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We review the properties of a real-space renormalization group transformation of the free 
energy, including the existence of oscillatory terms multiplying the non-analytic part of the free 
energy. We then construct stochastic processes which incorporate into probability distributions 
the features of the free energy scaling equation. (The essential information is obtainable from the 
scaling equation and a direct solution for a probability is not necessary.) These random processes 
are shown to be generated directly from Cantor sets. In a spatial representation, the ensuing 
random process exhibits a transition between Gaussian and fractal behavior. In the fractal 
regime, the trajectories will, in an average sense, form self-similar clusters. In a temporal 
representation, the random process exhibits a transition between an asymptotically constant 
renewal rate and fractal behavior. The fractal regime represents a frozen state with only transient 
effects allowed and is related to charge transport in glasses. 

I. Introduct ion 

We begin by cons ider ing  a real-space r enormal i za t ion  group t r ans fo rma t ion  

for the free energy  F1), 

F ( K )  = 1 d F ( K ' ) +  G ( K ) ,  (1) 

where  K is an in te rac t ion  pa ramete r  in the original  sys tem,  K ' =  K ' ( K )  is the 

in te rac t ion  pa ramete r  in the t r ans fo rmed  sys tem,  l is the dec ima t ion  length 

and d the d imens ion  (so that  the t r ans fo rmed  sys tem is ! d t imes larger than  

the original  sys tem),  and G is a regular  f unc t i on  of K. In te rms of a scaling 

field u, eq. (1) becomes  

F ( u )  = l-dF(Au) + G(u) ,  (2) 

with A a real,  r e levan t  e igenvalue  greater  than  uni ty .  The  a s sumpt ion  that  the 

scal ing field u is a regular  f unc t i on  of K and that  G is a regular  f unc t i on  of u 
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has been used. Iterating eq. (2) n times and taking the limit n ~-~: gives 

F(u)  = lim I ~dF(A"U)+ ~'~ I idG(AJU) . 13) 
n *~ j 0 

It is usually assumed as a boundary condition that the first term on the r.h.s. 

vanishes, so that 

F(u)  = ~ 1 JaG(Mu). I4) 

Thus all singular behavior will be contained in the sum involving G. 

A solution for the singular part of F(u)  is obtained by writing 

F~m~¢u) - ACu)lul"",  ¢5) 

which when substituted into eq. (I) leads to the relations 

y In A/lnl (6) 

and 

A(u)  = A(Au) = ~ AN exp(2win In u/In A), (7) 
n 

where A(u)  need not be constant and may in general be periodic in In u with 

period In A. The relevant eigenvalue A is greater than unity, so y will be 

positive. The existence of the oscillatory solutions was first noted by Jona- 
Lasinio2), Nauenberg3), and Niemeijer and van Leeuwent). In critical 

phenomena the eigenvalue A is chosen to depend on 1, so that the exponent y 

will not depend on 1. The oscillatory terms are discarded because their period 

depends through A(1) on the decimation length l, while the free energy should 
be independent of I. Nevertheless, the oscillations are present in the general 

mathematical solution. 
We shall now derive and examine the behavior of random processes which 

obey scaling equations like eq. (2). We consider a spatial representation for 

the random process in section 2, and a temporal representation in section 3. In 

section 4 we show how the self-similarity is an embodiment of a Cantor set. 

2. Spatial scaling 

For our random process we consider a Markovian random walk on an 
infinite, one-dimensional periodic lattice with unit bond length. The prob- 

ability P.+~(I) of being at site I after n + I steps is given by 

Pn+l(l) Z P.( l ' )p( l  - 1'), (8) 
I '  

where p(I) is the probability of a vector displacement I at any step. A discrete 
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Fourier  transform of eq. (8) leads to 

P,(k) = ~, exp(ikl)P,(l)= [ifi(k)]~P0(k), 
I 

where 

(9) 

15(k) = ~, exp(ikl)p(l) (10) 
! 

is called the structure function. Thus, except  for the initial position, /5(k) 
contains all the information about the random walk. 

We shall incorporate scaling into /~(k) by choosing 4) for the normalized 
single step probability distribution 

O - - I  
a-~[St,bn + 81, bo], ( l l )  p ( l ) -  2-a n-o 

with a, b > l and b an integer. The corresponding structure function is 

/~(k) - a -  1 ~ a n cos(bnk) (12) 
~l n 0 

and satisfies the following scaling relation, similar to eq. (2): 

a _ l m - I  
15(k ) = a ml5(bmk ) + ~ - -  j~-'-o a-i c°s(bik )' (13) 

where m is an arbitrary positive integer. The reader should contrast  eq. (12) 
with a nearest-neighbor hopping random walk, for which /~(k)= cos(k) and 
P,(I) is Gaussian for large n. Eq. ( l l )  allows for jumps of all orders of 
magnitude, with each succeeding order of magnitude displacement occurring 
with an order of magnitude less probability. The walker makes about " a "  
jumps of unit length in a region, forming a cluster of sites visited, before 
making a jump of length " b "  to begin a new cluster. Then about " a "  clusters, 
each with about " a "  sites and separated from each other by a distance " b " ,  
are formed before a jump of length b 2 occurs, etc. At least for a modest 
number of steps, clustering will occur. We now consider the conditions under 
which the set of sites visited will remain in the form of self-similar clusters as 
the number of steps taken tends to infinity, and how this is related to eq. (13), 
the scaling equation for/~(k).  

First, the usual Gaussian behavior (and so no clustering) is obtained after 
many steps when the second moment ~ of p(l) is finite, where 

c~ 2 
F=- ~, 12p(l) = - -b--~/5(k = 0). (14) 
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If  ~ is finite~ then near  k = 0 the s t ructure  funct ion  ,6(k) will have the 

expans ion  

/~(k) = I - ~ p k 2 +  ¢J~(k2). (15) 

(Our r andom walk is symmet r ic ,  so the first m o m e n t  is zero.)  Second ,  the 

probabi l i ty  of  reaching  any site in a walk of  infinite durat ion must  be less than 

unity, and this is k n o w n  ~) to be equivalent  to the probabil i ty R of  eventual  

re turn to the origin being less than unity,  where  

R - 1 - u t (16) 

and in one d imens ion  6) 

1 ( dk (17) 
u = ~  J I - 0 ( k )  

n; 

Thus  if self-similar cluster ing of  the sites visited is to occur  it is necessa ry  

that 

( i ) ~ - ~ ;  and (ii) u < ~ .  

The  second of  these condi t ions  requires,  in view of  eq. (17), that  k/[1 
/~(k)] ~ 0  as k ~ 0 .  The two condi t ions  depend  on the behav ior  of /~(k)  and its 

first der ivat ive near  k = 0. 
We return to eq. (13) for  /~(k) and examine  its similarity to the renor-  

realization g roup  scaling equat ion  (2). First, we note that b > I is necessary ,  

which co r r e sponds  to A > 1 (i.e. A a re levant  eigenvalue)  in eq. (2). When  

clustering occurs ,  the number  of  sub-clusters  within a dis tance b m of  the 

origin is, on the average ,  about  a" .  This co r r e sponds  to I a in eq. (2), the 

n u m b e r  of  b locks  in the old sys tem which fit into a single block of  the new 
system.  In the limit m ~  in eq. (13) we have an explicit  example  of  the 

behav io r  pos tu la ted  in eq. (4) that  the first term on the r.h.s, of  eq. (13) goes to 

zero,  while all the singular behav ior  of  16(k) now resides in the infinite sum 

over  analyt ic  funct ions .  We expect  interest ing singular behav ior  f rom eq. (12) 
because  it is s imply related to the lacunary  Taylor  series v) 

S ( z ) =  ~ a "z h" (18) 
n 0 

which canno t  be analyt ical ly  cont inued  beyond  its circle of  c o n v e r g e n c e  
Iz] = 1 because  it has a dense  set of  singular points  at z = exp(2~ih/b') for  all 

integer h and m. The  singular part  of  0(k)  satisfies the equat ion  

[)sing(k) - a m/gsing(bmk), (19)  
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with the solution 

/)sing(k) = IklnQ(k), (20) 

where 

H = In a/In b (21) 

and 

Q ( k )  = Q ( b k ) ,  (22) 

i.e. Q ( k )  is periodic in In [k[ with period In b, in analogy with eqs. (5)-(7). In 
view of the correspondence between eqs. (12) and (18) it is clear that Q(k) 
cannot be identically constant, and a complete determination of Q(k) is given 
in appendix A. If b 2 > a, then 0 < H < 2 and 

~ ( k )  = 1 + [ k [ n Q ( k ) +  (~(k 2) as k ~ 0 ,  (23) 

which is consistent with 12 = oc since 

0 2 _ a - l (b2/a)"  - /~(k = 0). (24) 
a ,=0 Ok 2 

In fact , /~(k) is Weierstrass'  example of a function which is continuous, but 
nowhere differentiable when b/a  ~> l, and eq. (23) is just a demonstration of 
this highly non-analytic behavior at k = 0. The fact that ~ is infinite shows 
that p ( l )  decays very slowly. 

We note that H corresponds to the fractal (Hausdorff-Besicovitch)  dimen- 
sion 8) of the clusters, since there are " a "  sub-clusters per cluster, each scaled 
down by the factor "b" .  For our one-dimensional walk, in the case 0 < H < l, 
the conditions ~ = ~ and u < ~ are met and a clustering of the sites visited 
endures for a walk of infinite duration. In two dimensions, an appropriate 
analog of the walk 9) yields clusters when 0 < H < 2. If ~ is finite then Pn(l)  

will be a Gaussian, with variance n~. 

The scaling equation for/~(k) gives rise to a fractional exponent  H, but the 
existence of a fractional exponent  does not imply that scaling will bold. For 
example, if b and/3 are unequal integers, then the structure function 

,6(k) =½ 2 [ a - I  a - 1  cos(/3nk)] (25) o~0 7 cos(b"k) + ~"+1 

will not satisfy a scaling equation of the form (12). The random walk defined 
by eq. (25) corresponds to the mixing of two distinct hierarchies of self- 
similar clusters, and the resultant t rajectory will not be self-similar. However ,  
if 

In a/ ln  b = In a / ln /3  = H,  (26) 
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13(k) still has an expansion with a fractional exponent  as k ~ 0 ,  

~ ( k ) -  1 ~ ~ ] k l H [ Q b ( k )  + Ql~(k )] ,  (27) 

where Qh(k), Qt3(k )  are periodic in In Ikl with periods In b and In/3 respec-  
tively, but the fractional exponent  H does not give a complete  qualitative 
description of the t ra jectory of the random walk [unlike the walk generated 

by eq. (12)1. 

3, T e m p o r a l  scal ing 

Consider a random process  consisting of a sequence of events,  with qJ(t) 
the waiting time density between events,  i.e. + ( t ) d t  is the probabili ty that an 
event  occurs in the time interval ( t , t  +t i t ) ,  given that the most recent 

previous event  occurred at time t = 0. The probabili ty density for the time of 
occurrence  of the nth event is 

to,,(t) = f ~;,, L(t - ~')~(~') d'r, 
0 

so that in Laplace t ransform space, with 

(28) 

f f to*(~) = J e  ~'to(t)dt,  ~ ( ~ )  J e  ~'to.(t)dt,  {29) 

0 (I 

we have, for a process  started at t - 0, 

to* ( e ) =  [O*(e)] n. (30) 

These equations are the temporal  analogs of eqs. (8)-(10) and constitute,  in 
the terminology of applied probabili ty theory,  a renewal process.  We assume 
here that the process is non-defect ive,  i.e. that there is probabili ty zero that 
the process terminates  at any stage. The standard example  of such a process 
has the exponential  density 

to(t) = b e b, (31) 

giving a Poisson distribution for the number  of events  occurring up to time t. 
We now incorporate scaling into the waiting time density to(t) by writing 

tO(t)  - 1 - a ~ ,  a " b "  e x p ( - b " t ) ,  (32) 
¢/ n I 

with a, b < 1. The evolution of the process is governed by a set of compet ing 
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rates, the rate b" occurring with a probabili ty proportional  to a", n = 1,2 . . . . .  

The scaling inherent in eq. (32) is most  easily exhibited in Laplace t ransform 

space: 

1 - a ~-, ( a b ) "  
a 2_.,=1/9~ (33) 

~ * ( E )  = - -  

and 

1 I a a j 
~*(E) = am~O*(EIb ~)  + ~ j=, 1 +--e/b j' (34) 

where m is an arbitrary positive integer. This is an analog of eq. (2). For 

m = ~c the first term on the r.h.s, vanishes and any singular behavior  must  
reside in the second term, as is assumed in eq. (4). If  the first moment  i- of 

~b(t) is finite, then for small e, 

~b*(e) = 1 - e {  + 6(e). (35) 

To maintain the self-similar clustering between event  times one needs i-= ~. 
The decay of ~b(t) must  be slow enough that there is no finite time scale. 

The singular behavior  of ~b*(e) satisfies the equation 

6~ng(E) = a m~b~ng(e /bm) ,  (36) 

so that 

tb~°g(e) = e U K ( e ) ,  (37) 

with 

H = In a/In b (38) 

and K(e)  a periodic function of lnE with period ln(b t). If  a > b ,  then 

0 < H < 1 and 

tb*(E) = 1 + e U K ( e )  + •(e), (39) 

which is consistent with i-= o0, since 

{ =  1 a (a /b)"  =-~-~e qJ*(E =0) .  (40) 
~l n=t 

The complete  behavior  of ~b*(e) is given in appendix B. On the average,  a -t 
events occur,  separated by a time b -I ,  before  an event  separated by a time 
b-2; a -t clusters of  this type occur  before a waiting time of b 3, etc., with the 
proper  weighting of long waiting times to make t" = oo. Thus H can be viewed, 
in an average sense, as a fractal (Hausdorff -Besicovi tch)  dimension. 

Since moments  of order less than H are convergent  and those of order 
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greater than H are divergent, the waiting time density defined by eq. (32) is 
effectively C(t ~ u )  at large times. Long-tailed distributions have been very 
successful in describing charge transport in xerographic filmsm-~). Under the 
influence of an electric field, the transient current from photo-generated 
charges is measured and found to have a universal behavior,  as well as other 
interesting properties. The current l ( t )  is universal in the sense that plots of 
In[ I ( t ) / l ( to )]  vs. In(t/to) [where to is a transit time across the sample] are 
identical for different xerographic materials, independent of the sample size 
and the electric field strength. This can be shown to imply that the mobility of 
the charges must depend on these parameters,  which is not the case in 
standard transport theories. The current is modelled in terms of charges 
hopping between spatially disordered sites. The transition rate for a jump will 
depend on the random distribution of neighboring sites, and a wide dis- 
tribution of hopping rates is to be expected.  The hopping time density is 
found to be, in the experimental  time regime, 

+ ( t ) - c o n s t a n t . t  1 H, 0 < H < I ,  (41) 

so t- is infinite. Under these circumstances,  the distance travelled by a charge 
in time t, ( l ( t ) ) ,  and the fluctuation in this distance, ~r(t), have the same 
long-time power-law behavior: 

<t(t)) o~ ~r(t) ~ t H. (42)  

Thus the amount  of fluctuation per unit distance travelled is independent of 
time. This is the origin of the universal behavior of the current traces. Such 
universal behavior would not occur  if the motion were governed by statistics 
with t- and t 2 finite, since then ~r(t) /( l( t))  ~ t ~/" for a random walk with a bias. 

4. Cantor sets 

Cantor 14) originally was interested in examining whether or not 
trigonometric series could represent functions which had divergent or dis- 
continuous behavior  at a set of points. He soon became more interested in the 
way he could choose sets of points than in the trigonometric series, and 
developed his theory of transfinite numbers. In his search for an understand- 
ing of the continuum he introduced in 1883 his famous ternary set {Z}, the set 
of all points in the interval [0, 1] which can be written in base 3 without the 
use of the number 1, i.e. 

Cj , C2 , . . . + ~ + . . .  
Z =~t~t , (43)  
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w h e r e  c,  = 0, 2. This  set  can  be  put  into a o n e - t o - o n e  c o r r e s p o n d e n c e  wi th  the  

real  n u m b e r s ,  is c losed ,  and  e v e r y  po in t  is a l imit  poin t ,  bu t  the  set  has  

m e a s u r e  ze ro  and the re  is no in te rva l  in which  the po in t s  of  {Z} are  dense .  

The  Can to r  set  can  be v i e w e d  g raph i ca l l y  in t e rms  of  the  C a n t o r  ba r  s ) as  

shown  in fig. 1. The  r ema in ing  po in t s  a p p e a r  in a se l f - s imi la r  pa t te rn .  The  

C a n t o r  set  m a y  be  def ined  ove r  the  pos i t i ve  rea l  n u m b e r s  i n s t ead  of  the  finite 

in te rva l  [0, 1] if a f t e r  e ach  i t e ra t ion  we e x p a n d  our  in te rva l  b y  a f a c t o r  of  3, so 

tha t  the  l e f t -mos t  ba r  is a l w a y s  of  unit  length.  A f t e r  an infinite n u m b e r  of  

i t e ra t ions ,  this  t e r n a r y  C a n t o r  ba r  has  a f r ac ta l  d i m e n s i o n  of  In 2/In 3, s ince  

each  ba r  is b r o k e n  into 2 p i eces  and each  p iece  is sca led  d o w n  by  a f a c t o r  of  

3. The  se l f - s imi la r i ty  of  a C a n t o r  ba r  has  b e e n  d i r ec t l y  i n c o r p o r a t e d  into a 

func t iona l  fo rm in our  p robab i l i t y  d i s t r ibu t ions  p(l) in eq. (11) and @(t) in eq. 

(32), e x c e p t  tha t  now the cu t -ou t s  a re  m a d e  such  tha t  the  final se t  has  a f r ac ta l  

d i m e n s i o n  H = In a/In b. 
The  r e l a t ionsh ip  wi th  the  C a n t o r  set  is mos t  s t r a i g h t f o r w a r d  when  a [for 

p( / ) ]  or  a -~ [for @(t)] is in tegra l  ( c o r r e s p o n d i n g  to a or  a -~ subc lu s t e r s  pe r  

c lus ter  r e s p e c t i v e l y ) ,  bu t  for  gene ra l  va lues  of  a the  r e l a t ionsh ip  is a lso  

e v i d e n t  if we c h o o s e  any  in teger  N > 1 such  tha t  

H = In a/ln b = In N/ln(bJ"Nll"a). (44) 

Our  f r ac ta l  d i m e n s i o n  H in sec t ions  2 and 3 is then  d e r i v e d  f rom a C a n t o r  ba r  

fo r  wh ich  each  line is cu t  into N par t s ,  with each  par t  s ca l ed  d o w n  by  a f a c t o r  

b ~"N/~"a. The  p r ec i s e  C a n t o r  set  c lus t e r ing  is u sed  to d e t e r m i n e  the w a y  j u m p  

d i s t a n c e s  or  j u m p  ra tes  en t e r  a p r o b a b i l i t y  d i s t r ibu t ion ,  and  the  c lus t e r ing  in 

space  or  t ime  which  resu l t s  is on ly  in an ave ra ge  sense  tha t  occu r r ing  in the  

C a n t o r  set.  

Fig. 1. The Cantor bar. The middle third of each line segment is cut out in each iteration. The first 
three iterations are shown here. The longest interval between points of the set occurs 2 0 times. 
The next longest interval is a factor of 3 ~ smaller and occurs 2 t times. The shortest interval is 3 2 

times smaller than the longest interval and occurs 2 2 times as often. The points remaining after an 
infinite number of iterations form a self-similar pattern with fractal dimension In 2/In 3. 
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5. Conclusions 

We have shown how the form and propert ies  of a real-space renor- 

malization group scaling equation for the free energy can be incorporated into 
random processes .  H o w e v e r  the existence of a scaling equation for a random 

process  is not in itself sufficient to ensure a transition away from the standard 
spatial or temporal  behavior.  For spatial scaling it is necessary  in addition that 
the second moment  of the jump distribution be infinite, and for temporal  
scaling it is necessary  that the first moment  of the waiting time between 

events  be infinite. Under  these conditions, for a random walk with spatial 
scaling, the sites that are visited form (on the average) a fractal set of 
self-similar clusters, provided that the probabil i ty of reaching any given site is 
less than unity. The fractal dimension of the clusters is the exponent  of Ikl 

appear ing in the dominant  term of the small k expansion of 1 ~6(k), where 
/5(k) is the structure function. Similarly, when temporal  scaling occurs the set 
of times between events  shows (on the average) self-similar clustering, the 

pattern possessing an average fractal dimension which appears  as the 
exponent  of • in the small • expansion of 1 - + * ( E ) ,  where dJ*(e) is the 
Laplace t ransform of the waiting time distribution. We have given examples  
in which clustering arises f rom long-tailed distributions which have infinite 
moments .  Fur thermore ,  we have shown how the self-similar scaling has its 

mathematical  basis in the distribution of points in a Cantor  set. We have 
chosen and weighted parameters  in distribution functions according to the 
length and weight of intervals in Cantor  sets. 

Finally, we have shown in the spatial scaling case, strong enough disorder 
in the jump distribution can yield an ordering of the number  of sites visited in 
space. A strong enough randomness  in the waiting-time distribution leads to a 
freezing of motion (i.e. the mean time between events is infinite), except  for 
transient effects. In a rapid quench from a disordered to a partially ordered 
phase, the system can first acquire some degree of order and then reach a 
f rozen (metastable)  state. However ,  if the quench is sufficiently rapid, the 
disordered phase may  be frozen intS'~6). Perhaps  these types of processes  can 
be fruitfully viewed as a competi t ion between the onset of fractal spatial 
behavior  and the onset of fractal temporal  behavior.  
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Appendix A 

T he  s t ruc ture  f u n c t i o n  

An expansion of the cosine in eq. (12) in powers  of k 2 fails when b2>  a 

because all the coefficients of powers  of k 2 will be infinite. We know that the 

correct  expansion must have non-analytic behavior  consistent  with eqs. 
(20)-(22) and we give only a sketch of its derivation here, since a rigorous 

discussion appears  elsewhereg). We replace cos(b"k)  in eq. (12) by its inverse 

Mellin t ransform,  so that 

c+io~ 

2~ri~(k)- a -  1 ~0 f r(s)cos(=s/2) a = a .bS. lk[  s ds, (A.I) 
c - i ~  

for 0 < c = Re s < 1. Interchanging the sum and integral we obtain 

c+i~ 

_ a - 1 ~ I k [ ' F ( s )  cos(Trs/2) 
27ri/~(k) a j 1 - a - l b  -~ ds. (A.2) 

c - i ~  

The integrand has poles at s = 0, - 2 ,  - 4  . . . .  f rom the F ( s ) c o s ( z r s / 2 )  factor,  

and poles f rom the denominator  at s = - I n  a/In b +-- 27tin/In b (n = 0, 1, 2 . . . .  ). 
Translating the contour  to Re s -- - ~  and taking account  of the residues at the 

poles crossed,  we arrive at 

O ( k ) = l + I k l ~ . . / i . b Q ( k ) + a - l ~  ( -  1)"k 2" 
----am :l (2n)![1 - a lb2"]' (A.3) 

where 

a - 1 ~ F(K) cos(TrM2) exp( -2zr in  ln[kl/ln b) (A.4) Q ( k  ) - a ~n b . . . .  

and K = - l n  a/ln b + 2rrin/ln b. When In a/ln b <~½, the series (A.4) has to be 
summed using a convergence factorg). The borderline case In a/In b = 2 is 
easily analysed by similar means.  

Appendix B 

The  wai t ing  t ime  dens i t y  

When b < a, a s traightforward expansion of the Laplace  t ransform ~b*(e) of 
~b(t) in integer powers  of • fails, the coefficients of each power  of • being 
infinite. However  if we replace ( b " +  e)-i in eq. (33) by its inverse Mellin 
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t r ans fo rm,  so that 

a n - I  

71" 

s in (~ - s  ) 
- - e  'b "(' ' )ds  (B.1) 

(0  < c = R e  s < 1), an in te rchange  of sum and integral yields 

2rri+*(E) 1 - a f • ~rrab* ~]ds. (B.2) 
a sin(rrs)[! - a b  

The in tegrand has s imple poles f rom sin(rrs) at s - 0, + I, +2 . . . .  and from the 

other  factor  in the d e n o m i n a t o r  when  s = - l n a / l n b + 2 r r i n / I n b  (n = 

0, 1,2 . . . .  ). T rans la t ing  the con tou r  to Re s - ,c. and taking accoun t  of the 

poles crossed we find for • < 1 that 

= 1 + E In'l/In b K ( E )  + 1 - t~ , ~  ( -  1 ) " a C '  ~*(~) a __, b ; ' - a  ' (B.3) 

where  

1 a ~-, rrab ~ 
K ( E ) -  a l n b  . . . .  2, sin (rrx) exp( 2rrin In E/In b) (B.4) 

a n d  x = - I n  a / ln  b + 2~r in / In  b. 
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