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We explore the wave number dependence of the transmission of electromagnetic waves in 
quasiperiodic dielectric multilayers. Using the transfer-matrix technique, we also establish the 
connection to the tight-binding Schriidinger problem. As an example, we consider a multilayer 
constructed according to the Fibonacci inflation rule. In contrast to the periodic case, we find a 
highly fragmented distribution of stop bands and self-similar structure in the wave number 
dependence of transmission. 

1. Introduction 

Recently, the one-dimensional Schriidinger equation with quasiperiodic 
potential evoked considerable interest lm6). This equation displays fragmented 
eigenvalue spectra because a quasiperiodic potential is intermediate between a 
random one, yielding exponentially localized wave functions’), and the 
periodic potentials, leading to energy bands and gaps. Moreover, the new 
ability to produce semiconductor heterostructures with control of each layer 
allows experimental realizations of these structuresx). Here, the one-dimen- 
sional Schrodinger equation models the properties of the heterostructure 
perpendicular to the layers. 

In this work, we explore a related problem, electromagnetic wave propaga- 
tion in layered and quasiperiodic dielectric media. The regular counterpart, 
periodically stratified media, has a long history”) and many important applica- 
tions, ranging from optical filters to reflectors, solid-state lasers and optical 
fibers”‘). In analogy to the SchrGdinger problem, one expects quasiperiodic 
stratified media to represent an intermediate case between the periodic and 
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random ones. To substantiate this expectation, we calculate the wave number 
dependence of the transmission coefficients for the periodic and quasiperiodic 
cases. We assume linear wave propagation and use transfer-matrix techniques 
to calculate the wave number dependence of the reflection and transmission 
coefficients. In the periodic case, we reproduce the well-known result, that for 
certain wave number or frequency bands almost total reflection or transmission 
can occur. In the Schrodinger problem, the reflection or stop bands correspond 
to the gaps. In the case of quasiperiodic stratified media, as an example, we 
consider multilayers made up of two materials arranged according to the 
Fibonacci inflation rule. In contrast to the periodic case, we find a highly 
fragmented distribution of stop bands and self-similar structure in the wave 
number dependence of the transmission. Similarly. the integrated density of 
states of the associated Schrodinger problem is also highly fragmented and 
exhibits scaling properties. For a large number of layers, fragmentation implies 
that any randomly chosen wave number will be in a stop band with probability 
one. Thus, high transmission occurs for very special wave numbers only. 

The paper is organized as follows. In section 2. we sketch the formalism to 
calculate transmission and reflection, and establish the connection to the 
Schrodinger problem. The models for layers arranged periodically and 
quasiperiodically are presented in section 3. Here, we also discuss the numeri- 
cal results and the scaling properties of transmission and integrated density of 
states of the associated Schrodinger problem in terms of a recursion relation 
for transfer matrices. 

2. Formalism 

Following the textbook of Born and Wolf’) we consider the propagation of a 
transverse electromagnetic wave through a stratified medium consisting of 
homogeneous layers. The stratification is assumed to be along the z-axis. The 
electric field of the wave is perpendicular to the plane of incidence, i.e., the 
yz-plane. Accordingly. the only non-vanishing component of the electric field 
E is the x-component E, The dielectric constant and the magnetic permeabili- 
ty are denoted by F and p, respectively. We assume non-magnetic materials 
where k = I, and consider normal incidence. In this case, only the y-compo- 
nent H, of the magnetic field H is different from zero. According to Maxwell’s 
equations, it can be shown that within one layer, E, and H,. are given by 

E, = U(z) emlw’ , H,. = V(z) eplw’ ; (1) 

t denotes the time, and w is the frequency of the electromagnetic wave. The 
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two amplitudes U(z) and V(z) 

dU . 
- =lk,pV= ik,V , 

dV 
dz 

- = ik,,&U. 
dz (2) 

The wave number k,, is given by k,, = w/c = 27r/A,,, where c is the vacuum 
velocity of light and A, the associated wavelength. Introducing the index of 
refraction y1= m = ~6, the solution of (2) reads 

U(z) = A cos(k,,nz) + B sin(k,nz) , 

V(z) = -inB cos(k,,nz) + inA sin(k,nz) . 
(3) 

The amplitudes of one layer extending from z = 0 to z = z, are then related by 

= M(z)Q<z> . (4) 

The transfer matrix M(z) is unimodular, i.e., its determinant is identical 1. For 
a stratified medium of many homogeneous layers, the total transfer matrix is 
obtained by multiplication of the individual transfer matrices. We consider a 
succession of layers extending from 0 d z 6 zi, z, s z d z2, . . , zN_, d z s 
zN, where N is the total number of layers. For layers of thicknesses h, = 

z, - z,-1 and refractive indices a,, the amplitudes are then related by 

Q,, = M,M, . . . M,Q, = M’Q, 9 (5) 

where 

M, = 
i 

cos P, - L sin /3, 
n/ > 6 = kon,h, 3 

- in, sin PI . i cos PI 
(6) 

and M’ is also unimodular. Let a, Y and t be the amplitudes of the incident, 
reflected and transmitted electric fields, respectively. The reflection coefficients 
R and the transmission coefficient T of the layered medium are then given by 

R = fl = I%, + M:2 - 6, - M:,l* 
Ial2 IM;, + M;, + M;, + M;,l’ ’ 

(7) 

where R + T = 1. We assumed incidence from and transmission to vacuum. 
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Stop and transmission bands are readily identified for systems subjected to 
periodic (+) or antiperiodic (-) boundary conditions. According to (5), we 
must then have Q,, = ?M’Q,. This means that the allowed k,, values lead to the 
eigenvalue 1 of the matrix M’. Consequently, the condition for an allowed k,, 
value is 

iTrM’=-+l. 

The condition for forbidden k,, values is 

(8) 

$ITrM’(>l. (9) 

In this case, the magnitude of one eigenvalue of M’ is larger than one, and the 
other one smaller. Accordingly, the boundary conditions are no longer satis- 
fied. Here, we have used the fact that det M’ = 1; the eigenvalues of M’ are 
then given by 

An alternative and for numerical studies more convenient approach to 
identify allowed and forbidden k,, values is obtained in terms of recursion 
relations for the amplitudes Q. To derive this approach, it is useful to recall 
briefly the tight-binding Schrodinger problem, which reads 

4%+, + 4,,?, = (Y, - E)k . (W 

4, denotes the wave function at site n with energy E, and V, is the respective 
periodic, quasiperiodic or random potential. Dividing by +,, one obtains the 
recursion relation5”) 

(11) 

which can be solved for a suitable initial value R,. The integrated density of 
states N(E) and the inverse exponential growth rate of the wave function y(E) 
are then given by5.“) 

N(E)=; 2 O(-R,), -y(E)=; $ In lR,,I, 
,,-I ,I 1 (12) 

where O(X) is the unit step function. For N-m, a gap is easily identified, 
because the integrated density of states N(E) is constant for E, S E c El. 
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where E, and E, are the values of the band edges. In this energy region, y(E) 
is positive and vanishes at the gap edges. For energies belonging to the 
spectrum, y(E) is zero, because the associated wave function is normalizable. 

In the present optical problem, an equivalent recursion relation is obtained 
from (4)-(6): 

U,-l 

i )l cos p, u I = 
- ; sin /3, 

1 
I 

VI-1 - inj sin pj cos /3, 
( 1 ‘i 

(13) 

for the amplitudes of the electric (u,) and magnetic (u,) fields. Eliminating u, 

uj+l = 

in,+1 
-~ (‘OS Pj+l'j+l - uj) > sin Pj+ 1 

we find 

nj sin P,+I n, sin Pj+l 
'j+l = I n,,, sin P, 

COS@j+COsp,+l uj- I nj+, sin pj +1 7 

yielding the desired recursion relation 

R 
'j sin @,+I nj sin Pj+, 1 

]+I = nj+, sin j3, 
cos pj + cos p,+ 1 - 

n,,1 sin pj Rj ’ 

(14) 

(15) 

(16) 

where Rj = ujlu,_, . Thus, the optical problem has been reduced to a modified 
Schrodinger problem, where in addition to the potential, off-diagonal hopping 
matrix elements appear. The amplitude u of the electric field plays the role of 
the wave function, and k,, is related to the energy. The integrated density of 
states and the inverse exponential growth rate y can then be calculated 
according to (12), to identify forbidden k, values (gaps) and allowed one 
(energy bands), in analogy to the Schrodinger case. The recursion relation for 
the amplitudes u is also very useful since it allows the transmission coefficient T 
to be determined without matrix multiplications. In fact, with the initial 
conditions uO = -uO = 1, T is simply given by 

T= ,UL “UJ ’ 
(17) 

where L is the total number of layers. From this expression, one readily 
obtains for the well-known special case, nib, = h/4, 

T= 
4 

(18) 
n2...n2N 

+ 
nl"'nzNkl 

2' 

n, --n2Nz1 n2". n2N 
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where the upper (+) sign holds for an odd number of layers L = 2N + 1, and 
the lower (-) sign for an even number L = 2N. 

3. Models and numerical results 

In this section, we present and interpret numerical results for multilayers 
consisting of two different materials denoted A and B. In solid-state lasers, the 
multilayer is composed of GaAs and AlAs. For these two materials, the indices 
of refraction are about nA = 3.6 for GaAs, and ylg = 3.0 for AlAs, and the 
multilayer is fabricated by molecular-beam epitaxy, where different layers are 
deposited on top of one another in a very controlled fashionx). 

Considering such a multilayer, made up from a sequence of two materials, A 
and B, three cases can be distinguished, (i) periodic, (ii) quasiperiodic, and 
(iii) random. In the periodic case, the sequence is obviously 
ABAB . . ABAB(A). while in the quasiperiodic case the translation rule is 
replaced by a non-periodic law. A familiar example is the Fibonacci inflation 
rule, constructed recursively as Q, +, = { Q,Q,_,} with Q,, = {B} and Q, = 
{A}, so that (2, = CAB}, Q, = {ABA} and so forth. It is important to 
emphasize, however, that the Fibonacci inflation rule serves here merely as an 
example. In fact, there is an infinite number of rules to generate a sequence of 
elements A and B in a non-random fashion. A realization of the random case is 
obtained by introducing random fluctuations in the layer thickness, or in the 
refraction index”“’ ). From the properties of random unimodular matrices13), 
it is clear that such a random multilayer is a perfect reflector for all 
wavelengths when the number of layers is large enough. 

In the widely used periodic case, however, both transmission and reflection 
occur and depend sensitively on wave number’). To illustrate this case, in fig. 1 
we show the wave number dependence of the transmission coefficient T and 
the trace in terms of x = :Tr M’ for a multilayer made up of 89 layers consisting 
of materials A and B arranged periodically, as obtained from eqs. (5)-(7). The 
wave number dependence is shown in terms of K  =  kOd/2-rr, where d is the 
optical thickness chosen to be d = n,,h,, = n,h,. As expected from condition 
(8), high transmission occurs for allowed K  values where x - + 1. Moreover, 
there is a stop band around K  =  114, corresponding to the optical thickness 
d = A/4. In this context, it is important to emphasize that we considered a 
finite periodic sequence only (N = 89), so that the allowed K  values do not yet 
form a continuous transmission band. Similarly. reflection around K  =  l/4. 
corresponding to the center of the stop band in the infinite sequence is still 
slightly smaller than 1. To provide a comparison with a corresponding mul- 
tilayer composed of a very large number of layers. in fig. 2 we show the 



QUASIPERIODICALLY STRATIFIED MEDIA 349 

1.0 

2 0.5 

X 
0 

g 
+ -0.5 

-1,O 
I’ 

-1.5 j I 
0.15 0.20 0.25 0.30 0.35 

K  

Fig. 1. Transmission T (full line) and trace x (dotted line) vs. K = k,,di2T for a periodic multilayer 
of length N = 89, rzA = 3.6, and n, = 3.0 with optical thickness d = n,h, = n,h,. The vertical line 
marks K = 114. 
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Fig. 2. Integrated density of states N(K), and exponential growth rate Y(K) for a periodic 
multilayer of length N - IO’. The other parameters correspond to those used in fig. 1. 

integrated density of states N( K ) and the exponential growth rate y(k) of the 
associated Schrodinger problem. Here, the tendency to form a gap, corre- 
sponding to a stop band, where y(k) > 0, and two continuous energy bands 
[(Y( K ) =  O)] is clearly seen. For ~1~ = n,, corresponding to one layer only, the 
integrated density of states reduces to N( K ) =  K . As seen from fig. 2, the linear 
K  dependence also occurs in the periodic case close to K  =  0 and K  =  0.5. 

Next, we turn to the quasiperiodic case. As an example, we again consider a 
multilayer consisting of materials A and B and put them together according to 
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the Fibonacci inflation rule. This sequence is constructed as explained above, 
and the number of layers is given by the Fibonacci numbers 

F 1+1 = F( + F, , , F,, = F, = 1, (19) 

where I denotes the Ith Fibonacci number. We also note that 

F,--, 1 V?1 lim ~ = - = ~ 
l--t= F, “G 2 (20) 

corresponds to the inverse golden mean. The total transfer matrix M’ for a 
sequence of length F[, denoted by M,, satisfies the matrix recursion relation’.j) 

M /+1 = MY-1 (21) 

with initial conditions M,, = M, and M, = M,. In terms of the trace x1 = $Tr M,, 
the matrix recursion relation reduces to the map3.“) 

-x,+1 = 2x,x,_, - x/ 1 3 

with initial conditions 

(22) 

X”=COS(PR) 1 x, =@P*), 
(23) 

x, = cos(P,) cos(P,) -n+ sin(&) sin(&) . 

This trace map has been studied in the context of the tight-binding Schrodinger 
problem with potential barrier heights A and B, assigned to the lattice 
sites”“.’ ). It is well known and easy to check that the iteration of the trace map 
has an invariant 

I(K) = xf+, + xf + xf_, -2x,+,x,x,_, - 1 = 712 sin* p, sin’ & , (24) 

where qt = (n,ln, i n,Jn,)l2. H owever, in contrast to the tight-binding 
Schrodinger model, the conserved quantity I(K) depends on the wave number 
K. Thus, the iterates evolve on different surfaces for different wave numbers. 

Fig. 3 shows the wave number dependence of transmission T and trace map 
x for a Fibonacci multilayer of length F,,, = 89. Comparison with the periodic 
case, shown in fig. 1, reveals marked differences. In particular, the central stop 
band around K = 1 I4 is not present, but two stop bands appear around 
K -0.19 and 0.31. Moreover, outside and in between these stop bands, the 
transmission fluctuations are more pronounced in the quasiperiodic case. In 
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Fig. 3. Transmission T and trace x vs. K = k,d/2n for a Fibonacci multilayer of length F,,, = 89 
(effectively 68 different layers), nA = 3.6 and n, = 3.0 with optical thickness d = n,h, = n,h,. The 
vertical line marks K = l/4, and the arrows mark the interval blown up in fig. 4. 

fact, about K  - 0.236 and 0.264 there are K  regions with very low transmission 
as well, becoming stop bands by increasing the number of layers. This 
expectation is fully confirmed by comparing figs. 3 and 4. In the larger system, 
with F,3 = 377 layers, stop bands now appear around K  - 0.236 and 0.264. 
Comparison of figs. 3 and 4 also reveals that T( K ) exhibits scaling properties 
around K  =  1 1 4 corresponding to d = A/4. In fact, the behavior of T( K ) is very 
similar although there is a change in the K  scale. The arrows in fig. 3 mark the 
K  interval blown up in fig. 4. The reason for this scaling behavior can be traced 

0,23 0.24 0.25 0826 0.27 
tc 

Fig. 4. Transmission T and trace x vs. K = k,d/2n for a Fibonacci multilayer of length F,, = 377. 
The other parameters correspond to those used in fig. 3. 
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back to the trace map (22), which for K  =  l/4 exhibits the special feature of a 
six-cycle, where p, = & = 7ri2. From eqs. (22) and (23), for the amplitudes of 
the six-cycle we obtain (0, 0, n+, 0, 0, -q+), and for the conserved quantity, 
I = 72. Scaling properties then follow from the largest eigenvalue of the trace 
map linearized around the six-cycle and the spatial resealing. The eigenvalues 
are 

To illustrate the scaling property quantitatively, we turn to the integrated 
density of states of the associated Schrodinger equation. The numerical results 
as obtained from eqs. (12) and (15) are shown in fig. 5, where we also included 
the exponential growth rate Y( K ) and the conserved quantity I( K ). The main 
gaps correspond to the stop bands seen in figs. 3 and 4. The highly fragmented 
structure of N( K ) and the pronounced fluctuations in the exponential growth 
rate Y( K ) also reveal that there are gaps on all K  scales, and not merely gaps 
followed by bands, as in the periodic case. The highly fragmented structure of 
N( K ) can be understood as follows: Gaps can be labeled by two integers y2 and 
m, positive or negative, and N( K ) a t  gap n, m is given by 

0 s n + mu,, S 1 . 
X6+1 

a,, = ~ 
2 . of31 

This feature is also illustrated in fig. 5. As a consequence, for a very large 
number of multilayers there are almost only gaps. In other words, choosing K 

Fig. 5. Integrated density of states N(K), exponential growth rate Y(K) (full lines) and conserved 
quantity I(K) (dashed lint) for a Fibonacci multilayer of length N- 10”. The other parameters 
correspond to those used in fig. 3. 
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at random, K  will belong to a gap with probability one. Nevertheless, K  values 
with measure zero are allowed. An example is K  =  114 leading in the trace map 
to a six-cycle. Such allowed K  values yield bounded iterates, while for K  values 
belonging to a gap, escape occurs3”). 

Finally, we turn our attention to scaling properties about K  =  114. For the 
transmission, a qualitative illustration was given in figs. 3 and 4. In this context, 
it is important to recognize that the trace map can be derived from a recursion 
relation of an exact renormalization-group transformation applied to the 
associated Schrodinger problem14). Starting from a system of F, layers, one 
eliminates F, - F,_, to obtain an identical Schrodinger problem with renormal- 
ized parameters. One then repeats the procedure, and again eliminates F,_, - 

F,_2 sites to obtain a system of size F,_, and so forth. This leads to recursion 
relations equivalent to the trace map. For an initial value K ,, leading in the trace 
map to a fixed point K * with largest eigenvalue A, scaling then predicts for the 
integrated density of states 

[N(K* + AK) - N( K *)( =  -$  / N ( K * ? IA/AK) - N( K *)( , 

where 

(27) 

As discussed above, in the trace map K  =  1 I4 leads to a six-cycle with p = 6. In 
this case, the solution of eq. (25) is 

IN(K,] *AK) - N( K ,,)[ - /A K (* (29) 

with 

_ 6lnuo 
X=Inl/\l. (30) 

For nA = 3.6 and n, = 3.0, we then obtain X = 0.9895. The estimate X = 0.991, 
determined from the data shown in fig. 6, agrees very well. The numerical 
results also reveal that the scaling function exhibits periodic features. Clearly, 
there are many other K  values where similar scaling properties appear. For 
these K  values, iterates of the trace map remain bounded and include cycles 
with period p, aperiodic behavior or simple fixed points. Other examples are: 
the bottom of the spectrum, K  =  0, corresponding to fixed point x* = 1, and the 
top, K  =  0.5, where a three-cycle (-1, -1,1) appears. Here, the scaling 
exponent is X = 1. This value corresponds to the one-layer case where N( K ) =  K  
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Fig. 6. Scaling behavior In/N(K)- N(K,,)~ vs. InlK ~ ~~~1 f or IQ, = 114. The dashed line gives the 
average slope X = 0.9895. The other parameters correspond to those used in fig. 3. 

and I(K) = 0. In fact, for the top and bottom I(K) also vanishes in the 
quasiperiodic case, so that the fragmented structure in N(K) diminishes for 
~‘0, -0.5. Thus, the degree of fragmentation becomes large where I(K) 

reaches its maximum, which increases with the ratio n,/n,. To illustrate these 
features, in fig. 7 we show the integrated density of states N(K), the exponen- 
tial growth rate -Y(K) and conserved quantity I(K) for ylg = 2.0. Comparing figs. 
5 and 7, the increased degree of fragmentation accompanied by a much larger 
I( K ) i s  c k a d y Seen. 

Fig. 7. Integrated density of states N(K). exponential growth rate Y(K) (full lines), and conserved 
quantity I(K) (dashed line) for a Fibonacci multilayer of length N - 10”. n, = 3.6, and nR = 2.0 with 
optical thickness d = nAh,, = n,h,. 
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4. Conclusions 

Our results clearly reveal that quasiperiodic multilayers are in between the 
periodic and random cases. For sufficiently many layers, stop and transmission 
bands occur in the periodic case, while the random system becomes a perfect 
reflector at all wavelengths. In the quasiperiodic multilayer, stop and transmis- 
sion bands again occur, as shown for the Fibonacci arrangement. However, 
their distribution is highly fragmented. This fragmentation is wave number 
dependent and most pronounced where the conserved quantity Z( K ) is large. It 
increases with the ratio n,ln, > 1, and vanishes for n,ln, = 1 where 
quasiperiodicity disappears. This feature offers the possibility of tailoring 
quasiperiodic multilayers made up according to a given inflation rule, for 
particular applications. Fragmentation is also a characteristic of the integrated 
density of states of the associated Schrodinger problem. However, it differs 
from the conventional case where the barrier heights form a Fibonacci se- 
quence. Here, the fragmentation of the integrated density of states is charac- 
terized by the fractal dimension, because the conserved quantity I is energy- 
independent. In the optical problem, however, I depends on the wave number. 
As a consequence, the fragmentation is multifractal. 
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