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Abstract. For the Laplacian∆ defined on a p.c.f. self-similar fractal, we give an explicit
formula for the resolvent kernel of the Laplacian with Dirichlet boundary conditions, and
also with Neumann boundary conditions. That is, we construct a symmetric functionG(λ)

which solves (λI − ∆)−1 f (x) =
∫

G(λ)(x, y) f (y) dµ(y). The method is similar to Kigami’s
construction of the Green kernel in [Kig01,§3.5] and is expressed as a sum of scaled and
“translated” copies of a certain functionψ(λ) which may be considered as a fundamental
solution of the resolvent equation. Examples of the explicit resolvent kernel formula are
given for the unit interval, standard Sierpinski gasket, and the level-3 Sierpinski gasket
SG3.
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1. Introduction12

A theory of analysis on certain self-similar fractals is developed around the Laplace13

operator∆ in [Kig01]. In this paper, we consider the resolvent function (λI − ∆)−1 and14

obtain a kernel for this function when the Laplacian is takento have Dirichlet or Neumann15

boundary conditions. That is, we construct a symmetric function G(λ) which weakly solves16

(λI − ∆)G(λ)(x, y) = δ(x, y), meaning that17
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∫

G(λ)(x, y) f (y) dµ(y) = (λI − ∆)−1 f (x). (1.1)

For the caseλ = 0, this is just the Green function for∆. Consequently, it is not surprising 1

that our construction is quite analogous to that of the Greenfunction as carried out in 2

[Kig01, §3.5]; see also [Str06,§2.6] for the case of the Sierpinski gasket (and the unit3
interval) worked out in detail, and [Kig03]. 4

We present our main results in§1.2, just after the introduction of the necessary technical5
terms in§1.1. It is the authors’ hopes that the resolvent kernel will provide an alternate 6

route to obtaining heat kernel estimates (see [FHK94, HK99]) in this setting, as well as 7

other information about spectral operators of the form 8

ξ(∆) =
∫

Γ

ξ(λ)(λI − ∆)−1 dλ, (1.2)

in the same manner as used by Seeley [See67, See69] for the Euclidean situation. Some 9

initial results in this direction will appear in [Rog08]. 10

To explain the method of construction for the resolvent kernel, we carry out the pro- 11

cedure in the case of the unit interval in§2; we believe this particular method has not12

previously appeared in the literature. In§3, we show how the construction may be general-13

ized to any post-critically finite self-similar fractal. In§5, we give the explicit formulas for 14

the Sierpinski gasket and in§6 we give the explicit formulas for a variant of the Sierpinski 15

gasket which we callSG3. 16

1.1. Background, notation, and fundamentals.We work in the context of post-critically 17

finite (p.c.f.) self-similar fractals. The full and precisedefinition may be found in [Kig01, 18

Def. 1.3.13], but for the present context it suffices to think of such objects as fractals which19

may be approximated by a sequence of graphs, via an iterated function system (IFS). A 20

more general setting is possible; cf. [Kig03]. We now make this more precise. 21

Definition 1.1. Let {F1, F2, . . . , FJ} be a collection of Lipschitz continuous functions on22

R
d with 0 < Lip(F j) < 1 for eachj. Let X denote theattractor of this IFS; existence and 23

uniqueness ofX was shown in [Hut81]. Theself-similar set Xis the fixed point of the set 24

mappingF(X) = X, whereF(A) :=
⋃J

j=1 F j(A), andX is compact and nonempty. 25

From the IFS introduced in the previous definition, we now build a sequence of graphs 26

which approximatesX in a suitable sense. 27

Definition 1.2. Each mapF j of the IFS definingX has a fixed pointx j . Theboundaryof
X is the largest subsetV0 ⊆ {x1, . . . , xN} satisfying

Fw(X) ∩ Fw′ (X) ⊆ Fw(V0) ∩ Fw′ (V0), for anyw , w′ with |w| = |w′|.
The p.c.f. condition mentioned above means that cellsF j(X) intersect only at points of 28

F j(V0). 29

Let G0 be the complete graph onV0, and inductively defineGm := F(Gm−1). Also, we 30

use the notationx ∼m y to indicate thatx andy arem-level neighbours, i.e., that there is 31

an edge inGm with endpointsx andy. We useVm = Fm(V0) to denote the vertices ofGm, 32

andV∗ :=
⋃

m Vm. The fractalX is the closure ofV∗ with respect to either the Euclidean or33

resistance metric. 34

Now we are able to make precise the sense in whichX is the limit of graphs: one 35

may compute the Laplacian (and other analytic objects, including graph energy, resistance36
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distance, etc.) for functionsu : X → R by computing it onGm and taking the limit as1

m→ ∞.2

Definition 1.3. We assume the existence of aself-similar (Dirichlet) energy formE on X.
That is, for functionsu : X→ R, one has

E(u) =
J

∑

j=1

r−1
j E(u◦F j), (1.3)

for some choice ofrenormalization factors r1, . . . , rJ ∈ (0, 1) depending on the IFS. This
quadratic form is obtained from the approximating graphs asthe appropriately renormal-
ized limit of EGm(u) := EGm(u, u), where them-level bilinear form is defined

EGm(u, v) :=
1
2

∑

x,y∈Vm
x∼m y

cxy(u(x) − u(y))(v(x) − v(y)). (1.4)

The constantcxy = c(m)
xy refers to theconductanceof the edge inGm connectingx to y (with3

cxy = 0 if there is no such edge). The dependence ofc(m)
xy on m is typically suppressed, as4

x ∼m y for at most one value ofm on p.c.f. fractals.5

Definition 1.4. We also assume the existence of aself-similar measureµ

µ(A) =
J

∑

j=1

µ jµ(F−1
j (A)), (1.5)

with weightsµ j satisfying 0< µ j < 1 and
∑

j µ j = 1, and normalized so thatµ(X) = 1.6

Thestandard measurerefers to the caseµ j =
1
J , for eachj.7

Remark1.5. The renormalization factorr j should be confused neither with the contraction8

factorsLip(F j) of the maps of the IFS, nor the weightsµ j of the self-similar measureµ.9

The values of these constants are completely independent.10

Also, it should be noted that the existence of a self-similarenergy asserted in Def-11

inition 1.3 is a strong assumption. While the the self-similar measures of Definition 1.412

always exist [Hut81], the existence of the self-similar energy is a much more delicate ques-13

tion.14

Definition 1.6. The Laplacian is defined weakly in terms of the energy form. Foru ∈15

domE, one saysu ∈ dom∆µ with ∆µu = f iff16

E(u, v) = −
∫

X
f v dµ, for all v ∈ dom0E, (1.6)

where dom0E is the set of functions in domE which vanish on∂X = V0.17

It follows from (1.3), (1.5) and Definition 1.6 that∆ satisfies the scaling identity18

∆(u◦F j) = r jµ j(∆u)◦F j , (1.7)

and pointwise formula given by the uniform limit19

∆u(x) = lim
m→∞

(∫

K
h(m)

x dµ

)−1

∆mu(x), (1.8)

whereh(m)
x is a piecewise harmonic spline satisfyingh(m)

x (y) = δxy for y ∈ Vm, and20



4 IONESCU, PEARSE, ROGERS, RUAN, AND STRICHARTZ

∆mu(x) =
∑

y∼m x

cxy(u(y) − u(x)). (1.9)

Roughly speaking,h(m)
x is a “tent” function with peak atx which vanishes outside them-cell 1

containingx. 2

Definition 1.7. We useω = ω1ω2 · · ·ωm to denote aword of length|ω| = mon the symbol 3

alphabet{1, 2, . . . , J}. This notation is used to denote a composition of the mappings F j 4

via Fω = Fω1 ◦Fω2 ◦ . . .◦Fωm. Similarly, Kω = Fω(X) refers to a certainm-level cell, with 5

measureµ(Kω) = µω := µω1µω2 . . . µωm (cf. (1.5)). The collection of all finite words is 6

denotedW∗ :=
⋃

m{1, 2, . . . , J}m. Theboundary of an m-cellis ∂Kω := Fω(V0). 7

Definition 1.8. The normal derivativeof a functionu is computed at a boundary point 8

qi = Fi(qi) by 9

∂nu(qi) := lim
m→∞

1
rm
i

∑

y∼m qi

(u(qi) − u(y)), qi ∈ V0. (1.10)

At a general junction pointx = Fωqi , the normal derivative is computed with respect to a10

specificm-cell Kω: 11

∂Kω

n u(x) = ∂Kω

n u(Fωqi) :=
1

rω1 · · · rωm

∂n(u◦Fω)(qi). (1.11)

1.2. Statement of main result. 12

Theorem 1.9. Assume thatλ is not a Dirichlet eigenvalue of∆, and neither is rωµωλ, for 13

anyω ∈ W∗. For the Laplacian on X with Dirichlet boundary conditions,the resolvent 14

kernel G(λ) defined by(1.1) is given by the formula 15

G(λ)(x, y) =
∑

ω∈W∗

rωΨ
(rωµωλ)(F−1

ω x, F−1
ω y), (1.12)

whereΨ(λ)(x, y) :=
∑

p,q∈V1\V0

G(λ)
pqψ

(λ)
p (x)ψ(λ)

q (y). (1.13)

Here,ψ(λ)
p is the solution to the resolvent equation at level 1, i.e. 16















(λI − ∆)ψ(λ)
p = 0, on each Kj = F j(X),

ψ(λ)
p (q) = δpq, for p ∈ V1 \ V0 and q∈ V1,

(1.14)

whereδpq is the Kronecker delta. The coefficients G(λ)
pq in (1.13)arise as the entries of the 17

inverse of the matrix B given by 18

B(λ)
pq :=

∑

K j∋q
∂

K j

n ψ
(λ)
p (q), q ∈ F j(V0), (1.15)

where the sum is taken over all 1-cells containing q. 19

This result appears with proof as Theorem 3.12; a similar formula for Neumann bound- 20

ary conditions appears in Theorem 4.2. 21

Remark1.10. In (1.15) and elsewhere, we use the notation
∑

K j∋q to indicate a sum being 22

taken over the set{ j ...q ∈ K j = F j(X)}. 23
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The rationale for the definitions (1.12)–(1.15) is best explained by the following heuris-1

tic argument and by comparison to [Str06, Thm. 2.6.1]. One would like Ψ(λ) to be a weak2

solution to the resolvent equation on a 1-cellC = Fi(X), except at the boundary where3

some Dirac masses may appear. However, this suffices to see thatr iΨ
(r iµiλ)(F−1

i x, F−1
i y) will4

then be a weak solution on the 2-cellFi(C), and in the limit (1.12) gives a solution on the5

entire fractal. Each term added to the partial sum of (1.12) corresponds to canceling the6

Dirac masses at the previous stage and introducing new ones at the next; these are wiped7

away in the limit.8

For Ψ(λ) to be a weak solution onC, we mean that iff ∈ dom∆ and f vanishes on9

∂C = Fi(V0), then10

∫

Ψ
(λ)(x, y)(λI − ∆) f (y) dµ(y) =

∑

p

ψ(λ)
p (x) f (p).

With (1.13) as given above, integration by parts and linearity give11

∫

Ψ
(λ)(x, y)(λI − ∆) f (y) dµ(y) =

∫

(λI − ∆y)Ψ(λ)(x, y) f (y) dµ(y)

= (λI − ∆y)
∑

p,q

(B(λ)
pq)
−1ψ(λ)

p (x)ψ(λ)
q (y) f (y).

Now by (1.14),ψ(λ)
p satisfies the resolvent equation on the interior of the 1-cells, but∆ψ(λ)

p12

has Dirac masses at the boundary points with weightsB(λ)
pq =

∑

q ∂nψ
(λ)
p (q). In other words,13

whenψ(λ)
p is extended by 0 to the cells not containingp, we have∆ψ(λ)

p = λψ(λ)
p except14

at q ∈ V1 \ V0, where (λI − ∆)ψ(λ)
p (q) = B(λ)

pq. Therefore, the calculation above may be15

continued:16

∫

Ψ
(λ)(x, y)(λI − ∆) f (y) dµ(y) =

∑

p,q

(B(λ)
pq)
−1ψ(λ)

p (x)B(λ)
pqδq(y) f (y)

=

∑

p

ψ(λ)
p (x) f (p).

The foregoing computation is the origin and motivation for (1.13)–(1.15). A key tech-17

nical point is the use of a linear combinationu of vectorsψ(λ)
q for which (λI − ∆)u is a18

single(weighted) Dirac mass atp. From the calculation, it is clear that this hinges on the19

invertibility of B; this is the significance of Lemma 3.7.20

As mentioned just above, once the solution is obtained on level 1, it may be transferred21

to a cellFω(X) by rescaling appropriately. However, this is not sufficient to allow us to22

compute (λI − ∆y)Gλ(x, y); some finesse is required to ensure that these solutions match23

where these cells intersect, that is, on the boundary pointsVm+1 \V0. Some further work is24

needed; this is carried out in the technical lemmas of§3.25

2. The resolvent kernel for the unit interval26

The unit intervalI = [0, 1] has a self-similar structure derived from the IFS consisting27

of F1(x) = x
2 andF2(x) = x

2 +
1
2. In this section, we exploit this perspective to derive28

the resolvent kernel for the Dirichlet Laplacian onI by mimicking the construction of the29

Green function in [Kig01,§3.5] (see also [Str06,§2.6]). This exposition is intended to30
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(a) (b) (c)

Figure 1. Mathematica plot ofΨ(λ) from Prop. 2.1 forλ = 1. (a) Ψ(λ)(x, y). (b)
1
2 (Ψ(λ/4)(2x, 2y) + Ψ(λ/4)(2x − 1, 2y − 1)). (c) 1

4 (Ψ(λ/16)(4x, 4y) + Ψ(λ/16)(4x − 1, 4y − 1) +
Ψ

(λ/16)(4x− 2, 4y− 2)+ Ψ(λ/16)(4x− 3, 4y− 3)).

make the general case (presented in the next section) easierto digest. We build towards the 1

result stated formally in Prop. 2.1. 2

Proposition 2.1. Let∆ = − d2

dx2 be the Laplacian on the unit interval I= [0, 1], taken with 3

Dirichlet boundary conditions. Ifλ is not a Dirichlet eigenvalue of∆, then the resolvent 4

kernel G(λ) in (1.1) is given by 5

G(λ)(x, y) =
∞
∑

m=0

∑

|ω|=m

1
2m
Ψ

(λ/4m)(F−1
ω x, F−1

ω y), (2.1)

for Ψ
(λ)(x, y) :=

sinh
√
λ

2

2
√
λ cosh

√
λ

2

ψ(λ)(x)ψ(λ)(y), (2.2)

and ψ(λ)(x) :=
1

sinh
√
λ

2















sinh
√
λx, x ≤ 1

2 ,

sinh
√
λ(1− x), x ≥ 1

2 ,
(2.3)

where convention stipulatesΨ(λ/4m)(F−1
ω x, F−1

ω y) = 0 for x, y not in FωI. 6

Remark2.2 (A preview of the general case). Note that the sum in (2.1) is finite ifx , y, or 7

if x = y is dyadic. More importantly,ψ(λ)
= ψ(λ)

1/2 is the solution to the resolvent equation at 8

level 1, i.e. 9















(λI − ∆)ψ(λ)
= 0, on (0, 1

2) and (12 , 1),

ψ(λ)(0) = ψ(λ)(1) = 0, andψ(λ)( 1
2) = 1.

(2.4)

In §3, we develop the resolvent kernel in the general case from these observations. 10

In keeping with the self-similar spirit of the sequel, we usethe term1-cell in reference 11

to the subintervals [0, 1
2] and [12 , 1] in the following proof. 12

Proof of Prop. 2.1.On the unit intervalI , one has the resolvent kernel 13

G(λ)(x, y) =
1

√
λ sinh

√
λ















sinh
√
λ(1− y) sinh

√
λx x≤ y,

sinh
√
λysinh

√
λ(1− x), x ≥ y.

(2.5)

For x ≤ 1
2 ≤ y, one has 14

G(λ)(x, y) =
sinh
√
λ(1− y) sinh

√
λx

√
λ sinh

√
λ

by (2.5)
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(i) (ii) (iii)

Figure 2. Mathematica plot ofG(λ) for λ = 1 and two of its partial sums. (i) The sum
of (a) and (b) in Fig. 1. (ii) The sum of (a), (b), (c) in Fig. 1. (iii) The resolvent kernel
G(λ)(x, y) obtained in the limit.

=
sinh

√
λ

2

2
√
λ cosh

√
λ

2

· sinh
√
λxsinh

√
λ(1− y)

sinh2
√
λ

2

sinh 2a = 2 sinhacosha

=
sinh

√
λ

2

2
√
λ cosh

√
λ

2

ψ(λ)(x)ψ(λ)(y) by (2.3). (2.6)

The same computation can be repeated fory ≤ 1
2 ≤ x and hence (2.6) holds wheneverx1

andy are in different 1-cells ofI .2

It remains to consider the case when bothx andy lie in the same 1-cell ofI . Suppose3

thatx ≤ y ≤ 1
2 and consider the difference4

R(x, y) := G(λ)(x, y) −
sinh

√
λ

2

2
√
λ cosh

√
λ

2

ψ(λ)(x)ψ(λ)(y)

=
sinh
√
λx(sinh

√
λ(1− y) − sinh

√
λy)

√
λ sinh

√
λ

(2.7)

=
sinh
√
λxsinh

√
λ( 1

2 − y)
√
λ sinh

√
λ

2

by (2.5)

=
1
2G(λ/4)(2x, 2y), (2.8)

where (2.7) follows from the identity sinh(1− a) − sinha = 2 sinh(12 − a) cosh1
2. In the5

case wheny ≤ x ≤ 1
2, one also obtainsR(x, y) = 1

2G(λ/4)(2x, 2y). On the other hand,6

when x andy are both in the other 1-cell, one obtains (by analogous computations) that7

R(x, y) = 1
2G(λ/4)(2x − 1, 2y − 1). Note that ifλ is not a Dirichlet eigenvalue of∆, then8

neither isλ/4m for anym = 0, 1, 2, . . . . Consequently, if we defineΨ(λ)(x, y) as in (2.2),9

then formula (2.1) forG(λ)(x, y) follows. �10

Remark2.3. It is interesting to note that the coefficient which appears in (2.6) is11

sinh
√
λ

2

2
√
λ cosh

√
λ

2

=
1

ψ(λ)′( 1
2−) − ψ(λ)′( 1

2+)
.

Formally, this indicates (λI − ∆)G(λ)(x, y) = δ(x − y); compare to [Str06, (2.6.3)]. Also,12

observe that13
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G(λ)(x, 1
2) =

sinh
√
λ

2

2
√
λ cosh

√
λ

2

ψ(λ)(x)ψ(λ)( 1
2).

At each successive iteration of (2.8), one is essentially “correcting” the formula on the 1

diagonal for them-cell with rescaled copies of the formula for the (m+ 1)-cell; Figures 1 2

and 2 are intended to explain this. In the next section, we follow this strategy for the 3

construction of the resolvent kernel in the general case. 4

Remark2.4. The procedure in the proof of Proposition 2.1 may also be carried out for the 5

Neumann case: define a functionϕ(λ) to be the solution of 6



























(λI − ∆)ϕ(λ)
= 0, on [0, 1

2] and [12 , 1]
d
dxϕ

(λ)(x) = 0, x = 0, 1

ϕ(λ)( 1
2) = 1,

which is given by 7

ϕ(λ)(x) =
1

cosh
√
λ

2















cosh
√
λx, x ≤ 1

2 ,

cosh
√
λ(1− x), x ≥ 1

2 .

Observe that in parallel to Remark 2.3, one again has 8

G(λ)

N

(

x, 1
2

)

=
cosh

√
λ

2

2
√
λ sinh

√
λ

2

ϕ(λ)(x) ϕ(λ)
(

1
2

)

and 9

cosh
√
λ

2

2
√
λ sinh

√
λ

2

=
1

d
dxϕ

(λ)( 1
2−) − d

dxϕ
(λ)( 1

2+)
.

By analogous computations, if we define 10

Φ
(λ)

N (x, y) =
cosh

√
λ

2

2
√
λ sinh

√
λ

2

ϕ(λ)(x) ϕ(λ)(y),

then we obtain the Neumann resolvent kernel 11

G(λ)

N (x, y) =
∞
∑

m=0

∑

|ω|=m

1
2m
Φ

(λ/4m)(F−1
ω x, F−1

ω y).

3. The Dirichlet resolvent kernel for p.c.f. self-similar fractals 12

In this section, we proceed through a sequence of lemmas which will allow us to prove 13

Theorem 1.9, which is stated in full in Theorem 3.12. On a firstreading, the reader may 14

wish to read Theorem 3.12 first, and then work through the lemmas in reverse order. We 15

take one hypothesis of Theorem 1.9 as a blanket assumption throughout this section: 16

Assumption3.1. None of the numbersλω = µωrωλ, for ω ∈ W∗, is a Dirichlet eigenvalue 17

of the Laplacian. 18

We construct the resolvent kernel formula according to the following rough outline: 19
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(1) We build a solutionη(λ)
p to the eigenfunction equation which takes the value 1 at one1

boundary point ofX and is 0 on the other boundary points.2

(2) We show howψ(λ)
p may be written in terms of rescaled copies ofη(λ)

p , i.e., we decompose3

the solution around a pointp ∈ V1 \ V0 into solutions for each cell containingp.4

(3) We use this construction to obtain a solution on the cellsof levelm.5

(4) We show how the (m+ 1)-level solution contains Dirac masses onVm which cancel6

with the Dirac masses of them-level solution, so that the sum overm is telescoping7

and yields a global solution.8

The first two steps are carried out in§3.1. In§3.2, we collect some properties ofB(λ)
pq :=9

∑

K j∋q ∂
K j

n ψ
(λ)
p (q), as introduced in (1.14).1 For eachλ, we think of B(λ)

pq as the entries of a10

matrix in p andq. Under Assumption 3.1, we showB(λ) is symmetric, invertible, and that11

limλ→0 B(λ)
= B(0). Finally, the remaining two steps are carried out in§3.3.12

Throughout this section, we will need to analyze the properties of a continuous function13

that satisfies theλ-eigenfunction equation on all 1-cells, but whose the Laplacian may fail14

to be inL2. Our motivation is that the Laplacian of such a function has Dirac masses at15

pointsp ∈ V1 \V0 with coefficients that can be computed from the normal derivatives. The16

following result is standard; see [Str06,§2.5], for example.17

Proposition 3.2. If u is continuous and∆u = v j on each1-cell K j = F j(X), then∆u exists18

as a measure, and19

∆u(x) =
J

∑

j=1

v jχK j
(x) −

∑

q∈V1\V0

δq(x)
∑

K j∋q
∂

K j

n u(q) (3.1)

whereδq(x) is a Dirac mass and∂K j

n u(q) is the normal derivative of u at q with respect to20

the cell Kj , and the sum is expressed in the notation of Remark 1.10.21

3.1. The basic building blocks of the resolvent kernel.22

Lemma 3.3. For anyλ that is not a Dirichlet eigenvalue of the Laplacian, and for each23

p ∈ V0, there is a functionη(λ)
p (x) ∈ domM(∆) which solves24















(λI − ∆)η(λ)
p (x) = 0, on X,

η(λ)
p (q) = δpq, ∀q ∈ V0,

(3.2)

whereδpq is the Kronecker delta. Moreover, ifζp is the harmonic function on X with25

ζp(q) = δpq, then26

η(λ)
p = ζp − λθ(λ)

p on all of X, and (3.3)

∂nη
(λ)
p (q) = ∂nζp(q) − λκ(λ)

pq for q ∈ V0, (3.4)

whereθ(λ)
p andκ(λ)

pq are meromorphic functions ofλ with poles at the Dirichlet eigenvalues27

of the Laplacian, andκ(λ)
pq = κ

(λ)
qp.28

Proof. Let { fn} denote the Dirichlet eigenfunctions of the Laplacian, withthe correspond-29

ing eigenvaluesλn arranged so thatλn+1 ≥ λn; equality occurs iff λn has multiplicity greater30

than one. The functionsfn may be assumed orthonormal, and their span is dense inL2.31

Consequently we may writeζp =
∑

n ap(n) fn. The function32

1Recall thatψ(λ)
p is the solution to the resolvent equation on level 1 as definedin (1.15).
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θ(λ)
p =

∑

n

ap(n)

λ − λn
fn

then satisfies 1

(λI − ∆)θ(λ)
p =

∑

n

ap(n)

λ − λn
(λ − λn) fn =

∑

n

ap(n) fn = ζp

in the L2 sense. We also see that∆θ(λ)
p =

∑

n λnap(n) fn/(λ − λn) is L2 convergent, so 2

θ
(λ)
p ∈ domL2(∆). In particular,θ(λ)

p is continuous and equal to zero onV0. 3

Defineη(λ)
p := ζp − λθ(λ)

p . Then (λI − ∆)η(λ)
p = (λI − ∆)ζp − λζp = 0, and forq ∈ V0, 4

η(λ)
p (q) = ζp(q) = δpq. (3.5)

To verify (3.4), we will need the fact that

∂nη
(λ)
p (q) = ∂nη

(λ)
q (p), (3.6)

which follows by computing the normal derivatives as follows: 5

∂nη
(λ)
q (p) − ∂nη

(λ)
p (q) =

∑

s∈V0

(

η(λ)
p (s)∂nη

(λ)
q (s) − η(λ)

q (s)∂nη
(λ)
p (s)

)

by (3.5)

=

∫

X

(

η(λ)
p (x)∆η(λ)

q (x) − η(λ)
q (x)∆η(λ)

p (x)
)

dµ(x) Gauss-Green

= 0, ∆η(λ)
s = λη

(λ)
s .

Now (3.4) follows via 6

∂nζp(q) − ∂nη
(λ)
p (q) = ∂nζp(q) − ∂nη

(λ)
q (p) by (3.6)

=

∑

s∈V0

(

η(λ)
q (s)∂nζp(s) − ζp(s)∂nη

(λ)
q (s)

)

by (3.5)

=

∫

X

(

η(λ)
q (x)∆ζp(x) − ζp(x)∆η(λ)

q (x)
)

dµ(x) Gauss-Green

= −λ
∫

X
ζp(x)η(λ)

q (x) dµ(x) ∆ζp = 0

= λ

∫

X

(

λζp(x)θ(λ)
q (x) − ζp(x)ζq(x)

)

dµ(x) by (3.3)

= λ2
∑

n

ap(n)aq(n)

λ − λn
− λ

∑

n

ap(n)aq(n)

= λ
∑

n

λnap(n)aq(n)

λ − λn
.

Define for eachp, q ∈ V0 the functions 7

κ(λ)
pq :=

∑

n

λnap(n)aq(n)

λ − λn
(3.7)
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so that∂nζq(p) − ∂nη
(λ)
q (p) = λκ(λ)

pq. It is evident thatκ(λ)
pq is symmetric inp andq. It is also1

meromorphic inλ with poles at the pointsλn, as may be verified by writing the expansion2

on the disc centered atzof radius|z− λn|/2 as follows:3

κ(λ)
pq =

∑

n

λnap(n)aq(n)

z− λn

∞
∑

k=0

(

z− λ
z− λn

)k

=

∞
∑

k=0

(λ − z)k
∑

n

λnap(n)aq(n)

(λn − z)k+1

and using the fact that{ap(n)} and {aq(n)} are in ℓ2 hence their product is inℓ1, while4

λn/(λn − z)k+1 is bounded for eachk. An almost identical argument shows thatθ(λ)
p is5

meromorphic inλ with values in domL2(∆), so the proof is complete. �6

Corollary 3.4. If Fω(X) is a cell and rωµωλ is not a Dirichlet eigenvalue thenψ andη are7

related via8

ψ(λ)
p (q) =



















η
(r jµ jλ)

F−1
j p

(F−1
j q) if p, q ∈ K j ,

0 otherwise.
(3.8)

Proof. From (1.7) we have∆(u◦F−1
ω ) = (rωµω)−1(∆u)◦F−1

ω , for anyu. Then from (1.14)9

and (3.2), one can observe that10















(λI − ∆)η(rωµωλ)
p ◦F−1

ω = 0, on Kω = Fω(X)

η
(rωµωλ)
p ◦F−1

ω (q) = δFω(p)q ∀q ∈ Fω(V0).
�

Remark3.5. It is helpful to compare (3.8) to the discussion of the unit interval, where (2.8)11

may be rewritten as12

R(x, y) =















1
2G(λ/4)(2x, 2y) if x, y ∈ K j ,

0 otherwise.

3.2. The matrix B(λ). In the construction of the resolvent kernel, the matrixB(λ) plays the13

same role as the transition matrix for the discrete Laplacian on V1 in the corresponding14

argument of Kigami for the construction of the Dirichlet Green’s function. We now collect15

some important properties ofB(λ) for use below.16

Lemma 3.6. The matrix B(λ) is symmetric for anyλ, andlimλ→0 B(λ)
= B(0).17

Proof. From (3.5) we haveη(λ)
p (q) = η(λ)

q (p), whence∂K j

n ψ
(λ)
p (q) = ∂K j

n ψ
(λ)
q (p), and thusB(λ)

pq =18

B(λ)
qp. Then from (3.8), ifj1, . . . jk are thosej for which K j contains bothp andq, then19

B(λ)
pq =

k
∑

i=1

∂
K j i
n

(

η
(r j iµ j iλ)

F−1
j i

(p)
◦F−1

j i

)

(q)

=

k
∑

i=1

r−1
j i ∂

K j i
n η

(r j iµ j iλ)

F−1
j i

(p)

(

F−1
j i (q)

)

=

k
∑

i=1

r−1
j i ∂

K j i
n ζF−1

j i
(p)

(

F−1
j i (q)

)

+

k
∑

i=1

r−1
j i r j iµ j iλ κ

(r j iµ j iλ)

F−1
j i

(p)F−1
j i

(q)
by (3.4)
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= B(0)
pq+ λ

k
∑

i=1

µ j iκ
(r j iµ j iλ)

F−1
j i

(p)F−1
j i

(q)
(3.9)

in which the final sum term is a meromorphic function ofλ with poles at thoseλ for which 1

r j iµ j iλ is a Dirichlet eigenvalue. We used the observation that the harmonic case with 2

functionsζ is just the caseλ = 0. From (3.9) it is also clear thatB(λ)
pq→ B(0)

pq asλ→ 0. � 3

As noted in the discussion following the statement of Theorem 1.9, it is important that 4

the action ofB(λ) on the subspaceV1 \ V0 is invertible. 5

Lemma 3.7. If λ is not a Dirichlet eigenvalue then B(λ) is invertible. 6

Proof. Suppose thatB(λ)
=

[

B(λ)
pq

]

p,q∈V1\V0
is not invertible, so there are valuesaq (not all 0) 7

for which
∑

q∈V1\V0
B(λ)

pqaq = 0. Define 8

u(x) :=
∑

q∈V1\V0

aqψ
(λ)
q (x).

It is clear that (λI−∆)u = 0 on each 1-cell, and thatu
∣

∣

∣

V0
= 0. Now using the notation from 9

Remark 1.10, we compute the sum of the normal derivatives ofu over cells containingp, 10

for any p ∈ V1 \ V0: 11

∑

K j∋p

∂
K j

n u(p) =
∑

q∈V1\V0

aq

∑

K j∋p

∂
K j

n ψ
(λ)
q (p)

=

∑

q∈V1\V0

aqB(λ)
qp

= 0,

where the last equality follows by applying the symmetry established in Lemma 3.6 to the 12

initial assumption. So Proposition 3.2 implies∆u is continuous. It follows that (λI−∆)u = 13

0 onX, sou is a Dirichlet eigenfunction with eigenvalueλ, which is a contradiction. � 14

The next result is used to prove Lemma 3.11 and also makes use of (3.8). 15

Lemma 3.8. For p ∈ V1 \ V0 and q∈ V0 we have 16

∑

s∈V1\V0

B(λ)
psη

(λ)
q (s) = −B(λ)

pq (3.10)

Proof. For a 1-cellK j = F j(X), the Gauss-Green formula gives 17

∑

s∈F j (V0)

(

ψ(λ)
p (s)∂K j

n η
(λ)
q (s) − η(λ)

q (s)∂K j

n ψ
(λ)
p (s)

)

=

∫

K j

(

ψ(λ)
p (x)∆η(λ)

q (x) − η(λ)
q (x)∆ψ(λ)

p (x)
)

dµ(x) = 0

because bothψ(λ)
p (x) andη(λ)

q (x) are Laplacian eigenfunctions with eigenvalueλ on each 18

1-cell K j . However fors ∈ V1 we haveψ(λ)
p (s) = δps, so this becomes 19

∂
K j

n η
(λ)
q (p) =

∑

s∈F j (V0)

η(λ)
q (s)∂K j

n ψ
(λ)
p (s). (3.11)
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The continuity of the Laplacian ofη(λ)
q at p ∈ V1 \ V0 implies that its normal derivatives1

sum to zero, as indicated by Proposition 3.2. Thus, summing over 1-cells yields2

0 =
J

∑

j=1

∂
K j

n η
(λ)
q (p) =

J
∑

j=1

∑

s∈F j (V0)

η(λ)
q (s)∂K j

n ψ
(λ)
p (s) by (3.11)

=

∑

s∈V1

η(λ)
q (s)

∑

K j∋s
∂

K j

n ψ
(λ)
p (s) interchange

=

∑

s∈V0

η(λ)
q (s)B(λ)

ps+

∑

s∈V1\V0

η(λ)
q (s)B(λ)

ps split

= B(λ)
pq+

∑

s∈V1\V0

B(λ)
psη

(λ)
q (s) η(λ)

q (s) = δqs onV0

where we used the sum notation of Remark 1.10. �3

3.3. Construction of the resolvent kernel. Now that we have obtained some necessary4

properties ofB(λ), we can proceed with the development of a sequence of technical lemmas5

required for the proof of the main result. We begin with another corollary of Proposi-6

tion 3.2.7

Corollary 3.9. If p ∈ V1 andλ satisfies Assumption 3.1, then

(λI − ∆)ψ(λ)
p =

∑

q∈V1\V0

B(λ)
pqδq. (3.12)

Proof. With ψ(λ)
p andB(λ)

pq defined as in (1.14)–(1.15), this is clear from (3.1). �8

Remark3.10. From the definition in (1.15), we haveB(λ)
pq =

∑

K j∋q ∂
K j

n ψ
(λ)
p (q) for q ∈ F j(V0).9

Thus Corollary 3.9 expresses the fact that an application ofthe resolvent toψ(λ)
p leaves10

behind nothing but a Dirac mass at every point ofV1 \V0, each weighted by the sum of the11

normal derivatives ofψ(λ)
p .12

The conclusion of the following lemma appears very technical but it expresses a straight-13

forward idea: at each stagem, our formula for the resolvent corrects Dirac masses at the14

mth level and introduces new ones at the (m+ 1)th. Thus, summing overm (as we do in15

Theorem 3.12) produces a telescoping series. This makes precise the comment “these are16

wiped away in the limit” from the introductory discussion ofthe main result.17

Lemma 3.11. Defineξ(λ)
p,m to be the unique function solving18















(∆ − λ)ξ(λ)
p,m = 0, on all m-cells,

ξ
(λ)
p,m(q) = δpq, for p ∈ Vm \ V0 and q∈ Vm.

(3.13)

Then one has the identity19

(λI − ∆y)
∑

|ω|=m

rωΨ
(rωµωλ)(F−1

ω x, F−1
ω y)

=

∑

p∈Vm+1\V0

ξ(λ)

p,m+1(x)δp(y) −
∑

q∈Vm\V0

ξ(λ)
q,m(x)δq(y).
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Proof. SinceΨ(rωµωλ) is a sum of functions satisfying theλ-eigenfunction equation on the 1

level 1 cellsK j , it is immediate that 2

(λ − ∆y)Ψ(rωµωλ)(F−1
ω x, F−1

ω y) = 0, for y < Vm+1.

By Proposition 3.2, we therefore need only compute the sum ofnormal derivatives at points 3

of Vm+1. 4

(1) First suppose thatz ∈ Vm+1 \ Vm with z= Fωp for some|ω| = mandp ∈ V1 \ V0, so 5

that 6

Ψ
(rωµωλ)(F−1

ω x, F−1
ω z) = r−1

ω

∑

s,t∈V1\V0

G(rωµωλ)
st ψ(rωµωλ)

s (F−1
ω x)ψ(rωµωλ)

t (F−1
ω z),

and collecting normal derivatives atzyields 7

∑

Fω(K j )∋z
∂

Fω(K j)
n

(

Ψ
(rωµωλ)(F−1

ω x, F−1
ω z)

)

= r−1
ω

∑

s,t∈V1\V0

G(rωµωλ)
st ψ(rωµωλ)

s (F−1
ω x)

∑

Fω(K j )∋z
∂

Fω(K j)
n ψ

(rωµωλ)
t (F−1

ω z)

=

∑

s,t∈V1\V0

G(rωµωλ)
st ψ(rωµωλ)

s (F−1
ω x) B(rωµωλ)

tp , (3.14)

because 8

B(rωµωλ)
tp =

∑

K j∋p

∂
K j

n ψ
(rωµωλ)
t (p) by (1.15)

=

∑

K j∋F−1
ω z

∂
K j

n ψ
(rωµωλ)
t (F−1

ω z) p = F−1
ω z ∈ K j

= rω
∑

FωK j∋z
∂

FωK j

n

(

ψ
(rωµωλ)
t ◦F−1

ω

)

(z),

where the last line follows from∂Kω

n u(F−1
ω qi) = rω∂n(u◦F−1

ω )(qi); cf. (1.11). 9

Continuing the computation from (3.14) and making use ofG := B−1, we have 10

∑

Fω(K j )∋z
∂

Fω(K j)
n

(

Ψ
(rωµωλ)(F−1

ω x, F−1
ω z)

)

=

∑

s∈V1\V0

δsp

(

ψ(rωµωλ)
s (F−1

ω (x))
)

= ψ(rωµωλ)
p (F−1

ω (x))

= ξ(λ)

p,m+1(x)

thus showing that (λI − ∆y) has a Dirac massξ(λ)

p,m+1(x)δz(y) at z ∈ Vm+1 \ Vm. 11

(2) Next consider a pointz ∈ Vm \ V0. In this case there are several wordsωi for 12

which z = Fωi (pi) for somepi ∈ V0. For such a wordω and such ap we substitute from 13

Lemma 3.8 into (3.14), obtaining 14

∑

K j∋p

∂
Fω(K j)
n

(

rωΨ
(rωµωλ)(F−1

ω x, F−1
ω z)

)

=

∑

q,s,t∈V1\V0

G(rωµωλ)
s,t ψ(rωµωλ)

s (F−1
ω x) B(rωµωλ)

tq η(rωµωλ)
p (q)

=

∑

q,s∈V1\V0

δsqψ
(rωµωλ)
s (F−1

ω x) η(rωµωλ)
p (q)
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=

∑

q∈V1\V0

ψ(rωµωλ)
q (F−1

ω x) η(rωµωλ)
p (q). (3.15)

The result is clearly a piecewiseλ-eigenfunction on level (m + 1) with respect to thex1

variable, so is determined by its values onVm+1. In each of the terms (3.15), the values2

are nonzero only at the points ofVm+1 that neighborz in Fω(X), and they are easily seen3

to coincide withξ(λ)

q,m+1 − ξ
(λ)
q,m at these points. Summing over all cells, we conclude that at4

eachz ∈ Vm \ V0 the operator (λI − ∆) has a Dirac mass
(

ξ
(λ)

q,m+1 − ξ
(λ)
q,m

)

δz(y), and the result5

follows. �6

Theorem 3.12.Letψ(λ)
p be the solution to the resolvent equation at level 1, i.e.7















(λI − ∆)ψ(λ)
p = 0, on each Kj = F j(X),

ψ
(λ)
p (q) = δpq, for p ∈ V1 \ V0 and q∈ V1,

(3.16)

whereδpq is the Kronecker delta.8

Define the kernel9

G(λ)(x, y) =
∑

ω∈W∗

rωΨ
(rωµωλ)(F−1

ω x, F−1
ω y), (3.17)

whereΨ(λ)(x, y) :=
∑

p,q∈V1\V0

G(λ)
pqψ

(λ)
p (x)ψ(λ)

q (y). (3.18)

The coefficients G(λ)
pq in (3.18)are the entries of the inverse of the matrix B given by10

B(λ)
pq :=

∑

K j∋q
∂

K j

n ψ
(λ)
p (q), q ∈ F j(V0), (3.19)

the sum taken over all 1-cells containing q.11

For λ satisfying Assumption 3.1, G(λ)(x, y) is symmetric and continuous in x and y, and12

is in domM(∆y) with (λI − ∆y)G(λ)(x, y) = δx(y). As it vanishes on V0, it is the Dirichlet13

resolvent of the Laplacian.14

Proof. The symmetry ofG(λ)(x, y) is obvious. Next, note that15

(λI − ∆y)
M
∑

m=0

∑

|ω|=m

rωΨ
(rωµωλ)(F−1

ω x, F−1
ω y)

=

M
∑

m=0

















∑

p∈Vm+1\V0

ξ(λ)

p,m+1(x)δp(y) −
∑

p∈Vm\V0

ξ(λ)
p,m(x)δp(y)

















=

∑

p∈VM+1\V0

ξ
(λ)

p,M+1(x)δp(y)

by Lemma 3.11, so that16

lim
M→∞

(λI − ∆y)
M
∑

m=0

∑

|ω|=m

rωΨ
(rωµωλ)(F−1

ω x, F−1
ω y) = δx(y),

in the sense of weak-∗ convergence. It follows thatG(λ)(x, y) is in domM(∆y) and that17

(λI − ∆y)G(λ)(x, y) = δx(y).18
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All that remains is to see thatG(λ)(x, y) is continuous. However, Lemma 3.6 shows1

B(rωµωλ)
pq → B(0)

pq as |ω| → ∞, and henceG(rωµωλ)
pq → G(0)

pq. In a similar manner, the relation 2

η
(rωµωλ)
p = ζp + rωµωλθ

(rωµωλ)
p from Lemma 3.3 shows thatη(rωµωλ)

p → ζp as |ω| → ∞; in 3

particular we find thatψ(rωµωλ)
p → ψ(0)

p , and the latter is piecewise harmonic and bounded by4
1. The conclusion is thatΨ(rωµωλ) is bounded as|ω| → ∞, and sincerω is a product of|ω| 5

terms, all of which are bounded by maxi r i < 1, 6

G(λ)(x, y) =
∞
∑

m=0

∑

|ω|=m

rωΨ
(rωµωλ)(F−1

ω x, F−1
ω y)

is bounded by a convergent geometric series. As all terms arecontinuous, so isG(λ). � 7

4. The Neumann resolvent kernel for p.c.f. self-similar fractals 8

In Theorem 4.2, we give the formula for the Neumann resolventkernel formula. 9

Lemma 4.1. If λ is not a Neumann eigenvalue then there is C(λ)
pq such that 10

∑

q∈V0

C(λ)
pq(∂n)yη

(λ)
q (x) = δpx

for x ∈ V0, and C(λ)
pq is symmetric in p and q. 11

Proof. Sinceλ is not a Neumann eigenvalue the set of vectors
{

(

(∂n)yη
(λ)
q (x)

)

x∈V0

}

q∈V0

is 12

linearly independent, so the existence of theC(λ)
pq is immediate. Symmetry follows from 13

(3.6) because the matrix
[

C(λ)
pq

]

is the inverse of the symmetric matrix
[

(∂n)yη
(λ)
p (q)

]

. � 14

From this and Theorem 3.12 we may readily deduce the following result. 15

Theorem 4.2. If λ satisfies Assumption 3.1 and also is not a Neumann eigenvalue, then 16

G(λ)

N (x, y) = G(λ)(x, y) +
∑

p,q∈V0

C(λ)
pqη

(λ)
p (x)η(λ)

q (y) (4.1)

is symmetric, is indomM(∆y), and satisfies(λ − ∆y)G
(λ)

N (x, y) = δx(y) on X \ V0. It has 17

vanishing normal derivatives on V0 and is therefore the Neumann resolvent kernel of the18

Laplacian. 19

Proof. The symmetry ofG(λ)

N (x, y) is immediate from the symmetry ofG(λ)(x, y) and of 20

C(λ)
pq. Both G(λ)(x, y) and η(λ)

p (y) are in domM(∆y) and (λ − ∆y)η
(λ)
p (y) = 0 on X \ V0 so 21

(λ − ∆y)G
(λ)

N (x, y) = (λ − ∆y)G(λ)(x, y) = δx(y) on X \ V0. 22

It remains to prove the assertion about the normal derivatives. We will use the notation 23

(∂n)yG(λ) for the normal derivative ofG(λ)(x, y) with respect to its second variable. Since24

G(λ)(x, y) ∈ domM(∆y) it has a normal derivative atp ∈ V0, and by the Gauss-Green for-25

mula, 26

(∂n)yG
(λ)(x, p) =

∑

s∈V0

(

(∂n)yG
(λ)(x, s)η(λ)

p (s) −G(λ)(x, s)∂nη
(λ)
p (s)

)

=

∫

X

(

(

∆sG
(λ)(x, s)

)

η(λ)
p (s) −G(λ)(x, s)

(

∆sη
(λ)
p (s)

))

dµ(s)

=

∫

X
(∆s − λ) G(λ)(x, s)η(λ)

p (s) dµ(s)
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= −η(λ)
p (x) (4.2)

where at the first step we used thatG(λ)(x, s) = 0 for s ∈ V0 and at the last step we used1

(∆s − λ)G(λ)(x, s) = −δx(s) as a measure. It follows that at eachp ∈ V0, the normal2

derivative of (4.1) vanishes:3

(∂n)yG
(λ)

N (x, y) = −η(λ)
p (x) + (∂n)y

∑

p,q∈V0

C(λ)
pqη

(λ)
p (x)η(λ)

q (y) by (4.2)

= −η(λ)
p (x) +

∑

p∈V0

δpxη
(λ)
p (x) by Lemma 4.1

= 0. �

5. Example: the Sierpinski gasket SG4

Recall the harmonic extension algorithm as described in [Str06,§1.3]: if the values of5

a functionu are specified at the points ofV0 and written as a vector6

u
∣

∣

∣

V0
=





















u(p0)
u(p1)
u(p2)





















,

then the harmonic extension ofu to Fi(V0) (the boundary points of the 1-cellF0(SG)) is7

given by8

u
∣

∣

∣

Fi V0
= Aiu

∣

∣

∣

V0
=





















u(Fi p0)
u(Fi p1)
u(Fi p2)





















,

where9

A0 =
1
5





















5 0 0
2 2 1
2 1 2





















, A1 =
1
5





















2 2 1
0 5 0
1 2 2





















, and A2 =
1
5





















2 1 2
1 2 2
0 0 5





















are the harmonic extension matrices. In general,u
∣

∣

∣

FωV0
= Aωu

∣

∣

∣

V0
, whereAω = Aωm · · ·Aω2Aω1.10

Thus, the harmonic extension matrices allow one to construct a harmonic function with11

specified boundary values. Similarly, spectral decimationprovides matrices which allow12

one to construct an eigenfunction with specified boundary values. For example,13

A0(λ) =
1

(5− λ)(2− λ)





















(5− λ)(2− λ) 0 0
(4− λ) (4− λ) 2
(4− λ) 2 (4− λ)





















(5.1)

is the analogue ofA0 = A0(0). By the usual caveats of spectral decimation, these extension14

matrices can only be used whenλ is not a (Dirichlet) eigenvalue.15

To obtain the numbersB(λ)
pq (appearing in (1.15)) for the Sierpinski GasketSG, we find16

the normal derivatives of the eigenfunction that has boundary values (1, 0, 0), as computed17

at each point ofV0. If (λI − ∆)u = 0 butu is not a Dirichlet eigenfunction, then consideru18

on Fm
0 (V0). By spectral decimation, this is given by19
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u
∣

∣

∣

Fm
0 (V0)
= A0(λm) · · ·A0(λ1)u

∣

∣

∣

V0

where the matrixA0(λ) is as in (5.1). We actually only need the values of thenormal 1

derivative 2

∂nu(qi) = lim
m→∞

(

5
3

)m
(

2u(qi) − u(Fm
i qi−1) − u(Fm

i qi+1)
)

. (5.2)

It is extremely easy to compute the normal derivatives of a harmonic function: one does 3

not need to compute the limit, as all terms of the sequence areequal; see [Str06, (2.3.9)]. 4

Therefore, our approach is to obtain a harmonic function which coincides withuonFm
0 (V0). 5

The limit of the normal derivatives of these harmonic functions will be the normal deriva- 6

tive of u. An alternative interpretation would be to interpret the harmonic functions onSG 7

as the analogue of the linear functions onI . Consequently, the tangent to a point ofSG 8

should be given by a harmonic function plus a constant, provided the tangent exists. This 9

is the motivating idea of [DRS07]. 10

Multiplication by A−m
0 allows one to find the required harmonic function at stagem; 11

rewriting the normal derivative (5.2) in vector notation, one has 12

(

5
3

)m

(2,−1,−1) · u
∣

∣

∣

Fm
0 (V0)
= (2,−1,−1) · A−m

0 u
∣

∣

∣

Fm
0 (V0)

= (2,−1,−1) · A−m
0 A0(λm) · · ·A0(λ1)u

∣

∣

∣

V0
.

It therefore suffices to understand the limit limm A−m
0 A0(λm) · · ·A0(λ1); this was computed 13

in [DRS07]. The following theorem is the main result of [DRS07], taken withm0 = 0. 14

Theorem 5.1. Letα = (0, 1, 1)T, β = (0, 1,−1)T, γm = (4, 4− λm, 4− λm)T . If neither of 15

the values2 or 5 occur in the sequenceλm, then 16

lim
k→∞

A−k
0 · A0(λ0+k) · · ·A0(λ0+1)α =

4λ
3 · 50λ0(2− λ0+1)

k+1
∏

j=2

(

1−
λ0+ j

3

)

α

lim
k→∞

A−k
0 · A0(λ0+k) · · ·A0(λ0+1) β =

2λ
3 · 50λ0

β

lim
k→∞

A−k
0 · A0(λ0+k) · · ·A0(λ0+1) γ0 = (4, 4, 4)T

In particular, this can be used to get the desired normal derivative. We know that all we 17

need do is compute 18

(2,−1,−1) ·
(

lim
m

A−m
0 A0(λm) · · ·A0(λ1)

)

u
∣

∣

∣

V0
. (5.3)

The boundary datau
∣

∣

∣

V0
is be taken to be (1, 0, 0) when computing the normal derivative at19

the pointp whereu(p) = 1, and (0, 1, 0) at a point whereu(p) = 0 (these two points are the 20

same by symmetry). Writing 21





















1
0
0





















=
1
4





















4
4− λ0

4− λ0





















− 4− λ0

4





















0
1
1





















, and





















0
1
0





















=
1
2





















0
1
1





















+
1
2





















0
1
−1





















,

we find that 22
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lim
m

A−m
0 A0(λm) · · ·A0(λ1)





















1
0
0





















=





















1
1
1





















− 4− λ0

4
4λ

3λ0(2− λ1)

k+1
∏

j=2

(

1−
λ j

3

)





















0
1
1





















and by (5.3), the normal derivative is1

2(4− λ0)λ
3λ0(2− λ1)

k+1
∏

j=2

(

1−
λ j

3

)

.

The normal derivative at the other point is computed by first finding2

lim
m

A−m
0 A0(λm) · · ·A0(λ1)





















0
1
0





















=
1
2

4λ
3λ0(2− λ1)

k+1
∏

j=2

(

1−
λ j

3

)





















0
1
1





















+
1
2

2λ
3λ0





















0
1
−1





















and then taking the inner product with (2,−1,−1), which cancels the second vector to leave3

−4λ
3λ0(2− λ1)

k+1
∏

j=2

(

1−
λ j

3

)

.

It seems logical at this point to define a function4

τ(λ) =
4λ

3λ0(2− λ1)

k+1
∏

j=2

(

1−
λ j

3

)

(5.4)

and to write the normal derivative at the point where the 1 occurs as (4−λ0)τ(λ)/2 and that5

at the point where the 0 occurs as−τ(λ). We note that for a non-Dirichlet eigenfunction,6

none of the values 2, 5, 6 occur inλm for m ≥ 1 so the term (2− λ1) in the denominator7

cannot be zero. It follows that 3 does not occur form≥ 2 and therefore thatτ(λ) , 0 in this8

case. An exception to our formula as currently written occurs whenλ = 0, because then9

alsoλ0 = 0, but the functionτ(λ) is easily seen to have a continuous extension toλ = 010

with τ(0) = 1; with this correction our formula is also valid for the harmonic case.11

It is now easy to write the entries of the matrixB(λ)
pq appearing in (1.15). The termB(λ)

pp12

has two copies of the normal derivative (4− λ0)τ(λ)/2, and the termB(λ)
pq has a single copy13

of −τ(λ) at eachq ∈ V1 that is not equal top. Both are on 1-cells rather than the whole of14

SG, so there is an extra factor 5/3 in their normal derivatives. As a result, the matrix is15

B =
5
3





















(4− λ0)τ(λ) −τ(λ) −τ(λ)
−τ(λ) (4− λ0)τ(λ) −τ(λ)
−τ(λ) −τ(λ) (4− λ0)τ(λ)





















and we should invert this to get the matrixGpq for the Green’s function. Since16
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q0

q1

p1 p6

p3 p4

p2 p0
p5

q2

Figure 3. The 1-cells ofSG3.

det





















a b b
b a b
b b a





















= (a− b)2(a+ 2b),

the matrixB is invertible iff λ0 , 2, 5, in which case 1

G(λ)
=

3
5(5− λ0)(2− λ0)τ(λ)





















(3− λ0) 1 1
1 (3− λ0) 1
1 1 (3− λ0)





















.

Note that this is consistent with the harmonic case whereλ0 = 0 andτ(0) = 1 gives factors 2

9/50 forG(λ)
pp and 3/50 forG(λ)

pq with p , q; see [Str06, (2.6.25)]. 3

6. Example: SG3, a variant of the Sierpinski gasket 4

6.1. The Laplacian on SG3. The fractalSG3 is obtained from an IFS consisting of 6 5

contraction mappings, each with scaling ratio1
3, as indicated in Figure 3. The details of 6

the spectral decimation method forSG3 have been worked out independently in [BCD+08, 7

DS07,Zho07]. Note thatp0 is contained in three 1-cells ofSG3, in contrast to each of the 8

other pointspi of V1 \V0, which are contained in two. For this reason, we define the graph 9

Laplacian onSG3 as 10

∆mu(x) =
1

deg(x)

∑

y∼mx

(u(y) − u(x)), (6.1)

wheredeg(x) is the number ofm-cell containingx. From [Str06,§4.4], we have 11

∆µu(x) = lim
m→∞

r−m

(∫

K
ψ(m)

x dµ

)−1

deg(x)∆mu(x). (6.2)

Let px denote a vertex whereu takes the valuex as depicted in Figure 4, then by (6.1),12

the symmetric eigenvalue equations onVm are 13

∆mu(px) = 1
4

[

(1− x) + (x− x) + (w− x) + (y− x)
]

= −λ′mx

∆mu(py) = 1
4

[

(x− y) + (w− y) + (z− y) + (0− y)
]

= −λ′my

∆mu(pz) = 1
4

[

(y− z) + (w− z) + (z− z) + (0− z)
]

= −λ′mz

∆mu(pw) = 1
6

[

2(x− w) + 2(y− w) + 2(z− w)
]

= −λ′mw,
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1

x x

y y

z

w

z 00

Figure 4. The eigenfunction extension on one (m − 1)-cell of SG3 to
m-cells. The values on (m− 1)-cell are 1, 0, 0.

a

x x´

y´ z

y

w

z´ cb

Figure 5. The labeling for a general eigenfunction extension, fromone
(m−1)-cell to sixm-cells. The values on the boundary of the (m−1)-cell
area, b, c.

which can be rewritten, usingλm = 4λ′m, as1

(4− λm)x = 1+ x+ y+ w (4− λm)y = x+ z+ w

(4− λm)z= y+ z+ w (4− λm)w = 4
3(x+ y+ z).

For now, we suppress the dependence onm for convenience and denoteλ = λm. Solving2

for λ, we obtain3

x = α(λ) := (96− 109λ + 33λ2 − 3λ3)/ϕ(λ), (6.3a)

y = β(λ) := (16− 3λ)(3− λ)/ϕ(λ), (6.3b)

z= γ(λ) := (36− 7λ)/ϕ(λ), (6.3c)

w = ρ(λ) := 4(5− λ)(3− λ)/ϕ(λ), (6.3d)

where ϕ(λ) := 3(5− λ)(3− λ)(4− 6λ + λ2), (6.3e)

and we see that the forbidden eigenvalues are 3, 5, 3±
√

5.4

For a general function onSG3, we extend the eigenfunction using the labeling indicated5

in Figure 5, as follows:6



22 IONESCU, PEARSE, ROGERS, RUAN, AND STRICHARTZ

1

8
15

4
15

3
15

5
15

00

8
15

4
15

3
15

3 30

1 1

0

1 2 2 1 44

3 3 44

77

15(u(x)-u(y))

Figure 6. The harmonic extension ofu onSG3, whereu|V0 = [1, 0, 0].

x = aα(λ) + bβ(λ) + cγ(λ) x′ = aα(λ) + cβ(λ) + bγ(λ) (6.4)

y = bα(λ) + cβ(λ) + aγ(λ) y′ = bα(λ) + aβ(λ) + cγ(λ)

z= cα(λ) + aβ(λ) + bγ(λ) z′ = cα(λ) + bβ(λ) + aγ(λ)

w = (a+ b+ c)ρ(λ).

The eigenfunction extension matrix forSG3 corresponding toF0 is 1

A0(λ) =





















1 0 0
α(λ) β(λ) γ(λ)
α(λ) γ(λ) β(λ)





















,

where we haveα(λ), β(λ), γ(λ), ϕ(λ) as before, that isA0(λ)u|V0 = u|F0V0. 2

6.2. Eigenfunctions of the Laplacian onSG3. Let u be a function taking values 1, 0, 0 3

on V0. The harmonic extension ˜u on V1 corresponds to takingλ = 0 in the system (6.3) 4

above, so that 5

x =
8
15
, y =

4
15
, z=

3
15
, w =

5
15
,

and we have Figure 6. Following [Str06,§1.3], the energy renormalization constant com-6
puted by 7

E1(ũ) =

(

1
15

)2
(

4 · 12
+ 2 · 22

+ 4 · 32
+ 4 · 42

+ 2 · 72
)

=
14
15
.

SinceE0(u) = 1+ 1 = 2, 8

2 = E0(u) = r−1E1(ũ) = r−1 14
15

=⇒ r =
7
15
. (6.5)

Thus, the normal derivatives onSG3 are computed by 9

∂nu(p) = lim
m→∞

(

17
5

)m
∑

p∼my

(u(p) − u(y)). (6.6)
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1

0 0

1−xm1−xm

1−xm+11−xm+1

Figure 7. The values of the eigenfunctionu on SG3, whereu|V0 =

[1, 0, 0]T. This figure shows a closeup ofu near the point where it takes
the value 1. By symmetry, we definexm := 1− u(Fm

0 q1) = 1− u(Fm
0 q2).

Theorem 6.1. The pointwise formulation of the Laplacian on SG3 is1

∆µu(x) = 6 lim
m→∞

(

90
7

)m

∆mu(xm), (6.7)

where{xm} is any sequence withlim xm = x and xm ∈ Vm.2

Proof. Following [Str06,§2.2], it is easy to compute3

∫

ψ(m)
xm

dµ =

{

2
3·6m if deg(xm) = 4,

1
6m if deg(xm) = 6

sinceµ is the standard (self-similar) measure onSG3. Thus, by (6.2),4

∆µu(x) = lim
m→∞

(

15
7

)m

· 6m+1
∆mu(x) = 6 lim

m→∞

(

90
7

)m

∆mu(xm), (6.8)

�5

Throughout, whenever there is discussion of an eigenvalueλ, we assume that we have6

been given the sequence{λm}∞m=0 which definesλ via the decimation formula. Thus by7

Theorem 6.1,8

λ = 6 lim
m→∞

(

90
7

)m

λ′m =
3
2

lim
m→∞

(

90
7

)m

λm. (6.9)

6.3. Computation of the normal derivatives.9

Theorem 6.2. Let−∆u = λu on SG3, where u is defined on V0 by u(q0) = 1, u(q1) = 0,10

and u(q2) = 0. Define11

τ(λ) :=
2λ
3λ0

k
∏

j=1

(1− λ j

4 )(1− λ j

6 )

1− 3
2λ j +

λ2
j

4

. (6.10)

Then the normal derivatives of u are12

∂nu(p0) =
4− λ0

2
τ(λ), and (6.11a)

∂nu(p1) = ∂nu(p2) = −τ(λ). (6.11b)
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Proof. To obtain (6.11a) we need the valuesu(Fm
0 q1) = u(Fm

0 q2) = 1− xm as depicted in 1

Figure 7. 2

Claim: u(Fm
0 q1) = u(Fm

0 q2) = 1− xm, wherex0 = 1 and 3

xm+1 −
λm+1

4
=

(4− λm+1)(6− λm+1)λm+1

(4− 6λm+1 + λ
2
m+1)λm

(

xm−
λm

4

)

. (6.12)

Proof of claim. By (6.4), if b = c, thenx = x′. Then fromu(q1) = u(q2) = 0, we will 4

haveu(Fm
0 q1) = u(Fm

0 q2) for all m, by induction. Definexm := 1− u(Fm
0 q1), m ≥ 0. From 5

u(q1) = 0, we havex0 = 1. Now we show (6.12) holds. 6

Denoteδ(λ) := β(λ) + γ(λ), so thatδ(λ) = (14− 3λ)(6− λ)/ϕ(λ), whereϕ(λ) is as in 7

(6.3). Using (6.4), we have the matrix equation 8

A0(λ)





















1
1− xm

1− xm





















=





















1
1− xm+1

1− xm+1





















gives 9

xm+1 = 1− α(λm+1) − δ(λm+1) + δ(λm+1)xm

= − λm+1(5− λm+1)

4− 6λm+1 + λ
2
m+1

+
(14− 3λm+1)(6− λm+1)

ϕ(λm+1)
xm.

From the decimation relation [DS07, (2.12)], we have the identity 10

3(5− λm+1)(4− λm+1)(3− λm+1)λm+1

(14− 3λm+1)λm
= 1,

so that 11

δ(λm+1) = δ(λm+1)
3(5− λm+1)(4− λm+1)(3− λm+1)λm+1

(14− 3λm+1)λm

=
(4− λm+1)(6− λm+1)λm+1

(4− 6λm+1 + λ
2
m+1)λm

.

We would like to seexm+1 − f (λm+1) = δ(λm+1)(xm− f (λm)) for some functionf , which is 12

equivalent to 13

(4− 6λm+1 + λ
2
m+1)

f (λm+1)
λm+1

=
f (λm)
λm

(4− λm+1)(6− λm+1) + (5− λm+1).

Let f (x) = xg(x) and this can be rewritten 14

(4− 6λm+1 + λ
2
m+1)g(λm+1) = g(λm)(24− 10λm+1 + λ

2
m+1) + (5− λm+1),

which is easily seen to be true for the constant functiong(x) = 1
4. Hence we may define 15

f (x) = x
4, to obtain 16

xm+1 −
λm+1

4
= δ(λm+1)

(

xm −
λm

4

)

. �



THE RESOLVENT KERNEL FOR PCF SELF-SIMILAR FRACTALS 25

Now we compute∂nu(q0) using (6.12) to obtain1

xm−
λm

4
=

(

1− λ0

1

)

λm

λ0

m
∏

j=1

(4− λ j)(6− λ j)

4− 6λ j + λ
2
j

xm =
4− λ0

4λ0

















λ0

4− λ0
+

m
∏

j=1

(4− λ j)(6− λ j)

4− 6λ j + λ
2
j

















λm.

Sinceu(q0) = 1, we apply (6.6) to compute2

∂nu(q0) = lim
m→∞

(

17
5

)m (

6
6

)m

(2u(q0) − 2(1− xm))

=
4− λ0

2λ0
lim

m→∞

(

90
5

)m

λm

















λ0

6m(4− λ0)
+

m
∏

j=1

(4− λ j)(6− λ j)

6(4− 6λ j + λ
2
j )

















=
4− λ0

2λ0

(

2
3
λ

)

















0+
∞

∏

j=1

(4− λ j)(6− λ j)

6(4− 6λ j + λ
2
j )

















,

which is equivalent to the result.3

Now we compute the normal derivatives (6.11a). To obtain∂nu(q1) = ∂nu(q2), we don’t4

actually need the valuesu(Fm
0 q1) andu(Fm

0 q2) as depicted in Figure 8. Instead, it suffices5

to only compute their sum, since by (6.6), one has6

∂nu(q1) = ∂nu(q2) = − lim
m→∞

(

17
5

)m
(

u(Fm
1 q0) + u(Fm

1 q2)
)

. (6.13)

Accordingly, define7

ym := u(Fm
0 q1), zm := u(Fm

0 q2), and sm := ym + zm.

Claim: the sequence{sm}∞m=0 is given recurrently bys0 = 1 and8

sm+1 =
(14− 3λm+1)(6− λm+1)

ϕ(λm+1)
sm. (6.14)

Proof of claim. As indicated in Figure 8, dihedral symmetry allows us to continue using9

the same matrixA0(λ) for computations, as long as we use [0, 1, 0]T for the new boundary10

data.11

It is clear thats0 = 1 + 0 from the values onV0. Then using the notationδ(λ) =12

α(λ) + β(λ) as above, the matrix equation13

A0(λ)





















0
ym

zm





















=





















0
β(λm+1)ym+ γ(λm+1)zm

γ(λm+1)ym+ β(λm+1)zm





















=





















0
ym+1

zm+1





















givessm+1 = ym+1 + zm+1 = δ(λm+1)sm immediately. �14
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0 0

1

ym+1

zm+1

ym

zm
1 0

0

ym+1 zm+1

ym zm

Figure 8. The values of the eigenfunctionu on SG3, whereu|V0 =

[0, 1, 0]T. This figure shows a closeup ofu near a point where it takes
the value 0. We defineym := u(Fm

1 q0) andzm := u(Fm
1 q2).

Since (6.14) gives 1

sm =

m
∏

j=1

δ(λ j)s0 =
λm

λ0

m
∏

j=1

(4− λ j)(6− λ j)

4− 6λ j + λ
2
j

,

andu(q1) = 0, the normal derivative is 2

∂nu(q1) = lim
m→∞

(

17
5

)m (

6
6

)m

(2u(q1) − sm)

=
1
λ0

lim
m→∞

(

90
5

)m

λm

m
∏

j=1

(4− λ j)(6− λ j)

6(4− 6λ j + λ
2
j )

=
1
λ0

(

2
3
λ

) ∞
∏

j=1

(4− λ j)(6− λ j)

6(4− 6λ j + λ
2
j )
. �

6.4. The resolvent prekernel. 3

Definition 6.3. For p ∈ V1 \ V0, define 4

B(λ)
pq :=

∑

q∈V1

∂nψ
(p)
λ

(q). (6.15)

Corollary 6.4. With τ(λ) as in Thm. 6.2 and r= 7
15, 5

B(λ)
pq = −r−1τ(λ), p , q and B(λ)

pp =















3
2r−1(4− λ0)τ(λ), p = q0

r−1(4− λ0)τ(λ), p , q0.

Proof. We are now working onV1, so each term has a leading factor ofr−1. Whenever 6

p , q, there is just one term∂nu(q) = −τ(λ) in the sum; the other corner of the triangle is 7

ignored and everything outside this 1-cell is 0. Whenp = q, then there is a sum of terms 8

∂nu(p) = 4−λ0

2 τ(λ). At the center pointq0, there are three such terms; at every other point9
there are only two. � 10
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The matrixB(λ)
pq is

15
7 τ(λ)





























































3
2(4− λ0) −1 −1 −1 −1 −1 −1
−1 (4− λ0) −1 0 0 0 −1
−1 −1 (4− λ0) −1 0 0 0
−1 0 −1 (4− λ0) −1 0 0
−1 0 0 −1 (4− λ0) −1 0
−1 0 0 0 −1 (4− λ0) −1
−1 −1 0 0 0 −1 (4− λ0)





























































(6.16)

Definition 6.5. Define theresolvent prekernelby G(λ) := (B(λ))−1.1

Our final result may be obtained by brutal and direct computation.2

Theorem 6.6. The resolvent prekernel G(λ) is given by

− 14
15(6− λ)τ(λ)ϕ(λ)





























































(2− λ)κ1 κ1 κ1 κ1 κ1 κ1 κ1

κ1 κ2 κ3 κ4 κ5 κ4 κ3

κ1 κ3 κ2 κ3 κ4 κ5 κ4

κ1 κ4 κ3 κ2 κ3 κ4 κ5

κ1 κ5 κ4 κ3 κ2 κ3 κ4

κ1 κ4 κ5 κ4 κ3 κ2 κ3

κ1 κ3 κ4 κ5 κ4 κ3 κ2





























































, (6.17)

where

κ1 = (3− λ)(5− λ)(6− λ),

κ2 = 201− 300λ + 269
2 λ

2 − 24λ3
+

3
2λ

4,

κ3 = 87− 75λ + 19λ2 − 3
2λ

3,

κ4 = 57− 24λ − 5
2λ

2, and

κ5 = 51− 15λ − λ2.

In particular, G(λ) is symmetric and invertible with determinant

detG(λ)
= −1

2

(

15
7

)7 (6− λ)ϕ(λ)2τ(λ)
4− 6λ + λ2

. (6.18)
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