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Analytic solutions of Bottcher’s functional equation
in the unit disk

CarL C. CoweN

Suppose f is analytic on the unit disk D, maps D into itself, and has the Taylor
series f(z)= axz* + ax..z**' + -+ where a, #0 and k = 2. This paper gives neces-
sary and sufficient conditions for the existence of single-valued analytic solutions
defined on all of D to Béttcher’s functional equation o of = o™ It is easily seen [5]
that the only non-zero solutions occur when k = m. There is always a solution of
the equation o°f = o* that is holomorphic and univalent in a neighborhood of
zero: see Valiron [9, pp. 124-127]. When o is a solution of Bottcher’s equation, so
is o" for n =2,3,..., so our problem is to determine when one of these has a
single-valued continuation to all of the disk. We shall see that the existence of such
solutions depends on a multiplicity condition on the zeroes of iterates of f, and we
determine all solutions when the condition is met. The solutions are computable in
the sense that the Taylor coefficients of ¢ can be obtained recursively.

As usual, from the solutions of this fundamental equation one can obtain
information about solutions of the classical functional equations of Abel and
Schroeder and about fractional iterates of f. Since these necessitate consideration of
multiple-valued functions, we confine our attention on these questions to those f
that are real-valued and increasing on [0, 1). We obtain entirely analogous results to
those of Szekeres [8], Kuczma [4], and Ger and Smajdor [3]. The additional
information obtained here is that the natural fractional iteration semigroup
fi{x)= F{(x, t) is real analytic in ¢ as well as x when f'{(x)>0for 0 <x <1 and that
if lim,_.,- f(x)=1, this semigroup is actually embedded in a continuous group.
References to the extensive literature on the subject of iteration may be found in
[6]. T would like to thank the referees for several helpful suggestions and for
pointing out some relevant references.

AMS (1980) subject classification: Primary 30D05. Secondary 39B10.
Research supported in part by National Science Foundation Grant MCS-7962018.

Manuscript recived June 2, 1981, and, in final form, December 6, 1981.

187



188 CARL C. COWEN AEQ. MATH.

We begin by examining the appropriate notion of multiplicity. For zoin D, n a
positive integer, let m(zo, n) be the multiplicity of the zero of f. at z,, that is, if
fi(z)=be+by(z — zo)+ bz — 20)’ +- -+ then m(zo,n)=min{j: b;# 0}. (Here f.
denotes the nth iterate of f, thatis, fi=f and fo.,=ff, forn=1,2,...)

Since m{zo, n)> 0 if and only if f, (zo) = 0, we have m(z,, n) =0 for all n for all
but countably many z, in D. Since f(z)=az* +---, we see m(0,n)=k" for
n=1,23,.... If f(zo))=0 and m{(z,,1)=j (so that f(z)=b;(z —zof + ) then
m(zo,n)=jk"" (since f(f(z)) = au(bj(z —zof + - )+, etc.).

For f analytic in D, mapping D into itself with f(z) = axz* + - - - where a, #0
and k = 2, we define the multiplicity set of f to be the set Q; = {k "m(z,n): z € D,
n=1,23,...}.

As a consequence of the above observations we have the following.

PROPOSITION. For f as above, Q; D {0, 1}. Moreover, if {z € D: f,(z)=0 for
some n} is finite, then Q; is finite.

We now compute the multiplicity sets for some particular functions.

EXAMPLE 1. Let f be the inner function f(z)=z"exp((z + )(z — 1)),
where k 2 2. Since f,(z)=0if and only if z =0, we have m(z,n)=0for z# 0, so

Qf = {01 1}

EXAMPLE 2. Let f(z)=0.32-0.62>, then Q, ={0,3,3,1}. To see this we
observe that f(z)=0ifandonlyif z =0orz =4;f,(z)=0ifandonlyif z =0,z =3
or z =z*= ~—0.8. Since |fi(2)|=(0.9) <0.5 for k =3 and since f(z)# z* for
|z]<1, wesee that m(z,n)=0except z =0, z =}and z = z*. It is easy to see that
m(0,n)=2" for all n, m(,n)=2""for all n, and m(z*,n)=2""for n =2 with
m(z*,1)=0.

EXAMPLE 3. For f(z)=27%2%(z —3), since |f(z)|<3 for |z]|<1, we see
Qr =1{0,1,3

EXAMPLE 4. Suppose B(z) = axz* + - - - is a finite Blaschke product of order
M, a, # 0 with k =2, and B(z) # a.z". Since B has order M, B'(z) = 0 for at most
M —1 points in. D. Choose w in D, @#0 such that B(w)=0 and let r =
max{|z|: B'(z) = 0}. By Schwarz’ lemma, | B(z)|<|z|for 0<|z|<1 and the only
fixed point in D is 0, so we can find w* in D, with |*|>r, and Bi-,(w*) = w. Let
m=m(w* 1)Z1. Now if B.(z)=w* then m(z,n+1)=m and mk™"' € Qs.
Since B, maps D onto D for every n, we see that mk "' € Qs forn =1,2,3,....
Carrying the ideas slightly further we see that Qp is a bounded infinite set.
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EXAMPLE 5. Let %, =1-27 for j =1,2,3,..., let k =2 be given and let

A[f T

f""‘z[zﬂ (z—z;z '
(The Blaschke condition guarantees the convergence of the product.) Since
f(D)CiD and m(z;,1)= kj, we have Q,; ={0,1,2,3,...}.

We now state the main theorem.

THEOREM 1. Letf(z)=az“ +- - -, where k =2 and a, # 0, be analytic in D
with f(D)C D, and let A # 0 be given. There is o analytic in D, with 0 (D)C D, such
that o (f(z)) = Ac(z )" if and only if m = k and there is an integer | such that 1Q;is a
subset of the integers. Moreover, in this case, there is a unique solution o(z)=
Bz'+ -+ for each such | and solution B of the equation

B*'=A"ai.

The first step in the proof is the construction of a solution near zero for A =1
where o(z)=pgz +---. This step does not involve the multiplicity set. The
solutions of the general equation are of the form (ac) where a is a complex
number and [ a positive integer. These local solutions have single-valued extensions
to all of the disk exactly when /Q; is a subset of the integers.

Proof. 1. Find € >0 such that |[z|<e¢ and f(z)=0 imply z =0. Let H=
{w: Re w >0}. Define F: H— H to be any branch of

F(w)= —logf(ce )+ loge.

All branches are single-valued since H is simply connected and F is arbitrarily
continuable in H. For fixed w, since ge " >™ winds around zero once for0=¢ =1,
the image f(ge “ ™) winds around zero k times, s0 F(w +2%i) = F(w)+ 27ki. (It
follows that there are k branches of log f(¢e™) on H.)

Now
. . - -X +1
lim Re Fx)_ lim log|f(ee )| +loge
X0 x X—»0 x
= lim —loglae*e™ +av g™ le T 4 - -
s "

k k+1, —x Ve
=1lim k ___l(_)glake + Qx1E e+ J= k.

X0 X
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Letting F, (1) = x. + iya, from [7, p. 440], we have g(w) = limu..[(F. (@)~ iy.)/x.]
exists and g (F(w)) = ¢(g(w)) where ¢ (w) = aw + i, for some a >0 and g real.
Now

F,(w+2mwi)— iy,
xn

g(w +2mi)=lim

ey omi K

n n

= lim F(0)+27mk"i —iyn _ lim F (w)—

7> xn 7

n

= g(w)+27i Iig}%-.

Thus y =lim,_..(k"/x,) = Qi) '[g(w +27i)— g(w)] exists.

Since g is univalent for w in |argw |< 7/4, |w |> p for p sufficiently large [7,
Theorem 3, p. 441], we find that y#0.

We also have

g(F(w +2mi))= ¢(g(w +2mi)) = ag(w +2mwi) +if = ag(w)+ ay2wi + i
and on the other hand

g(F(w +2mi)) = g(F(w)+2mki) = g(F(w))+ 2wkyi = ag(w)+27kyi +iB.
Since 0 < y <o, this means a = k.

Now define A by A(w)=7 '[g(w)+Bk—1)"i]. Thus A(w +27i)=

A(w)+2mi and A (F(w)) = kA (w). Defining & by 6(z) =exp(— A(—logz)) for
0<|z|<e, we obtain from these relations

exp(— A(—logz +2mi))=exp(— A(—logz)—2mi)=exp(— A(—logz))
so that & is single-valued and
7 (f(2)) =exp(— A(~log(f(z)))

=exp(— A(F(—logz)))=exp(—kA(—logz))
=[exp(— A(—logz))]" =& (2)"

By Theorem 3 of [7, p. 441], we have |A(w)|—>» and argw 'A(w)—0 as
@ —>® with |[Im @ | = 7, which means Re A (w)—>© as @ > with [Imw | 7. It
follows (by choosing |Im(log z)| = #) that lim,.,6(z) =0, so & has a removable
singularity at 0.
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Thus & is analytic for |z|<e and ¢(z)=0 if and only if z =0, so 6(z)=
biz' +--- where j =1, b;#0. Under these circumstances, each branch of ¢ is
single-valued and analytic in |z|<e and (6"Y(0) #0. Choose one branch and
denote it G, We have [Go(f(2))) = 6(f(z)) =[d(2))* =[Fs(z)}, which means
Go(f(2))=€" &¢(2)* for some real §. Defining o (z) =€ *~ D', (2), we have that g4 is
analytic, single-valued for |z| <e, 6¢(0)=0, ¢{(0)#0, and o¢(f(2))=0¢(2)*. That
is, oo is a local solution to our functional equation.

II. Suppose [ is an integer such that IQ; is a subset of the integers. For |z | <&,
we define o(z) = (0o(z)) sothat ¢(z)=bz' +--- and o (f(z)) = o(z)*. We want to
show that o has a single-valued extension on all of D.

For each integer n, one of the branches of [o(f. (z))]"*" for |z|<e is o(2).
Consider the analytic continuation of this branch to {z: |f.(z)| < £}. The possible
branch points of this function are the points z, such that f, (z,) = 0. For § small
positive, y(t)=z,+8e¢’™, 0=t=1, winds around z, once and f,(y(t)) winds
around zero m(zo, n) times, so o (f. (y(t))) winds around zero Im(z,, n) times. By
the choice of I, k™ divides Im(z,, n) so continuing [o(f.(z))]"*" along y gives the
same function element for t =0 as for ¢t =1. In other words [o(f. (z)]"*" is
single-valued near each branch point, so it is a single-valued analytic continuation
of o(z) to {z :|f.(z)] < £}. In particular, this means that, if m <n and |f.(z)|<e
then [o(f (2))]"*" =[o(f. (2))]"*". Thus, defining o on D by o (z) = [o(f. (z))]"*",
where n is an integer such that |f, (z)| < ¢, makes o into a single-valued analytic
function on D with o(f(z)) = o (z)~

III. Now, if A#0 and if B*~' = A", then h = Bo satisfies the equation hef =
Ah*. This means there are at least k —1 distinct solutions of the equation
heof=Ah* with h(z)=cz'+--- where ¢,;#0. On the other hand, if h is such a
solution, equating the coeflicients of z* yields ciai = Ac} so that ¢}~ = A 'a} and
we see that there are at most k —1 possible leading coefficients, ¢;. Equating
coefficients of z**/ for j =1,2,... we obtain

— k1
S; (f, CiyClety e v ey CH,') = /\C;+,'Cg + Rj (A, [+ R CH;-;)

where i =[j/k] and §; and R; are functions depending on the variables indicated.
Since k = 2, this means that ¢.,; is determined by the choice of ¢;. Since there are
k — 1 formal power series solutions, and we have k — 1 analytic solutions, we find
that each formal solution actually converges in D.

This completes the proof of existence and uniqueness if we are given an integer [
such that IQ; is a subset of the integers. We now turn to the necessity of the
multiplicity condition.

IV. As we saw in III, existence of a solution of h of = Ah* is equivalent to the
existence of a solution of o o f = o*. Suppose o is single-valued, non-constant, and
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analytic in D, and satisfies oo f = o with a(z)=bz'+--- where b # 0. We will
show [Q; is a subset of the integers.

We have o(0)= a(f(0)) = 0 (0)* and o(z)*" = o(f.(2))—> o (0) for all z in D.
Since o is non-constant, this means that ¢(0) = 0 and o(D)C D. Choose ¢’ >0 so
that |z | < &’ and o (z) = 0 implies z = 0. Given z, in D such that f, (zo) = 0, choose
8>0 such that 0<|z —z,/|<28 implies f,(z)#0 and, if y(t)=zo+ 6e*™,
0=<t=1, then |f.(y(¢))] < &'. Now as y winds around z, once, o (f. (y(t))) winds
around zero Im(zo,n) times, and o(y(t)) winds around zero j times where
o(z)=¢i(z—20) +---. Since o(f.(2))=0c(z)*", we obtain Im(zo,n)=jk" so
k~"Im(zo,n)=j an integer. Since Q; ={0}U{k"m(z,n): f,(z)=0,n=1,2,...},
we see IQ; is a subset of the integers. [

COROLLARY 1. If Iy is the least integer such that 1,Q; is a subset of the
integers, then every solution of h o f = Ah* analytic in the unit disk is of the form ac™
where oof =o* and o(z)=byzb+:--.

COROLLARY 2. If{z: f.(z) =0 for some n} is a finite set then h o f = Ah* has
non-constant solutions analytic in the unit disk for every A # 0.

Proof. Q; is a finite set of rational numbers. Let I be the least common multiple
of the denominators. {1

COROLLARY 3. If ||[f.l.<1 for some n, then hof = Ah* has non-constant
solutions analytic in the unit disk for every A #0.

Proof. Let & >0 be small enough that |z |<¢ and f(z)=0 imply z =0. The
hypothesis guarantees that, for m, large enough, ||f. || < & so that, if m > m, and
fn(2)=0, then f,(z)=0. It follows that k™Q; is a subset of the integers. [l

We now turn to the special case in which f is real-valued and increasing on [0, 1).
(This case has been studied more extensively in the literature, see for example,
Szekeres [8].) We pay particular attention to the case in which lim,.,- f(r)=1,
which includes probability generating functions. Theorems 2 and 3 are restatements
of results of Kuczma [4] and Ger and Smajdor {3] for the analytic case.

THEOREM 2. Suppose f is analytic in D, f(D)C D, f(z)=aiz* ++--, k =22,
with a, >0, and f'(x)=0 for 0=<x <1. Then for each ¢ >0 there is a unique
function o, complex analytic near 0, and real analytic on [0,1) with o'(0)> 0, such
that o(f(x))=co(x)" for 0=<x <1. Moreover, 0<o(x)<1 and o'(x)=0 for
0<x <1 and, if f satisfies f'(x)>0 for 0<x <1, then o' is real analytic (on
0,0(1-))) as well.
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Proof. We consider the case ¢ =1 first. Let o, be the function constructed in
step I of the proof of Theorem 1. If we choose appropriate branches of the
functions in the construction, o, is non-negative on the interval [0, ¢). Since
F(x)=0for 0=x <1, we see that f,(x) =0 if and only if x =0, so we define o on
[0,1) by o(x) = [oo(fa (x))]"*", where n is large enough, that f, (x) < ¢, and we take
the branch of w'*" that is non-negative on [0,1). It is easily checked that o is
well-defined, o(f(x)) = o(x)*, and o has the analyticity properties asserted.

From the functional equation we see that

o'(fa N fux) = k" [olo(x)]" o' (x),
so that

o' (fa (x))}fa(x)

og'(x)= k"[cr(x )]k"—l

Thus, if f'(x)>0for0<x <1, then f,(x)>0for all n and, since o'(f. (x)) #0forn
large enough, we have o'(x)>0 for all x in (0, 1). This means o™ is well-defined
and real analytic on (0,0(1—)). An easy computation shows h(x)=c* "o (x)
satisfies the equation h e f = ch*.

As in Theorem 1, the uniqueness is a consequence of the uniqueness of a formal
power series solution with ¢’(0)>0. [J

As would be expected, the solution of this functional equation leads to solutions
of the classical functional equations on (0,1). The function A(x)=
(log k) 'log|log o(x)] is a real analytic solution of Abel’s equation Aof=A +1
for0<x<1l.Ifa>0,a#1,S(x)=[logo(x)]” where P = (loga)(logk)'is a real
analytic solution of Schroeder’s equation Sof = aS for 0<x <1.

We now turn our attention to fractional iteration.

THEOREM 3. Suppose f is analytic in D, f(D)CD, f(z)=aiz*+--- k=2
with a, >0 and f'(x)>0 for 0<x <1. Then there is a function F(x,t) defined for
0=x <1 and 0=t <w, real analytic in each variable such that F(x,1) = f(x) and
F(F(x,s),t)=F(x,s +t) for 0=sx <1 and 0= s, t <. Moreover, if lim,_,- f(x)}=
1, then F is defined (and has the same properties) for — o <{ <o,

Proof. From Theorem 2 we have that the solution of o o f = o* with o'(0) >0 is
real analytic on (0, 1) and has real analytic inverse on (0, (1 —)). We define F by
F(x,t)=o7'(lo(x)]*). This function is easily seen to have appropriate properties
for t=0.
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Now, since o is increasing and o(x)<1 for 0<x <1, lim,.;-o(x) exists. If
lim,—.,- f(x) =1, we see from o (f(x)) = o (x)* thato(1-)=0o(1- ) sooc(1-)=1.
It follows that o '([o(x)]*') is well defined for t <0 as well. [

This theorem says that the discrete semigroup of iterates of f (on [0, 1]) can be
embedded in a continuous semigroup and, if lim,_..- f(x) = 1, it can be embedded in
a continuous group. In particular this is true if f is a probability generating function
(a; =0 and 2/, a; = 1). It is not difficult to see that this family of iterates is regular
in the sense of Szekeres [8, p. 216].
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