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Analytic solutions of B6ttcher's functional equation 
in the unit disk 

CARL C. COWEN 

Suppose f is analytic on the unit disk D, maps D into itself, and has the Taylor 
series f ( z  ) = akz k + a~÷~z ~+1 + . . .  where a k ~  O and k _>-2. This paper gives neces- 
sary and sufficient conditions for the existence of single-valued analytic solutions 
defined on all of D to B6ttcher's functional equation o- of = cr m. It is easily seen [5] 
that the only non-zero solutions occur when k = m. There is always a solution of 
the equation t r o [ =  tr k that is holomorphic and univalent in a neighborhood o f  

zero: see Valiron [9, pp. 124-127]. When tr is a solution of B6ttcher's equation, so 
is cr n for n = 2 ,3 , . . . ,  so our problem is to determine when one of these has a 
single-valued continuation to all of the disk. We shall see that the existence of such 
solutions depends on a multiplicity condition on the zeroes of iterates of [, and we 
determine all solutions when the condition is met. The solutions are computable in 
the sense that the Taylor coefficients of cr can be obtained recursively. 

As usual, from the solutions of this fundamental equation one can obtain 
information about solutions of the classical functional equations of Abel and 
Schroeder and about fractional iterates of f. Since these necessitate consideration of 
multiple-valued functions, we confine our attention on these questions to those f 
that are real-valued and increasing on [0, 1). We obtain entirely analogous results to 
those of Szekeres [8], Kuczma [4], and Ger and Smajdor [3]. The additional 
information obtained here is that the natural fractional iteration semigroup 
~, ( x )  = F(x ,  t)  is real analytic in t as well as x when f ' (x )  > 0 for 0 < x < 1 and that 
if l i m ~ l - f ( x ) =  1, this semigroup is actually embedded in a continuous group. 
References to the extensive literature on the subject of iteration may be found in 
[6]. I would like to thank the referees for several helpful suggestions and for 
pointing out some relevant references. 
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W e  begin  by examin ing  the a p p r o p r i a t e  not ion of multiplicity.  Fo r  Zo in D, n a 

posi t ive integer ,  let m (zo, n )  be  the  mult ipl ici ty of  the ze ro  of [.  at  z0, that  is, if 

f~ (z ) = bo + b~(z - Zo) + b2(z - zo) ~ + " "  then  m (zo, n )  = min{j : bj ~ 0}. (Here  f~ 
deno tes  the  n t h  i te ra te  of  f, tha t  is, f~ = f  and f,+~ =[of~  for n = 1,2 . . . . .  ) 

Since m (zo, n )  > 0 if and only  if )e (zo) = 0, we have  m (Zo, n )  = 0 for  all n for  all 
bu t  coun tab ly  m a n y  Zo in D. Since [ ( z )  = akzk + . . . ,  we see m (0, n )  = k"  for  

n = 1 ,2 ,3  . . . . .  I f / ( Z o ) = 0  and m(zo, 1 ) = ]  (so t h a t / ( z ) =  bj(z - Z o y  + "  ") then  

m (Zo, n )  = jk  ~-1 (since f ( f ( z ) )  = ak (b~ (z - zo~ + "  .)k + . . . ,  etc.). 
Fo r  f analyt ic  in D,  m a p p i n g  D into itself with f ( z )  = akz k + . . .  where  a~ ~ 0 

and  k => 2, we define the multiplicity set o f f  to be the set  Ol = {k-~m( z, n):  z E D, 
n ' =  1 ,2 ,3  . . . .  }. 

As  a consequence  of the a b o v e  obse rva t ions  we have  the following.  

P R O P O S I T I O N .  For f  as above, Q, ~ {0,1}. Moreover, if {z E D : f~ (z ) = 0 for 
some n} is finite, then Qr is finite. 

W e  now c o m p u t e  the  mult ipl ic i ty  sets for  s o m e  par t icular  functions.  

E X A M P L E  1. Le t  jr be  the  inner  funct ion / ( z ) =  z k exp( (z  + 1 ) ( z - 1 ) - ~ ) ,  

whe re  k => 2. Since )e ( z )  = 0 if and  only  if z = 0, we have  m (z, n )  = 0 for  z # 0, so 

Q,  = {0,1}. 

E X A M P L E  2. Le t  f ( z ) = O . 3 z Z - O . 6 z  3, then  Or ={0,  ~a,~,~ 1}. T o  see this we 

obse rve  tha t  [ ( z )  = 0 if and  only  if z = 0 or  z = ½ ; [2(z) = 0 if and only  if z = 0, z = ½ 

or  z = z * =  - 0 . 8 .  Since 1/~(z)[_-<(0.9)7<0.5 for  k _---3 and since [ 2 ( z ) #  z* for  
[ z t < 1, we see tha t  m (z, n )  = 0 excep t  z = 0, z = ½ and z = z *. It  is easy  to see tha t  
m(0 ,  n ) = 2  ~ for  all n, m(½, n ) = 2  ~-! for  all n, and  m ( z * , n ) = 2  ~-2 for  n _---2 with 
m ( z * , l ) = 0 .  

E X A M P L E  3. For f(z)=2-~z3(z-~) 7, since t / ( z ) l < ~  for l z t < l ,  we see 
O~ = {0, 1,-~}. 

E X A M P L E  4. Suppose  B ( z )  = akz k + . . .  is a finite Blaschke  p roduc t  of  o rde r  

M, ak # 0 with k => 2, and  B ( z ) #  akz k. Since B has o rde r  M, B ' ( z ) =  0 for  at mos t  
M - 1  points  i n  D.  Choose  co in D,  t o # 0  such tha t  B ( t o ) = 0  and let r =  

max{I z I: B ' ( z )  = 0}. By Schwarz '  l emma ,  I B (z ) l  < I z I for  0 < t z t < 1 and  the only  
fixed po in t  in D is 0, so we can  find to* in D, with l o J * l >  r, and  Bt_~(to*) = to. Le t  

m = m ( t o * , l ) > = l .  N o w  if B n ( z ) = t o *  then  m ( z , n + l ) = m  and m k - ~ - ' E Q B .  
Since B~ m a p s  D o n t o  D for  every  n, we see tha t  mk ---t ~ QB for  n = 1 ,2 ,3  . . . . .  

Car ry ing  the  ideas slightly fu r the r  we see tha t  Os  is a b o u n d e d  infinite set. 
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E X A M P L E  5. Let ~:j = 1 - 2 -j for j = 1, 2, 3 . . . .  , let k --- 2 be given and let 

1 
t l - z ,  zl J " 

(The Blaschke condition guarantees the convergence of the product.) Since 
f ( D ) C ½ D  and m ( z j , 1 ) =  k], we have Os ={0 ,1 ,2 ,3  . . . .  }. 

We now state the main theorem. 

T H E O R E M  1. L e t f ( z )  = akz k + . . . ,  where k >=2 and a~#0, be analytic in D 
with f (D ) C D, and let A ~ 0 be given. There is tr analytic in D, with t r (D)  C D, such 
that tr ( f (z))  = Atr(z)m if and only if m = k and there is an integer I such that los is a 
subset of the integers. Moreover, in this case, there is a unique solution t r ( z ) =  
[3z ~ + . . .  for each such l and solution [3 of the equation 

/3 k-I = A-la~,. 

The  first step in the proof  is the construction of a solution near zero for )t = 1 
where @(z )= /3z  + . . . .  This step does not involve the multiplicity set. The  
solutions of the general equation are of the form (atr)  t where a is a complex 
number  and ! a positive integer. These local solutions have single-valued extensions 
to all of the disk exactly when IQr is a subset of the integers. 

Proof. I. Find e > 0  such that l z l < e  and f ( z ) = O  imply z = 0 .  Let  H =  
{to: Re to > 0}. Define F : H ~  H to be any branch of 

F(to ) = - log f (ee  -°') + log e. 

All branches are single-valued since H is simply connected and F is arbitrarily 
continuable in H. For fixed to, since ee-"-2" '  winds around zero once for 0 =< t =< 1, 
the image f (ee-~-2" ' )  winds around zero k times, so F(~o + 27ri) = F(to)  + 2~rki. (It 
follows that there are k branches of log f (ee  -~') on H.) 

Now 

lim Re F ( x )  = lim - log If(ee-=)l + log e 

= lim - l ° g  Iake ke-k" + ak+ze k:le-<k+t)x + . . .  I 
x ~ X 

= lira k - l°g lakek + ak÷'e~÷'e-" + ' "  "1 = k. 
x ~ e ~  X 
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Let t ing  Fn ( 1 ) =  x,, + iy,,, f rom [7, p. 440], we have  g ( t o ) =  l i m . ~ [ ( F ,  ( t o ) -  iyn)/x,,] 
exists and g(F(to))  = q~(g(to)) where  ~o (to) = ato + i/3, for  s o m e  a > 0 and /3  real.  

Now 

g(to + 2~ri) = l im F~(to + 2 ~ r i ) -  iy. 

= lim F. ( to )+2zrk" i  - i y . =  lim F.  ( t o ) ,  i y . +  2zri k__." 
n~® Xn n ~  Xn X .  

k n 

= g ( t o ) + 2 z r i  l im - -  . 
n ~  Xn 

'Thus y = l im,_~(k  n/x,, ) = (2"n-i)-l[g (to + 2~' i )  - g (to)] exists. 

Since g is univa lent  for  to in larg to l <  ~r/4, tto I > P for  p sufficiently large [7, 

T h e o r e m  3, p. 441], we find tha t  y #  0. 
W e  also have  

g(F(to + 2rri))  = q~(g(to + 27ri)) = otg(to + 27ri) + i/3 = ag( to)+ a727ri + i/3 

and on  the o the r  hand  

g(F(to + 2¢ri)) = g ( F ( ~  ) + 2wki  ) = g(F(to )) + 2~rk'yi = otg(to ) + 2"rrk'yi + i/3. 

Since 0 < ~ /<  0% this means  ot = k. 
N o w  define A by A ( t o ) = 3 , - l [ g ( o ~ ) + / 3 ( k - 1 ) - l i ] .  Thus  A ( t o + 2 7 r i ) =  

A ( o ~ ) + 2 7 r i  and  A ( F ( t o ) ) =  kA( to) .  Defining 6 by 6 " ( z ) = e x p ( - A ( - l o g z ) ) f o r  
0 < l z ] <  e, we ob ta in  f rom these  re la t ions  

e x p (  - A ( - log z + 27ri)) = exp (  - A ( - log z )  - 2rr i)  = e x p (  - A ( - log z) )  

so tha t  6 is s ingle-valued and  

( f ( z ) )  = e x p (  - A ( - log ( / (z ) ) ) )  

= exp  ( - A (F(  - log z ))) = exp ( - k A  ( - log z )) 

= [exp,( - A ( - log z))]  ~ = ~ ( z )  k. 

By  T h e o r e m  3 of [7, p. 441], we have  IA(to)l---~ oo and a r g t o - l A ( t o ) - - ~ 0  as 

to ~ oo with I I m  to I_- < zr, which m e a n s  Re  A (to)--~ oo as to ~ oo with I I m  to l ~  7r. It  

fol lows (by choos ing  t im( log  z) l  =< ~')  tha t  limz-.o # ( z ) =  0, so 6" has a r e m o v a b l e  
s ingular i ty  at 0. 



Vol. 24, 1982 Analytic solutions of B/Sttcher's functional equation 191 

Thus 6 is analytic for l z l < e  and t ~ ( z ) = 0  if and only if z = 0 ,  so t~ (z )=  
bjz s + . . .  where j _-> 1, b~# 0. Under  these circumstances, each branch of 6 "1/~ is 
single-valued and analytic in I z l < ,  and (~l/s) ' (0)# 0. Choose one branch and 
denote  it t~0. We have [d'o(f(z))] j =  d ' ( f ( z ) ) = [ ~ ( z ) ]  k =[dro(Z)k] s, which means 
~o ( f  (z) ) = e i° ?r o (z) ~ for some real 0. Defining a0 (z) = e i°~k- I)-~ #o (z), we have that a 0 is 

analytic, single-valued for lzl <~, a0(0)=0,  or6(0)#0, and ao( f ( z ) )=ao(Z)  k. That  
is, o'0 is a local solution to our functional equation. 

II. Suppose l is an integer such that lOt is a subset of the integers. For I z [ < e, 
we define o-(z) = (o-o(Z))' so that o-(z) = btz' + ' . "  and o ' ( f (z) )  = o ' (z)  k. We want to 
show that o- has a single-valued extension on all of D. 

For  each integer n, one of the branches of [o'(f, (z ))] ~/k~ for Izl  < e is o'(z). 
Consider the analytic continuation of this branch to {z: l f - ( z ) ] <  e }. The possible 
branch points of this function are the points zo such that f~ (zo)= 0. For  8 small 
positive, 3 , ( t ) = Z o + S e  2~', 0 < - t -  < 1, winds around Zo once and f . (~ / ( t ) )  winds 
around zero m(zo,  n )  times, so o-(f~ (3,(t))) winds around zero lm(zo,  n )  times. By 
the choice of l, k ~ divides lm(zo,  n )  so continuing [o-(f, (z))] ~ "  along 3' gives the 
same function element  for t = 0  as for t = l .  In other  words [o'(f, (z ))] ~/k~ is 
single-valued near each branch point, so it is a single-valued analytic continuation 
of o-(z) to {z : l [ ,  (z)[ < e}. In particular, this means that, if m < n and If- (z)[ < e 
then [o-(fm (z))] l'k" = [o-(f~ (z))] ~/k~. Thus, defining o- on D by o-(z) = [o-(f, (z))] t'~', 
where n is an integer such that t[~ (z)[ < e, makes o- into a single-valued analytic 
function on D with o - ( f ( z ) )=  o-(z) k. 

III. Now, if A # 0  and if/3 ~-~ = A -t, then h =/3o- satisfies the equation h o f  = 
Ah k. This means there are at least k - 1  distinct solutions of the equation 
h o f  = Ah k with h ( z ) =  c~z ~ + . . .  where c r#0 .  On the other  hand, if h is such a 
solution, equating the coefficients of z k~ yields c~a~ = Ac~' so that c~ -1 = A-~a~, and 
we see that there are at most k -  1 possible leading coefficients, c~. Equating 
coefficients of z k~÷s for j = 1 ,2 , . . .  we obtain 

S, ~ .  c,. c,.1 . . . .  , c,÷, ) = Xc~+,. ~-' + R ,  ( X. c, . . . . .  c,+,_~) 

where i = [ j /k]  and St and R~ are functions depending on the variables indicated. 
Since k => 2, this means that c~÷j is determined by the choice of c~. Since there are 
k - 1 formal power series solutions, and we have k - 1 analytic solutions, we find 
that each formal solution actually converges in D. 

This completes the proof of existence and uniqueness if we are given an integer l 
such that IQf is a subset of the integers. We now turn to the necessity of the 
multiplicity condition. 

IV. As we saw in III, existence of a solution of h o/* = Ah k is equivalent to the 
existence of a solution of cr o / =  o -~. Suppose tr is single-valued, non-constant,  and 
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analytic in D, and satisfies or o]: = o "k with o ' ( z ) =  b~z~+ . . .  where bt~ 0. We will 
show IQr is a subset of the integers. 

We have tr(0) = tr(f(0)) = o'(0) ~ and o-(z) k~ = o-(f, (z))---, tr(0) for all z in D. 
Since o" is non-constant,  this means that t r (0)=  0 and t r ( D ) C  D. Choose e ' >  0 so 
that [z t < e' and t r (z )  = 0 implies z = 0. Given Zo in D such that [, (zo) = 0, choose 
3 > 0  such that 0<lZ-Zol<28 implies f , ( z ) ~ 0  and, if y ( t ) = Z o + S e  2~', 
0 --- t --- 1, then If, (y ( t ) ) l  < e ' .  Now as 3' winds around z0 once, tr(.f, (y( t)))  winds 
around zero lm(zo, n)  times, and or(y(t)) winds around zero j times where 
tr(z ) = cj (z - zo) j + ' " .  Since or(f, (z)) = tr (z)k", we obtain Im (Zo, n)  = / k  ~ so 
k-"lm(zo, n ) = j  an integer. Since Qt ={O}U{k-"m(z ,n ) :  ]:, (z)  = 0, n = 1,2 . . . .  }, 
we see IQi is a subset of the integers. [ ]  

C O R O L L A R Y  1. If  lo is the least integer such that loQt is a subset o]: the 
integers, then every solution of h o]: = Ah k analytic in the unit disk is o]: the form a~  "~ 
where ~r o f = tr k and t r ( z ) =  b~z g + . . . . 

C O R O L L A R Y  2. I]: {z : • (z ) = 0 ]:or some n } is a finite set then h o f = Xh k has 
non-constant solutions analytic in the unit disk for every A ~ O. 

Proof. 0I  is a finite set of rational numbers. Let  I be the least common multiple 
of the denominators.  []  

C O R O L L A R Y  3. I f  IIf.ll®< 1 ]:or some n, then h of =Ah k has non-constant 
solutions analytic in the unit disk for every A ~ O. 

Proof. Let e > 0 be small enough that I z 1 < e and f ( z )  = 0 imply z = 0. The 
hypothesis guarantees that, for  mo large enough, Ill.oil < e so that, if m > m o  and 
f r o ( z ) = 0 ,  then f , ,~(z)=0.  It follows that k ~ Q  r is a subset of the integers. [ ]  

We now turn to the special case in which f is real-valued and increasing on [0, 1). 
(This case has been studied more extensively in the literature, see for example, 
Szekeres [8].) We pay particular attention to the case in which l i m , _ l - f ( r ) =  1, 
which includes probability generating functions. Theorems 2 and 3 are restatements 
of results of Kuczma [4] and Ger  and Smajdor [3] for the analytic case. 

T H E O R E M  2. Suppose f is analytic in D, f ( D  ) C D, f ( z  ) = akz k + . . . ,  k >-- 2, 
with ak > O, and f ' (x  ) ~ 0 for 0 <- x < 1. Then for each c > 0 there is a unique 
function tr, complex analytic near O, and real analytic on [0,1) with tr'(O) > O, such 
that t r ( f ( x ) )= c t r ( x )  k for 0 - < x < l .  Moreover, 0 < o ' ( x ) < l  and o,'(x)>-O for 
0 < x  < 1 and, if f satisfies f ' ( x ) > 0  for 0 < x  < 1, then tr -1 is real analytic (on 
(0, or(1 - ) ) )  as well. 
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Proof. We consider the case c = 1 first. Let  oro be the function constructed in 
step I of the proof of Theorem 1. If we choose appropriate branches of the 
functions in the construction, oro is non-negative on the interval [0, e). Since 
f ' ( x )  >- 0 for 0 -< x < 1, we see that f ,  (x)  = 0 if and only if x = 0, so we define or on 
[0,1) by t r (x)  = [oro(f, (x))] 1tk", where n is large enough, that f ,  (x)  < e, and we take 
the branch of to ~/k" that is non-negative on [0, 1). It is easily checked that or is 
well-defined, t r ( f ( x ) ) =  or(x) k, and or has the analyticity properties asserted. 

From the functional equation we see that 

or'(]:, (x )) f'.(x ) = k" for [tr (x)]k"-'or'(x), 

so that 

or' (x  ) = or 'if" (x))f'(x ) 
k"[or(x)] k"-~ 

Thus, if f ' ( x )  > 0 for 0 < x < 1, then f ' ( x )  > 0 for all n and, since or'(f, (x)) ~ 0 for n 
large enough, we have o r ' ( x ) > 0  for all x in (0, 1). This means o "-1 is well-defined 
and real analytic on (0, o r (1 -  )). An easy computat ion shows h ( x ) =  c(~-kr'or(x) 
satisfies the equation h o f = ch k. 

As in Theorem 1, the uniqueness is a consequence of the uniqueness of a formal 
power series solution with o " 0 ) >  0. []  

As would be expected, the solution of this functional equation leads to solutions 
of the classical functional equations on (0,1). The function A ( x ) =  
( logk)- l log l logo ' (x) [  is a real analytic solution of Abel 's  equation A of  = A + 1 
for 0 < x < 1. If a > 0, a ~ 1, S (x) = flog o-(x )]P where P = (log ot ) (log k)-~ is a real 
analytic solution of Schroeder 's  equation S of  = aS for 0 < x < 1. 

We now turn our at tention to fractional iteration. 

T H E O R E M  3. Suppose f is analytic in D, f ( D )  C D, f ( z )  = a k z  ~ + . . .  k >- 2 
with ak > 0  and f ' ( x ) > O  for 0 < x  < 1. Then there is a function F ( x , t )  defined for 
0 <- x < 1 and 0 <- t < ~, real analytic in each variable such that F(x, 1) = f ( x )  and 
F ( F(x, s ), t) = F(x, s + t) for 0 <- x < 1 and 0 <- s, t < oo. Moreover, if l imx~- f (x ) = 
1, then F is defined (and has the same properties) for - ~ < t < ~. 

Proof. From Theorem 2 we have that the solution of or of  = ork with or'(0) > 0 is 
real analytic on (0, 1) and has real analytic inverse on (0, or(1 - )). We define F by 
F(x, t ) =  or-t([or(x)]k'). This function is easily seen to have appropriate properties 
for t_>-0. 
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Now,  since or is increasing and  o r ( x ) <  I for  0 <  x < 1, l imx~l-o . (x)  exists. If  
l i m , ~ r  f ( x )  = 1, we  see f rom o . ( f (x ) )  = t r (x )  k tha t  o-(1 - ) = o.(1 - )2 so o-(1 - ) = 1. 

I t  fol lows tha t  or-l([o-(x)] k') is well  def ined for  t < 0  as well. [ ]  

This  t h e o r e m  says tha t  the  discrete  s e m i g r o u p  of i tera tes  of  [ (on [0, 1]) can be  
e m b e d d e d  in a con t inuous  s e m i g r o u p  and,  if l imx-~l-f(x)  = 1, it can  be  e m b e d d e d  in 
a con t inuous  group .  In  par t icular  this is t rue  if / is a p robab i l i ty  genera t ing  funct ion 
(aj >- 0 and  ~7=~ aj = 1). It  is not  difficult to see tha t  this family  of i te ra tes  is regular 

in the  sense  of  Szekeres  [8, p. 216]. 
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