arxXiv:0811.4203v1 [math.AP] 26 Nov 2008

1

10
11

12

14
15
16
17

TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000-000
S 0002-9947(XX)0000-0

THE RESOLVENT KERNEL FOR PCF SELF-SIMILAR FRACTALS

MARIUS IONESCU, ERIN P. J. PEARSE, LUKE G. ROGERS, HUO-JUNAR
AND ROBERT S. STRICHARTZ

Asstract. For the Laplaciam\ defined on a p.c.f. self-similar fractal, we give an explicit
formula for the resolvent kernel of the Laplacian with Ditiet boundary conditions, and
also with Neumann boundary conditions. That is, we constisymmetric functiorG«
which solves {1 - A)1f(x) = [GW(x,y)f(y) du(y). The method is similar to Kigami's
construction of the Green kernel in [Kig0§3.5] and is expressed as a sum of scaled and
“translated” copies of a certain functiaff) which may be considered as a fundamental
solution of the resolvent equation. Examples of the exptiEsolvent kernel formula are
given for the unit interval, standard Sierpinski gasket] #me level-3 Sierpinski gasket

SG.
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1. INTRODUCTION

A theory of analysis on certain self-similar fractals is eeped around the Laplace
operatorA in [Kig01]. In this paper, we consider the resolvent funotidl — A)~* and
obtain a kernel for this function when the Laplacian is tateehave Dirichlet or Neumann
boundary conditions. That is, we construct a symmetrictioncs® which weakly solves
(AT = A)GY(x,y) = 6(%, y), meaning that
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fG“)(X, V) du(y) = (AL - A) (X (1.1)

For the casea = 0, this is just the Green function fa. Consequently, it is not surprising 1
that our construction is quite analogous to that of the Greewtion as carried out in 2
[Kig01, §3.5]; see also [Str06§2.6] for the case of the Sierpinski gasket (and the unit
interval) worked out in detail, and [Kig03]. 4

We present our main results§i.2, just after the introduction of the necessary technical
terms in§1.7. It is the authors’ hopes that the resolvent kernel witivide an alternate
route to obtaining heat kernel estimates (see [FHK94, HKBBthis setting, as well as

other information about spectral operators of the form 8
f0) = [ ewer-aytar (1.2)
r
in the same manner as used by Seeley [See67, See69] for thdeancsituation. Some
initial results in this direction will appear in [Rog08]. 10

To explain the method of construction for the resolvent kerwe carry out the pro- u:
cedure in the case of the unit interval §&; we believe this particular method has not
previously appeared in the literature.§8, we show how the construction may be generalks
ized to any post-critically finite self-similar fractal. §l, we give the explicit formulas for 14
the Sierpinski gasket and §fel we give the explicit formulas for a variant of the Sierpinskis
gasket which we calb G;. 16

1.1. Background, notation, and fundamentals. We work in the context of post-critically 17
finite (p.c.f.) self-similar fractals. The full and precidefinition may be found in [Kig01, s
Def. 1.3.13], but for the present context ifBoes to think of such objects as fractals whichs
may be approximated by a sequence of graphs, via an iteratetidn system (IFS). A 2o
more general setting is possible; cf. [Kig03]. We now malie thore precise. 2

Definition 1.1. Let {F;, F», ..., F3} be a collection of Lipschitz continuous functions orez
RY with 0 < Lip(F;j) < 1 for eachj. Let X denote theattractor of this IFS; existence and 2
unigueness oK was shown in [Hut81]. Theelf-similar set Xs the fixed point of the set 24
mappingF(X) = X, whereF(A) := Ule F;i(A), andX is compact and nonempty. 25

From the IFS introduced in the previous definition, we nowdaisequence of graphs 2
which approximateX in a suitable sense. 27

Definition 1.2. Each magF; of the IFS definingX has a fixed poink;. Theboundaryof
X is the largest subs& C {x, ..., XN} satisfying

Fw(X) N Fw (X) € Fw(Vo) N Fw(Vo), foranyw # w with (w| = |w/|.

The p.c.f. condition mentioned above means that d&j(X) intersect only at points of 2zs
F (Vo). 29

Let Gy be the complete graph oy, and inductively defin&y, := F(Gn-1). Also, we 30
use the notatiox ~n, y to indicate thatx andy arem-level neighbours.e., that there is a:
an edge irGy, with endpointsx andy. We useV, = F™(Vp) to denote the vertices &,,, 32
andV, := Jn Vm. The fractalX is the closure oV, with respect to either the Euclidean orss
resistance metric. 3

Now we are able to make precise the sense in wiids the limit of graphs: one ss
may compute the Laplacian (and other analytic objectsydioh graph energy, resistancess
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THE RESOLVENT KERNEL FOR PCF SELF-SIMILAR FRACTALS 3

distance, etc.) for functions : X — R by computing it onG,, and taking the limit as
m — oo.

Definition 1.3. We assume the existence o$alf-similar (Dirichlet) energy forn& on X.
That s, for functionar : X — R, one has

J
&) = Z rE(uoF)), (1.3)
j=1

for some choice ofenormalization factorsi,...,ry € (0, 1) depending on the IFS. This
guadratic form is obtained from the approximating graphthasappropriately renormal-
ized limit of &g, (u) := &g, (U, U), where them-level bilinear form is defined

Een(U,V) 1= % > Cxy(U() = uY)V) — V(Y). (1.4)
X.Y€Vm
XxY

The constantyy = cg{{,‘) refers to theconductancef the edge irG,, connecting« to y (with

Cxy = 0 if there is no such edge). The dependencé’@fon mis typically suppressed, as
X ~ Y for at most one value afon p.c.f. fractals.

Definition 1.4. We also assume the existence akdf-similar measurg
J
WA = ) uiu(FTHA), (1.5)
=1
with weightsy; satisfying O< pj < 1 and};u; = 1, and normalized so tha(X) = 1.

Thestandard measureefers to the case;j = 3, for eachj.

Remarkl.5. The renormalization factar; should be confused neither with the contraction
factorsLip(F;) of the maps of the IFS, nor the weights of the self-similar measure.
The values of these constants are completely independent.

Also, it should be noted that the existence of a self-simglaergy asserted in Def-
inition [L.3 is a strong assumption. While the the self-simiheasures of Definitidn 1.4
always exist [Hut81], the existence of the self-similarrgyds a much more delicate ques-
tion.

Definition 1.6. The Laplacianis defined weakly in terms of the energy form. Roe
dom&, one saysl € domA,, with A,u = fiff

&(u,v) = —f fvdu, forallvedomé&, (1.6)
X
where dorg & is the set of functions in do& which vanish ordX = V.

It follows from (I.3), [1.5) and Definition 116 that satisfies the scaling identity

A(uoFj) = rjuj(Au)oFj, 1.7)
and pointwise formula given by the uniform limit

Au(x) = lim ( fK h(™ d/l)

Wherehﬁ(m) is a piecewise harmonic spline satisfyihﬁ)(y) = xy fory € Vi, and

1
AnUu(X), (1.8)



4 IONESCU, PEARSE, ROGERS, RUAN, AND STRICHARTZ

Aml(x) = ) Cx(U(y) = U(). (1.9)

YaX

Roughly speakingjg(m) is a “tent” function with peak at which vanishes outside time-cell 1
containingx.

N

Definition 1.7. We usew = wiw> - - - wm to denote avord of length|w| = mon the symbol
alphabet1,2,...,J}. This notation is used to denote a composition of the magfig
viaF, = F,,0oF,,0...0F, . Similarly, K, = F,(X) refers to a certaim-level cell with
measurqu(K,) = fy = Hole, - - - Mo, (€f. (@L3)). The collection of all finite words is
denotedV, = Un{1,2,...,J}™. Theboundary of an m-celk 0K, := F, (Vo).

N o o~ w

Definition 1.8. The normal derivativeof a functionu is computed at a boundary point s

ai = Fi(ai) by °
. 1
dpu(er) 1= im =5 > (u(@) - u(y). o € Vo. (1.10)
U YR
At a general junction point = F,q;, the normal derivative is computed with respect to &
specificm-cell K,,: 1
1

3 u(x) = Al U(Fug) = ————0,(UeF.)(@). (1.12)

1.2. Statement of main result. 12

Theorem 1.9. Assume that is not a Dirichlet eigenvalue of, and neither is yu,1, for 13
anyw € W,. For the Laplacian on X with Dirichlet boundary conditiorthe resolvent 14

kernel GV defined by{I.1)is given by the formula 15
GOxY) = D 1, P (R FLYY), (1.12)
weW,
where¥“(x, y) := Z GUUD(UL(Y). (1.13)
p.geVi\Vo
Here,z,b‘,? is the solution to the resolvent equation at level 1, i.e. 16

{(/UI ~ Ay =0, oneachK=Fj(X), (1.14)

¥(Q) = Spgs for pe V1 \ Vo and ge Vi,
whered g is the Kronecker delta. The cfieients Gy, in (I.I3)arise as the entries of the 17

inverse of the matrix B given by 18
B = > hwd@),  geFi(Vo), (1.15)
Kj>q
where the sum is taken over all 1-cells containing g. 19

This result appears with proof as Theolem 8.12; a similantda for Neumann bound- 2o
ary conditions appears in Theoréml4.2. 21

Remarkl.10 In (1.135) and elsewhere, we use the notafity)., to indicate a sum being 2
taken over the sdf:q € K; = Fj(X)}. 23
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THE RESOLVENT KERNEL FOR PCF SELF-SIMILAR FRACTALS 5

The rationale for the definitions (111 2)—(71.15) is best akmd by the following heuris-
tic argument and by comparison to [Str06, Thm. 2.6.1]. Onald/bke ¥ to be a weak
solution to the resolvent equation on a 1-c@l= F;(X), except at the boundary where
some Dirac masses may appear. However, tHitcss to see that'P ) (F1x, F;ty) will
then be a weak solution on the 2-cEJ(C), and in the limit [T.IR) gives a solution on the
entire fractal. Each term added to the partial suniof {1.b2)esponds to canceling the
Dirac masses at the previous stage and introducing new oiles aext; these are wiped
away in the limit.

For ¥“ to be a weak solution o@, we mean that iff € domA and f vanishes on
dC = Fi(Vo), then

f PO Y) (AL~ AT duy) = > WP (p).
P

With (1.13) as given above, integration by parts and lirtgaive

f WO(x, Y) (AL = A) () du(y) = f (AL = APV Y) F(y) da(y)
= (= Ay) Y (BIWPOWEH) F)-
p.q

Now by (1.12),y}) satisfies the resolvent equation on the interior of the Is.celit Ay
has Dirac masses at the boundary points with weigif{s= > 9,4% (q). In other words,
wheny{) is extended by 0 to the cells not containipgwe haveAyy = Ay} except
atq € Vi \ Vo, where QI — A)yy(q) = BY). Therefore, the calculation above may be
continued:

f PO Y) (A= A)F(y) dualy) = >~ (B2) 0 (0 Boa(y) ()
p.q
= > UM (p).
P

The foregoing computation is the origin and motivation fbA@){1.1F). A key tech-
nical point is the use of a linear combinatiarof vectorswﬁf) for which (I — A)uis a
single(weighted) Dirac mass at. From the calculation, it is clear that this hinges on the
invertibility of B; this is the significance of Lemnia3.7.

As mentioned just above, once the solution is obtained agl [evit may be transferred
to a cellF,(X) by rescaling appropriately. However, this is noffiient to allow us to
compute QI — Ay)G.(X,Y); some finesse is required to ensure that these solutiorchmat
where these cells intersect, that is, on the boundary pdjpts\ Vo. Some further work is
needed; this is carried out in the technical lemmag3hf

2. THE RESOLVENT KERNEL FOR THE UNIT INTERVAL

The unit intervall = [0, 1] has a self-similar structure derived from the IFS comngist
of F1(x) = 3 andFa(x) = 3 + % In this section, we exploit this perspective to derive
the resolvent kernel for the Dirichlet Laplacian bby mimicking the construction of the

Green function in [Kig01§3.5] (see also [Str0632.6]). This exposition is intended to
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Ficure 1. Mathematica plot off® from Prop.[Z1 ford = 1. (a) ¥¥(x,y). (b)
L(PW9(2x, 2y) + PWA2x — 1,2y — 1)). (C) 2(PUO(4x, dy) + PWO(Ax — 1,4y — 1) +
PUAO(4x — 2,4y — 2) + PWO(4x — 3, 4y — 3)).

make the general case (presented in the next section) &adigest. We build towards the 1
result stated formally in Prop.2.1. 2

Proposition 2.1. LetA = —dd—; be the Laplacian on the unit interval2 [0, 1], taken with 3
Dirichlet boundary conditions. Ifi is not a Dirichlet eigenvalue of, then the resolvent 4

kernel G in (L) is given by 5
S 1 ™ _
GU(xY) =) D) ot FIX M), (2.1)
m=0 |w|=m
sinh-4
for WO(xy) =2y (xu (), (22)
2ﬁcoshg
1 inh v <1
and  y(x) = sinh Vax, X=2 2.3)
sinh ¥ |sinh Val-x), x>3,
where convention stipulat&&V*"(F-1x, F;ly) = 0 for x,y notin F,|. 6

Remark2.2 (A preview of the general casd)ote that the sum if.(2.1) is finite ¥ y,or 7
if X = yis dyadic. More importantly® = z//(f/)z is the solution to the resolvent equation ats

level 1, i.e. 9
(AT = A)y® =0, on (Q %) and (%, 1), 2.4)
yP(0) = y(1) =0, andy®(3) =1 '

In §3, we develop the resolvent kernel in the general case fresetbbservations. 10

In keeping with the self-similar spirit of the sequel, we tise terml1-cellin reference u

to the subintervals [G] and [3, 1] in the following proof. 12

Proof of Prop[2.]L.On the unit interval,, one has the resolvent kernel 13

GO(x y) = -1 sinh \/ﬁ(ll—y) sinhvax x<y, 25)
Vasinhva |sinh Vaysinh Va1 - x), x>vy.
Forx < 1 <y, one has 14

_ sinh V(1 - y) sinh Vax

G20y VaAsinh v

by (2.3)
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(ii1)

FIGURE 2. Mathematica plot o6G® for A = 1 and two of its partial sums. (i) The sum
of (a) and (b) in Fig[dL. (ii) The sum of (a), (b), (c) in FIg. 1iii)(The resolvent kernel
GY(x,y) obtained in the limit.

sinhﬁ i i -
2 sinh VAxsinh V(1 - ) sinh 2a = 2 sinhacosha

- Zﬁcoshg sinhzg
i SR by Z3). (2.6)
2 coshg

The same computation can be repeatecyfe_:r% < x and hence(2]6) holds whenever
andy are in diferent 1-cells of.

It remains to consider the case when bpthndy lie in the same 1-cell of. Suppose
thatx <y < % and consider the fierence

Va

ROY) = GO(xy) - — M2 gu)
2V cosh 2

_ sinh V2x(sinh VA(1 - y) - sinh V2y) @.7)
- VasinhvVa .

sinh Vxsinh Va2 - y)
= —— by (Z3)
Vasinh-¥

= 1G9 (2x, 2y), (2.8)

where [2.¥) follows from the identity sinh@ a) — sinha = 2 sinh(% - a) cosh%. In the
case whery < x < 3, one also obtain®(x,y) = 1G“%(2x,2y). On the other hand,
whenx andy are both in the other 1-cell, one obtains (by analogous ceatipns) that
R(xY) = 1GW9(2x — 1,2y — 1). Note that ifA is not a Dirichlet eigenvalue of, then
neither is1/4™ for anym = 0,1, 2,.... Consequently, if we defin®?(x,y) as in [2.2),
then formulal(Z11) foG“(x, y) follows. O

Remark2.3. Itis interesting to note that the cieient which appears if_(2.6) is

sinh# _ 1
2vVAcosh¥d v (5-) =y’ (3+)

Formally, this indicatesAl — A)G“(x,y) = §(x — y); compare to [Str06, (2.6.3)]. Also,
observe that




8 IONESCU, PEARSE, ROGERS, RUAN, AND STRICHARTZ

sinh
G(x.3) = ——2—=u " (u"(3).
2 2\/§cosh§ 2
At each successive iteration ¢f (2.8), one is essentialbyrécting” the formula on the
diagonal for them-cell with rescaled copies of the formula for thra ¢ 1)-cell; Figureg1L
and[2 are intended to explain this. In the next section, wevothis strategy for the
construction of the resolvent kernel in the general case.

AW N R

Remark2.4. The procedure in the proof of Proposition]2.1 may also beedhout for the s
Neumann case: define a functigt! to be the solution of 6

(AI-A)g® =0, onl0 3]and[2,1]
L40(x) =0, x=0,1
3 =1
which is given by 7

1
S() = 1 coshVix, X< 3,
x> 1.

cosh¥! coshvA(1- X),
Observe that in parallel to RemdrkP.3, one again has 8
cosh¥4
GW X, 1) _ 2 ¢(ﬂ)(x) ¢(ﬂ) 1
N ( 2) Zﬁsinhg (2)
and 9

coshg 1
2\/§sinh‘/75 Lon(E-) - Lp(3+)
By analogous computations, if we define 10

osﬁ

DX Y) = ———2— (%) py),
N 22 sinh‘/Tj

then we obtain the Neumann resolvent kernel 11

- 1 m = -
GROY) = ), D) om®(FIXFY).

m=0 |w|=m
3. THE DIRICHLET RESOLVENT KERNEL FOR P.C.F. SELF-SIMILAR FRACTALS 12

In this section, we proceed through a sequence of lemmadwiilicallow us to prove 13
Theoreni 1D, which is stated in full in Theorém 3.12. On a fiesiding, the reader may 14
wish to read Theorein 3.2 first, and then work through the lamim reverse order. We 1s
take one hypothesis of Theoréml1.9 as a blanket assumptimngtout this section: 16

Assumptior8.1 None of the numbers,, = u,r,4, for w € W,, is a Dirichlet eigenvalue 17
of the Laplacian. 18

We construct the resolvent kernel formula according to ¢tfleving rough outline: 19
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(1) We build a solution;}y’ to the eigenfunction equation which takes the value 1 at one
boundary point oX and is 0 on the other boundary points.

(2) We show hovw(g) may be written in terms of rescaled copies;@f, i.e., we decompose
the solution around a poite V1 \ Vy into solutions for each cell containing

(3) We use this construction to obtain a solution on the a#llsvel m.

(4) We show how therfi + 1)-level solution contains Dirac masses \én which cancel
with the Dirac masses of the-level solution, so that the sum overis telescoping
and yields a global solution.

The first two steps are carried out§8.1. In§3.2, we collect some properties Bﬁ{q =

YKo o w(q), as introduced in(T14).For eachi, we think of B as the entries of a

matrix in p andg. Under Assumptioh 31, we shoB#’ is symmetric, invertible, and that

lim,_o BY = B@. Finally, the remaining two steps are carried ou$iiad.

Throughout this section, we will need to analyze the propgdf a continuous function
that satisfies th@-eigenfunction equation on all 1-cells, but whose the Leiplamay fail
to be inL2. Our motivation is that the Laplacian of such a function ham®masses at
pointsp € V; \ Vo with codficients that can be computed from the normal derivatives. The
following result is standard; see [StrG&.5], for example.

Proposition 3.2. If u is continuous andu = v; on eachl-cell K; = F;(X), thenAu exists
as a measure, and

J
AU = D v ()= D 6q() ) ahu(a) (3.1)
=1

geVi\Vo Kj>q
wheredqy(x) is a Dirac mass and}'u(q) is the normal derivative of u at q with respect to
the cell K;, and the sum is expressed in the notation of Refnark 1.10.
3.1. The basic building blocks of the resolvent kernel.

Lemma 3.3. For any A that is not a Dirichlet eigenvalue of the Laplacian, and fach
p € Vo, there is a functiomy’(X) € domy,(A) which solves

{(/UI - Ay () =0, onX (3.2)

75'(A) = Jpa, vq e Vo,
wheredpq is the Kronecker delta. Moreover, {f, is the harmonic function on X with
¢p(9) = Spq, then

7 = o — A6 on all of X, and (3.3)

O @) = Ont(0) — A fora < Vo, 4
wheredfy and«$) are meromorphic functions af with poles at the Dirichlet eigenvalues
of the Laplacian, anay = .

Proof. Let {f,} denote the Dirichlet eigenfunctions of the Laplacian, wiiite correspond-
ing eigenvalueg, arranged so that,.1 > An; equality occursft 1, has multiplicity greater
than one. The function§, may be assumed orthonormal, and their span is denké. in
Consequently we may wrii, = X, ap(n) f,. The function

IRecall thaty{y) is the solution to the resolvent equation on level 1 as defim¢f15).
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ap(n)
60 = P f
P zn: A=2n "
then satisfies
n
(-9 = 3 -2t = Y o=
in the L? sense. We also see théml?p = Yndnap(n) fa/(A — An) is L2 convergent, so

6% € dom2(A). In particularg’ is continuous and equal to zero g
Defineny := £, — 165 Then QL - A)ny = (AL - A)p — Ap = 0, and forq € Vo,

75(A) = £p(Q) = Gpg- (3.5)
To verify (3.4), we will need the fact that
31 (@) = 9ng’ (P), (3.6)

which follows by computing the normal derivatives as folow

() = (@) = D (n9(Fm(S) = 1 (99w () by (335)
seVo
= f (79 (AR () - 1P (AR (¥) du(x)  Gauss-Green
X
=0, /l) _ /ln(ﬂ)‘

Now (3.4) follows via

3n¢p(a) — 95 (Q) = 3np(Q) — 3 (P) by (3.6)
= > (19(99:Lo(9) — £p(9i(9) by 3)
seVo

f( PIALp(X) - gp(x)An“)(x)) du(x) Gauss-Green
== [ 6000 et Ay =0
=1 fx (Ap(IE () = p(Ze(¥) du(x) by @3)

— /12 an ap/inza/(;(n) _ /lzn: ap(n)aq(n)

Anap(n)ag(n)
—AZ ; i

Define for eaclp, q € Vp the functions

(324 Z /lna/r{(_n)/?:(n) (3.7)
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so thatd,q(p) — a7 (P) = Akhy. Itis evident thakd) is symmetric inp andq. It is also
meromorphic in with poles at the points,, as may be verified by writing the expansion
on the disc centered abf radius|z — 1,|/2 as follows:

o _ N\ Andp(n)ag(n) k" An@p(M)ag(n)
Wm0, Z( ) Z“‘ VD =y
and using the fact thdie,(n)} and {ag(n)} are in 52 hence their product is id*, while

n/(An — 2% is bounded for eack. An almost identical argument shows tiét is
meromorphic iM with values in don:(A), so the proof is complete. O

Corollary 3.4. If F,(X) is a cell and r,u,A is not a Dirichlet eigenvalue thep andn are
related via

") it p.gek,
wg)(q):{"F (Flq) if p.ge K )

otherwise.

Proof. From [I.T) we have\(uo F 1) = (r,u,) (Au) o F 1, for anyu. Then from [T.IH)
and [3.2), one can observe that

(/u[ A)nrﬂ/‘)oF -1_ 0 OnK —Fw(X)
15" o F Ha) = 0k, (pa Y € Fu(Vo).

Remark3.5. Itis helpful to compard (318) to the discussion of the urtiémmal, wherel(Z18)
may be rewritten as

R(X.Y) = FG(2x2y) i xyeK;,
0 otherwise.

3.2. The matrix BY. In the construction of the resolvent kernel, the maBi% plays the
same role as the transition matrix for the discrete LapfaciaV; in the corresponding
argument of Kigami for the construction of the Dirichlet @rés function. We now collect
some important properties & for use below.

Lemma 3.6. The matrix B" is symmetric for anyl, andlim_,o B®Y = B©,

Proof. From [3.5) we havey(q) = 13 (p), whencedn'y's(q) = dn'wy’ (p), and thusBy, =
By Then from[(ZB), ifjs. . .. jx are thosg for which K; contains bottp andg, then

o= 208 1l oFi') @

k
k
1 9Kj ("JH] 1) -1
= ., 1(p) F'(@)
i=1
k k
ritjiA)
le ri Ji 6 gF 1(p) FJ| (q) + ; r; Ji ]|luJ|/lK 1(p)FJI1(q) by @)
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k

— RO o Ami D)

=Bpg+4 Z““"F;%p)F;l(q) (3.9
|:l 1 I

in which the final sum term is a meromorphic functiomofith poles at thosa for which 1
rju;A is a Dirichlet eigenvalue. We used the observation that trenbnic case with
functions¢ is just the casa = 0. From [3.9) it is also clear th&7), - Bfyasi —»0. O

As noted in the discussion following the statement of ThedI€d, it is important that 4

the action ofBY on the subspacé; \ Vy is invertible. 5
Lemma 3.7. If 1is not a Dirichlet eigenvalue then“Bis invertible. 6
Proof. Suppose thaB®” = [B(,jl1 Y is not invertible, so there are valuag(notall 0) -
3 1\Vo
for which ¥ gev,\v, Bbiaq = 0. Define 8
up) = > A ().
geVi\Vo

Itis clear that I — A)u = 0 on each 1-cell, and thatv0 = 0. Now using the notation from
Remarl1.ID, we compute the sum of the normal derivativesasfer cells containing, 10

foranyp e Vi \ Vo: 1
Dlahuy = > aq ), avui(p)
Ki>p geVi\Vo Ki>p
= >, B
geVi\Vo
=0,
where the last equality follows by applying the symmetrablshed in LemmB&3l6 to the 12
initial assumption. So Propositién 8.2 implids is continuous. It follows thatifl — A)u = 13
0 onX, sou is a Dirichlet eigenfunction with eigenvalugwhich is a contradiction. o 1
The next result is used to prove Lemma3.11 and also maked (B&h 15
Lemma 3.8. For p € V1 \ Vg and ge Vo we have 16
> BY(9) = -B, (3.10)
seVi\Vo
Proof. For a 1-celK; = F;(X), the Gauss-Green formula gives 17

PINCHCETHCEVHCEAZC)
scF;(Vo)
) fK (9 (AR () = 1P (AWS(X)) du(x) = 0

because botlgly(X) andr{’(x) are Laplacian eigenfunctions with eigenvaluen each 1
1-cellK;. However fors € V; we havey(s) = 6ps, SO this becomes 19

AP = > a9 YD(S). (3.11)

seF; (Vo)
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1 The continuity of the Laplacian ofy’ atp € V1 \ Vo implies that its normal derivatives
2 sum to zero, as indicated by Proposition 3.2. Thus, summiregb-cells yields

J J
0= av® =) > 1w by B11)
=1 j=1 scFj(Vo)
= Z 75 (S) Z INY(s) interchange
seVy Kj>s
= “(s)BLY “(s)BY) split
nq()ps+ nq()ps p
seVo seVi1\Vo
=B+ > B 7(s) = S5 0N Vo
seVi\Vo
s where we used the sum notation of Renfark11.10. O
4+ 3.3. Construction of the resolvent kernel. Now that we have obtained some necessary
s properties oBY, we can proceed with the development of a sequence of tead@iomas
s required for the proof of the main result. We begin with amotborollary of Proposi-
7 tion[3.2.
Corollary 3.9. If p € V; and2 satisfies Assumptién 3.1, then
(L= AW = > B, (3.12)
geVi\Vo
s Proof. With ¢4 andBY), defined as in(1.14)=(L1L5), this is clear frdm{3.1). |

o Remark.10 From the definition in[(1.15), we haB} = Y oq 9n w5 (0) for g € Fj(Vo).

10 Thus Corollany_3.0 expresses the fact that an applicatioth@fresolvent top‘,;“ leaves
1 behind nothing but a Dirac mass at every poinVef, Vo, each weighted by the sum of the
12 normal derivatives of/%;.

13 The conclusion of the following lemma appears very tecHiigtit expresses a straight-
14 forward idea: at each stage our formula for the resolvent corrects Dirac masses at the
15 m" level and introduces new ones at tme«{ 1)". Thus, summing ovem (as we do in
16 Theoreni3.12) produces a telescoping series. This makes@tbe comment “these are
17 wiped away in the limit” from the introductory discussiontbe main result.

15 Lemma 3.11. Definesy), to be the unique function solving

A= D)ED = [l m-cell
{( Dépm =0, onallm-cells (3.13)

E9m(a) = Opgs for p e Vim\ Vo and qe V.
19 Then one has the identity

(AL - Ay)z r, PN (F-1x, Foly)

lwl=m

= DA 60 = ) ER(6a().

pEVnHl\VO qEVm\VO
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Proof. Since¥+" is a sum of functions satisfying theeigenfunction equation on the 1

level 1 cellsK;, it is immediate that

(A = AY)P=I(FoIx Foly) = 0, fory ¢ V.

By Propositio 3.2, we therefore need only compute the sumowhal derivatives at points

of Vine1.

(1) First suppose thate Vi1 \ Vim With z = F,, p for somejw| = mandp € V1 \ Vo, so

that

‘y(r“’u‘“l)(F;lX, F;lz) — r;l Z G(sft#l) w(sr(,ﬂwﬁ)(':a—)lx) w%r,uu.,,,l)(Fa—)lz)’
steVi\Vo
and collecting normal derivatives ayields

Z 65«)(K1)(\{/(rwpw/l)(|:a—)lx’ Fa_)lz))
Fw(Kj)BZ

-1 ottod) 1 (Fotte -1 Fo(K)) ) (topay = —1
=0ty GE AR Y ap AR L)

steVi\Vo Fo(Kj)3z

_ ()] o -1 (Fottod)
= Z G wgrNF5 ) By,

steVi\Vo
because

By = > ahui™(p)

Kjap

KjBF;lZ

lz)

D,

by (L.15)

=ty > A" (Yo RN @),

FwKJ‘BZ

p=F,'zeK;

where the last line follows fromy u(F q) = r,d,(uo F 1) (q); cf. @I1).
Continuing the computation frorn_(3]14) and making us&of B, we have

Z ar:w(Ki)(\P(hmM)(F;lx’ F;lz)) = Z 65p(l,0(sr“ﬂuﬁ)(':;l(x)))

F.(Kj)3z

seVi\Vg
ol -1
= U (F )
= f(s,)m+l(x)

thus showing thatAl — A,) has a Dirac maﬁ‘fmﬂ(x)éz(y) atze Vi1 \ Vi

(3.14)

(2) Next consider a point € Vy, \ Vp. In this case there are several wokdsfor

whichz = F, (pi) for somep; € V. For such a word and such g we substitute from

Lemmd3.8 into[(3.14), obtaining

Z aﬁ“(K”(rw‘P(’W‘)( Folx, Fajlz))
Ki op

g,steVi\Vo

= D, Ssads (FI n (@)

9.5€V1\Vo

(rottad) 7 (fopud) = =1 (Fuptod) (Fofte
DG e F ) B

(9)

2

o 0~ w

10

11

12
13
14
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= D UG FS s (a). (3.15)
geVi\Vo
The result is clearly a piecewisteigenfunction on levelri + 1) with respect to the
variable, so is determined by its values\gq.1. In each of the term$ (3.115), the values
are nonzero only at the points ¥f,,; that neighbor in F,(X), and they are easily seen

to coincide wit éf)mu — & at these points. Summing over all cells, we conclude that at

eachz € Vip \ Vo the operator{l — A) has a Dirac mas(gf“) é:g}n) ,(y), and the result

gm+l
¢ follows. O

AW NP

o

7 Theorem 3.12. Lety$) be the solution to the resolvent equation at level 1, i.e.

(AL- Ay =0, oneachk=Fj(X), (3.16)
¥(Q) = Spgs for pe Vi \ Vo and qe Vi, '
s Wheresyq is the Kronecker delta.
9 Define the kernel
GO Y) = D 1, PRI FY), (3.17)
weW,
where?“(x,y) := Z GO (U (y).- (3.18)
p.geVi\Vo

10 The cogficients Gy, in (3.18)are the entries of the inverse of the matrix B given by

B = > hwd(@),  geFi(Vo), (3.19)
Kj=q
1 the sum taken over all 1-cells containing g.
12 For A satisfying Assumptidn 3.1,“Gx, y) is symmetric and continuous in x and y, and
13 is in domy(Ay) with (AL — Ay)GW(X,y) = dx(y). As it vanishes on /it is the Dirichlet
14 resolvent of the Laplacian.

15 Proof. The symmetry of59(x, y) is obvious. Next, note that

M
AL=A) D" 3 W (Fo FolY)

m=0 |w|=m
M
=3 D 0L 060) = D E(X0p(Y)
m=0 \ peVim.1\Vo pPEVim\Vo
= D &6
peVm+1\Vo

16 by Lemmd3.I1, so that

M
; _ o) (E=1y E-1y) =
'\L@m(/lﬂ Ay) E E o P (F o X, FLMY) = ox(Y),

m=0 |w|=m

17 in the sense of weak-convergence. It follows thaB“(x,y) is in domy(Ay) and that
18 (AL = Ay)GO(X,y) = 6x(Y).
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All that remains is to see th&“(x,y) is continuous. However, Lemnia 8.6 shows:
Bia“? — By aslw| — oo, and henc&§a’ — G In a similar manner, the relation 2
ng et = Lo+ Tupudds* Y from Lemmal3B shows thafy™ — ¢ aslw| — oo in 3
particular we find thag$*” — ¢, and the latter is piecewise harmonic and bounded by
1. The conclusion is tha¥"*" is bounded agu| — oo, and since,, is a product ofw| s
terms, all of which are bounded by max< 1, 6

00

GY(xy) = Z Z ro P (Fotx Foly)

m=0 |w|=m
is bounded by a convergent geometric series. As all termsamtinuous, so i§®. o 7
4. THE NEUMANN RESOLVENT KERNEL FOR P.C.F. SELF-SIMILAR FRACTALS 8
In Theoreni 4R, we give the formula for the Neumann resolkerntel formula. 9
Lemma 4.1. If 1is not a Neumann eigenvalue then there ﬁ% Such that 10

D, Co@ny) () = Spx

geVo
for x € Vp, and *21 is symmetric in p and q. 1
Proof. SinceA is not a Neumann eigenvalue the set of vec{é(@n)yn(q“(x)) } is 1
XeVp geVo
linearly independent, so the existence of @{g is immediate. Symmetry follows from 13
(3.8) because the matr[KZ‘p’%] is the inverse of the symmetric matr{ié@n)yn‘,;”(q)]. O u
From this and Theorem 3112 we may readily deduce the follgwésult. 15

Theorem 4.2. If A satisfies Assumptign 3.1 and also is not a Neumann eigenihkre 16

GR(6Y) =GOy + > CanPOInP () (4.1)
p.aeVo
is symmetric, is irdomy(4y), and satisfiegt — A))G(x,y) = dx(y) on X\ Vo. Ithas 17
vanishing normal derivatives ong\and is therefore the Neumann resolvent kernel of the
Laplacian. 19

Proof. The symmetry ofG{(x,y) is immediate from the symmetry @“(x,y) and of 2o
Ciy. Both GY(x,y) andn$'(y) are in domy(Ay) and @ — Ay)ny’(y) = 0 onX\ Vo so 2
(A= A)GR(x.Y) = (A - A)GI(X.y) = 6x(y) on X \ V. 2

It remains to prove the assertion about the normal derieatiWe will use the notation 23
(9n)yG® for the normal derivative 06“(x,y) with respect to its second variable. Sinces
GY(x,y) € domy(4y) it has a normal derivative gt € Vo, and by the Gauss-Green for-2s
mula, 26

@GP0 P) = D (@GO (% 9 (S) - GV(% 9ar(9))

seVo

= [ (460 9) (9 - 60 9 (49(9))
- [ (@:- 96 x99 cu9)
X
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= nP(¥) (4.2)
1 where at the first step we used ti@it(x, s) = 0 for s € Vo and at the last step we used
2 (As—A)GYW(X,5) = —dx(S) as a measure. It follows that at eaphe Vy, the normal

3 derivative of [4.]l) vanishes:

(@n)yGN (% Y) =~ (X) + (6n)yz Chaty (g’ () by 4.2)
p.geVo
= —n(¥) + Z Spx1s) (X) by Lemmd 4.1l
peVo
=0. O
4 5. EXAMPLE: THE SIERPINSKI GASKET S G
5 Recall the harmonic extension algorithm as described if@5§1.3]: if the values of

s a functionu are specified at the points ¥ and written as a vector

u(po)
Ulvo =| u(py) |,
u(pz)

7 then the harmonic extension ofto F;(Vp) (the boundary points of the 1-céth(S Q) is
s given by

u(Fipo)
ulFiV0=A5u|V0= u(Fips) |,
u(Fip2)
9 where
1 5 00 1 2 2 1 1 2 1 2
A0=§ 2 2 1], A1=g 0 5 0|, and A2=§ 1 2 2
21 2 1 2 2 0 0 5

10 are the harmonic extension matrices. In geneni@(luv0 = Aw“lvo' whereA, = A, - A,,A,,.
1 Thus, the harmonic extension matrices allow one to cons&rdmarmonic function with
12 specified boundary values. Similarly, spectral decimapimovides matrices which allow
13 one to construct an eigenfunction with specified boundalyega For example,

L G-)@2-1) 0 0
A= —— | @G- (4-2) 2 (5.1)
(5‘1)(2‘1){ @- ) 2 (4-2)

14 isthe analogue ofy = Ag(0). By the usual caveats of spectral decimation, thesasixie
15 matrices can only be used whgiis not a (Dirichlet) eigenvalue.

16 To obtain the number’S‘,§24 (appearing in[(1.15)) for the Sierpinski Gasks, we find
17 the normal derivatives of the eigenfunction that has boogndalues (10, 0), as computed
18 at each point o¥p. If (AT — A)u = 0 butu is not a Dirichlet eigenfunction, then consider
19 onF{(Vo). By spectral decimation, this is given by
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ung‘(Vo) = Aodm) -+ AO(/ll)ulvo

where the matrixAg(1) is as in [5.J). We actually only need the values of thoemal 1
derivative 2

onpta) = Im (3 @u@) - u(FTa0) - uEP). (52

It is extremely easy to compute the normal derivatives ofranleaic function: one does s
not need to compute the limit, as all terms of the sequencequal; see [Str06, (2.3.9)]. 4
Therefore, our approach s to obtain a harmonic functioretvboincides wituon F{'(Vo). s
The limit of the normal derivatives of these harmonic fuaos will be the normal deriva- ¢
tive of u. An alternative interpretation would be to interpret therhanic functions or§G 7
as the analogue of the linear functionslonConsequently, the tangent to a point®G s
should be given by a harmonic function plus a constant, pexvthe tangent exists. This s

is the motivating idea of [DRS07]. 10
Multiplication by A;™ allows one to find the required harmonic function at stage
rewriting the normal derivativé (5.2) in vector notatiomeochas 12

5\" m
(é) (2-1.-1) Ulgy = @ -1.-1) A"l

= (2.-1.-1)- A™Ao(dm) -+ Ao(A)u, -
It therefore stfices to understand the limit ligA;"Ao(Am) - - - Ao(A1); this was computed 13

in [DRSO7]. The following theorem is the main result of [DR$Qaken withmg = 0. 14
Theorem 5.1. Lete = (0,1,1)", 8= (0,1, 1), ym = (4,4 — Am, 4 — Ay)". If neither of 15
the value® or 5 occur in the sequencs,, then 16
k+1
. _ 4 /10+]
| K. An(osr) - - - Al -
kEEOAO AO( O+k) AO( O+1)Q’ 50/10(2 /10+1) l_l( ) [0
lim ’k-Ao(/l )---Ao(os1) B = i
k—>ocAO 0+k 0+1 ﬂ = 3. 50/1018

lim AG - Ao(dou) -+ Ao(dos1) Y0 = (4,4,4)"

In particular, this can be used to get the desired normalal@re. We know that all we 17
need do is compute 18

(2.-1,-1)- (im Ag™Ao(An) -+ Ao(As)) ul, (53)

The boundary data| is be taken to be (D, 0) when computing the normal derivative atuo
the pointp Whereu(p) =1, and (01, 0) at a point where(p) = 0 (these two points are the 20
same by symmetry). Writing 2

1 4 0 0 0 0
0 =% 4- 2 —4_4)‘0 1|, and 1 =% 1 +% 1|,
0 4- 2 1 0 1 -1

we find that 22
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e ﬁ(l—ﬁ)cl)
& 3z LT3

and by [5.8), the normal derivative is

o o

lim Ag™Ao(Am) -+ Ao(da) [

324(:(2 ﬂoa)f) k+l( - _)

The normal derivative at the other point is computed by firstifig

0
1
0
14 ﬁl_ﬂ_ PR
B 2310(2 - 171) 1 234 -1

and then taking the inner product with (21, —1), which cancels the second vector to leave

lim Ag™Ao(Am) -+ Ao()

k+1
-4 A
—/ll | 1- 21,
32— LI 3

It seems logical at this point to define a function

a1 k+1 i
() = TRPEN g (1 - 3’) (5.4)

and to write the normal derivative at the point where the iegas (4- 19)7(1)/2 and that
at the point where the 0 occurs as(1). We note that for a non-Dirichlet eigenfunction,
none of the values,®, 6 occur indy, for m > 1 so the term (2 A;) in the denominator
cannot be zero. It follows that 3 does not occurrfor 2 and therefore that(1) # 0 in this
case. An exception to our formula as currently written osauhend = 0, because then
also g = 0, but the functionr() is easily seen to have a continuous extension to 0
with 7(0) = 1; with this correction our formula is also valid for the hamic case.

It is now easy to write the entries of the matEBﬁ;‘{1 appearing in[(1.15). The tera‘g)p
has two copies of the normal derivative{4,)7(1)/2, and the ternB‘,;‘z4 has a single copy
of —7(1) at eachg € V; that is not equal t@. Both are on 1-cells rather than the whole of
S G so there is an extra factofy3in their normal derivatives. As a result, the matrix is

(4-2r(1)  -7(1) ~7(4)
B=z| 1) @-d)r()  -7()
~7(4) —7() (4= 40)7(1)

and we should invert this to get the mat@, for the Green’s function. Since
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do

V2 Do Ps

a4 P3 Py D)

Ficure 3. The 1-cells 068 Gs.

a b b
detf b a b |=(a-b)*@+2b),
b b a
the matrixB is invertible {f 1o # 2,5, in which case 1
3 (3= 10) 1 1
@ = 1 (3- 0) 1
5(5-120)(2 - A0)7(1) 1 1 (3- o)
Note that this is consistent with the harmonic case whgtre 0 andr(0) = 1 gives factors :
9/50 for Gy, and 350 for G with p # g; see [Str06, (2.6.25)]. 3
6. ExamMPLE: S G, A VARIANT OF THE SIERPINSKI GASKET 4

6.1. The Laplacian on SG;. The fractalS Gs is obtained from an IFS consisting of 6 s
contraction mappings, each with scaling ra%i,oas indicated in Figurgl 3. The details of ¢
the spectral decimation method B3 have been worked out independently in [BA@B, -
DS07,Zho07]. Note thap is contained in three 1-cells &Gs, in contrast to each of the s
other pointsp; of V1 \ Vo, which are contained in two. For this reason, we define thptgra

Laplacian orS G; as 10
1
Ant(9) = Gors y~me(u(w - u(x). (6.1)
whereded) is the number ofn-cell containingx. From [Str06 §4.4], we have 1
-1
Au(x) = lim 1™ ( f (M du) degX)Amu(X). (6.2)
- 00 K
Let px denote a vertex whenetakes the valua as depicted in Figuild 4, then Hy (6.1),12
the symmetric eigenvalue equations\gpare 13
Amt(px) = 7 [(1= %) + (x = %) + (W= %) + (y = X)] = =X
Amt(py) = 3 [(X=Y) + W=y) + (= ¥) + (0~ Y)] = ~ 2y
Anb(p) = 3[(y-2) + W=2) +(2-2) + (0~ 2)] = A2
AmU(pw) = 3 [2(x— W) + 2y — W) + 2(z— W)] = —A,W,
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Ficure 4. The eigenfunction extension on oma € 1)-cell of SG; to
m-cells. The values om{- 1)-cell are 10, 0.

Ficure 5. The labeling for a general eigenfunction extension, foyma
(m—1)-cell to sixm-cells. The values on the boundary of tine{1)-cell
area, b, c.

1 which can be rewritten, usingy, = 44, as

(A-Am)x=1+X+y+w (A= Am)y = X+Z+W
(4-An)z=y+2z+W 4 Amw = 4(x+y+2).

2 For now, we suppress the dependencerdior convenience and denofe= Ay,. Solving
s for A, we obtain

x = a(A) := (96— 109 + 3312 — 323)/¢(1), (6.3a)
y=pB) = (16-31)(3 - 1)/¢(), (6.3b)
z=y(1) := (36— 72)/p(A), (6.3¢)
W =p(4) = 4(5- )3 - 2)/¢(1), (6.3d)
where (1) :=3(5- 2)(3— 1)(4- 61+ 12), (6.3€e)

+ and we see that the forbidden eigenvalues afe3+ /5.
5 For a general function 08 G;, we extend the eigenfunction using the labeling indicated
6 inFigure®, as follows:
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1

1‘5 1.5 15(u(2)-u(y))

Ficure 6. The harmonic extension afon S Gs, whereuly, = [1, 0, O].

x = aa(A) + bB(2) + cy(4) X =aa(d) + ¢B(1) + by(Q) (6.4)

y = ba(2) + ¢B(2) + ay(1) Yy = ba(1) + aB(1) + cy(1)

z = ca() + aB(2) + by(1) Z = ca() + bB(2) + ay(Q)

w = (a+ b+ c)p(l).

The eigenfunction extension matrix f8iG; corresponding té-g is 1
1 0 0
Ao(A) = | a(d) B) (1) |,
a(d) ¥() B)

where we have(), 8(1), y(1), ¢(1) as before, that ifo(2)uly, = Ulgv,- 2

6.2. Eigenfunctions of the Laplacian onS G;. Let u be a function taking values @,0 3
onVp. The harmonic extensiom6n V; corresponds to taking = 0 in the system(6]3)

above, so that 5
X = E = i 7= i W= i
"1 VT T T
and we have Figuild 6. Following [Str0§1.3], the energy renormalization constant com-s
puted by 7
1)? 14
0 =(— . 2 . 2 . 2 . 2 . 2 = —
El(u)_(ls) (4-1242-22+4.3+4.4242.7) E
SinceEp(u) =1+ 1= 2, 8
14 7
_ N _
2=Eo(u)=r—Ey(@) =r 15 = r 15 (6.5)
Thus, the normal derivatives &hG; are computed by 9
o uor = 1im (L) 6.6
U(p) = lim () > (u(p) - u(y). (6.6)

P~my
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0 0

Ficure 7. The values of the eigenfunctianon SG;, whereuly, =
[1,0,0]". This figure shows a closeup ofnear the point where it takes
the value 1. By symmetry, we defing := 1 - u(Fg'qr) = 1 - u(F{'qy).

Theorem 6.1. The pointwise formulation of the Laplacian on $i&

90\"
Au(x) = 6 lim (—) Amu(Xm), (6.7)
m—oo 7
where{xqy} is any sequence witim X, = x and ¥, € Vp.
Proof. Following [Str06,§2.2], it is easy to compute
2 .
(m) _ 3_m |f dequ) = 4,
f"’Xm d"‘{ T if deg(xm) = 6
sincey is the standard (self-similar) measure®@s. Thus, by[(6.P),

. (15\" . "
009 = im (2 6™ a9 = 6 im (2] vt (6.8)
[}

Throughout, whenever there is discussion of an eigenvilue assume that we have
been given the sequengén}_, which definest via the decimation formula. Thus by
Theoreni G.11,

m m
1=6 lim (970) 2= 2 im (9—0) Am- (6.9)

m—oo

6.3. Computation of the normal derivatives.

Theorem 6.2. Let —Au = Au on SG, where u is defined ong\by Uqo) = 1, u(gy) = O,
and Uqy) = 0. Define

k

2 1-9)@a-49
() = % [ d-2)0-%) f)' (6.10)
O 1-34+ 7
Then the normal derivatives of u are
9,u(po) = 4_2107(1), and (6.11a)

9pU(p1) = 9,U(p2) = —7(4). (6.11b)
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Proof. To obtain [6.11a) we need the valug&j'a:) = u(Fg'de) = 1 — Xy as depicted in 1

FigurelT. 2
Claim: u(F{'a1) = u(Fg'gz) = 1 - Xm, Wwherexo = 1 and 3
A 4- 2 6-1 A A
X — mel_ ( me1)( I’;Hl) m+1( _ _m) (6.12)
4 (4 - 6Ams1 + 22, ) Am 4
Proof of claim. By (6.4), if b = ¢, thenx = x'. Then fromu(q;) = u(gz) = 0, we will 4
haveu(Fg'a1) = u(Fg'gp) for all m, by induction. Definexy := 1 - u(F{'q;), m> 0. From s
u(gy) = 0, we havexg = 1. Now we show[(6.72) holds. 6
Denotes(d) = B(2) + y(2), so thats(1) = (14— 32)(6 — 2)/¢(1), wherep(d) is asin 7
(6.3). Using[(6.14), we have the matrix equation 8
1 1

A(D)| 1-Xm | =] 1= Xm

1 - Xm 1— Xme1
gives 9

Xme1 = 1= a(Ami1) = 6(Ame1) + 5(Ami1) Xm

—_ /1m+1(5 - /lm+l) + (14_ 3/lrml)(6 - /lm+l) X
4— By + A2, ©(Ame1) ™
From the decimation relation [DS07, (2.12)], we have thaiiig 10
3(5 = Am1)(4 = Ami1)(B = Ame1)Ame1 _ 1
(14_ 3/1m+1)/1m ’

so that 1

3(5-1 4—- 2 3-2 1
0(Amr1) = 0(Ame1) ( rmlng_ 3’3*1)1()/1 m+1)Ams1
m+ m

- (4 - /1m+l)(6 - /1m+1)/1m+1
(4—6dm1 + 22, )Am

We would like to se&mi1 — f(Ami1) = 6(Ame1)(Xm — F(Am)) for some functionf, whichis 12
equivalent to 13

f(Ame1) _ f(Am)
/1m+1 /lm
Let f(X) = xg(x) and this can be rewritten 14

(4—6Ams1 + A2.,) (4= Ame1)(6 — Ame1) + (5= Ame1).

(4—6Ame1 + /lfn+1)g(/lm+l) = 0(Am)(24 - 10Am;1 + /lfml) + (5= Ami1),

which is easily seen to be true for the constant functipr) = ;11. Hence we may define 15
f(x) = 7, to obtain 16

A A
xrml—%lﬂ(/lmu)(xrn—jm). O
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Now we compute,u(qo) using [6.12) to obtain

Am Ao\ Am oy (4—2))(6 - 1))
B :(1__0)_1_] 461+ 2

4 (4-2)(6- 1))
- | | P
Xm {4 o 4-61+22 |7

Sinceu(qo) = 1, we apply[(6.5) to compute
_(17\"(6\"
9nu(qo) = lim (g) (6) (2u(do) — 2(1 - Xm))
4-2 . (90\" Ao T (4= 26— 1))
= [ =] 2
210 m@w( 5 ) m{Gm(4— 0" U 6(4— 61 + 12)

_4-2 (4-1))(6-4)
- 2 ( )[ 1_[6(4 6/l,+/12))

which is equivalent to the result.

Now we compute the normal derivativés (6.11a). To obfgir{g;) = d,u(q.), we don’t
actually need the valuegF{'q:) andu(F{'g2) as depicted in Figuile 8. Instead, ittBoes
to only compute their sum, since Hy (6.6), one has

o (1n\"
on(ae) = 0@ = - im () (u(F T + u(Faa). (6.13)
Accordingly, define

Ym:=U(Fga1), zm:=u(Fg'dx), and sp:=Yym+2Zm.

Claim: the sequendgn},_ is given recurrently by = 1 and

(14 - 3/1m+1) (6 - /1m+1)

o) (6.14)

Sl =

Proof of claim. As indicated in Figur€l8, dihedral symmetry allows us to oo using
the same matri¥o(1) for computations, as long as we usef00]" for the new boundary
data.

It is clear thatsy = 1 + O from the values oi/y. Then using the notatioti(1) =
a(A) + B(1) as above, the matrix equation

0 0 0
Ao(/l)i Ym B(Ami1)Ym + ¥(Ami1)Zm } = [ Ym1 ]
Zn Y(Am1)Ym + B(Ame1)Zm Zmy1

givesSSni1 = Yms1 + Zmi1 = 6(Ame1)Snimmediately. m
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1

Zm+1 #m

Ficure 8. The values of the eigenfunctianon SG;, whereuly, =
[0,1,0]". This figure shows a closeup afnear a point where it takes
the value 0. We defing, := u(F'qo) andzy, := u(F'qz).

Since [6.14) gives 1
i T (4-25)(6- 1))
= | |61 Am ,
Sn 1]:1[ )= 7 1_1[ 4-61+
andu(qy) = 0, the normal derivative is 2

ouu(c) = rm(lg)m(g)"“ (2u(a) - )
= 1 lim (%)mﬂmﬁw
3

Ao moeo |\ 5 1 6(4-61; + %)
© (4-2;)(6-2
=i(z/l)l_[( i)( 21)' 0
10 \37) 1 1 6(4-64; +42)
6.4. The resolvent prekernel. 3
Definition 6.3. Forp € V1 \ Vo, define 4
By = > awP(0). (6.15)
geVa
Corollary 6.4. Witht(12) as in Thm[6R and £ 15, 5

3,-1

W _ -1 o )3 (4-20)7(1), p=0do

Bhy=-r"7(1), p#qgandg),= {r‘1(4 ). P
Proof. We are now working oV, so each term has a leading factorrot. Whenever s
p # g, there is just one ter,u(q) = —7(4) in the sum; the other corner of the triangle is -
ignored and everything outside this 1-cell is 0. Wheg g, then there is a sum of terms s
au(p) = & AOT(/l) At the center pointy, there are three such terms; at every other poing
there are onIy two. O 1w
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The matrixBiy is

[ ¢4-1) -1 -1 -1 -1 -1 -1
1 (4-a) -1 0 0 0 -1
-1 1 (4-1) -1 0 0 0
Byl -1 0 -1 (-1 -1 0 0 (6.16)
-1 0 0 1 (-1 -1 0
-1 0 0 0 1 (-1 -1
-1 -1 0 0 0 -1 (4-a0) |

1 Definition 6.5. Define theresolvent prekernédy G© := (B®W)~2,
2 Our final result may be obtained by brutal and direct comjprtat

Theorem 6.6. The resolvent prekernel'Gis given by

[ (2— /l)K]_ K1 K1 K1 K1 K1 K1 ]
K1 K2 K3 K4 K5 K4 K3
14 K1 K3 K2 K3 K4 K5 Ka
- 15(6—/1)‘1'(/1)1;7(/1) K1 K4a K3 K2 K3 K4 Ks |, (6.17)
K1 Ks K4 K3 K2 K3 Ka
K1 K4a K5 K4 K3 K2 K3
K1 K3 K4 Ks K4 K3 Ko |

where
k1= B-)GE-)(6-2),
k2 = 201- 3000 + 28222 — 2423 + 324,
k3 = 87— 750+ 190% - 323,
ks =57-241 - 24% and
ks = 51— 151 - 22

In particular, G is symmetric and invertible with determinant

1 15 ! (6 - /l) (/l)zT(/l)

W = b

detG 2( - ) 5 > (6.18)
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