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Introduction

The theory of uniqueness of trigonometrical series can be regarded as arising
from the question of deciding in what sense the Fourier series of a function
may be considered as the legitimate expansion of the function in an infinite
trigonometrical series. We know, of course, that if the series converges
boundedly to the function, then indeed the coefficients of the series must
be given by the Fuler—Fourier Formulas. However, in the absence of such
a condition, we may ask ourselves whether two trigonometrical series may
converge to the same function everywhere. The answer to this question is
in the negative and was essentially proved so by Riemann, the proof being
completed by Cantor.

It is with the replacement of the condition of convergence everywhere
with that of convergence almost everywhere, that the theory of sets of
uniqueness is concerned. The situation here is not quite as simple. It was
shown by Mensov, that there exist trigonometrical series which converge to
zero almost everywhere, but which are not identically zero. By the theo-
rem of Riemann-Cantor mentioned above, this series does not converge to
zero almost everywhere. The set at which it fails to converge to zero is an
example of what is called a set of multiplicity. To be more precise, we say
that a set E of measure zero, is a set of multiplicity or an M—set, if there
exists a trigonometrical series converging to zero everywhere outside E, but
not identically zero. A set of measure zero is called a set of uniqueness or a
U-set, if it is not an M-set.

Young [13] showed that every denumerable set is a U-set. Rajchman
and Bary [13] independently discovered the existence of non—denumerable
perfect U—sets. The main problem in the subject might be considered to be
that of finding necessary and sufficient conditions for a set to be a U-set.
In practice, attention has been largely restricted to closed sets. It seems
that metrical properties such as capacity have little to do with the question
[7]. In general one can say that the problem is related to the arithmetical



structure of the set.

Our knowledge of U-sets may be summed up in the following way. On
the one hand a theorem of Bary says that a countable union of closed U—sets
is a U-set. On the other, certain sets designated as H" sets are known to be
closed U-sets. Here r may be any positive integer. H' sets were discovered
by Rajchman and Bary while H" sets, which are generalizations of the H?!
sets, were found by Pyatetskii-Shapiro. In his paper [5], Pyatetskii-Shapiro
proved that there were H? sets which were not countable unions of H'! sets.
He also stated that for each r, there exists a set of type H", which is not
a countable union of H"~! sets. One of our theorems will be a complete
proof of this fact. It depends upon a certain arithmetical property of H"
sets, which is fairly obvious for H' sets, but rather involved for r > 1.

Pyatetskii—Shapiro also introduced Banach space methods to give neces-
sary and sufficient conditions for a closed set to be a U-set. This condition
cannot be applied to any known sets, however, because it is stated in terms
of certain Banach space notions and not in terms of the set itself. Because
of the unavailability of the paper in English, I have included a rather brief
outline of the proof of his results. Also I give sufficient criteria for U—sets
which are more arithmetical in nature and are in terms of the set itself.
Pyatetskii—-Shapiro’s criterion may be used to reprove a result of Zygmund
and Marcinkiewicz [4] in the case of closed sets. In the first section is also
included a theorem which is a necessary condition for U-sets to be of a cer-
tain special type. As no necessary conditions, to my knowledge, have been
given for U-sets up to now, I think this may be of some interest.

In the theory of several variables, no analogue of Riemann’s uniqueness
theorem has ever been proved, without certain strong additional hypotheses.
These hypotheses concern the rate at which the coefficients are allowed to
grow. In particular the results of [9], imply that if the coefficients of a double
series tend to zero, and the series is circularly summable to zero everywhere,
then it is identically zero. It seems that no results concerning the rate of
growth of the coefficients of a convergent trigonometrical series have been
published. In the second chapter I prove a result which implies that the rate
of growth is smaller than exponential. This result applies to a general type of
method of summation which includes both circular and square summation.

There is a notion of M—sets of restricted type which will be discussed
in the third chapter. This is a set on which there exists a measure, whose
Fourier—Stieltjes series converges to zero outside the set. The classical M~
sets were of this type and the trigonometrical series given were the series
associated with the measures. In this section I will give a constructive



example of a series which converges to zero almost everywhere, but which
is not the Fourier series of a measure. Also I have included a generalization
of a theorem of Wiener concerning the Fourier series of measures, to several
dimensions.

In the last chapter, I consider Green’s theorem for the plane in what
might be considered as a best possible form. Bochner in [3], and Shapiro in
[10], considered this question, but the theorem that I prove is stronger than
Bochner’s, and has fewer hypotheses than the one in [10], but it does not
allow the same type of exceptional sets as in this latter work.



Chapter 1

1. We first make several definitions which will occur in the course of this
chapter. We denote by W the ring of absolutely convergent Fourier series
on the interval [0,1]. We may think of W as the set of all sequence ¢y,
—0o < n < oo, such that >, |c,| < oco. Then W forms a Banach space
under the norm 3, |c,|. Let S denote the Banach space of all sequences

Gp, —00 < n < 00, such that |I‘Jim an, = 0. The norm of the sequence
n|—00

{an} is defined to be Maxy|a,|. Then W is the dual space of & where
the sequence {c,} represents a linear functional on & which, when applied
to an element {a,} of S, yields >, anc—,. In W we have the weak star
topology induced by S. In this topology a sequence of elements of W {c%m)},
1 < m < o0, converges to the element {c}} if and only if (a) >, |c§«bm)| is
uniformly bounded in m, and (b) c%m) approaches ¢, for each n as m tends
to infinity. In [5], Pyatetskii-Shapiro proves the following theorem:

Theorem 1. Let E be a closed set in the interval [0,1]. Let L be the space
of all absolutely converging Fourier series vanishing on open neighborhoods
of E. Then FE is a U-set if and only if the weak closure of L is all of W.

Proof. We assume familiarity with the concept of formal multiplication
as expounded for example in [13]. We further need a little known lemma
of Zygmund which is essentially reproved in [5] by means of ideal-theoretic
considerations.

Lemma 1. Let P = Y, ¢,€?™% and Q = 3", d,,e*™"® be two trigonometri-
cal series where P belongs to W and ) belongs to S. Assume that either P or
@ vanishes on some open set U. Then the formal product R = 3, v,,e2™"®
where 7, = 3_, ¢yd;—p vanishes on U.

Postponing the proof of the lemma, we proceed to prove the theorem.
Let f =3, ¢,e?™"® belong to S. A necessary and sufficient condition for f



to converge to zero outside F is that f annihilate the subspace L. For, if f
does converge to zero outside E, and g = 3", d,e*™"* belongs to L, then by
the lemma the formal product of f and g converges to zero outside E since
f converges to zero there, and converges to zero on some neighborhood of
E, since g does so. Hence this formal product is identically zero, and in
particular the constant term ), ¢,d_, equals zero. Thus f annihilates the
subspace L. Conversely, assume that f does annihilate L. This means then
that the constant term of the formal product of f and g is zero. Now every
term of this formal product is the constant term of the product of f and
2™k ¢ for some k. Since e>™7 g lies in L whenever g does, it follows that
the formal product of f and ¢ is zero. Let y not be in E. We can then
choose g to be rapidly convergent in the sense of [13], and g(y) # 0. The
theorem on formal multiplication tells us that since this product is zero, f
converges to zero at y. Hence E is a U—set if and only if no f annihilates
L. By the Hahn-Banach theorem applied to W, this is equivalent to saying
that the weak closure of L is all of W.

It remains to prove the lemma. Assume for example that () vanishes
on U. For any zg in U, let T(z) = 3, t,*™"* be a rapidly converging
Fourier series such that T'(zg) # 0 and vanishing outside U. Then the triple
product PQT, by the associative law, may be evaluated in two different
ways. On the one hand QT is identically zero since the formal product
vanishes everywhere. On the other hand, since T'(zy) # 0, it follows that
PQ) vanishes at zy. A similar proof holds if P vanishes on U.

The subspace L is of course an ideal in W. Its weak closure L is also an
ideal. This may be seen as follows. If f belongs to L, then so does e>™? f,
for any k. Hence L is closed under multiplication by finite trigonometric
polynomials and hence by approximating an arbitrary element of W by
trigonometric polynomials we see that L is an ideal. Thus we may rephrase
the condition of Theorem 1, namely that L is all of W, and say that L
contains 1.

A theorem of Banach [1] states that if W is the dual space of a separable
Banach space, and if L is a convex set, closed under sequential limits in
the weak star topology, then it is closed in that topology. If E is a set of
uniqueness we know that L = W. For each ordinal number « set L, =
Ug<alg ifa is a limit ordinal and set L1 equal to the closure with respect
to sequential limits of L. For some « then, we have L, = W. The least such
« is an invariant of the set. The H" sets mentioned in the introduction have
the ordinal o = 1 associated to them, and there are no sets known which



have any other value of « associated to them. It would seem reasonable that
a countable union of H" sets for increasing values of » would be an example
of such a set.

2. Let E be a U-set situated in the interval [0,1]. Let A be a positive
real number. Consider the set AF consisting of all points of the form Az
where x belongs to . A theorem of Zygmund and Marcinkiewicz says that
AE considered modulo 1 is also a U-set. In this section we shall apply the
results of the previous section to obtain a new proof of this fact in the case
of closed U—sets. First we need the following lemma.

Lemma 2. Assume that the intervals [, 3] and [Aa, \3] are both con-
tained in [0,1]. There exists an absolute constant A, such that if f(z) =
> n €™ is a member of W vanishing outside of [a, 8], then f (%) =
S CheXT M also belongs to W oand 3, |ch| < AY,, |eal.

Proof. Let D(z) = Y, d,e*™ " belong to W, have two continuous deriva-
tives, and be equal to 1 on [a, B]. Further, let D(z) vanish outside a small
enough neighborhood of [, 3] so that D (§) is unambiguously defined. Now
we have

1 .
(1) o, = )\/ f(x)e_%m“dx,
0
SO
1 .
(2) 4=\ / () D(x)e 27y
0
Also
(3) D(x) e—27rin>\;v — ngg)e%rim;v
where
1 .
(4) d%l) _ / D(x)e—Zm(nA-i-m);vdx )
0

Remembering that D(x) has two continuous derivatives, we get after inte-
grating by parts twice that

Cy
Cy + (n\ + m)2

(5) |d| <



where C7 and Cy are suitable positive constants. Applying Parseval’s for-
mula to (2), we obtain

Ch

’

< .
(6) |Cn| — A %: |Cm| 02 + (n)\+m)2

AC
(7) 2l < Xlenl X Gy < A X lend

where A is some absolute constant.

If E is a U-set, then we know by §1, that the function 1 belongs to L. Let
D(z) denote the same function as in the proof of the lemma. For any f(x)
in W, we have that f(z) belongs to the weak closure of f(x) L. This we see
as follows. If f(z) = e> % then it is clear. It then follows easily for a finite
linear combination of exponential functions, and finally by approximation
in the norm, for arbitrary elements of W. In particular D(z) belongs to
the closure of D(x) L. The elements of D(x) L all satisfy the hypothesis of
Lemma 2. Since the elements of D(x) L vanish outside a neighborhood of
[a, B] it follows that any function in the closure of D(z) L also vanishes there.
By the theorem of Banach quoted above, D(x) is the iterated sequential limit
of suitable elements of D(z) L. For each f vanishing outside a neighborhood
of [, 8] let f denote f (%). If we can verify that whenever f, tends to g,
then f,, tends to §, we will have proved that D (%) is in the weak closure
of the space consisting of all f, where f lies in D(z) L. In turn this implies
that D (%) is in the closure of the ideal of all functions vanishing on some
neighborhood of the set AE. Now, with the aid of Lemma 2, we can easily
prove this assertion. For, if f,, tends to g, this means precisely two things.
First, the norms of the f,, are bounded, and second, each coefficient of f,
approaches the corresponding coefficient of g. Lemma 2 tells us that if the
first condition is satisfied for f,, it is still satisfied for f,,. Since the functions
fn are bounded in L' norm, it follows that the second condition implies that
each Fourier coefficient of f,, approaches the corresponding coefficient of §.

Now, if the U-set E is contained in the interval [a, 3] it follows that \E
is a U-set. For, D (%) is a function which is equal to one on a neighborhood
of AE, and is in the closure of L', where L’ denotes the ideal of all functions
of W vanishing on some neighborhood of AE. If h(z) is an element of L’
equal to one on an open set containing all the points where D (%) is not

one, we have then that D () 4 h(z) — D (5) h(x) = 1 belongs to the closure



of L'. Hence A\E is a U-set. Since we can always subdivide the set E into
sufficiently many portions E;, such that each is contained in an interval [a, ]
as above, and since a finite union of closed U-sets is a U—set, the theorem
of Zygmund and Marcinkiewicz follows.

3. As the simplest examples of U-sets, we shall consider those sets which
have the property that, as explained in §1, the ordinal 1 is invariantly as-
sociated with them. Recalling the definition, this means that there exists a
sequence of functions in W, each vanishing on some neighborhoodof the set,
and such that f,, weakly approaches 1. Such a set we shall call a U; set.

Theorem 2. A necessary and sufficient condition for a closed set E to be a
U; set, is the following. There exists € > 0, such that for no integer N and
real number § > 0 is it true that for every open set O containing F, and every
sequence ¢, > 0, n # 0, with ¢; < ¢ for [j| =1,...,N and } ¢, =1 there
exists a finite number of points in O, 1, Ts,...,T; and constants Aq,..., Ag
such that >  A\; =1 and

& 2

(8) Z Cn Z AjerminTi | < e

n#0 j=1

Remark: Since the statement of the theorem is rather involved, something
should be said concerning the point of the theorem. Equation (8) expresses
the fact that the points x; are such that nz; are evenly distributed for many
values of n. More specifically, the left side of (8) is an average of quantities
which will be small if nz; are well distributed. Thus our theorem might
be paraphrased by saying that a set E is a Uy set if one cannot find points
arbitrarily close to E/ having more or less random distributions modulo % for
many values of n. The significance of the number 4 is that one may ignore
what happens for small values of n.

Proof. The condition is necessary. If E is a Uy set this means that there
exists a sequence f,,, belonging to W, each function vanishing on an open
neighborhood O,, of F, and tending weakly to one. We may assume that

(9) =14+ Z C%m)€2m'na:
n#0
while
Dol < A

n



where A is an absolute constant. Also, we have that c%m) tends to zero for

fixed n as m tends to infinity. In the following we will drop the superscript
m when it is convenient. Let u = 3, |c,| and set ¢, = %, so that >~ ¢, = 1.
Set

. C .
10 g = 1 + c 627rmm’ go = 1 + Tj 627rmm’

1o 20 2 e

and € = =L5. If the theorem were false there would exist N and ¢ as stated

2A42°
in the theorem. Furthermore for some value of m sufficiently large, the

sequence ¢, would satisfy the hypothesis |¢,| < d for |n| < N. Hence there
would exist x1,..., 2y, lying in Oy, and Ay, ..., A; such that Y7 A; = 1 and

2

k
(11) Zén Z)\jezmmj <e€.

n#0 j=1

Now we put
hz) = Ajgr(z + ;).
Then we will have

/1 g2(x) h(x)dx =0
0

by Parseval’s formula, remembering that f,, vanishes at x; since they lie on
Op. On the other hand

1 k } Cn
/0 g2(z) h(z)dx =1+ Z (Z \/a)\jezmmf) N

n#0 \j=1

By Schwarz’s inequality this is greater in absolute value than

1-— [e,u Z|cn|]1/2:1—,u\/g>0

and hence we have a contradiction. Thus the necessity is proved.

The condition is sufficient. The condition means that there exists an
€ > 0, and a sequence cglm), such that >, c%m) =1, and cglm) tends to zero
for a fixed m as n tends to infinity, and open sets O,, containing F, such
that

i 2

(12) Zc&m) Z AR > e

j=1

10



for all z; in O,, where \; are numbers such that >  \; = 1. Let
13) oo = 14 S e e2ine

Clearly f,, belongs to L? of the interval [0, 1]. Furthermore fol |f2 (z)|dz = 2.
Let M be the subspace of L? consisting of all functions with constant term
1 in their Fourier expansions. Again we drop the index m where convenient.
Let My be the subspace of M generated by the functions f,,(z +t) where ¢
belongs to Oy,. Let g be that element of My such that [} |g|>dz is minimum.
Set h = a + [ g(x) where «, § are so chosen that

1 1
(14) / hgdx =0, / hdx =1.
0 0

This will be possible provided fol |g|?dx > 1, for in that case we take
(15) o=

Now the hypotheses of the theorem tell us that

1
/ lg|?de > 1+ €.
0

Hence we see that )
/ |h|2de < A
0

where A depends only on €. On the other hand,
1
/ h(z)j(z)dz =0
0

for any j(x) belonging to My. For we have

(16) /01<a+ﬁg)jdx - /Ol(a+ﬁg>gdx+ /Ol(oHrﬁg) (T=g)dz.

The first integral on the right is zero because of (14), whereas the second
integral equals /3 fol g (7 — g)dz, which is zero by the minimal property of g.
Hence if
hm(x) =14 Zd%m) €2m'na:’
n

11



the function

(17) i (3) = 1+ 37 d™) (/) 2eina

belongs to W, and has its norm in that ring, by Schwarz’s inequality, less
than 1 + v/A. Furthermore since fol h(x)j(z)dz = 0 for all j in My and
in particular for f,,(z + t) where t lies in O,,, it follows from Parseval’s
formula that k,,(z) =0 for  in O,,. Thus it is clear that the sequencesk,,
tend weakly to one and vanish on neighborhoods of E, so that F is a Uj
set. The fact that the coefficients of k,,, tend to zero as m tends to infinity

follows from the fact that the c%m) do so and d%m) are all bounded by VA.

Now we shall turn our attention to the H" sets which were discovered
by Pyatetskii—-Shapiro. We need a preliminary definition.

Definition. A sequence of r—tuples of integers, ng, 1<7<r 1<4< o0,
is said to be normal if whenever a;, 1 < j < r, are integers not all zero,

(18) > ajn]
j

tends to infinity with 7.

Then we have:

Definition. A set S is an H" set if and only if there exist r intervals
Ly,..., L, on the interval [0, 1] and a normal sequence of r—tuples of integers
n!, such that for all z in S, and all i, there exists j such that nz does not
lie in L; modulo 1.

We now prove that the H" sets are sets of uniqueness. For each L;, let
Aj(x) be a function in W vanishing everywhere except in an interval interior

to Lj, and such that the constant term of \j(x) is 1. Let

These functions then vanish on a neighborhood of E, and their norms as
elements of W are uniformly bounded by the product of the norms of ;.
Let

(19) \(w) = 3 ) etriess

12



where a, ..., a, range from —oco to co. Then the constant term of f;(z) is!

1
(20) Z cgﬂ) e cgr) .
n?)a1+.w+ny)aT:0
This last sum contains the term c(()l) S c(()r) = 1. For any fixed choice of
ai, ..., not all zero there will be an ¢ such that no term corresponding to

these values of a; occurs in the sum (20) because of the normality condition
(18), for that value of 7 or thereafter. Hence it is clear that this constant term
(20) approaches one, and a similar argument shows that the non-constant
terms approach zero. Thus f;(z) tend weakly to one, and since they all
vanish on open sets containing F by definition of an H" set, it follows that
E is a set of uniqueness. Moreover E is obviously a U; set. The next
theorem will have as its object to show that in some sense H" sets are the
simplest U; sets.

Theorem 3. Let f, =), c%m) e2mine c(()m) =1, be functions in W, vanish-
ing on a set E, such that f,, tends weakly to one. Assume that there exists
€ < 1, and an integer N such that for all m sufficiently large we can find a

(m) (m)

set J,, of N indices ny /,...,ny ", such that
(21) Z M| < €.
n#0, n¢Jm

Then FE is a finite union of H" sets.

Remark: In the proof that H" sets are sets of uniqueness, we constructed
exactly such a sequence of elements of W. On the other hand it is possible
by taking appropriate linear combinations of the functions in this sequence,
to construct a sequence vanishing on neighborhoods of a H" set, tending
weakly to one, but not satisfying the hypotheses of Theorem 3.

Proof. The elements of the sets J,,, are not uniformly bounded, because,
since f,, tend weakly to one, this would imply that the coefficients corre-
sponding to the indices in J, tend to zero, and hence by (21) that 3=, ., |c£lm) |
1 for m sufficiently large. This in turn implies that the functions f,, are never
zero. Thus we see that after possible rearranging ng-m), we have that ngm)
forms a normal sequence of 1-tuples in the sense of our definition. Assume

(m) )

that after further rearrangement n; /,..., form a normal sequence of

PN -cg).

LOriginal contained En('l)al'.'n(r)arzo 1

13



(m) (m) (m)

r—tuples, while ny 7, ..., ny"", n, /1 do not form a normal sequence of r + 1
tuples. By restricting ourselves to a suitable subsequence, this implies that
there exist integers ai1,a12,...,a1, by # 0, c1, such that?

.
> anny™ +binf) = cr
j=1

(m)

Now with this new sequence of n; ', we consider the sequence of r + 1-

(m) (m) _(m)

tuples n; 7,...,ny ',n,, 5. If this sequence is not a normal sequence of
r + 1-tuples we proceed exactly as before. If it is a normal sequence we
adjoin ”7(011)2 to ng-m), 1 < j < r. Thus eventually we will find that for a
suitable subsequence of our original sequence and suitable rearrangements,
there will be a number r and integers aj; where 1 < j <r, 1 <k <N —r,

b #0, ¢, 1 <k <N —r, such that

(23) Z akjng-m) + bknff:;c =cyp.
7j=1
Now set
_(m) ”Sm) _ Akj B
(24) B:bl-...'bN_r, nj = ? s akj:T.

We have then

(25) Z C_lkjﬁg-m) + ﬁfz_l,l = E,gm)
j=1

where é,gm) depends on m but remains bounded, |6,(€m)| < K. The sequence

ﬁgm), 1 < 5 < r, is clearly still a normal sequence. We shall show now
that the set F is a finite union of H" sets, each defined relative to some
subsequence of this sequence. For each integer d, let I1,...,1; be the d
consecutive intervals of length é which cover the unit interval. If £ N I
were not an H" set, then for each choice of a, ..., @, from among the set
of positive integers less than or equal to d, the relations

(26) Ay e, ..., am e,

r

>Typo “n{™,” in manuscript.

14



hold for some x contained in E N I;, for some m sufficiently large, since
otherwise £ N I; would be an H" set. There are d" possible choices of the
numbers a1, ..., q,, and so for each m sufficiently large we have a set of d"
points which we denote by S,,, belonging to I; N E and satisfying (26). Our
next object will be to show that the sums

1 . (m) .
y Ze2mnj ;v’ 1<j<N,
TESm
are quite small.
First we have
r € dr € e R
TESH 2ES

remembering that I; consists of the interval [0, é] and z belongs to I;. For
(m)
J

Iy,...,1;. Therefore we have that the average value of the function e
taken over these points differs from the integral extended over the interval

[0,1] by at most

x where = belongs to S,,, has d"~! points in each of the intervals
2miBx

each n

Max ‘GZM'Bm o 62m'By‘
L .
lz—y|<g

2miBx

Hence, since the integral of e is zero, we obtain that

]. = (m) Tl
(28) E Z 62man T < ‘1—62dB 7
TESH,
or, from (27)
(29) DD ‘”32‘1—6243‘32”7.
TESH,
Now, if j = r+k, we have3 ﬁyﬂc = é,gm) — (akmg’") +ee +dkrﬁ,(nm)). Assume
that ag; # 0. Consider any set of indices ao,...,a,. Let T denote the set

of d points in .S, for which

(30) Az €I, A\Mzel, .

3Typo “al™},” in manuscript.

15



Then the points

d™y — (apand™ + ...+ agy (™) a

all lie within distance

&™) + [aga| + - - + ||
d

of each other and hence of a single point 3. Here A denotes an absolute
constant. Hence

A
< =
—d

1 orin'™ x 1 —27i(a ™ —
- N . k17 T—20)
E e +k E e 1

zeT zeT

(31)

2T A
< —.
- d

(m)

But, exactly as above, since the points i; '« lie successively in each of the
intervals I1,..., I;, we have

(32) ‘l Z o 2ming M| 27| |
d

xzeT d

Since S, consists of d"~! sets each exactly like our set T, it follows that by
combining (31) and (32) we obtain

. (m K
(33) — Z e27rmj T E

rESH

<

where K is some constant, independent of m and d.
Now the theorem follows easily. Since for all points of the set Sy,, fmn(z)
equals zero, we have

1 . 1 .
— (m) 2mwinxe __ (m) 2mwinx
(34) 0= T E E cVe =1+ E T E c)Ve

TESm 1 n&Jm TESm
+ Z Z i (m) 2mwinx
dr Cy '€ .
n€EJm TESm

The first sum on the right is bounded by 1 — € in absolute value, while the
second sum does not exceed Y, |c£lm)| %. Hence we have

(35) LS00+ D)

16



which is clearly impossible if d is chosen large enough.

In the next theorem the symbol |E| will be used to denote the measure
of E.

Theorem 4. Let E, be a sequence of closed sets in [0, 1], such that |E,,| >
0 > 0. Assume that for each fixed interval I,

INE,

(36) ]

- |En|

tends to zero as n tends to infinity. Let £}, denote the set of all z such that
E,, + x, which means FE,, translated by x, does not not intersect F,. Then
any closed set contained in the intersection of all the F), is a U; set.

Proof. Let x,(z) be the characteristic function of the set E,. Set

_ Xn ()
AN

fn then has constant term one in its Fourier expansion. Since each f,(x)
belongs to L?, and || f,||2 = %, it follows that g,(x) = f,.(x) * fn(z), where
* denotes convolution, lies in W, and its norm in that ring does not exceed
%. For any k # 0, and € > 0, let d be so large that |e>™F* — 27ky| < ¢ if
|z —y| < 5. Let I1,...,I4 be as in the proof of Theorem 3. Pick n so large
that

I, N Ey|

(37) TN —|Eu|| <e, 1<a<d.
@
Then we have
) I.NE i
(38) / e2rikede g.. M 2™k 1. <e€ |Ia| ,
I.NEn 1o Ia
or by (37),
/ 627rika:da:dx o |En| / e27rikmdm < ¢ |Ia| .
IaNEn Io

Summing over all a, we obtain

/ e2mkx
n
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It follows that the functions ¢, (z) tend weakly to one. On the other hand
we have

9u@) = [ 1u®) fula ~ 1),

so it is clear that g, (x) vanishes on F),. Hence the theorem is proved.

We now remark that those H" sets which are defined with respect to
normal sequences where the ratio of successive terms in each r—tuple tends
to infinity, obviously satisfy the hypotheses of our theorem 4. The choice of
the set F,, is rather obvious.

4. Now we shall consider the question of whether there exist H" sets which
are not countable unions of H"~! sets. We will first prove that the comple-
ment of an H"~! set has a certain metric property, and then we will find
an H" set whose complement does not have this property. We need some
preliminary definitions and lemmas.

Definition: Let S be any set in [0, 1]. For ¢,e > 0, we say that an interval
I is of type (1,¢,¢€) relative to S, if to every point x belonging to I, there
exists an interval contained in S of length ¢, with its midpoint at m, such
that

(39) |t —m|<e, —— >c¢
both hold. Similarly, we say that an interval I is of type (r, ¢, €) relative to S,

if to every point 2 belonging to I, there exists an interval of type (r —1, ¢, €)
relative to S, of length 4, with its midpoint at m, such that

|z —m| <e, >c.

|z —ml
Finally, if the interval [0, 1] itself is of type (r, ¢, €) relative to S, we say that
S is of type (r,c,€).

Roughly speaking, this definition says that a set is of type 1, if every
point is close to a relatively long interval of the set. It is of type 2, if every
point is close to a relatively long interval of points, each one of which is close
to a long interval of the set, etc. Such sets as those in the definition occur
in the definition of H" sets, and the purpose of Theorem 5, is precisely to
prove that a certain set if of type (r, c,€).

We first have a lemma.
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Lemma. Let L; be the intervals (h;, h; + d) where 0 < h; < 1,0 < d < 1,
1 <4 < r. There exist constants B(d) and C(d) depending only on d, as
follows: For any € > 0, there exists an integer N such that if
_ M _ D2 _Dr
S1=—,82=— ..., § = —
n n n
are r rational numbers, with |s;| < 1, and having the property that for all
integers a;, 0 < j <r, not all zero, satisfying |a;| < N, we have

r
a0n+Zajpj > N,

J=1

(40)

then there exists an integer ¢ < B(d) such that the set of all intervals of
the form [%, %] where k£ runs through all the integers satisfying kqs; €

L; (modulo 1), 1 <i <, forms a set of type (r, C(d), €).
Proof. In the statement of the lemma, the number N in reality depends

upon both d and r. Therefore, at times we shall denote it by N(r,€,d). The
proof proceeds by induction on r. We assume the lemma true for r — 1. Set

c'=C (%) and B' = B (%), where we consider these quantities defined
for the case r — 1. Let € be an arbitrary positive quantity. Then if we set
N =N (e, %), again for the case r — 1, we shall prove the lemma for the
case r with the following determination of constants,

. d 8B’
(41) C = Min (323,,0’> B = ( y +1> B,
5 /
N =Max (-,r(B+1)N") .
€

Therefore, assume that s; = 2 are r rational numbers which satisfy the
condition (40) of the lemma where N is given by (41). Thus in particular

for no k satisfying

B’ !
(42) k< (8— 4 1)
d
do we have
(43) E (s1,82,...,8) =0 (modulo 1),
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by which we mean that the corresponding vector does not have all its com-
ponents integral. This is so since otherwise k s; = ¢, where ¢ is an integer
and both k£ and ¢ are smaller than N, so that we have kp; — tn = 0 which
violates (40). Now we apply the well known box principle of Dirichlet. We
divide the unit interval up into 87]3’ +1 equal intervals. If we do this for each
axis in r—dimensional space, we will have subdivided the r—dimensional cube
into at most (%Bl + 1)r cubes. Now, consider all the vectors & (s1,...,s;),

where k satisfies (42). There must exist two values of k such that the cor-
responding vectors lie in the same cube. Their difference then will be an
integer k1 such that

8B’ !
(44) k1§<7+1> , kisi = + Ej, |04i|§@,
and FE; are integers. Now let a; be the largest of the «; in absolute value,
and assume that «y is positive.
Let C' denote the cube in r—1 dimensional space defined by the following
inequalities,

h d h
if a;>0, hi——ai+5 <y <yi——a+
a1 4 (0%}
(45)

h d h 3d
if a; <0, hi——ai+=<y<y——a+—
a1 2 (6%])

where yso,...,y, are the variables. If (y3,...,%,) lies in the cube C, and A
is an integer satisfying

d 3d
(46) h1+§§011>\§h1+§7
then it will follow that
(47) Aag, .y ar) + (0,92, yr)

lies in the cube L' which is defined as the direct product of the intervals
L = (hi + %, h; + %d). This is so since the first component of the vector
(47) lies in the interval L} by (46), while if «; is greater than zero we have

; ; d
(48) A W W
aq (o5} 8
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since |a;| < a7 and for a; < 0 we have

(49) hi 2 ey < 2
(6%]) 8 a1
Thus comparing (48), (49), and (46) we see that (47) lies in the cube C.
Now set
: kin: — Es A

(50) g= - Bbim 2 P
(e3] klpl - Eln n
where

n' =kipr — Ein, pj=kip; — Emn.

Now if a;, 1 <4 < r, are r integers not all zero and such that |a;] < N',
where we recall that N’ was defined as N’ (r —1,€, %), we have

r T
Zaiklpi —-n (Z Eiai> ‘ .
i=1 i=1

Using the inequality |F;| < B+ 1, we see that we have a linear combination
of p; and n with coefficients less than or equal to r(B + 1) N’ which does
not exceed N. Hence the quantity in (51) exceeds N and therefore N'.
We also note that |5;] < 1 and that the length of each side of the cube C
is %. Thus applying our lemma to these numbers and the cube C' for the

case r — 1, we deduce that there exists a number ¢’ < B’ such that the
kK41
n'? nf

-

/ !
Z a;p; +an | =
i=2

(51)

set of intervals of the form [ } where £’ ranges over all integers such

that ¢'k’ (%) lies in the cube C modulo 1 for 2 < ¢ < r, forms a set of

1
type (r — 1,C" €). Remembering that C' < C’, it follows that to prove the
lemma we must merely show that each one of the intervals [ﬁ_iv k;:,rl] is of
type (1,C,€) relative to the original set mentioned in the lemma. Let us

then consider a particular k&’ such that ¢'&' (QL) lies in C' modulo 1. Set

a1
m = [S—;] By what was said above concerning the vector in (47), it follows
that if an integer A satisfies

d d
(52) h1+§§a1q'/\§h1+3§,
then the vector
k’
(53) ¢ (245 (@)
(03]
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lies in the cube L' modulo 1. The vector (53), however, differs in every
component from the vector

(54) qd N+m)(ag,...,q)

by at most |¢’ a;| < %. Hence the vector (54) lies in the cube L modulo 1,
where L is defined as the direct product of the intervals L;. Now set ¢ = ¢’ k,

[,\+m /\+m+1]

so that we have ¢ < B, and all intervals of the form belong

to the original set described in the lemma. The condition (52) on A can be
rewritten as follows:

1 d 1 3d
hi+—-) <A< hi+ — ) .
a1q’(1+8>_ _a1q’(1+8>

Obviously then, there is a string of consecutive such A\ numbering at least?

d d
—-1>
day q' ~ 8ar ¢
since p
>2.
day ¢
The corresponding intervals [/\JFTm %] which we know belong to the
orlgmal set of the lemma, form on large interval of length at least g7 7 q — =
51 n, This large interval is contained in [’;}, m;r 1 n,zq,] since hp + d -9,
In turn, this interval is of length at most W' We also have £ 2 % > % — %

Thus we conclude that the distance from any point in [k—' k;:,rl] to the

n'?’
midpoint of our block of intervals is at most %. Now n' > N so that this
distance is smaller than e, and the ratio of the length of the block of intervals
to this distance is at least 32 a7 > %. Thus the lemma is proved for the

case r under the assumption that it holds for the case r — 1. Notice that at
1 ko k41
n’
its distance to the block of intervals of the original set which we associated
with those values of A such that 1+ h; + % <ap¢d A< hy+ % + 1, then we
could modify the argument very slightly to show that with a different choice
of C(d) we can assume that all the intervals which occur in the definition
of a set of type (r,c,€) occur to the right. We will need this remark later.
Thus, it only remains to prove the lemma in the case r = 1.

this last step if we took each point in the interva } and examined

*Original: “o” missing on right hand side.
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This is very simple. If Ly is the interval (h,h + d), we set C'(d) equal

to %, and B(d) equal to % + 1. Finally for € > 0 we set N equal to
Max (%,B + 1). Then if s = £, |s| < 1, we have as above for no k < B(d)
is ks = 0 (modulo 1), so that there exists an integer k& < B(d), such that

ks = a+ E, where E is an integer and |a| < 45. Also |E| < B+ 1. We have

a= kp_% = %, and n’ > N since k and E do not exceed N. Let v be any
integer. There exists a consecutive sequence of integers A\ satisfying both
Z<AL % and h < Aa < h + d (modulo 1) numbering at least % terms.

If we set ¢ = k, intervals of the form [%, %] will be of the desired type,

and the total length of these intervals will e at least as great as % = 2%,.
The distance from the midpoint of this block of intervals to any point in the

interval [%, %] is at most %, using again the fact that n > n’. Thus we

see that our choice of C' and B satisfy the conditions of the lemma, since
v v+1]

for some v every point is contained in an interval of the form [%, -

Theorem 5. Let né-, j =1,...,r be a normal sequence of r—tuples. Let
Ly,...,L, be the intervals [hj, h; + d]. Then there exists a constant C(d)
depending only on d, such that if € > 0, there exists an integer N such that
for i > N the set S; = {z| n;x € L mod 1, all j} is a set of type (r, C'(d), €).

Proof. We shall drop the superscript in n; without risk of confusion. Let

ny>ne >--->n,. If for j =2,...,r and for some integer k, we have
3 n; h1+k n;
(55) hj—Zdn—iS - njghj+d—n—id(modulol),

4 ny’ np

then the interval Ay = [k;’;—f“ 4+ 3.4 kthy 4 n%] will belong to the set S. We

see this because if x lies in this interval then n;x lies in [hl + % d,h1 + d] (modulo 1),

and njx for j # 1 lies in [hj, hj 4+ d] modulo 1. We notice that the intervals

k. k+1]

Ay, are of length at least ﬁ, and that every point of the interval [nl, o

is no more than n% distant from its midpoint. This means that the interval
[ﬁ ﬁ} is of type (1, %, n—21) relative to S. The condition on %k in (55)

ny’ ni
says that k %f lies in a certain interval modulo 1 of length at least %d, re-
membering that ny > n;. We may thus apply our lemma to the numbers
21 We then conclude that there exists an integer ¢ < B(d), such that the

n1
intervals of the form [nﬁl, kn—"‘ll] where ¢k satisfies (55), is of type (r—1,C\€).

This follows because the hypotheses of the lemma will be satisfied for any
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N if we go out far enough in the sequence of r—tuples, since the sequence

is normal. Therefore we may say that the intervals [g—’f, qlfil} are of type
(1, g, nl) relative to S. Now, if a set S is of type (r, C, €) then the set ¢S is

gk gk+1

ny’ ni

easily seen to be of type (r,C,ge). Thus the intervals [ ] are of type

(r —1,C, ge). Each such interval is of type (1, 8%, %) relative to S since

the interval [qk q';‘fl] is of type (1, 8%, n%) Thus if we insure that ny is

sufficiently large we will have that S is of type (r,C’,€), where C’ is a new
constant which depends only on d. Thus the theorem is proved. Now we
have the main theorem of this section:

Theorem 6. There exists an H" set which is not contained in a countable
union of H™ ! sets.

Proof. We remark first that every H" ™! set is trivially also an H" set. For
if a give H "1 get is defined relative to the intervals Li,..., L,_1 and the
sequence n%, 1 < j <r—1, then it is also defined relative to the sequence n],
1<5<r Where ni is taken to be a sufficiently rapidly increasing sequence
so that the sequence of r—tuples is still normal, and L, is taken to be the
interval [0, 1].

We shall now define a set S, which satisfies the statement of the theorem.
Let af < af--- < a¥ be a sequence of increasing positive integers such that

(56) ak —af = o00,...aF —af | =

as k tends to infinity. We define the set S as the set of all x such that for
each £, not all the points

k k k
3 x,3%x,...,3% &

313
application of the Baire category theorem we need only prove the following:

If z € S, and [ is an interval containing =, no H"~! set can contain SNI.
Let x and I be such a point and interval. Every number z can be
expanded in the ternary system,’

o) s

®In original “c0” missing.

lie in the open interval [ 2} Clearly S is an H" ! set, so that by an
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where 0(k) takes only the values 0,1,2. Unless the expansion of z ends
in all zeroes or all twos, then saying that 3" z lies in the interval [%, %],
is equivalent to asserting that #(n + 1) = 1. So excluding the exceptional
numbers mentioned of which there are only a countable number, to say that
z lies in S means exactly that for no k£ do we have

(58) 0ak +1) =0l +1)=...=0("+1)=1.

Even if the number z does terminate in zeroes then the above condition
implies that z is in the set S. Therefore if we modify our original x by
setting all 6(k) = 0 for k sufficiently large, we may still assume that it lies
in S NI, and that it terminates in zeroes. Assume further that x is the
midpoint of I, and that I is of length 25. Let T be an H"~! set which
contains SN I. Then by our theorem, we know that there exists a constant
C, such that the complement of T, which we denote by U, is a set of type
(r — 1,C,¢) for arbitrary e. Let n be an integer having certain properties
which we shall specify later on, and also having the property that for £ > af,
O(k) = 0. Since U is of type (r — 1,C,€), there exists an interval I; with
midpoint mq and length §; such that
01
(59) |z —mi| <e, ——>C,
| —maq]

and I is an interval of type (r — 2, C, €) with respect to U. By the remark
which was made in the course of the proof of the lemma, we can assume
that I lies to the right of z. By choosing € small enough we can insure that
the interval I; lies completely within our original interval I. As a matter
of fact, we can choose € so small that each one of the » — 1 intervals which
we shall choose all lie in the original interval /. Now since m; > z, it must
agree with z in its ternary expansion up to the place

—log|x—m1|}
60 ——| - 1.
(60) [ log 3

Now if we assume that
(61) re< 372,

this place will be one beyond which z terminates in zeroes. Define z; to be
the number which agrees with my up to the place

—log%
1
l log 3 ]+ ’
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beyond which z; terminates in zeroes. Let us call the range of places between

{—log|x—m1|]_1 —log % +1
log 3 log 3

Ry. Now because I is of length é1, 21 lies in the interval I;. Also because
of (59), the number of places in R; is at most some bounded quantity which
depends only on C. Now there must exist an interval I with midpoint ms
and of length d5, which is of type (r — 2,C,€) with respect to U and such
that

o

62 "
( ) |Z1_m2|

> C, |z1—m2|<e.

Again we may assume that® z; and ms will then agree in their ternary
expansions up to the place

|:—10g|21 —m2|] _1
log 3 '

Define z5 to agree with ms up to the place

—log %
log 3

+1

and be zero beyond that. Then again, the number 25 lies in the interval I5,
and this number agrees with the number x in all but possibly two ranges of
places R; and Rs, the second being defined as all places lying between

{—log|z1—m2|]_1 and l—log%

1.
log 3 log 3 +

Because of (62), both ranges have at most a bounded number of places in
them. Proceeding in this manner, we eventually obtain a number z, which
lies in U, and which agrees with = in all but r — 1 ranges of places each of
length bounded by a number depending only on C. Now if n were chosen so
large that the difference’ aj,—aj was always greater than this constant, for
all 7, it would follow that this number z would lie in S, since the conditions

(58) could only occur for at most r — 1 of the aj. Hence z is in S and

®Original contains here “ms 21 - z1 and ms”.

"Original contains typo “a} 1”.
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simultaneously in the complement of 7', so that we have a contradiction.
Therefore the theorem is proved.

5. It is not a priori obvious from the definition that an H" set for » > 1 is
a set of measure zero. Of course, once we know that such a set is a set of
uniqueness then it follows that it must be a set of measure zero. For r =1
it is clear that an H' set is a set of measure zero, for we constantly remove
from the unit interval a set of fixed measure which is more and more evenly
dispersed, so that we decimate any fixed in the set. For r > 1 the situation
is clarified by the following theorem:

Theorem 7. Let n;?, 1 < j <r be a sequence of r—tuples such that for any
r integers a;, not all zero, the sum E§:1 ajné? is zero for only a finite number
of values of k. Then for f;, 1 < j < r, bounded measurable functions, we
have

1 S|
(63) /0 fl(nlfx) fg(néx) ... f(n,]fx)dx — Jl;[l/o filz)dx .

Proof. Assume first that f; are finite exponential polynomials. Then the
expression on the left of (63) will consist of the product of the constant
terms of f; if k is sufficiently large. This is so because of the condition on
n;“ This is exactly what the right side is, so that the theorem is true in this
case. In the general case, we may approximate each f; by an exponential
polynomial in the L' norm, such that the maximum of each polynomial is
not more than the maximum of the corresponding f;. Then it follows that
the right and left hand sides of (63) approach the corresponding expressions
for the f; as the approximation becomes closer. Here we must use the fact
that nz is a measure—preserving transformation for all n. Hence the theorem
is proved in this case also.

Now, assume that né“ are a normal sequence of r—tuples. This means
precisely that the r 4+ 1-tuples 1,n¥, ..., n¥ satisfy the condition of our theo-
rem. Thus if [ is an arbitrary interval and Ly, ..., L, are intervals of length
d each, then the set S, = {z| z € I, nfx € Lj, all j} has measure ap-
proaching ¢” |I]. This we see by applying the theorem to the characteristic
functions of these intervals. Thus if E is an H" set defined by the normal
sequence né’“ and the intervals L;, then if U is any open set containing E,
for some k each interval in U is decimated by the corresponding Sy to the
extent that §" times the measure of U lies in the complement of E. This
clearly implies that E is of measure zero.
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Chapter 2

In this section we shall prove a theorem concerning multiple trigonometric
series. In the theory of trigonometric series in one variable, the famous
Cantor-Lebesgue theorem states that if a trigonometric series converges
on a set of positive measure, then the coefficients must tend to zero. No
complete analogue of this theorem can exist, since we must first specify
a particular method of summation when we are dealing with the case of
several variables. Shapiro in [9] has obtained results which would give an
almost complete answer to the question of the uniqueness of multiple series,
if some kind of analogue could be proved. It appears that no results along
this line have been published. The theorem which we shall prove is much
weaker than the corresponding Cantor-Lebesgue theorem. The terms of a
multiple series are in one to one correspondence with the set of all r—tuples
of integers. A method of summation is described by a sequence E,, of finite
sets of r—tuples of integers, such that E, is contained in F, 1 and the union
of E,, consists of all —tuples. At the n'® stage of the summation we consider
the sum of all terms corresponding to r—tuples contained in F,. Then we
have the following definition.

Definition. A method of summation E,, for a trigonometric series in r
variables, is said to be regular if and only if there exists a constant K such
that for every lattice point ¢ = (aq,...,a,), there exists ny such that a
belongs to E,, and the maximum of the absolute value of all coordinates of

all lattice points in E,, is smaller than K 11\éla<x |a;].
<i<lr

It is clear that the usual methods of spherical and cubical summation
are regular. Now we have our theorem.
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Theorem. Let

o0

J1yeeesjr=—00

be a trigonometric series in 7 variables, which converges almost everywhere
by a regular method of summation. Then for all v > 1, there exists b > 0,
such that

2 o] <Al where |j] = Max || .
(2) [€1..e] S bV where |j] = Max |5
Proof. The variables z1,...,x, range over the reals modulo 27, which we

consider as being canonically identified with the reals modulo 1.
By applying Egoroft’s theorem to the partial sums

Sp = Z Cje'l™,
JjEE,

where ] = (jlv"'vjr)v T = (xlv"'vmr)v and ] T = jlml + ... +jrmrv we
find that for any € > 0, there exists a closed set G, of measure greater
than 1 — ¢, such that s, are uniformly bounded in absolute value by some
constant B, for all x in G. Let a = (ay,...,a,) be a lattice point. Let
E,, be the set which corresponds to it in the definition of regularity. Set
N =2 Max |ji| +2. Then N < K Max |a;|. The set G can be visualized as

JjEER 1<i<r

1<i<r
being contained in the r—fold direct product 77 of the unit circle. Because
the measure of G is more than 1 — ¢, it follows that there is a set G’, in the
space T"~! of measure greater than 1 —e'/2 such that if (z3,...,z,) belongs
to G', the set of all z1 such that (z1,z2,...,2,) belongs to G is of measure
also greater than 1 — €!/2. We now need the following simple lemma.

Lemma. Let S be a set on the unit circle of measure greater than 6. Then
for any integer k£ > 0, there exist k points in S, z1,..., 2, such that the

distance between any two of them is greater than %.

Proof. Let z; be any point in S. Then for any n > 0, let zo be a point in S,
if it exists, such that zo > 21 + % and the measure of the set of all points in
S lying in the interval [z, 22| is smaller than % +n. Here [21, 22] denotes the
set of all points lying to the right of z; and to the left of z5. Choose 23 to be
a point in S, if it exists, which has the same relationship to zo, as zo had to
z1. Now assume that the process terminates after m steps, that is, no z,,4+1
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can be found having the appropriate property. This means that the only
elements of S lying in the interval [z,,,21] are contained in [zm,zm + %]

Thus it follows that the measure of S is smaller than m (% + 77), unless
m = k. This shows that z1, ..., z; can be so chosen in S that they are placed
cyclically around the circle, and the distance between two consecutive points
is greater than %. This prove the lemma.

Now consider sy, (21, ...,2,) as a function of 21 alone, holding zo, ..., z;,
fixed. By multiplying s, (71, ...,7,) by a suitable power of ¢*, we obtain a
trigonometric polynomial 3, (x1,...,2,) which contains only positive pow-
ers of €1 and is of degree smaller than N. Set ¢ = €1, so that 5,, can be
regarded as a polynomial of degree smaller than N in the complex variable
¢. For each (x2,...,2,) in G’, 3y, is still bounded in absolute value by B
on the points (z1,...,x,) where x; belongs to a set S of measure greater
than 1 — €2/2. Thus by the lemma there are N points z1,...,zy in S, such
that the distance between any two of them is greater than A\ = 17131 2 Set
(. = €k, Now, if we apply the Lagrange interpolation formula to Sngs 1t
follows that

N
[z (€= G)
(3) Fno(€) = D Bno(Gr) = o— -
"o ,; PO Tk (G = )
The denominator of each term in (3) obviously exceeds the corresponding

B yoots of unity, and m = H] + 1. Now, the

h

product where the (; are m

product [J4(1 — @), where the product is extended over all the m'™ roots of
unity different from 1, equals m. On the other hand, in the denominator
which occurs in (3), only N — 1 terms occur in the product. Thus there are
m — N terms which are additional, and each one of these terms is bounded
in absolute value by 2. Hence we obtain

m N
(4) H(Ck—Cj)ZW—_NZW

J#k

where 0 is a quantity which goes to zero with e. Now we estimate the
numerators which occur in (3). We have

(5) [[c-¢|<
j#k

Hu—e){,

0
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where the product is now extended over those N — 1 m™ roots of unity
which are furthest from 1. The same product extended over the remaining
roots is bounded from below by

om 2
2wik | o 1 1 2 [(5m]>
[[(1-e5)?|> —. .=
(6) k:1(1 ez 220m (m m m ’

where § as before tends to zero with e. The right hand side of (6) can be
estimated by Stirling’s formula. It follows easily that the right side of (6)
is greater than 27°N, where § here is again a quantity which tends to zero
with e. Hence it follows from (5) that

(7) [[¢-¢) | =n2¥.
J#k

Now |5,,(¢;)| < B, so that from (3) it follows that 5,,(¢) is bounded by
by~ where b depends only on B, and « is a number which tends to one as
€ tends to zero. Thus it follows that the coefficients of s,,({) are bounded
by by™. These coefficients are functions of xs,...,z,, and are bounded
by b7 whenever (x2,...,z,) lies in G’, which is a set of measure greater
than 1 — /2. Now if we apply the same argument as above to each of these
functions we find that they in turn are bounded by by 74" where ; also tends
to one as e tends to zero. If we apply this process r times we eventually
obtain the result that the coefficient |c,| < by for suitable choices of b and
7v. Since N < K ll\éllaé |a;|, it follows that the theorem holds after a suitable

redefinition of « and b.

2. Because our theorem allows the coefficients to grow quite rapidly, it may
be of some interest to construct an example of a series where the coefficients
grow at a reasonably rapid pace. However, we cannot prove that our theorem
is a best possible result. Given any function w(n) which tends to zero as n
tends to infinity, we shall now show that there exists a double trigonometric
series with the property that it converges almost everywhere, and yet for
some sequence of coefficients my, and ny, we have |Cy,, n, | > w(Ny) N where
Ny = Max (my,ng). Let K,(t) denote the Fejer kernel, that is,

sin(n I
© K= g (M)
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Then constant coefficient of K, (t) is 1, and K,(t) is a trigonometric poly-
nomial of degree n. Let n; be an increasing sequence of integers, and dj
positive numbers such that > 72, Z—’; converges and dj > w(ng)ng. Then
it is clear that the series Y 72 di K, (x) converges absolutely at all points
except for x = 0. Hence it follows that the corresponding double series,

(9) Z dj, kY Ky, (x)
k=1

converges at all points where = # 0, if we sum the series by the method of
square summation. More precisely, we take as the n'® partial sum all those
terms of degree not greater than n in either z or y. On the other hand it is
quite clear that the coefficients tend to infinity rapidly as was indicated.
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Chapter 3

1. The first example of a trigonometric series which converges to zero al-
most everywhere, and which is not identically zero, was given by Mensov.
He constructed a measure on a perfect set of Lebesgue measure zero and
considered its Fourier—Stieltjes series. Riemann’s localization theorem then
tells us that such a series converges to zero on the complement of the support
of the measure provided only that the coefficients of this series tend to zero.
An exposition of Mensov’s result can be found either in [2] or [13]. The par-
ticular set of multiplicity, or M—set, which is thus constructed is very similar
to the usual Cantor set. The Cantor set is constructed by removing from
the unit interval the middle third. From each of the remaining segments one
removes the middle third and so on. What remains is precisely the Cantor
set. If at each stage, instead of using the fraction one third, we use the num-
ber a;, where 0 < «; < 1, we obtain a more general class of sets. Mensov’s
example is exactly when the «; tend to zero, while >~ a; = co. Salem [8],
investigated the case of equal «; and proved the remarkable theorem that
unless this common ratio belongs to a certain denumerable class of algebraic
numbers, the set is an M—set, whereas in the contrary case it is a U-set. In
his proof he used a formula for the Fourier—Stieltjes coefficients of a certain
measure which originated with Carleman. This formula is valid in the case
of Mensov’s example, but the proofs of Mensov’s result referred to above do
not use this explicit formula. Therefore, it seems of interest to give a proof
which unifies the treatment of these two cases, and seems to be conceptually
much clearer. We begin by deriving the formula which was referred to.

Let & be a sequence of real numbers such that 0 < & < % Let u; be

the measure which assigns mass % to the point 0 and mass % to the point

&1...&-1(1=¢&;). Now set vj = g * 2 ... * ju; where x denotes convolution.
Set oy = 1 —2¢;, and let S; be the collection of intervals which remain
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after j dissections as described above, using the ratios «;. Then clearly S;
consists of 2/ intervals and the measure vj assigns mass 2% to the left hand
endpoint of each of these intervals. As j tends to infinity, v; tends weakly
to a measure v which has its support on the set S =N52;S5;. This measure
has been constructed entirely analogously to the ordinary Cantor function.
Now let C), be the Fourier coefficients of v, that is,

(1) Cp = /0 " ming g )

Since v is an infinite convolution, C), is the infinite product of the corre-
sponding coefficients for each of the measures ji;,. Sot

0 <1 + 6—2Win§1---€k—1(1—§k)>

(2) Cn = H 9

k=1

o0 . o
= H e_ﬂ'lngl...fk_l(l—fk) H CcOS 77”&1 . fk—l(l — fk)
k=1 k=1

o0
(3) = (=1)" JJ cosmnéy ... &1(1 = &),

k=1
Since the first factor is obviously (—1)". Now under the assumption that &
tends to %, we shall prove that the product (3) tends to zero as n tends to
infinity. Set 0 =& ... §—1(1 —&). Then clearly %L tends to 1/2. In the
case where &; = %, then clearly the measure v; consists of 27 equally spaced
masses of mass 2% each. The Fourier coefficients of this measure are easily
computed and we may express the result in the following equation.

T sin 2x

(4) .
COST COS = ...CO8 — = ——————
2 ok 2k+1 gin oF

This formula may also be easily verified by induction on k. Now if we assume
that 57 < 11—0, it follows that

(5)

Let A > 0 and m an integer such that
cos — — || cos ——=x
4
= 2 Or

'In original “(—1)"” missing.

1
<.
X

x x
COS T COS — ...COS —
2 2k

g’—ﬁ < %. Then the expression

(6)
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where z lies between A and 3A approaches 0 uniformly in = as k tends

to infinity and m is kept fixed. This is true because the quantity 02—:[

approaches % for fixed ¢ as k tends to infinity. Now if n is large enough

there is a value of k such that A < nf; < 3A and such that (6) is smaller

than a positive number €, with nfj substituted for z. By (5) it follows that

ﬁ cos ™ O 1
Y

(=0 2

(7) < 1

Thus a partial product of (3) is smaller than % + ¢, and since all the terms
of (3) are bounded by 1 in absolute value (3) itself is bounded by % +e.
Since A can be taken larger and larger as n tends to infinity, it follows that
(3) tends to zero.

2. A closed M-set such that there exists a measure with support contained
in that set, whose Fourier coefficients tend to zero is called an M—set of re-
stricted type. Pyatetskii-Shapiro has shown the existence of M—sets which
are not of restricted type. His proof is non—constructive and does not yield
an example of a trigonometrical series which converges to zero almost every-
where and yet which is not a Fourier—Stieltjes series. In this section we shall
give an example of such a series using a modification of the construction
given by Salem in [7]. We first need the following result of Wiener, (see
Zygmund, [13], p. 221).

Lemma. If ;s is a measure on [0, 1] of total variation V', let n(d) denote the
maximum value of the total measure contained in an interval of length §.
Then if di has the Fourier series du ~ 3 C,e*™ we have

R 1
_— 24.V. it
(8) 2Nn;N|C"| sA-V "(N)’

where A is an absolute constant.

Also we need a transformation which was first used by Wiener and Wint-
ner in a paper dealing with this subject [12]. Let £(z) be a function defined

on [—%,0] which is quadratic, increasing, and ¢ (—%) = —%, £(0) = 0. Ex-

tend & to the interval [—%, %] by requiring it to be an odd function. Then
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as is proved in [12], we have the following properties of £(z). Let?

oo
—2mimé(x —2minx
e §@) — E Anm € .
n=—oo

Then
Anm| < Clm|7Y2 for all m,

Anm| < Cln| 2 for all |n| > 2|m]|,
where C' is some absolute constant.
Assume that the measure y has Fourier coefficients C,, and > ;2 _ o |Cr| <
B. Then the measure 11(§ ~1(2)) is a measure whose Fourier coefficients we
denote by C),. We have then

1 ) 1 )
(10)  Cu= [ (e @) = [ e ()
0 0
Now the Fourier series for e~27&(*) converges absolutely, so that in (10)
we may integrate term by term to obtain

(11) CN'm = Z An,mcm = Z )\n,mcn + Z )\n,mcn .

[n[>2|m| In|<2|m|

The first sum in (11) is less than aq B |m| '/2, while the second is less than
% V', where V is the total variation of ;1 and «; and g are constants.

Let (N) be an arbitrary positive function tending monotonically to
infinity. We now propose to construct a set of measures 15, with the following
properties:

a) the total variation of py is not greater than k,

b) if pu1, has the Fourier series Y07 dp e2™nT then

o0

(12) Y ldngl Sw(k),

n=-—0oo

where w(k) tends monotonically to infinity.

c) For each k, let p = p(k) be a positive integer such that %’c < ngl(/qg)

for all ¢ > p, and p(k + 1) > p(k). We also demand that w(k) satisfy
ay w(k) < Q(p). This can be achieved by choosing p large enough. Set

(13) Cim,k = Z )\n,m dn,k .

In original “)\” is missing.
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Then (9), (11) and a) imply that there exists M and €, such that

(14) |dnj — dp 1| <e for |n| <M
implies
i g Q(|m|)

This is so because in the second summand of (11), 3,2 |m| An,m convergent
sequence while d,, ;, are bounded by k. We now assume that iy satisfy
condition (14).

Under these conditions let m be an integer, k1 such that p(k;) < |m| <
p(k1 + 1). Then by (11),

a1 w(kl) (6] kl 29(|m|)
|m|/2 m] |m|/2

(16) |dp gy | <

On the other hand, (15) implies that for all £ > k; we have

5 5 Q(m))
(17) |dm,k1 - dm,k| < |m|1/2
so that d,, = Lim ch 18 such that
k—o0 ’
7 38Q(m])
(18) |dm| < ] 172

We also observe that since (16) holds for |m| > |p|, it follows that |d, ;| <
3Q(Im|)
|m|1/2
slowly enough.
Now we shall proceed to construct a sequence of sets Si. let dq,do,...

be a sequence of integers tending to infinity. Let S; be the union of all

. In particular cimk are uniformly bounded if* Q(NN) tends to infinity

intervals of the form [dle dLl + 4_111] for some integer . Then the measure

of Sy is one—fourth. S; has the property that the set S7 4+ 51, which means
all points of the form = + y where = and y belong to S, is the union of all
intervals of the form [dLl’ dLl + 2—bl] and is of measure % S1 thus consists of
the unit interval with dq intervals removed. Let S5 consist of all the intervals
of 57, from each one of which dy intervals have been removed in precisely

3In original “Q” missing.
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the same manner. Then the measure of S5 will be % while that of S5 + Ss
will be %. We proceed in this manner with ds, dy, ..., to construct the sets
Sj. The measure of S, is 4% while that of S + S}, is 2%

Now measures v, will be defined inductively. Each interval of S}, has the
property that v, assigns to the first half of it a multiple of Lebesgue measure
and to the second half another multiple of Lebesgue measure. Now each half
interval of S}, contains certain intervals of Sy11. vpy1 assigns to each of these
intervals identical distributions of mass so that the sum of the measures of
these intervals is the same as that of the original half interval. However this
is done in such a manner that the total variation is % times that of the
original interval. We first observe that ;1 will have any finite number of
its Fourier coefficients arbitrarily close to the corresponding coefficients of
v, provided dgy1 is chosen large enough. For, as di1 approaches infinity it
is obvious that v 1 approaches v, weakly. In particular it follows that if
Fy11(z) and Fi(x), defined as the integrals of 141 and v}, respectively, i.e.,

X i
Fj1q(2) :/0 dviy1, Fi(x) :/0 dvy, ,

then |Fj11(x) — Fi(z)| can be made uniformly small. We can thus assume
that all the Fj(z) are uniformly bounded. This remark will be needed
presently.

The quantity l\glggc dn(d) also does not depend upon the choice of the

sequence di. This is so because this quantity is the maximum “density” of
the measure and only depends upon the Lebesgue measure of Si. Now set
Wi = Vi * V. Then by the lemma we have

N

1
1 <A V.-N-nl—=].
(19 PITERRE I

Thus it follows that by choosing dj, large enough we can be certain that puy
satisfy all the properties mentioned above.

The support of uy, is contained in S, + S;. The intersection of these sets
is a closed set of measure zero. Now I claim that the series 3, d,,e>™™* con-
verges to zero everywhere outside the transform of this set by the transfor-
mation £(z). For it is certainly true that the series 3, Jn,ke%m‘” converges
to zero outside the transform of S, + Si. Now the assertion follows from the
following lemma:

Lemma. If the sequence of trigonometrical series }_, dn,ke%m"” converges

to zero in an open interval, and d,, j, are uniformly bounded, if d,, = kLim dp, 1
—00
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exist, then ), d,e2mine converges to zero in that interval, provided kLim d, =
— 00
0.

Proof. This is a trivial consequence of formal multiplication. If v(z) con-
verges rapidly, is non—zero at a point of the interval, zero outside it, then
the formal product of y(z) with each of the series ), Jn,kem"w is identi-
cally zero. The hypotheses imply that the product of y(z) and ¥, d,e>™"*
is zero. Therefore the conclusion of the lemma follows from well-known
theorems concerning formal multiplication.

Since &(z) is piecewise differentiable it follows that >~ d, 2™ converges
almost everywhere to zero. It remains to prove that dpe?™ ™ is not a
Fourier-Stieltjes series. Let Fj(z) be the integral of the measure v(z),
that is, vi(x) = dFi(z). All the functions Fi(x) are uniformly bounded
provided we take the sequence dj growing quickly enough. The functions
Fy(x) converge boundedly to a function F'(x) of infinite variation. The
Fourier series of F(z) is the integrated series of Y, d,e2™*. Since F(z)
is of infinite variation it follows that ) d,e2™ s not a Fourier—Stieltjes
series.

Thus we have shown that there exist series which converge to zero al-
most everywhere and which are not Fourier—Stieltjes series. Furthermore

the coefficients can be made smaller than %“T/Q where Q(m) is any function

tending to infinity.

3. In the preceding section we quoted a theorem of Wiener concerning the
Fourier series of measures. In this section we shall present a generalization of
the theorem to several dimensions by means of a rather simple proof which
seems more lucid than the one in [13]. Also a generalization in a different
direction will be given.

Theorem. Let i be a measure on the n—dimensional torus 7", with Fourier

series
(20) dp ~ Z C; 2 (iw)
J
where j ranges over all n—dimensional lattice points j = (j1,...,jn), T =
(1,...,2y) and j -« = j1z1 + ...+ jpzy. Let S, be an expanding sequence

of rectangles in the space of all lattice points, and |S,| denote the number
of lattice points contained in S),. Then

1
(21) Lim — Y [Cj[

p—roo |SLD| JjESH
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exists and equals > |1(Q) |> where @ ranges over all points having non-zero
mass.

Proof. We assume S, is the set of all lattice points j, such that —m,, ; <
Ik <myp, 1 <k <n. We assume that m,, ;, tends to infinity as p tends to
infinity. Set

fp(mlv L 71,'”) — S— Z 627ri (j-z)
| p| Jesp
(22)
1 »
= H T Z 2T KTk
k=1 P —myp e <jp<mp

It is clear that |fy| < 1, and since f, is a product of Dirichlet kernels, it
follows from the formula for the sum of a geometric series that f, converges

to 0 everywhere except at (0,0,...,0) where it is 1. It is also clear that
1 _

(23) 5 2P =[] fle— @),
Pljesy TnxTn

as may be seen by direct substitution. By the Lebesgue monotone conver-
gence theorem it follows that the limit of (21) exists and equals

(24) ] = du@daty).
TnxT™

where §(z) is zero for x # 0, 6(0) = 1. This quantity by Fubini’s theorem is
clearly Y |u(Q) .

Now we shall restrict ourselves to the case of one variable. Let y be a
measure which has no point masses, i.e., a continuous measure. If du has
the Fourier series 3, C\, €272 let us examine the quantity & S5 |Cp, |2,
where nj, is some increasing sequence of integers. Then this expression is
equal to

1 ~
(25) N / In(w —y) dp(x)dp(y) ,
TixT?

where
1 &,
FN(.’L') = N kXZ:le L



As before the fy(z) are unformly bounded by 1 in absolute value. If the ny
are a polynomial sequence, i.e., nj is a polynomial in k, then well-known
results of Weyl [11], tell us that fy(z) approaches zero for all irrational
values of x. Hence (25) approaches (24) where §(z) is now a function which
is zero at all irrational points. Since there are only a countable number of
rational points and p is assumed continuous we have the following result:

Theorem. If i is a continuous measure, then
1
2
N Z |an|
k=1

approaches zero if nj is a polynomial sequence.
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Chapter 4

Green’s theorem in two dimensions says that if C' is a simple closed curve
bounding the region Q, if A(z,y) and B(z,y) are continuous functions hav-
ing derivatives, then under suitable further conditions we have,

0B 0A
(1) /CAd+de_/Q/ (%_a_g) dzdy .

where the line integral is taken in a positive sense around the curve C.
In [3], Bochner investigated under which conditions (1) holds. There it was
shown that if A and B have certain regularity properties and if the integrand
on the right of (1) behaves well, then (1) does hold. Here we shall prove
(1) under what may be regarded as the weakest possible hypotheses. This
question was also treated by Shapiro in [10], and though he assumes certain
regularity of A and B, namely, the existence of the differential, he allows
certain exceptional sets which we cannot allow. The proof of our theorem is
modeled after the proof of the Looman—Mensov theorem as contained, for
example, in [6]. We will not deal with the topological difficulties involved so
that our theorem will only treat the case in which @ is a rectangle.

Theorem. Let A(z,y) and B(z,y) be two functions defined on the rectangle
@, and continuous on the closure of (). Assume further that the partial
derivatives

0A 0A 0B 0B

exist everywhere in the interior of ), except perhaps at a countable number
of points. If %—f — %—A is Lebesgue integrable in the rectangle @, then (1)
y

holds.

Proof. We first need a lemma which is contained in [6]. In the following,
the word “rectangle” means the direct product of two intervals.
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Lemma. Let w(z,y) be a function defined in a square @, such that g—l; and
%—’;’ exist almost everywhere in Q. Let F' be a closed, non—empty set in @,

and N a finite constant such that

w(x,y—l—k) - U)(J},y)| S N|k|7

(2)
w(@ +h,y) —w(z,y)| < N b,

whenever (x,y) belongs to F' and (z + h,y) and (z,y + k) belong to Q. Let
J be the smallest rectangle containing F' and assume J is the product of
(al,bl) and (ag,bg). Then

b2
// %dmy-/@ [w(by,y) —w(ay,y)ldy | <5N -1Q — FI,
F
(3)
) b1
/F/ E)_lgjdxdy_/a1 [w(z,bz) — w(z,az)]dz | <H5N - |Q — F.

It is clearly enough to prove the theorem for all rectangles Q' properly
contained in @, for, in this case, we can approximate () from the interior by
a sequence of such rectangles, and for each of which (1) holds. Now by the
Lebesgue integrability of %—f— % the right side approaches the corresponding
integral over ), and by the continuity of A and B so does the left side. Hence
we may assume in the original statement of the theorem that A and B are
actually defined in a neighborhood of () where they are continuous and have
derivatives at all but a countable number of points. Now, let E be the
set of all points P in (), such that (1) holds for integrations taken over all
rectangles in a sufficiently small neighborhood of P. We shall show that F is
all of Q). Let FF = @Q — E. Since FE is obviously open, F' is closed. Let H, be
the set of all points (z,y) in @, such that ‘A(x+h’y,2_‘4(m’y) Alwytk)=Alz.y)

h
‘ B(@+hy)-B(xy)| |Blzy+k)-B(x.y) ‘
h D

b )

are all bounded by n whenever |h| < 1,

)

k| < %, and all the quantities involved are defined. Clearly @, with a

countable number of exceptions, is the union of all these closed sets H,,.
Therefore by the Baire category theorem, since F' is also closed, either F
contains an isolated point in the interior of (), or there is some square I, in
the interior of @, such that I N F' is non—empty and is contained in Hy for
some N. If a rectangle lies completely in F, then the Heine-Borel theorem
shows that (1) holds for it. Hence we see that isolated points of F' cannot
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occur and so the second alternative holds. Then the conditions of the lemma
hold and we have

/Adx+de // (a—B—%> dxdy

Here J is the smallest rectangle containing I N F' and dJ denotes the bound-
ary of J. The set I — J is a finite union of rectangles each of which can be
approximated from the interior by rectangles wholly contained in E. Hence
(1) holds for the set I —.J, where the line integral is taken around its bound-
ary in the positive sense. Thus we have

(5) / Adx + Bdy = // (E)_B - %> dxdy .
a(I-J)

So by (4) we have

/Adx—i—de— // (a—B—%>dajdy <10N-|J—F]|.
(JNF)U %

(4) <10N-|J - F|.

From (6) it follows that

B 0A
Adx+de‘<10N |I|+//‘a——a— dady

(7) §

o1

Now (7) holds equally well for any square I’ contained in I. Thus the set
function which assings to every square I’ the quantity! |, o Adx + Bdy is
dominated by an absolutely continuous measure and hence extends to an
absolutely continuous measure defined on all Borel sets. Thus, it is given
by the indefinite integral of some function. If we can then show that the
derivative of this measure in the sense of averages taken over smaller and
smaller squares is equal to %—f — 8— almost everywhere, then we will know
that (1) holds for all rectangles in I and hence that I N F' is empty, which
is a contradiction. How the derivative of the measure at almost all points
not in F is clearly % a—B — %. This is merely the theorem concerning the
differentiation of 1ndeﬁn1te integrals, since at such points (1) does hold. On

the other hand, if P is a point of density of F, then for? a sufficiently small

'In original the ' is missing.

[(3e}]

In original “a” missing.
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[I—F|

square I around P, we have that 7]

is arbitrarily small. Thus from (6) it

follows that ﬁ [57 Adx + Bdy approaches |—}| // (g—f — %) dzdy.
(JNF)U(I—j)

This last quantity approaches the derivative of the integral taken with re-

spect to the sets (J N F)U (I —.J). These are a regular sequence of sets in

the sense of [6] p. 106, since W tends to 1, and so this derivative is

equal to %—f — %—A at almost all points of F'. Thus the measure is the desired

indefinite integral and so (1) holds at all points P. Now by the Heine—Borel
theorem it follows that (1) holds for the rectangle @ itself.

We may easily generalize this result to any number of dimensions.
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Notes

Paul Cohen’s thesis has remained unpublished, except for the results of
Chapter 4 (the shortest chapter) which appeared in [Coh59]. However, the
rest of the thesis also presents interesting results, and in fact, some of these
were reproduced by Ash and Welland in [AWe72], see also [AWa97]. Apart
from this, it appears that the results of the thesis have largely gone unno-
ticed. The main references on the uniqueness questions are the books of
Bary [Ba64], Salem [Sal63], Meyer [Mey72|, Zygmund [Zy79], Kechris and
Louveau [KL87], and Kahane and Salem [KS94]. Even though a number
of the results stated in these works were proved in Paul Cohen’s thesis, it
is not cited in the references. Therefore, it seemed appropriate that this
work should finally be more widely available. I have included a short list of
references in order to indicate the progress made in the last 40 years.

The most substantial reference is the book of Kechris and Louveau
[KL87] which also gives a complete update on the progress done on the
topics of Chapter 1. As noted above, some of the results of Chapter 2 are
reproved in [AWe72]. The general reference for Chapter 3 is the updated
version of the book of Kahane and Salem [KS94] which summarizes progress
until 1994.

Chapter 1

Section 1. This section simplifies and extends some results previously
obtained by Piatetski-Shapiro [PS52]. The notation used here is not stan-
dard, and the notations of Kahane and Salem [KS94] have been adopted.
The class W is written A. The class of sequences a, such that Lima, = 0
is now referred to as the class of pseudofunctions.

At the end of the section it is stated that there are no known sets
which have an ordinal > 1 associated to them. This ordinal, introduced
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by Piatetski—-Shapiro, is now known as the rank of the set of uniqueness. A
survey of results is given by Kechris and Louveau [KL87, Chapter V]. For
example, it follows from a theorem of Banach [KL87, p. 156] that the rank
is < w; and McGehee [MG68] has shown that the rank is in unbounded in
w1.

Section 2. This section uses the results of Piatetski-Shapiro to give a
spimple proof of a special case of a theorem of Zygmund and Marcinkiewicz.
The proof should be compared with the one given by Kahane and Salem
[KS94, p. 61], see also [KL87, p. 71]. The general proof, i.e., not limited to
closed sets, is given by N. Bary [Ba64, p. 364].

Section 3. The classes H" studied here are now denoted H(™. Moreover,
()

the notation n{ used in this section should be n;”’ in order to be consistent

with the rest of the text.

Section 4. Another explicit construction of an H™ set which is not a
countable union of H(" 1) sets is given by N. Bary [Ba64, p. 382].

Chapter 2

This chapter presents a generalization of the Cantor-Lebesgue theorem to
multiple trigonometric series. Recall that this theorem states that if a
trigonometric series converges on a set of positive measure then its coeffi-
cients must go to zero. In this chapter, Paul Cohen proves that if a multiple
trigonometric series converges almost everywhere for a “regular” method of
summation, e.g., circular or square, then the coefficients grow more slowly
than exponential. Moreover, the other result in this chapter shows that an
analogue of the Cantor-Lebesgue theorem cannot generalize directly, as an
example is given of a double trigonometric series which converges almost
everywhere using square convergence, but whose coefficients do not go to
7Zero.

The first result may appear to be somewhat weak, but in fact it was
recently shown by Ash and Wang [AWa97] that Cohen’s result is optimal
for square summation, i.e., for any function ¢(n) which goes to infinity
slower than exponentially, there is a square convergent trigonometric series
which has coefficients which grow like p(n).

In the case of spherical summation, much progress has been made. The
Cantor-Lebesgue theorem does generalize in this case as was shown by
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Cooke [Co71] and Zygmund [Zy72] in dimension 2, and by B. Connes (in
slightly less general form) in dimensions greater than 2 [BC76].

Due to a result of Shapiro [Sh57], Cooke’s result immediately proved the
uniqueness of double trigonometric results for circular summation. A recent
advance was made by Bourgain [Bo76] who extended this uniqueness result
to all dimensions.

Similarly, uniqueness results were also obtained for “unrestricted rectan-
gular convergence” by Ash, Freiling, and Rinne [AFR93]. The case of square
convergence still remains open.

Chapter 3

In the first section, a simple proof is given that Mensov’s original example is
a set of multiplicity. The following comment is implicit in the proof, but is
added here for clarity: In order to ensure that the resulting set has measure
zero, one just have that [](2¢,) = 0, while & < 1/2 for all k, i.e., Y a; = 00
as in Mensov’s original construction.
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