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PARTI

§1. Introduction

1.1. The smooth ergodic theory studies the ergodic properties of smooth
dynamical systems on smooth compact Riemannian manifolds, preserving
a given normalized measure, denoted by v, which is compatible with the
smoothness (that is, equivalent to the Riemannian volume). By a dynamical
system of class C on a manifold Μ we understand either a
C''-diffeomorphism /: Μ -*• Μ (and also the system {/"}, η Ε Ζ with dis-
crete time, or cascade, generated by it), or a one-parameter group f* of
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56 Υ α. Β. Pesin

diffeomorphisms of Μ that is differentiate with respect to ί e R (a
dynamical system with continuous time, or a flow), which is given by a

C-vector field X on M, such that X(x) =- dftx)
dt t=0

χ Ε Μ. We are

interested in ergodic properties such as the existence of an ergodic compon-
ent of positive measure (in particular, ergodicity), the positiveness of entropy,
and, even stronger, the ^-property and Bernoullian property (the exact
definitions are given in §2).

1.2. We consider the space of all dynamical systems of class C preserv-
ing a given measure ν and equipped with the C-topology. This space is
denoted by Diff(Af, v) in the case of diffeomorphisms and by V(TM, v)
in the case of flows. A subset of this space is said to be massive if it con-
tains an everywhere dense Gs -subset. A property of dynamical systems is
said to be typical if it is satisfied for the elements of some massive subset
in Diff(M, v) (or in Yr(TM, v)). The concept of being typical is very use-
ful when dealing with the problem of describing the ergodic properties of
dynamical systems. Above all we note that there is no hope of solving this
problem for all dynamical systems without exception, since the effects
arising from such a fact are extremely complex. It is natural that we should
attempt to find typical ergodic properties of dynamical systems.

A similar approach, linked with the concept of being typical in the space
of all dynamical systems of class C (Diff(M) or V(TM)) was systematically
developed by Smale [44]. The up-to-date state of this problem is reflected
in Shub's paper [43]. In contrast to the topological case where hypotheses
on the typicality of many "nice" properties did not get corroborated, in
the case of smooth dynamical systems with an invariant measure hypotheses
on the typicality of positive entropy and of the existence of an ergodic
component of positive measure have not been disproved.

In this paper we formulate certain conditions to be imposed on a
dynamical system, which represent a very weak (in fact, as weak as possible)
variant of the so-called "hyperbolicity conditions". These conditions are
sufficient to deduce essential information about ergodic properties. At the
same time it is likely that the diffeomorphisms and flows satisfying them
form a massive set in Diff(Af, v) or in Tr(TM, v). In any case, such
dynamical systems exist on a large class of manifolds, apart from trivial
exceptions in small dimensions (1 or 2 for a flow, 1 for a diffeomorphism);
see §1.9. Moreover, a number of systems of "classical" character which
have for a long time attracted attention to a certain extent satisfy our
conditions (see §1.3 and §1.9). For some of these examples the
information on ergodic properties that can be obtained on the basis of the
general theory to be developed here (see §1.6 and §1.7), had not been
known earlier.

1.3. Before we give the exact definition of the dynamical systems studied



Characteristic Lyapunov exponents and smooth ergodic theory 57

in this paper, we discuss some variants of the "hyperbolicity conditions"
that differ, so to speak, by a degree of "rigidity" of the conditions
to be imposed.

Historically, the first idea about the hyperbolic behaviour of trajectories
was one that can be described by saying that near any fixed trajectory
{/'(#)} the behaviour of its neighbouring trajectories resembles the

behaviour of the trajectories in the neighbourhood of a saddle point. In
other words, hyperbolic behaviour is described in infinitesimal terms and is
specified by means of certain conditions (the so-called "£/" conditions) on
the differential of the dynamical system. These conditions mean (see [ 1 ],
[3]) that the tangent space at every point χ Ε Μ can be decomposed in an
invariant way into two subspaces Elx and E2x (in the case of a flow the
direction of motion must be added to them), so that the maps dfx\Elx

and dfx\E2x are, respectively, a contraction and an expansion with
coefficients that are uniform with respect to the phase space.

It has been noted long ago that local instability of trajectories — one of
the methods of expressing this are the hyperbolicity conditions — is closely
linked with the statistical properties of a dynamical system. The fact is
that on a compact manifold a "typical" hyperbolic trajectory is distributed
in the phase space in a very complex and irregular way, so that such
trajectories must get "mixed up". This offers ground for hoping that a
dynamical system will be ergodic and have positive entropy.

The role of the instability of trajectories was already noted in the thirties
by Hedlund (see the survey [38]) and E. Hopf [31], who studied the
ergodic properties of geodesic flows on certain compact Riemannian manifolds
with negative curvature. The investigation of other (geometric and
topological) properties of these flows had been started even earlier by
Hadamard [37] and was significantly developed in papers of a number of
authors, especially Morse (see Hedlund's survey [38] and §3 of Anosov's
paper [ 1 ]). A condition of hyperbolicity was explicitly formulated and
systematically used as a basic assumption for the first time by Anosov [ 1 ].
The dynamical systems he considered received the name of [/-systems
([/-diffeomorphisms and [/-flows). At present the class of [/-systems is
fairly well studied (see [ l ] - [ 3 ] , [18], [32], [33], [39]). We note that t %
" [ / " conditions are a very strong (in fact, as strong as possible) variant of
the "hyperbolicity conditions". This situation accounts for the fact that,
on the one hand, the [/-systems have a good many ergodic properties (for
example, [/-diffeomorphisms are ^-automorphisms, see [ 1 ] , and, as has
become clear recently, they are isomorphic to the Bernoulli automorphisms,
see [41] and §8 of this paper), and on the other hand, they are not
typical in the sense defined above.1 (Moreover, for purely topological reasons
the [/-systems exist by no means on every manifold; see [33]).

However, they form an open set in the space of all smooth dynamical systems (see [1] ).
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1.4. As already mentioned in this paper we study dynamical systems that
satisfy very weak "hyperbolicity conditions". In our case hyperbolicity is
partial and non-uniform (besides, by no means all trajectories are
"hyperbolic", but only those generating a set of full or at least of positive
measure). "Partiality" means that the two subspaces Elx and E2x (which
occur in the "£/" conditions) do not generate the whole tangent space at
χ G M, and "non-uniformity" means that the inequalities expressing the
variation || dfxv | | (/ G Ζ or ί ε R) with increment t for vectors υ Ε Elx

or υ G E2x are not uniform with respect to x. An intermediate variant of
the "hyperbolicity conditions", when hyperbolicity is partial but uniform,
leads to the case of the so-called partially hyperbolic dynamical systems
(see [5]).

DEFINITION. A dynamical system f' on a manifold Μ is said to be
non-uniform and partially hyperbolic if there are an invariant set
ACM, v(A) > 0, families of subspaces Elx, E2x C TXM, depending
measurably on χ Ε Λ, and measurable functions λ(χ), μ(χ), C(x), K(x),
ε(χ), χ €Ξ Λ such that for any t G Ζ (or t £ R) and χ €Ξ Λ

ί 0<λ(ζ)<μ(ζ), μ (χ) - λ (χ) > ε (χ), 1 -λ(ζ) > ε (χ) >0,
( * ' Ι μ (/' (χ)) = μ (χ), λ (/' (χ)) = λ (χ), ε (/' (χ)) = ε (χ);

(1.2) ΤΧΜ = Ε1Χ φ Ε2Χ, df'Eix = Eift(x) (i = 1, 2);

C(x)>0, Κ(χ)>0;

Γ \\*Mftlx)<C(x)V(x)\\v\\x for νζΕΙΧ, ί > 0 ,

(x)^(x)\\v\\x for νζΕ,χ, ί>0;

and the angle y(x) between Elx and E2x admits the estimate

(1.5) y(x)^K(x);

(here | | · | | Λ denotes the norm induced on the tangent space TXM by the
Riemannian metric of M).

The conditions (1.3) signify that the estimates (1.4) do not "worsen too
much" along the trajectory {f'(x)} . Actually, the functions C(x) and
K(x) oscillate along a "typical" trajectory and the magnitude of the
oscillations is estimated by (1.3). In non-uniform partially hyperbolic
dynamical systems, in contrast to {/-systems, the subspaces Eift^x-i and
E2ft(Xy generally speaking, approach each other from time to time with a
small and, as (1.5) shows, exponential speed. We note that, in essence, the
conditions (1.3) and (1.5) are not additional (and, as it may appear at a
first glance, artificial) restrictions: as will become clear below, they are
automatically satisfied on a set of trajectories of full measure.

1.5. Another approach to the definition of our "hyperbolicity conditions"
is connected with the characteristic Lyapunov exponents. (The definition of
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the characteristic exponents χ(χ, υ), χ Ε; Μ, υ & ΤΧΜ is in §3).
Let χ G Μ. We consider a trajectory {/'(x)} and the family of maps

(1-6) dfx: TsM-+TfHx)M.

We are interested in the case when this family is regular in the sense of
Lyapunov. The exact definition of this concept will be given in §3. Here
we note the following. By the multiplicative ergodic theorem of Oseledets
[19] and Millionshchikov [16] (see also §3, Theorem 3.5), for almost
every (with respect to the measure v) point χ the family of maps (1.6) is
regular in the sense of Lyapunov. If we neglect sets of measure zero (which
is natural within the framework of ergodic theory), then the conditions
(1.1)—(1.5) of non-uniform partial hyperbolicity are equivalent to the
following:

(1.7) the set A = {x G M: there is a vector ν €Ξ TXM for which
χ+(χ, υ) < 0} has positive measure.

(It is not difficult to show that this set is measurable and invariant with
respect to /.) The fact that the condition above follows from the conditions
(1.1)—(1.5) of non-uniform partial hyperbolicity is almost evident. The con-
verse is proved in [22] (see Theorem 1.1).

1.6. We now indicate two results which describe ergodic properties of
dynamical systems satisfying (1.7). The first result consists in the fact that
these dynamical systems have positive entropy. It follows from the
formulae obtained in §5 for the calculation of the entropy of an
arbitrary dynamical system of class C2 with respect to a measure v,
namely: the entropy is equal to the integral of the sum of the positive
characteristic Lyapunov exponents. This proposition has been known as a
conjecture for more than ten years; it was discussed in 1965 in the school
on ergodic theory in Khumsan. At that time rougher upper bounds were
known [15], [13], and a little later Margulis obtained an exact upper
estimate. Although Margulis's result is well known to the specialists and
is even mentioned in the literature (see [17]), it is still unpublished. A
proof of an exact lower estimate based on the method of [21] and
developed in [22], was obtained by the author in collaboration with Katok.
We emphasize one interesting (not to say odd) fact: Margulis's result is
true for dynamical systems of class C 1 , whereas the lower estimate is
obtained for systems of class C2 (it can be proved for class C 1 + 8 ) . A
proposition equivalent to this formula was proved for £7-systems by Sinai
[27]. A rougher lower bound for the entropy of partially hyperbolic
systems is due to Brin [6].

We emphasize that the entropy being positive and the condition (1.7)
are equivalent. From this it follows that the π-partition (see §2) of
dynamical systems satisfying this condition is non-trivial. A complete
description of the π-partition is given in §6.
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Now we can formulate more precisely the problem of which we
talked at the very beginning: is the set of dynamical systems satisfying
(1.7) and, consequently, having positive entropy, massive? Even stronger
is the assertion that dynamical systems having non-zero Lyapunov
exponents almost everywhere are typical. In the two-dimensional case
and also for Hamiltonian dynamical systems on manifolds of any
dimension with sufficient smoothness this assertion is not true by
virtue of the well-known Kolmogorov—Arnol'd—Moser theorem (see [14],
[4], [40]). About possible effects in the case of less smoothness we
mention Takens's paper (a Russian translation is in [33]) and also the
recent result of Newhouse on the density in the C1-topology on all two-
dimensional manifolds except the torus of the measure preserving
diffeomorphisms with periodic points of general elliptic type (see [47]). In
the general case of dimension greater than 2 none of the results available
at present gives reasons to doubt the validity of the assertion in question.

1.7. The remaining results obtained in our paper refer to dynamical
systems satisfying the condition, which is stronger than (1.7), of "complete"
non-uniform hyperbolicity, namely (we restrict ourselves to diffeomorphisms):

(1.8) the set Λ = {χ Ε Μ: χ*(χ, υ) Φ 0 for any
υ G TXM) has positive measure.

Our basic results are contained in Theorems 7.2, 7.9, and 8.1. In Theorem
7.2 we establish the existence of an ergodic component of positive measure,
lying in Λ; more precisely:

there are sets An{n = 0, 1, 2, . . .) such that
a) U An = Λ, Λ,,, Π An2 = 0 if nx Φ η.2;

b) ΚΛ0) = 0, v(An) > 0 for η > 0;
c ) / 0 V = ΛΠ, for n > 0;
d) the automorphism f\ An, η > 0, is ergodic.

Of course, in practice it is important to know the number of ergodic
components of positive measure. Theorem 7.8 gives sufficient conditions for
the diffeomorphism / | Λ to be ergodic.

Theorems 7.9 and 8.1 establish the ΑΓ-property and the Bernoullian
property, namely:

there are a sequence of numbers «,(z = 1 , 2 , . . . ) and measurable sets
A't{j = 1, . . . , n,·) such that

a) ύ A{ = Λ,-, Λ>> η Λ>» = Φ if /, Φ ; 2 ;

I b) f(A{) = Α{+ > (/ = 1, . . . , η, - 1), KAnJ) = Af ;

c) the automorphism f'\Aj is isomorphic to a Bernoulli automorphism.
1.8. In §9 the results obtained for diffeomorphisms are carried over to

f|ows. Here the theorems on ergodicity are modified in the obvious way.
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The situation is different with the AT-property, even in the case of
{/-systems. As Anosov has proved [1], an alternative holds: either f* is a
^Γ-flow (if the linear operator Uft in L2(M, v) generated by it does not have
eigenfunctions other than constants), or fl is obtained by a suspension of a
U-ilow (if t/,t has a non-constant eigenfunction). In our case a certain
analogue of this theorem holds.

1.9. An example of a flow with non-zero exponents was constructed by
the author [20]. In the case of discrete time similar examples were con-
structed by Anosov and Blokhin (unpublished). In these examples the
characteristic exponents are non-zero almost everywhere (but not everywhere).
Furthermore, in these examples the partitions into ergodic components have
the form described above. Katok and Grines have recently constructed
examples of diffeomorphisms with exponents that are non-zero almost
everywhere, on any two-dimensional manifold and on an «-dimensional
disk. Furthermore, on a three-dimensional manifold a diffeomorphism can be
constructed (by means of a suspension) for which all the exponents except
one are non-zero almost everywhere. Moreover, in the case of two-
dimensional manifolds these diffeomorphisms satisfy the conditions of
Theorems 7.5, 7.6, and of Corollary 7.2, therefore, they are isomorphic to
Bernoulli automorphisms.

A particular place among our examples belongs to the geodesic flows on
compact Riemannian manifolds, because along with examples of an algebraic
nature they have for a long time served as a field of application of the
methods of the theory of dynamical systems of hyperbolic structure. For
instance, geodesic flows on compact Riemannian manifolds with negative
curvature are £/-flows (see [ 1 ]). The next step consists in the study of
geodesic flows on Riemannian manifolds having non-positive curvature or
"small" sections of positive curvature (more precisely, manifolds equipped
with Riemannian metrics without focal points). The first result in this
direction for flows on surfaces of genus greater than 1 was proved by
Kramli [12] (he established the existence of an ergodic component of
positive measure). In §10 we prove a result that generalizes Kramli's
theorem: we show that flows on surfaces of genus greater than 1 are
ergodic and even have the Bernoullian property. The proof of this
proposition is based firstly on the results obtained in §9; secondly on
Eberlein's results describing the structure of the equation in variations for
a geodesic flow and the topological properties of these flows [36] ; thirdly,
on the construction of horospheres for a broad class of Riemannian
manifolds (see § 10).

We mention a deep informal connection between our results and those of
Sinai and Bunimovich on metric properties of the so-called billiard
dynamical systems (see [7]—[9], [28]), which are a model for a number
of problems in statistical physics. Although these systems do not fit formally
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into our scheme because they are discontinuous, in their constructions Sinai
and Bunimovich actually use the absence of zero exponents on some
"nice" set at all points of which the dynamical system is continuous. The
methods of Sinai and Bunimovich are closely connected with the use of
the specific structure of the phase space in billiard systems, but the general
scheme of the proof of ergodicity and of the J£-property, and also the
nature of the difficulties to be overcome, are similar to ours.

This paper was written under the supervision of D. V. Anosov and
A. B. Katok, who have constantly helped me in my research. A. B. Katok
carefully read the first draft of the manuscript and drew my attention to
a number of inexactitudes. His remarks have contributed to an improvement
of the quality of the paper. The discussions with M. I. Brin have also been
very useful. To all of them the author expresses his gratitude.

1.10. Throughout the paper we use the following notation:
<,> and 11*11 are the standard scalar product and the corresponding norm

in the Euclidean space R".
Z* and R+ are the set of non-negative integers and the set of non-

negative real numbers.
Μ is a smooth compact Riemannian manifold (without loss of generality

the manifold may be considered C°°-smooth).
(,)x and \\'\\x are the scalar product and the corresponding norm in the

tangent space TXM, defined by a (C°°—) smooth Riemannian metric on the
tangent bundle TM (sometimes the subscript χ will be dropped).

ρ and d are the distance induced on Μ and TM, respectively, by the
Riemannian metric.

ν is a measure equivalent to the measure induced by the Riemannian
metric.

B(x, r) is the open ball with centre at JC and of radius r on M.
f: Μ -*• Μ is a ^measure preserving C-diffeomorphism of M, r > 2.
/ ' : Μ -> Μ is a flow on Μ defined by a ^measure preserving

C-vector field X, r> 1.

§2. Prerequisites from ergodic theory

We assume that the reader is familiar with the basic concepts of general
measure theory and of ergodic theory to the extent of §1 —§4 of Halmos's
book [30] and §1 —§3 of Rokhlin's paper [25]. In this section we
briefly touch on concepts connected with measurable partitions, entropy,
ergodicity, the ΑΓ-property, and we also give some new results due to
Ornstein on Bernoullian systems. For a more detailed exposition we
recommend Rokhlin's papers [25] and [26] and that of Ornstein and
Weiss [41].

2.1. The measurable spaces (M, SS., v) with measure to be considered by
us (M is a set, SI some σ-algebra of its subsets, called measurable, ν a
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finite or even normalized measure; the measurable spaces with measure will
henceforth be denoted only by the first letter M) are Lebesgue spaces, that
is, they are isomorphic mod 0 to the interval [0, 1] together with the
σ-algebra of its Borel subsets and Lebesgue—Stieltjes measure. (We recall
that an isomorphism mod 0 of two measurable spaces Μ and TV is a
bijective map χ: Μ' -> Ν', Μ' C Μ, Ν' C Ν, Μ = Jli'(mod 0), N = N'(mod 0),
for which the image and the inverse image of any measurable set in M' or
Ν', respectively, is measurable and has the same measure.)

Partitions of a space Μ will be denoted by ξ, η, ξ etc., and the elements
of a partition £ by Cf (or by C f(x) - the element of the partition that
contains the point χ Ε Μ). If ξ is a finite partition, then we also write
% = {C1: . . ., Cn), where Cf €=W. A partition £ is said to be measurable
(see [25], §1.7) if it has a system of conditional measures, that is, a
system of measures K'lCj) (and of corresponding σ-algebras SI(Ct)) such
that:

1) for almost every C£ € Μ/ξ the measurable space
(C£, ?I(Cj), K ' I C j ) ) is a Lebesgue space;1

2) for any measurable set A CM and almost every CV €Ξ Μ/ξ the set
Α Π Ct is measurable in CV; the function v(A Π Q ) is measurable on

H and

Μ/ξ

Let £ and η be measurable partitions. The notation % < τ? means that 77
is a refinement of | , that is, every element of r\ is contained in some
element of | . The relation % < η is a partial ordering. We write £ < η and
I = 77 also when the relations hold only mod 0.

If {ξα} is a system of measurable partitions, then there exists the product
V £a> which is defined to be the measurable partition % with the two
α

properties (see [26]): ξα < % for any a, and if %a < £' for any a, then
£ < £'. (The product of finitely or countably many measurable partitions
L = {C{n), . . . , C^} consists of elements of the form Π C/"}.)

π n n

If {ξα} is a system of measurable partitions, then there exists the inter-
section /\ £ a , which is defined to be the measurable partition ξ with the two

a

properties (see [26]): %a < ξ for any a, and if £ a > £' for any a, then

We denote by ε 0 the partition of Μ into its individual points, and by ν
the trivial partition whose only element is M. Two measurable partitions £
and τ? are said to be independent if u(C^ Γ) Cv) = v{C^) · v(Cv) for any

If f is a measurable partition, then there is a natural way of turning the factor set Μ/ξ into a measurable
Lebesgue space with measure, which we denote by vt (see [25], § 1.5).
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elements C { and Cn.
Let /: Μ -* Μ be an automorphism and £ a measurable partition. The

partition consisting of the sets {/(C{)} is measurable and is denoted by /£.
A measurable partition % is said to be invariant with respect to / if
/£ = £, and increasing if /£ > £. We put

oo oo oo

fc=0 k=— oo &—0

A partition is said to be generating if ξ" = ε 0 ; bilateral generating if
oo

L· = ε 0 ; and exhaustive if it is increasing and V fk% = ε 0 .
k=0

2.2. Let % be a measurable partition of a Lebesgue space Μ and
C 1 ( C 2 , . . . the elements of ξ having positive measure. We put1

- 2 ν (Cft) log ν (Ck) if ν (M\ U Cfc) = 0,
h h

+ oo, if v ( M \ U Q > 0 .
h

For any measurable partition η a partition £ induces a measurable
partition on almost every element C . Its entropy, calculated with respect
to the conditional measure v( · | C ), is denoted by i/(£ I C ) and its mean

j #(£ | £7η) «iy by //(£ Ι η) and is called the conditional entropy of % with
Μ

respect to η. The entropy of an automorphism / is the quantity

where the supremum is taken over all measurable partitions. It can be
shown that the supremum in this formula may be taken over the set of
finite measurable partitions (see [25], §9.1). We put

h(f, I) = H(l I/"1!") = H{f\ | | - ) .

The following relations hold (see [25], §§5.5, 5.10, 8.2, 9.3, 9.5):
1. For any measurable partitions ξ, η, ξ, ξ', % < %'

Β(\ |η )<#( | ' |η), H(l\l\Jx\)^H(l\x\).

2. h(f, t \/ η)< h(f, ξ) + h(f. η).
3. h(f") = \n\h{f) for any « e Z.
4. If \n is an increasing sequence of finite measurable partitions such

that \n -> e 0 , then h(f, %n)t h(f).

Usually it is assumed that logarithms are taken to the base 2. For us, however, it is more convenient
to deal with natural logarithms.
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For an equivalent definition and other properties of the entropy, see
[25], §§7, 8, 9.

2.3. An automorphism / is said to be ergodic if any measurable invariant
function is constant mod 0. An automorphism / is called a A"-automorphism
if there is an increasing exhaustive partition for which v(%) = v. A"-auto-
morphisms are ergodic and have positive entropy.

Among the invariant partitions with zero entropy there is a greatest
partition 7r(/), the so-called Pinsker partition for / (see [25], §11.5). If £
is an exhaustive partition, then i>(t) > π(/) (see [25], §12.1). Hence it
follows that Ttif) = ν if / is a ^-automorphism. The converse is also true:
if π(/) = ν, then / is a ^-automorphism (see [25], §12.5).

2.4. Let f:(M, v) -*• (TV, μ) be a measurable injective map. The measure
μ is carried by / into a measure μ* on M: if A CM and f(A) C TV are
measurable, then μ*(Α) = μ(/(Α)). If μ* is absolutely continuous with
respect to ν so that άμ*(χ) = p(x)dv(x) (where p(x) is a positive measurable
function and χ £ Μ), then / is said to be absolutely continuous, and
p(x) the Jacobian of /.

2.5. Let | be a finite measurable ordered partition. We say that a certain
property is true for ε-almost every element of £ if the measure of the
union of those elements for which this property does not hold is less than
ε. Let {ξ*}? and {η;}? (ζ = 1, . . . , η) be two sequences of partitions of
spaces (X, v) and (Υ, μ), respectively, where £,· = {Αγ\ . . ., A$},
η,· = {Βγ\ . . ., B$}. Then the notation { |J? ~ {η[ί>? means that for
any k{, 1 < kt < m, 1 < ζ < n

We say that

if there are partitions lt = {A?\ . . . , Α™}, _ η ί = {^(

1

ί), . . . , B%} of the

space (Ζ, κ) such that {&}?-{&}?, M ~ M and

i = l 3=1

A partition % is said to be very weak Bernoullian for an automorphism
/ (£ is a VWB-partition) if for every ε > 0 there is a No = Ν0(έ) such that

N'
for any N' > Ν > No, η > 0, and ε-almost every element A E V / ζ

2V

(the partition % \ A is considered with respect to normalized measure).
An automorphism / of a measurable space Μ is said to be Bernoullian if
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it is isomorphic to the standard Bemoullian scheme (see [25], §3.6). An
equivalent definition is: there is a bilateral generating partition £ such that
f'% and p% are independent for any i and /, i Φ j . Bemoullian auto-
morphisms are AT-automorphisms.

THEOREM 2.1 (see [41], Theorems A and B). Let | t < £2 < · · • be
an increasing sequence of VWB-partitions of a space (X, v) for an auto-
morphism f such that %n -*• εο· Then f is Bemoullian.

We say that a map θ: Χ -* Υ of the measure spaces (X, v) and (Υ, μ)
is ε-measure preserving if there is a set Ε C X, v{E) < β, such that for
every measurable set A C Χ \ Ε

REMARK 2.1. Later (§8) when we study measure preserving or
ε-measure preserving maps of various measure spaces, we assume that the
measures in these spaces are normalized. In particular, when a subset A of
a space {X, v) with normalized measure is mapped onto the whole space,
then in speaking of the measure on A we have in mind not ν but

1

v(A) ""
Let {ξ;}? be a sequence of partitions of a measure space (X, v) and let

χ Ε X. The {IJi-name of the point χ is the numerical sequence /,- = /,·(*)

defined by the condition χ Ε Α\]\ £,· = {A™, . . ., Aty. The function

lt(x) is called the nominal function of the sequence of partitions {ξ*}?. We
define a function e: Z+ -»• Z+ by e(0) = 0, e(n) = 1 for η > 0.

THEOREM 2.2 (see [41], Lemma 1.3). Let {gj}? and {χ\ι}\ be two
sequences of partitions of spaces (X, v) and (Υ, μ), respectively, with
nominal functions lt(x) and m,(y). // there exists an ^-measure preserving

map Θ: X •+ Υ for which — Σ e(/,(x) - m,(0(x))) < ε for all χ Ε Χ except,

perhaps, some set Ε of measure v(E) < ε, then ά({1ι}1, {η;}?)^ 16ε.
The following statement about A>automorphisms will be needed later.
THEOREM 2.3 (see [41], Lemma 2.2). Let f be a K-automorphism of a

Lebesgue space (M, v), £ a finite partition of (Μ, ν), δ > 0, and Β C Μ
measurable. There is a No > 0 such that for any N' > Ν > No and

N'
8-almost every element A E V / ζ

Ν

1 . . ι

(2.1)

§3. Basic properties of the characteristic exponents of
dynamical systems

3.1. In this section we present a version of the theory of characteristic
Lyapunov exponents in a form convenient for our purpose. Since we are
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going to study the differentials of smooth dynamical systems on compact
manifolds, the definitions and results from the theory of Lyapunov expon-
ents to be quoted below are not given in their most general form. The
account we follow was proposed by Anosov and differs somewhat from the
usual one (see, for example, [10], Ch. 1).

DEFINITION 3.1. A characteristic exponent is defined to be a measurable
function χ: ΤΜ -*• R satisfying the following conditions for any
χ G M, Vi, υ2, υ G ΤΜ:

1. —oo < χ ( χ , ν) < ο ο , ν Φ 0, χ(χ, 0) = — οο;
2. χ(χ, αν) = χ(χ, ν), α 6 R, αφ 0;
3. χ(χ, vj + χ(χ, ν2) <max{x(x, vx), χ(ζ, ν2)}.

The number χ(χ, ν) is called the characteristic exponent of the vector
υ G TXM at x.

It can be shown that for every χ G Μ the restriction of χ to the sub-
space TXM takes at most η values other than - °°. We denote these
values, arranged in increasing order, by

(3.1) Xi ( * ) < & ( * ) < · · . <*.<*)

Let us put
(3.2) Μ * ) = Κ Γ * Μ : χ(χ,

The subspaces Lf(x) form a filtration of TXM, that is,

(3.3) Q = L0(x)<=Ll(x)<=...a Ls{x) (x) = TXM.

We put dim L{(x) = k{(x), ko(x) = 0. The integral-valued functions
s(x), k1(x), . . . , ksM(x) and the families of subspaces
L{(x) (/ = 1, . . . , s(x)) depend measurably on x. Conversely, let s(x) < η
be an integral-valued function, let Χχ(χ), . . . , XS(X)(x) be measurable
functions satisfying (3.1), and let (3.3) be a filtration, depending
measurably on x, where dim L{(x) = k{(x) (i = 1, . . . , s(x)). Then the
function χ(χ, υ) defined by

(3.4) χ(χ, v) = Xi{x), vtLt

is measurable and determines a characteristic exponent in TM.
We consider the cotangent bundle T*M. For a point χ Ε. Μ and a

subspace L C TXM we denote by Ll the annihilator of L. Now (3.3)
induces a filtration on T*M of the formT

T*XM = L t (x) =) L i (x) = > . . . = > U(x) (x) = 0.

This filtration, together with the functions s*(x) = s(x), xf{x) = Xj(x)
determines a characteristic exponent in T*M, which we denote by χ*. It
can also be described in the following way.

Let I · I be the trivial normalization of the field R of real numbers, that
is, | 01 = 0, | a | = 1, a G R \ {0}. Then for every χ G Μ the function
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Ι ν\χ = ex(*'») defines a non-Archimedean normalization of the linear space
TXM over the trivial normalization of R. (A normalization is called non-
Archimedean if it satisfies condition 3 of Definition 3.1.) Conversely, any
non-Archimedean normalization I * \x in TXM over the trivial normalization
of R, depending measurably on x, determines a characteristic exponent in
TM by the formula χ(χ, ν) = log \v\x- We introduce a non-Archimedean
normalization in T*M by putting

|φ|ί= sup m i .
v£TxM\{0} lv\x

If φ Ε Lj_l(x)\Lj(x), then it can be easily verified that

(3.5) ( >

Thus, the exponent defined byl * I* coincides with χ*.
3.2. Let / r be a dynamical system on a manifold M, that is, a diffeo-

morphism or a flow (t Ε Ζ in the first case and t Ε R in the second)
preserving the measure v.

We consider the function

(3.6) χ+ {χ, ν) = Πϊη -|- log || dfv ||.

It can be shown (see [19]) that x+ is measurable and satisfies the
conditions 1, 2, and 3 of Definition 3.1. Hence it defines a certain exponent,
the so-called characteristic Lyapunov exponent of / ' . If φ is a measurable
function on M, then its characteristic Lyapunov exponent at χ is defined as

(3.7) χ- (φ (χ)) = ϊϊϋϊ J- log Ι φ (/' (χ)) [.
ί-t+oo '

The exponent χ~(φ(χ)) for t -*• -°° is similarly defined. We say that a
vector υ (a function φ) has an exact exponent at χ if in (3.6) (or (3.7))
the upper limit can be replaced by the limit.

The exponents χ*(χ, υ) and χ*(φ(χ)) are invariant under / ' . Thus, for
any χ Ε Μ and any t

s(x) = s(f(x)), Liifix)) = dfLtix).

Here x,(^), kj(x), s(x), and Lj(x) are the values and the filtration connected
with them for the exponent χ+(χ, ν).

The dynamical system f generates a dynamical system d'f* on the co-
tangent bundle (the so-called codifferential): d'f* = {{df*)*)'1.

If on the right-hand side of (3.6) df* is replaced by d'f*, we obtain an
exponent χ+ on the cotangent bundle, which is called the adjoint exponent.

Let χ Ε Μ and let the vector υ Ε TXM and the functional φ Ε Τ*Μ be
such that φ(υ) = 1. Then for any t
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(3.8) d'fy(dfv) = φ) = 1.

Therefore, || rf'/V || > II dfv \\~l. Hence, the exponents χ+ and χ+' satisfy the
so-called adjointness condition

(3.9) χ+ '(ζ, φ) + χ+(χ, ν) > 0.

By (3.5), for a given φ G T*M there is a vector υ G TXM such that

ι̂ (ϋ) = 1, and

(3.10) χ*(χ, φ) = - χ+(*, ^).

Therefore, by the adjointness condition for any φ G T*M

χ+'(χ, φ) > χ*(ζ, φ).

The measurable function

y(x)= max (X+'(x, <p)-X*(z, φ))

is called the irregularity coefficient of χ+. The exponent χ+ is said to be
regular at χ if y(x) = 0, and a point at which this condition is satisfied is
called forward regular. If χ is forward regular, then so is f*(x) for any t.

3.3. We give another equivalent definition of forward regularity. Let
χ € Μ and consider the filtration (3.3) at x. A normalized basis
e(x) = {e;(x)} G TXM is called normal if the first kx(x) vectors lie in
L^ix), the next k2(x) ~ ki(x) vectors in L2(x)\L1(x), and so on. If
e(x) = {et(x)} is a normal basis at x, then the vectors

ef(x) = ' form a normal basis e*{x) at f'(x).

We consider the dual basis e'(x) - {e'%(x)} on T*M. The adjointness
condition (3.9) means that χ+(χ, ej(x)) + χ*'(χ, e((x)) > 0. The defect of
this pair of bases is defined to be the function

y(x, e{x), e'{x)) = max{x+(x, et(x)) + %+'(x, e\{x))}.
i

THEOREM 3.1.

y(x) = min y(x, e(x), e'(x)),

where the minimum is taken over all pairs (e(x), e'(x)) of dual bases.
PROOF. It can be shown (see [10], Theorem 2.6.13) that the minimum

in (3.11) is attained on any pair of dual bases under the condition that
e{x) is normal. We denote this minimum by y(x). In what follows the
dependance on χ of the quantities under consideration is omitted in the
notation. We select a normal basis e and its dual basis e'. For some i,
1 < / < dim M,

where ej(e,-) = 1. We consider the filtration (3.3) at x. Let e\
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then e,; G LJ\LJ_1; By (3.4) and (3.5) we have x+(e;) = χ, = ~\*[β\). Thus,
7 = X*'(e'i) ~ X*(ei) < 7· On the other hand, for some φ G T*M

y = χ+'(φ) - χ*(φ)·

We choose a vector υ satisfying (3.10). There is a normal basis e containing
υ. Then the dual basis e' contains the functional φ. Thus,

Υ = χ+'(φ) + %+(v) < y(e, e') = y.

The theorem is now proved.
From it we obtain the following result.
THEOREM 3.2 (Perron [10]). The exponents χ+ and x+ are regular at

x if and only if Xj(x) = - χΙ(χ), and the filtration connected with χ+ con-
sists of the subspaces L\{x). Any basis dual to a normal one is normal.

We need the following properties of forward regular points.
THEOREM 3.3 (see [10], Theorem 22.1.2). The following statements

are equivalent:
1. The point χ is forward regular, and e(x) = {e^x)} is a normal basis.
2. The ordered basis e(x) splits into blocks

e (χ) = h , w (*)· · • · - %*)(*> (*)).

so that

χ+(χ, βαχ)) = %j(x), kj.^x) < i < k}{x)

and the function Tj{x), the volume of the parallelipiped spanned by the
vectors e,(x), kj_x (x) < i < k}-(x), has the exact exponent

(3.12) χ+ (Γ, (χ)) Σ *+ (Χ, et (χ)) = (k} (χ) - *,_, (χ)) ls (χ).

COROLLARY 3.1. If χ is forward regular, then for any υ € TXM the
exponent χ*(χ, ν) is exact.

If on the right-hand side of (3.6) instead of the upper limit as
t -*• + °° we consider the upper limit as t -* — °°, we obtain the exponent
X~ on TM.

A point χ is said to be backward regular if it is forward regular for the
exponent χ". A point χ is said to be regular if it is both forward and
backward regular.

If JC is regular, then so is f*(x) for any Λ Furthermore, the values of the
characteristic exponents x+ and χ" and also the filtrations connected with
them are compatible with each other.

THEOREM 3.4 (see [19], Theorem 4, [10], §11, 22). If χ is regular,
then there are subspaces Et{x) (/ = 1, . . . , s(x)) such that

ftj(x)

1. Li(x)= Θ Ej(x) ( i = l , . . . . «(*)).
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2. lim — log || df'v || = ± χΑχ) uniformly in υ G EAx).
r-±~ U\ ' '

3. χ-(Γ;.(χ)) = - χ*(Γ,(*)) = (kfix) - *,_,(*)) χ,(χ), where Γ,(χ) is the
volume of the parallelipiped in E}(x).

4. // Ejif'ix)) is a subspace atf'(x), then df'Ejix) = £}(/'(*)).
5. // a is a subset of the set of natural numbers from 1 to six), if

Ρ (χ) = Θ Ej(x), and if ya a (x) is the angle between Pa (x) and Pa(x),

then x\yOi,oW) = x~(yai,a(x)) = o.
REMARK. At a regular point we also have the decomposition

six)
T*M = Θ Ej{x) with similar properties with respect to the exponent χ ;

moreover, if e(x) - {βι{χ)} is a normal basis for which e,-(x) Ε Ej(x) for

&/_i(x) < / < kjix) and if e'{x) = {e\(x)} is the dual basis, then

e/(;c) e Ej for ^ ( x ) < / < kf(x).

3.4. In what follows we use the fact that for a smooth dynamical system
regularity is a typical property with respect to any invariant measure. This
was proved by Oseledets (see [19]) in a more general formulation (for
linear extensions of dynamical systems on a Lebesgue space) and in a
similar form by Millionshchikov (see [16]); in [19] it is called the
multiplicative ergodic theorem. For it plays the same role in the study of
the above-mentioned linear extensions as Birkhoff s ergodic theorem does
in the study of dynamical systems on a Lebesgue space. We quote the
Oseledets—Millionshchikov theorem for dynamical systems on smooth
manifolds.

THEOREM 3.5. Let f* be a dynamical system on a smooth compact
manifold Μ that preserves Borel measure. Then with respect to this
measure almost every point χ Ε Μ is regular. The function s(x) and the
subspaces E1(x), . . . , £" ί ( χ ) (χ) (see Theorem 3.4) depend measurably on x.

§4. Properties of local stable manifolds

4.1. In this section we formulate some results we need later on local stable
manifolds, which generalize the corresponding statements on properties of
local contracting fibres in the theory of t/-systems. Detailed proofs are in
our paper [22]. The exposition will necessarily be brief and quite formal.
However, since these technical results are fundamental for all further
developments, before dealing with them we given an informal account of
the questions to be studied here and describe the steps we have to follow
in order to pass from (1.7) to the study of metric properties of dynamical
systems.

The first step consists in establishing the conditions of non^uniform
partial hyperbolicity (1.1)—(1.5) on the set of regular points Λ C Λ (see §§
4.2 and 4.3; the set Λ is defined in (1.7)). In what follows with the help
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of the inequalities (1.3) and (1.5) we succeed to some extent in reproducing
the scheme of arguments developed by Anosov and Sinai in the theory^of
{/-systems. More precisely, we wish to "lower" the subspaces Elx, χ G Λ,
/^-invariantly on the manifold M. In other words, by considering a fixed
trajectory {/n(z0)} we want to find out whether our "conditions of hyper-
bolicity" of the family {d/£0} imply some "conditional stability" of the
trajectory {fn(x0)} > that is, whether there is a smooth submanifold
V(x0) C Μ such that the {/"(a;)} with the initial value χ €Ε V(x0) approach
{fn(xo)} asymptotically.

Better known is a similar question on the conditional stability of the
trivial solution x(t) = 0 of the system of differential equations
dx/dt = A(t)x+f{t, x), where χ and / are vectors, A(t) is a uniformly
bounded and uniformly continuous matrix, and dxf{t, x) satisfies a
Lipschitz condition with a sufficiently small constant, uniform with respect
to t. It is known that when part of the characteristic Lyapunov exponents
of the "first approximation" system dx/dt = A(t)x is negative, this alone is
not sufficient for the "conditional stability" of the perturbed system. An
appropriate counterexample was given by Perron (see [10], §30.3). It turns
out that regularity in the sense of Lyapunov of the system
dx/dt = A{t)x (or of the family {d/20}, respectively) is sufficient for the
theorem on "conditional stability" to hold. For differential equations with
an analytic right-hand side such a theorem was proved by Lyapunov (see
[10], §16). For differential equations with smooth right-hand side in the
case of absolute stability (when all characteristic Lyapunov exponents are
negative) the corresponding theorem was proved by Malkin (his result is
obtained in [10], §16 as a corollary to an even more general theorem, also
concerning the case of absolute stability). Finally, in [22] the author has
proved a theorem on "conditional stability" for families of maps {df%} of
class C 1 + E satisfying the condition of non-uniform partial hyperbolicity.
This theorem is called to play the same role in our case as the famous
Hadamard—Perron theorem (see [1], §3) in the general theory of
{/-systems: it helps in the construction of local stable manifolds V(x) (see
§4.4).

We mention some difficulties connected with the study of local stable
manifolds. Firstly, they are defined only for almost all χ Ε Λ, that is, on
some "perforated" subset of M. Secondly, the submanifolds V(x) depend
on χ "discontinuously" (but in a certain sense "measurably").1 In parti-
cular, the "measures" of these submanifolds are discontinuous functions.
Moreover, the "measures" of the V(f"(x)) for sufficiently large « > 0 may
prove to be arbitrarily small. The surmounting of these is based on the
following considerations. By means of (1.5) and (1.3) the "measures" of the

We also note that there is a certain arbitrariness in the construction of local stable manifolds: for example,
they depend on the choice of the Riemannian metric on Μ (for more details see §6).
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V{fn{x)), η > 0, can be estimated from below. Namely (see Theorem 4.1),

"measure" of V(fn{x)) > ("measure" of V{x))e ~ε{χ)η·

Thus, the "measures" of V(fn(x)) decrease more slowly than their points
approach each other (by means of (1.4) it can be shown that the rate of
approach of these points is bounded above by (λ(χ) + ε(χ))") a fact on
which the proofs of the majority of propositions of a technical nature are
based. Next we consider the so-called families of local stable manifolds,
that is, the collection of submanifolds V(x), where χ ranges over one of
the (non-invariant!) subsets Λ' C Λ (/ = 1, 2, . . .), which are chosen in a
special way so that the estimates (1.1)—(1.5) are uniform on Λ' (and
"worsen" with the increase of /; see §4.3).

Among the properties of the families of local stable manifolds one of the
most important is that of absolute continuity. Roughly speaking, this means
that the intersection of any set A CM of measure zero with almost every
local stable manifold V(x) from the family is a set of measure zero (we
have in mind the measure induced by the Riemannian metric on V{x),
regarded as a smooth submanifold in M), and conversely, every set with
this property is of measure zero. Our definition of absolute continuity and
the theorem on absolute continuity in §4.5 generalize the corresponding
concepts and assertions in the theory of {/-systems (see [1], §5; [3]) and
of partially hyperbolic dynamical systems (see [5], §2). In fact, absolute
continuity is the bridge on which we can pass from the differential
properties of a dynamical system (that is, from the properties of the
equation in variations) to its metric properties. In this context we mention
that, as Sinai has shown [27], the presence in a dynamical system of an
invariant contracting absolutely continuous foliation (which he calls a trans-
versal foliation) ensures certain ergodic properties, for example, the positive-
ness of entropy (see also [6]).

4.2. Let / be a C-diffeomorphism on M, r > 2, preserving the measure
ν and satisfying (1.7). We consider the set Λ of regular points in Λ. From
Theorem 3.5 it follows that v(A) - v(A). Let χ e Λ and consider the
filtration (3.3) and the subspaces Ej(x) (/ = 1, 2, . . . , s(x)) at χ (see
Theorem 3.4). We denote by k(x) the largest natural number such that
X+Qt, υ) < 0 for every υ G Lk(xfic). Then 1 < k(x) < s(x) and
k(f(x)) = k(x). We set

Elx= Θ Ε, (χ), Ε2χ= 0 Ε, (χ),
3=1 j=ft(x)+l

λ (χ) = e**<*>w, μ (χ) = β*'

By Theorem 3.5, the functions X(x), μ(χ) and the subspaces Eix, E2x

depend measurably on χ and satisfy the conditions

ίΟ<λ(*)<1<μ( :Ε) ,
( ' ' \λ(ί(χ))=λ(χ), μ(ί(χ))=μ(χ).
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(4.3) ΤχΜ=Ε1χφΕ2χ, ( ί = 1 , 2).

PROPOSITION 4.1 (see [22], Theorem 1.1.1). There exist measurable
functions C(x, ε), K(x, ε), ε > 0, χ G Λ, swc/ζ

1) /or a«.y m G Ζ

2)

( 4 " 5 )

η G Z +

^ ε)λη(*)β»||ι;||,

M*, ε) μ» (*)

3) i/ie αη^/e γ(χ) between Elx and E2x admits the estimate

4.3. For integers 5 > r > 1 we consider the sets

r = \ x e Λ: - — < λ(λ:) < — < - — < β(χ), where s is the smallest
* V. S S S

()
S S S

number satisfying these inequalities for a certain r).

It is obvious that the Asr are measurable and /-invariant; also,

U Asr = A, and if Sj Φ s2 or rx Φ r2, then Λ ί ι>Γι Π Λ ^ = 0 .

For Λ: €Ξ Λ, r and TV G Z+ we put

(4-6)

The function e(x) is measurable and invariant. Of course, it also depends
on the choice of N, but in our notation we do not indicate this dependence
explicitly (see Remark 4.4). Setting ε = e(x), C{x) = C(x, ε(χ)),
K(x) = K(x, ε{χ)) in Proposition 4.1, we find that on Λ the diffeomorphism
/satisfies the conditions of non-uniform partial hyperbolicity (1.3)—(1.5).

For every integer / > 1 we put

Al

s,r = {xiAs<r: C(*,e(*))<Z, K-^x, ε (*))<*}.

The sets Λ,,. are measurable, U Λ^, = Asr, Al

sr C Al*J, and for any

G Al

sr, η G Z+, m G Ζ
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(4.7)

υζΕ

| v ||,

(4.8)

We denote by Al

s r s > r > 1, the set of points χ Ε Μ such that
(4.9) there are subspaces Elx and E2x for which TXM = Ε1χφE2x;
(4.10) the estimates (4.7) hold for the vectors vedfmEix(i= 1, 2);
(4.11) the angle y(fm(x)) between dfmElx and dfmE2x satisfies (4.8).
PROPOSITION 4.2 (see [22], Theorem 1.3.1).

1. i ! , r c A i , r c Λ, Al

s, r ci A^ 1 .

2. The set Al

sr is closed.
3. Elx and E2x depend continuously on χ in Al

sr.
4. For any integer q and / > 1 there is an a = a (I, q, s) > 0 such

5. 77ze 5e/ A s ^ = U A's r is f-invariant. If rlt s 1 ( r 2 , s2 ε Ζ+,

'"ι ί Ί ' 2 + 2 r j + 2
> /Ί > 1, s2 > 2̂ ^ 1 a^ s"c/i /Λα/ — < — < <

A/-,,Sl

 C Ar.

We put

= U Λ 3 , Γ,
l

sl s2 s2

: dim Eix = k},

sl

Aft, s, r == Ah Π As, r, Aft, s, r = 4 h fl A', r-

4.4. We consider the set As r for some s and r, s > r > 1 (which in this
subsection we take as fixed). We choose an arbitrary number x s r such
that

(4.12) -^-e3 e s<x s, r < e - 5 E * .

Let δ(χ) be a positive measurable function on As ,..

B\6(x)) = {u 6 £ i K : II u

Β(δ(*)) = Β\δ(χ)) Χ

(4.13) U(x, δ(χ)) =

<6(x)}

We set

(i = 1, 2),
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THEOREM 4.1 (see [22], Theorem 2.2.1). There exist measurable
functions δ(χ), δ'(χ), A(x), a family of maps φ): Β1 (δ(χ))-*Β2 (δ(χ))
of class C~i, depending measurably on χ G As r and a constant L > 0
such that

1) the set V(x) = {exp*(u, <p(x)u) : u 6 B\b{x))} is a submanifold in Μ
of class Cr~l;

2) χ G V(x);
3) TxV(x) = Eix;
4) for y Ε Vix) and η G Z+ we have fn(y) G U(fn(x), δ'(/"(χ))),

5) Suppose that y G U{x, δ(χ)) and let C > 0 be a constant such that
f(y) G U(fn(x), δ'(Γ(*))), p(f"(x), fn(y)) < C(xs,r)

n for any η G Z+;
then y G F(x);

6) for any m G Z+

δ ' ( Γ ( * ) ) > δ ' ( β ) β - 5 « ( * ) « , δ ^ Γ = inf β ' ( « ) > 0 ,

(4.15)
, δ ί ι Ρ = inf 6(a:)>0;

(4.16) 4 ( Γ ( ΐ Κ 4 ( ΐ ) ί 5 1 * , 4 , r = sup A {x)< oo

δ'(χ) > 6(x);
7)
8) i/iere w α measurable function G(x), χ Ε As r such that

G(f(x)) = G(x) and Gsr = sup G(x) < °°, anc? /o/· any y G

(4.17) d(TvV(x), TxV(x))^G(x)A*(x)p(x, y).

DEFINITION 4.1. V(x) is called a local stable manifold passing through
χ G Λ,,Γ.

REMARK 4.1. By means^of Theorem 4.1 we can construct a local stable
manifold at every point of Asr for any s > r 5* 1 and, consequently
(since these sets are disjoint), at every point of Λ. In fact, this can be done
at every point of Λ.

REMARK 4.2. Theorem 4.1.5, expresses a certain property of
"uniqueness", which can also be stated in the following form.

5')· For any ε > 0 there are functions δ'ε(χ), δε(χ), χ G Asr satisfying
(4.15) and such that if y G U{x, δε(χ)) and
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for any η > 0 and a certain C > 0, then y G V(x).
PROOF. We choose the number Ν in (4.6) so large that 6ε(ζ) < ε for

any χ G As r. We put x s > r = e-68». By means of Theorem 4.1, we con-
struct from ε(χ) and κ,,Γ the functions δ'(χ) = δ'ε(χ) and 8(x) = 8e(x). Let
y and C satisfy the conditions of 5'). Then

P ( f (*). / n (i/))<Ce-^CCe- 6 £ W- = C(K s, r)".

Hence, by Theorem 4.1. 5), we find that y G V(x).
Some additional properties of local stable manifolds are described in the

following propositions.
THEOREM 4.2 (see [22], Theorem 2.3.1). 1. If x, y G Asr,

y G UX {x,\ b{x)), y £ V(x), then V(x) η V{y) η U(x, \ 8(y)) = 0.

2. Ifx G Asr, y G V(x) (Ί Asr then V(y) Π U(x, 5(x)) C V(x).

3. Ifx G Al

s r, Xj G Al

s r(i = 1 , 2 , . . . ) , and x{ -> x, then

V{x{) Π U(x, q) -»• F(x) (Ί t/(x, ή/) in the Cl-topology, where

0<q< δ',,Γ.

THEOREM 4.3 (see [22], Proposition 2.3.1). 1. Let χ G Λ, y G

77?e« ^ is forward regular and s(x) = s(y), xt(x) = χ,Ο) (ζ = 1, . . . ,

2. Zei χ G Al

sr, y G Λ η F(x). 77zen rtere is a K = K(l, s, r) such that
for any η G Z+

(4.18) "

(4.19)

3. Let χ G Λ,ΐΓ, y G F(x). ΓΛβ« x+(y, υ) < 0 ,
REMARK 4.3 (see [22], Remark 2.3.1). There is an al

sr such that for
any x, y G Λ ^ , , y G £/(*, α' ϊ 7.)

y(y)D^(*,4- & r) =
xwhere i^,: 5(a' s^.) -> i 1 ^ is a map of class C

DEFINITION 4.2. The family of local stable manifolds Sl

ksr{x),
x G A j ^ . i s the collection of local stable manifolds passing through

y G Al

k'Str Π U(x, Ι δ'ΙιΓ).

4.5. Let χ be a density point of Al

k s r. We choose a number

<?, 0 < q < -̂  al

sr, and put

(4.20) Ai,,, r(a:)= U V(y)[)U{x, q).

In the neighbourhood C/(x, 9) we consider an open smooth submanifold
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W for which the set exp"1 W is the graph of a smooth map φ: U -*• Elx

defined in some neighbourhood U C E2x by i(\//(«)) = u, u €Ξ U, where
t is the projection on E2x parallel to Elx. We set

(4.21) | W | = m a x | | i | j ( u ) | | x + m a x || Λ|> (") |l«·

There is a constant" e{,s,r > 0 such that if | W | < A, s,r, then W

intersects every V(y), y G A^ s r Π U{x, q) in at most one point, and this

intersection is transversal. A submanifold W satisfying these conditions is

called transversal to the family Sk s r(x).

Let Wl and W2 be two smooth submanifolds transversal to Sl

k s r(x).

There are open submanifolds W1 C W1 and W2 C W2 for which the

succession map is defined:

Namely, if y = W1 η V(w), w G Al

ks>r Π U(x, q), then

(4.22) P(y)

DEFINITION 4.3. A family Sl

k s r(x) is said to be absolutely continuous
if any succession map constructed as above is absolutely continuous.

This definition generalizes that of absolute continuity given by Anosov
in the case of iT-systems (see [1], §5, §17, §19; this property is
discussed there and its role in metric theory is indicated; see also the
definition of absolute continuity in [5], §2).

THEOREM 4.4. There are constants ql

s,, J[r such that:

1. the family Sl

ksr(x) is absolutely continuous in U(x, q[ r);

2. if y is a density point of Al

ks r Γ) W1, then the Jacobian J(p)(y)
satisfies the condition

(4.23) |/(/0 0 / ) - l | < / U ( | * H + |W2 |).

4.6. Let χ be a density point of Al

ksr, W an open smooth submanifold

transversal to Sk s r{x), χ e W, and A C W Π kl

ksr. We put

A= U (V(z)[)U(x, q\:r)).

ί
q\:r)

Let μ be the measure induced on W by the restriction to W of the
Riemannian metric of M. We introduce a new measure μ on W by putting
for any measurable set A

μ(Α) = ν(Α).

Let vz denote the measure induced on V(z) by the Riemannian metric.
PROPOSITION 4.3.1. The measure μ is absolutely continuous with

respect to μ.
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2. The partition ζ of A into submanifolds Viz), z G Al

ksr, Viz) Γ\ΑΦφ,
is measurable and the conditional measure vz on an element of the partition
is absolutely continuous with respect to vz.

3. vz{V{z)) > 0 for almost every y G A, where z £ A ' t l , and
Viz) Π A = y.

In the subsequent propositions we use mostly not Theorem 4.4 itself,
but the property of local stable manifolds, which follows from it and is
established in Proposition 4.3. (The inequality (4.23) is used explicitly only
in the proof of the Bemoullian property.) As Sinai has done (see [27]),
this property can be used as a base for the definition of absolute continuity.
In our case, however (as in the case of {/-systems), it is convenient to
establish this property by using succession maps (about this, see the remark
in [1], p. 205). From Theorem 4.4 and Proposition 4.3 the following
results are immediately obtained.

PROPOSITION 4.4. Let χ be a density point of Al

ksr, W a smooth sub-
manifold transversal to Sl

k s rix), and Ν C W a set of Lebesgue measure zero
in W. Then

v( U (V{w)[\U(x,ql..r))) = 0.

PROPOSITION 4.5. Let v(AkiSir) > 0. There is a set Ν C Μ of measure
zero such that for any I G Z* and χ Ε Al

k s r\ Ν

4.7. In this subsection we reformulate the preceding statements for
diffeomorphisms satisfying (1.8).

Let / be a C2-diffeomorphism of Μ preserving the measure ν and Λ the
set of the regular points in Λ, ΐ>(Λ) = v(A) (see Theorem 3.5). We define
the functions λ(χ), μ(χ) and the subspaces Elx, E2x by (4.1). Then

(4.24) μ(χ) > 1.

Making use of Proposition 4.1 we construct measurable functions C(x, ε)
and Κ(χ, ε), ε > 0, χ G A. For an integer s > 1 we set

As = {x € A: \(x) < 1 - 1/s < (1 - 1/s)"1 < μ(χ), where s is the
smallest number satisfying these inequalities}.

It is clear that the As are measurable /-invariant sets; also that
U As = A and if sx Φ s2 then As Π A^ = 0 . We define the function

s> 1 '
ε(ζ) for χ G As by (4.6). For / > 1 we put

The sets Al

s are measurable, U Aj = A S , and Al

g C Al

s

+l. Moreover, for

any χ G A's, m G Ζ, η G Z+ (4.7) and (4.8) hold if r/s is replaced by
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(s - l)/s and (r + 2)/s by s/(s - 1). We define the sets A's by (4.9)-(4.11)
(as before, in (4.7) and (4.8) r/s is to be replaced by (s - \)/s and
(r + 2)/s by s/(s - 1)). The following is proved like Proposition 4.2.

PROPOSITION 4.6. 1. Al

s C Al

s C Λ, Λ^ C A1*1.

2. 77z<? sei A'S is closed.
3. 77?e subspaces Elx and E2x depend continuously on χ in Al

s.
4. For any integer q and I > 1 there is an a = a(l, q, s) Ξ Ζ+ swcA

fHA[) C Λ?.
5. 77ze set As = U A's is f-invariant, and As C As /or α«^ Ι

/> ι ' 2

We consider the diffeomorphism/^1. By Theorem 3.4, it has non-zero
characteristic exponents at any point of A, therefore, the preceding arguments
are applicable to it. Let the bar above symbols for functions, subspaces, and
sets mean that they are constructed for f~x. Then by Theorems 3.4
and 4.1, for χ e A,

λ (#)=--- μ"1 (χ). μ (χ) ---••= λ"1 (χ), ύ1χ^Ε2χ, Hix = Elx,

1 (χ) = ε (*), C (χ, ε (χ)) = C (χ, ε (χ)), Κ (χ, ε (χ)) --= Κ (χ, ε (χ)),

We put

Λ = U Λ,, Ak,s = Ak()As, Ais = Ak[]Al

s.
s>l

It is obvious that Λ^ s is measurable and that Ak s is measurable and
invariant. From Theorem 3.5 it follows that Λ = Λ (mod 0).

By applying Theorem 4.1 to / and f~l we can construct local stable
manifolds, which we denote by V~(x) and V+(x), respectively. The manifold
V*(x) is called local unstable manifold (with respect to f). These manifolds
are defined in U(x, δ(χ)) (see (4.13)), and the measurable function δ(χ)
satisfies the third inequality (4.15) and the condition

(4.25) δ^= inf6(a:)>0.
x£As

In addition, they have the properties in Theorems 4.1 and 4.2. We remark
that the function A(x) in Theorem 4.1 satisfies the first inequality (4.16)
and the condition

(4.26) Al

s j

x£Al

s

From Theorems 4.1, 4.2 and Proposition 4.6 (see also Remark 4.3) we obtain
the following result.

PROPOSITION 4.7. There is a measurable function r(x, ε) such that for
any y, ζ G Α Π U(x, r(x, ε)) the submanifolds V~(y) and V*(y) intersect
transversally at a unique point w £ U(x, ε). Moreover,
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(4.27) λ (ε) = inf r (χ, ε) > 0.
χζ,Λ,

Let χ G A!

ks. We denote by S^s(x) and 5//s(x)the families of local
stable and local unstable manifolds at x, respectively. These families are
absolutely continuous in some neighbourhood U{x, q^), and the Jacobian
J(p) of the succession map ρ (see (4.22)) defined by the submanifolds W1

and W2 transversal to one of these families, satisfies the condition (see
(4.23)):

(4.28) | J(p){y) - 1 | < /<(| Wl | + I W2

where Jl is a certain constant.
s

PART II

§5. The entropy of smooth dynamical systems

5.1. Let / be a C2-diffeomorphism of Μ preserving the measure v. We
consider the collection of distinct values χ{(χ) (i - 1, . . . , s(x)), arranged
in increasing order, of the characteristic exponent χ+ at χ G M, and let
qt{x) - kj(x) — ki_1(x) be the multiplicity of the corresponding value (see
§3). Let k(x) be the number of negative values of χ+ at x.

THEOREM 5.1. The entropy h(f) of the diffeomorphism f satisfies the
equality

h(x)

(5.0) h(f)=-$?lqi(z)xi(x)dv(x)
Μ i = l

(for k(x) = 0 the empty sum is taken to be zero).
PROOF. As noted in Introduction, the fact that the entropy does not

exceed the quantity on the right-hand side of (5.0) was proved by Margulis.
In §5.2 we shall show that

Μ i = l

The idea of the proof of this theorem is due to Katok. Here we use the
method proposed by Sinai to prove the corresponding proposition for
systems with transversal foliations (see [27]).

5.2. We consider the set Λ defined in (1.7). If v(A) = 0 then the lower
estimate is obvious. We therefore assume that v(A) > 0 and consider the
set Λ of regular points in Λ. For χ € Λ we denote by Jn(x) the Jacobian

of the restriction dfn\Elx and set \(x) = e*iix\ g(x)= Π (ki(x))qί(χ). We
/= 1

fix ε > 0 and put
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A m , &, s, r = A m Π A f t i Si r .

We evaluate the entropy of the restriction f\AmkiSr with respect to the

conditional measure vx (y\(A) =—_; v(A), A C Am k s r being a

measurable set). From Theorem 3.4 and the definition (3.7) we obtain the
following result.

LEMMA 5.1. There is a measurable function L(x, ε), χ G Λ, ε > 0,
such that for any η G Z+

We put
A\, Ki.r = {χ ζ Aro Π Ai.,, r : L (χ, ε) < Z}.

For any at > 0 and sufficiently large I G Z* we have

(5.1) MAin.ft.s.r^l-Ci!.

Let | be any finite measurable partition of Μ every element of which
satisfies the conditions:

1) Cs is homeomorphic to a ball and has a piecewise smooth boundary;
2) diam Q < a£, (see Remark 4.3).
We put A1 = U (V(x) η CUx)). By Theorem 4.2, the set Λ' is

measurable. We divide every element C{0c) into sets V{y) ΓΊ C£(x),
^ £ C?(x) Π Λ^ fc s r. (This partition is well-defined by Remark 4.3 and
Theorem 4.1.1.) Then we complete the resulting partition of Λ to a
partition r\ of Λ = U fn(Al), by adding the element Λ\Λ'. Since

— °° <n < °°

^m.k.s.r C A' C Λ C A m j f c s r (mod 0), by (5.1)

(5.2) v^AXA'Xat, v t (A m , t ,,, r \A)<o,.

We consider the measurable partition r\~^ of Aand denote by v- the
conditional measure on Cv-bc). We set/= /|A. By what we have said in
§2.2, the entropy of f\Amksr has the following lower estimate:

h (/1 Am, ft,,. r) >fe (/) = -i- Λ (Γ) > 4 " H ^ I ' D '
where « G Z* is arbitrary. To estimate the last expression we find a lower
bound for

First we describe a typical element of η~, and then we show how to
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evaluate the conditional measure on this element. To simplify the notation
we do not indicate the dependance on m, k, s, r of the constants occurring
in the subsequent lemmas. We write

d\= U dCt(y), B6 = {x: p(x,

The following statement is easily seen to be true.
LEMMA 5.2. There is a constant Cx > 0 such that

vx (Bs) < C, δ for any δ > 0.

Let χ Ε Λ', r < <xl

s,r- We denote by Βη(χ, r) the ball with centre
at χ and radius r on Cv(x).

LEMMA 5.3. For any <x2 > 0 there are a q{l) and a set A1 C Λ',
ι>ι(Αι\Αι) < a2, such that Cv-(x) D Bn(x, q(l) for any χ G A1.

PROOF. We put

Dq = {x£Al: there is a y^B^{x, q)\Cn-(x)}.

If χ e f l ? , then we can find η £ Ζ * and y Ε Βν(χ, q) such that

y <$ C „ (x). Hence, fn(z) Ε 3£ for any ζ £ Βη(χ, q). Consequently, by

Theorem 4.1. 4) and 6), f(x) £ BC^K )Uq, where C2 = C2(/) is a constant.

From this and Lemma 5.2 it follows that νγφ ) < Σ C2(>cs τΤΐ < C3q,
q n = 0

where C 3 = C3(/) is a constant. To prove the lemma it is enough to set

q(l) = OiCl1, A1 = Λ 7\2) ί ( / ).

We denote by vy the measure induced by the Riemannian metric on the

local stable manifold Viy), y Ε Al

m k s r.

LEMMA 5.4..There is a C4 = C4(/) rac/z ίΛαί /or α«^ χ Ε Λ', χ Ε F(y),
* € Λ ' Μ ι Μ , Γ « e ζ +

The proof follows immediately from Lemma 3.2.5 of [22]. From
Proposition 4.3 and Lemma 5.3 we find that for χ Ε Α1, χ Ε Viy),

(5.3) C

where C5 = C5(l) is a constant.
From what we have said above and from Lemmas 5.1, 5.3, 5.4 and the

inequality (5.3) it follows that for any χ Ε A1 and η Ε Ζ+

(5.4) #(/"η|<7 η _ ( ΐ ) ) > _ log [ C 6

2 C 4 Z ( ( m + l ) e ) " e ^ ( F ( ^ ( ^ g(|))))-i] = / „ ,

where ¥(Βη(χ, q(l))) is the Riemannian volume of Bn(x, q(l)). Since
V(Bv(x, q(l))) > C6(q(l))k, where C6 > 0 is a constant,
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(5.5) / B > - l o g iqC4Z(

-n(log(e(m + l)) + e)> -0Ί(1)-η (log g(χ) + ε)-2n/m

(C7(/) > 0 is a constant). Integrating (5.4) over the elements of η~ and
using (5.5) and the fact that Pi(AmtkiSir\Al) < 2ax 4- a2 (see (5.2) and
Lemma 5.3) we obtain

- J
h(x)

ftW

ι Γ y a.(x
\ m,n,s,r> ~ { = 1

Am,fc.s,r

where |3 can be chosen arbitrarily small if ε, αχ, and α 2 are chosen
sufficiently small and η sufficiently large. Summing the resulting
inequalities for various m, k, s, r (we recall that the sets Am k s r are
pairwise disjoint), we obtain the required estimate.

REMARK. A similar result is proved in [48]. However, the proof given
there is not complete: it consists of several separate stages, but it is not
always clear how they are to be realized. This refers to the question of
principle whether absolute continuity (or something of the kind) is used in
proving the lower estimate for the entropy, and if so, then how exactly
(and also how to prove it); it remains unclear whether the author had in
mind arguments of the kind that appear natural in the light of this paper
or other ones.

§6. "Measurable foliations". Description of the π-partition

6.1. In this section we construct a special/-invariant partition of Λ, which
is similar to the partition into global contracting fibres for {/-systems:
almost every element of the partition is a mod 0 smooth immersed sub-
manifold of M, contracting under the action of / " . Following Anosov and
Sinai [3], we call such a partition a "foliation of Λ", adding the term
"measurable" to indicate that, in general, the continuous dependence of
the fibres is not assumed (see [1], §4). ! The construction of this partition
is achieved by means of local stable manifolds, but instead of the usual
glueing procedure, which is applied in the theory of [/-systems, but is not
suitable in our case, we use a different method.

For χ S Λ we set

An extract definition of a "measurable foliation" can be given (however, we do not need it): it is a
partition ξ of Λ for which there is a sequence of sets Fn c Λ such that Fn C F n + 1 , υ Fn = Λ and the
partition ξ I Fn is a mod 0 continuous foliation (see Definition 7.1).
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(6.1) W(x)= U tn(V(fn(x))).
n=-oo

For χ G Μ\Λ we put W(x) = {x}. The following result is a corollary to
Theorems 4.1-4.3.

THEOREM 6.1 (see [23], Theorem 3). Let x, y G Λ. The following
statements hold:

1. WOO η W(y) = φ if y φ WOO;
2. WOO = W(y) if y e W(x);
3. W(x) is a k-dimensional immersed submanifold of class C~l without

boundary;
4. /"(WOO) = W(fn(x)), η GZ;
5. ify G W(x), then pfn(W(x)){fn(<x), fn(y)) -> 0 as η -> °°.

(Here Pfn(W( ^ is the distance induced on /"(WOO) by the Riemannian

metric);
6. // μ(χ) denotes the measure induced on W(x) by the Riemannian

metric, then μ{χ){]\>(χ)\Α) = 0 for almost all χ G Λ.
Let Λ: be a density point of A!

k s r and A C A!

k s ,. Π ί/(χ a[ r) a
measurable set of positive measure (the number otl

s r is defined in Remark
4.3). For y G A we denote by ^.(y) (/ = 1, 2, . . .) the successive
moments when the half-trajectory {fn(y)}, η > 0, hits A, and by £>(y, #)
the ball with centre at y and radius q on V(y). There is a #s' r > 0 such
that D(y, ql

s r) C F(y) for any y & A. We take an arbitrary number

q, 0 < q <-ql

sr, and choose an open subset U(y) C F(y) such that

D(y, ^) C U(y) for any 7 G ^ .
THEOREM 6.2 (see [23], Theorem 5). For almost every y G A

PROOF. There is a set Ν of measure zero such that for any y € A \N
the sequence nt(y) is infinite. Let j G A\N, ζ G W(y), and

ζ φ Uf~n'{y)(U(f"i(y)(y))). By Theorem 6.1.5, for sufficiently large i > 0

we have P / B ( ( y ) ( W ( J t ) ) ( r " | O ' ) O ' ) , / " ' W W ) < j ί · Therefore

f"i(y\z) G Z)(/1/I'°')(y), | ) C U(f"i(y)(y)). This contradiction proves the

theorem.
There is a certain ambiguity in what should be understood by local stable

manifolds. For example, in Theorem 4.1 instead of δ'(χ) and δ(χ) we can
take the functions εδ'(χ) and εδ(χ), respectively, where 0 < ε ^ 1, and
with their help we can construct "new" local stable manifolds of "smaller
dimension". Theorem 6.2 shows that this procedure (and others like it) does
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not affect (up to a set of measure zero) the definition of W(x). It can be
shown that, in general, these sets do not depend mod 0 on the method of
constructing local stable manifolds (for more details, see [23]).

We denote by W the partition of Μ consisting of the sets W(x). The
following theorem is similar to the corresponding result of Sinai for systems
with a transversal field (see [27], Theorem 5.2).

THEOREM 6.3 (see [23], Theorem 1). There is a partition η of Μ with
the following properties:

1. For almost every χ €Ξ Λ the element Cv(x) is a mod 0 open subset
of W(x);

2.

3. V
ο
ο

4. Λ . .
— σο

k(x)

5. h (/, η) = h (/) == j 2 ?i (*) li (x)ών (*)•
Λί i = l

For completeness of presentation we reproduce here a sketch of a proof
of this theorem, omitting details. It is sufficient to construct a partition η
on each of the sets Ak s r, because these sets are disjoint and^/-invariant.
We restrict ourselves to the case when the automorphism f\Aksr is ergodic
(Sinai in [27] considers precisely the case of an ergodic /). Let χ be a
density point of Λ^ s r for some /. We put

V(y).

It is easy to see that Aksr = U fn{P) (mod 0). We consider the
n=—°°

manifold W that contains χ and is transversal to the family Sl

k s r (x). For
ζ G Λ(χ) we set y(z) = V{z) Π W and denote by V(y{z)) the local stable
manifold containing y(z) (this point does not necessarily belong to
Aks r). There is a q\ r > 0 such that D(y(z), ql

sr) C V(y(z)). We put

R = U D(y(z), — ql

s r) and consider the partition £ of R into the sets

D(y(z), — ql

sr); we complete it by the element Ak s r\R to obtain a

partition £ of Ak s r. We put η = £~ and claim that η has the required
properties.

We consider the sets Kn = {ζ Ε R: H{%\C (fn(z))) > 0}. From (4.14)

and (4.16) it follows that for any ζ G R and n > 0

(6.2) diam(/n(C s(a)))
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where C{1) is a constant. From what we have said above and Theorem 4.2
it follows that w €Ξ / " (Kn) for sufficiently large η (namely, for η such
that C(/)(xs>r)

n < 1/2) lies on some local stable manifold and its distance
to the boundary of some element C? on the corresponding manifold
V(y(z)) is not greater than C{1) (ns,T)

n q'sr. Therefore, by Proposition 4.3
there is a Cx (I) such that for all η > 0

\ (f (Kn) | C J X C (I) C (I) ql

tt τ (κ,, τ)
η.

Denoting by v^ the measure in i?\£, we obtain by Proposition 4.3

ν (iCn) = ν (/" ( * »)) = j vB (/" (ifn) | C% (y)) dv% (y) ^C, (I) C (I) ql

tt r (κ,, r ) " ν (R).
R

Therefore Σ v(Kn) < °°. Consequently, almost every χ belongs to finitely
η

many sets Kn. Thus, for almost all the elements of ξ the number / of those
moments η > 0 for which / " (C f) intersects more than one element of %
is finite. Hence, for almost every ζ Ε R

Η (η ι c 6 (2))=jy (/-'ι ν · · · v rki ι c 6 (z)) <

This proves part 1. Part 2 is obvious. Part 3 follows from (6.2), which
shows that as η -*• °° the diameters of almost all the elements of / " % tend
to zero. Part 4 follows from the method of constructing η and from
Theorem 6.2. The proof of Part 5 is similar to that of Theorem 5.1.

From Theorem 6.3 and Theorems· 12.1 — 12.4 in [25] we obtain the
following result.

THEOREM 6.4 (see [23], Theorem 2). The Pinsker partition n(f) of a
diffeomorphism f satisfies the equality ir(f) = v(W).

§7. Ergodicity of a diffeomorphism with non-zero exponents
on a set of positive measure. The AT-property

7.1. Let/ be a C^-diffeomorphism of a manifold M, preserving the mea-
sure v, for which the set Λ defined by (1.8) has positive measure. In this
section we describe the partition into ergodic components for the diffeo-
morphism / on Λ.

Let χ be a density point of Al

k s. We put

(7.1) Pls(x,r)= U V-(w)\jV+(w).

We call P'^^ix, r) the lattice of local stable manifolds at x.
THEOREMi 7.1. Let χ be a density point of Al

ks. There is an
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r = r{l, s) such that the diffeomorphism f on the set

(7.2) Q(x)= [izf
n(Pi.s(x,r))

is ergodic.
PROOF. First we prove a statement similar to Theorem 4.4 in [3].
LEMMA 7.1. For any f-invariant function φ there is a set Ν C Μ of

measure zero such that φ{ζχ) = φ{ζ2) for any

zx, z2 G Pk s(x, r)\N, zx, z2 Ε V~(w) or zx, z2 Ε V* (w),w Ε Al

ks Π U{x, r).

PROOF. For any invariant function φ(χ) we set

η

k=--l
η

( 7 · 3)
ft=l

η

ft=-n

From Birkhoffs ergodic theorem it follows that φ (χ), φ~(χ), and
are defined almost everywhere and that φ+(χ) = φ~(χ) = φ(χ) (mod 0).
Thus, the limits (7.3) exist and are equal everywhere outside a set Ν of
measure zero. If zl and z2 satisfy the conditions of Lemma 7.1, then by
Theorem 4.1.4, p(fn(zx), fn{z2)) -> 0 as η •+ °° (or
p(f~"(zx), f~n{z2)) -*• 0 as η -*• °°). Since φ is continuous,
φ{ζχ) = φ*(ζχ) = φ+(ζ2) — φ(ζ2) (φ(ζχ)= φ~(ζχ) — φ~(ζ2) = φ(ζ2),
respectively). To. prove our lemma it is now sufficient to jemark that since
the continuous functions are dense in L2, the functions φ(χ) are dense in
the set of /-invariant functions.

Let φ be an /-invariant function and Ν the set constructed in Lemma 7.1.
We put (see Proposition 4.7)

(7.4) r=min{±Sl q\, rl

s(\*[), rl

s{q[)) .

By Proposition 4.3 we can find a point w0 Ε Al

kiS Π U(x, r), w0 (£N,
for which

^ o (V- (w0) f]N) = 0, v+ (V+ Κ ) Π Ν) = 0,

|where P~ and v^ are the measures induced by the Riemannian metric on
y~(wo) and V\w0), respectively. We put R~ = U V~{w), R+ = U F+(w),
\(vhere the union is taken over all points w € Λ^ s Π C/(x, δ[) for which
K"(iw) η V*(w0) Ε Λ̂  and, correspondingly, F+(u;) Π F " ( I U 0 ) £ ΛΓ. From
Proposition 4.4 it follows that v(R~) = 0 and v(R*) = 0. Let
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Z\> Z2 G PlkAx' r^(R~ u R+ u W- W e c l a i m t h a t «P(zi) = Φ 2)· We define
points wl Ε A'ks Π U(x, r) so that zt Ε F+(w;-) or zf G F^w,·) (I = 1, 2).
There are four possible cases, depending on the location of z1 and z2 '•

1) zx e V+(Wi), z2 6 V+(w2); 2) Zl 6 F~K), Z2 6 F > 2 ) ;
3) Z l e F + K ) , z2 e F > 2 ) ; 4) Z l e F - ^ ) , Z2 6 F > 2 ) .

We consider only the first two cases; the other two can be treated
similarly.

1) Let y{ e ν\υ){) Π V'(w0) (/ = 1, 2). (By Proposition 4.7 and (7.4)
these submanifolds intersect each other.) From the definition of R+ it is
clear that yt £N. Therefore, φ(ζ1) = φ&ι) = φ&2) = ψ(ζ2).

2) Let yx = V'iw^ η V+(w0), y2 = F+(u;2) η V~(w0). It is easy to
see that ylt y2 $ N. Since w0 #N,

φ(%) = Ψ(Σ/Ι) = φ(«Ό) = <p(ya) = φ(ζ2)·

This proves the theorem.

PROPOSITION 7.1. ie/ χ be a density point of Al

k s. Then
Q(x) C Λλ s(mod 0).

PROOF. Since

Q(x) r)Pl

h, s(x, r)zDA[,sf\U(x, r),

v(A.k s Π Q(x)) > 0. On the other hand, the automorphism f\Q(x) is
ergodic. Therefore, Q(x) = Aks Π Q(x)(mod 0) C Ak s.

The following theorem describes the partition into ergodic components
for the diffeomorphism /1 Λ. Its proof follows from Theorem 7.1 and the
fact that almost every point of Λ is a density point of Al

k s for some
/, k, s.

THEOREM 7.2. There are sets Λ(- C A(i = 0, 1, 2, . . .) such that

1) Λ,· Π Λ- = 0, / ΦΙ ΰ Λ,· = Λ;

2) ΚΛ0) = 0, ΚΛ;·) > 0 for i > 0;

4) the automorphism /Ι Λ,· is ergodic for i > 0.
7.2. In this subsection we continue the study of properties of local

stable manifolds (see Theorems 4.1—4.3 and Proposition 4.5).
THEOREM 7.3. Let v{Ak s) > 0. There is a set Ν C Μ of measure zero

such that for any χ S Ak S\N

v"(F-(x) \ Ak, ,) = 0, <(F+(x) \ Ah, ,) = 0;

v~ and v* are the measures induced on V~(x) and V+(x) by the Riemannian
metric.

The proof is a modification of that of Proposition 4.5.
THEOREM 7.4. Let k, s Ε Z+ be fixed. There is a function ψ: Z+ -> Z+

such that if xlt x2 e Al

kfS and y = V~{pc{) Π V+(x2), then y e Λ ^ 0 (the
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bar denotes closure). ^
PROOF. Suppose first that xx, x2 G Λ'Λ>Ϊ. From Theorem 4.3.1 it follows

that y is regular (because it is both forward and backward regular), and

Ely = TyV-(xx), E2y = TvV+(x2), k(y) = λ(^), μ(ι/) = μ(χ,).

Hence
dim Ely = dim Elxi = k, X(y) < (s — l)/s < 1 < (s + l)/s < μ(ΐ/).

Thus, y € Afc r In particular, e(y) = ε(χ) = e s. Furthermore, by Theorem
4.3. 2) for the vectors υ G Ely and υ £ is2j, the estimates (4.18) and
(4.19) hold. By Theorem 4.1.8) and Theorem 4.2. 3) there is a constant
Kx such that inf K{y) > Kx, where the supremum is taken over all points

y = V-(Xl) Π V+(x2), xx, x2 e X'^>f. Thus, y(fm(y)) > ΑΓ,-'β-*1". Let
ψ(/) be the smallest integer for which max {Κ, Κ^} < ψ(/). From what
has been said above it follows that y G \γ^. Now let

Χι, x2

 e Λ^ S, y - ν~(Χχ) Π F + (JC 2 ) . We choose sequences x" -*• x t and
x" -* *2, where xn

x, xn

2 G Λ^ s , and set >>" = F " M ) Π V+{x'2
l). (For

sufficiently large η this intersection is non-empty.) From what was said
above it follows that y" G K$}J\ Therefore, by Proposition 4.6. 2),
>>" -»• y G Λ^^, and the theorem is proved.

7.3. In this subsection we formulate sufficient conditions for Λ to be
open mod 0, and we discuss the question of the ergodicity of / on Λ.

DEFINITION 7.1. A continuous (5(x), A:>foliation ξ of a set X C Μ is
a partition of X (also denoted by | ) having the following properties:

1. For every χ G X there is a smooth immersed fc-dimensional submanifold
V(x) Β χ such that C((x) = F(x) η X. Then K(x) η Β{χ, b{x)) is called
the local fibre of ξ.

2. V(x) Π 2?Qc, 5(x)) is the image of a smooth map φ(χ): D -*• Μ,
where D is the ball with centre at 0 and radius 1 in R*. The map
φ: Χ η Β{χ, δ(χ)) -> C X (A Λί) is continuous.

If X = M, then our definition of a continuous (δ(χ), £)-foliation
coincides with that of a continuous foliation in [ 1 ] .

A mod 0 continuous (5(x), fc)-foliation of X is defined to be a partition
of this set that is a continuous (δ(χ), A:>foliation of some set Xx C X
such that v{Xx) = v(X).

A mod 0 continuous (δ(χ), /:)-foliation is said to be invariant if
f(C^(x)) = Cf^x) for almost every χ G X.

We put (see (6.1))

W~(x)= 0 /~n(F-(/"(*))), W+(x)*= 0 /-η(7+(Γ(^))).
n = — oo n ^ — σο

The sets W~(x) and W*(x) have the properties stated in Theorems 6.1 and
6.2 (when we consider W*(x), we must replace η by —n in Theorems 6.1.5)
and 6.2).
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We consider Ak s and denote by W~ and W* the partition of this set
into the sets W~(x) and W*(x), respectively.

THEOREM 7.5. Suppose that W~ is a mod 0 continuous (δ(χ), k)-
foliation of Aks. Then any ergodic component of positive measure lying
in Aks is a mod 0 open set.

PROOF. Let Q be an /-invariant set of positive measure such that
Q C Ak>s, and suppose that f\ Q is ergodic. By Theorem 7.1 there is an
χ € Q that is a density point of A!

ks for some /, such that
Q = Q(x) (mod 0) (see (7.2)). By Theorem 7.3 we can assume that (with
respect to the measure v*x) almost every point y G V*(x) lies in Aks. For
y G Ak>s we denote by B~(y, q) the ball with centre at y and radius q on
W~(y). We fix an integer m > 0 and put

* ( ? ) = U B-(y,q), Rm(q) = U B~{y,q),
vtv+(x) yEvV)nA™s

R(q,Y) = U B~(y,q),

where Υ C V*(x) is a measurable set with respect to v*x. Since W~ is a
mod 0 continuous (8(x), ^)-foliation, we can find a q0 > 0 such that
5"(y, #) C H^'O) for any y G F+(x) n Afc>J. By Theorems 4.1 and 4.2
there is a i?s

m such that B~(y, q™) C F"O) for any j> G F+(x) n A^s.

We fix <7, 0 < q < qf. For y e i?m ( i ? ) we denote by

«/(j1) 0 = 1> 2, . . .) the consecutive moments of the return of the half-

trajectory {/"(#)}, η > 0, in Rm ( y ? ) , and by z,· G V\x) Π Α% s a

sequence of points such that f"^y)(y) G B~UU γς\ . The following is

proved in the same way as Theorem 6.2.

LEMMA 7.2. For almost every y G Rm ( i -

(7-5) W~(y)= U rniM (B-(zu q)).
i>0

We denote by %(q0) and %m(q0) the partition of R(q0) and Rm(q0) into
the sets 5~(y, <70), respectively.

LEMMA 7.3. TTze partition £m ( —?o) z s measurable; the conditional

measure on the elements of this partition is absolutely continuous with

respect to v~; the measure in Rm (y^o) / £m (y^o) {which by the

mod 0 continuity of W~ is naturally identified with V+(x) Π Λ ^ ) is
absolutely continuous with respect to vx restricted to V+(x) ΓΊ Am

s.

PROOF. We put q = min ί ^ ? ο , QT\- Making use of Lemma 7.2, we

choose for almost every w G V*{x) Π A™ s a point
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y(w) <Ξ B~iw, -^-q\ cz Rm i^q) for which (7.5) holds. (This can be achieved

so that the map χ: V+(x) Π A£ s -> Rm (4"?) t n a t associates with a point

w Ε V*(x) Π A™s the point y(w) is measurable.) We represent the set

Rm (2-q0) as a union of sets Rn, Rm ( 4 go) = u #»> whereV 4 ' V 4 / « > o

fl» = U U (rn^w)) (5- (ζ,, ?)) η Λ"1 ( 4 g 0)).
1/(1») n ^ M J i n x \ t I I

For every ε > 0 there is a iV > 0 and a set Γ C V*{x) Π A£ s such that

v*x(V*(x) Π A£ s \ F) < ε and Λ (\q0, Υ) C U /?„. Since / is a diffeo-

morphism, it follows from Proposition 4.3 that ijm (γ?ο)Ι ^η satisfies

the required conditions for any η > 0. The result now follows because ε
is arbitrary.

Applying Lemma 7.3 in turn to £m (γ?ο) (w = 1, 2, . . .) we find that

£ ( y g ) satisfies the conclusions of Lemma 7.3. Since W~ is a mod 0 con-

tinuous (δ(χ), /c)-foliation, from what was said above it follows that R (—go)

is open mod O.By Theorem 7.1 Q D R (-9-go) > consequently,

Q = U fn [R l-z-qA) is a mod 0 open set, and the theorem is

proved.
COROLLARY 7.1. Under the conditions of Theorem 7.5, Ak s is a

mod 0 open set (this follows from Theorems 7.2 and 7.5).
REMARK 7.1. From our results we obtain a proposition first proved by

other methods by Bowen and Rue He in [34]: if / is a y-preserving
C2-diffeomorphism of a connected manifold M, and A a hyperbolic set of
positive measure (that is, an invariant set on which the conditions of
uniform hyperbolicity are satisfied; see [32]), then A = M. For from what
was said in §4.2 it follows that A = Aks for some k, s, in particular, A is
closed. It is also easy to see that W~ and W* are continuous on A, so that
by Corollary 7.1 A is open mod 0. Hence, if χ Ε Λ is a density point of
A, then B(x, r) C A for some r, where r can be chosen not to depend on
x. From this and the fact that Μ is connected it follows easily that
A = M, so that / is a {/-diffeomorphism.

THEOREM 7.6. Let W be a mod 0 continuous invariant (δ(χ), k)-
foliation of Ak s satisfying the following conditions:

1. W(x) D V~{x) for any χ G Aks.
2. There are α δ 0 > 0 and a measurable function n(x) on Ak s such that

for almost every χ € Ak s and any η > nix)
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f-n(V-(x)) cz Bw(f~n(x), 60),

where Bw(x, 80) is the ball with centre at χ and radius δ 0 on W(x).
Then W~ is a mod 0 continuous (δ(χ), k)-foliation of Ak s for some

function δ(χ).
PROOF. We consider a density point χ of Al

k s for some /. Applying

Theorem 6.2 to the set A = Al

ks Π U(x, ^b\) and taking into account

conditions 1 and 2 of the theorem, we find that W~(y) D Bw(y, δ0) for
almost any y Ε A. The statement to be proved now results from the
mod 0 continuity of W and the condition W~(x) C W(x) for every

x G Ak,s-
THEOREM 7.7. Suppose that W is a mod 0 continuous invariant

(δ(χ), \yfoliation of Als such that W(x) D V~(x) for any χ Ε Ais. Then
W is a mod 0 continuous (δ(χ), \)-foliation of A1 s. Moreover,
W~(x) = W(x) for almost every χ Ε Al jS.

PROOF. Let x 6 A , S\N (the set N.is constructed in Theorem 7.3).
For ζ Ε V~(x) we put s(z) = pv-{x){x, z). Next, let j7(x) = exp^CSCx),
φχ(δ(χ))) Ε V~(x) (see Theorem 4.1.1). We choose a point y(x) such that

siy(x)) = j s(y(x)). The map χ: Λ -* Μ that associates with χ Ε Λ the

point y(x) is measurable. We consider the positive measurable function
C(z, es), ζ Ε V~(x) (see §4.3). From what has been said above, it follows
that there is a function C{x) > 0 such that

{ (y), C (z, {

Therefore, by (4.5),
s(V)

(7.6) PW(rn(x))(f'n(x), r(y))= J \\dr(x)\\ds>±lC(x)]-* (Ι—τ)"".
0

We define a number n{x) such that -r [C(x)]~l(l ) ™ > δ(χ) for any

η > η(χ). From what we have said above it follows that n(x) is measurable.
Thus condition 2 of Theorem 7.6 is satisfied, consequently, W~ is a mod 0
continuous (δ1(χ), l>foliation of At s, 5j(x) < δ(χ). Since
W(x) D V~(x) for χ Ε A1 s and W is invariant, W~(x) C W(x) for χ Ε A1>s.
On the other hand, by (7.6) and Theorem 6.2 W'(x) D Bw(x, R) for any
R > 0 and almost every χ Ε Aj s . Therefore, W~(x) = W(x) for almost
every χ Ε Λ1 ; ί. In particular, W~ is a mod 0 continuous (δ(χ), l)-foliation
of Λ, r and the theorem is proved.

DEFINITION 7.2. A diffeomorphism / is said to be topologically transitive
if for any two open sets A and Β there is an η such that fn{A) Π Β = Φ
(equivalently: there is an everywhere dense trajectory).



94 Υα. Β. PeSin

THEOREM 7.8. Suppose that a diffeomorphism f is topologically transitive
and satisfies the conditions of one of the Theorems 7.5, 7.6, or 1.1. Then
f\Aks is ergodic.

PROOF. Let A, B C Ak s be two ergodic components of/ of positive
measure. Then v(fn(A) Π Β) = 0 for any η G Z+. Since, by Theorem 7.5,
A and Β are open mod 0 and / is topologically transitive,
v(f"(A) Π Β) > 0 for some η € Ζ*. This contradiction proves the theorem.

7.4. Let Λ be the /-invariant set of positive measure defined in (1.8), and
Λ,- the sets constructed in Theorem 7.2.

THEOREM 7.9. For every i = 1, 2, . . . there is a decomposition

with the following properties:

2. /"'Ι Λ? is a K-automorphism.
PROOF. We consider a set Λ,-, ζ > 0, which by Theorem 7.1 can be

represented in the form Λ,· = U fn(Pl

ks(x, /·)) (mod 0), where χ is a
«=—•*>

density point of Al

ks for some /, k, s, r and P{iS(x, r) is the lattice of
local manifolds at χ (see (7.1)). Let w € Λ̂ . s Π Uix, r) and

We denote by Vl(yl) the local stable and by F 2(y 2) t n e unstable manifold
containing y^, and by Bjiyj, q) the ball with centre at yj and radius
q on Vjiyf)· There is a g(/) > 0 such that for any

yj = yj(w) Bjiy,, q(l)) C Κ,-ty). We put

Λ, = U 5- (y(u;) iqr(/)) (/ = 1, 2) and consider the partition
; weU(x,r)nAl

kt,
 v y

·̂ of Rf into the sets 5y^y^w),-3^-) .

Let π be the Pinsker partition for /ΙΛ,·. From Theorem 6.4 it follows
that π Ι ^ < ξ;. Hence, by Proposition 4.3, on R = Ri Π R2

η | R < li Λ S> = ν Ι Λ.

Thus, we have proved that /? is contained mod 0 in some element of ττ.
Since π is completely invariant and / preserves v, from the ergodicity it
follows that all the elements of π have the same positive measure, and that
/ permutes these elements cyclically. Let Ν = Ν(Λ;·) be the number of
elements of it. It is evident that fN \Cn is a AT-automorphism.

COROLLARY 7.2. If a diffeomorphism f on Λ,·, i > 0, has a continuous
spectrum (see [25], §2), then /|Λ,· is a K-automorphism.
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§8. The Bernoulli property

THEOREM 8.1. F = fn'\A}(i = 1 , 2 , . . . ) (see Theorem 7.9) is a

Bernoulli automorphism.
Our proof is a generalization of the proof of a similar assertion in [41]

for [/-automorphisms of the two-dimensional torus. In this subsection we
use the definitions and notation of §2.5. We also assume that on Λ/ the
measure is normalized. Let χ be a density point of A/. We denote by a
any finite measurable partition of Μ every element of which has a piecewise
smooth boundary. We put a = a ' |A) . On the basis of Theorem 2.1 it is
sufficient to prove that α is a VWB partition. (It is not difficult to construct
an increasing sequence of partitions a'n of M, a.'n -+ ε 0 , such that the
elements of a'^have a piecewise smooth boundary.) We fix an ε > 0 and
select an integer / > 0 such that

(8.1) v(A\[]Al

K s)(v(A\))~i^l — ε.

In Ornstein's proof of the fact that a [/-automorphism of the two-
dimensional torus is Bernoullian an essential role is played by the concept
of a parallelogram with sides on the fibres of contracting and expanding
foliations. The construction of such a parallelogram in this case is not ^
difficult. We start by introducing the concept of a δ-parallelipiped on A^ s,
which is a natural generalization to the «-dimensional case of the concept
of a parallelogram. Here we have to overcome the difficulty caused by the
fact that Aj. s is, so to speak, "perforated". We define a δ-parallelipiped
axiomatically by a number of conditions. Then we show how to construct
such a parallelipiped (see Lemma 8.1) and also how to partition Al

k s into
parallelipipeds (see Lemmas 8.2 and 8.3).

We put li — φ(ΐ) (the function φ: Ζ* -*• Z+ was constructed in Theorem
6.4).

A measurable set IT is said to be a δ-parallelipiped at the point

w Ε Al

k s if it satisfies the following conditions:

(8.3) V- (y) Π V+ (z) 6 Π for any y, ζ £ Π.
1 / ·~

LEMMA 8.1. For every δ, 0 < δ <-^δ 5 ' and any w € Al
k s there is an

r > 0 independent of w, and a δ-parallelipiped Π at w such that
(8-4) Kk,,(]B(w,r)<=n.

PROOF. We fix a δ, 0 < δ < | 8l

s. There is an r > 0 such that for any

yx, y2 Ε Π - B(w, r) Π Al

k<s
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(see Theorem 4.2.3 and Proposition 4.7). We set Π = {y G M: there are
yx, y2 e f l such that y = F ' O i ) η F + 0 2 ) } .

Now (8.2) follows from Theorem 7.4 and the definition of Π, and (8.4)
is obvious. To prove (8.3) we choose points yx, y2, Z\, z2 e l l for which

V = V-(yi) Π F+(j/2), ζ = F~(Zl) Π F+(za).

Hence it follows from Theorem 4.2 that

V~(y) Π V+(z) = V-(yi) Π F+(z2) € Π.

LEMMA 8.2. For any two parallelipipeds Π and ΓΓ we ca« /me?
Πι, . . . , n s swe/z r/ζαί 5

1) Π,· η π . = Φ, i Φ j , υ Π;· = Π U Π';
_ /= ι

2) // Π,· Π A!k s Φ Φ, then Π,· is a parallelipiped.
PROOF. We may assume that Π Π Π' Φ φ. We put

Π = U V+(y)
vennn'

and write
Π ^ Π π Π ' , Π, = Π\Π, Π3 = Π'\Π,

π4=(ίϊ η π) \(ir η τΐ)_, π 5 =(π η π')\ (π' η π).

Now 1) is obvious. Let χ £ Π,· Π Al

k r We claim that Π,· is a parallelipiped.
Let y, ζ G Π,· and u; G K"(y) Π F+(z). Since Π,· C Π (or Π;· C nj), we see
that n £ Π (or m e Π'). We restrict our attention to the cases
ι = 1, 2, 4. The remaining ones are analyzed similarly.

1) i = 1; since y, ζ £ Π', we have w G Π', consequently,
ΐ ϋ ε π η π ' = π , ;

2) / = 2; since ζ G Π, we have V+(z) φ Π, consequently,
w G Π \ Π = Π 2 ; _

3) i = 4; since ζ G Π, we have u> G K+(z) C Π, consequently, either
w G Π 4 or w e Π,. Let UJ G Π : . Since y G Π, we can find a
^ ! e Π Π Π' = Π, such that y G V+(yx). Therefore,
y = V~(w) Π F+0>!) G Π! (since yx, w G Π ^ , which is impossible because
j ^ I I j . This proves the lemma.

LEMMA 8.3. For every δ, Ο < δ <-^8l

s, there are sets

Π,· (/ = 1, . . . , m) such that

1) if Π,· = Π,· Π Al

ks Φ φ, then Π,- is a b-parallelipiped;
m ~ zz

2) Π;- Π Π;- = Φ, i Φ j , and U Π,· = Λ'Λ>Ι.
ί = 1 ι

PROOF. We choose a δ with 0 < δ < - r i j and r > 0 in accordance
with Lemma 8.1. Since Al

k s is closed, there is a finite covering of this set
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by balls B(wi} r), u;,· G Al

k s(i = 1, . . . , m). We consider the
δ-parallelipipeds at w{ constructed in Lemma 8.1. By (8.4), their union

contains Al

k s. Subdividing consecutively every pair of intersecting paralleli-
pipeds in accordance with Lemma 8.2, we construct sets Π,- satisfying 1)
and 2).

Let A C Μ be a measurable set and Π a parallelipiped. We say that A
intersects Π layerwise if

(8.5) V+(w) f] Π cr A |~| Π for every w ζ Α |~| Π.

LEMMA 8.4. Let Π be a δ-parallelipiped and β > 0. There is a TV, > 0
If'

such that for any Ν' > Ν > Νλ and β-almost every element A G \JFha we
Ν

can find a set Ε C A, intersecting Π layerwise, for which

(8.6) ν(£)(νμ))- ' > 1 - β.

PROOF. Let .D be an element of a. We denote by Βρ the subset of the
element Fk{D) of Fa that intersects Π layerwise. We consider an element
D' of a for which D'\A] = D. Since Π C A'k>s, by the choice of a and
by (4.41), (4.16), and (8.5), the distance of any point of
D η F-k(U)\F-k{Bk

D) from the boundary of/) ' is

(8.7) dft < \

where C t = C t (/, 5) and κ3 are constants.
We set Gk = U (Fk(D)\Bk). From (8.7) it follows that

KGA) < C, (xs)
ft where C2 = C2(/, 5) is a constant. Let G = U C,. We

/t = iV,

choose an integer /V̂  large enough so that v(G) < Σ Κ^Α-) < β2- It is easy

k = Nl

to see that i^U Π G) < βν{Α) for any Ν' > Ν > N1 and j3-almost every
iV'

element A G V /*a, and we can put £ = 4̂\̂ 4 (Ί G.

To prove that α is a VWB-partition we use Theorem 2.2. First we
construct the map θ of an arbitrary set Ε that intersects Π layerwise, onto
the parallelipiped. Then, using the preceding lemma, the ΑΓ-property, and
the partition into parallelipipeds constructed above, we construct θ in
Theorem 2.2.

LEMMA 8.5. For every δ > 0 there is a δ 1 ; 0 < δ, < δ, such that for
any 8l-parailelipiped Π and any set Ε C Π, v(E) > 0, that intersects Π

layerwise, we can find a bijective map θ: Ε -*• Π (see Remark 2.1) for
which

1) the Jacobian J(6)(y) of θ at y G Ε satisfies the condition
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(8.8) I J(Q)(y) - 1 | < 6;

2) p(Fk(y), Fh(Q(y))) < δ, Α € Z+, y 6 £·.

PROOF. Let Π be a δ-parallelipiped at w and Wi Ε Π. We consider the
succession map pw w of a measurable subset in V~(w) onto a subset of
V~(wl), realized by means of the local stable manifolds V+(y), y Ε Π (see
§§4.5, 4.7). If δι is sufficiently small, then by (4.28) and Theorem 4.1.4
the Jacobian J(pw w ) satisfies the condition

(8.9) |/(ρ«,,»,)-1|<-|-δ.

Decreasing δ 1 ; if necessary, we may assume on the basis of (4.14) that for
any yu y2 ^ V~{wx), k Ε Z+

(8.10) p(**foi), Fh(y2)) < δ.

Let £ be a measurable set of positive measure that intersects Π
layerwise. We choose any bijective map preserving i>~

onto
θ0: Ε Π V-(w) _ * V-(w) Π Π.

It is easy to see that such a map exists. Let y Ε E. Then

ζ = V+(y) Π V~(w) 6 Π Π V-(w).

Furthermore, ζ G E, consequently, ζ G Ε Π F~(w). For y G £ we put

θ [y) = F+ (θ0 (ζ)) η F- (y) = ρ ι ο . ϊ " θ 0 ο pjj „ (y).

The first assertion follows from (8.9), and the second from (8.10) and the
condition 6(y) S V~(y) for .y Ε £".

LEMMA 8.6. For any ε', 0 < ε' < ε , there is an integer N2 > 0
JV'

/or flw^ N' >N>N2 and ε-almost every element A E \J Fka we can
Ν

find a set Ε C A and a bijective map θ: Ε ->· Λ/ (see Remark 2.1) /or

1) v^M/i))- 1 > 1 - 2ε;

2) θ is 13ε -measure preserving;

3) ρ(Λι/), ^(θ(»))) < e', ft € Z+, y f £ .
PROOF. For a given ε' > 0 we choose a δ, in accordance with Lemma

8.5 and let i? = {Πο, Π^ . . ., II m } be the partition of Λ/ formed from
the sets IL(/ = 1, . . . , m), which were constructed in Lemma 8.3 with

m

reference to 81 and Π ο = Λ/\ U IL. By (8.1)

(8.11) ν(Π0) < e .

Replacing δ in (2.1) by ε χ min u(U.-), we choose an iV0 in accordance
Kj<m
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with Theorem 2.3. Applying Lemma 8.4 consecutively to every

IL (/ = 1, . . . , m) and taking δ = δ ΐ 5 β = — min ΚΠ;·), we choose the

numbers Nxj (j = 1, . . . , m). We put N2 = max {Ν,Ν^}. From Lemma

8.4 and (8.6), (8.11) it follows that for ε-almost every element
N'

A Ε V FRa there is a set Ε C 4̂ that satisfies the first assertion of the
Ν

lemma and intersects Π , 1 < / < m, layerwise, and such that
Ε Π Πο = φ. Therefore, by Lemma 8.4,

v{(A \ Ε) Π IIj) •< βν(4) -< εν(^4)ν(Π;) <[ E\(E)v(U.j)(i + 3ε).

From this and (2.1) it follows that

' (Ε η π ,·)
(8.12) - - ν ( Π , )

ν (Ε)
onto

Let θ.-: Ε Π IL -*• Tl}- be the map constructed in Lemma 8.5, 1 < / < m .
We define the map θ: Ε -> Λ/ by putting 0(y) = Θ/Ο) for j ε £ Π TLr

Let 5 C £ be an arbitrary measurable set. We put Bj = Β Π Fly, Ej = Ε Π Π;·.
From (8.8) it follows that

V (θ; (β,')) V (
— 1 ε .V (Π;) V (Bj)}

Therefore, by (8.12),

ν (θ,· {Bj)) ν (Ε)

ν (Bj)

From this and (8.11) it follows that θ is 13ε -measure preserving, and the
second assertion is proved. The third follows directly from the Lemma
8.5.2.

We now complete the proof of the theorem. Let Ν' > Ν > Ν2 and
N'

suppose that A E V Ρ α does not belong to some exceptional set of
Ν

measure less than ε. (This set and N2 are chosen in accordance with
Lemma 8.6.) We consider the set Ε and the map θ constructed in Lemma
8.6. Since ε' can be chosen arbitrarily small, from Lemma 8.6.3 and the
assumption that the elements of a' have a piecewise smooth boundary we
obtain the conditions of Theorem 2.2. From this theorem it follows that

a}?, {F-{a | 4}?) < 300ε.

Since ε is arbitrary, this means that α is a VWB-partition.
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§9. Flows

9.1. Let/ f be a ^-measure preserving flow on a manifold M, given by a
vector field X of class C, r > 1. We consider the set

(9.1) Λ = {χ ζ Μ: χ+(χ, ν) Φ 0 for every υ 6 ΤχΜ\{αΧ{χ)}, α 6 R},

where χ+ is the characteristic Lyapunov exponent of the dynamical system
/ ' (see §3.2). On the basis of what was said in §3, Λ is measurable and
/'-invariant. We assume that v(A) > 0. It is easy to see that χ+(χ, υ) - 0
for any x e Μ, υ = aX(x). We consider the set of distinct values of x+ at
χ £ M, arranged in increasing order,

χλ{χ) < . . . < Xs(x) (z), 1 < s(x) < dim M,

and also the set Λ of regular points in Λ. Let k(x) be the number of
distinct negative values of χ+ at χ. It is obvious that χ+(χ, υ) < 0 for any
υ e Lk(x)(x) (see (3.3)). We put (x G Λ)

Elx=®E,{x), E2X= φ Ej(x), EOx=Eh(x)+1(x),
3 = 1 , }=h(.x)+2

λ (χ) = exft(^>(x), μ (χ) = ex^+*(x).

Here ΕΛχ) (j - 1, . . . , s CO) are the subspaces constructed in Theorem 3.4.
EOx is generated by the vector X(x). It is easy to see that the measurable
functions λ(χ) and μ(χ) satisfy (4.24) and (4.2) and that for any χ Ε Μ

Τ χ Μ = Ε Ι Χ @ Ε 0 χ φ Ε 2 χ , d f E i x = ~ - E . f H x y ί ξ Κ ( i = 0 , l , 2 ) .

Further, X^(X)+ 1(x) = 0, χ+(χ, υ) > 0 for any υ G £ 2 χ . Applying Theorem
4.1 to every diffeomorphism / f (i fixed) we construct a family of measur-
able functions Ct(x, ε) and Kt(x, ε). Since for some a > 0 and & > 0

< max Hd
1/2̂ /̂ 1

according to [22] (see §2) the following functions exist:

(9.2) C(x, ε ) = max Ct (τ, ε ) < ο ο , Ζ (a;, ε) = min UTt (a;, ε ) > 0 .

It is easy to see that C(x, ε) and K(x, ε) satisfy (4.4). Moreover, for any
i £ R the inequalities (4.5) hold with η replaced by t, and the angle
Ji j(x) between Eix and Ejx (i, / = 0, 1 , 2 , / ^ /) has the lower bound

lu(x) > K(x,&). _

9.2. The definitions of the sets Λ ί ; Λ^, A!

ks etc., and also of the
measurable functions ε(χ) and κ (a;) (see §§4.2, 4.3, and 4.4) carry over to
flows verbatim. We emphasize that these functions do not depend on t,
because they are defined in terms of the functions λ(χ) and μ(χ), which
do not depend on t.

9.3. We now construct local stable and unstable manifolds for flows. We
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fix t £ R and by applying Theorem 4.1 to f we construct a measurable
function 5t(x) and a family, depending measurably on χ of maps
<pt(x): B1(5t(x)) ->· £"0Λ. Θ Ε2χ of class C " 1 , given by the family of sub-
manifolds Vt(x) = {expx(u, φ{(χ)υ): υ e i ' ( 5 t W ) } of class C " " 1 . From
Theorem 4.1. 4) and 5) it follows that for any tx and t2 with
1/2 < ti < t2 < 1

(9.3) F^z) Π tf(s, δ(ζ)) = Vtt(x) f\ U(x, δ(χ)),

where δ(χ) = min {5t (x), bt (x)}. According to §9.2 and Theorem 4.1

(9.4) ini bt{x) = b{x) > 0, χ ζ A.

We set
(9.5) F-(a:) = F((x) fl ^(^, δ(ζ)), 1/2 < ί < 1.

By (9.3) and (9.4) this is well-defined. It is easy to see that δ(χ)
and V~(x) satisfy Theorem 4.1. 1)—8) (with η replaced by t). The local
unstable manifolds V+(x) are similarly defined.

9.4. We fix r > 0 and write for χ €Ξ Λ

V-°(x)= U V-{f{x)), V+0(x)= U V+(f*(x)).
11 |<τ I' l<t

From what we have said above and Theorems 4.1 and 4.2 we derive the
next result.

THEOREM 9.1. There is a measurable function 5t(x), χ G A, such that
o < δτ(χ) < δ(χ),

δχ (/' {x))>e~ΐ5β(χ·)*δτ (χ), inf δ, (χ) -= 6i, . > 0 ,
x£As

and for any χ £ Λ

U ( U '

U (
(χ, 6τ(χ))

Let ι>~, l·1*, l·1"0, ν+

χ°, respectively, be the measures induced on
V~{x), V\x), V~°(x), V+0(x) by the Riemannian metric. It is not
difficult to see that the following assertion holds.

PROPOSITION 9.1. Let Ν C v~(x) (or Ν C V*(x)) and let v~(N) = 0
(v*(N) = 0). Also, let Ni = U f'iy). Then

y&N, \t\<r

9.5. Let χ be a density point of Al

k s and r < -x min ( δ ^ , r). The set

K,(*,r)= U fWUn
| nt/(.t, r)

is called the lattice of local stable manifolds at x. We note that if r is
sufficiently small, then for any points w\, w2 £ Λ'̂  ^ Π U(x, r) the
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submanifolds V*(wl) and V^0(w2) intersect transversally.
We put Q(x) = U ft (Pi s(x, /•)).

_oo<f<oo

THEOREM 9.2. The flow f'\Q(x) is ergodic.
The proof of this theorem makes use of Proposition 9.1 and proceeds

like that of Theorem 7.1.
This theorem permits us to describe the partition into ergodic components

for the flow f{\A.
THEOREM 9.3. There are measurable sets An C Λ (η = 0, 1, 2, . . .)

such that
1) U ΛΛ = Λ, ΛΛ Π Am = φ if η Φ m;

2) ΚΛ0) = 0, ν(Αη) > 0 if η > 0;
3)/'(Λ η ) = Αη;
4) the flow f*\An is ergodic for η > 0.
9.6. The results for diffeomorphisms obtained in §§7.2 and 7.3 carry

over to flows. We restrict ourselves only to stating these results, since the
changes that have to be made in the proofs are obvious.

THEOREM 9.4. v~(V~(x)\Ak_s) = 0 for almost all points χ € Aks. A
similar statement holds for V (x), V~°(x), and V*°(x).

We put (see (6.1))

(9.6) W~(x)= U / " ' (Ρ" (/'(*))), W+(x)= U * '

The sets ^"(x) and W+(x) have the properties stated in Theorems 6.1 and
6.2 (when considering the sets W+(x) we have to reverse the direction of
time).

We consider Ak s and denote by W~ and W+ the partitions of this set
into the sets W{x) and W+(x). The "measurable foliation" W~ is
"integrable" with respect to the foliation Ζ formed by the trajectories of
the flow (see [ 1 ]). This means that the sets

W-°{x)= U U /'(*)
z£W~(x) -oo<«oo

form a partition of Ak s, denoted by W~°. We remark that by Theorem
6.1.4 (its analogue for flows)

The partition W+o is constructed similarly.
THEOREM 9.5. The assertions in Theorems 7.5, 7.6, 7.7, and 7.8 hold

for the flow f on Ak s.
9.7. In this subsection we state the results that establish the ΛΓ-property

and the Bernoullian property for/ΜΛ.
THEOREM 9.6 (see [24], Theorem 2.1). Suppose that f'\An, η > 0,

has a continuous spectrum (see [25], §2; the set An is constructed in
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Theorem 9.3). Then it is a K-flow.
Here is a sketch of a proof. First, by combining the method of proof of

Theorem 8.1 and those of Anosov (see [1], Lemmas 21.1 and 21.3) we
show that the partition if = W~\ An is metrically transitive (that is,
K£) = v). From this and Theorem 6.3 we deduce that the diffeomorphism
f1\An has the .^-property. Using Rudolph's result [42] we conclude that
so has fc\An.

THEOREM 9.7 (see [24], Theorem 3.1). Under the conditions of
Theorem 9.6 fr\An is isomorphic to a Bernoulli flow.

The proof of this theorem is a simple modification of that of Theorem
8.1.

THEOREM 9.8 (see [24], Theorem 9.6). Suppose that
1. Ak s = M(moa 0) for some k and s.
2. there are continuous foliations W~ and W* of Μ such that

W~(x) = W~(x) and W\x) = W(x) for almost all χ G Aks.
Then any measurable eigenfunction of f is mod 0 continuous.
The next theorem, which follows from Theorems 9.6 and 9.8, is an

analogue to the theorem on the alternative for i/-flows (see [ 1 ] , Theorem
14).

THEOREM 9.9 (see [24], Theorem 9.7). Under the conditions of Theorem
9.8 fr is either isomorphic to a Bernoulli flow or can be represented as a
suspension over a diffeomorphism of a compact manifold having almost
everywhere non-zero characteristic Lyapunov exponents.

§10. Geodesic flows on closed Riemannian manifolds
without focal points

10.1. For the convenience of the presentation we introduce in this sub-
section some concepts and results concerning Riemannian manifolds without
conjugate and without focal points. More details about them can be found,
for example, in [11] or [29].

We consider an «-dimensional manifold equipped with a Riemannian
metric of class C 3 . A Jacobi field is a vector field Υ along a geodesic
7 satisfying Jacobi's equation

(10.1) Y" + RXYX = 0,

where the dashes denote covariant differentiation along the geodesic, R is
the curvature tensor, and X = y(t) is the unit tangent vector field along γ.
We denote by /(γ) the 2«-dimensional space of Jacobi fields along 7.

Let {e;(i)} (/ = 1, . . . , « ) be a system of vector fields obtained by
parallel displacement of an orthonormal system at 7(0), where
en(t) = y(t). Then (10.1) can be rewritten in the matrix form

(10.2) -§
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where R(t) = (Ru(t)), Rif(t) = < ϋ β η ( ί ) β | ( ί ) β Β ( ί ) , ey(f)> (/, / = 1, . . . , « ) . We

denote by π: 7Μ -»• Μ the natural projection and by K: T(TM) ->• TM the

map of Riemannian connectivity. For every υ £ 7Μ

Γ,,ΓΜ = Ker cfrt©Ker # .

In ΤυΤΜ we introduce a scalar product by setting

(ξ, r\) = {dnl, ώΐη) π ( 0 ) + </£ξ, Kr\)n(v).

In this metric Ker άπ and Ker Κ are orthogonal.
Let υ £ 7!M, ζ £ TVTM, and 7U the geodesic with the initial vector v.

We define the Jacobi field Y* by the initial conditions

(10.3) Y%(0) = dnl, Yi (0) = Kl.

The map ξ -*• Y^ is a linear isomorphism of TVTM onto /(7U) (see [35],

§1).
Two points χ = τ ( ί ι ) and y = y(t2) are said to be conjugate if there is

a Jacobi field Υ ψ 0 along 7 such that Y{tx) = F ( i 2 ) = 0.
Two points χ = γ( ί ι ) and y = y(t2) are said to be focal if there is a

Jacobi field Υ along 7 such that

Y { t x ) = 0, Y' (h) ̂ o , A ( I I Y ( 0 H2) l*=*. = °-

We say that a Riemannian manifold does not have conjugate (or focal)
points if no two points on any geodesic are conjugate (or focal).

If a Riemannian manifold does not have focal points, then it does not
have conjugate points. If it has non-positive curvature, then it has no focal
points. The universal Riemannian covering Η of a manifold without con-
jugate points is diffeomorphic to R". Any two geodesies on Η intersect at
most in one point (see [11], [29], [36]).

10.2. In this subsection we state Eberlein's results, which describe the
structure of the equation in variations for a geodesic flow on a Riemannian
manifold without conjugate points. Proofs of these results are in [35].

A geodesic flow acts on TM according to the formula /f(i>) = yv(t) and
is given by a vector field V of class C2 on TM. The submanifold
SM C TM of unit linear elements of dimension 2n — 1 is invariant under
f, and the vector field V\SM defines a flow on SM. We consider the
Jacobi matrix equation corresponding to (10.2)

(10.4) J?L

PROPOSITION 10.1 (see [35] , §2). Let Ds(t), s G R+, be the solution
of (10.4) with boundary conditions Ds(0) = I, Ds(s) = 0. Then this equation
has a solution D~{t) for which

D-(0) = I, D~(t)= lim Ds(t), (IT (0))' = lim (D ,(0))',
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det (ZT(t)) Φ 0 for every t £ R
D~{t) is called the negative limit solution of (10.4). Similarly we construct

the positive limit solution D*(t).
For every υ £ SM we set

X-(v) = {I 6 TBSM: ( ξ, V(y) } = 0, Y^t) = 2>-(ί)ώιξ},
X+(v) = {ξ € Z\,SM: { ξ, V(v) ) = 0, y s(i) = D+{t)dnl).

X~(v) and Χ (υ) are called the stable and unstable subspaces of TVSM,
respectively.

PROPOSITION 10.2 (see [35], Propositions 2.4, 2.6, 2.11).
1. X~(v) and X*{v) for any υ £ £Λί are vector subspaces of TVSM of

dimension η - 1.
2. dir(X~(v)) = ΰίπ(Χ+(υ)) = {w £ Τπ^υ)Μ: w is orthogonal to v}.
3. If τ: SM ->· SM is a« involution, τ(υ) = -υ,

ΛΓ+(—ν) = ΛΖ-(ι;) u X~(—v) =

4. Suppose that the curvature of Μ in any two-dimensional direction is
greater than or equal to -a2, a > 0. Then for any ξ £ X~(v) or ξ £ X+(u)

(10.5) II Kl || 4 a || Λτξ ||.

PROPOSITION 10.3 (see [35], §3). Suppose that a Riemannian mani-
fold Μ has no focal points. Then for any Jacobi field Υ%,
% £ X~{v) (ξ £ Χ*(ν)) the function \\ Y^{t)\\ is not increasing {decreasing).

PROPOSITION 10.4 (see [35], Proposition 1.7). Let υ £ SM, ξ £ TVSM.
1. r { ( r ) = dir ° df't yf'(i) = Κ ο rf/'f.

2. ι ΐ ί //^ ι ι 2 = ι ι ^ ( ο ι ι 2 + i! ϊ ν ω ι ι 2 .
3.If£GX-(v) or ξ £ Ζ » , rte« y f(i) ^ 0.
PROPOSITION 10:5 (see [35], Propositions 2.4, 2.12). Let υ £ SM.
1. άΓχ-(υ).= χ-(/'(υ)), dflX\v) = X+(f'(v)).
2. I £ X"(u) (ξ £ Χ » ) // and only if (ξ, V(v)> = 0 and

|| dir ° ί//υ || < const, for t > 0 (t < 0).
10.3. From here on we assume that Μ is a compact manifold without

conjugate points and that the parameter on a geodesic is the arc length.
Two geodesies yx and γ 2 on the universal Riemannian covering Η are said
to be asymptotic for t > 0 if there is a constant C > 0 such that
P(7i(f), 72 (0) < C for all ί > 0.

Similarly we can define asymptotic geodesies for t < 0. Being asymptotic
for t > 0 (f < 0) is an equivalence relation. A class of equivalent elements
is called a point at infinity, and the set of equivalence classes is called the
absolute and is denoted by H(°°). The class of geodesies asymptotic to
y(t) for t > 0 (t < 0) is denoted by 7(+ 0 0)(7(-° 0)).

We say that Μ satisfies the axiom of uniform visibility (see [36]) if for
any ε > 0 there is an R = R(&) such that from every point χ £ Η any
geodesic segment y for which p(x, y) > R is visible under an angle less
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than ε.
PROPOSITION 10.6 (see [36], Theorems 4.2, 5.1). //dim Μ = 2 and

the genus of Μ is at least 2, then Μ satisfies the axiom of uniform
visibility.

PROPOSITION 10.7 (see [36], Proposition 1.13). If a Riemannian mani-
fold Μ satisfies the axiom of uniform visibility, then for any two geodesies
7 i ( 0 and 72(0 there is a geodesic y(t) such that 7(4-00) = 7 1(+c») )

7(-oo) = 72(-oo).

On the absolute we can introduce a topology and construct a homeo-
morphic map of the closed unit ball in R" onto the set Η U //(°°)
that associates Η with the interior of the ball and H(°°) with

s"-1.
10.4. In [45] Eberlein has constructed limit spheres (horospheres) for a

geodesic flow on a Riemannian manifold with non-positive curvature. His
results can be generalized to manifolds that satisfy a certain very weak
condition (the so-called "axiom of being asymptotic"; see [24], §12), in
particular, on manifolds without focal points (see [24]).

THEOREM 10.1 (see [24], §6, 7). If a compact manifold Μ does not
have conjugate points and satisfies the axiom of uniform visibility, or does
not have focal points, then the distributions X" and X* are integrable and
their integral manifolds form continuous f'-invariant foliations @~ and <&+

of SM (see [1]).
The distributions X~ and X* and the foliations @- and © + of SM can be

"lifted" to SH. The resulting distributions and foliations in SH are denoted
by X~, X\ @- and <§+, respectively. A fibre ®-(v) ( © » ) of @~ (@+) is
called the stable (unstable) horosphere passing through the linear element
υ Ε SM. The set L(x, p) = n(fe>-(v)) is called the limit sphere with centre
at ρ - 7u(+°°) G H(°°) passing through χ - π(υ).

The fundamental group τϊχ{Μ) of Μ acts by isometries on H. This action
can be extended to the absolute H(°°). Let ρ = 7u(+°°) S H(°°) and
ψ €Ξ πχ(Μ). Then φ(ρ) is the class of geodesies asymptotic to ip{yv(t)).

THEOREM 10.2 (see [24], §7). Suppose that a Riemannian manifold
Μ does not have conjugate points and satisfies the axiom of uniform
visibility, or that it does not have focal points.

1. For any χ G Η, ρ £ H(°°), there is a unique limit sphere L{x, p)
with centre at ρ passing through x.

2. The fibre <k>~(v) is the equipment of the limit sphere
L(x, ρ) (χ = π(υ), ρ = 7υ(+°°)) with orthogonal unit vectors having the
same direction as υ.

The fibre <3+(v) is the equipment of the limit sphere L(x, q)
(q = 7υ(-°°) = 7_υ(+°°)) with orthogonal unit vectors having the same
direction as υ.

3. // φ S τΓ,(Λί) then φ(Κχ, ρ)) = L&{x), ψ(ρ)\
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(ν) — <&~ (d(pv), d(p<&* (ν) — @

4. For any υ, w Ε SH such that yv(+°°) = yw(+°°) ~ p, the geodesic
yw(t) intersects the limit sphere L(n(v), p) at some point.

For υ Ε SM we denote by Z(v) the one-dimensional subspace of TaSM
generated by the vector V(v). Also, let @° denote the smooth foliation of
SM (see [ 1 ]) formed by the trajectories of the flow.

THEOREM 10.3 (see [24], §7). The pair of foliations &~ and @° is
integrable in the sense of [1], and the fibres of the corresponding foliation
{denoted by <S~° are integral manifolds of the distribution X" © Z. The
foliation @~° is invariant under f*. Moreover, w Ε @"° if and only if
the geodesies yv(t) and yw(t) are asymptotic. The pair of foliations <B +

and <S° has similar properties (we denote the corresponding foliation by
6 + 0 ) .

The foliations @"° and @+0 can be "lifted" to foliations on SH, which
O G

we denote by (g-° and <g+0, respectively.
Let υ Ε SM. We consider an orthonormal system of parallel vector fields

along yv(t) and a vector w orthogonal to v. We put

(10.6)

where D'(t) is the solution of (10.4) constructed in Proposition 10.1.
A linear element ν Ε SH is called an element of non-uniqueness if there

is a vector w Ε SH such that yXJ(+°°) - yw(+°°), Ύ^" 0 0 ) = yw{~°°)· The other
vectors υ Ε SH are called elements of uniqueness.

We denote by ρ (ρ ο ) the distance induced on <3~(v) (@~(i>))
©~ (r) ©" (v)

by the Riemannian metric.
THEOREM 10.4. Suppose that a Riemannian manifold Μ does not have

focal points. Then the following assertions hold.
I. If υ is an element of uniqueness, then for every w Ε @~(y) the

function ρ ο (/~f(u), f'iw)) is monotone increasing and tends to

4-oo βλ ί -> oo.

2. // υ is an element of non-uniqueness, then there is a vector
w Ε SH orthogonal to υ such that Kv w(t) = 0 for all t Ε R, and the
field D~{t)w is obtained by parallel displacement of w along the geodesic

7 u (0.
10.5. As is well known (see [3]), a geodesic flow fx acting on SM has

a smooth invariant measure, which we denote by μ. We consider the set
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(10.7) Λ ο = Ι ν 6 SM: for every w G SM orthogonal to v,

t

lim— I KVi w(s)ds < θ ) .
i->oo J J

0

The set Λ is measurable and invariant under f .
Let χ+ be a characteristic exponent of the dynamical system f{ (see §3).
THEOREM 10.5. Suppose that a Riemannian manifold Μ does not have

focal points. Then

1- Χ+(υ, £) < 0 /or any υ e Λο, ξ e ^~(υ);
2. χ+(υ, ξ) > 0 for any ν G Λο, ξ £ Χ\υ).
PROOF. For any continuous function ψ: R* ->• R we define

t * t

•ψ=1ίπι—- \ ty(s)ds, o(5=lim— \ ty(s)ds, T | ) = l i m — io|:2(s)ds.
~*°° Ό "*°° ο ί">°° ο

LEMMA 10.1. Let φ: R* ^ R k a continuous function and let
C = sup | φ(ί)\ <°°.

\)Ifi]/(t)<0and φ > 0, then φ < 0;
2) // i//(f) > 0 a«<i φ > 0, f/ze« 0 > 0.
PROOF. It is obvious that 0 < 0. On the other hand,

Therefore, \jj < 0. Part 2) is proved similarly.
Let us now prove the theorem. Let υ G Λ, £ G ^"(υ). We consider the

function ι^(ί) = || YAt)\\2, which satisfies the second order differential
equation

where K(t) = KY (t)</ {t){t). By Propositions 10.3 and 10.2, ψ(ί) Φ 0

and -τ-φ(ί) < 0. We set z(t) = (-^-φ(θ) Φ"1^)· The function z(t)

satisfies the differential equation

(10.8) —- z (t) + zz (t) i--—=0.

We estimate \ z(t) \. By Proposition 10.4 and (10.5)

ι r) /\7 /^\ V 14\\ I
= \ Z ( l l ( t ) , Ιζ(1))\--

o df%\\2 = 2αψ (t),

been said above and the definition of Λο it follows that

hence sup \z(t)\ < 2a. We integrate (10.8) over [0, t]. From what has
t> ο
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f

lim-1 \ z2(s)ds>0.

'- 0 0 ο

Hence, by Lemma 10.1,
t

Km -1 f ζ (s) ώ < 0.
ο

Using 1) and 3) in Proposition 10.4 and (10.5) we find that

χ+ (v, I) = Urn 4-logl| dj% || == ITm - i In || cln ο df% || =
ί-*οο

ί

= i i m - | - l o g | | r j ( i ) | | = T l i r n - r j

This proves 1), and 2) is proved similarly.
10.6. In this subsection we consider two-dimensional manifolds without

focal points. For χ €Ξ Μ we denote by K(x) the curvature of Μ at x. The
following assertion was proved by Kramli (see [12]).

THEOREM 10.6. Suppose that

(10.9)

Then μ(Λ0) > 0.
PROOF. Let v, w £ 5Λ/ be two orthogonal vectors. It is easy to see that

< ί

Ϊΐτ7ι -f f ^ , „, (s) ds =: ΓπΓι -f i Α" (π (/s (v))) ds.
0 0

From Birkhoffs theorem it follows that

t
1 Γlim — \ K^(fs(v)))ds = Φ(υ) exists for almost every υ £ SM; moreover,

t-*<- * {

\ Φ(υ)άμ(υ) = \ Κ(π(υ)) άν(π(υ)). Hence, by the conditions of the

theorem, the set of those vectors υ for which Φ(υ) < 0 has positive
measure. This proves the theorem.

ι Γ

By the Gauss—Bonnet formula (see [19]) , — \ K(x)dv(x) is equal to
Ή Μ

the Euler characteristic of M. Hence, (10.9) is equivalent to the fact that
the genus of Μ is greater than 1.

THEOREM 10.7. A geodesic flow on a two-dimensional compact mani-
fold of genus greater than 1 and without focal points is isomorphic to a
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Bernoulli flow.
PROOF. We consider the set Λο defined by (10.7). Since the genus of Μ is

greater than 1, by Theorem 10.6 μ(Λ0) > 0, and by Theorem 10.5
μ(Λ) > 0 (see (9.1)). We consider the local stable and unstable manifolds
V~(v) and V\v), υ Ε Λ, constructed in §9. We denote by κ: Η -> Μ the
covering map. In what follows, the sign "°" over symbols of vectors, sets
etc. means that they are taken on the universal Riemannian covering Η or
in SH. Thus, κ(») = υ, κ(7"(ν)) = V~(v), κ(Λ) = Λ.

LEMMA 10.2. V~(v) C ©"(υ), V~(v) C @ + (υ) for any υ Ε Λ.

PROOF. Let wE V~(v). By (4.14),

(10.10) p(n(f(v)), n(f (w)))-> 0 as t-^oo.

From this it follows, in particular, that 7°(+°°) = 7^(+°°)- Suppose that

w Ε <3~(υ). We consider the limit sphere L(n(v), 7°(+°°)). Let ζ be the

point of intersection of 7^(0 with L(TT(V), 7g(+°°)). Then by Theorems
10.2 and 10.3,

ρ (π (/'(»)), π(?(ν)))^ρ(π(ω), ζ ) > 0 ,

which contradicts (10.10). The lemma is now proved.
Since dim Μ = 2 and the genus of Μ is greater than 1, by Proposition

10.6 Μ satisfies the axiom of uniform visibility. As Eberlein has proved
(see [36], Theorem 3.7), in this case the geodesic flow f is topologically
transitive in SM. Therefore, from Lemma 10.2 and Theorem 9.5 it follows
that f'\ Λ is ergodic. Since Μ is not homeomorphic to the two-dimensional
torus (because its genus is greater than 1), by Arnol'd's theorem (see [1],
§23) f has no continuous eigenfunctions. From Theorem 9.5 (see also
Theorem 7.7) it follows that <3~(v) = W~(v), <B+(v) = W\v) for almost
every υ € Λ (the sets W~(v) and W+(v) are defined by (9.6)). Hence, from
Theorem 9.8 and what was said above it follows that f*\A has a con-
tinuous spectrum, consequently, by Theorems 9.6 and 9.7, that it is iso-
morphic to a Bernoulli flow. It remains to show that Λ = SM(mod 0).

ο ο ,

We consider a linear element υ Ε Λ, s and a segment Δ on the limit
Ο Ο Ο Ο Ο

sphere L(x, ρ), χ = π(υ), ρ = Ίζ(+°°). We denote the end-points of this
Ο ο Ο Ο ° Ο

segment by π(ΐϋj) and π(ιυ2), where ιυγ, ιυ2 Ε @ + (—υ). We identify the
set H U H(°°) with the closed unit circle in T°H (see Proposition 10.7)

ο

and consider the set At C H, t > 0, bounded by Δ, segments of the
geodesies j ^ (s) and 7^ (s), 0 < 5 < t, and the segment

Δ, C L(7»(i), p) with the end-points 7^ (t) and 7^ (t). If we choose Δ

sufficiently small so that Δ C π(¥ (ν)), then, as follows from Theorems

10.4 and 4.3, any linear element w Ε <S+(~v) for which TT(W) Ε Δ is an
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element of uniqueness. Therefore, the geodesies 7^ (t) and 7^ (t) diverge.

Hence, for sufficiently large / (depending on the length of Δ) the set
ο

At contains a fundamental domain in H. Let Δ,», C Η(<χ>) be the segment

with the end-points y% (+°°) and y% (+°°). We put Bt(v) =
ο ο ο1 2

= { if Ε SH: π(ιυ) Ε At, y^(+°°) Ε Δ,,}. We claim that for any
t e [0, 00)

(10.11) Bt(v)c=<

We fix a t > 0 and set
0 0 0 0 0

C t ( y ) = U U /'(«Ο, £»ί(^)= U

It is easy to see that Bt(v) C ^ ( u ) C Α» (υ).

LEMMA 10.3. Λο(υ) c A(mod 0) /or a/mos/ α// υ Ε Λ.'Μ.

PROOF. From Theorem 9.5 (see also Theorem 7.7) it follows that
x(Dt(v)) = U W~(v) C Λ mod 0. Hence the required assertion follows.

We choose an open ball U C Η and an open segment Δ C H(°°). We

consider the open set R = {w G Si/: π(κ;) S i7, 7 [ j(+ 0 0) Ε Δ,»,}. From
results of [36] it follows that if t is sufficiently large, then for any
ο ° ο

υ Ε SH there is an isometry φ οι Η such that i^(i?) C B(v). Hence, onο ο

the basis of Lemma 10.3 and (10.11), R C A(mod 0), and the theorem
is proved.

Let

A = {v S SM: no two points on the geodesic yu(t) are focal}.

THEOREM 10.8. Suppose that dim Μ = 2, ίΛαί the genus of Μ is
greater than 1, and that the Riemannian metric on Μ does not have
conjugate points. If v(A Π,Λ0) > 0, then a geodesic flow is isomorphic to
a Bernoulli flow. Moreover, Ao = 5!M(mod 0) and A = SM (mod 0).

PROOF. Reasoning as in the proof of Theorem 10.7, it is easy to show
that / ' U Π Λ is ergodic, so that A = Λ (mod 0), and Λ is open mod 0.
Next we remark that for almost every υ Ε Λ almost every point
ιυ Ε V~(v) lies in A. This permits us to repeat the final part of the proof
of Theorem 10.7 verbatim.

REMARK 10.1. Theorem 10.7 can be generalized to the «-dimensional
case if we assume, in addition, that v(A0) > 0 and that Μ satisfies the
axiom of uniform visibility (see [24]).
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