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AbsIraeL We consider the electrostatic potential due to a uniform distribution of charge 
on a Cantor set Mellin transforms are used to fmd expansions for the potential at a 
distance P h m  the end of the charge distribution. It is found hat  the potential is 
a power law multiplied ty a function periodic in In r, together with a power series in 
r. A mursion relation for the momenls of the distrihution is used to reveal a similar 
structure in these momenls. Finally Fourier ~ ~ N ~ O L - I I I  lechniques are used to iind explicit 
representations for the distribution and its moments. 

1. Introduction 

Fractals play an important role in modelling many physical systems. Whether as a 
result of nonlinear dynamics (to give some examples from a vast literature: chaotic 
attractors [l], turbulence [Z], the M g s  of Saturn 131, and even quantum mechanics 
[4]) or random processes (for example Brownian motion 1.51 or diffusion limited 
aggregation-Du [6]) most of the analyses have been numerical in nature, with 
analytical sections limited to proving the existence of fractal behaviour, and perhaps 
calculating a small number of useful parameters, such as dimensions. The main 
exception is the work of Bessis et d [q, who investigated Mellin transforms and 
various analytic properties of Julia sets, fractals generated by a single nonlinear 
transformation on the complex field. They made extensive use of functional equations 
and found that the Mellin transform of the fractal distrihution is a meromorphic 
function with a semi-inlinite periodic array of poles, in addition to other interesting 
analytic properties. These results need to be generalized since many important fractals 
are of higher dimension than that of Julia sets (two) and/or require more than one 
transformation to represent them. The methods used in this paper are applicable to 
fractal distributions generated by more than one transformation, provided that these 
are similarity transformations. 

The problem we are concerned with is solving Laplace’s equation with fractal 
boundary conditions, with the aim of determining as much as possible about 
the solution using analytical methods, in particular Mellin transforms. While 
mathematicians have studied the general structure of the potential about singular 
points [SI, there has been virtually no detailed analytical work with application to 
specific fractals. General scaling law have been used to calculate the statistical 
properties, for example fluctuations in intensity, in waves diffracted from a fractal 
phaseshifting screen [9]. Recently there have been numerical investigations in this 
area, specifically modes of vibration of a fractal drum [lo] and the potential around 
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a fractal, charged conducting surface as a model for DLA [6]. Both of these studies 
have found that the solution has a self-similar structure closely related to that of the 
fractal. 

In this paper we consider the potential produced by a uniform charge distribution 
on a Cantor set, which is one of the classic and most well known exactly self-similar 
fractals. The insights to be gained from this analysis apply to more complicated self- 
similar fractal distributions, and should also shed light on problems involving random 
fractals, for which a complete analysis is more difficult. The potential is closely related 
to the moments of the distribution (section 3) and the Fourier transform (section 4), 
both of which show a rich analytic structure. 
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2. Potential from a Cantor set 

The ‘middle third Cantor set’ is defined by an iterative process. Beginning with a line 
segment, which we specify as (-1/2,1/2) on the z-axis, the middle of the segment 
is removed, leaving two segments each of which is one-third of the original length. 
Then the process is repeated on each of these segments, and so on. The Cantor set 
is the set of points remaining. See figure 1. The question of whether the segments 
are open or closed is irrelevant for the purposes of this paper, since these endpoints 
constitute only a countable set, while the remaining points form an uncountable set. 

.. .. .. .. .. .. .. .. .. .. .. .. I.. .... 

Fipre L ?he mnstmclion of the Cantor set. The ends of ilie line wgment shown are 
taken to have mordinales (-1/2,0) and (112,O). 

There are a number of different definitions of the dimension of a set. The 
topological dimension of the Cantor set is zero, as it consists of disconnected points. 
The Euclidean dimension of the space in which it is embedded is one. See Mandelbrot 
[ I l l .  Both of these dimensions are always integers, but there are a number of 
definitions which allow non-integral dimensions. Among these are the Hausdorff and 
box-counting dimensions, both of which are defined in Falconer [12], and both of 
which give 

d = In2/ln3 (2.1) 

for the Cantor set. It is well known that for a point, line and plane of charge the 
electrostatic potential is given by 

I/ N pd-’  (2.2) 
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in the limit r -+ 0, where r is the distance from the charge and d is the dimension 
of the charge distribution. A dependence of ro is taken to be equivalent to Inr. 
The question then arises: Does this result generalize to the situation of non-integer 
dimension? We find that the simple power law does not hold exactly, for reasons that 
will become clear in the following analysis. 

The great advantage in working with an exactly self-similar set such as the Cantor 
set is that the definition of a uniform charge distribution is unambiguous-it is the 
only distribution for which the charge on identical regions of the set are equal. This 
uniqueness is used to maximum advantage in defining the charge distribution C(z) 
bY 

C(z) = 3C(3S - 1) t C(3r t l)] 

with normalization 
m 

C( z) d z  = 1. (2.4) 1, 
This distribution is similar to the Dirac distribution in that it is 'infinite' at all points 
in the Cantor set, and 'zero' elsewhere. The factor 3/2 is necessary for a consistent 
normalization. NI the properties of the charge distribution may be obtained from 
equations (2.3) and (24). Mandelbrot 1111 has made the point that the HausdortT 
measure may be used to define the concept of a uniform distribution when self- 
similarity is not exact, but this may be of limited use in realistic situations due to the 
difficulty of calculating the Hausdorff measure in most cases. 

The potential due to this distribution in the z-y plane may be determined by the 
usual integral, which in suitable units becomes 

= V ( 4 , y ) .  C(s')dz' 

The remainder of this section discusses the means of calculation, and analytic 
properties of the above integral. The integrand is expanded in a power series in 
z' to obtain 

where 

(2.7) 

The calculation and asymptotic properties of the C, are interesting in their own 
right, and are discussed fully in the next section, which may be read independently of 
this section. 

Substituting equation (2.3) into equation (2.5) yields 
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x 

Figure 2. The polenlial of the Canlor 5 1  along the line y = 0. 

which, by repeated application, may be used to write the potential near the fractal in 
terms of the potential further away, so that the series (2.6) which converges rapidly 
for > 1, may be used to numerically evaluate V(I,~) at all points not 
on the fractal. In this way figure 2 was generated. The authors have also plotted a 
three-dimensional graph of V(z,y) in the whole z-y plane [13]. 

Now we consider the potential near the edge of the fractal at (1/2,0). Using 
equation (28) we obtain 

V(r+$,y)= $ [ V ( 3 1 + ~ , 3 y ) + V ( 3 1 + $ , 3 y ) ] .  (2.9) 

The point (3z + 1/2,3y) is still near the fractal if I and y are small. So the fist 
term on the right-hand side is substituted back into equation (2.8). This process is 
continued indefinitely, to obtain 

(2.10) 

At this point there is a simple argument to show that equation (22) holds, at least 
approximately, for the line y = 0. The maximum term in the above series occurs 
when v'z is of order 1, that is 

j,, = -Inx/In3. (211) 

For j > j,, the terms decrease exponentially, since V(c,y) - (x2 + yz)-ll2 at 
large distances. The maximum term is equal to V(P-*z + 5 / 2 ) ,  which is a number 
of order 1, multiplied by (3/2)jm-. Thus 

v ( ~  + $0) ($)jm- = ,hz/h3-1. (2.12) 

Now we proceed with an exact calculation which obtains not only the coefficient 
Substituting equation (26) into of zd-',  but also the correction terms to it. 



Polential theoy and analytic properties of a Cantor set 1013 

equation (210) and rearranging sums we obtain 

This expression is fairly complicated to evaluate, so we restrict our treatment to 
two limits. Firstly along the line y = 0 the derivative may be performed explicitly to 
obtain 

and the summand is Melli  transformed [I41 with z as the transformed variable, so 
that the sum over j becomes a geometric series. The result is 

with 

ln2 
ln3 

1 -  - < c <  1. (2.16) 

The gamma function r(z) has a pole of residue ( - l ) P / p !  at z = - p  for all non- 
negative integers p. In addition there is a set of poles arising from the denominator, 
of residue 1/ In 3 at s = 1 - In 2/ In 3 + 2xim/ In 3 for all integers m. Thus closing 
the contour in (2.15) to the left, we obtain 

where 

In2 27rim 
In3 In3 ' 

s, = 1- -+ - 

(2.17) 

This can be written as 

and numerical values of the ar,p, bn+ and 4T,P are tabulated in table 1. It can 
be shown that this series converges for r < 2. The presence of a vertical infinite 
sequence of poles is quite characteristic of the Mellin transform of a function with 
fractal behaviour; this case is quite similar to that of Julia sets (7 and the Weierstrass 
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'bbk 1. X mefficienu. See equation (219). 

P %.P b Z , P  9..P 

0 1.76850 - 1.224 69 0 
1 7.049 77 x IO-* 2.186 60 x IO-' 1.59291 
2 6 .7579  x IO-'' -7.803 19 x IO-' -2686% 
3 1.15141 x IO-Lf 3.20548 x 0.631 t% 
4 1.836 01 x -1.386 97 x IO-* 1.725 81 
5 i m e 3  x 10-39 6.15987 x IO-) 236946 
6 1.698 14 x IO-" -2.781 74 x IO-' 232273 

function [15]. Thus the power-law behaviour equation (22) is modified by a function 
periodic in In I, even if most of the Fourier coeficients are rather small (table 1). 

Closing the contour to the right generates 

_ 1 1  3 5 81 +---+ 
8z3 16x4 320x5 

which is the Same function, expanded for large x. It is, in fact, equation (2.6) shifted 
by 112. 

Secondly we consider the limit of I = 0 in equation (213). The derivative cannot 
be performed explicitly, so we do the Mellin transform first, and then complete the 
derivative and sum over j .  After mme simplification using the reflection and doubling 
formulae for the gamma functions, the result is 

(221) 

with 
In 2 
ln3 

1 - - < c < l  (2.22) 

as before. Note that the potential is an even function of y, hence the absolute value 
signs. Closing the contour to the left in the above expression we obtain 

(2.23) 

which may be written 
m 

0.24) l Y l -  I t l n  2/ In 3 cos V(f,Y) =ca,,, 
p=O 
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The by,p and +y,p are tabulated in table 2 It can be shown that this series 
converges for lyl < 2. Note that, although the coefficients of the diverging term 
Y l o z f l o 3 - 1  are different from the corresponding I coefficients, the constant term is 
the Same for both cases 

bY,U = bqu (225) 

as it would be if the potential were finite, since for a finite potential, both expansions 
start with the value of the potential at the point to be expanded around. 

Table Z Y coefficients. See equation (2.24), 

P * Y , P  b u n  4U.P 

0 2.06475 -1.22469 0 
I 9.39243 x IOW5 0 1.398 78 
2 5.068 17 x 3.901 60 x lo-' -2.88658 
3 5 . 6 4 8 9 7 ~  10-13 o 0.429 22 
4 6.186 19 x lo-" -5.20113 x IOw3 1.52301 
5 2.86807 x 0 2.16608 
6 2 . 9 6 8 8 7 ~  8.69294 x 2.11897 

Closing the contour to the right generates the large IyI expansion: 

(2.26) 

Note that only odd powers of IyI contribute, since the gamma function in the 
denominator has poles for alternate values of p. 

3. Evaluation and aspptotics of the C, 

Now we return to a calculation of the Cn, defined by equation (2.7). Equation (2.3) is 
substituted into this definition and the binomial expansion is used to put the resulting 
expression into the same form as equation (2.7), giving the following recursion relation 
for the C, 

These relations separate into two disjoint sets of equations for odd and even n. 
The equation for C, implies that Cl = 0, and it follows that C,, = 0 if n is odd. This 
is apparent from the reflection symmetry of the initial distribution. For even n the 
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Tabk 3 
equations (3.4), (3.27) and (3.28). 

?he moments of the Cantor distrihulion and asymptotic mefficienu. %e 

P C2P Q C , P  k P  

0 1  0.947 814 0 
1 u 8  3.637 88 x W4 - 1.682W 
3 205146592 4.38362 x -1.29691 
4 10%1/1091584O 5.15645 x -2.979 10 

6 144n356931V3114m8oaa353280 3.568% x -2.50994 

2 7fim 3.04436 x 10-9 om40 

5 26601785/128911704064 3.07245 x IO-" 0.62773 

C, are defined in terms of CO, which is given by the normalization, equation (2.4). 
In summary 

C" = 1 ( 3 4  

C, = O  for n o d d  (3.3) 

The first few values are given in table 3. For  larger values of n the exact 
expressions for C, rapidly become more complicated, for example the numerator 
of C,,,--expressed in simplest form-has 1055 digits, and it is difficult to see from 
equation (3.4) what the asymptotic behaviour is as n - ca. We begin with the 
following ansatz, based on intuition and preliminary numerical investigation, 

c, = a R n b f ( n )  (3.5) 

where f ( n )  is a bounded function which, apart from being 'slowly varying' 
(f'(n)/f(n) K l/fi),  is as yet unspecified. Numerical calculations using 
equation (3.1) have been done to generate a plot of f(n), using the values of a 
and b found in equations (3.15) and (3.16) which is given in figure 3. 

The contribution from the endpoints of the sum in equation (3.1) is negligible for 
sufficiently large n, irrespective of the values of a and b, due to the presence of the 
binomial coefficient Hence 2 j  and n - 2j are both sufficiently large to use Stirling's 
formula 

p !  = pPe-P&[l+ 0 ( 1 / p ) ] .  (3.6) 

Thus the summand may be written 

(3.7) 

where 

(3.8) 
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Figure 3. The numerical evaluation of f ( n ) ,  which appean in the expansion for lhe 
C,. See equation (3.5). The Iln lerm and the firsf non-trivial Fourier meficienl are 
clearly seen. 

We w u m e  g ( j )  is effectively constant over the range of j which contribute. This 
is valid because this range is of order J;E as shown by equation (3.13), while j itself 
is of order n (see below). Its value will be taken to be at the value of j for which 
the summand is a maximum 

(3.9) 

not to be confused with the j,, of the previous section. 
Because the number of terms which contribute is much greater than 1, the sum 

may be taken to an integral, with the Euler-Maclaurin corrections being negligible to 
this order, 

?LIZ-I (G) Czj = g(jm,) Ln” (zr (”)”-*’ n - 2 j  d j  (3.10) 
j =U 

where 

z = 2j/n.  (3.12) 

The integrand is written as an exponential and expanded in a mylor series about 
its maximum to obtain 

Because the factor of n is the exponential is so large, the above quadratic 
approximation gives an accurate expression for the integral, leading to 
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which implies that 
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a = l  2 (3.1.5) 

ln2 b = - -  
ln3 

(3.16) 

f(.) = f(n/3). (3.17) 

The hct that a = 1/2 is consistent with the fact that the series, equation (2.6) 
must diverge at the edge of the fractal (1/2,0). The value of b is an example of 
the way that the dimension of the fractal may appear in unexpected places. The 
function f may be expanded in a murier series in Inn, analogous to equation (2.19), 
multiplied by one plus a function of n which is order l / n .  See figure 3. Since 
there is such a close connection between the C, as n -* 00 and \'(1/2 + r,O) 
as I -* 0, and there is a complete expansion for the latter, given in the previous 
section, it is possible to determine more information about the former, in particular, 
the coefficients of the Fourier series for f (  n). This we proceed to do. 

Equation (2.6) gives, in the limit y - 0, 

which may be written as 

(3.18) 

(3.19) 

where h(r) is a function which tends to a constant as 2 -+ 0, for arbitrarily large N .  
The factor of 1/2 comes from the fact that half of the C, are zero. We will ignore 
all terms which are finite in the I -+ 0 limit, and use a 'N' to denote this. Performing 
a Mellin transform on the above sum, using x as the transformed variable, we obtain 

where 

for 

In 2 
In3 

1- - < c < N +  1. 

(3.20) 

(3.21) 

(3.22) 

The sum S(s) has a set of poles at the s, defined by equation (2.18). The residue 
at each of these values may be determined by using the formula 

+ 1 - s) = n - y 1 +  O ( s / n ) )  r (n  + 1) 
(3.23) 
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which is easily obtained from Stirling's formula, equation (3.6), and is valid for 
arbitrary complex s for sufficiently large n. In addition f (  n) is written as 

(3.24) 

which is also valid for sufficiently large n. The sum is taken to an integral to obtain 

The variable in the integral is changed to Inn, which puts it into a form which is 
readily evaluated, to obtain the required residues, 

aC3,eiQ=,~/2 for m = p > 0 
Res S(S) = %,U for m = 0 { a,,,e-'"~~//2 for m = - p  < o 
S=Sm 

which may be compared with equation (2.19) to give, finally, 

(3.26) 

(3.27) 

The a,,+, and +,,, are tabulated in table 3. It may seem somewhat circular to write 
the asymptotic form of the C, in terms of a series of C,,, however this series, 
equation (217) is rapidly convergent, so only the first few terms need to be included 
in practice. 

The full expansion for the C, includes terms of order 1/n and smaller. These 
could be calculated, in principle, by including extra terms in Stirling's formula, taking 
account of the variation of g ( j ) ,  and including the appropriate corrections for the 
Euler-Maclaurin expansion and the steepest descent calculation. 

4. Fourier transform of the Cantor set 

One of the features of self-similar structures is that the dimensionality of the structure 
appears in the power spectrum. The Fourier transform has obvious applications in 
treating the diffraction patterns from fractal objects. See Berry 191 and references 
therein for more on this subject. In addition, many functions are better represented 
as Fourier series or integrals than the corresponding power series. In this section 
we give analytical results relating to the Fourier transform of the Cantor distribution, 
e ( k ) ,  defined by 

C(k) = e'"C(x)dz. (4.1) I 
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This can he evaluated numerically for small k by expanding the exponential in a 
power series, resulting in 
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m 
Z(k) = c ,(Ik), Cn . 

n d  
n. 

which converges rapidly if k is not too large. A more useful approach is to substitute 
the recursion relation for C(x), equation (23) into equation (4.1) directly, which 
gives 

E(k) = cos(k/3)E(k/3) (4.3) 
which can be used to obtain the remarkably simple explicit expression 

m 

E(k) = l-Jcos(3-jk). 
j= l  

(4.4) 

The above expression was obtained by Hille and Bmarkin [16], and the treatment 
given here will be correspondingly brief. The form of the product makes sense 
intuitively, since the Cantor set may be regarded as the convolution of an infinite 
number of double spikes of appropriate separations. The product converges for all 
values of k, indicating that the result is an entire function of I;. The graph of E(k) 
is given in figure 4, and was obtained by a combination of equations (4.2) and (4.3). 
Thus we have an integral representation for the Cantor distribution 

and, using equation (4.2), an explicit representation for the Cantor moments, 

C, = (-i)-- 

Returning to E( k), it can be seen from equation (4.4) that if I; is an odd multiple of 
3x/2, at least one of the terms in the product is zero, while if it is an even multiple 
of 3?i/2, at least one of the term in the product has magnitude one. The outcome 
of these considerations is the presence of a hierarchy of multiple zeros in the first 
case, and the fact that for arbitrarily large values of k, specifically for k = 9 x ,  E(k) 
is given by E ( x ) ,  which is 0.466275., . in the second case. Thus when we discuss 
the behaviour as le 3 CO, it is only in some average sense, as this limit is not well 
defined. 

If we consider the expression for [ Z ( k ) l 2 ,  terminating the product when the 
argument of the cosine is of order one, and using the geometric mean of the cos2 
function 

exp (: J O ~ "  In cos2 x dx) = 1 
(4.7) 

for the remaining terms, we obtain 

[ E ( k ) ] Z -  k -2hz / In3  (4.8) 
which is yet another appearance of the dimension of the fractal. 
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Figure 4. ?he hurier "sfom of the Cantor set, defined by quation (4.1). Note the 
multiple rems, which occur at k equal to -12 multiplied by a power of 3. 

5. Summary and discussion 

The dimension of the fractal, while it appears repeatedly throughout the calculation 
(equations (2.12), (219), (2.24), (3.16) and (4.8)), gives only an outline of the full 
structure of the various quantities associated with the Cantor set. The potential 
contains, in addition to the expected power law behaviour, small oscillations in the 
logarithm of the distance from the fractal, together with a Thylor series. The moments 
of the distribution also have an oscillatoly structure, which is only evident for n 2 100. 
The murier transform of the distribution is an entire function, and can be written 
as an infinite product of cosines. It does not tend to zero for large k, but follows a 
power law related to the dimension if averaged appropriately. 

The methods used in this analysis could readily be generalized to include all 
distributions derivable from similarity transformations, such as uniform distributions 
on higher dimensional fractals (von Koch snowflake, Menger sponge, and so on) or 
non-uniform multihactal distributions, for example the binomial distribution on the 
Cantor set defined by 

C,(Z, = 3[pCp(3r - 1) + (1  - P)CP(3Z + l)] ( 5 4  

which reduces to the uniform case when p = 1/2. This may be of particular 
interest since the charge distributions on a fractal conducting surface have this kind 
of structure, as argued hy Evertsz and Mandelbrot 161. 
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