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The influence of intermittency on turbulent diffusion is expressed in terms of the statistics of 
the dissipation field. The high-order moments of relative diffusion are obtained by using the 
concept of scale similarity of the breakdown coefficients (bdc). The method ofbdc is useful for 
obtaining new models and general results, which then can be expressed in terms of 
multifractals. In particular, the concavity and other properties of spectral codimension are 
proved. Special attention is paid to the logarithmically periodic modulations. The 
parametrization of small-scale intermittent turbulence, which can be used for large-eddy 
simulation, is presented. The effect of molecular viscosity is taken into account in the spirit of 
the renorm group, but without spectral series, E expansion, and fictitious random forces. 

I. INTRODUCTION 
The imbedding of the theory of turbulence into the theo-

ry of Markov processes has been proposed in a previous pa-
per by the author. I It was shown in Ref. I that the hypothesis 
of independent increments of velocity, which is widely used 
by many authors in the Lagrangian description of turbu-
lence, is inconsistent with the Navier-Stokes equations in a 
fundamental way. This hypothesis violates the main feature 
of turbulent flow-the energy transport between motions of 
various scales. A more general Lagrangian description of 
turbulent velocity such as the Markov process with depen-
dent increments, which recognizes the condition of incom-
pressibility and the important phenomenon of intermit-
tency, was presented in Ref. l. 

In order to obtain some insight into the behavior of 
high-order moments and transition probability for the Mar-
kov process, the model of intermittent relative motion of 
fluid particles was proposed. I The idea of this model is that 
strong pressure gradients, which cause the jumps of velocity , 
are accompanied by strong energy dissipation [most prob-
ably in the areas of vortex reconnections, which have been 
described by the method of three-dimensional solenoidal 
vortex singularities (vortons) 2-7]. The relative velocity of 
fluid particles [u(t)] and the distance between them [r(t)] 
have been connected with the rate of energy dissipation E[, 

averaged over the sphere of the radius 1 = (r(t) )t'2, where 
the symbol ( ) L means statistical averaging over the La-
grangian ensemble of trajectories. In the inertial range with 

is the initial distance), from the dimensional argu-
ment we have l 

(1) 

Statistical averaging over the probability distribution of E[, 

which is parametrically dependent on I, is denoted by ( ). 
Taking into account that integration over the sphere is a 
linear operation, we have 

(2) 
where E is the mean rate of the energy dissipation. From (1) 
and (2) we immediately obtain relations, 

(3) 
corresponding to the experimentally supported Richardson 
law. 8 The important point is that second-order Lagrangian 
moments (3) are linearly dependent on E and additional 
averaging over the fluctuations of E does not change them. In 
this respect, the second-order Lagrangian moments play the 
same role of the strong point in the construction of models as 
the third-order Eulerian moment. I Let us note that the Ri-
chardson law in the Eulerian description acquires an inter-
mittency correction (see Sec. IV). For high-order Lagran-
gian moments, we have from (1) 

(U"(t»L _(E7/2 )t"l2, (r"(t»L _(E7/2)t3nl2, (4) 

where 1 (t) is determined by (3). 
Thus the effect of intermittency on turbulent diffusion is 

expressed in terms of the statistics of the dissipation field. In 
Sec. II the statistics of dissipation are described by using the 
concept of scale similarity of the breakdown coefficients 
(bdc). It is shown that this concept gives more information 
about the statistics of the system than simply a multifractal 
representation. The logarithmically periodic modulations 
are also considered in Sec. II and an analytical description of 
the form of these modulations for a specific model is present-
ed in the Appendix. In Sec. III the influence of intermittency 
on turbulent diffusion is considered in more detail in connec-
tion with the imbedding of the theory of turbulence into the 
theory of Markov processes. In Sec. IV we consider the influ-
ence of intermittency on the spectral coefficient of turbulent 
viscosity, which can be used for large-eddy simulations of 
intermittent turbulent flows. The effect of molecular viscos-
ity, which is important for a boundary layer, is taken into 
account. Conclusions and perspective are outlined in Sec. V. 

II. SCALE SIMILARITY OF BREAKDOWN 
COEFFICIENTS AND MUL TIFRACTALS 

The concept of scale similarity of random fields was de-
veloped in Refs. 9 and 10 and we include in this section a 
brief account of some previous results, which are necessary 
for obtaining new results in this paper. For simplicity, we 
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will consider a one-dimensional section of the dissipation 
field, which is in accord with experimental reading in time 
(with the aid of the "frozen-flow" hypothesis). Thus Er is 
the dissipation (or similar quantity, see Ref. to) averaged 
over the segment r. For a flow which is locally isotropic in 
scales less than a certain external scale L, the two- and three-
dimensional statistical characteristics of dissipation have the 
same form [see exceptions in (32) and (35)]. 

We shall single out three segments inserted in one an-
other with the lengths I. <t,r <p < 1 -(L (/. is the internal 
scale, defined below) and introduce corresponding break-
down coefficients (bdc), 

(5) 
qr.i = qr,pqp,l' (6) 

In (5) we utilized the fact that the dissipation rate is non-
negative. The scale similarity is determined by the following 
conditions: (i) probability distribution for bdc depends only 
on the ratio of the corresponding scales and (ii) qr,p and qp,l 
are statistically independent [instead of (ii) we can use a less 
restrictive condition, see below]. More general conditions, 
which take into account exact relative positions of segments, 
are considered in Ref. to. For the moments of bdc, from 
conditions of scale similarity and (6), we have 

op(;) = Op(;) = Op( )Op(;), 
op (/Ir) = (/lr)!1-(PJ, ,u(0) = 0 

(7) 

(8) 
(in view of the arbitrariness of p and normalization of proba-
bility). In Refs. 9 and to it was shown that 

,u(l)=O, 0<,u(2)=,u<1, (9) 
,u(p+8)-,u(p)<,8 (8)0), (to) 

(11 ) 

Inequality (to) follows from (5), and (11) follows from 
( to) and (9). From (5) or ( 11) it also follows 10 that proba-
bility density w(q, 1/r) for qr.i is uniquely defined by the set 
of,u (p) with integer p (p = 0,1,2, ... ). Thus we have 

w(q,!") = _1_ foo (exp( - isq + isqrl) )ds 
r 21T - 00 

= _1_ foo exp( _ isq) [f US:
P
(!..)!1-(PJ] ds. 

21T - 00 p 0 p. r 
(12) 

If function,u (p) has analytical continuation to the complex 
domain, then ( 12) can be written in the form (compare with 
Ref. to) 

w(q,;) = exp[ -islnq+,uUS)ln(;)]ds. 
(13) 

It can be shown that if (8) holds for arbitrary p (including 
imaginary p), then conditions of scale similarity [( i) and 
(ii)] follow. For the purposes of this paper it is sufficient if 
( 8) holds for real p [instead of condition (ii) ] . 

In constructing a model, we can make an assumption, 
say, about w(q,2). From (8) we obtain 

,u(p) = IOg2(f qPw(q,2)dq) . (14) 
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Then, from (12) or (13) we have w(q,llr). If w(q,2) con-
tains 8(q) or 8(q - 2) (or both), then the limits of integra-
tion in (14) are 0 - and 2 +. 

Let us differentiate (14) with respect to p: 
,u'(p) = (qP In q)/(qP) In 2 < 1, (15) 

where ( ) means averaging with the probability density 
w(q,2) and we assume that w(q,2) #8(q - 2). Differenti-
ation of ( 15) gives 

,u" (p) = (qP(ln q)2) (qP) - (qP In q)2 >0. (16) 
(qP)2In 2 

We will see below that inequalities ( 15) and ( 16) are impor-
tant for the muitifractal representation. 

In Refs. 9 and 10 it was shown that if f.l' (0) and,u" (0) 
are finite, then the characteristic function of the In q r,t tends 
to normal when In( 1/r) -+ 00. However, we have this ten-
dency only in the integral sense-in terms of characteristic 
functions. The probability density w(q, 1/r) does not tend to 
lognormal probability density. The moments (8) generally 
have nothing to do with the moments of the limiting lognor-
mal distribution, which are defined bylO 

,u.(p) =!p{(p-1)[f.l.(2) -2,u.(1)] +2f.l.(I)}, 
(17) 

4l. (1) = 2,u'(0) +,u" (0)#. (2) = 2,u'(0) + 2,u" (0), 
(18) 

(19) 

The strict inequality in ( 19) we obtain from (16), assuming 
w(q,2) is not a 8 function (qr,2r is random). Formula (17) 
obviously violates (11) and even,u. ( 1) and,u. (2) do not 
have to coincide with f.l(l) and ,u(2) (see below). Let us 
note that these results have been misunderstood in Ref. 11. 

We get statistical characteristics of Er assuming that lO 
EL -;:::E. In particular, for the moments we have 

(e;.) -e' (Llr)lJ.(pJ . (20) 
This formula may contain a constant depending on the large-
scale structure of turbulent flow. In this sense, the statistical 
characteristics of bdc are more universal than statistical 
characteristics of dissipation fields and other fields (veloc-
ity, temperature, etc.). The information contained in formu-
las (to)-( 19) and some results presented below, follow nat-
urally from the concept of bdc and then, if it is necessary, 
they can be expressed in terms of multifractals (see below). 

Let us now consider some examples, starting with the 
simple formula 

,u(p) = (p - 1),u (p>O), ,u(0) = 0, 0<,u=,u(2) < 1. 
(21) 

This formula has been derived in Ref. 12 from a statistical 
model, based on the direct experimental investigation of in-
termittency.13 After this, the parameter Il has been connect-
ed with the so-called fractal dimension 14 ffl (,u = 3 - !iJ) 
and formula (21) has been used by many authors (see, for 
example, Ref. 15 and references therein). 

From (21) and (12) we obtain 
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Physically this model means concentration of the dissipation 
in a small fraction of volume-asymptotically on a fractal 
set. This model is actually equivalent to the so-called f3 mod-
el,16 as was indicated in Ref. 16 and discussed in Ref. 1. The 
internal scale I. for the dissipation field can be defined by the 
condition that the local Reynolds number in areas of high 
dissipation is of order 1. This gives l6.17 

I =lfJt- 31'/4(4-1') I =,?/4e -1I4 fJt=L4/3e1l3v-1 
• v , v' , 

(23) 

where v is the molecular viscosity, Iv is the classical Kolmo-
gorov internal scale, and fJt is the Reynolds number. 

A more refined mathematical model of intermittency 
has been presented in Ref. 17, where the background of rei a-
tively weak dissipation (with a nontrivial structure) was 
taken into account. Additionally, the logarithmically peri-
odic modulations of the statistical characteristics of inter-
mittency have been discovered in Ref. 17. These modula-
tions now have preliminary experimental SUpport18 and 
recently have been rediscovered in many fields of science 
(see, for example, Ref. 19 and the references therein). The 
form of these modulations provides much more information 
about the system than just a fractal dimension. In the Ap-
pendix we describe analytically the form of modulations for 
the model presented in Ref. 17. 

If the system has a physically distinguished scale factor 
A, then we can expect log-periodic modulations. Loosely 
speaking, if an unstable eddy in turbulent flow typically 
breaks up into two or three smaller eddies, but not into 10 or 
20 eddies, then we can suspect existence of a preferable scale 
factor. We can also assume that q r.p and qp,l in (6) are statis-
tically independent only if pi r = An, lip = Am, where nand 
m are integers. In this case, from (7) we obtain 

1;, (In x + In A) = 1;, (In x), 1;, (0) = 1 , (25) 
where function 1;, represents the log-periodic modulations. 
We will obtain the same result if we simply assume that pow-
er law (8) holds only for llr = An, where n is an arbitrary 
integer. 

The model (21) and (22) can be called unifractal and 
corresponds to linear dependence Jl (p) (we do not count the 
jump at P = 0). Below we will consider the multifractal rep-
resentation of intermittency (in terms of singularity sets) for 
general Jl(p). A very simple multifractual model (without 
log-periodic modulations) has been presented in Ref. 10: 

w(q,2) =!, 0<;q<;2. (26) 
From (14) we have 10 

Jl (p) = P - log2 (p + 1) . (27) 

The probability density w(q,llr) calculated in Ref. 10 by 
using (13) is far from uniform density. This model has no 
adjustable parameters and describes very well the experi-
mental data available in the early 19708 (see Ref. 10). After 
this, the data have been revised, mostly because of shifting 
the interval of similarity. Recent data 18 do not match with 
(27) or with (21). 

The natural multifractal generalization of model (21) 
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has the form 

" w(q,2) = L WkO(q-qk)' Wk>O, 2;;;'qk;;;'O. 
k=1 

(28) 
From (14) we obtain 

Jl(p) = . (29) 

ConditionsJl(O) = 0 andJl(1) = 0 give 

A recently proposed model20 (which matches very well with 
data obtained by the authors), corresponds to the particular 
case of (29) with n = 2 and WI = W 2 = !: 

Jl(p) =log2(qI; -1 (ql =0.6,q2= 1.4). 
(30) 

From (30), (28), and (15)-(18) we obtain 
Jl(1) = 0, Jl(2) :::::0.2141, 
Jl. (1) :::::0.0037, Jl. (2) :::::0.2663. 

Thus the difference between Jl. (p) and Jl(p) for P = 1,2 
definitely exists for this model. For the model (27) this dif-
ference is very significant. 10 

Another recent model,21 which is based on the concept 
of scale similarity and also agrees very well with the different 
sets of data, gives 

Jl(p) = log(6vl') [r(2p + 1)!2P ], Jl = 0.2, (31) 
where r is the gamma function. Let us note that we can 
extrapolate the probability for qr,t to the probability of the 
local dissipation and vorticity by taking the limit r-I. ' 1-L 
(see Refs. 1 and 10). However, the inverse procedure (used 
in Ref. 21 )-the interpolation from the one-point distribu-
tion of, say, vorticity to the distribution of bdc-is not 
unique and we can run into trouble by violating the condi-
tions of scale similarity. This is exactly the case with model 
(31), which contradicts (11) forlargep (as was indicated in 
Ref. 21, but without reasoning, presented above). 

The behavior of Jl(p) for negative p depends on the 
model (14). For the unifractal model (22) we have a finite 
measure for zero q and Jl (p) does not exist for negative p. For 
the model [(26) and (27)] thereislimitationp> -1 and 
Jl (p) - OC) with P - - 1. Model (30) has no limitations for p 
and asymptotically Jl(p) -ipi (ipi 1). Generally, because 
of concavity (16), Jl(p) increases with increasing Ip - Pm I, 
where Pm corresponds to the negative minimum of Jl(p) 
(also see Sec. III) and Jl (p) > 0 for P < O. 

Various characteristics of intermittency related to Jl (p) 
have been used in the literature. One of these characteristics 
is the so-called generalized dimension22 

!iJ p =d-Jl(p)/(p-1) [!iJ 1 =d-Jl'(l)]., (32) 

where d is the geometric dimension (d = 1 for the one-di-
mensional section of the field). 

Another interesting representation of Jl (p) is23 

Jl(p) = - min [ph + c(h)] . (33) 
h 

Here c (h) is the fractal codimension of the set of points S( h) 
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for which the field has a singularity of order h. In terms of 
bdc it means 

(34) 

Let us note that in Ref. 23 the set S( h) was defined different-
ly with the additional condition e' (h) < O. We do not require 
this condition. Formula (33) corresponds to the Legendre 
transform 24 of e (h). Codimension e (h) represents the space 
factor, which was first introduced in the simple model12,13 

and in termsofbdc [see (22)] equalto (rll)/l-, where,u is the 
codimension of the unifractal. For multifractal, instead of,u, 
we have a spectral codimension e(h). By averaging expres-
sion (rll)ph+ c(h) over h and using the saddle-point method, 
we obtain (33). Related characteristics of singularity sets-
the fractal dimension 

I(a) =d-e(a -1), 
have been introduced in Ref. 25. 

From (33) we have 
e'(h.) = -p, e"(h»O, 
,u(p) = - ph. - e(h. ) , 

(35) 

(36) 
(37) 

where h. (p) is the solution of (36). The concavity of codi-
mension (36) (or equivalent conditions) has been postulat-
ed in Refs. 23 and 25. By using bdc, we are able to prove this 
condition. From (37) and (36) we have 
,u'(p) = -h.(p), ,u" = = -1. 

(38) 

Inequalities (15) and (16) give 
h>-I, c"(h»O (39) 

[the zero on the rhs of ( 16) is obtained only for a unifractal 
model (21)]. From (36)-(38) we see that (33) can be in-
verted: 

c(h) = - min [ph + ,u(p)] , 
p 

c(h) = - hp. (h) - ,u(P.) , 
,u'(P.) = -h, 

(40) 

(41) 
(42) 

wherep. (h) is the solution of (42). From (41), (42), (15), 
and (8) we obtain 

p. (h m ) = 0, hm = - ,u'(O) 
= - (In q)/ln 2, c(hm ) =0, (43) 

where hm corresponds to the minimum of c(h). Therefore 
we proved another necessary condition: c(h) ;;;.0. 

III. THE INFLUENCE OF INTERMITTENCY ON 
TURBULENT DIFFUSION 

From (1), (3), and (20) we obtain, for the mixed mo-
ments of relative velocity and distance between fluid parti-
cles, 
(um(t)r"(t»L _Elm + n)/2t (m + 3n)/2( TIt) (3/2)/l-[(m + n)/21 

( T = L 2/3 ! - 1/3) , ( 44 ) 

where Tis the external time scale. In particular, for the uni-
fractal model (21) we have 
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_Elm + n)/2t (m + 3n)/2( Tit) (3/2)](m + n)/2 - 'I/l- • (45) 
We hope that these formulas will stimulate detailed experi-
mental and numerical studies of relative diffusion in turbu-
lent flows. In the meantime, we can use these results for 
advancing the theory. 

In Ref. 1, the imbedding of the theory of turbulence into 
the theory of Markov processes with dependent increments 
of velocity is presented. One of the major goals of this theory 
is to be consistent with the Navier-Stokes equations and 
with the phenomena of intermittency. There are still some 
open questions. One of these questions is the following. For 
the inertial range we have [Eq. (11) in Ref. 1] 

i!..-(U2 (t»L = 2(u j (t)a j (t»L + CI€ (C, >0) . (46) at 
Here U j (t) is the vector of relative velocity of fluid particles, 
the last term on the rhs of (46) represents random forcing 
(in the simplest model), C, is constant, and aj represents the 
local relaxation. The relaxation, consistent with incompress-
ibility and with a correct expression for the third-order 
structural tensor of the Eulerian velocity field (see Ref. 1), 
has the form 

aj(t) = - CT- 1 [r(t)]u;(t), 1"(r) = (u2 (r)h€-I, 
(47) 

2(C-2)=C1 • (48) 

Here 1" is the characteristic time for the motion with the scale 
r, r(t) is the distance between fluid particles, U (r) is the 
Eulerian velocity difference between two points separated by 
distance r, and ( )E means the averaging over the Eulerian 
ensemble of velocity fields. The question is whether or not 
this relaxation prevents the Richardson law (3). In other 
words, we have to check whether or not the first term on the 
rhs of (46) is smaller than the second term. We can verify 
this by numerical simulations of trajectories (Ref. 1). How-
ever, it is interesting to check this analytically by using the 
result (44), obtained from a different approach. Let us do 
this. 

From the Kolmogorov formula 
u(r) _!!/3r I/3 (49) 

and (20), we have 
(u n (r»_!nI3rnI3(Llr),",c nI3). (50) 

From (50), (47), (1), and (20), after simple calculations, 
we arrive at the expression 

(51) 

(52) 

The unifractal model (21) givesJY' = ,u2/4 > O. Thus, in the 
inertial range (t n, the local relaxation will not prevent 
the increase of relative velocity. The models (27), (30), and 
(31) give the same result: JY' > O. For the lognormal model 

f.l(p) =p(p-l)(f.l12 ), 0<f.l<1 (53) 

[which contradicts (11), but can be used as an approxima-
tion for small p], we also obtain JY' > O. Generally, because 
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of the conditions IJ(O) = IJ( 1) = 0 and IJ" (p) > 0, we have 
<0. From all models and from experimental data, we 

know that the intermittency correction to the "two-thirds 
law" is small. Thus (52) can be written in the form 

(54) 
From the conditions indicated above, it follows that function 
lJ(p) has a negative minimum at some point Pm between 0 
and 1. If P m as it is for all considered models, then IJ' (j) 
>OandK>O. 

In recent papers26.27 there are conjectures (based on the 
unifractal model) that the intermittency correction to the 
"two-thirds law" has a different sign; the energy spectra in 
the inertial range is flattened by intermittency and depends 
on molecular viscosity. Experimental data on dissipation 
fields20 agree very well with the concept of scale similarity of 
bdc; in particular, they indicate that IJ ( < O. Experimental 
data on the velocity moments IS correspond to (50) with the 
same lJ(p) as in (20), at least for high-order moments,20 
when intermittency corrections are signifcant. This means 
that the Kolmogorov formula (49) is correct for these mo-
ments. The above indicated conjectures imply that the Kol-
mogorov formula ( 49) is incorrect for the moment of second 
order. 

Having in mind that there is no intermittency correction 
for the moment of third order, it is very desirable to have 
detailed experimental verification of small intermittency 
corrections in (50) for n < 3. 

IV. PARAMETRIZATION OF SMALL-SCALE 
INTERMITTENT TURBULENCE 

For the large-eddy numerical simulations of turbulent 
flows it is necessary to have a parametrization of small-scale 
turbulence. We propose in this section a simple parametriza-
tion, which takes into account the effect of intermittency. 

First of all, we need an expression for the so-called spec-
tral coefficient of turbulent viscosity v(k), depending on the 
wavenumber k. We will obtain this expression in the spirit of 
the renorm group,2S-35 but without the E expansion around 
the dimension d = 4 and without the fictitious random 
forces (Gaussian and D correlated in time). 

In the range of wavenumbers larger than L - 1, we can 
express yep) in terms ofv(k),p,k, and E, keeping in mind 
that k-;.p and v(k) depends on the molecular viscosity v: 

yep) ¢(l,x)=l. (55) 

Let us differentiate (55) with respect to p and put p = k. We 
obtain 

v'(k) = v(k) ifJ ( E ), ifJ(k) = J¢(y,x) I 
k Jy l' 

(56) 
In order to specify ifJ(x), we assume that it is calculated in 
the lowest nontrivial approximation, which involves the 
source of energy, characterized by E. In this approximation, 
the rhs of (56) should be proportional to E, which implies 
that 

ifJ(x) = - 4cx/3 , (57) 
where c is constant. From (56) and (57), with the condition 
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v( 00 ) = v, we have 
v(k) = (cdk4 + (58) 

It is difficult to calculate the constant c without additional 
assumptions. In the renorm-group approach to the turbu-
lence, the Gaussian and D correlated in time random forces 
have been used with the isotropic spectrum 

Y ij (k) = (Dij - kikjk -2)Bk -3 , (59) 

where constant B has the same dimensions as E. We may 
think that these forces are the most suitable for the descrip-
tion of self-similar turbulence and for calculation of the con-
stant c. However, for Gaussian, D correlated in time forces, 
we have the exact relation36: 

E=21Tf'" Y ii (k)k 2dk, (60) 

and this integral diverges for the spectrum (59). In order to 
obtain finite dissipation, we have to cut spectrum (59) on 
both ends: 

€=41TBln(kmaxlkmin) , (61) 

which breaks the similarity. We will not try to deal with the 
representation of the Navier-Stokes equation in terms of di-
vergent spectral series nor calculate constant c analytically, 
keeping in mind that the effect of intermittency leads to an 
additional constant, accumulating with c. 

We can rewrite (58) in the space representation: 
(rk-l). (62) 

In the inertial range from (62) we obtain the Richardson law 
in the Eulerian representations: 

(63) 

It is natural to describe the effect of intermittency by substi-
tution E, instead of E in (62) and (63). In the inertial range, 
by using (20), we have 

(v(r»_EII3r4/3(L/r)I'(1I3) . (64) 
Generally, 

iLl, ( L) (v(r» = 0 (65) 

where w(q,L /r) is the probability density for the bdc, q"L 
-;::::, E, / E. For the unifractal model (21) and (22), we obtain 

For the model (30), formula (13) with L /r = r (n is an 
integer) gives 

w(q,2n ) = 2 - n ± D(q - q7 - . 
k 

(67) 

From (65) and (67) we have 

(v(r» = 2 - n i - kqi 113. (68) 
k 

For nonhomogeneous, statistically stationary turbulent 
flow, the mean dissipation rate E and external scale L gener-
ally depend on the space coordinates. For the unstratified 
flow over the flat boundary, L-z, where z is the distance 
from the boundary. If E(Z) is unknown for large-eddy simu-
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lation, it can be connected with the strain rate of the resolved 
velocity field Vi: 

E = 2( vCr) )?(r), S2 = 
1 (au au.) sij(r) =- -' +-' . 
2 aXj aXi 

(69) 

For the inertial range, from (64) and (69), we obtain 
(v(r»_rs(r)(Llr)3!2/-l(l/3). (70) 

This is the generalization of the Smagorinski scheme37 with 
the correction for intermittency. Because,uq) <0 (see Sec. 
III), this correction reduces the turbulent viscosity. It may 
partly explain why the numerical coefficient in the formula, 
analogous to (70) but without an intermittency correction, 
is usually chosen small (of order 0.07).38 Close to the bound-
ary, the molecular viscosity becomes important and the 
more general formulas, presented above, can be useful. 

V. CONCLUSION AND PERSPECTIVE 
The concept of scale similarity of breakdown coeffi-

cients (bdc) is shown to be more informative than simply a 
multifractal representation of intermittency in terms of sin-
gularity sets. In the present paper we applied this concept to 
the intermittent turbulent diffusion and to the parametriza-
tion of small-scale intermittent turbulence for large-eddy 
simulation. Additionally, log-periodic modulations in the 
presence of a physically distinguished scale factor, have been 
considered. The concept of scale similarity of bdc can be 
applied not only for turbulence, but also for a variety of 
physical systems that display the phenomena of intermit-
tency. 

The important unsolved problem is whether the singu-
larities are real or just a way of representation of intermit-
tency. In the recent paper by the author,39 the hierarchy of 
closed systems of ordinary differential equations, which de-
scribe the formation of singularities for the Euler and for the 
Navier-Stokes equations, is derived. The analytical solu-
tions presented in Ref. 39 suggest that singUlarities are real, 
at least for the Euler equations. We plan to unify this dynam-
ical approach with the statistical description in terms ofbdc 
and Markov processes in order to achieve a deeper under-
standing of the nature of turbulent flows. 
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APPENDIX: LOGARITHMICALLY PERIODIC 
MODULATIONS 

According to the mathematical model of intermit-
tency, '7 let us consider the system of random points x kl ' 

distributed by the Poisson law with a mean density (7. We 
connect with each of the points x kl a system of points 
x k2 = x kl + l,Bkli (i = I, ... ,rn) where Bkli are mutually inde-
pendent stochastic variables with the same probability den-
sity p( B). In the transition from the stages to the stages + 1, 
we let 

819 Phys. Fluids A, Vol. 2, No.5, May 1990 

X k,+ I = X k, + lsBk,i (i = I, ... ,rn), Is = I,A s-I , 
(Al) 
(A2) 

The similarity is expressed in having the same number, and 
distribution law ofthe variables B k,i for the same scale reduc-
tion factor A. 

Let us define a stationary stochastic function y. (x) con-
sisting of a sequence of pulses with centers at points x k,: 

Ys(x) = (y)as- 'jI,( x (A3) 

as = alas-I, a, = (7/" a = rnA < 1, (A4) 

z,(X)=IO(X-Xk), (z.)=(7rns- l , (AS) 
k., 

II, (B)dB = 1, (y,) = (y), (A6) 

where Zs (x) is a stochastic density function. We interpret 
the statistical characteristics of a cascade-intermittent sto-
chastic function (in the given construction) as the limit to 
which the corresponding statistical characteristics of the 
function Ys (x) tend as s-. 00. 

From (A3)-(A6) we obtain the following expression 
for the spectrum of the random functionys (x): 

Fs(p) = (y)2(7-1\f1s(p)Ys(pls), (A7) 

Y s (q) = 1 I Is (B)exp{iqB}dB 12, (AS) 

Ys(O) = 1, Ys(q)"I, 
\fI1 (p) = 1, \fIs (0) = 1, 

(A9) 
(AW) 

where \fl. (p) is the normalized spectrum of z. (x). From 
(AI) and (AS), after some simple calculations (see Ref. 
17), we obtain the recursion formula: 

\fIs + I (p) = \fIs (p)g(pls) + r'[I - g(pls)] (y = rn-'), 
(All) 

g(q) = II p(B) exp{iqB}dB 12, g(O) = 1, g(q)"l. 

(AI2) 
With successive application of (All), taking (Al) and 
(AW) into account, we have 

s 
\fIs+, (p) = II g(pl,A k-') 

k=' 
S S + I yk [ 1 - g(pl,A k - , ) ] II g(pl,A n - I) 

k=' n=k+' 
(A13) 

Introducing the notation 
00 

1j(pl,) = lim \fI,(p), G(q) = II g(qA k-I), (AI4) 
k= 1 

we obtain the following series from (A 13 ): 
00 

1j(q) = (l - y) I ykG(qA k). (AIS) 
k=O 

This series is equivalent to the functional equation 
1j(q) = Y1j(qA) + (1 - y)G(q). (AI6) 
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By substituting 
'T/(q) = q - t + I'tP(ln qlln tl) 

(0 <It = In(mtl)/ln tl < 1) 
into (A16), we obtain 

tP(z) = tP(z + 1) + X(z), 

X(z) = (1 - r)yG(tl Z). 

(A17) 

(A18) 
(A19) 

Function (A 19) decreases exponentially when z -+ 00 , 

because r < 1, tl < 1, and G(O) = 1. The solution of (A18) 
has the form 

00 

tP(z) = L X(z + k). (A20) 
k=O 

We assume that g( q) -+ 0 when q -+ 00 • It can be shown in this 
case that G(q) falls off more rapidly at infinity than any 
power of q. Therefore, when Z-+ 00, from (A20) we have 

00 

tP(z) -+1,6. (z) = L X(z + k), 1,6. (z + 1) = 1,6. (z). 
k= -00 

(A21) 
If we assume that the shapes of the pulses do not vary 

too much with increasing s, formulas (AI) and (A9) imply 
that the last factor on the rhs of (A 7) is equal to unity in the 
limit. We finally obtain 

F(p) = lim Fs (p) 
s-oo 

= (y)2(T-t (pit) - t + "1,6. (lnpltlln tl) 

(A22) 
According to the previous formulas, the form of the log-
periodic modulations 1,6* (z) depends on the probability den-
sity p(f). For the three-dimensional isotropic random field 
y(x) the analogous construction gives the same result 
(A22) for the spectra, integrated over the sphere in wave 
space. It will be interesting in the future to calculate (ana-
lytically or numerically) the forms of log-periodic modula-
tions for the high-order moments of y(x) with particular 
p(9). 

'E. A. Novikov, Phys. Fluids AI, 326 (1989). 
2E. A. Novikov, Zh. Eksp. Toor. Fiz. 84, 975 (1983) [SOY. Phys. JETP 57, 
566 (1983)]. 

820 Phys. Fluids A, Vol. 2, No.5, May 1990 

3E. A. Novikov, in Turbulence and Chaotic Phenomena in Fluids, edited by 
T. Tatsumi (Elsevier, Amsterdam, 1984), p. 259. 

4M.1. Aksman, E. A. Novikov, and S. A. Orszag, Phys. Rev. Lett. 54, 2410 
(1985). 

sE. A. Novikov, Boundary Layer Metoorol. 38,305 (1987). 
6M.1. Aksman and E. A. Novikov, Fluid Dyn. Res. 3, 239 (1988). 
7E. A. Novikov, in Proceedings o/the 6th Symposium on Energy Engineer-
ing Sciences (Argonne National Laboratory, Argonne, IL, 1988), p. 59. 

8 A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, 
Cambridge, MA, 1975), Vol. 2. 

9E. A. Novikov, Dokl. Akad. Nauk SSSR 184, 1072 (1969) [Sov. Phys. 
Dokl.14, 104 (1969)]. 

1Of.. A. Novikov, PrikI.. Mat. Mekh. 35, 266 (1971) [Appl. Math. Mech. 35, 
231 (1971)]. 

liB. Mandelbrot, J. Fluid Mech. 62, 331 (1974). 
12E. A. Novikov, Izv. Fiz. Atmos. Okenna 1(8), 788 (1965) [Atmos. 

Ocean. Phys. 1/8,455 (1965)]. 
13E. A. Novikov and R. W. Stewart, Izv. Ser. Goofiz. No.3, 408 (1964) 

[Izv. Akad. Nauk SSSR Goophys. Ser. No.3, 245 (1964)]. 
14B. Mandelbrot, in Turbulence and Navier-Stokes Equation, Lecture 

Notes in Mathematics (Springer, Berlin, 1976), p. 121. 
1ST. Nakano, Prog. Thoor. Phys. 75, 1295 (1986). 
16U. Frisch, U. Sulem, and M. Nelkin, J. Fluid Mech. 87, 719 (1978). 
17E. A. Novikov, Dokl. Akad. Nauk SSSR 168/6,1279 (1966) [SOY. Phys. 

Dokl. 11, 497 (1966) ]. 
'8F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, J. Fluid 

Mech. 140, 63 (1984). 
19L. A. Smith, J. D. Fournier, and E. A. Spiegel, Phys. Lett. A 114, 465 

(1986). 
20C. Meneveau and K. R. Sreenivasan, Phys. Rev. Lett. 59, 1424 (1987); 

Nucl. Phys. B, Proc. Suppl. 2,49 (1987). 
211. Hosokawa, Phys. Fluids AI, 186 (1989). 
22H. G. E. Hentschel and I. Procaccia, Physica D Amsterdam 8, 435 

(1983). 
23U. Frisch and G. Parisi, in Turbulence and Predictability in Geophysical 

Fluid Dynamics and Climate Dynamics, edited by M. Ghi!, R. Benzi, and 
G. Parisi (North-Holland, New York, 1985), p. 84. 

24V. I. Arnold, Mathematical Methods o/Classical Mechanics (Springer, 
New York, 1978). 

2sT. C. Halsay, M. H. Jensen, L. P. Kadanotf, I. Procaccia, and B. J. Shrai-
man, Phys. Rev. A 33, 1141 (1986). 

26A. J. Chorin, Phys. Rev. Lett. 60, 1947 (1988). 
27V. Yakhot, Z.-S. She, and S. A. Orszag, Phys. Fluids A 1,289 (1989). 
28S. K. Ma and G. Mazenko, Phys. Rev. B 11, 4077 (1975). 
29D. Forster, D. Nelson, and M. Stephen, Phys. Rev. A 16, 732 (1977). 
30J. D. Fournier and U. Frisch, Phys. Rev. A 17, 747 (1978). 
31C. DeDominicis and P. C. Martin, Phys. Rev. A 19, 419 (1979). 
32J. D. Fournier and U. Frisch, Phys. Rev. A 28, 1000 (1983). 
33V. Yakhot and S. A. Orszag, Phys. Rev. Lett. 57, 1722 (1986). 
34V. Yakhot and S. A. Orszag, J. Sci. Comput. 1, 1 (1986). 
35E. V. Teodorovich, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 4, 29 

(1987) [Fluid Dyn. 4, 517 (1988»). 
36E. A. Novikov, Zh. Eksp. Toor. Fiz. 47, 1919 (1964) [SOY. Phys. JETP 

20/5, 1290 (1965) ) . 
37J. Smagorinski, Mon. Weather Rev. 91, 99 (1963). 
38W. C. Reynolds (private communication, 1989). 
39E. A. Novikov, submitted to Fluid Dyn. Res. 

E. A. Novikov 820 

Downloaded 10 Feb 2012 to 132.68.245.153. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions


