[9] B.  Champagne, W. Hereman and P. Winternitz, The computer 
calculation of Lie point symmetries of large systems of difleren- 
tial equations, Comput. Phys. Comm. 66 (1991) 319. 

[lo] L. Drska, R. Liska and M. Sinor, Two practical packages for 
computational physics- GCPM, RLFI, Comput. Phys. Comm. 
61 (1990) 225. 

[ll] J. Fitch, Manual for Standard LISP on IBM System 360 and 
370, University of Utah, Salt Lake City (1978). 

[12] A.C. Hearn, REDUCE 3.4 User's Manual, Rand Corp., Santa 
Monica (1991). 

[13] P. H. M. Kersten, Infinitesimal Symmetries: a Computational 
Approach, CWI, Amsterdam (1987). 

[14] S. Kumei, Invariance transformations, invariance group trans- 
formations, and invariance groups of the sine-Gordon equation, 
J. Math. Phys. 16 (1975) 2461. 

[15] D. Levi, M. C. Nucci, C. Rogers, and P. Winternitz, Group the- 
oretical analysis of a rotating shallow liquid in a rigid container, 
J. Phys. A: Math. Gen. 22 (1980) 4743. 

[16] D. Levi and P. Winternitz, Non-Classical Symmetry Reduction: 
Example of the Boussinesq Equation, J. Phys. A: Math. Gen. 
22 (1989) 2915. 

(171 M. C. Nucci, Interactive REDUCE programs for calculating clas- 
sical, non-classical and Lie-BZcRlund symmetries of diflerential 
equations, 0 1 9 9 0  M. C. Nucci, Preprint GT Math: 062090-051 
(1990). 

[18] M. C. Nucci, Interactive REDUCE programs for calculating clas- 
sical, non-classical, and approximate symmetries of difleren- 
tial equations, in IMACS '91, Proceedings of the 13th World 



260 M. C. Nucci 

Congress on Computation and Applied Mathematics, Vol.1, 
Clarion Press, Dublin (1991) 349. 

[19] M. C. Nucci, Symmetries of linear, C-integrable, S-integmble, 
and non-integmble equations, in Proceedings of NEEDS '91, 
World Scientific, Singapore (1992) t o  appear. 

[20] M. C. Nucci and W. F. Ames, Classical and nonclassical sym- 
metries of the Helmholtz equation, J. Math. Anal. Appl. (1992) 
t o  appear. 

[21] M. C. Nucci and P. A. Clarkson, The nonclassical method is 
more general than the direct method for symmetry reductions:an 
example of the Fitzhugh-Nagumo equation, Phys. Lett. A 164 
(1992) 49. 

[22] P. J .  Olver, Applications of Lie Groups to Diflerential Equations, 
Springer-Verlag, Berlin (1986). 

[23] L. V. Ovsjannikov, Gmup Analysis of Diflerential Equations, 
Academic Press, New York (1982). 

[24] C. Rogers and W. F. Ames, Nonlinear Boundary Value Problems 
in Science and Engineering, Academic Press, New York (1989). 

[25] F. Schwarz, The Package SPDE for Determining Symmetries 
of Partial Diflerential Equations User's Manual, Rand Corp., 
Santa Monica (1991). 



On Stabilizing Ill-Posed 
Cauchy Problems for the 
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Abstract 

In this paper we discuss a number of ill-posed problems that arise 
in attempts to  solve the Navier-Stokes equations backward in time. 
In particular we provide criteria which are sufficient to stabilize solu- 
tions against errors i n  the “final” data, in the “final” time geometry, 
and in the spatial gcomctry. 0 ther continuous dependence results 
will appear in a forthcoming paper. 

1 Introduction 

It is well known that attempts to solve a system of equations model- 
ing an evolutionary process backward in time usually lead to mathe- 
matical problems that are not well posed. Solutions of such problems 
typically do not exist, and when they do these solutions do not de- 
pend continuously on the data, coefficients, or geometry; in fact they 
typically fail to  depend continuously on any quantities which are sub- 
ject to  error in setting up the system of equations which model the 
physical process. 
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In studying such problems mathematicians usually do not concern 
themselves with the lack of existence. Rather they are willing to 
accept as a “solution”, a function in an appropriately constrained 
subspace which sufficiently closely approximates the data and which 
is a “near” solution of the governing equations. If the mathematical 
problem is an ill-posed Cauchy problem for an evolutionary system, 
then the main concern in the literature has been with the question of 
stabilizing such an inherently unstable system against errors in the 
Cauchy data. Until quite recently little attention has been given to 
the question of stabilizing the system against errors in coefficients, 
geometry, etc. 

To stabilize such problems against errors in the Cauchy data, 
it has been the custom to require not only that the socalled “so- 
lution” approximate the data well but also that it belong to some 
appropriately defined constraint set (see e.g. Payne [4]). It is this 
constraint set restriction which stabilizes the problem against errors 
in the Cauchy data. Any constraint set restriction should of course 
be realizable and as weak as practically possible. Unfortunately, this 
constraint restriction has the effect of making otherwise linear prob- 
lems, nonlinear - a fact which complicates the total problem. To 
be of any practical use the constraint restriction should simultane- 
ously stabilize the problem against all possible sources of error, and 
since the constrained problem is nonlinear we cannot automatically 
decompose the problem and treat the various sources of error sepa- 
rately. Nevertheless, this is usually what we do for two reasons. In 
the first place we cannot even characterize the errors made in setting 
up the model system - errors due to  use of inexact physical laws, 
treating a fluid as a continuum, etc. Secondly, the problem itself 
would become so messy and complicated that it is unlikely that it 
could be treated even if we were able to characterize the modeling 
errors. 

The simplest example of the type of problem we have been dis- 
cussing is that of solving the heat equation backward in time. Many 
methods have been proposed for stabilizing this problem against er- 
rors in the Cauchy data (see e.g. the references cited in [4]). The 
question of continuous dependence on the spatial geometry was in- 
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vestigated by Crooke and Payne [l]. Another system, whose past 
history has been studied, is the Navier-Stokes system - the first re- 
sults being those of I h o p s  and Payne [3] who succeeded in stabilizing 
the problem against errors in the Cauchy data. 

Since many of the important evolutionary systems we encounter 
in continuum physics involve the Navier-Stokes equations coupled 
with other equations, it is clear that if we wish to study the past 
history of one of these complicated systems we must first know how 
to stabilize the Navier-Stokes equations themselves. Thus in this 
paper we concentrate on some recent results on the stabilization of 
solutions of the Navier-Stokes equations backward in time. 

As indicated earlier the first attempt at  stabilizing solutions of 
the Navier-Stokes equations backward in time, against errors in the 
“final” data, was made by Knops and Payne [3], who showed that 
solutions of the Cauchy problem defined on a bounded region of R3 
and appropriately constrained do depend continuously on the data 
(in L2). Using a slightly different measure Payne [5] was able to  relax 
somewhat the constraint restriction. The equivalent problem for an 
exterior region has been dealt with by Straughan [9] and by Galdi 
and Straughan [2]. In [5] ,  Payne was able to stabilize the “back- 
ward Cauchy problem” for the Navier-S tokes equations against er- 
rors in the initial time geometry, and in [6] he succeeded in stabilizing 
the same problem against errors in the spatial geometry. We men- 
tion also that a constraint restriction which stabilizes this ill-posed 
Cauchy problem against a certain type of modeling error was found 
by Payne and Straughan [7], and the question of stabilizing against 
errors in body force, the viscosity coefficient, boundary data and an- 
other type of modeling error will be discussed by Ames and Payne 
in a forthcoming work. 

In this paper, instead of investigating solutions of the forward 
Navier-Stokes equations backward in time we change the time vari- 
able t to -t  and study the backward Navier-Stokes equations forward 
in time. Our “final” value problem thus becomes an initial value 
problem for the backward Navier-S tokes equations. For simplicity 
we assume that the data and geometry are such that classical solu- 
tions exist on the indicated space-time regions, although, as pointed 
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out in the cited references, the results which we shall state actually 
hold for appropriately defined weak solutions. 

The specific problem we consider is the following: we are con- 
cerned with solutions u;(z , t )  of 

and 
u ; (z , t )  = 0 on dD x [O,T]. (1.3) 

In (1.1) and in what follows a comma denotes partial differentiation 
and the convention of summing over repeated indices (from 1 t o  3) 
in any term, is adopted. In ( l . l ) ,  u is the coefficient of kinematic 
viscosity, p is the unknown pressure term (divided by the constant 
density) and D is a bounded region in R3 with sufficiently smooth 
boundary dD. 

Let R designate a general domain in ( z , t )  space, where z = 
(z1,z2,z3). We shall define three different sets of functions Ml(R), 
M2(0), M3(0). 

1) A function +j(z,t)  will be said to belong to Ml(R) if 

SUP [+i+i]  5 M:; (1.4) 

(1.5) 

(Z, t )€f l  

2) A function +j(z,t)  will be said to belong to  M2(R) if 

SUP [+i+i + + i , j + i , j ]  I Mi; 
(x,t)Efl 

and 
3) A function +i(z , t )  will be said to belong to M3(R) if 

Here M I ,  M2 and M3 are constants which will in general depend 
on R. These sets M1, M2 and M3 will be used as constraint re- 
strictions, which solutions in various cases will be required to  satisfy. 
The appropriate restrictions will lead to  different types of continuous 
dependence results. 
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2 Continuous Dependence Results 

In this section we reproduce a number of continuous dependence 
results that  have been derived for solutions of (1.1)-(1.3). It should 
be emphasized that the constraint restrictions imposed in order to 
derive these results are sufficient conditions, but they may be more 
stringent than necessary. It will certainly be worthwhile to  try to 
relax these requirements. 

We present first a result that was derived in [5]. 

2.1 Continuous Dependence on the Initial Data 

Let u; (z , t )  be a solution of (1.1)-(1.3) corresponding to  pressure p 
and initial data f;(x) a.nd v;(x, t )  be a solution with pressure g and 
initial data fi(z). Then if we set 

we have the following result. 

Theorem 1 Let '11; E M1 and v; E Mz in D x (O,T), then it  
is possible to compute an explicit constant K and a function S ( t )  
(0 < S ( t )  2 1) independent of u, and 2r; such that for 0 5 t < T 

wli ere 

a2 = Ilf - Ell;. 
In (2.2) and (2.3) [ [  - denotes the ordinary LZ norm in D. This 

cleaaly implies Holder continuous dependence on the initial data. In 
fact, if v; E Mz denotes a smooth base flow and ti; E M1 is a 
perturbed flow then provided fi and fi are close, ui(2, t )  and vi(z , t )  
will be close for 0 5 t 5 t l  < T in the sense indicated by (2.2). 
This theorem represents a slight improvement over the earlier result 
in [3], but numerical evidence seems to indicate that the results are 
very conservative, in that weaker constraint restrictions should be 
possible; also the exponent S ( t )  seems to be smaller than necessary. 
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The proof of Theorem 1 makes use of the fact that the quantity 
Q ( t )  defined by 

satisfies, for an appropriately chosen constant b,  a logarithmic con- 
vexity inequality. The proofs of the next two theorems employ similar 
arguments but are considerably more complicated. A brief sketch of 
the proofs is given at  the end of the section. 

2.2 Continuous Dependence on the Initial-Time 
Geometry 

We now wish to compare the solution of (1.1)-(1.3) with the solution 

Vi , t  - V j V i , j  + U V i , j j  = Q,i 

V , ( Z , t )  of 
(2.5) 

V j , j  = 0 (2.6) 

(2.7) 

in the region R ( F )  defined by 

R ( F )  = { ( z , t ) ;  F ( z )  < t < T ,  z E D} 

v ; ( z , t )  = 0, F ( z )  5 t 5 T ,  z E D. (2.9) 

The problem (2.5)-(2.9) might arise if the initial data were measured 
on some surfaces t = F ( z )  rather than at  time t = 0. These data 
are, however, assigned a t  t = 0 thus leading to problem (1.1)-(1.3). 
Then if in particular 

IF(x)I E (2.10) 

and the solutions u ;  and v; are appropriately constrained we would 
like to determine whether w; given by 

w; = u; - vi 

is small on the interval [ E , T ) .  We state now the following theorem 
which was proved in [5]. 

(2.11) 
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Theorem 2 If u i ( x , t )  E M I  in D x (0,T) and v i (z , t )  E Mz in 
Q(F) ,  then it is possible to compute an explicit constant R and a 
function 8( t )  (0 < 8 ( t )  5 1) independent of ui and oi such that for 
& L t < T  

(2.12) 

This is the desired continuous dependence result. 

2.3 Continuous Dependence on Spatial Geometry 

Although contiiiuous dependence on spatial geometry has received 
little attention in the literature it is nevertheless vitally important. In 
the first place when modeling a physical problem the geometry of the 
domain can seldom be prescribed with absolute precision. Secondly, 
and more importantly perhaps, if we are to have any hope of solving 
the problem numerically we must be able to stabilize the problem 
against errors in geometry since elements or meshes will seldom fit 
the domain exactly. 

The first pa.per which dealt with the question of stabilizing ill 
posed problems against errors in spatial geometry was that of Crooke 
and Payne [l] who developed criteria for stabilizing the backward 
heat equation against geometric errors. Little else on this question 
has appeared in the literature (see [ S ] ) .  

In this case we wish to compare u:(x, t )  and u?(x,t) where uq(z, t )  
satisfies, for Q = 1,2 ,  

with 
us = 0 on BD, x [O,T] (2.14) 

and 
up(2,o) = f;"(2) 2 E DQ. (2.15) 

For simplicity we assume that f: = f,? in D1 nD,. The first question 
we are to  ask is how do we compare u: and u;? We could for instance 
map D1 (with its corresponding problem) onto Dz and compare the 
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problems on D2. Alternatively we could compare u: and u? over 
D1 n D2. A third possibility would be to extend u: and uf as zero 
outside their respective domains of definition and compare the ex- 
tended functions over R3. We shall here compare u: and uf over D, 
where 

D = D~ n D ~ .  (2.16) 

In this case we have the following theorem (see [6]) valid for regions 
D1 and 0 2  starshaped with respect to the origin. 

Theorem 3 If u;(z,t) E M1 in D1 x (0,T) and uf(z,t) E M3 

in 0 2  x (0,T) then it is possible to compute an explicit k and a 
function 6(t) (0 < 8(t) 5 1)  independent of ur and uf such that for 
O < t < T  

Lt(l  - 'I)llwIID 2 d 'I - < krW (2.17) 

where r is the maximum distance along a ray between aD1 and aD2. 
In (2.1 7) 

w. 1 -  - 211 t - u? a '  (2.18) 

This is the desired continuous dependence result when D1 and D2 
are starshaped. If they are not both starshaped with respect to a 
single interior point of D, but can be decomposed into starshaped 
subregions it is possible to derive a result similar to (2.1 7), but of 
course T h a s  a somewhat different interpretation. 

The proof of the first theorem involves showing that the @(t) 
of (2.4) satisfies an inequality of the form 

for explicit constants C1 and C2. Setting 

(2.20) -c1 t r = e  

we may then rewrite (2.18) as 

d2 
-{ d r 2  l n [@rcq}  2 0. (2.21) 



On Stabilizing 111-Posed Caucliy Problems 269 

The convexity of the term in braces leads directly to  (2.2) where 6 ( t )  
is given by 

6 ( t )  = [e-cl t  - e-C1'~ / [I- e - C I T ~ .  (2.22) 

The proof of Theorem 2 is obtained in two steps. Replacing @(t)  

(2.23) 

by 

and following the above procedure we conclude that 

(2.24) 

where 6 * ( t )  is the appropriate modification of (2.22). We next bound 
11w(-~)11& by continuing ui as f j  for t < 0 and oi as fj for t < F ( z ) .  
Making use of a Poincari! inequality and bounding L2 integrals of the 
extended functions u; and o; over the time interval ( - - E , E ) ,  in terms 
of M I ,  M2 and data we are able to bound the right hand side of (2.24) 
by the right hand side of (2.12). The proof of Theorem 3 is more 
complicated due to  the fact that in this ca.se w; does not vanish on 
d D .  We therefore subtract from wi an appropriate auxiliary function 
H ;  which takes the same boundary values as w;. We then apply the 
convexity arguments to  w; - H ; .  To derive (2.17) we must of course 
derive bounds for various norms of the auxiliary function H j .  

3 Concluding Remarks 

It is of course of interest to know whether in olir continuous depen- 
dence results the constant T can be taken arbitrarily large. It is 
easily seen that if we take T to be infinite then no solution in M I  
(and hence in M2 and M3) can exist. This follows immediately from 
the fact that if u; is such a solution then 
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where X is the appropriate Poincark constant. But (3.1) implies that 

I l  u(t)llZ, 2 Ilu(O)llZ, exp(2vXt) (3-2) 

which leads to a contradiction since ujui cannot remain bounded 
as t --t 00. Thus for T = 00 our theorem is vacuous. In fact, for 
arbitrary T we have, letting t --t T in (3.2) 

WID1 2 { J D f i f idz}exP(2vw,  

M: 2 ID[-'{ J D f; f;dz} exp(2vXT). 

(3.3) 

when 101 is the volume measure of D. This means that for given f;, 
T, v and D, M1 cannot be arbitrary but, in fact, must satisfy 

(3.4) 

The same inequality must clearly be satisfied by Adz with fi replaced 
by h. Another way of looking a t  this is that given any f;, v, D and 
M I  with 

M: > max fi fi (3.5) D 

then our Theorem 1 will hold only if 

This is a necessary but not a sufficient condition. The point to  be 
made is that given v ,  D, and f;, then the bound M I  and the time 
T cannot be chosen independently. Thus if we wish to develop a 
numerical scheme for finding an approximate solution of (1.1)-(1.3) 
we must be careful to choose the Mi's sufficiently large. There is of 
course a trade off since the larger the M; the larger the constants K 
in the theorem and the smaller the exponent 6. 

As was pointed out in [3], [5 ] ,  and [GI the continuous dependence 
results stated in Theorems 1-3 could actually have been derived un- 
der somewhat less restrictive constraint set restrictions. The L ,  
constraints could have in some cases been replaced by L,  constraints 
for suitable values of p .  In this case, however, it  becomes somewhat 
more difficult to make the inequalities explicit. 
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1 Introduction 

In this note we discuss recent results on: 
(i) a method for detecting the eigenvalues of systems of ordinary 

differential equations with asymptotically constant coefficients, and 
(ii) applications of this method to the detection of instabilities 

and transitions to instability of solitary wave solutions to equations 
which model long wave propagation in dispersive media. 

We shall illustrate and apply this theory for solitary waves of a 
generalization of the Korteweg-de Vries equation (gKdV): 

where f(u) = uP+'/(p t l), and p 2 1 is real. 
A more detailed discussion including applications to generaliza- 

tions of a Boussinesq equation (Bou), a regularized long wave equa- 
tion of Benjamin, Bona SC Ma.honey (BBM), and a KdV-Burgers 
equation can be found in [15, 141. The technique developed to study 
the spectrum of the linexized operator about the solitary wave plays 
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an important role in the proof of asymptotic stability of solitary waves 
of gKdV [16, 171. 

The method we use is based on the study of Evans’ function D(X), 
and in particular, new formulas for the derivatives of D(X). D(X) was 
introduced by J. W. Evans in his study of the stability of traveling 
wave solutions of reaction-diffusion systems that model nerve impulse 
propagation IS]. In addition to discussing how unstable eigenvalues 
are detected using D(X), we discuss how: 

(iii) D(X) detects “resonance poles”. These are pole singulari- 
ties of a suitably defined resolvent operator, which play a role in the 
mechanism of transition to instability. This mechanism is quite dif- 
ferent from that seen in transitions to instability in finite dimensional 
Hamiltonian systems. Resonance poles arise in quantum scattering 
theory (e.g. Augur states for the helium atom [IS]) and in plasma 
physics (Landau damping for the Vlasov-Poisson system [5, 61). 

Finally, we point out: 
(iv) a connection between our expression for D’(X) and the Mel- 

nikov integral (see [lo, 13]), which was introduced to study the order 
of splitting, under perturbation, of the stable and unstable manifolds 
of a homoclinic point of an autonomous system of ODE’S. 

2 Solitary Waves and Linearized Stability 

The generalized KdV equation admits solitary wave solutions for any 
c > 0, of the form u(z , t )  = u,(z - c t )  where u,(z) = asech2/P(yz) 
with a = ( c ( p  + l)(p + 2)/2)l/p, y = pc1i2/2. The wave profile uc(z )  
decays to  zero exponentially as IzI + 00. 

To consider the stability of such waves, we study the evolution 
of small perturbations of such waves, writing u(z , t )  = uc(z - c t )  + 
v(z - ct, t ) .  Neglecting terms nonlinear in the perturbation v, the 
linearized evolution equation for the perturbation of the wave is 

a,. + ax((u: - C).) + a,v = 0 . (2) 

We look for solutions of the form v = e x t Y ( z ) ,  where X E C and 
Y satisfies 

aXL,Y = XY , (3) 
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where L,  = -6': + c - ug. This eigenvalue problem takes the form of 
an eigenvalue problem commonly associated with linear Hamiltonian 
sys tems: 

J L Y  = X Y ,  

where J is skew symmetric and L is self-adjoint. If (3) admits a 
square integrable solution for some X with ReX # 0, we call X an 
unstable eigenvalue for (3) and Y the associated eigenfunction. (By 
reflection symmetry, - A  is an eigenvalue if X is.) 

Previous work ([a, 3, 4, 12, 20, 21, 221, see also [9]) has shown 
that u, is nonlinearly stable in H' (modulo spatial translations) if 

and unstable if 
d 
dc 
--"u,] < 0 . (5) 

Here the functional N[u] = J-", u2 dx is a generalized momen- 
tum associated with the IIaniiltonian structure of (gKdV), and is 
independent of time for solutions. For the particular example at 
hand, (4) holds if and only if y < 4. The stability proofs rely on 
establishing that u, is a local minimizer of a conserved energy func- 
tional, subject to the constraint of fixed momentum. 

Here we discuss how: If the instability condition (5) holds, a real 
unstable eigenvalue exists with X > 0. This gives rise to a non- 
oscillatory and exponentially growing solution of the linearized evo- 
lution equation. The same was proved in [15], for generalizations of 
the BBM and Boussinesq equations. These results clarify the mecha- 
nisms for the instability proved for gKdV and gBBM in [4] and [19]; 
see [12] for an alternative approach to  studying linear exponential 
instability. Our result concerning gBou seems to be the first regard- 
ing the stability or instability of the solitary waves of this equation. 
The methods used in the works mentioned above apparently fail to 
decide stability in this equation. 
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3 Evans' Function and Unstable Eigenvalues 

The method we use to study the existence of eigenvalues for (3) 
is related to the study of eigenvalues in boundary value problems 
for ordinary differential operators. As 1x1 --+ 00, the coefficients in 
equations (3) converge rapidly to  those of the following constant 
coefficient equation 

For ReX > 0, this equation has solutions Y(x,X)  = epj" for 
j = 1,2,3, where the p j ,  which depend on A ,  satisfy 

RepI(X) < 0 < Repj(X) for j = 2,3. 

Correspondingly, for equation (3) there is a 1-dimensional subspace of 
solutions which decay as z + 00, spanned by a function Y+(x ,  A) and 
2-dimensional subspace of solutions which decay to  zero as x + -00, 

spanned by functions Y;(z, A) and YF(x, A). In particular, Y +  may 
be normalized so that 

X is an eigenvalue when these subspaces meet nontrivially. The angle 
between these subspaces may be measured by a Wronskian-like ana- 
lytic function D(X), named Evans' function by Alexander, Gardner 
& Jones [l], after J. W. Evans who pioneered its use in the study 
of stability of nerve impulses [S]. In [ll, 11, a geometric/topological 
approach using Evans' function is developed to study the stability of 
traveling waves of singularly perturbed reaction diffusion systems. 

We now obtain D(X) in the present application to  KdV. Consider, 
for ReX > 0, the solution Y+(z ,X)  as x + 00. Then D(X) may be 
defined by the relation 

This interpretation of D(X) as a transmission coefficient is exploited 
in [23]. 
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In equation (3), for Rex > 0, if D(X) vanishes, then X is an 
eigenvalue, and conversely. (It also then follows that - A  < 0 is an 
eigenvalue, though quite possibly not a zero of D(X).) 

What about ReX = O? In this case, it  turns out that Rep2(X) = 
0, and therefore the vanishing of D(X) on the imaginary axis implies 
the existence of a solution which is exponentially decaying as x --$ 

t o o ,  but which is merely bounded for x + -oo (cf. (8)). In fact one 
can show, by a perturbation argument about the operator in (6) that 
the imaginary axis is covered by essential spectrum. Using symmetry 
properties of gKdV we can in fact show that zeros of D(X) embedded 
in the essential spectrum are eigenvalues of (3). 

Theorem 1 
(i) D(X)  is defined and is analytic in the half-plane R = { A  : Re X > 

-€}, for some E > 0. 

(ii) If ReX 2 0,  then X is a zero of D ( X )  i f  and only i f  X is an 
eigenvalue for the problem (3). The corresponding eigenfunction 
decays exponentially as x + foo .  

(iii) D(X) -+ 1 as 1x1 -+ oo in Q. 

(iv) D(X) is real for real A. 

It happens naturally that D ( 0 )  = 0 when linearizing about a 
traveling wave: for X = 0 the function Y ( x )  = &u, satisfies (3). 
This follows from translation invariance in x.  

The crux of our method is that we have new integral formulae 
for derivatives of D(X). A special case of these formulae which we 
use is: 

Theorem 2 For all X E 0, 

Here, Y + ( x , X )  is the solution of (3) satisfying (7), which decays as 
x + +oo, and Z- (x ,X)  is a solution of the adjoint of (3) which 
decays as x --f -m. These solutions are taken with a suitable nor- 
maliza t ion. 
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Figure 1: Spectrum of J L  when instability holds. Wavy line refers 
to  essential spectrum covering imaginary axis. x’s refer to point 
eigenvalues. 

When we apply this result at the eigenvalue X = 0, using that 
Y +  = &u, / (p~P) and 2- = uC/(2cP) for some P > 0, we find that 

d 
dc 

D(O) = 0, D’(O) = O , sgn D”(O) = sgn-N[u,] . (10) 

Thus, if &N[u,] < 0, it follows that D(X) < 0 for small X > 0, 
and since D(X) is continuous with D(X) + 1 as X + 00, D(X) must 
vanish for some positive A. This yields the existence of an unstable 
eigenvalue for (3). 

To summarize, we have 

Theorem 3 
(i) If $N[u,] > 0 ( p  < 4) the spectrum of J L  consists of the 

imaginary axis only. 

(ii) If $N[uc] < 0 (p > 4) the spectrum consists of the imaginary 
axis, together with two real isolated eigenvalues of opposite sign 
and equal magnitude. (See Figure 1 . )  

Always, X = 0 is an eigenvalue embedded in the essential spectrum. 



Evans’ Function, Melniliov’s Integral, Solitary Wave Instabilities 279 

4 Transition to Instability; Resonance Poles 
to Eigenvalues 

As noted in section 3, a pair of real eigenvalues appear for p > 4, 
yielding the linearized exponential instability of the solitary wave. 
What is the origin of these unstable eigenvalues? Is there some trace 
of them in the stable regime p < 4? 

For gKdV (and other equations) we study the transition to insta- 
bility by considering the Taylor expansion of D(X,p)  in a neighbor- 
hood of the transition point (X,p) = ( 0 , p c r j t )  = (0,4). (For gKdV 
with a power nonlinearity the transition point does not depend on 
the wave speed c, due to a scaling property of the equation.) 

We have: 

Theorem 4 The Taylor expunsion o f D ( X , p )  at ( 0 , p c r i t )  is 

with a a ,”D(O,pcr j t )  # 0 and 6 3 a P a i D ( 0 , p c r j t )  # 0. 
Therefore, the mechanism for transition from stability to insta- 

bility may be described as follows: as p varies from below pcr;t to 
above pcri t ,  a real root A,-&) of D(X,p)  = 0 crosses from the negative 
real axis A0 < 0 to the positive real axis A0 > 0, with X ( p c r j t )  = 0. 
Xo is a locally analytic function of p ,  and a P X o ( p c r j t )  # 0. Once the 
root Xo is nonnegative it is an eigenvalue of (3). Its existence implies 
the existence of a symmetrically placed eigenvalue of (3) at -XO. 

In finite dimensional Hamiltonian systems the mechanism for the 
emergence of two real eigenvalues as a parameter varies is quite sim- 
ple and standard: If rcrjt denotes the value at which the transition 
from stability ( r  < r c r i t )  to instability (T  > rcrjt), then for T < 
a pair of pure imaginary eigenvalues exists which coalesce at the ori- 
gin for T = rcrjt and branch off symmetrically about the origin on 
the real axis for T > rCrjt. See figure 2. This scenario is called an 
“exchange of stability” [7]. 

By contrast, the transition to instability here does not involve any 
purely imaginary eigenvalues. An interpretation of when neg- 
ative is that it corresponds to what is known in quantum scattering 
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f 

Figure 2: Transition to instability in  finite dimensional Hamiltonian 
systems. Imaginary eigenvalues meet at origin, then branch apart 
along real axis. 

theory as fesonunce pole [18]. The same phenomenon is associated 
with what is called Landau damping in the Vlasov-Poisson system 
of plasma physics [ 5 , 6 ] .  To fix ideas, consider the resolvent equation 
for gKdV in L2(R') written as 

( J L  - X)u = g, 

where J = 8, and L = -82 + c - ug. Suppose we are near the 
tmnsition with XO < 0, so J L  has no eigenvalues off the imaginary 
axis. We denote the resolvent by RI(X) = ( J L  - For ReX # 
0, R1(X) is a bounded operator on L2(R1). Using the variation of 
constants formula for ODE'S, one can write down an expression for 
the integral operator defining R1(X)g for ReX > 0. As ReX + O+ 
the operator norm 11 R1(X) 11 becomes singular; the imaginary axis 
is the essential spectrum. However, for a dense set of g E L2,  namely 
those which are continuous with compact support, R1(X)g(z) (for 
fixed z) can be analytically continued from the region ReX > 0 
across the essential spectrum, to the region ReX > - 6 ,  for some 
6 > 0. This analytic continuation exhibits a pole (called a fesonunce 
pole) at During the transition to 
instability, this resonance pole moves from the negative red  axis, 

< 0, where D(X0) = 0. 
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Figure 3: Riemann surface for resolvent. During transition to in- 
stability, resonance poles on upper sheet move across the imaginary 
axis, and become eigenvdues on lower sheet. 

across the imaginary axis, to the positive real axis. The emergence of 
Xo as an eigenvalue and its symmetry related eigenvalue -XO, can be 
understood in terms of the Riemann surface of the resolvent. This is 
obtained by analytically continuing RI(X)g(z) across the imaginary 
axis to a second sheet over the region --E < ReX < 0. Using the 
reflection symmetry of the equation, the second sheet over the region 
0 < ReX < c can similarly be defined [15]. See figure 3. 

The arrows in figure 3 indicate the motion of resonance poles 
(poles of RI(X)g(z)  on the second sheet) onto the first sheet as p 
varies from below pcrit  to above pcr j t .  

5 Evans’ Function and Melnikov’s Integral 

The order of vanishing of D(X) at an eigenvalue can be identified with 
the eigenvalue’s algebraic multiplicity [8, 1, 151. In the context of 
the gKdV solitary wave, zero is seen to be an eigenvalue of algebraic 
multiplicity two (at least). The source of this degeneracy is the 
translation invariance in space and the existence of solitary waves 
for a continuum of speeds c > 0. The integral expression for D’(X) 
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in (9), when evaluated at an eigenvalue Xo, reduces to 

D‘(X0) = J’” -” Z - ( x ,  X O ) Y + ( X ,  A0)dz , 

and can be viewed as measuring the order of contact or splitting of the 
stable subspace s p a n { Y + }  and the unstable subspace s p a n { Y c ,  Y , }  
of the ODE (3) at X = Xo. If A0 > 0 is such that D(X0) = 0, and 
D’(X0) # 0, the intersection of these subspaces is transverse, while if 
D(X0) = 0, and D’(X0) = 0, as is the case for A0 = 0, then we say 
there is a tangency of the subspaces. 

A more general expression for D’(X0) arises when the ODE (2) 
is reduced to a first order system y’ = A(z,A)y via the standard 
reduction y = (Y, Y’ ,  Y”) t .  With y+ = ( Y + ,  Y+’,  Y+”)* and z = z- 
the solution of the adjoint system z’ = - z A ( z , X )  having z: = 2-, 
we have [15]: D(X) = z- - y+ for all A, and 

00 

D’(X0) = - l, z - (DA/DA)y+  dx . (12) 

The formula (12) may be regarded as an application of Melnilcov’s 
method, originally developed to determine the order of contact of the 
stable and unstable manifolds of a homoclinic point in a periodically 
perturbed system of autonomous ODES. To develop the analogy, 
we describe Melnikov’s method following [lo]. (For a more general 
discussion of Melnikov’s method and later work, see [13]). 

Consider the perturbed Hamiltonian system 

where g ( z ,  t )  = g(z, t + T ) ,  z E R2, and we assume 

For c = 0, we presume that a hyperbolic saddle po exists with a 
homoclinic orbit qO( t ) .  When 6 > 0 is small, for the Poincar6 map 
P, : R2 H R2 determined by the flow of (13) over one period [O,T], 
the saddle perturbs to  a hyperbolic sa.ddle p:, which determines a 
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periodic orbit r:(t) of (13). (For Melnikov's purposes, it was impor- 
tant to consider Poincard imps for intervals [ to , to  + TI, but this is 
not important here; we fix t o  = 0.) 

The stable and unstable manifolds of PO, both parameterized by 
qo( t ) ,  perturb to solutions q S ( t , c )  and q"(t ,c) ,  asymptotic to 7:(t) as 
t -, 00 and -00 respectively. As functions of 6, q = qs or q" has the 
form 

Q ( t , E )  = q O ( t )  + cql(t)  t W2) 9 

uniformly on [O,oo) for q s ,  (-00,0] for q", where q1 = qI or qy 
satisfies the variational equation 

dQl /d t  = m q l  + s(q0(t>,t) 7 (14) 

where A ( t )  = f ' ( q O ( t ) ) .  
Now, put z ( t )  = ( f i ( q O ( t ) ) , - f l ( q o ( t ) ) )  = ( J q o ) t .  Then z ( t )  is 

normal to  the homoclinic orbit at qo(t),  and in fact the row vector z 
is a solution of the a.djoint variational equation dz /d t  = -xA( t ) .  A 
measure of the separation of the stable and unstable manifolds of p: 
is 

tz  

--z - q i (0 )  + -z * Q 3 2 )  = J ,  -zW * d q 0 ( t ) ,  t )  dt - 

d'(0)  = JW z ( t )  - s(clO(t), t )  dt = 1, f ( q O ( t > )  A 9(q0(t>, t )  dt * (17) 

(16) 

Since -z.q;"(t) and z .q I ( t )  approach zero as t + -00 and 00 resp. (as 
shown in [lo]), it  follows that 

03 

-03 

The analogy with (12) is that z in (17) corresponds to z- in (12), 
while g(qO( t ) , t )  = q 1  - A(t)ql  in (17) corresponds to (aA/aX)y+  = 
it - A(z,Xo)yT in ( la ) ,  where y t  = ay+/dX. In fact, the proof of 
(12) in [15] closely resembles the derivation of (17) sketched above. 
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Ground States of Degenerate 
Quasilinear Equations 

James Serrin and Hengliui Zou 
Department of Mathematics 
University of Minnesota 

1 Introduction 

In 1989 Chipot and Weissler introduced the interesting quasilinear 
elliptic equation 

AU + up - IVUI' = 0, (1) 
and in particular obtained the existence of ground states when the 
parameter values p and q mtisfy 

1 < q < -  2p p >  1. 
p i -  1' 

Their study of ground states for (I) was extended to arbitrary expo- 
nents p > 0 and q > 0 in a recent paper of the present authors. 

Here we shall show that these considerations can be generalized 
to the case of the degenerate Laplace operator, that is to the equation 

AnL~l  + U P  - ( V U ~ Q  = 0, (I>m 

where rn > 1 and AnLu = div(lVulm-2Vu). The interest here lies 
partly in the fact that the methods for studying ground states for 
equation (I) do in fact extend to equation (I)m and also in the some- 
what unexpected change in  the results for the subcritical parameter 
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range, that is, when 

(m < n).  ( m  - 1). ( m  - 1). + m mP 
< P <  n - m  9 Optl’ n - m  

We recall that a ground state for (I), or for (I)*, is a non-negative 
non-trivial entire solution. In our previous paper we proved that ra- 
dial ground states for (I)  always exist for the supercritical parameter 
range p > (n+ 2 ) / ( n  - 2 )  and may or may not exist when p is critical 
or subcritical, depending on the value of q. Finally we determined a 
specific bounded range of the parameters p and q, namely 

where existence of ground states could neither be affirmed nor denied 
using the methods at hand. 

Turning to  the case of ground states for equation (I)*, we shall 
show that existence always holds when p is supercritical, that is, 
when 

(m - 1). + m 
n - m  

p > l =  

For critical p ,  existence of radial ground states holds if and only if 

( m  - 1). + m 
( m  - 1). - m 

n 
n -  1’ O <  q < q1= ( m - 1 )  if m > -  

and for all q > 0 if m 5 n / (n  - 1).  
Finally, for subcritical p ,  existence holds when 

while we prove non-existence of radial ground states when 

(rn - 1). 
p 5 h =  

mP 
q >  p+l’ n - m  

For the remaining parameter range, namely 
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the results are somewhat complicated, and at  the same time not 
complete. When n 2 and m < n, we have the following non- 
existence ranges: 

(1)  9 L Q ,  11 < P < P ,  m < n/(n - 1); 

(2) 9 2 q, 11 < P < 1,  m = n/(n - 1); 

(3) 9 L Q ,  11 < P 5 1,  m > n/ (n  - 1); 

here q (> mp/(p + 1)) satisfies the quadratic equation 

D ( t )  = [2(m - 1)t + (m - 2)pt - m(m - l)pI2 
4(m - 1)(n - m) - (1 - p)[(p + q t 2  - mpt] = 0 

m(n - 1) 

while p is the unique root of the equation 

m ) ( I  - s)(s + 1) = 0 
4(m - l)(n - 

m(n-  1) 
P ( s )  = [2(m - 1) - (2 - m)sI2 - 

in the interval 11 < s < 1. When m < n < 2, we show that radial 
ground states cannot exist for the parameter range 

11 < p 5 P ,  4(n - m) - m(m - I)(. - 2)2 > 0, (4) g 2 q, 
see Theorem C’. Only case (3) corresponds directly with the results 
in our earlier paper. 

Regions of existence and non-existence for radial ground states 
in the various cases (1)-(3) are shown in Figure 1 on the following 
page, for particular values of m and n. 

For values of (p,g) satisfying (1.1) but not covered by the cases 
(1)-(4) above, we have not been able to determine the existence or 
the non-existence of ground states. This problem certainly deserves 
further study. 

2 Preliminary Results 

In this section we consider some preliminary results for positive radial 
ground states U ( T )  of (I)m, where T = 1x1 is the radius. Obviously we 
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4 
f 

I 
b 

I, - 3 1 - 5  p 

I 
I 
I 
1 .  

1.2 p / -  I, - 1 

Figure 1. Existence and non- 
existence domains for radial non- 
negative ground states of eqult 
tion (I),.,,. Existence holds for ( p ,  q )  
in the domain below the curve q = 
mp/(p+ 1) and to the right of the 
critical line p = 1 = [(m - 1). + 
m]/(n - m). Non-existence holds 
elsewhere, except in the shaded 
region ( see discussion in the text). 

Case (a) n = 3, m = 2; Case 
(b) n = 3, m = 3/2; Case (c) 
n = 3, m = 514. 
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can consider u(r )  as a solution, for some 6 > 0, of the initial value 
problem 

(Iu’lm-2u’(r))’ + + I U ‘ I ~ - ~ U ’  + up - Iu’Iq = 0, 

u(0) = 6 > 0, u‘(0) = 0 
(IVP)m 

with 
u(r )  > 0 for all r > 0. (1); 

It is also important to consider solutions of (IVP), which do not 
satisfy (I);. These solutions, which we continue to denote by u, 
thus satisfy 

u ( r )  > 0 for 0 5 r < R, u(R) = 0. (11); 

The local existence of C1-solutions of (IVP), is assured by stan- 
dard theory. Moreover, regularity theory shows that u is twice con- 
tinuously differentiable wherever u’ # 0, and can be continued so 
that it satisfies either (I); or (11);. The following results are similar 
to those for the Laplace operator, see reference [2] for details. 

Lemma 1 Suppose u ( r )  is a solution of (IVP), satisfying either 
(4; or (IIym. Then u‘(r) < 0 when u > 0. Moreover 

for 0 < r < R. Here we define R = 00 in case (I,), holds. 

ProoJ From (IVP),, the quantity I U ’ J ~ - ~ U ’  is decreasing when- 
ever u’ = 0 and u > 0. At r = 0, in particular, ( I U ‘ ~ ~ - ~ U ’ ) ’  = -(P/n. 
Hence u’ < 0 for T > 0 near zero, and even more u‘ cannot return to 
zero as long as u > 0. 

To obtain (2.1), we define 
m - 1  UP+1 

H,(T) = - I u ’ ~ ~ ( T )  + - 
m p +  1’  

and observe by direct computation that 
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whenever u’ < 0. Hence for 0 < r < R we have 

which obviously yields (2.1). 

Lemma 2 Let u ( r )  be a solution of (IVP), satisfying (&Im. Then 
necessarily 

u ( r )  + 0, d ( r )  + o (2.4) 

a s r - o o .  

For real a, we define the modified “energy” function (see [a] )  

for which the following identity holds. 

Lemma 3 Let u ( r )  be a solution of (IVP), and let k be a real num- 
ber. Then 

(rkG,(r))’ = rk-’ { (%k + a - n + 1)  Iu’lm - r(u‘(q+l 

+ a(n - k)r-1uIu’lm-l (& - a )  up+1+ oulttlq} 
(2.6) 

for 0 < r 5 R. 

When p is subcritical, i.e., when 

( m  - 1). + 2 
O < p < l =  , m < n ,  n - m  (2.7) 

we have the following existence result, proved exactly as in [2]. 

Theorem 1 Suppose that (2.7) holds. Then equation (I), admits 
infinitely many positive ground states provided that 

q s p ,  p < m - 1  or q < -  mp m - l < p < l .  
p +  1 ’  
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3 Existence of Ground States 

Here we obtain the existence of ground states for equation (I), in 
the supercritical case. Since (I)m has a radially symmetric structure, 
we seek in particular the existence of radial ground states. As is 
customary, we consider the initial value problem (IVP), and use an 
ODE shooting argument to  find the desired solutions. 

Theorem A ( i )  If 

then for each ( > 0 equation (I)m has a unique positive radial ground 
state u ( r )  with central value u(0) = < (that is, lulp = 0. 

(ii) If 
m(n - 1)P 

mn + ( m  - l ) ( p  + 1)' 
p > l  and q >  

then for all suficiently small ( > 0,  equation (I)m has a unique 
positive radial ground state u ( r )  with central value u(0) = <. 

The proof of Theorem A is almost the same as in [2], the following 
PPS (Pohozaev-Pucci-Serrin) type identity for solutions of (IVP), 
being the main tool for the argument. 

Proposition 1 Let u be a solution of (IVP), satisfying (IIY,. Then 
for all real numbers a and for k > 0 we have 

+(--kto m - 1  
m 

In order to  apply (3.1) we shall 
alization of the well-known Poincard 
2). 

also need the following gener- 
inequality (see [2], Proposition 
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Proposition 2 Let R c Rn be bounded with smooth boundary. Sup- 
pose that u E C1(R) n Co(fi) with u = 0 on dR. Then for 0 < q < k ,  

Finally, see [2], Lemma 4, we have 

Lemma 4 Suppose that u is a solution of (IVP), satisfying (II,,,, 
with q > m p / ( p  + 1). Then, provided that ( 5 1, we have 

where s = [q(p  + 1) - mp] /2  > 0. 

Sketch ofproof of Theorem A .  Consider solutions of (IVP),. Our 
goal is to  show that for appropriate initial values ( > 0 a solution 
u ( ~ )  can never reach zero at  a finite value of r ,  i.e., u ( r )  exists and 
stays positive for all r > 0. If this is done then the theorem will be 
proved, for by Lemma 2 the function u ( r )  must tend to zero as r 
goes to  infinity and consequently u must be a positive ground state 
with central value (. 

The proof is by contradiction. If U ( T )  reaches zero at a finite 
point R, then choosing 

k 
a=- m(n - l ) ( P  + 1) k =  

m + ( m - i ) ( p + q 7  p +  1’ 

we obtain a direct contradiction with (3.1) and (3.2) in case (i), while 
in case (ii) we choose k = n and a = k / ( p  + 1) and use (3.1) and 
(3.3). For details, the reader is referred to  [2]. 

4 A Fundamental Identity 

In this section we prove an identity for solutions of (IVP), which 
will be crucial for the remaining results in the paper. Let u ( r )  be a 
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solution of (IVP), and R = R(() the first positive zero of u (if u > 0 
for all r ,  then R = 00). For k, a, P E R, consider the function 

Zm(r)  = rkG,(r) - P r k ~ I ~ ’ I q ,  0 < T < R, (4.1) 

where Gm(r)  is given by (2.5). 

Lemma 5 Suppose that u ( r )  is a solution of (IVP), and let 

Then Z,(r)  satisfies the initial value problem 

z;(T) + eldlq-lzm(T) = qT), 
~ m ( 0 )  = 0, (4.3) 

K ( r )  = CrIC-2u1u’lm-1(a + bX + cX2) (4.4) 

2 0, 

where 8 = Pq(p  + l ) / (m - 1) and 

with 

and 

m n - 1  c =- 
m - 1 [m + (m - l)(p + 1)y  

In  particular 

ds. (4.5) 
-e so‘‘ luip+l--mdg Jd I((s)eeJos lu ’p+l-mdt 

Proof. Equation (4.3), with (4.4) and (4.5), was proved in [2] for 
m = 2. The proof for arbitrary m > 1 is based on the following 
identity for any k, a, P ,  8 E R 

Z,(r) = e 
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5 Asymptotic Estimates 

The goal of this section is to  determine the asymptotic behavior at 
infinity of solutions of (IVP), satisfying (I);, as well as uniform 
estimates for solutions satisfying (1I)L. This will be important for 
the results of Sections 6 and 7. Throughout the section we assume 
that 

q > p ,  O < p < m - 1  or q > -  mp p 2 m -  1. (5.1) 

First, we establish the uniform estimates, depending on solution only 
through its initial value, and valid for all r E ( 0 ,  R) ,  but at the same 
time depending on p ,  q, n and m. 

Theorem 2 Let U ( T )  be a solution of (IVP), satisfying (1ym or 
(IIY,. Suppose that (5.1) holds with p > n(m - 1)/( n - m). Then 

p +  1'  

U - < clr-"/(P+l-") , IU'(P+l-m 5 C2r-l-' (5.2) 

for 0 < T < R, where C1 and C2 are positive constants depending 
only on p ,  q, n, m and [, and 
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Moreover, C1 and C2 remain bounded as E -to. 
The estimate (5.2)1 follows directly from a series of lemmas cor- 

To prove (5.2)2, we choose k > m(p + l ) / ( p  + 1 - m)  > m - 1, 
responding to  those for the case m = 2 in [2], Section 5. 

multiply (IVP), by rk and integrate from 0 to  r to  obtain 

It is clear that 

1 (5.4) 

since k > m(p+ l ) / ( p +  1 - m) and u = O ( T - " / ( ~ + ~ - " ) ) .  To estimate 
the second integral in (5.3)' observe that 

by Young's inequality together with the differential equation itself. 
It follows that 

Therefore 

Combining (5.3)' (5.4) and (5.5) immediately yields 
~ ~ l l m - l ~ k  = O(rk-(m- l ) (p+' ) / (p+' -m)) ,  

which gives ( 5 . 2 ) ~ .  
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Theorem 3 Suppose that u ( r )  is a solution of (IVP) satisfying (I);, 
and that (5.1) holds. Then 

(a) If p < m - 1, there is no solution; 

(b) If p = m - 1, then u = O(e-T) ,  u' = O(e-T)  as r ---f 00; 

(c) If p > m - 1, then 

u = o(r-"/(P+'-") 1, u' = O(r-(p+')/(p+'-m) 1 

The proof is essentially the same as for Theorem 2, cf. [2], Section 
6. As a consequence of Theorem 3, we also have the following lower 
asymptotic estimate for ground states. 

Corollary 1 Suppose p 2 m - 1 and q > m p / ( p  + 1). Then 

< 00. r ' u ' I q + l - m  (5.6) 

Moreover, there exists a constant p > 0 such that 

where c is a positive constant. 

Pro05 (5.6) is a direct consequence of Theorem 3. To prove (5.7), 
we notice that from (IVP) 

I q t 1 - - m  
It follows that the function ~u'~"+2u'(r)rn-1e~or I u  I is decreas- 
ing. In turn Iu'lm-2u'(r)rn-1 tends to a negative (possibly infinite) 
limit by (5 .6) ,  since u' < 0. We then infer (5.7) by integration. 
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6 Existence of Ground States: The Critical 
Case 

Here we extend the existence theory of Section 3 to the range 

( m  - 1). t m ( m  - 1). + m , p = l =  , n > m. (6.1) 
n n - m  Q >  

The situation for the degenerate operator is somewhat different than 
for the Laplace operator. To be precise, it will be shown that there 
exist ground states for the entire range (6.1) when n m/(m - l ) ,  
while for n > m/(m - l ) ,  existence holds only if 

( m  - 1). + m 
Q < 41 = ( m  - - l )n  - 

On the other hand, Theorem A (i) already gives the existence of 
ground states for the values 

It follows that existence holds on the critical line exactly for the range 

q1, if n > m / ( m -  1 )  
00, if n 5 m / ( m -  1).  

Note that the first case can happen only if n > 2. 

Theorem B Suppose that (6.2) holds and p = 1 .  Then for  all suf- 
ficiently small values < > 0, depending only on  q, m and n, equation 
(I)m has a unique positive radial ground state u ( r )  with central value 

< *  

Theorem B is proved by combining the uniform estimate (5.2) 
and the identity (4.3) for Z m ( r ) ,  see [2],  Section 5. Indeed, setting 
p = 1 in (4.4) gives 

K ( r )  = ~rn-luIu’IQ(iLrIu’lQ+l-m - 6) 
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with 

1 c =  
( m  - l ) ( n q  + n - m)’ 

By (5.2) and Lemma 1 we have for suitably small < (depending on 
q, n and m) 

which implies K ( r )  < 0 for 0 < r < R. If R < 00, it  follows that 
Z,(R) < 0. But also u(R) = 0, so that Z,(R) > 0, a contradiction. 
Hence R = 00 and the theorem is proved. 

hT Iu ’1 P + l  --m <&, o < ~ < R ,  

7 Non-existence of Ground States 

If p is strictly greater than the critical exponent, there always exists 
at  least one ground state for (I)m. However, if p is subcritical we 
know so far only that (I)m admits ground states if q < m p / ( p  + 1). 

In this section we shall use the main lemma established in Section 
4 to  prove non-existence for suitable pairs ( p ,  q )  in the remaining part 
of the subcritical region. 

For convenience, we denote by I1 and 1 the two critical values 

11 = , 1 =  , m < n .  
( m  - 1). (m  - 1). + nz 
n - m  n - m  

As in the case m = 2 (see [2] ,  Section 7), it  is important to  study the 
roots of the quadratic equation 

D ( t )  = 

for fixed values 

[ 2 ( m  - 1)t + ( m  - 2)pt - m(m - 1)p12 
4 ( m  - 1 ) ( n  - m) 

m(n - 1 )  
- ( 1  - p ) [ ( p  + l ) t2  - m p t ]  = 0 (7.1) 

of p in (11,1].  
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When n > m/(m - l), so that of course also n > 2, the situation 
is simple: for p E (I1,/] equation (7.1) has a unique root tj in the 
interval >. (7.2) 

($9 2 ( m  - 1) + ( m  - 2)p  
m(m - 1)P 

The case 2 5 TI < rn/(m- 1) is more delicate. In this case m < 2, 
and moreover there is a unique root p of the quadratic equation 

P ( s )  = [2(m - 1) - (2 - m)sI2 
4(m - 1)(n - m) - ( I  - s)(s t 1) = 0 (7.3) 

m(n - 1) 

in the interval I1 < s < 1;  to prove the existence of p ,  note that 

P(1) = [ 2 ( m  - 1) - ( 2  - m)ZI2 > 0 

and that P ( s )  is quadratic in s. 
Now consider (7.1) when 11 < p < p .  Observe that P(I1) < 0 and 

P(I)  > 0 while P ( p )  = 0, so P ( p )  < 0 for I1 < p < p .  Since P ( p )  is 
the coefficient of t2  in D ( t )  we now have 

D ( m p / ( p +  1 ) )  > 0 ,  D ( t )  + -00 as t + 00. 

Hence (7.1) has exactly one root tj in the interval ( m p / ( p  t l ) , ~ )  
since D ( t )  is quadratic in t .  Clearly p + I as n + m/(m - 1) and 
q + m a s p - - + p .  

When n = m/(m - 1) then m < 2 and n > 2, and 

2 ( m  - 1) 
2 - m  

= I ,  P(I) = 0. 

In turn, for 11 < p < I there is again exactly one root tj  of (7.1) in 
the interval (7.2). 

Theorem C Suppose m < n and n 2 2. Then equation (I),,, admits 
no positive radial ground states if any of the following conditions 
holds: 
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(4 9 > m P / ( P  + 11, m - 1 L P L 11; 

11 < P < p ,  

11 < P < 1, 

11 < P I 1, 

(iii) 9 2 Q, 

(iv) 9 2 Q, 

(4 9 2 q, 

nz < n / (n  - 1) ;  

nz = n / (n  - 1 ) ;  

m > n / (n  - 1). 

Here Q (> m p / ( p  + 1 ) )  satisfies (7.1), while p is the unique root of 
(7.3) in the interval 11 < s < 1. 

If m < n < 2 then P(1) > 0. Clearly cases (iv) and (v) cannot 
occur, but otherwise the results continue to  apply when P(11) < 0. 
On the other hand, if P(l1) 2 0, that is if 

m(m - 1)(n - 2)2 2 4(n - m),  

then equation (7.3) has no root in ( I I , ~ ] .  In this case part (iii) of the 
above theorem also does not apply, and the whole strip 

9>- mp 1 1 < p < l  
p +  1’ 

is left undetermined. We state this as Theorem C’. 

Theorem C’ Suppose m < n < 2, and let 

p = 4(n  - m) - m(m - I>(.  - 212. 

If p > 0 then the first three parts of Theorem C continue to apply, 
while i f  p 5 0 just the first two parts of Theorem C are valid. 

The proof of the first two parts of Theorem C only involves the 
asymptotic estimates given in Section 5. To prove the remaining 
parts we use the identity in Section 4 and the following lower estimate 
for ground states. 

Lemma 6 Suppose that u ( r )  is a solution of (IVP), satisfying (I,,,. 
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and assume that any of the conditions (iii), (iv) or (v) holds. Then 

liminf T+oO rkG(r)  > 0. (7.6) 

The proof of this lemma and of parts (iii)-(v) of the theorem is 
exactly parallel to that for the case m = 2 in Section 7 of [2]. 

Remark. When m - 1 < p 5 11 and q > m p / ( p  + l ) ,  equation 
(I)m does not even admit singular radial ground states, that is, non- 
negative solutions of (1)m on R" \ 0 which tend to infinity at the 
origin. Indeed, for this range the argument only depends on the 
asymptotic behavior of solutions at  infinity, having nothing to do 
with their behavior at  the origin. However, when 

n - m  
n - 1  q = -  P, o < p < m ,  

(I)m does admit singular solutions of the form cr-a. 

The nonexistence results above do not cover the supercritical 
range m p / ( p  + 1) < q < a if 11 < p < jj and m p / ( p  + 1 )  < q if 
jj 5 p < 1, since D ( t , p )  > 0 in this region and the proof does not ap- 
ply. Indeed we do not know whether or not existence holds for these 
parameter values. However, we can show that any radial ground 
state with ( p , q )  in this range must have a suitably large central 
value (depending only on p ,  q, n and m). 

Theorem 4 Suppose that either 

mp < q < q ,  1 1 < p < p  O f  - mp < q ,  p 5 p < 1. (7.7) 
P + l  P + l  

Then there exists a constant (0 = < o ( p , q , n , m )  such that if u = u(r )  
is a radial ground state of (I)m, then necessarily 

When n 5 m, both the critical exponents I1 and l are infinity so 
that every p is subcritical. In this case the following non-existence 
theorem holds, a simple extension of Theorem C. 



304 J. Serrin and H .  Zou 

Theorem D Suppose n 5 m and 

Then equation (I)m admits no positive radial ground states. 

Theorem D involves only the first two cases of Theorem C, the 
proof of which only used the asymptotic behavior of solutions. Since 
these estimates apply for all m > 1 and n > 1, Theorem D follows 
directly from Theorem 3 and the corollary in Section 5. 

8 Compact Support Ground States 

We have concentrated on positive radial ground states in the earlier 
results of the paper. However, equation (I)m can admit compact 
support ground states, these being positive for r < a ( 0  < a < w) 
and identically zero for r 2 a. This section contains two results about 
radial compact support ground states, the first concerning existence, 
the second non-existence. 

We first note, as shown in the following lemma, that radial com- 
pact support ground states can only exist when q < m- 1 and p < 1. 

Lemma 7 Suppose that q 2 m - 1 or p 2 1. Then equation (I)m 
cannot admit any m d i d  compact support ground state. 

Proof. The case p 2 I follows from the proof in Section 3. In the 
case q 2 m - 1, suppose for contradiction that (1)m admits radial 
compact support ground states and let u be such a solution. Then 
there exists a finite number R > 0 such that 

0 bviously 

since q 2 m - 1. Using (IVP),, (8.1) and (8.2), we have 
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for r E (O,R), since u' < 0 by Lemma 1. Clearly this is impossible 
since the left side is negative, while the right positive. This completes 
the proof. 

Theorem 5 Suppose p < q < m p / ( p  + l), 0 < p < m - 1. Then 
equation (I)m admits infinitely many compact support ground states. 

The proof is a combination of those for Theorem 1 and Theorem 
C. Indeed by Theorem C we have R < 00. Then u'(R) = 0 if the 
initial value ( is small enough (see Theorem 5 of [2]). Extending u by 
defining u = 0 for T 2 R gives the desired compact support ground 
state. 

Theorem 6 Suppose q 2 m p / ( p  + 1) and p > 0. 
(I)m admits no radial compact support ground states. 

Then equation 

The proof is exactly parallel to that for Theorem 6 in [2]. 
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Gradient Estimates, 
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Consider a Dirichlet boundary value problem for a second-order 
partial differential equation of elliptic type and suppose that esti- 
mates of the gradient of relevant solutions are in demand. By way 
of example, consider the following archetype 

u = 0 on the boundary of G ( W  
Here G is an open subset of euclidean n-dimensional space Rn; coef- 
ficients a i j  are real-valued, measurable and bounded; ellipticity reads 

n 

C aij(z) t i t j  2 t; t * * * t ti (2) 
i,j=l 

for every x in G and cvery t from Rn; f is real-valued and belongs to 
an appropriate Lebesgue space. If u is a weak or variational solution 
to problem (l), then the following inequality 
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holds, where 

q = np/(n + p )  and n / ( n  - 1 )  5 p 5 2. The inequality is sharp: some 
coefficients a;j, some domain G, and special f and u exist which 
render (3a) an equality. Inequality (3) is an easy corollary of the 
following theorem. 

Theorem 1 Consider the variational problem: 

lgrad ulpdx = maximum, 
Jl 

where u is a weak solution to problem (l), and domain G, coefficients 
a;j, and right-hand side f are the competing variables. Assume the 
measure of G is given; coefficients a;j satisfy ellipticity condition 
( 2 ) ;  f belongs to L2n/(n+2)(G) and is equidistributed with a given 
function. In other words, the collection of those points x from G 
such that I f  (.)I exceeds t - a level set of f - has a prescribed 
measure for every nonnegative t .  (There are some minor alterations 
i f  the dimension, n, is 2.) Assume 0 < p 5 2. Then the maximum 
in question is acheived when G is a ball - centered at the origin, 
say; a;j = 6; j ,  the coefficients of Laplace operator; f is nonnegative, 
spherically symmetric - i.e., invariant under rotations about the 
origin - and radially decreasing. 

Inequality (3) and Theorem 1 appeared in [GI. Related results 
and a bibliography are presented in [7]. Further advances are in [l]. 

Now let a nonnegative nonincreasing function p be given, assume 
f obeys 

for every nonnegative t and belongs to  appropria.te Lebesgue spaces, 
and consider the following problem 

measure of { x  E R" : I f (x)1 > t }  = p ( t )  (4) 
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U(X) = o(IzI) as 1x1 --f 00. (5b) 
Question: If u is a weak solution to problem (5)' which f renders 

a maximum? 

is the function f defined by f 2 0 and 
If 0 < p 5 2 ,  Theorem 1 settles the question: a typical maximizer 

{X E R" : f ( X )  2 t }  = x E R" : T ~ / ~ ~ x ) ~  5 r - + 1 p ( t )  (6) 

for every nonnegative t .  Thus, the symmetry about a point governs 
the affairs. 

Studies in progress, which cannot be detailed here, indicate that 
the symmetry about a point definitely breaks down i f p  is large. If 
p = 00, the question in hand is settled by the following theorem, 
showing that the symmetry about a line prevails. 

Theorem 2 I f f  obeys condition (4) and u is a weak solution to 
problem ( 5 ) ,  then the following inequality 

{ (: ) I 

holds, where 

Inequality (7) is sharp. Indeed, define f in the following way. Firstly, 
let 

secondly, let the absolute value off be specified b y  

{X E IR" : If(.)/ 2 t }  = 

{. E IRn : 14 5 (P(t)/A)'/"' 

2; + . . + z2 n -  < (p(t)A)2(1-'/")/"r:/n - x:} (8b) 
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for every nonnegative t ;  thirdly, let the s i p  off  be specified by 

f(x) is positive if x1 is positive, negative otherwise. (8c) 

Then equation (4) holds and any  weak solution u to problem (5) sat- 
isfies 

-- ( 0 )  = the right-hand side of (7a). (9) 
d U  

ax1 

Theorem 2 appears in [a ] ,  together with variants and refinements. 
Notice the following corollary of Theorems 1 and 2 .  Let E be a 3- 
dimensional concentration of electric charges; suppose E has a given 
volume V and the density of charge takes the values +1 and -1 only. 
Assertions: (i) the total energy of the electric field generated by E 
is a maximum if E is a ball and the charges have all the same sign; 
(ii) the value at a given point - the origin, say - of the electric 
field in question turns out t o  point towards a given direction - the 
direction ( - l , O ,  . . . , O ) ,  say - and simultaneously take its largest 
absolute value if E is the set - symmetric about a line - defined 
by 

moreover the positive charges are concentrated in the subset of E 
where X I  2 0 and the negative charges lie in the remaining part .of 
E .  

Proof of Theorem 2, outlined. Standard properties of harmonic 
functions and Poisson equation, equation (5a) and condition (5b) 
imply 

in particular 

Let rearrangements B la Hardy and Littlewood come into play. 
Recall that the decreasing rearrangement, f*, o f f  is defined by 

f*(s) = sup{t 2 0 : p( t )  > s} (11) 
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if 0 s < p(O+), and f*(s) = 0 if s 2 p(O+) - here p stands for 
the distribution function of f, i.e., use is made of equation (4). (We 
refer t o  [3], [4], [5] and [7] for more information.) 

Define h by 

and compute the decreasing rearrangement of h. As is easy to check, 

for every nonnegative s - constant C is given by (7b). (Observe 
incidentally that h is hamonic.) 

A theorem by Hardy and Littlewood says 

Formulas (lob), (12a), (12b) and (13) give 

As equation (5a) and condition (5b) are invariant under translations 
and rotations, we conclude that 

for every x in R". Inequality (7) follows, since 

J,'" f*(s)s-l+l/"ds = n J,'" b(t)]'l"dt (15) 

thanks to (11). 
Suppose f is defined by (8). An inspection shows that such a f 

satisfies (4). Importantly, f has the same sign as h and any level set 
o f f  is a level set of h. It can be shown that equality holds in Hardy 
and Littlewood inequality (13) if f and h have the same sign and 
any level set of the former is a level set of the latter. The last part 
of Theorem 2 follows. 0 
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Abstract 

Semilinear elliptic equations on RN with appropriate nonlineari- 
ties have countable sets of localized classical solutions, both spherical 
and nonspherical. In explicit examples, norms of these solutions ex- 
hibit interesting and unexplained patterns. These norm spectra are 
purely the result of nonlinearity, having no analog in corresponding 
linearized problems. We present the examples and discuss their re- 
lation to the theory of bifurcation of solutions to semilinear elliptic 
equations on bounded domains. 

Interest in localized solutions to semilinear elliptic equations on 
RN stems in part from the role of such solutions as the spatial profiles 
of standing solitary wave solutions to nonlinear wave equations in 
( N  -4- 1) spacetime dimensions. A nonspherical solitary wave carries 
nonzero (classical) angular momentum in its center-of-momentum 
frame, and thus represents a “spinning” excitation. The spectra of 
masses and spins of such solitary waves are determined by the spectra 
of norms of solutioiis to the associated elliptic equations. 
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1 Introduction 

The purpose of this note is t o  raise a question, motivated by study of 
model equations in physics, that could lead to  new results in nonlin- 
ear spectral theory. We first state the mathematical question, then 
discuss its relation to  bifurcation diagrams for solutions of semilinear 
equations on bounded domains. We conclude by presenting explicit 
examples of purely nonlinear norm spectra, and indicating their re- 
lationship to  some quantities with physical interpretations. 

2 The Question 

Consider the semilinear elliptic equation 

where v : RN + C, and f : R + R is a continuous odd function. 
This special kind of nonlinearity arises in some physical models and 
is particularly amenable to  study. Here we are interested in localized 
classical solutions, for which v E C2 with Iv(z)I + 0 as 121 --+ 00. 

Conditions on f that guarantee the existence of such solutions are 
spelled out in [1]-[5]. Roughly, it is required that f’(0) < 0 and 
F ( s )  = f ( t )  dt > 0 for some s > 0. It is known that for such f, 
(NLE) has infinite families of localized classical solutions, of which 
there are at least two types: 

A. Spherically symmetric real-valued solutions v(z) = w( Izl), 
where the function w : [0,00) + R satisfies the radial ordinary dif- 
ferential equation w” + vw‘ + f (w)  = 0 with T = 1.1. Generi- 
cally, there is such a radial solution with each prescribed number of 
nodes. (If T is interpreted as time, these solutions may be visual- 
ized as describing one-dimensional motion in a potential well F with 
time- dependent damping.) 

B. Nonspherical complex-valued solutions, constructed as follows. 
If N is even ( N  = 2n), group the coordiimtes of z E RN into n 
pairs: ( q , ~ ) ,  (z3,24), . . . , ( Q ~ - ~ , Q ~ ) .  If N is odd ( N  = 271 4- l), 
group the first N - 1 coordinates into n pairs (21, z2) , ( 5 3 , z d )  , . . . , 
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(22n-17~2,)7 and let z = 22,+1. Let rj and Oj be polar coordinates 
for the pair (zzj-1, 22j). Then we can find solutions of the form 
v(z) = ei(mlel+ ’“ +mnen) w(r1, .. . , r ,  [, z ] ) ,  where ml, . . . , mn 
are integers; the function w satisfies the reduced equation 

For example, in N = 2 dimensions, w ( t - , O )  = eimew(r), where 
w : [O,w) + R satisfies w“ + kw‘ - $w + f ( w )  = 0. Again, 
generically there is a solution for each number of nodes. 

Each of these countable infinity of distinct localized solutions v 
has 1 1 ~ 1 1 ~  and l lV~11~ finite. The set of these solution norms, which 
might be regarded as a “spectrum,” is a signature of the nonlinearity. 
Note that these numbers arise naturally; no eigenvalue parameter is 
inserted by hand. Furthermore, there is no linear analog: the cor- 
responding linearized autonomous equation on RN has no nontrivial 
solutions with finite L2 norm; it would require non-autonomous terms 
or boundary conditions on a bounded domain (both of which serve to 
set the scale by hand) to generate a discrete structure to the solution 
set. 

We will call the set of solution norms the “purely nonlinear spec- 
trum” of the nonlinearity. This set appears to be a natural mathe- 
matical object that reflects the interplay between the Laplacian and 
the nonlinearity f. Natural questions about the nonlinear norm spec- 
trum include: Given an appropriate semilinearity f, what are the 
properties of the norm spectrum? For example, does knowledge of 
the general properties of the nonlinearity determine the asymptotics 
of the norm spectrum? Conversely, given the norm spectrum, what 
about f is determined? 

3 Relation to Bifurcation Diagrams for 
Problems on Bounded Domains 

Since relatively more is known about semi1inea.r elliptic equations on 
bounded domains than is known about such equations on R N ,  we 
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reformulate the purely nonlinear norm spectrum in terms of quanti- 
ties associated with problems on bounded domains. Let B be a ball 
of radius one in R N .  We define g : C + C by g(v) = f(lvl)fi, and 
consider the “standard problem” 

{ ux = 0 on DB 
-Aux = X g(ux) in B 

parametrized by r ed  parameter A. 

to the “unbounded problem” 
We will compare solutions to this standard problem with those 

-Av = f(v) on RN { v + O  a s I s l + o o  
Given a nontrivial branch of solutions {UX I X E ( 0 , ~ ) )  to the 

standard problem, set w p ( z )  = u (z). Then w p  satisfies -Awp = 
P f i  

f(wp),  and wp(z) = 0 for 121 = fl. It follows that, as p + 00, w p  
converges to a nontrivial solution v of the unbounded problem. 

Since llzoPll2 = pN14 JIupl12, we have lim pNI4 Ilupl12 = 1 1 ~ 1 1 ~ ,  with 
a similar result for the norm of the gradient. Thus the norms of solu- 
tions to the unbounded problem determine the asymptotic behavior 
of the bifurcation diagram for the standard problem, as indicated in 
Figure 1. 

P + W  

Figure 1. Generic bifurcation diagram for the standard problem. 
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That is, the purely nonlinear norm spectrum is determined by 
l l u~ l l  for the standard problem the set of asymptotic values of 

(on a fixed bounded domain) in the limit X -+ 00. 

4 Example 

To allow explicit computation of solutions, we may take f to be a 
piecewise linear function. For specificity we take f = f,, with f,, as 
shown in Figure 2. 

We may compute explicitly solutions of both types mentioned 
above. 

A. Real-valued spherically symmetric solutions. Reference [6] 
gives an explicit construction of all spherically symmetric solutions 
in N = 3 spatial dimensions. (Similar results hold for any N > 1.) 
Substitution of the radial ansatz v(z) = w(lxI) into (NLE) gives the 
ordinary differential equation -w'I - -20 3 I = f,,(w) for w. Since f,, 
is piecewise linear, we have explicit solutions in each w-amplitude 
region: 

( '> 
C d 

j W(T) = - s i n r +  - c o s r f  1 t u 
T T 

Figure 2. Piecewise linear nonlinearity 
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The unknown parameters that characterize a solution are the 
values of coefficients a,  b, c,  d in various amplitude regions, and 
the values R of radii at which the solution crosses amplitude thres- 
hold f l .  We can determine these unknowns from the transcendental 
equations that insist w is continuously differentiable [then w is also 
C2 by virtue of the ordinary differential equation] and w is localized. 
In particular, we match the values of w and of w' across amplitude 
threshold crossings, and impose appropriate limits at T = 0 and at 
T = 00. A typical solution is shown schema.tically in Figure 3. 

We find, in explicit form, all spherical solutions with these piece- 
wise linear nonlinearities; they are indexed by number of nodes in 
the radial profile. 

B. Complex-valued nonspherical solutions. Reference [7] gives an 
explicit construction of nonspherical solutions in dimension N = 2. 
Substitution of the ansatz V ( T ,  0) E e i m e  w ( r )  into (NLE) gives the 
ordinary differential equation - W " - ~ W ' + $ W  = fa(w) for w. Again 
we have explicit solutions in each w-amplitude region: 

1 m2 
T 7-2 

-1 5 w 5 1 : w'l+-w'--w = u2w =2 w(r)  = a I m ( u r ) + b K m ( 0 r )  

Figure 3. Patching together local solutions to form solution w. 
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(Here 1, and K m  are modified Bessel functions.) 

W(T) = c Jm( T )  + d Y m (  r )  f & ( r )  

Here Jm and Y, are Bessel functions, and Fm is a particular solution. 
Specifically, Fo(T) = 1 + u2, and F ~ ( T )  = 5 (1 + u2) H ~ ( T ) ,  where 
H1 is a Struve function; for general rn, F, is built from Bessel and 
Struve functions. 

Unknowns are again the values of coefficients a, b ,  c ,  d in various 
amplitude regions, and the values R of radii at  which the solution 
crosses amplitude threshold f l .  These are determined by the tran- 
scendental equations that insist w is continuously differentiable and 
localized. Solutions are parametrized by u, m, and “excitation num- 
ber” n. 

The norms 1 1 ~ 1 1 ~  and llVvl12 for forty-two solutions in dimension 
N = 2 for a fixed value of 0 are shown in Figures 4 through 7. We 
observe that, for fixed excitation number n,  the quantities Ilvlli and 
l\Vv((i  are each approximately linear in spin rn. Careful analysis 
shows, however, that the relationship is not exactly linear. Similarly, 
for fixed spin m, the quantities 1 1 ~ 1 1 ;  and llVvllX are each approxi- 
mately quadratic in excitation number n, but not exactly quadratic. 
The precise behavior of these norm spectra and their relationship to 
fa is not currently known. 

3500.8 

3000,. 

2500.. 

Figure 4. Ilvlli versus m for 1 5 n 5 6. Lines are least-squares linear 
fits through families with fixed n. 
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1501 

1254 

Figure 5.  

3500- 

3000- 

2500-- 

2000- 

1500- 

1000- 

500- 

~ l ~ v l l i  versus m for 1 5 n 5 G. Lines are least-squares 
linear fits through families with fixed n. 

I 5 6 1 2 3 4 

Figure 6. 11vl1i versus n for 0 5 m 5 6. Curves are least-squares 
quadratic fits through families with fixed m. 
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Figure 7. llVvl[i versus n for 0 5 m 5 6. Curves are least-squares 
quadratic fits through families with fixed m. 

5 Quantities of Physical Interest 

Elliptic equations of the type considered here govern the spatial pro- 
files of stationary multidimensional solitary wave solutions to nonlin- 
ear wave equations of the form utt - Au = g ( u )  where u : RN+l + C 
and g : C -+ C with g ( r e i e )  = g ( r ) e i e .  Special solutions of the 
form u(z , t )  = e i w t v ( z )  with w real and v : RN --+ C are called 
standing waves. Substitution of this standing wave form for u into 
the nonlinear wave equation gives the semilinear elliptic equation 
-Av = fw(lvl) for v, where fw(s) I g ( s )  + w2s. 

An interesting class of solitary wave solutions to the nonlinear 
wave equation is obtained by applying Lorentz boosts to standing 
waves that are localized (for which Iv(x)I --+ 0 as 1.1 + KI). Thus 
the search for solitary wave solutions of nonlinear wave equations mo- 
tivates the study of localized solutions to nonlinear elliptic equations 
on R N .  
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Among the conserved quantities for solutions of the nonlinear 
wave equation are energy 

charge Q[u] 3 JRN Im[-Gtu] dx ,  and angular momentum L[u] 
J R ~  { x x Re [-fi t  Vu]  } dx. The values of these functionals evalu- 
ated on standing wave solutions are interpreted as the (rest-frame) 
mass, charge, and spin, respectively, of the associated solitary wave. 
Explicitly, these physically meaningful quantities are related to the 
purely nonlinear norm spectrum of the elliptic equation as follows. 
The solitary wave mass is E = w2 Ilvlli + IIVvlli. The solitary wave 
charge is Q = w 1 1 ~ 1 1 ; .  The solitary wave spin is I L I = lmwl Ilvlli. 
(We note that nonspherical solitary waves necessarily carry nonzero 
angular momentum in the rest frame.) 

The purely nonlinear norm spectrum of the elliptic equation is 
thus reflected in the discrete set of allowed values of solitary-wave 
masses, charges, and spins. Thorough understanding of the relation- 
ship between the nonlinearity f and its norm spectrum will shed light 
on the relationship between the dynamics of solitary waves and the 
structure of the solitary wave family in nonlinear wave equations. 
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1 Introduction 

The Boussinesq equation 

is known to have so called N-soliton solutions, i.e., solutions that 
exhibit asymptotically (as t -, f m )  N solitary waves of the typical 
sech2-form (see Hirota [5 ] ) .  IIere I am mainly interested in (a scaled 
version of) the Boussinesq equation in imaginary time, specifically, 

2 2  1 
U t t  = - - (u )zz - -uzzzz. 

3 3 

This equation renders “inelastic solitons”, i.e., solitary waves of the 
sech2-form which may stick together after interaction thus forming a 
new sech2-wave (see Figure 1). 

These inelastic solitons can be obtained via an auto-Backlund 
transformation for the Gelfand-Dickey system associated with the 
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Boussinesq-type equation.* In the following I will define what Gel- 
fand-Dickey systems and their “modified” counterparts, the Drinfeld- 
Sokolov systems, are. Section 2 then reviews the above mentioned 
auto-Biicklund transformation (see [3] and [4]). Section 3 describes 
briefly (details will appear elsewhere) how the inelastic solitons are 
constructed. 

Gelfand-Dickey systems are most easily defined in terms of Lax 
pairs. By a Lax pair is meant a pair of two ordinary differential 
expressions 

a n - 2  L = a: +qn-2 + ... + q o ,  

P = a; + pr-2a;-2 + ... + Po, 

which are almost commuting, i.e., their commutator [P, L]  is a dif- 
ferential expression of order n - 2 only. Under an additional homo- 
geneity condition it is always possible to find uniquely coefficients pj, 
j = 0, ..., T - 2 such that this holds (Wilson [7]). This distinguishes 
between n and T and causes the two operators to play very different 
roles. The Lax equation 

d L  
dt 
- = [P, L]  

is then equivalent to  a system of nonlinear evolution equations which 
is called a Gelfand-Dickey system. In particular the well-known KdV 
equation is recovered in the case n = 2 and T = 3, while the case 
n = 3 and T = 2 yields the Boussinesq-type equation (1). 

An important ingredient in the construction of the auto-Backlund 
transformation is another system of evolution equations, the Drin- 
feld-Sokolov system which is defiiied as follows: Given functions 
q$(z , t ) ,  i = 1, ..., n such that their sum is identically equal to zero, 

‘As I realized only after finishing this work these solutions were obtained 
earlier by Tajiri and Nishitani ( J .  Phys. SOC. J . ,  51:3720-3723, 1982) and by 
Lambert, Musette and Kesteloot (Inv. Prob., 3:275-288, 1987) using different 
methods. However, the construction of these solutions in the present context 
should be viewed as an illustration of how the auto-Backlund transformation of 
Section 2 works. 
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construct the matrix 

M =  

0 ........ 0 a x  t 4 n  
a, + 41 ........ 0 0 

0 ........ 0 0 

0 ........ a x  + 4"-1 0 

327 

Then M" = diag(L1, .... L n )  where each Lj has the form of the above 
L:  

Note that L j  is obtained from Lj-1 by commuting the first n - 1 
factors with the last one. This basic idea of commutation goes back 
to Darboux and was used by Deift [l] to construct the N-soliton 
solution of the KdV equation. 

Now let Q = diag(Pl,P2 ..... Pn) where Pj, j = 1 ..... n is the 
uniquely defined differential expression of order T that almost com- 
mutes with L;. Then 

is equivalent to a system of n- 1 non1inea.r evolution equations, called 
the Drinfeld-Sokolov system or modified Gelfand-Dickey system. 

2 An Auto-Backlund Transformation 

Given a solution of the Drinfeld-Sokolov system, i.e., a set of 4j, 
j = 1, .... n such that dM/dt = [Q, A{] then it is easy to see that this 
implies d(Mn)/dt = [Q, M n ] ,  which is equivalent to 

This means one has found n solutions of the associated Gelfand- 
Dickey system. This observation is due to Sokolov and Shabat [6]. 
Now the following question arises: Is it possible to reverse this process 
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and to  construct a solution 4j,  j = 1, ..., n of the Drinfeld-Sokolov 
system given a solution of the Gelfand-Dickey system? If so then 
one has immediately n - 1 new solutioiis of the Gelfand-Dickey sys- 
tem. It is precisely this question which was answered affirmatively 
by Gesztesy and Simon in [2] in the case of the I<dV equation and 
by Gesztesy, Race and myself in [3] in the case of a Boussinesq-type 
equation. 

The answer in the general case was given in [4]. The method there 
allows the coefficients of L to  be matrices with entries in some com- 
mutative algebra with two independent derivations. For simplicity, 
however, I give in the following the scalar version using just functions 
of x and t as coefficients of L .  

Theorem 1 (Gesztesy, Race, Unterkofler, W.) Suppose that 
(qn-2 ,  ..., qo) is a real-valued solution of the Gelfand-Dickey system. 
Also assume that the q; and their x-derivatives up to order r + i are 
continuous functions in R2. Let $1, ..., $n be a fundamental system 
of solutions of L.11, = 0 and .11,t = P$ and define ..., 4, according 
to 

where Wo = 1 and w k  = W($l,  ..., $k), the Wroiiskian of $1, ..., $k 

for k = 1, ..., n.  (Note that this implies that q!Ik = 0.) Then 
(41, ..., &) satisfies the Drinfeld-Sokolov system. Furthermore de- 
fine q k , ; ,  k = 1 ,..., n, i = 0, ..., n - 2 through (2). Then each tuple 
( q k , n - 2 ,  ..., q k , O )  satisfies the Gelfand-Dickey system. In particular 
( q l p z - 2 ,  ..., ql,o) = ( q n - 2 ,  ... q0)-  

One can allow for an “energy” parameter X and consider L.11, = All, 
instead of L.11, = 0. The method can now be applied repeatedly to  
construct new solutions in each step, i.e., new operators Lj,l = L j - 1 ~  

starting from a given Lo,J .  This way one may derive the following 
formula 
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In general the solutions constructed by the method described 
above may have singularities since the Wronskians used may have 
zeros. In the KdV case as well as in  the Boussinesq-type case it 
is possible to  show that under certain conditions the new solutions 
inherit some properties from the original solution. 

Theorem 2 (Gesztesy, Race, W.) Let (q1,qo) be such that the 
Gelfand-Dickey system for n = 3, r = 2 is satisfied. Furthermore 
assume that q;,...,q!3+i) are in Co(lR2) n L"(lR2) and that L$ = 0 
is disconjugate at time to.  

Then L$ = 0 is disconjugate at ull times. Moreover, for a suitable 
choice of a solution system ($1, ...,&), the solutions constructed in 
Theorem 1 satisfy the same smoothness cmd boundedness conditions 
as the original one, in particular there ure no locul singularities. 

A similar result was proven by Gesztesy a.nd Simon [2] for the KdV 
case. 

3 Inelastic Solitons 

A solution of the Gelfand-Dickey system for n = 3 and r = 2 

2 
Qlt  = 2qoz - Qlm, clot = qoxx - +.,, + 41Qlr) 

yields at  once a solution of the Boussinesq- type equation 

upon letting u = (4ql + 3b) /u  ( a  # 0 ) .  The Lax pair associated to 
this Gelfand-Dickey system is 

2 
3 L = 82 + Ql& t clo, p = 8: + -q1. 

Starting now from the trivial solution where both coefficients q1 = 
q1,l and qo = q1,o of L = L1 are consta.nt, new nontrivial solutions of 
the Boussinesq-type equation are constructed. The coefficient q2,l  of 
LZ is given in terms of one solution $1 of L$ = 0 and P$ = t,bt as 

Q2,l = Ql,l + 3(1% $ l ) m  
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A fundamental system of solutions of L$ = 0 and P$ = $i is of 
course given by a set of exponential functions. If $1 is now chosen 
to be one of these exponential functions then q2,l = ql, l ,  i.e., no new 
solution is constructed. If $1 is chosen to be a linear combination 
of two of these exponentials then one obtains a one-soliton solution, 
i.e., a sech2-wave. This solution, however, involves two parameters 
instead of one in the Boussinesq case. 

However if one linearly combines all three of the exponentials then 
something unexpected happens: initially there are two solitons well 
separated moving with constant velocity towards each other. When 
they eventually get into the same region they collide inelastically, 
i.e., one soliton only emerges after the interaction. This situation 
is shown in Figure 1, where q2,1 - q1,l is plotted as a function of z 
for five different t .  Defining the mass of a soliton to be the product 
of height and width then mass as well as momentum are conserved 
during this collision but (kinetic) energy gets destroyed. 

Considering q3,1 instead of q2,1 or performing the transformation 
t + -t  shows that one can also have the reverse situation, namely 
a single soliton moving along that all of a sudden decays into two 
different solitons under conservation of mass and momentum but 
producing kinetic energy while it decays. 

Finally using the method of repeated commutation, i.e., formula 
(3) one can construct other interesting solutions. In the case j = 2 
one gets according to  the different possibilities of linearly combining 
$ 1 ~  and $ 2 ~  out of appropriate exponential functions besides the 
already known two further phenomena: 

- Two elastically interacting solitons moving towards each other or 
following each other. In contrast to the Boussinesq case the 
smaller one is here the faster one. This situation is shown in 
Figure 2. 

- Three solitons two of which collide inelastically forming one soliton 
after the collision while the third interacts elastically with both 
of the other two. This situation is shown in Figure 3. 
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Figure 1: Two inelastically colliding solitons. 

Figure 2: Two solitons interacting elastically the smaller one being 
faster than the bigger one. 
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Figure 3: Three solitons, two of which collide inelastically while the 
third one is interacting elastically with both of the others. 
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Abstract 

Consider a nonlinear extensible flexural beam equation with 
Balakrishnan-Ta,ylor damping and a structural damping, which serves 
as a model of deflection and control of nonlinear aerospace structures. 
To solve the “spillover” problem in stabilization of the relevant vi- 
bration, which is significant in achieving system stability and per- 
formance with controllers involving only finitely many modes, this 
work provides a new approach by proving the existence of inertial 
manifolds for the uncontrolled nonlinear equation. The results show 
that, based on the information of inertial forms, the system is expo- 
nentially stabiliza.ble by a linear fini te-dimensional feedback control 
which is robust with respect to the uncertainty of parameters. 

1 Introduction 

The objective of this paper is to study the following initial-boundary 
value problem of a nonlinear beam equation, cf. Bass and Zes (1991), 
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for ( t , ~ )  E R+ x (O,1) ,  

u ( t ,  0) = u,, ( t ,  0) = u ( t ,  1) = u,, ( t ,  1) = 0, for t 2 0, 

for 5 E [O, 11. 
(1) 

u (0, z) = uo (z) , ut (0, x) = u 1 ( x )  , 
Here u ( t ,  z) is the dynamical tra.nsverse deflection of the beam. 

All the parameters a, 6, b,  and y are assumed to be positive constants 
but u E R.  The term -6uZct represents the structurd dumping, 
[u + b 1 1 ~ , 1 1 ~ ]  u,, is the tension from the extensibility, and the last 
term at the left-hand side stands for Balakrishnan-Taylor damping. 
f = f ( t ,  z) is an external input which in this paper is a control 
function. We consider the hinged boundary condition. For the can- 
tilevel boundary condition, the notion of “comparable” fractional 
power operators will be involved, and we shall deal with it sepa- 
rately. Consider the spillover problem which concerns whether it 
is possible and how to design a control involving only finitely many 
modes and achieving a high perforimnce, for instance, in terms of 
robust stabilizing the system of some prameter  uncertainty at  a 
uniform rate. 

2 Formulation as Abstract Evolution 
Equation 

First formulate the initial-boundary value problem of the uncon- 
trolled equation 
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as an abstract semilinear evolution equation and study the existence 
and properties of local solutions in this section. Denote by H = 
L 2 ( 0 ,  1) with its norm 1.1 and inner-product (,). Define a linear 
operator A : D ( A )  - H by 

d4Y7 A 9  = - (in the distribution sense), V y  E D ( A ) ,  (3) dx4 

D ( A ) =  { ~ E H ~ ( o ,  i ) : ~ ( ~ ) = ~ ~ ~ ( o ) = ~ ( i ) = ~ ~ ' ( i ) = o ) .  

The operator A is densely defined, self-a.djoint, and coercively pos- 
itive, with compact resolvent A-'. The spectrum u ( A )  consists 
of only eigenvalues { Xk = k47r4 : b = 1, 2, . . .} of multiplicity one, 
with the eigenvectors {ek  = a s i n  (knx) : k = 1,2, . . .}. Note that 

A112y = -d2v/dx2 and Idy/dzI2 = IA'/4p12. Thus the original 
equation (2) can be formulated as 

d2u du 
- + a A u  + 6A112- 
dt2 dt 

+ [a + b IA1/4~12 + q (A'12u, u,)] A112u = 0, t > 0 ,  

(4) 
dU 

u ( 0 )  = uo, (0) = 211, 

Denote by V = D ( A l l 2 )  with the norm llvll = IA' /2~I .  Define a 
product real Hilbert space E = V x I I .  Define a linear operator 

in which I is the identity on V .  Also define a nonlinear mapping g 

by 
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Then the equation (4) can be forumlated as a first-order evolution 
equation: 

or, let w ( t )  = ( [i; ) and ZOO = ( :z ) , 
( 7 )  

d 
dt 
- z o = G z o + ~ ( z o ) ,  t 2 0 ,  W O E  E .  

It can be shown that the operator -G is sectorial, G generates 
an analytic semigroup of contraction, denoted by {T  ( t )  , t 2 0} ,  and 
G has compact resolvent. Denote by E' = D ((-G)'12) and E2 = 

D ( A )  x D (Al l2)  with the graph norms. The nonlinear mapping 
g : E - E (resp. g : El - E') is locally Lipschitz continuous and 
maps any bounded set of E to a bounded set of E (resp. for El) .  
The proof of the following existence and regularity of local solutions 
is omitted. 

Lemma 1 For any ZOO E E ,  there is u T = T (ZOO) > 0 such that the 
mild solution of the equation (7) with the iizitiul condition w ( 0 )  = wo 
exists uniquely for  t E [o,T], and tu E C ( [o ,T ]  ; E )  n C' ( (0 ,~)  ; E )  n 
C ( ( 0 , ~ ) ;  E 2 ) .  If wo E E2,  then this mild solution is a classical 
solution of ( 7 )  for t E [O,r]. 

3 Dissipation of the Semiflow 

In this section we will prove simultaneously the global existence of 
mild solutions of the equation (7) and the dissipation property of the 
generated semiflow in terms of the existence of absorbing sets in E 
and in El.  As a result, there exists a. globd attractor in E and in 
E' respectively. 
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Lemma 2 For any wo E El there exists a unique global mild solution 
w ( t ) ,  t E [0,oo), of the equation (7), which has the regularity as 
described in Lemma 1. The generated semiflow 6 is dissipative, i.e. 
absorbing sets exist in E and in E' respectively. 

Proof. Take the inner-product in I1 of the equation (2) with 2ut 
and with EU respectively and then add up, by choosing the undeter- 
mined constant E > 0 sufficiently small, we obtain 

for t E I,,,, where 

By the integration of (8) and the usual denseness-approximation ar- 
gument, it follows that 

1 
- min {l ,a}  II(u(t) ,ut ( t ) ) l l i  I (1 - €1 l . l ~ t 1 ~  + ( a  - 6 )  Iuzz12 5 L ( t )  2 

for t E I-,. Thus the mild solution will exist globally over [O,oo) ,  
and the closed ball BR = {y  E E :  llyllE I R},  with R = 

[2a26-' min (1, a}-' + 11 , is an absorbing set for the semiflow 6. 
The existence of absorbing set in E' can be shown by more a priori 
estimates but the same approach. 

By the basic theorem on the existence of global attractors, we 
can prove: 

112 

Lemma 3 There exists a gZobu.1 attmctor in E and in El resp. for 
the semiflow 6. 
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4 The Existence of Inertial Manifolds 

We refer the definition of an inertial ina,nifold to Foias-Sell-Temam 
(1988). Let Hm = Span {e l ,  . . . , em}.  Denote by P, : H - Hm 
the orthogonal projection and Qm = IH - Pm. Denote by IIm = 

( 2 :, ) : E - H m  x H m  and 0, = IE - l I m -  We have 

decompositions H = P m H  @ QmH and E = lImE @ (OmE).  The 
H-valued function u ( t )  has a corresponding decomposition u ( t )  = 
p ( t )  @ h ( t ) .  The second-order evolution equation (4) is decomposed 
as follows: 

d p  9 + a A p  + 6A' i2x  t J ,  ( t )  A'12p = 0 ,  
dt2 

d2h d h  - + aAh + 6A1i2- + J ,  I t )  A'i2h = 0. 
dt2 dt 

2 
where J ,  ( t )  = a + b IA1i4u1 + q (A1i2u, ut ) .  

Theorem 1 There exists aflat  inertial manifold 1cI = H m  x H m  for 
the semiflow 19 generated by the eqriution (7),  where m > 0 is suitably 
large. 

Proof. Since that M is a positively invariant can be easily shown 
due to  the commutivity between All2 and P,, it remains to  prove 
that M has the exponential attracting property. Take the inner- 
product in H of the equation (11) with 2ht + t h  to get 

By the absorbing property, for every given bounded set 2 in E and 
for any initial point wo E 2, the solution trajectory ~ ( t ;  wo) will 
enter a fixed absorbing ball BR at a universal exponential decay rate 
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c/2 and after a transient period [0,&3] with t o  = t o ( 2 ) .  First we 
consider the trajectories already in the absorbing ball BR.  Hence, 

IJU (t)l I 1. + b Iuz12 - q (uzz,  %)I 
< 1.1 + ( b  + q )  n2, for t 2 t o ,  (13) 

and 

12JU ( t )  (hd, hzt) + <Ju (0 lhzl21 

< (1.1 + ( b  + q )  R2)2 6-1 lhJ2 + 6 11htI2 

+ < (I4 + (b  + 4 )  R 2 )  1LI2 

(1.1 + ( b  + R2)2  6-' + E (1.1 + ( b  + q )  R2) lhzr12 + 6 Ihtt12 
G 5 

< Ii ( R ,  <) ( m  + 1)-2 r-2 lhzrI2 + 6 lhztI2 (14) 

where K ( R ,  <) = (la1 + ( b  + q )  R2)2  6-' + < (1.1 + ( b  + q)  R 2 ) .  Sub- 
stitute (14) into (12) t o  get 

(15) d < - Y ( t )  + - Y ( t )  5 0, for t 2 t o ,  
dt 2 

where Y ( t )  = lhtI2 + (Y lhz,I2 + E ( h t ,  h )  + ( E 6 / 2 )  lhrI2, < is a con- 
stant satisfying O < < < niin { 1, a (1 + 6)-' , 6/2}, and ( m  + 2 
(<ar2)-' (< + 2~ ( R ,  <)I. It  follows that 
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t 2 t o ,  for any solutions with initial da.ta in E. Note that only 
depends on the system parameters a and 6. Finally, (17) and (9) 
imply that 

. [ L(0)exp ( -- 2 )  0 + -  3 , 
where L (0) is a functional of WO. For any given bounded set 2 in E ,  
let K1 (2) = sup { L (0) : wo E 2).  Then it follows that 

distE(S(t)wo, M )  5 2min (1 ,  a}-' (2 + a + 6) - 

for t 2 t o .  To include the behavior in the transient period, denote by 
v =  & m i n { ~ , [ } , a n d K ~ ( Z , t o ( Z ) )  = 2 m i n { l , a ) - ' ( 2 + a + 6 )  
{ IL'1 (2) t $ exp ( $ t o ) }  then we have the following exponential at- 
traction expression, 

distE (S ( t )  wo, M )  5 I i 2  (2 ,  to (2) )  cxp ( - v t )  , for t 2 0. 

Thus M = H ,  x H ,  is an inertial manifold for the semiflow 19. H 
As a consequence implied by the intermediate steps of the above 

proof, we have a lower bound of the dimension of the inertial manifold 
M .  

Corollary 1 Let m be the smallest positive integer which satisfies 

X m > - 1 + -  1 
ncx'I2 

where p (a, a, b, q )  = la/ + 2a2 (1 + q / b )  inax { 1, a - I } ,  then there 
exists an inertial manifold it4 = II, x I I ,  with dim M = 2m. 
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The governing equation of the subflow on an inertial manifold is 
called the inertial f o r m ,  which is a. system of ordinary differential 
equations. 

Corollary 2 For the inertial manifold A4, the inertial form is the 
following equation in the subspace II,, 

9 + a A p ( t )  + 6 A ' l 2 ~  dP 
dt2 

5 Robust Stabilization by Finite-Mode 
Feedback Control 

In this section, the spillover problem is solved based on the existence 
of inertial manifolds. Now consider the full equation (I) with control 
function f ( t ,  z) on the right-hand side. 

Theorem 2 The control systena (1) is exponentially stabilkable by 
a finite-dimensional linear feedback conlrol 

f ( t )  = aA'I2P,u ( t )  , t 2 0, (19) 

where Pm : H + H m  is the orthogonal projection, and H ,  is the 
factor subspace associated with the inertial manifold M = Hm x Hm 
for the uncontrolled equation ( 2 )  or (7) .  

Proof. Apply this feedback control in  the equation (1) and de- 
compose it into two component equations in accordance with the 
decomposition of H = P,H @ Q m H 7  we get 
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and u ( t )  = p(t) + h ( t )  is a solution of the closed-loop equation. An 
easy adaption ensures that Lemma 2 remains valid and the afore- 
mentioned ball BR is still an absorbing set for the new closed-loop 
equation (20)-(21). Since this 1inea.r feedback (19) does not change 
the h-component equation at all, the argument in the proof of The- 
orem 1 in showing the exponential attraction (within the absorbing 
ball BR)  of the manifold M remains true. Hence, 

where h ( t )  = Qmu ( t ) ,  and the constants li2 a.nd u are the same as 
above. Now we need only to handle the p-component equation (20). 
We want to prove that the component p ( t )  = Pmu(t) of the closed- 
loop solution u ( t )  also converges to zero at  a uniform exponential 
decay rate. Taking the inner-product of the equation (20) in H with 
2pt + np, we have 

d -{ dt IPt12 + a lPzz12 + n (Pt, P )  + ( W 2 )  1PJ2 

+ ~ 2 )  ipzi4 + (Kq/4) IPJ~} 

+ (26 lPztI2 - K lPtI2 4- 2q ~(PZ,  Pzt)I2 4- K a  lPz=I2 + K b  lPz14} 

+ (2b (Pzz ,  P t )  lhzI2 + 2cl ( P z z ,  2 4  (kcz, ht) 

+ nb lPz12 lhz12 - KQ lPz12 ( h m ,  ht)}  = 0. (23) 

Denote by 

r ( t >  = Ipt12+a I P ~ ~ I ~ + K  ( ~ t ,  P ) + ( / ; S / ~ )  IpzI2+[(b/2) + ( ~ / 4 ) ]  lpzI4 , 
2 A ( t )  = 2s iptti - K ipti2 + 2~ [ ( I h ,  zlZt)~2 + K a  121zz:12 + K b  l P z l 4 .  

Then we have 
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t 2 0, if we choose K ,  > 0 sufficiently snia.11. For the mixed terms in 
(23), we have the following estimate valid within the absorbing ball 
B R .  

(2b (Pzz ,  P t )  lhzI2 + 2q (Pzm 14) (L 1 4  + d IPA2 M2 
- K q  IPA2 (L, hdl 

I (2 + K , )  ( b  + 4) ~ ~ 1 ~ 2  (2, t o  (2 ) )  exp ( - v t ) ,  

for t 2 to.  Now substitute these into (23),  we get 

d ri - r ( t )+ - r ( t )<  li3(~,10(Z))esp(-vt),t>t~, 
dt 2 

Note that r(t0) 5 (3 + $) R2 + ($ + i) R4, where R2 = 

2a2b-' min (1, a}-' + 1 as shown before. Denote by p = 
(1/2)min{~,,  E ,  [} and 

Then from (24) and the exponential clccay during the transient period 
[O, t o ]  we get 

Finally combine (25) with the result for h-component, we obtain 
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for some constant K 5  (2, t o  (2)).  H 
Remark. If we replace the pammeters appearing in the dimen- 

sion bound formula by their conservative bounds of uncertainty, then 
Theorem 1 and Theorem 2 become the robust existence of inertial 
manifolds and the robust stabilization, respectively. 
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106,108,114,124,135, 
27 3 

eralized 273-277,279- 

Korteweg de Vries, hierarchy 

Korteweg de Vries equation, gen- 

281, 326-329 

l O l f f  

L 
Laplacian 19,34-36,38,39,80, 

82, 190,287,291,299, 
308, 315 

Lavrentiev phenomenon 141 ff, 
Lax pair 104, 326, 329 
Lie 

algebra 178,181, 183, 184, 

group 177, 186 
Backlund symmetry 249- 

Lipschitz continuous, 146, 167, 

Lyapunov 15, 18,20, 72 

186, 187 

251,255 

171, 172, 201, 338 

M 
magnetic field 141, 143, 145, 

148, 221ff 
manifold, inertial 335,340,342, 

343, 346 
Mathieu equation 14, 130 
matrix, density 221, 224, 233 
matrix, shell transition 3 
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maximum principle 71, 79ff 
mechanics, statistical 153ff 
Melnikov integral 273ff 
minimization 142, 234, 243 

N 

158 

Navier-Stokes equation 261,263 
nuclear operator 191 
nuclear space 191, 192 

0 
oscillator, anisotropic 28 
oscillator, harmonic 25, 27, 28, 

130, 131, 154 
overdetermined system 178,250, 

251 

P 
period doubling 14-18, 20 
potential, finite gap 108, 113, 

117,119,123-125,128, 
129 

potential, singular 201 
product for mula 2 13-2 1 6 

Q 
quasicrystal 13, 14 
quasilinear 69, 76, 87, 88, 96, 

287 

R 
RAGE theorem 59-62, 66 
reaction, chemical 69, 70 
reaction-diffusion 251,255,274, 

rearrangement 307, 310, 311 
regularity 167, 168, 170, 175, 

199,202,240,291,338 

276 

resonance 274, 279, 280, 281 
Riccati equation 182, 183,239, 

Riemann invariant 87, 89, 92 
242-244 

S 
scattering 1-3, 9, 66, 132, 135, 

189, 274, 279 
Schrodinger equation 59, GO, 153, 

156,163,167,170,189, 
213, 239, 241 

Schrodinger operator 6,8,13ff, 
154, 168, 174, 217 

semiclassical analysis 154, 222 
semiflow 338-340, 342 
semigroup 240, 243-244, 246, 

semi1inea.r 70, 76,313-315,321, 

Shubin formula 17 
similarity 51, 56, 87, 89-91, 96 
Sine-Gordon equation 251,255 
solitary wave 273ff, 313, 321, 

322, 325 
soliton 101, 103, 104, 115, 116, 

131, 135, 325ff 
solution, exact 87, 89, 92, 95- 

97, 170 
solution, weak 83,119,122,202, 

205,208,264,308-310 
spectrum 

338, 

337 

continuous 59, GO, 62, 63, 
66, 134, 190 

essential 277, 278, 280 
norm 315-317, 322 
singular 14, GO 
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spin 143,156,222,227-229,313, w 
319, 322 WKB method 9 

stability, asymptotic 274 
stability, linearized 274 solution 162 
stabilization 239,241,26lff, 335, 

336, 343, 346 
star, neutron 221, 222, 228 
Steffensen, inequalities 53-55 
structural damping, see damp- 

substitution 13ff 
surface, basin 252 
symmetry 

approximation 158, 159 

ing 

classical 249-252 
computer calculation 
nonclassical 250, 251, 254 

T 
Thomas-Fermi theory, 141fF, 221, 

223, 224, 231, 232 
trace(s) 6, 14, 15, 17, 19, 20, 

65, 103, 107, 134, 240, 
2 79 

trajectory, classical 26 
tube, elastic 87-90, 96 
tunneling Iff 

U 
uniqueness 55, 71, 74, 79, 128, 

upper bound 9, 18, 33, 35, 38, 
148 

66, 73, 170, 174 

V 
Volterra integral equation 51 
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