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1929] A KNOWN EXAMPLE OF A MONOTONE CONTINUOUS FUNCTION 255 

REMARKS ON A KNOWN EXAMPLE OF A MONOTONE 
CONTINUOUS FUNCTION 

By E. HILLE, Princeton University, and J. D. TAMARKIN, Brown University 

In this note we are concerned with a well known example of a continuous 
monotone function. We have collected together a few properties of this 
function which is very well fitted for illustration of many important points of 
the theory of functions of a real variable. Some of these properties have been 
mentioned several times in the literature, some others, however, simple as they 
are, appear not to have been stated explicitly. 

To simplify our formulas we shall consistently use the binary and ternary 
scales of notation. Thus 3.101 will mean 1/3+1/27=10/27, while 2.101 
=1/2+1/8=5/8. 

To define our function' we first construct a perfect set of points nowhere 
dense on the interval (0, 1): Subdivide (0, 1) into three equal parts and remove 
the interior of the middle part (1-st stage of the process); subdivide each of the 
remaining two parts into three equal parts and remove the interiors of the 
middle parts of each of them (2-nd stage) and repeat this process indefinitely 
(the p-th repetition will be called the p-th stage of the process). 

It is seen at once that the number of intervals removed at the p-th stage is 
2P-1. We denote them (ordered from left to right) by 

(1) apk (k = 1 ,2, . 2P-1) 

If we denote the length of the interval 5pk by the same letter, then 

(2) pk = 3-P. 

With this notation we have 

511= (3.1, 3.2), 521 = (3.01, 3.02), '522 = (3.21, 3.22), .. 

The total number of the intervals 5pk removed during the p first stages will 
be 1+2+ v +2P-1=2P-1. 

Let E be the set of points of (0, 1) which will not be removed. Then the 
complementary set D = C(E) coincides with 5pk (where only the interior point 
of the intervals 'pk are taken into account). The set E consists of all the end- 
points of the intervals 5pk and of their limiting points. It is readily seen that E 
is identical with the set of points which are represented by infinite fractions 

(3) 3.a1a2a3 *a, - * * 

where only the digits 0 and 2 are admitted. Furthermore, the end-points of 
5pkare represented by the fractions (3) where all the digits after a certain place 
are all zeros or all two's, while the limiting points of the end-points will have 
infinitely many zeros and two's, except for the two extreme points 

1 Hobson, The theory of functions of a real variable, vol. 1, 3rd edition, 1927, pp. 123, 368. 
This is referred to as H in the sequel. 
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256 A KNOWN EXAMPLE OF A MONOTONE CONTINUOUS FUNCTION [May 

0= 3.000. and 1 = 3.222 . 

For instance the end-points of the interval 534 are 

3.221 = 3.220222 and 3.222 = 3.222000 

Simultaneously with the intervals 3pk we shall consider the intervals 

(4) pk, (k = 1,2, , 2P) 

which remain at the p-th stage. We assume the 'qpk to be closed (while the 8pk 

are open). The set E is always covered (in the large sense) by the intervals 
'lpk. All -pk (for fixed p) are of the same length 3-P and the sum of their lengths 
is (2/3)P. Since this ->0 as p--->x, the set E is of measure 0 (and even of Jordan 
content 0).1 

Since all the numbers of the type (3) can be approximated as closely as we 
please by numbers of the same type, the set E contains all its limiting points, 
and also, each point of E is a limiting point, which shows that E- is perfect. 
On the other hand each subinterval of (0, 1), no matter how small, contains 
parts which are free from points of E, whence E is nowhere dense on (0, 1). 

We proceed now to the definition of our function co(x). We agree once for 
all to use the letter a to indicate the digits 0 or 2 and to designate by b the 
n umber a/2, so that b assumes only the values 0 and 1. If x = 3.ala2a3... a.* 
s a point of the set E, we define 

(5) 69(X) = 2 bb2b3 ... bn 

According to this definition co(x) has equal values 

(6) Wpk = CO(3.aia2 amO222 * ) = 2.b1b2 bmOlll ... 
= 2.b1b2 * bmlOOO = wO(3 .aia2 am2000. ) = (2k -1)/2P 

at the end-points of each interval 5pk and we take this value as the value of 
co(x) at all the points of the corresponding 3pk, with the result that the intervals 
apk are intervals of constancy of w(x). Now the function w(x) is defined at all 
the points of (0, 1) and we may proceed to the enumeration of the properties 
of co(x). 

i. cw(x) is monotone (non-decreasing) on (0, 1) and increases from 0 to 1 as x 
increases from 0 to 1. The intervals 5pk are intervals of constancy of wc(x). 

Proof: In proving the inequality 

co(x")> co(x') if x" > x', 
we may restrict ourself to the points of E, since co(x) is constant on each 8pk. 
Let 

x= 3.ala2 . . . , x 3.al a2 

1 H. p. 171. It follows then that meas. D =1, which can be proved also by an immediate 
computation: meas. D =2 p7= 1/3+2/9+ * * * +2P-1/3P+ * = 1/3 *1/(1-2/3) = 1. 
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1929] A KNOWN EXAMPLE OF A MONOTONE CONTINUOUS FUNCTION 257 

If x" >x', there will be a value of the subscript n for which 

al = all , al = a'-, but a" > a', 

whence 

co(x") = b-bl . . .> 2. b = co(x') . 

ii. co(x) is continuous on (0, 1). 
Proof: We have to prove that 

co(x') - co(x) as ' x 

and again we may consider only the case where x is a point of E and x' assumes 
only the values belonging to E. It will suffice to give the proof only in the case 
where x'> x. 

Let 

x.aia2 . x' .= 3 .a / a2 
If now x'>x but x'-*x, then there will be a value of the subscript n (where 
n-*oo as xl'-*x) such that 

at = al, , at = 
an-1 

but a' > an; 

whence 

CO(x') = 2. b1b2 bn-bn/ 2 2. b1b2 bn-jk = w)(x) 

iii. The function co (x) is not absolutely continuous. Its X-variation' on (0, 1) 
is constant and equals 1. 

Proof: To prove the last part of the statement it suffices to put (adk, d3k) = -7pk- 

The corresponding sum E w@(3k) -c(ak) I= {=(3k) -c(ak) } = 1, while 
Z (/k-ak) =E,pk can be made as small as we please by taking p sufficiently 
large. The first part follows from the last one and the definition of the absolute 
continuity.2 

iv. The function it(x) = (x+cw(x))12 gives a continuous one-to-one correspon- 
dence between the segments (0, 1) on the X-axis and on the Y-axis, such that a 
set E of measure zero is transformed into a set of measure > 0( =2) 

1 Caratheodory, Vorlesungen iuber reelle Funktionen, 2nd edition, 1927, p. 511. By the 
X-variation of a function f(x) on (0, 1) is meant the upper limit of the sum 

E f(1fk) - f(ak) 
k=l 

of absolute values of increments of f(x) over any finite set of non-overlapping sub-intervals 
(ak, fk), k = 1, 2, m, whose total length 

E (Zk 
- ak) ? X. 

k=l 

2H. p. 291. 
I See Caratheodory, loc. cit., p. 356. 
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258 A KNOWN EXAMPLE OF A MONOTONE CONTINUOUS FUNCTION [May, 

Proof: Only the last statement of this property needs a justification. The 
transformation y = i/(x) makes to correspond to each interval 3pk on the X-axis 
an interval of length 3pik2 on the Y-axis, hence the set D of measure 1 is trans- 
formed into a set D. of measure -. Then it is obvious that the set E = C(D) 
(of measure 0) is transformed into a set E, = C(D,) of measure 2. 

Remark: Since every set of measure >0 contains non-measurable subsets' 
the same function i/(x) gives an example of a continuous one-to-one transforma- 
tion in which a measurable set (even a set of measure zero) is transformed into 
a non-measurable set. 

v. The derivative cw'(x) of the function co(x) is zero almost everywhere on (0, 1) 
(that is at all the points except for a set of points of measure zero). 

Proof: This is obvious since w'(x) =0 at all the points of the set D, that is 
almost everywhere.2 

Remark: Despite the fact that c(x) has an integrable derivative almost 
everywhere, still 

rx 

fw'(x)dx = 0 -? @(x) - c(0) = @(x). 

vi. The area under the curve y =co(x) (that is the area limited by the curve, the 
the X-axis and the ordinates x = 0, x = 1) is 12. 

Proof: Since the set E is of measure zero the area in question is 

A = f w(x)dx = L w(x)dx + L w(x)dx = f w(x)dx = ,p,kWpk5pk 

oo 2P-1 oo 2P-1 00 

= ,3-P (2k - 1)2-P = E6-P Z(2k - 1) = 6-P22P-2 
p=l k=1 p=l k=1 p=l 

= 1 E(2)p = 61.( 23)=2 
p=l 

This also follows from the skew symmetry of our curve with respect to 
the line x=2. 

vii. The length of the arc of the curve y =c(x) between the points (0, 0) and 
(1, 1) is 2. 

Proof: Since w(x) is monotone, hence of bounded variation, our curve has a 
finite length3 which is defined in the usual manner, as the limit of the perimeter 

Caratheodory, loc. cit., p. 268. 
2 It is readily proved by considerations of a general nature (H., pp. 601-602) that the set of 

points at which w'(x) is + oo, is not denumerable. It is not difficult to exhibit a continuum of such 
points (which necessarily are distinct from the end-points of the intervals 3pk, where the left 
(right-)-hand derivative is + oo while the right (left-)-hand derivative is 0, according as the point 
in question is a left-hand or a right-hand end-point of 3pk). But the question of a complete de- 
termination of all the points of E at which w'(x) = + oo requires more delicate considerations and 
undoubtedly is related to the arithmetic properties of fractions representing such points. 

3- H., pp. 338-339. 
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1929] A KNOWN EXAMPLE OF A MONOTONE CONTINUOUS FUNCTION 259 

of an inscribed polygon. To prove property vii we shall show that the peri- 
meter of any inscribed polygon (which does not cross itself) can not exceed 2, 
and, on the other hand, there exists an inscribed polygon whose perimeter is as 
near to 2 as we please. The first statement follows immediately from the fact 
that the perimeter of any inscribed polygon without double points can not 
exceed the sum of all the horizontal and vertical projections of its sides, which 
equals 2, provided the polygon starts from (0, 0) and ends at (1, 1). To prove 
the second statement take for the inscribed polygon the broken line whose 
vertices are at (0, 0), (1, 1) and at the end-points of the intervals 5,k (n fixed, 
p= 1, 2, . , n; k = 1, 2, - , 2P-1). The sum of the horizontal sides of this 
polygon is 

n 

2p,k 6japc = Z2P-1'.3-P = 1 (2)n 

while all the inclined sides are equal, their common length being 

(2 -2n + 3-2n)1/2 = 2-n[1 + (2)2n]1/2 

and the total number 2n (the number of intervals -nk). Hence the length In 
of our polygon is 

1_(2) n + [1 + ()n]1/2 --> 2 aas n -> o . 

Remark: It is interesting to observe that the length of our curve can not be 
computed by the familiar formula 

[I + Co(X)2]i12d x = 1 2. 

The failure of this formula is due to the fact that w(x) is not absolutely 
continuous. 

viii. The function w(x) satisfies a Lipschitz condition of order a = log 2/log 3. 
In other words, if x and x+h are in (0, 1), 

I c(x + h)-@(x) I < A I h I a; I _ maxA 2; a = log 2/log 3. 

Proof: If we set npk - x+h), then co(x+h)-w(x)=2-P while h=3-p, 
and we see at once that the order a and the upper limit of the coefficient A 
can not be less than log 2/log 3 and 1, respectively. Let now x and x+h be 
any pair of numbers in (0, 1); there will be no loss of generality in assuming 
h >0. We also may restrict the discussion to the case where both points x, 
x+h belong to the set E, since, if x or x+h is an interior point of an interval 
bpk, we can replace x by the right-hand end-point and x+h by the left-hand 
end-point of the corresponding 3pk, respectively. This will not change the 
difference w(x+h) -c,(x) but will reduce h; hence, if property viii is proved in 
the case where x and x+h belong to E, it will hold true in the general case. 

Let now 

x=3. aia2 * *am* ; x + =3.a'aa' a 
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260 A KNOWN EXAMPLE OF A MONOTONE CONTINUOUS FUNCTION [May, 

and let n be determined by the condition 

al = a,, , aAl i= 
an-i, 

a' > an whence a' =2, a = 0. 
We then have 

cw(x + h) - (X) =2.bib2 bn_ - 2 . V2 bn10 < 2-n+1X 

while 

hi = 3.a1a2- ... an-12 - 3.a1a2 ... an-10 .. > 3-n 
and 

[co(x + h) - c(x)]h-a < 2-n+l 3an = 2 if ae = log 2/log 3. 

Remark: The set of points x at which w (x-+h) -C(x) >ha for h sufficient- 
ly small is obviously a subset of E, hence it is of measure zero. This ought to 
be expected since otherwise the derivative cw'(x) would be + oo at a set of points 
of measure' >0. 

The function w(x) so far has been defined on the interval (0, 1). It can be 
extended outside this interval by setting 

0O if x < O, 
I if x > 1. 

This will be assumed throughout the remainder of the present note. The 
difference cw(x+h) -w(x) = Oh(X) is of course ?0, and, as a function of x, is of 
bounded variation, since it equals a difference of two monotone functions.2 
Let T(h) be the total variation of the function 0h(X) and let 

Q(z) = max T(h) for 0 < h _ z. 

It is plain that Q(z) does not increase when z decreases and the natural 
question arises as to what is lim,O Q(z) = Q,? If 4h(X) were absolutely con- 
tinuous, then, since w'(x) =0 almost everywhere, we would have3 

00 ,00 

T(h) =f h'(x) I dx=J I'(x + h)-w'(x) dx = 0, 

so that 

Q(z) = QO = O. 

1 H., p. 400. 
2 H., p. 329. 
3H., p. 605. In the general case, where w(x) is any absolutely continuous function, by' a 

fundamental property of Lebesgue integrals (H., p. 636), 

T(h) = co'(x + h)-w'(x) dx-0 as h I-0 

which would yield the same result, Q0o =0. 
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1929] A KNOWN EXAMPLE OF A MONOTONE CONTINUOUS FUNCTION 261 

The situation is entirely different, however, in our case (due to the non- 
absolute continuity of co'(x)), which is shown by the property' 

ix. The function Q (z) as defined above is constant and equals 2. 
Proof: From the definition of the total variation of a function2 it follows 

that T(h), being a total variation of a difference w(x+h) -w(x), can not exceed 
the sum of the total variations of the constituents w(x+h), w(x). Since w(x) 
and w(x+h) are monotone and increase from 0 to 1, they have the same total 
variation 1, whence 

T(h) ? 2. 

Take now h =3. Since 
n 2P-1 2 t 

(00 00= 0o + >1 Z+pk -V Zni + 61 ; 60 = (- ? ,0); 6, = (1aOC), 
p=l k=1 i=-1 

we have, by the additive property of the total variation, 

T(h) = T(8o) + :p,kT(5pk) + iT("q + T(81), 

where each term of the right-hand member is the total variation of 4 h(X) over 
the corresponding interval. It is important to observe that our h equals the 
common length of the intervals -jni and does not exceed the length of any of the 
intervals 6pk(p=1, 2, n). Hence, when x ranges over an interval -q,ji, 
(x+h) ranges over a part of the interval 6pk that is adjacent to q,i. Under these 
circumstances, co(x+h) remains constant while w(x) increases by 2-n. Hence 

T (Qq ) = 2 -n . 

To compute T(6pk), let xl <x2 be the end-points of bpk. Subdivide 6pk in 
two parts,4 4'= (xl, x2-h), 6"'=(x2-h,x2) and denote by T', T" the total 
variations of oh(X) in the intervals 6', 6" respectively. When x ranges over 6' 
the functions w(x) and w(x+h) remain constant, so that T' = 0. When x ranges 
over 6", (x+h) ranges over the interval -qni that is adjacent to 6". Then 
w(x) remains constant but w(x+h) increases by 2n, whence T" = 2- and 

T(6pk) = T' + T" = 2-. 

As to the terms T(6,) and T(61), we find in exactly the same fashion that 

T(6o) = 2 - n T(6,) = 0. 

In the notation of the theory of Stieltjes integrals we can state this property as follows: 

Q(z) = max o sh;vzf dw(x + h)-dw(x)| 2. 
_00 

In a recent important note [Eine Kennzeichnung der totalstetigen Funktionen, Crelle's Journal, 
vol. 160 (1929), pp. 26-32]. A. Plessner proved that the condition T(h)-*O as h-+O is necessary 
and sufficient for the absolute continuity of the function w(x). 

2H., p. 325. 
3H., p. 330. 
4 The first part 3' exists only if pk > h, that is if p <n. 
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262 A KNOWN EXAMPLE OF A MONOTONE CONTINUOUS FUNCTION [May, 

On combining all these facts and observing that the number of the intervals 
ij; is 2 n while that of the intervals apk is 2n- 1, it follows at once that 

T(h) = 2-n(l + 2n + 2n - 1) = 2 
whence 

0(z) = Qo = 2. 

The last and perhaps the most interesting property of our function W(x) 
is in connection with its "Fourier-Stieltjes coefficients." If f(x) is any function 
given on (0, 1) we may call its Fourier-Stieltjes coefficients the integrals' 

(7) f/ = fe2rinxdf(x) (n = + 1 ? 2, 

If f(x) is absolutely continuous, then integrals (7) reduce to the classical 
Fourier coefficients of f'(x): 

e2rinxf'(x)dx 

and, by the fundamental Riemann-Lebesgue theorem,2 f'-*O as In |o. 
In a more general case where f(x) is only of bounded variation, we still 

have right to integrate by parts: 

(8) = e2rinxdf(x) = [f(l) - f(O)] - 2rin fe2lrinxf(x)dx, 

so that 

(9) fn [f(l) - f( 0) f] 
2w7rin 2rin 

is the Fourier coefficient of f(x). 
There is an essential difference between the two cases just mentioned, which 

is shown by the property 
x. 3The Fourier-Stieltjes coefficient w ' of the function w(x) does not tend to 0 

as In 1->X. 

1 We refer as to the definition and fundamental properties of Stieltjes integrals to H. Here 
we deal exclusively with the Riemann-Stieltjes integrals. A Riemann-Stieltjes integral of a func- 
tion g(x) with respect to the function f(x) is defined as the limit (in case it exists) of the sum: 

'1 m J g(x)df(x) = lim ,g(%i)[f(xi) -f(xi); xo = 0, Xm = 1, 
O ~~~~~i=1 

where (xi-1, xi), i= 1, 2, m is any subdivision of the interval (0, 1) such that the maximum 
length of the intervals (xi-,, xi)-O as m oo and ti is an arbitrary point of the interval (xi-,, xi), 
the end-points inclusive. The existence of this limit is assured if g(x) is continuous and f(x) is of 
bounded variation. 

2 H., vol. 2 (2nd edition), 1926, p. 514. 
3 This is a special case of an example of Carleman, Sur les equations integrales singulieres d 

noyau reel et symetrique, Uppsala Universitets Arsskrift, 1923, No. 3, pp. 223-226. 
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1929] A KNOWN EXAMPLE OF A MONOTONE CONTINUOUS FUNC'I'ION 263 

Proof: By definition we have 

Ti~~~~~~~~~~~i co,= e2rinxd2cx(x) = lim e2rint,SXx)wx_l]=lmZ 

In computing this limit we can take any special type of subdivisions of (0, 1); 
for instance, we may subdivide (0, 1) into 2P=m equal parts. Then the set 
{(x8_,, X0) } will consist partly of the intervals ?1pk and partly of the intervals 
ijk(j = 1, 2, * . , p) and their subdivisions. Since @(x) is constant on each ak 

this second part will give no contribution to the sum Zm. As to the points 48 
we shall make them to coincide with the left-hand end-points of the correspond- 
ing intervals 0p k. They will be designated (in increasing order) by ak, 

k=1, 2, , 2P. 
Since w(x) increases by 2-P when x ranges over an interval p1,k, 

2P 

2m = 12P = 2-P Ze2erinak 
k=1 

It is readily seen that the set of points {(Xk } consists of all the finite fractions 
of the form 

3.a1a2 ap (as= O or 2). 
The summation over all such values of as will be designated simply by Z(a). 

Hence 
_ p _P 

=:2P 2-P exp. 2lrin ai3-i = 2-P X lexp. [27rinaj3-i] 
(a) j=L (a) i-1 

- 2-P I{I +exp. (47rin3-)} = exp. (2irin3-i) H cos (2irn3-i). 

This yields the final result 
00 

Xo' = lim 12P = erin fJcos (2irn31) 

since 
00 

2E3-i= 1. 
i=1 

In the preceding computation n was an arbitrary number (not necessarily an 
integer). Now we set n = 3q where q is a positive integer. Then 

00 00 

Wn = 3Q - cos (2X3i) = - lcos (2ir/30). 
j=1 

The infinite product of the left-hand member converges absolutely and contains 
no zero factor;' therefore it is different from 0. On the other hand it does not 

1 A necessary and sufficient condition for the absolute convergence of the infinite product 
H,(1+u,) is given by the absolute convergence of the series 2'uv. This condition is satisfied in 
the present case since I UI= I 1 -cos (27r/3,) = 2sin 2(w/30) <2w23-2. 
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264 AN ALGEBRAIC METHOD OF DIFFERENTIATION [May, 

depend on q. If now we make q->coo the corresponding Fourier-Stieltjes 
coefficient W3q' of co(x) will not tend to 0. 

Remark: The function 

x(X) = @(x) - x 

gives an example of a periodic continuous function (of bounded variation) such 
that, if Xn is the Fourier coefficient of x(x), the product nx, does not tend to 
any limit as Iin |>oo. 

This follows immediately from (9) and property x. 
The interest of this example lies in the fact that if f(x) is continuous and 

periodic and if nfn tends to a limit as In I-oo then this limit' is necessarily 0. 

AN ALGEBRAIC METHOD OF DIFFERENTIATION 

By ORRIN FRINK, JR., Pennsylvania State College 

It is the purpose of this paper to present a method of obtaining the formulas 
of the differential calculus by purely algebraic means, without the use of 
limiting processes. The method is rather obvious, and is essentially equivalent 
to those used by the mathematicians of the eighteenth century, before the 
logical rigor which we associate with the name of Weierstrass came into favor.2 
The method here presented is rigorous, however, being based on the theory of 
analytic functions of a hypercomplex variable. 

Consider the hypercomplex number system (or linear algebra), analogous to 
the ordinary complex number system, whose basal units are 1 and j, where 
j2=0. Because of its many geometric applications, the function theory of this 
algebra has been much studied. It has been shown by Scheffers3 that the most 
general analytic function of one variable in this algebra has the form 

(1) f(x + yj) = q5(x) + [ '(x)y + 4{(x) Ij, 

where q(x) and V'(x) are real functions of a real variable. (The terms real and 
imaginary will be used to distinguish x and yj, to keep the analogy with the 
theory of functions of a complex variable. It would be possible to allow x and y 
to be complex, and in this case the terms scalar and nilpotent would be less 
confusing.) If nowf is a function which is real for real values of the argument, 
we have, setting y = 0, that i (x) = 0 and q (x) =f(x), which gives us 

1 Neder, Uber die Fourierkoeffizienten der Funktionen von beschrdnkten Schwankung, Mathe- 
matische Zeitschrift, vol. 6 (1920), pp. 270-273; Steinhaus, Bemerkung zu der Arbeit des Herrn 
Neder...., ibidem, vol. 8 (1920), pp. 320-322; Alexits, Zwei Sdtze iuber Fourierkoeffizienten, 
ibidem, vol. 27 (1927), pp. 65-67. Another example of a continuous periodic functionf(x) for which 
lim (nfn) does not exist was given by F. Riesz, ibidem vol. 2 (1918), pp. 312-315. Riesz's example, 
however, is of entirely different nature. 

2 See the interesting paper of Professor James Pierpont, Mathematical Rigor, Past and Present 
in the Bulletin of the American Mathematical Society, vol. 34 (1928), p. 23. 

3 Mathematische Annalen vol. 60 (1905), p. 529. 
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