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Preface ix

Preface

The universe is nicely ordered. There is order in the sequence of events
determining the pace of evolution and the rhythms of life alike. Order can be
found in all the structures unfolding around us at di¤erent scales. There is
order in the arrangements of matter, in energy �ow patterns, in every work
of Nature interweaving space and time. This book is devoted to the study of
a special kind of order referred to as aperiodic order.
Etymologically aperiodic order means order without periodicity. Accord-

ingly, aperiodic order has nothing to do with disorder in any of its possible
multiple forms. Aperiodic ordered matter exhibits long-range order in space,
just as periodic orderings do. This property clearly distinguishes aperiodic
structures from amorphous matter, the latter being able to display short-range
correlations only. Aperiodic systems can be classi�ed according to di¤erent
criteria. For instance, certain aperiodic arrays of atoms are able to give rise to
high quality x-ray or electron di¤raction patterns composed of a collection of
discrete Bragg spots, as periodic arrays of atoms also do. This phase of matter
is referred to as quasiperiodic crystals (quasicrystals, for short) and they rep-
resent a natural extension of the periodic crystal notion. The di¤raction pat-
terns of quasicrystals are quite bizarre, unveiling the existence of unexpected
symmetries which endow them with an impressive esthetical appeal. They
also exhibit unusual physical properties, closely related to the fractal nature
of their energy spectra. Physically this feature means that some speci�c frag-
ments of the spectra appear once and again at di¤erent scales. Accordingly,
we do not have periodicity but scalability. Indeed, fractal structures, char-
acterized by their invariance under in�ation/de�ation operation symmetries,
provide another representative example of aperiodically ordered systems.
But, in my opinion, the most important feature of aperiodic systems is their

ability to encode relevant information in a way periodic order is completely
unable to do. It su¢ ces to compare a periodically arranged string of letters,
namely abcabcabcabc..., with the preceding paragraph to immediately grasp
the main point: in a periodic arrangement the information stored is limited
to the basic period de�ning its structure (the unit cell in the case of a periodic
crystal, for instance), whereas the amount of information stored in an ape-
riodic structure progressively increases as the system size is increased. The
stacking of Watson-Crick complementary bases determining the genetic code
in DNA is perhaps the most paramount example one can �nd in Nature. In
fact, in DNA two kinds of order coexist in the same sample at just the same
space scale. On the one hand, one has the aperiodic stacking of bases deter-
mining its biological information. On the other hand, one has the periodic
arrangement of sugar-phosphate groups conforming the double-helix structure
which preserves the physical integrity of the macromolecule at physiological
conditions.
Such a blending of ordering principles can provide an inspiring guide for

technological applications. For instance, one can grow layered structures con-
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sisting of a large number of �lms aperiodically stacked. The simplest example
of such nanostructured materials is a two-component aperiodic heterostruc-
ture, where layers of two di¤erent materials (metallic, semiconductor, super-
conductor, dielectric, ferroelectric, ceramics) are arranged according to certain
aperiodic sequence. In this way, two kinds of order are introduced in the same
sample at di¤erent length scales. At the atomic level we have the usual crys-
talline order determined by the periodic arrangement of atoms in each layer,
whereas at longer scales we have the aperiodic order determined by the se-
quential deposition of the di¤erent layers. This long-range aperiodic order is
arti�cially imposed during the growth process and can be precisely controlled.
Since di¤erent physical phenomena have their own relevant physical scales, by
properly matching the characteristic length scales we can e¢ ciently exploit
the aperiodic order we have introduced in the system, hence opening new av-
enues for technological innovation. Recent works in optoelectronics and signal
communication have fruitfully considered aperiodic designs in order to obtain
improved devices and the very possibility of intentionally combining periodic
and aperiodic materials in hybrid order composed structures has been recently
explored in some detail.
Several topics on the role of aperiodic order in di¤erent domains of phys-

ical sciences and technology will be covered in this book. The �rst chapters
address some basic notions and present the most characteristic features of
di¤erent kinds of aperiodic systems in a descriptive way. In Chapter 1 we
introduce di¤erent orderings of matter and describe the progressive transition
from periodic to aperiodic thinking in physical sciences. In Chapter 2 the
very notion of aperiodic crystal is introduced, fully describing its historical
roots as well as the paramount discovery of quasicrystalline alloys and their
beautiful forbidden symmetries. The study of the unusual physical properties
of quasicrystalline alloys is then presented in more detail in Chapter 3, pay-
ing special attention to their intriguing electronic structure and the possible
nature of chemical bonding in hierarchically arranged cluster-based solids. In
Chapter 4 we introduce the basic structural properties of man-made materials
consisting of aperiodic sequences of layers such as Fibonacci semiconductor-
based superlattices or Cantor-like dielectric multilayers. The main mathe-
matical features of the substitution sequences de�ning their growth rule are
also reviewed along with the possible signatures of quasiperiodicity in their
physical properties.
The two following chapters focus on some theoretical aspects and useful

mathematical approaches introduced to properly study the physical systems
introduced in previous chapters. Accordingly, Chapter 5 is devoted to in-
troducing some simple models describing the fundamental physics of several
aperiodic systems in one dimension. Remarkable properties of their energy
and frequency spectra, such as a highly fragmented, self-similar arrangement
of progressively narrower bands or the critical nature of the eigenstates, are
discussed in detail by considering suitable models for di¤erent systems of in-
terest. The impact of the peculiar energy spectra on their related transport
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properties is also addressed. In Chapter 6 we turn our attention to the ape-
riodic crystal of life, by considering some basic features of DNA molecules
from the perspective of condensed matter physics. Some fundamentals on the
di¤raction theory by helices are �rst introduced. Then we discuss the elec-
tronic structure of nucleic acids and summarize what experiments say about
the possible charge transfer processes in DNA. Di¤erent e¤ective Hamiltoni-
ans aimed at describing the basic physics of these processes are subsequently
introduced. On the basis of these results, the role of long-range correlations
is critically analyzed from the biophysicist viewpoint.
Afterwards we shift towards more applied issues. Chapter 7 discusses how

to exploit aperiodic order in di¤erent technological devices based on multilay-
ered optical systems, photonic and phononic quasicrystals, complex metallic
alloys or DNA-based nanocells. The appealing possibility of introducing novel
designs based on the aperiodic order notion to achieve some speci�c applica-
tions is further discussed in Chapter 8 by considering not only one-dimensional
systems, but also arrangements of matter in two and three dimensions. Fi-
nally, in Chapter 9 we present some useful mathematical tools which are of
common use in the study of aperiodic systems.
The book is specially intended for both condensed matter physicists and

materials science researchers coming into the �eld of aperiodic systems from
other areas of research. It can also serve as a useful text for graduate students.
I am gratefully indebted to Esther Belin-Ferré, Jean-Marie Dubois, Uichiro

Mizutani, Patricia A. Thiel, and An Pang Tsai for their continued support
and interest in my research activities during the last decade, as well as to
Victor R. Velasco, who kindly agreed to review several chapters of this book.
Their illuminating advice has signi�cantly contributed to guide my scien-
ti�c research in the aperiodic order realm. It is a pleasure to thank Janez
Dolin�ek, Francisco Domínguez-Adame, Sergey V. Gaponenko, Carlos V. Lan-
dauro, Stephan Roche, Rogelio Rodríguez-Oliveros, and Tsunehiro Takeuchi
for sharing with me their time and e¤orts in joint research works. I also
express my thanks to Eudenilson L. Albuquerque, José Luis Aragón, Claire
Berger, Arunava Chakrabarti, Gianaurelio Cuniberti, Luis Elcoro, J. César
Flores, Federico García-Moliner, Didier Mayou, Gerardo G. Naumis, Juan
M. Pérez-Mato, Rudolf A. Römer, Manuel Torres, Chi-Tin Shih, Jewgeni B.
Starikov, Alexander Voityuk, and Chumin Wang for inspiring conversations,
and to Emilio Artacho, Michael Baake, Javier García-Barriocanal, Roberto
Escudero, José Reyes-Gasga, Ai-Min Guo, Roland Ketzmerick, Kazumoto
Iguchi, and Ruwen Peng for sharing with me very useful materials.
The author is grateful to Taylor & Francis, and to John Navas in particular,

for giving me the opportunity to prepare this book. Last, but not least, I
warmly thank M. Victoria Hernández for her invaluable support, unfailing
encouragement, and her continued care to the detail.
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1
Orderings of matter

1.1 Periodic thinking in physical sciences

The notion of periodicity allows one to easily grasp the basic order underlying
certain patterns and rhythms in Nature. The essence of periodicity relies on
a basic motif which is inde�nitely repeated, along with a set of basic rules
prescribing the way such a repetition process takes place. Periodicity can
occur in time, space, or simultaneously in both of them. Periodicity in time
guarantees that what is known to occur now will also occur later, and can be
asserted to have already occurred before, provided that a certain relationship
between those di¤erent instants is ful�lled. Let t be a real number measuring
the passage of time. Then, a function satisfying the condition f(t�T ) = f(t)
is periodic in time with a period T , since its value is preserved (i.e., it is
invariant) under transformations describing the set of translations generated
back and forth by the arrow of time by the real number T .
The existence of cyclic processes in Nature accurately obeying such a pe-

riodicity condition is the basis for the possible adoption of physical clocks
(characterized by their T value). In fact, from the galactic scale down to
atomic and subatomic scales, the natural world has plenty of physical sys-
tems exhibiting nearly exact periodicity in time. Most of these systems can
be described, at least as a �rst approximation, in terms of dynamic equations
of the form

d2f

dt2
+ !2f=0; (1.1)

which is usually referred to as the harmonic oscillator equation, where f is
some physical magnitude (e.g., a position coordinate, the intensity of an elec-
tric or magnetic �eld, or the chemical concentration of a substance) and !;
the so-called natural frequency, is a quantity which depends on characteristic
physical parameters of the system. For instance, in the case of a (low ampli-
tude) swinging pendulum we have !2 = g=l; where l is the pendulum�s length,
and g measures the local intensity of the Earth�s gravitational �eld.
Eq.(1.1) is a second order di¤erential equation. To solve it one must �nd

a mathematical function f(t) whose second derivative coincides with (minus)
itself, once properly scaled by a factor !2. The theory of di¤erential equations

1
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tells us that these requirements are met by solutions of the form

f(t) =a cos!t+ b sin!t; (1.2)

where the value of the constants a and b is determined from the knowledge of a
suitable set of initial conditions, and ! � 2�=T . In the particular case a = b �
R the function given by Eq.(1.2) simply describes a uniform circular motion
of radius R with angular frequency !: Since trigonometric functions satisfy
(by de�nition) the relations sin[!(t�T )] = sin!t; and cos[!(t�T )] = cos!t,
we see that the periodicity condition f(t � T ) = f(t) is properly satis�ed
by Eq.(1.2). Therefore, the periodicity in time exhibited by the solutions
of Eq.(1.1) naturally emerges from its basic mathematical structure. Quite
remarkably, harmonic equation describes a broad collection of cyclic motions
in nature, ranging from atomic vibrations in solids to population dynamics
in ecosystems. The profuse appearance of this basic equation in the study
of such diverse dynamical systems certainly accounts for the important role
played by periodic thinking in theoretical physics, probably starting with the
pioneering quest for the isochronous pendulum by Galileo Galilei (1564-1642)
and Cristiaan Huygens (1629-1695) in the 17th century.[1]
Periodicity in space guarantees that what is located here must also occur

over there, provided that certain geometrical relationships between "here"
and "there" are ful�lled. Thus, a vector function satisfying the condition
f(r+R0) = f(r) is periodic in space, since it is invariant under transforma-
tions describing the set of space translations generated by the vectorR0 in the
vectorial space to which the variable r also belongs. Periodicity in Euclidean
space can involve rotations as well as translations, and can be expressed in
the general form Mr+R0 = r, where

M =

0@ cos' � sin' 0sin' cos' 0
0 0 1

1A (1.3)

is an orthogonal matrix describing rotations by an angle '. Let us consider
the vectors describing a lattice of points, which have the general form r =
n1e1 + n2e2 + n3e3; where feig is a suitable vector basis and ni 2 Z: The
periodicity condition then implies that the trace of matrix M must take on
integer values.[2] This leads to the so-called crystallographical restriction

1 + 2 cos' = n 2 Z; (1.4)

which has played a signi�cant role in the development of classical crystallog-
raphy. The main consequence of the relationship given by Eq.(1.4) is that
only a few number of rotations are compatible with the periodicity condi-
tion. Thus, only two-fold, three-fold, four-fold, and six-fold symmetry axes
are allowed in periodic lattices, as it can be straightforwardly deduced from
Eq.(1.4). To this end, we express the crystallographic restriction in the form
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cos' = (n � 1)=2. The condition j cos'j � 1 implies n = f�1; 0; 1; 2; 3g: By
plugging these values into the former expression we obtain the solutions listed
in Table 1.1.

TABLE 1.1
Allowed symmetry
axes in periodic
crystals.

n ' AXIS
-1 � 2-fold
0 2�/3 3-fold
1 �/2 4-fold
2 �/6 6-fold
3 0 identity

The simplest illustration of processes which are simultaneously periodic in
space and time can be found in wave phenomena. For instance, sinusoidal
waves of the form 	(r; t) = 	0 sin(k:r�!t), where k = 2�=� is the wave
number and � measures the wavelength, often occur in waves propagating
in gases, liquids or solids as well as in electromagnetic waves propagating in
vacuum. Their characteristic wave function describes a periodic pattern in
space if we �x the time variable (i.e., t � t0). Alternatively, if we �x the space
variable (i.e., r � r0), it describes a harmonic motion in time at every point of
space, where the quantity k:r0 measures the relative dephasing between the
oscillations of two points separated by a distance r0. The double periodicity
(in space and time) of wave motion can be traced back to the very structure
of the corresponding wave equation, which reads

r2	+ 1

c2
@2	

@t2
= 0; (1.5)

where c = !=k is the phase velocity of the wave. The �rst (second) term in
Eq.(1.5) describes the periodicity in space (time) of the propagating wave,
while its phase velocity couples its spatial pattern to its propagation rhythm.
A key feature of sinusoidal waves, signi�cantly contributing to pervade pe-

riodic thinking in scienti�c thought, is that any non-sinusoidal, periodic wave
can be represented as a collection of sinusoidal ones (with di¤erent frequen-
cies) blended together in a weighted sum of the form [cf. Eq.(1.2)]

f(t) =
a0
2
+

1X
m=1

[am cos(!mt) + bm sin(!mt)] ; (1.6)

where !m = 2�m=T; and

am =
2

T

Z
f(t) cos(!mt)dt; bm =

2

T

Z
f(t) sin(!mt)dt; (1.7)
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are the so-called Fourier coe¢ cients, after the French mathematician Joseph
Fourier (1788-1830) who introduced this procedure in 1822. Closely related to
this series expansion, one can consider the so-called Fourier transform, which
decomposes a function into a continuous spectrum of its frequency components
according to the expression

F (!) =

+1Z
�1

f(t)e�i!tdt: (1.8)

Note that completely analogous expressions hold for periodic functions in
space by simply replacing the corresponding variable in Eqs.(1.6)-(1.8). In
this way, a Fourier transform can be envisioned as a linear transformation
relating two di¤erent mathematical domains: that corresponding to usual
time or space variables (which come closer to our everyday experience), and
that corresponding to the related frequency or reciprocal space spectrum,
which encloses a more abstract view of the underlying order in the considered
phenomenon. Remarkably enough, there exist processes in Nature able to
Fourier-transform material structures in a natural way, namely, di¤raction
of electromagnetic (x-ray) or matter quantum waves (electrons, neutrons) by
atomic scatters in condensed phases. The resulting di¤raction spectra exhibit
regular arrangements of bright spots (the so-called Bragg peaks) disclosing
the abstract information encoded within Fourier space to our eyes. In this
way, the workings of Nature translate wave motion into geometrical patterns
engraved in reciprocal space through the orchestrated interaction of matter
and energy in condensed matter.

Di¤raction spectra contain a lot of information about structural details
which must be carefully analyzed, generally requiring a formidable task in
the case of relatively complex structures. But a key, basic feature follows
from the very mathematical de�nition of the Fourier transform: close spots
in di¤raction patterns correspond to scattering centers which are far apart
in physical space. Accordingly, Fourier space description of crystal structures
takes place in the so-called reciprocal space. In Fig.1.1 a celebrated example of
di¤raction pattern, ultimately leading to the elucidation of the double-helix
structure of DNA, is shown for the sake of illustration. The cross-shaped
arrangement of Bragg spots in reciprocal space is a characteristic telltale of the
helicoidal distribution of sugar-phosphate groups in physical space. The two
broad dark features located up and down the image correspond to the stacked
nucleotides along the helix axis. We will study the physical implications of
this impressive picture in more detail in Chapter 6.
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FIGURE 1.1
The so-called Photo 51 of DNA was obtained by Rosalind Franklin (1920-1958)
in 1952. This image shows the di¤raction spectra resulting from x-ray passing
through highly hydrated �bers of calf thymus DNA samples. (Reprinted by
permission from Macmillan Publishers Ltd.: Nature 171 740 c1953 [3].)

1.2 The realm of periodic crystals

Geometrical patterns appear once and again in many natural objects, ranging
in size from atomic scale to the size of the galaxies, and provide us with a
series of basic geometrical motives to think about. It is not surprising then
that geometrical concepts play a central role in most e¤orts we make in order
to understand and describe processes and structures in Nature, as it was
pointed out by Galileo�s famous metaphor of the "Book of Nature."

"Philosophy is written in this grand book, the universe, which
stands continually open to our gaze. But the book cannot be
understand unless one �rst learns to comprehend the language
and read the characters in which it is written. It is written in the
language of mathematics, and its characters are triangles, circles,
and other geometric �gures (...)" [4]

Thus, the basic characters of this Book belong to the broad class of poly-
gons and, more generally, polyhedra as well, which were analyzed in detail by
mathematicians and natural philosophers alike from ancient times. A poly-
gon (Greek for many angles) is a portion of a plane bounded by straight line
segments, which de�ne a closed shape. Regular polygons are those in which
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all sides are equal and all angles are equal. This high symmetry endows reg-
ular polygons with a great aesthetic appeal. The ancient Greeks succeeded
in constructing regular polygons with large number of sides, included in the
series 3,4,5,6,8,10,12,15,16 and 20. However, all e¤orts to construct a regular
polygon of seven sides (the �rst missing one in the list above) failed. Proof
was much later given (Carl Friedrich Gauss (1777-1855)) in 1801 and Pierre
Wantzel (1814-1848) in 1837) that, if the number of sides p is a prime number,
a regular polygon can be constructed with compass and straight edge if and
only if p = 22

n

+1, n = 0; 1; 2; :::(the so-called Fermat primes after Pierre Fer-
mat (1601-1665)). This result indicates that not all polygons can be treated
on equal footing, but they can be grouped in di¤erent classes depending on
their symmetry properties. This point can be illustrated with another exam-
ple: tilings of Euclidean planes. The word tiling is generally used to describe
a pattern or structure that comprises of one or more polygonal shapes of
�tiles� that pave a plane exactly leaving no spaces between them. Squares,
equilateral triangles, and hexagons are particularly easy to tile with in order
to achieve a periodic pattern that repeats itself at regular intervals. The ob-
tained patterns are endowed with the characteristic symmetries �threefold,
fourfold, sixfold �of the tiles they are respectively made up. In the case of a
regular pentagon tile, however, no matter how hard you try, they cannot be
used to �ll the entire plane and form a periodic tiling pattern: un�lled gaps
will always remain. In this way, we realize that (i) only a few set of regu-
lar polygons are capable of tiling the plane (namely, triangles, squares, and
hexagons), and (ii) that the resulting tilings always exhibit periodic patterns.
Certainly, one may relax the original tiling rules by allowing di¤erent types

of polygons to be simultaneously used to construct the tile. In that case one
obtains the so-called Archimedean tiling patterns shown in Fig.1.2. These tiles
were originally depicted by Johanes Kepler (1571-1630) in Harmonices Mundi
II (1619), where the main requirement was that only one type of vertices is
permitted at every joining point. A set of integers (n1:n2:n3: � � � ) denotes the
vertex type in the way that n1-gon, n2-gon, n3-gon,� � � di¤erent polygons con-
secutively meet on each vertex. For instance, the symbol (32:4:3:4) represents
a tiling in which two equilateral triangles, a square, an equilateral triangle,
and a square successively gather edge-to-edge around any given vertex. In
this way, uniform tilings can be listed by their vertex con�guration. We note
that the so-called regular or Platonic tilings are a subset of Archimedean ones
corresponding to the notation (36); (44), and (63):
Polyhedra are solid geometric �gures having polygons as their faces. The

angle formed by the faces at a vertex is called polyhedral angle. If all faces are
congruent and all polyhedral angles are equal, the resulting body is referred
to as a regular polyhedron. Whereas there exist an in�nite number of regular
polygons, only �ve types of regular polyhedra (identical faces) are possible in
three dimensions (the so-called Platonic solids), and they are shown in Fig.1.3.
The very small number of regular polyhedra could be associated with the

idea that perfect harmony is scarce in real world. Quite interestingly, how-
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FIGURE 1.2
Archimedean tilings. When one imposes all the vertices to be of the same
type only eleven types of tiling of the plane by regular polygons can be
found. The three �rst tilings shown at the top �le are composed of just one
type of polygon tile and are sometimes referred to as Platonic tiles.

FIGURE 1.3
The �ve Platonic solids (left hand) and seven of the 13 Archimedean solids
which can be obtained by truncation of a Platonic solid (right hand). Two
additional solids can be obtained by expansion of a Platonic solid, and two
further solids can be obtained by expansion of one of the previous nine
Archimedean solids.
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ever, Platonic shapes profusely appear in the atomic ensembles disclosed by
chemists and crystallographers as the basic building blocks of matter. For
instance, in the diamond crystal each atom has four neighbors, which are
arranged about it at the corners of a regular tetrahedron. In the tetragonal
crystal KPdCl four chlorine atoms about each Pd or Pt atom lie at the cor-
ners of a square. Octahedral complexes in cubic crystals KPtCl have their
centers at the corners and the centers of a cubic unit structure. Therefore,
although only a few di¤erent types of regular polyhedra exist due to the se-
vere mathematical constraints imposed by their high symmetry degree, these
basic motives are profusely adopted by atomic arrangements in Nature. This
remarkable property is ultimately related to the geometrical properties of hy-
brid orbitals formed by atoms in solids, thereby highlighting the signi�cant
role of quantum laws in the arrangements of matter.

We are all familiar with crystalline minerals, solids bounded by naturally
formed geometric faces. In fact, its regular geometrical form was a demonstra-
tion that geometry is not just an abstraction stemming from the imagination
of mathematicians, for it appears spontaneously in rocks. In this way, min-
erals suggested a subtle link between geometry and the inner structure of
solid matter. Thus, the spontaneous appearance of symmetrical shape upon
cooling a saturated solution was accordingly interpreted as an indication of a
regular and precise pattern of internal structure.

The earliest recorded speculation of this sort seems to have been that pub-
lished by Robert Hook (1635-1703) in a book entitled Micrographia. Hook
envisioned a crystal as a stack of spherical particles closely packed together in
a regular way. Not long afterwards (1678), Cristiaan Huygens carried the idea
still further. He was aware that some crystals, like calcite, mica, or Iceland
spar, break most readily along certain planes, giving pieces with precisely �at
surfaces, and he suggested that these so-called cleavage planes are natural lines
of division between �at sheets of particles. By breaking along these planes
a crystal of Iceland spar can be subdivided into little rhombohedra. Quite
remarkably, the subdivision can apparently go on inde�nitely, giving smaller
and smaller rhombohedra, to the limits of microscopic vision. Subsequently,
around 1800, René-Just Haüy (1743-1822) connected this fact with the idea
that all the various natural faces of di¤erent minerals could be accounted for
as various simple ways of �nishing o¤ a stack of tiny rhombohedral pieces,
like those obtained from the Iceland spar crystal. In this way, faces mani-
fest at a macroscopic scale an underlying ordered arrangement. Accordingly,
the structure of minerals can be understood as regular arrangements of very
small particles (say atoms) closely packed in ranks upon ranks, and the var-
ious macroscopic facets show up di¤erent ways of �nishing o¤ the stack. On
the other hand, substances like glass, which do not form crystals, can be en-
visioned as lacking this internal regularity, so that the distinction between
crystalline and amorphous substances was thought to be a fundamental one:
that separating the realms of order from disorder in solid matter.
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FIGURE 1.4
At a macroscopic scale (on the left) the apperance of the hexaedral bypiramid
crystal of satellite tobacco mosaic virus looks like a common mineral sub-
stance, like calcite or quartz, which are constituted by inorganic molecules.[5]
Upon a closer inspection (on the right), as that provided by scanning atomic
microscopy, one realizes that the basic building blocks of this organic crys-
tal are virus capsides, complex molecular structures exhibiting icosahedral
symmetry.[6]
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Modern condensed matter theory relies on the discrete nature of the ulti-
mate constituents of solid bodies. This point is illustrated in Fig.1.4 where
one realizes that the �at crystal surfaces one sees at a large enough scale ulti-
mately resolve in a coarsened landscape formed by successive stacks of virus
particles. The same basic principle essentially applies to any piece of con-
densed matter: it is composed of a huge number (of the order of magnitude
of the Avogadro�s number) of building blocks at the atomic/molecular scale.
The way these building blocks are arranged through the space constitutes one
of the most fundamental notions in solid state physics and it allows for the
introduction of the useful notion of a crystal lattice: a mathematical set of
material points whose positions remain �xed through the space. In addition to
its undeniable mathematical convenience for a rigorous description of crystals
symmetry within the framework of group theory concepts, it turns out that
atoms usually behave as point-like ideal particles when they interact among
themselves or with propagating energy �elds.
In fact, the regular structure of crystals at the atomic level can be properly

characterized by means of x-ray di¤raction experiments in which the appear-
ance of sharp spots indicates the existence of long-range translational order
between di¤erent atomic distributions. The idea that x-rays might be electro-
magnetic waves with wavelengths of the order of magnitude of the distance
between layers of atoms in crystals was originally put forward by Max von
Laue (1879-1960) at the beginning of the XX century. In a series of exper-
iments a beam of x-rays passed through a crystal of copper sulfate, and a
number of spots (corresponding to di¤raction peaks maxima) were observed
on the photographic plates set up around the crystal. Laue then developed
a set of equations, relating the direction in which di¤raction maxima occur
to the structure of the crystal. A few months later William Lawrence Bragg
(1890-1971) developed a simpler equation to describe the di¤raction maxima,
given by

2d sin � = �; (1.9)

where d is the distance that separates successive pairs of atomic plains, � is
the angle between the directions of the incident and scattered beams, and
� is the x-ray wavelength. In 1912 William Lawrence Bragg and his father
William Henry Bragg (1862-1942) published several papers reporting not only
the wavelengths of the x-rays but also the structures of a number of crystals:
diamond, sodium chloride, �uorite. This was the start of x-ray di¤raction and
the determination of the structure of crystals.
It can be said that the science of crystallography �rst began when it was

realized that in spite of existing thousands of di¤erent crystalline solids, most
di¤ering in the number and arrangement of faces, all of them can be classi�ed
in but a few basic classes. The fundamental property allowing for a simple
and uni�ed description is symmetry. Three main elements of symmetry are
commonly used in crystallography, namely, center of symmetry (when a crys-
tal shows repetition with respect to a point), axis of symmetry (repetition
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respect to a line), and plane of symmetry. The German scientist Johan F.
C. Hessel (1796-1872) showed in 1830 that with these elements of symmetry
there could be a total of 32 di¤erent crystal groups, each one characterized
by a speci�c combination of symmetry elements, which are referred to as the
crystal classes. The crystal class can be grouped, in turn, into seven crystal
systems, each including a number of classes with certain symmetry elements
in common. The advent of x-ray di¤raction analysis revealed that atomic
arrangements inside solids can introduce additional elements of symmetry in
such a way that the original 32 crystal classes must be expanded into 230
space groups.

1.3 Superimposed periods

There exist materials where two or more periodicities occur. For instance,
one may think of a ferromagnetic material, where one periodicity character-
izes the arrangement of atoms (e.g., measured by x-ray di¤raction), and other
periodicity characterizes the distribution of spins (e.g., measured by neutron
di¤raction). Since the coupling between the magnetism and the crystal struc-
ture is generally weak, both periods are likely to be incommensurate to each
other, which results in a modulated aperiodic crystal. The modulation can
also appear in the density function describing the distribution of atoms them-
selves (Fig.1.5).
Calaverite (AuTe2) and �Na2CO3 were the �rst examples of incommensu-

rate modulated structures. Nowadays hundreds of compounds with a modu-
lated structure are known in di¤erent types of materials including alloys, ionic
compounds, molecular crystals, high-temperature superconductors, or ferro-
electrics. For a detailed historical account the reader is referred to Refs.[2]
and [7]. In incommensurate crystals the di¤raction patterns are generally
characterized by linear combinations of two sets of reciprocal lattice vectors,
say q and g; where q represents a basic lattice of reference and g represents a
modulation vector. It is then clear that these incommensurate structures lack
three-dimensional periodicity, so that they cannot be characterized by one of
the 230 space groups. This di¢ culty prompted P. M. de Wol¤ to introduce
the notion of superspace to account for the satellite re�ections observed in the
�Na2CO3 di¤ractograms. The basic idea is that the di¤raction pattern cor-
responding to an incommensurate structure can be seen as the projection of
a periodic lattice in four dimensions on the three-dimensional physical space.
Note that this four dimensional space is an abstract, crystallographic space,
and not the usual four-dimensional space-time.
Another class of materials exhibiting incommensurate periods are inter-

growth compounds. For instance, the compound Hg3��AsF6 contains a host
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FIGURE 1.5
In an incommensurate displacively modulated crystal the atoms deviate in a
periodic fashion from the positions of a conventional periodic crystal.(From
ref.[2]. By permission of Oxford University Press.)

system, consisting of AsF6 octahedra, which leave a series of void channels.
Along these channels there are linear chains of Hg atoms separated by a dis-
tance which is incommensurate to the lattice parameter of the host lattice.
Both the AsF6 subsystem and the mercury subsystem show up in the di¤rac-
tion spectra, and can be labelled in terms of four reciprocal lattice vectors.[2]

1.4 Order at di¤erent scales

The characteristic order exhibited in both periodic and incommensurate crys-
tals usually manifests at the atomic scale. There exist, however, other materi-
als where the basic building blocks de�ne larger scale arrangements of matter.
For the sake of illustration we shall brie�y review some basic features of three
remarkable representatives: polymers, cluster based solids, and superlattices.
In the case of polymers, for instance, the basic structural motif is a molecule
(or a series of a few di¤erent molecules in the case of copolymers) linked to
other molecules by means of covalent bonds. The basic molecular block can
be very simple, as occurs in the polyacetylene (CH)n molecule (Fig.1.6) or
it may include several chemical moieties, like the di¤erent nucleotides com-
posing DNA, which are composed of a nitrogen base (either a purine or a
pyrimidine), a sugar hexose, and a phosphate group (Fig.1.7).
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FIGURE 1.6
The polyacetylene molecule is composed of CH units linked together by means
of unsaturated, hybrid-sp2 covalent bonds leading to a planar geometry. Car-
bon (hydrogen) atoms are represented by large (small) balls.

In contrast to metals, polymers are typically insulators. However, in re-
cent years new classes of polymers have been synthesized that are capable
of carrying unusually high currents. For instance, a doped form of the poly-
acetylene molecule (as a consequence of an acidic treatment, for instance)
was reported to have an electrical conductivity comparable to that of cer-
tain semiconducting materials (� 103 
�1cm�1).[8] Subsequently, polymers
such as polyaniline, polypyrrole, and polythiophene were found to have high
electrical conductivities when chemically doped in a proper way.[9, 10, 11]

Materials assembled out of stable atomic clusters have given a new dimen-
sion to Materials Science. Thus, researchers can now use atomic clusters
to form novel solids which could have dramatically di¤erent properties than
ordinary materials composed of atoms. A celebrated instance of this type
of solids is fullerite, the third form of stable carbon (along with diamond
and graphite), which is composed of fullerene C60 molecules. These soc-
cer football-shaped molecules are composed of sixty carbon atoms covalently
linked together and exhibit local icosahedral symmetry. Nonetheless, when
fullerene molecules crystallize they adopt a face-centered cubic arrangement,
hence exhibiting conventional periodic order at a large enough scale.[12] The
main di¢ culty in forming a cluster-based solid is related to the very structure
stability of the cluster itself. Thus, the successful formation of most molecular
crystals through van der Waals interaction can be attributed to the fact that
intra-cluster interactions are much stronger than the intercluster ones, so that
clusters keep their individuality intact.[13] One can try to form cluster solids
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FIGURE 1.7
Double-stranded DNA molecule is composed of nucleotide units. Each
nucleotide consists of a nitrogen base (Adenine, Thymine, Cytosine, or
Guanine), linked to a deoxiribose sugar molecule, attached to a phosphate
group. The backbone is determined by the phosphorylated sugars� helical
chain. Complementary bases are connected by hydrogen bonds. (Courtesy of
Rudolf A. Römer.)
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FIGURE 1.8
Structural model of a B156 supericosahedron cluster.(Reprinted �gure with
permission from Perkins C L, Trenary M, and Tanaka T 1998 Phys. Rev. B
58 9980 c 1998 by the American Physical Society.)

through ionic interactions between clusters or between clusters and atoms. In
the latter case, the atomic clusters serve as "superatoms" and should have
their electron a¢ nities close to atoms.[14]
An interesting example of solid structure involving successive spatial scales

in its structure is provided by the �-boron phase, whose structure can be
conveniently described in terms of a B84 unit that consists of a central B12
icosahedron with each vertex linked by a single boron atom to the pentago-
nal faces of an outer B60 shell having exactly the same buckyball structure
as C60. In this material we �nd an incipient hierarchical scheme which is
further exploited in the case of the YB66 structure, described in terms of
the so-called supericosahedra consisting of 13 B12 icosahedra. The resulting
B156 =B12(B12)12 units are composed of a central B12 icosahedron with twelve
B12 icosahedra bonded to each of the twelve vertices of the central subunit
cluster (Fig.1.8).[15, 16] As we can see from the examples just presented, at
least two di¤erent physical scales must be considered to properly understand
the physical properties of these materials: at atomic level we have molecu-
lar structures from which a bulk solid progressively emerges at large enough
scales. To determine the threshold scale at which a transition from typically
molecular to essentially bulk solid characteristics takes place is not a sim-
ple question, and it remains as an appealing open question in most systems
considered to date.
In 1970 Leo Esaki and Raphael Tsu proposed the fabrication of an arti�cial

periodic structure consisting of alternate layers of two di¤erent semiconduct-
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FIGURE 1.9
Schematic view of a two-component semiconductor based superlattice. Each
building block is composed of AlAs/GaAs bilayers of di¤erent widths on the
nanometer scale. The unit cell of the superstructure is given by the repetition
of AB couples.

ing materials, with layer thickness of the order of nanometers (Fig.1.9).[17]
They called this synthetic structure a superlattice because periodic order ap-
pears at two di¤erent scale lengths: At the atomic level we have the usual
crystalline order determined by the periodic arrangement of atoms in each
layer (lattice structure), whereas at longer scales we have the periodic order
determined by the sequential deposition of the di¤erent layers (superlattice
structure). The arti�cial periodicity length can thus be made less than the
electron free path and the de Broglie wavelength. Thus, the one-dimensional
ordering introduced along the growth direction in the manufacturing process
gives rise to novel properties by its own, such as the formation of electronic
energy bands with signi�cantly small bandwidths, of the order of a hundred
meV, which are impossible to obtain in naturally occurring materials. The
rapid progress achieved with crystal growth technologies, like molecular beam
epitaxy or chemical vapor deposition, has made it possible to grow arti�cial
structures using di¤erent materials (metallic, semiconductor, superconduc-
tor, dielectric, ferroelectric, ceramics) and chemical composition modulations
along the growth direction. Accordingly, the physical properties of superlat-
tices are determined by the chemical nature of the constituent bulk materials
as well as the layer thicknesses, so that these structures can be currently
grown to tailor a number of physical properties as required, as we will discuss
in Chapters 4, 7, and 8.
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FIGURE 1.10
Successive stages de�ning the generation of a triadic Cantor set. A charac-
teristic property of these sets is its self-similarity, which is illustrated in the
box.

1.5 Scale invariance and fractal geometry
During the last twenty years it has been realized that a large amount of objects
and processes in Nature can be characterized by a class of geometric entities
called fractals, which were originally introduced by Benoit Mandelbrot.[18]
The concept of fractal relies on the notion of dimensionality. In particular, a
fundamental property of fractal structures is that they assume fractional di-
mension values, which distinguish them from homogeneous euclidean objects.
This basic property stems from their peculiar scaling behavior referred to as
self-similarity. By this we mean that the global structure of the system as
observed on one length scale is repeated on successively smaller (or larger)
scales. This property is illustrated in Figs.1.10 and 1.11
A Cantor set (after Georg Cantor 1845-1918) is de�ned as what is left from a

�nite segment after removing parts of it according to some iterative procedure.
For the sake of illustration, let us consider the so-called triadic Cantor set, a
geometrical structure which can be de�ned by means of the iterative process
depicted in Fig.1.10 Let us start with a closed segment of length L = 1 and
divide it in three equal intervals taking away the middle one. After repeating
the process n times we get 2n identical intervals of length L=3n. If we repeat
the process an in�nite number of times we are left with an in�nite and non-
connected set of isolated points having a null measure. This characteristic
property of Cantor-like sets can be easily seen by evaluating the total length
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of its complement, that is, the part of the original interval taken away. This
length is
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3

�n
= L; (1.10)

so that the spatial extent of the part removed equals that corresponding to
the original segment! Nevertheless, the points belonging to the Cantor set are
spread over the space, separated by empty voids. Accordingly, our intuition
prevents us to simply accept that they can be regarded as a unique point
measure. The solution of this seeming paradox requires the extension of the
very notion of spatial dimension in order to include dimensions which are
intermediate between that of a segment (unity) and that of point (zero). To
this end, the dimensionality of a Cantor set is de�ned as the number N(�) of
smallest intervals of size � needed to cover the entire set at a given stage of
the iterative process, through the relationship

D = � lim
�!0

lnN(�)

ln�
: (1.11)

By inspecting Fig.1.10 we obtain D = ln 2= ln 3 = 0:6309::: for a Cantor set,
indicating that its coarse-grained structure is compatible with some degree of
spatial extension. This value is usually referred to as the Hausdor¤ dimension
of the set (after Felix Hausdor¤ 1868-1942). We observe that D no longer
corresponds to an integer number as it is usual in dealing with Euclidean geo-
metrical �gures. This non-integer dimensionality is a typical feature of fractal
structures, geometrical entities intermediate between single points (D = 0),
line segments (D = 1), planes (D = 2), and regular solids (D = 3).
The notion of fractal dimension can be extended to higher dimension struc-

tures. An illustrative example is provided by the Koch star, which is obtained
following the iterative process sketched in Fig.1.11. One starts with an equi-
lateral triangle of side L. Successive equilateral triangles of sides L=3n are
added at the middle of the sides, growing a �gure which resembles a snow
�ake appearance. At a given iteration stage the perimeter of the Koch star is
obtained by multiplying the total number of sides by its e¤ective length,

Pn = (3� 4n)
L

3n
= P0

�
4

3

�n
; (1.12)

where P0 = 3L is the perimeter of the original triangle. Since the ratio of
the series given by Eq.(1.12) is larger than unity it grows inde�nitely as n
increases. As a result, the perimeter of the Koch curve tends to in�nity. On
the other hand, the area of the Koch star is given by

An = A0
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; (1.13)
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FIGURE 1.11
Five order Koch curve illustrating the way an ever increasing perimeter poly-
gon can be contained in a �nite portion of the plane.

where A0 =
p
3L2=4 is the area of the original equilateral triangle. The

sum inside the parenthesis is the partial sum of a geometric series with ratio
4=9 < 1, and the sum converges as n goes to in�nity, so that one obtains
A� = limn!1An = 8A0=5. In this way, we realize that the Koch star is
a polygon with an in�nite perimeter which encloses a �nite area. Finally,
making use of Eq.(1.11) we get D = ln 4= ln 3 = 1:2619:::which is greater than
the dimension of a line but less than that of a plane. The notion of Cantor set
can also be extended to higher dimensions, and the corresponding Hausdor¤
dimension is given by DN = N � ln 2= ln 3.
As we can see, the recourse to the self-similarity allows to evaluate D

in a straightforward manner. Unfortunately, fractals found in nature, such
as colloidal aggregates, lightning strikes, dendritic particles, spatial distribu-
tions of cracks in solids, or �lamentary arrangements of galaxy clusters, di¤er
from ideal, mathematical fractals, because they exhibit only statistical self-
similarity in a limited range of spatial scaling lengths. In fact, most naturally
occurring fractal structures can be regarded as an ensemble of diverse fractals
of di¤erent dimensions characterized by di¤erent weights. Such objects are
called multifractals and more elaborated computation approaches are required
in order to obtain their fractal dimensions. Making use of these techniques
the fractal dimension of Britain (D = 1:24) and Norway (D = 1:52) coast-
lines have been measured.[19] The notion of fractal dimension also applies to
diverse biological representatives like broccoli (D = 2:66), surface of human
brain (D = 2:79)[20], or alveoli of a lung (D = 2:97).[19] The question about
why Nature gives rise to fractal structure so profusely still remains. This will
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require the formulation of suitable models of fractal growth based on physical
phenomena and subsequent understanding of their mathematical structure.

1.6 Hierarchical architecture of biomolecules

Biological macromolecules are a prerequisite for all forms of life. Attending
to their structural order we can group them into two broad sets. On the
one hand, we have macromolecules consisting of a linear periodic arrange-
ment of monomers. On the other hand, we have macromolecules composed
of several kinds of monomers aperiodically ordered instead. Most of struc-
tural biomolecules, like amylose, cellulose, or collagen belong to the �rst class,
whereas nucleic acids and most proteins belong to the second one. Nucleic
acids can be further separated into biological and synthetic. In general, syn-
thetic nucleic acids are oligonucleotides where a few (5-60) base pairs are
periodically arranged. These structures are quite di¤erent from the biolog-
ical ones where thousands to millions of base pairs, including four di¤erent
nucleotides, are aperiodically distributed. In fact, it is precisely on account
of their aperiodic order that nucleic acids and proteins can carry genetic in-
formation or perform speci�c catalytic functions, respectively. The aperiodic
order present in the structure of proteins can be understood in terms of a
hierarchical scheme, as it is illustrated in Fig.1.12. In the �rst level we �nd
periodically ordered structures, like ��helix or ��sheets, interspersed with
random sections, where the protein chain exhibits enhanced �exibility. As
a result, the macromolecule adopts its biologically functional ternary struc-
ture. In some cases, several ternary units associate to build up a quaternary,
supramolecular structure. Accordingly, di¤erent kinds of order predominate
at di¤erent scales in proteins.[21]

An even richer hierarchy of ordering schemes can be found in nucleic acids.
In the short range, a sequence periodicity of 3 base pairs indicates the presence
of protein coding sequences, a feature which can be used to distinguish coding
and noncoding DNA regions.[23] Initial analyses from human genome show
that protein coding regions constitute less than 3% of the total genome. In
contrast, about 50% of the human genome consists of repetitive sequences.[24,
25] These repeats are approximate copies of patterns of nucleotides of various
lengths interspersed throughout the genome. Thus, sequence periodicities of
about 10 base pairs re�ect DNA bendability, much as the secondary structure
of proteins.[26] On the next length scale, correlations in the order of 100
base pairs can explain the nucleosomal structure in eukaryotes.[27] Finally,
compositional heterogeneities in the range 102 � 106 base pairs are related to
the presence of wide speci�c domains characterized by long-range correlations
obeying power laws.[28, 29]
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FIGURE 1.12
Crystal structure of human hemoglobin at 1.73 Å resolution.[22]

1.7 The role of correlated disorder

Up to now we have mainly considered perfectly ordered systems, which can
only describe a highly idealized situation. In actual samples di¤erent types
of structural defects usually appear ranging in size from the atomic dimen-
sion scale to bulk fractures in the macroscopic domain. Among the di¤erent
sources of disorder in real crystals we found isotopic substitution (when a
given atom is replaced by some isotope, hence locally changing some physi-
cal properties, but leaving the structure chemically invariant), substitutional
impurities (when an atom of a given valence state replaces other atom of iden-
tical valence in the original lattice, for instance B+3 !Al+3), missing atoms at
one or more lattice sites (vacancies), atoms which force their way into a hole
between lattice sites (interstitial), or extra half-planes of atoms that go part
way through the lattice (dislocations). In addition to these structural defects
any crystalline structure at �nite temperature is subjected to thermal �uc-
tuations which separate their constituent atoms from their ideal equilibrium
positions, introducing dynamical disorder e¤ects.
Disorder manifests itself in terms of several destructive e¤ects in many in-

stances. Thus, as a consequence of the breaking of the translational symmetry,
Paul W. Anderson showed that, in tight-binding models with independent
random interactions, the spatial distribution of electronic states exhibits a
�nite localization length, outside which the probability of �nding the elec-
tron is negligible.[30] Correspondingly, the charge is mainly localized around
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FIGURE 1.13
A typical quinoid defect in emeraldine polymer (A) can be exactly mapped
into a dimer-like defect in a linear chain (B) by renormalizing the carbon
atoms comprised between the two nitrogen atoms (black circles) at the end
positions n and n+ 1.

atomic positions and the electron di¤usion coe¢ cient vanishes in the consid-
ered system, which becomes an insulator. Localization by disorder was also
found in vibrations of glasslike materials around the same time.[31] These re-
sults led to the view that disorder induces the localization of all eigenstates in
one-dimensional chains, even for an in�nitesimal amount of disorder.[32] How-
ever, it was subsequently realized that disorder e¤ects can also be of creative
nature, playing a signi�cative role in the emergence of complex phenomena,
provided that some of the following ingredients (or simultaneously both) are
also present in the considered system: correlations and non-linearity.
Disorder correlations imply that the neighbor random parameters are not

independent within a certain length �the so-called correlation length. This
property naturally introduces a short-range order scale in the system, so that
the competition between the long-range disorder and this short-range corre-
lation can eventually suppress the localization e¤ect, allowing for materials
with better than expected transport properties.
Inspired by this physical scenario, D. Dunlap, along with H. L. Wu and

P. Phillips, proposed a model aimed at studying the role of disorder in one
dimensional systems where the existence of short-range correlations was ex-
plicitly considered.[33] This model, known in the literature as random dimer
model, is characterized by the presence of randomly distributed impurities
along a chain, so that they can only appear as dimers. In this way, the
correlation length coincides with the lattice spacing. They showed that for
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a certain energy the re�ection coe¢ cient of a single dimer vanished, and
that this resonance was preserved when a �nite concentration of dimers were
randomly placed in the chain. This gives rise to a set of delocalized states
whose number increases as the square root of the number of sites, hence a¤ect-
ing the transport properties of the system. In a series of subsequent works,
this model was successfully applied to describe the possible mechanism of
electronic transport in diverse conducting polymers, such as polyaniline and
polyparaphenylene.[34] Polyaniline refers to a general class of aromatic rings
of benzenoid and quinoid character connected by nitrogen atoms. In Fig.1.13
a typical quinoid building block of polyaniline molecule is shown. Such a unit
is composed of an unsaturated ring of six carbon atoms �anked by two ni-
trogen atoms. As it is illustrated in this �gure, this basic structure can be
exactly mapped into a simpler dimer-like e¤ective molecule. The resulting
system (referred to as renormalized chain) can then be properly described in
terms of the random dimer model. In this way the interest of this model was
extended from the fundamental research �eld to play an active role in the
domain of experimentally testable models.

The suitability of the random dimer model to describe other systems of
physical interest has been demonstrated in the case of superlattices as well.
To this end, three GaAs�AlGaAs based superlattices were grown by molecu-
lar beam epitaxy and their relative thicknesses tailored to obtain a periodic,
random, or random dimer arrangement of layers, respectively. The electronic
properties of the di¤erent kinds of superlattices were studied by means of
photoluminiscence and vertical resistance measurements. The obtained re-
sults clearly demonstrated that the intentional introduction of short-range
correlations in a disordered semiconductor superlattice inhibits localization
and gives rise to extended states, as theoretically predicted.[35]

1.8 Long-range correlations: The DNA case

From a fundamental viewpoint the study of the random dimer model prop-
erly illustrates that, as soon as short-range dimer correlations among basic
structural units are introduced in an otherwise random linear structure, a
signi�cant number of extended states appear, e¢ ciently contributing to the
electrical transport.[36] It is then reasonable to expect that self-similar sys-
tems, exhibiting richer correlation patterns among their basic building blocks
(as those we will introduce in Chapters 2, 3, and 5), are able to support
extended electronic states as well.[37, 38, 39, 40, 41] Generally speaking, the
presence of correlations (whose main e¤ect is to reduce the degree of disorder)
will favor the existence of resonant extended states in the energy spectrum,
hence contributing to enhance the transport properties. In fact, it was theoret-
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ically shown that chain models with certain long-range correlations among the
energy of atomic sites ("n) exhibit a phase of extended electronic states.[42]
The considered disorder distribution obeys a power-law spectral density of
the form S(k) = 1=k�; with � > 2, where S(k) is the Fourier transform of
the two-point correlation function h"i"ji ; and k is related to the wavelength
� of the undulations in the random parameter landscape by k = 1=�. At vari-
ance with the results obtained for random n-mer models (where delocalization
is observed only at particular resonance energies) this model exhibits a true
Anderson transition, with mobility edges separating localized and extended
states. The existence of mobility edges in one-dimensional potentials in the
presence of speci�c long-range correlations was further analyzed in terms of
the relation between the correlation function and the localization length.[43]
In particular an algorithm to numerically construct potentials with mobil-
ity edges was provided and such a mobility edge was indeed observed in a
waveguide with intentionally introduced correlated disorder.[44]
During the past few years, the nature of long range correlations in DNA

sequences has been the subject of intense debate.[45] Scale invariant proper-
ties in complex genomic sequences with thousands of nucleotides have been
investigated in particular with wavelet analysis, and have been argued to play
a crucial role in gene regulation and cell division. Indeed, a precise under-
standing of DNA-mediated charge migration should have a strong impact on
the description of damage recognition processes and protein binding, or in en-
gineering biological processes.[46, 47] Biological and arti�cial DNA molecules
signi�cantly di¤er in size, chemical complexity, and the kind of structural or-
der. Consequently, one can hardly expect that results obtained from the study
of the oversimpli�ed synthetic molecular systems may be directly extrapolated
to understand the physical properties of complex DNA molecules of biological
interest. In fact, both the sugar-phosphate backbone and the nucleotide bases
sequence are periodically ordered in, say, polyG-polyC chains, whereas in bi-
ological DNA the nucleotide bases are aperiodically ordered instead. From
general principles one expects the aperiodic nature of the nucleotide sequence
distribution would favor localization of charge carriers in biological nucleic
acids, reducing charge transfer rate due to backscattering e¤ects. Neverthe-
less, this scenario must be re�ned in order to take into account correlation
e¤ects among nucleotides reported in biological DNA samples, since these cor-
relations can enhance charge transport via resonant e¤ects.[48, 49, 50] Besides
its fundamental importance for the progress of biological condensed-matter
theory, several properties of biological interest may be directly related to the
presence of sequence correlations in genomic DNA, including gene regulation,
cell division, or damage recognition processes due to DNA-mediated charge
migration.[46, 47] In this sense, certain aperiodic systems may be regarded as
useful model prototypes, able to mimic relevant features related to long-range
correlation e¤ects in natural DNA samples, as we will discuss in Chapters 5
and 6.
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2
The notion of aperiodic crystal

2.1 Order without periodicity

Our current understanding of basic properties of most physical, chemical,
and biological systems relies on the very notion of order. In most cases,
however, we usually restrict ourselves to mainly consider periodic order, as
we have seen in Chapter 1. Such is the powerful attraction the notion of a
regular pattern exerts on our minds. Notwithstanding this, advances in several
research �elds have led to a progressive change of paradigm during the last
decades, as the concept of order without periodicity has emerged to properly
describe an increasing number of complex systems. In this way, the study
of phenomena exhibiting aperiodic arrangements of matter in space and/or
time has been spurred, and the basic knowledge gained from these studies
has naturally extended to applied research domains. Thus, new designs based
on the aperiodic ordering of di¤erent building blocks are paving the way for
promising technological applications as well.
From a historical perspective, the mathematics of aperiodic order has been

an active branch for a long time,[1, 2] where it was well known that some
functions had the property of being "almost periodic" (see Section 9.1). The
mathematical bases for the study of aperiodic functions were laid in 1933 by
Harald Bohr (1887-1951). In particular, quasiperiodic functions, a subset of
the broader family of almost periodic functions, will play a major role in the
contents described in this book. Conversely, such a notion was scarcely con-
sidered in other scienti�c domains. In fact, as we have reviewed in Chapter
1, the study of the structure of matter has been traditionally based upon the
notion of a regular arrangement of atoms in space, which can be generated
by periodic translations of a basic motif or building block. Thus, the recourse
to the translational and rotational symmetries, stemming from the periodic
order present in the underlying substrate, has allowed for a proper under-
standing of most relevant properties of crystals. The notion of a periodic
arrangement of atoms in space also introduces a quite natural classi�cation
scheme of matter into two broad categories: crystalline matter and amor-
phous matter. The dichotomy implied by this classi�cation scheme led to the
progressive consideration of crystalline matter as a paradigm of order in solid
state physics.

29
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This view naturally pervaded life sciences as well. During the 1930s, DNA
was considered to be merely a tetranucleotide of the form, namely, GACT,
composed of one unit each of deoxy-adenylic, -guanilyc, -thymidylic, and cy-
tidilic acids (the particular order of appearance of each of these bases being
considered as irrelevant). Even when it was subsequently realized, in the
early 1940s, that the molecular weight of DNA is actually much higher, it
was still widely believed that the tetranucleotide unit was the basic repeating
building block of the large DNA polymer, in which the four di¤erent kinds
of nucleotides recur in periodic sequence, i.e., (GACT)n.[3] Thus, DNA was
originally viewed as a trivially periodic macromolecule, unable to store the
amount of information required for the governance of cell function.
The conceptual di¢ culty of assigning a genetic role to a periodically arranged

DNA did not escape the �rst researchers in the �eld, who stated that "nu-
cleic acids must be regarded as possessing biological speci�city, the chemical
basis of which is as yet undetermined."[4] The mystery of the nature of the
genetic material attracted some physicists to genetics. In 1935 Max Delbrück
(1906-1981) published a speculative paper in which he pointed out that one of
the most striking aspects of the gene is its long-term stability.[5] To account
for that stability, he proposed that the gene is a molecule whose constituent
atoms are �xed in their mean positions and its electronic properties are de-
termined by the electronic states according to the basic concepts put forward
by the (then) recently introduced quantum mechanics. According to such a
theory, whenever the DNA molecule is excited by acquiring an energy amount
greater than the activation energy required to change its particular state, a
discontinuous change would occur, corresponding to a mutation.
Ten years later, Erwin Schrödinger (1887-1961) extended this seminal idea

in order to account for the notion of the gene as an information carrier. To
this end, he suggested that its information is stable because the chromosome
in which it is embedded consists of a long sequence of a few repeating elements
exhibiting a well de�ned order without the recourse of periodic repetition, and
illustrated the vast combinatorial possibilities of such a crystal. In this way,
the notion of a one-dimensional aperiodic crystal was introduced,[6] and we
can consider Schrödinger was the �rst person to put forward the notion of
a linear genetic code.[3] Subsequent, more re�ned, chemical analysis of DNA
samples from diverse biological sources by Erwin Charga¤ (1905-2002) showed
that the tetranucleotide hypothesis was indeed �awed, since the relative con-
tents of the four nucleotide bases adenine (A), guanine (G), cytosine (C),
and thymine (T) vary over a wide range.[7] Hence, Schrödinger�s proposal of
considering DNA as a one-dimensional aperiodic chain, with four di¤erent nu-
cleotides arranged in a way able to store the required genetic information, was
progressively incorporated into dominant biological thinking. Nevertheless,
the very notion of a full-�edged three-dimensional aperiodic crystal remained
dormant for almost four decades until the discovery of a new type of solids,
which defy standard crystallographic classi�cation, awoke the condensed mat-
ter community.
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FIGURE 2.1
(a) Successive atomic shells of the six-cell Bergman cluster. (b) Body-centered
packing of the Bergman clusters, sharing a hexagonal face of the fourth shell
produce the structure of the (Al,Zn)49Mn32 Bergman phase. ([8] Courtesy of
Janez Dolin�ek.)

2.2 Bringing in icosahedral thought

2.2.1 A hierarchy of platonic shells

The very possibility of explaining orderings in nature by means of a hierarchi-
cal geometrical construction based on the systematic use of Platonic solids can
be probably traced back to Johannes Kepler (1571-1630) who tried to explain
the relative size of orbits of the six planets known at the time by successively
inscribing an octahedron, icosahedron, dodecahedron, tetrahedron, and hexa-
hedron of proper sizes in a series of concentric spheres. This cosmological
model was published in his book Mysterium Cosmographicum (1597). Since
then, the basic idea � introducing geometrical constraints in the orderings
of matter �has reappeared in several scienti�c domains. In particular, the
possible existence of materials containing units of icosahedral symmetry has
received some attention in a variety of di¤erent contexts.
Chemists became interested in icosahedra because several clusters of atoms

have been found to be closely related to the icosahedron point group sym-
metry, the celebrated case of fullerene being a paramount example of this.
Another instance is provided by icosahedral arrangements of 13 atoms, which
are common in gas phase metal clusters or the structures of many boron-rich
solids containing icosahedral arrangements of boron atoms,[9, 10] sometimes
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hierarchically structured in terms of an icosahedron of icosahedra building
blocks (see Fig.1.8 in Section 1.2).
On the other hand, in solid state physics, the interest on the possible role of

icosahedral structural units in some condensed phases can be traced back at
least to the 1950s when the icosahedral thought came up in several contexts.
There are many known structures of intermetallic compounds that involve
icosahedral coordination. These structures are usually complex, with 20, 52,
58, 162, 184, or even more atoms in the unit cell. Relatively simple cubic
crystals based on icosahedral building blocks are provided by MoAl12, WAl12;
or MnAl12 alloys. In their structures, at each lattice point of a body-centered
cubic lattice, there is a regular icosahedron of twelve aluminum atoms about
the smaller transition metal atom which occupies the central position.[11]
Linus Pauling (1901-1994) and co-workers successfully described a complex
phase corresponding to (Al,Zn)49Mn32 alloy containing 162 atoms in its unit
cell (Fig.2.1).[12] The structure is based on a body-centered lattice. At each
lattice point there is a small atom (Zn, Al) which is surrounded by an icosa-
hedron of twelve atoms. This group is then surrounded by 20 atoms, at the
corners of a pentagonal dodecahedron, each atom lying directly out from the
center of one of the centers of the pentagonal faces of the icosahedron. Twelve
more atoms lie out from the centers of the pentagonal faces of the dodecahe-
dron. At this stage, the resulting cluster is composed of 45 atoms, the outer
32 of which lie at the corners of a rhombic triacontahedron, a polyhedron with
30 rhombic faces which can be obtained as the union of an icosahedron and
a dodecahedron. The next shell consists of 60 atoms, each directly above the
center of a triangle that forms one-half of each of the 30 rhombic faces of the
underlying triacontahedron (Fig.2.2). These 60 atoms then lie at the corners
of a truncated icosahedron, which has 20 hexagonal faces and 12 pentagonal
faces. Finally, twelve additional atoms are located out from the center of 12 of
the 20 hexagonal faces completing the impressive series of closed shell atomic
clusters based on icosahedral symmetry.
Following a di¤erent line of thought John D. Bernal (1901-1971) considered

the icosahedral coordination as a key to understand the structure of liquid
water, precisely on the basis that objects of icosahedral symmetry cannot �ll
three dimensional space, which naturally prevents periodic crystallization. In
fact, J. D. Bernal was extremely keen on hierarchy as a principle of building
things and generalizing crystallography,[14] and this guiding principle inspired
Alan L. Mackay to construct an atomic cluster based on an arrangement of
three successive icosahedral symmetry shells (Fig.2.3): an inner icosahedron,
a double-sized icosahedron, and an icosidodecahedron. The atomic cluster
introduced by Mackay has played a relevant role in the �eld of quasicrystal
research. In fact, the �rst thermodynamically stable quasicrystal found ex-
hibits a triacontahedral growth habit (see Fig.2.10 in Section 2.3.4) and a
slightly modi�ed version of the Mackay icosahedron plays a fundamental role
in some structural models proposed for icosahedral quasicrystals (see Section
3.2.6).
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FIGURE 2.2
The short diagonals of the faces of the rhombic triacontahedron give the edges
of a dodecahedron (top row), while the long diagonals give the edges of an
icosahedron.

FIGURE 2.3
A Mackay cluster contains 54 atoms arranged within three successive shells:
12 atoms at the vertices of an inner icosahedron (in black), 12 atoms at the
vertices of a larger icosahedron (in dark gray), and 30 atoms on the two-fold
axes of an outer icosidodecahedron (in gray). The diameter of this atomic
cluster is about 0.96 nm. (From ref.[13]. By permission of Oxford University
Press.)
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FIGURE 2.4
Finite tiling containing pentagons and rhombi.

2.2.2 Fivefold tilings in plane and space

In Section 1.2 we considered the possible tilings of the Euclidean plane by
di¤erent sorts of regular polygons and saw that pentagons are not allowed.
Notwithstanding this, one can successfully construct certain particular, �nite
tiles exhibiting global �vefold symmetry which are able to cover the plane
without gaps. A relatively simple design, composed of double pentagons and
rhombi (Fig.2.4), was obtained by the German painter Albrecht Dürer (1471-
1528). A more elaborated example of this sort (Fig.2.5) was published by
Johannes Kepler in his book Harmonices Mundi (1519), and it is formed
by pentagons, �vefold stars, and especially by decagons and double tiles of
combined decagons (duo decagoni inter se commissi) which were termed by
Kepler monstrum, probably referring to their unusual big size. As we will see
in Section 2.4.2, all these �gures are related to the Golden mean.
Although Kepler was aware that the pattern could be continued, the exten-

sion of Kepler�s patch to an in�nite tiling has no unique solution.[16] Thus,
the key to obtain �vefold symmetric patterns was to relax the periodicity con-
dition in order to obtain collections of polygons capable of covering a plane
with neither gaps nor overlaps in such a way that the resulting overall pat-
tern lacks any translational symmetry, that is, to construct two-dimensional
aperiodic tilings.
The existence of aperiodic sets of shapes capable of tiling an in�nite plane

only in an aperiodic fashion was proved in the 1960s, involving the presence
of a huge number of di¤erent geometrical tiles.[17, 18] These early results
spurred an intense research activity among mathematicians which ultimately
led to the discovery of the simpler aperiodic set by Roger Penrose in 1974[19],
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FIGURE 2.5
Kepler�s Aa tiling: a �nite patch containing di¤erent decagonal and pentagonal
tiles. (Adapted from ref.[15, 16].)

which consists of just two di¤erent tiles: a �at and a thick rhombus, as it is
illustrated in Fig.2.6.
In 1991 Sergei E. Burkov realized that a quasiperiodic tiling of the plane

can be obtained by using just a single decagonal tile if the tiles are allowed to
overlap, hence relaxing a basic property of previously considered tilings.[20]
Five years later, Petra Gummelt proved rigorously that the Penrose tiling can
be obtained by using a single "decorated" decagon combined with a speci�c
overlapping rule.[21] Although the recourse to overlapping may seem some-
what tricky from a purist mathematical viewpoint, it turns out that it makes
physical sense if one considers the presence of atomic clusters sharing a num-
ber of common atoms in actual quasicrystals models (see Section 3.2).
Instead of using plane tiles to cover a plane one may think of using three-

dimensional bricks to �ll up the space, hence extending Penrose�s approach
to higher dimensions. This enterprise was undertaken by the mathematician
Robert Ammann (1946-1994), who in 1976 discovered a pair of squashed and
stretched blocks, referred to as Ammann rhombohedra (Fig.2.7), that can
�ll up the space with no gaps.[22] The pattern that emerges when properly
ensembling these building blocks is nonperiodic in nature and exhibits the op-
eration symmetries of the icosahedral group, a forbidden symmetry in classical
crystallography. In this way, we are led to another instance of a geometrical
construction which allows for the emergence of a forbidden order by simply
abandoning the periodicity paradigm.
At the early 1980s, Dov Levine was starting his Ph.D. under the supervi-

sion of Paul Joseph Steinhardt with a project concerning whether metallic
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FIGURE 2.6
Penrose tiling illustrating the local isomorphism characteristic of Conway�s
theorem. The entire tile is composed of two basic tiles.

glasses have any inherent symmetry. He was (no wonder) fascinated by Pen-
rose tilings and their possible generalization to higher dimensions. Following
the Ammann steps they realized that the most relevant feature of Penrose
construction was not the fact it is aperiodic, but that it possessed a kind of
translation order, and it is capable of producing sharp di¤raction peaks.[14]
To understand this key property the intuitive concepts of order and symmetry
need to be suitably extended beyond some of the traditional views related to
the concept of periodicity. Thus, the notion of repetitiveness, typical of pe-
riodic arrangements, should be replaced by that of local isomorphism, which
expresses the occurrence of any bounded region of the whole tiling in�nitely
often across the tiling, irrespective of its size. In the particular case of Penrose
tilings, John Horton Conway obtained a theorem which states that given any
local pattern having a certain diameter, an identical pattern can be found
within a distance of two diameters.[23] This interesting result is illustrated in
Fig.2.6. In this way, a purely mathematical search looking for higher dimen-
sional analogous to the Penrose lattice paved the way to the very notion of
quasiperiodic crystals.
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FIGURE 2.7
The Ammann rhombohedra.

2.3 Beautiful forbidden symmetries
"as I was studying rapidly solidi�ed aluminum alloy which

contained 25% manganese by transmission electron microscopy,
something very strange and unexpected happened. There were 10
bright spots in the selected area di¤raction pattern, equally spaced
from the center and from one another. I counted them and repeat
the count in the other direction and said myself: �There is no such
animal.� In Hebrew: �Ein Chaya Kazo.� I then walked out to the
corridor to share it with somebody, but there was nobody there..."
(Dan Shechtman commenting on his April 8, 1982 �nding [14])

2.3.1 Ein chaya kazo

As it was mentioned in Section 1.2, modern crystallography started in 1912
with the introduction of x-ray crystallography. Since then, all the crystals
studied were periodically ordered, and thus a paradigm evolved that all crys-
tals must be periodic. Consequently, crystallography textbooks properly
stated that the allowed rotational symmetries are twofold, threefold, four-
fold, and sixfold. The 14 Bravais lattices, along with the 230 space groups,
provided the basic tool for crystal classi�cation and the International Tables
of Crystallography was the ultimate classi�cation catalog for crystals. Ac-
cordingly, for many decades, it had been believed that �ve-fold rotational
symmetry could not exist in stable condensed phases.
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FIGURE 2.8
Electron di¤raction pattern corresponding to an AlCuFe icosahedral qua-
sicrystal. A 5/10 fold symmetry axis around the origin can be clearly ap-
preciated. A Pythagorean pentagram is shown on the upper right corner.
(Courtesy of José Reyes-Gasga).

Mineralogists have discovered materials containing icosahedral units, either
isolated or linked, but these materials exhibited global symmetries proper of
periodic order. Thus, the pentagon symmetry, which is widely found in the
world of the living, was excluded from the mineral kingdom, until the exis-
tence of long-range quinary symmetry was �rst reported by Dan Shechtman,
Ilan Blech, Denis Gratias, and John W. Cahn in a paper entitled "Metallic
phase with long-range orientational order and no translational symmetry,"
published in Physical Review Letters on 12 November 1984.[24] In this paper
the existence of a metallic solid which di¤racts electrons like a single crystal
does but has icosahedral point group symmetry, which is inconsistent with
periodic lattice translations, was �rst reported. This unexpected symmetry is
illustrated in the electron di¤raction pattern shown in Fig.2.8, where a con-
spicuous 5/10-fold symmetry axis is clearly visible. When the specimen is
tilted and viewed from other directions, patterns of two and threefold symme-
try can be observed. The complete account of symmetry rotation axes yields
15 twofold axes, 10 threefold axes, and 6 �vefold axes, amounting to the 120
symmetry elements characteristic of the icosahedral group.

The remarkable sharpness of the di¤raction spots indicates a high coherency
in the spatial interference, comparable to the one usually encountered in or-
dinary crystals. Thus, these alloys exhibit well-de�ned Bragg peaks, char-
acteristic of long-range order in their di¤raction patterns, but one which is
explicitly incompatible with periodic translational one, since the crystallo-
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graphic restriction theorem (see Section 1.1) indicates that �vefold axes are
inconsistent with translational order.

2.3.2 The twinning a¤air

"I have found it hard to believe that any single crystal with 5-fold
axes could give reasonably sharp di¤raction patterns, resembling
those given by crystals" [25] Linus Pauling (Nobel Prize in Chem-
istry 1954, Nobel Peace Prize 1963)

Faced with an apparent paradox, the very nature of these materials was
early disputed by prominent scientists. A representative example of the con-
servative position is clearly illustrated by the above quotation. This atti-
tude, somewhat surprising coming from one of the scientists who did more
to bring in the icosahedron symmetry into crystallography, can be under-
stood on the basis that the only existing data were in reciprocal space, which
lacked a simple real-space structural interpretation, and led him to interpret
the icosahedral symmetry exhibited by the di¤raction patterns as due to di-
rected multiple twinning of ordinary cubic crystals with large edges (within
the range 23-28 Å). The resulting structures were very complex, each basic
structural unit containing about one thousand atoms and requiring these units
to be precisely arranged to produce an aggregate with approximate icosahe-
dral symmetry.[25]
Certainly, Shechtman was completely aware of such a possibility and he

took care of disregarding it from the very beginning.[14, 24] To this end,
he generated a series of dark-�eld images. In these experiments one takes an
image from a di¤racted point such that all the information that passes through
the plate is contained in this beam only. The obtained images were almost
identical, which means that the same part of the crystal produced all the
di¤racted beams. A complementary experiment in the electron microscope is
the convergent-beam experiment, in which a di¤raction pattern can be taken
by focusing the beam onto a very �ne spot. In this case one gets again a
ten-fold di¤raction pattern, and this means that if they were twins, they had
to be smaller than the diameter of the convergent beam spots (about 40 nm).
These observations strongly suggested that the sample was not twinned at all.
In fact, as more data on better quasicrystalline specimens were progressively
accumulated the reliability of the twinning hypothesis was fading down in
favor of the advocates of a new paradigm based on a substantial revision
of classical crystallography, a revision which appeared necessary in order to
incorporate the very possibility of ordered aperiodic structures in condensed
matter physics.
By 1982 Alan L. Mackay had published a simulated di¤raction electron

pattern which turned out to exhibit a certain resemblance to Shechtman�s
experimental observation. He had also obtained an optical Fourier trans-
form of a Penrose tiling keeping an even closer similarity with Shechtman�s
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di¤raction.[26] However, at that time he was mainly interested in the study
of hierarchic patterns, rather than in aperiodicity as such, and the interest-
ing possibility of extended structures exhibiting �vefold symmetry in con-
densed matter remained mainly unnoticed by the physicist community.[14]
Fortunately, Dov Levine and Paul Joseph Steinhardt were actively working
on 3D generalizations of the Penrose tiling at the time and, spurred by the
Shechtman�s report, the notion of a new class of ordered solids was promptly
introduced by them in a paper entitled "Quasicrystals: a new class of ordered
structures."[27] Published in Physical Review Letters on 24 December 1984,
the notion of a quasiperiodic crystal was introduced as the natural extension
of the concept of crystal to structures where the periodic spatial order is re-
placed by a kind of translational order described in terms of quasiperiodic
functions instead (see Section 9.1). For this reason these alloys were referred
to as quasicrystals (QCs), a shorthand for quasiperiodic crystal. In retrospec-
tive, this semantics may appear somewhat misleading since the pre�x "quasi"
suggests an intermediate position between crystalline and amorphous matter
rather than a well de�ned kind of ordered spatial arrangement. By the light
of subsequent developments in crystallography a better term would probably
be hypercrystals [28, 29].

2.3.3 The sequel

Shortly after the publication of the two seminal papers by D. Shechtman
and co-workers, and by D. Levine and P. J. Steinhardt, a number of works
reporting the existence of new QCs characterized by the presence of di¤erent
types of non-crystallographic symmetry axes appeared in rapid succession.
Thus, a new ordered state of matter exhibiting a twelvefold symmetry axis
(dodecagonal) was found in small particles of a Ni-Cr alloy.[30] Quasicrystals
with an eightfold rotational axis were reported in rapidly solidi�ed (V,Cr)-Ni-
Si alloys, and were referred to as representatives of the octagonal phase.[31] A
phase in rapidly solidi�ed Al-Mn alloys with higher manganese content (18-
22 at.%) than those originally studied by Shechtman (10-20 at.%), which had
been initially labeled as the T-phase, was subsequently realized to be another
example of quasicrystal: the so-called decagonal phase.[32, 33] In this regard,
it is interesting to note that, in 1978, it was reported the observation of a
di¤raction pattern with a pseudo-pentagonal symmetry in an investigation by
transmission electron microscopy (the same technique used by Shechtman) of
rapidly solidi�ed AlPd alloys. Unfortunately, not enough attention was paid to
this system, which was later recognized to belong to the decagonal phase. QCs
belonging to this phase are characterized by the presence of a tenfold rotation
axis along a decaprism axis (Fig.2.9). Cross sections of the decaprism show
ten faceted planes containing aperiodically arranged clusters of atoms. These
quasiperiodic planes, in turn, are periodically stacked along the prism axis,
so that both kinds of order, periodic and quasiperiodic, coexist in the same
sample. This interesting �nding suggested that other kinds of mixed order
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FIGURE 2.9
Scanning electron images showing the growth morphology of two represen-
tative quasicrystalline alloys. (right) A regular dodecahedral habit corre-
sponding to the AlCuFe icosahedral phase. (left) A decagonal prism habit
corresponding to the AlNiCo decagonal phase. (Courtesy of An Pang Tsai).

structures may exist. In fact, a one-dimensional QC derived from decagonal
phase representatives was found in rapidly solidi�ed AlNiSi, AlCuMn, and
AlCuCo alloys. In addition to the periodic translation along the tenfold axis,
the translation along one of the twofold axes normal to the tenfold one also
becomes periodic in these materials.[34]
As it can be seen, all the di¤erent classes of QCs described in this account

were obtained by means of far from equilibrium techniques and exhibited
small sizes. In fact, they were not stable and returned to a usual crystalline
state after heating at moderate temperatures. Also, the di¤raction lines were
rather broad, resembling those observed with highly faulted crystals. Thus,
during the early years of the �eld, there were some speculations that these new
solids, exhibiting symmetries forbidden for ordinary crystals, were located at a
somewhat intermediate position between crystals and amorphous materials so
that they might be inherently unstable. Those expectations proved, however,
to be wrong.

2.3.4 A new phase of matter

Using a Debye-Sherrer method of power di¤raction, Hardy and Silcock iden-
ti�ed in 1955 the intermetallic compounds in equilibrium with the aluminum
solid solution in the AlLiCu system. At 500o C they found several com-
pounds corresponding to hexagonal and cubic structures, in addition to a
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FIGURE 2.10
Comparison between the x-ray di¤raction patterns corresponding to di¤erent
families of thermodynamically stable quasicrystals. The scanning electron mi-
crographs corresponding to the triacontahedral (dodecahedral) growth mor-
phologies of AlCuLi (AlCuRu), respectively, are shown for the sake of illus-
tration.

phase called T2, with composition close to Al6CuLi3, which exhibited Bragg
peaks escaping any crystalline indexation.[35, 36] Notwithstanding this, the
oddity remained dormant for more than three decades, until B. Dubost and
co-workers proved that this phase actually belongs to the icosahedral family.
In fact, their report announced the discovery of �rst thermodynamically sta-
ble quasicrystals, so that large grains could be grown to millimeter size by
conventional solidi�cation techniques in close to equilibrium conditions.[37]
In this way, large quasicrystalline grains, exhibiting the growth morphology
of a triacontahedron (Fig.2.10), were demonstrated in Al56Cu11Li33 alloys by
several groups. Shortly after, a second stable quasiperiodic crystal exhibiting
a dodecahedral solidi�cation morphology was reported in the Ga20Mg37Zn43
system.[38]

The structural quality of a sample can be estimated from the so-called
correlation length. This magnitude can be obtained from di¤raction spectra
through the relation 2�=FWHM, where FWHM is the full width at half maxi-
mum of the di¤raction peak. By inspecting Fig.2.10 we see that Ga20Mg37Zn43
icosahedral phases do not show a very good structural quality, showing cor-
relation lengths smaller than 50 nm. Following the identi�cation of these
phases, however, a series of thermodynamically stable quasicrystalline alloys
of high structural quality in the icosahedral AlCu(Fe,Ru,Os), AlPd(Mn,Re)
and Cd(Yb,Ca) systems,[39, 40, 41] and decagonal AlCo(Cu,Ni) system[42, 43]
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were discovered by A. P. Tsai and co-workers. Titanium based icosahedral
quasicrystals in the TiZrNi alloy were also reported by K. F. Kelton and
co-workers.[44] Currently, more than a dozen di¤erent quasicrystalline com-
pounds have been reported to be thermodynamically stable up to their re-
spective melting points and to exhibit Bragg peaks of extraordinary quality,
comparable to those observed for the best monocrystalline samples ever grown.
For the sake of illustration more representative compounds belonging to the
icosahedral phase are listed in Table 2.1.

TABLE 2.1
Main representatives of high structural quality,
thermodynamically stable QCs.

Al - based Zn - based Ti - based Cd - based
Al70Pd20Mn10 Zn80Sc15Mg5 Ti45Zr38Ni17 Cd85Yb15
Al63Cu25Fe12 Zn60Mg30RE10 Ti40Hf40Ni20 (Ag,In)85Ca15
Al56Li33Cu11 Zn43Mg37Ga20

The discovery of this set of large, high quality samples has opened promis-
ing avenues in the study of physical properties of quasicrystals, allowing for
detailed experimental studies of their related transport properties, which we
will discuss in great detail in Section 3.1.2.

2.4 Unveiling Pythagorean dreams

"He himself could hear the harmony of the Universe, and un-
derstood the music of the spheres, and the stars which move in
concert with them, and which we cannot hear because of the lim-
itations of our weak nature" (Porphyry ca. 232-304 A. D. in his
Life of Pythagoras ca. 570- B. C.)

2.4.1 The Pythagorean pentagram

If you connect all the vertices of a regular pentagon by diagonals you ob-
tain the so-called Pythagorean pentagram (Fig.2.11), named after the sym-
bolic use the members of this school gave to this �gure. At their intersecting
points the diagonals form a smaller pentagon at the center, and the diagonals
of this pentagon form a new pentagram enclosing a yet smaller pentagon.
This progression can be continued ad in�nitum, creating smaller and smaller
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FIGURE 2.11
Sketch showing the �rst step in the construction of a nested series of
Pythagorean pentagrams. The di¤erent sizes of the circles at the vertices
and crossing points re�ect the di¤erent intensities of the corresponding Bragg
peaks in actual di¤raction spectra (see Fig.2.8).

pentagons and pentagrams in an endless succession exhibiting a self-similar
nesting characteristic of the fractal structures discussed in Section 1.4.
Surprisingly enough this geometrical construction can be easily recognized

in the electron di¤raction pattern shown in Fig.2.8. In fact, the di¤raction
pattern of icosahedral QCs is characterized by a series of pentagonal arrange-
ments of Bragg peaks. In the ideal case these peaks will densely �ll reciprocal
space, though most of them are extremely weak in real samples, making it pos-
sible to distinguish individual spots. In turn, the self-similar property leads
to the appearance of a hierarchy of intensities extending several orders in the
di¤raction pattern, which is illustrated by the nested pentagons highlighted
on the upper right corner of Fig.2.8. In this way, we �nd a nice example of
the Pythagorean pentagram engraved in the inner structure of a new phase of
condensed matter. The contemplation of this di¤raction pattern then provides
an impressive example of novel geometrical patterns in reciprocal space, ulti-
mately emerging from interference processes interweaving matter and waves
at the atomic scale.
Certainly, the presence of a potentially in�nite series of nested sets of Bragg

spots endows QCs di¤raction patterns with a peculiar beauty, unveiling the
aesthetic �ngerprint of the characteristic quasiperiodic order underlying their
atomic arrangement. But it also precludes direct application of some basic
tools of classical crystallography. In fact, the di¤raction pattern of an ordinary
crystal essentially reduces to one of the Bravais lattices so that in order to
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index such patterns one simply must obtain a set of three primitive basis
vectors that generate the lattice. In that case, a physical length scale is easily
deduced from the minimum separation of Bragg peaks in the three directions.
Conversely, since the pattern of peaks is in principle dense for QCs, it is not
even clear what sets the physical scale in this case, and such a procedure no
longer applies to QCs.

2.4.2 The Golden mean

The di¤raction pattern shown in Fig.2.8 illustrates several main features re-
lated to the characteristic in�ation symmetry and self-similarity properties of
quasicrystals. Let us start by measuring the ratios between successive di¤rac-
tion spots along the radial directions measured from the centre. The obtained
values are listed in the �rst column of Table 2.2 and they clearly follow a
non-periodic series. Nevertheless, underlying these apparently unconnected
number series we can appreciate a clear correspondence with successive pow-
ers of a certain number: the so-called Golden mean � (from the Greek �o��,
which means "section"), as it is seen in the second and third columns.

TABLE 2.2
The main spots in the
di¤raction pattern of
icosahedral QCs can be
arranged according to a
power series related to
the golden mean.

dn=d1 �m m
d1 1.00 1.00 0
d2 1.42 1.62 1
d3 2.63 2.62 2
d4 4.25 4.24 3
d5 6.87 6.85 4

The Golden mean has been largely known from the ancient times, since it
is of frequent occurrence in the various pentagonal polygons and polyhedra
and many geometrical �gures can be constructed making explicit use of the
Golden mean. Thus, for instance, a dodecahedron with an edge length of
one has a total surface area of 15�=

p
3� � ; and a volume of 5�3=(6 � 2�).

Similarly, an icosahedron with a unit length edge has a volume of 5�5=6. In
plane geometry the radius of the circle that circumscribes a decagon with a
side length of a unit is equal to � : In a similar way a triangle with a ratio of side
to base of � is known as a Golden triangle, whereas those later triangles with
a ratio of side to base of ��1 are sometimes called Golden gnomons. A unique
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property of both types of triangles is that they can be inde�nitely dissected
into smaller triangles that are also Golden triangles and Golden gnomons.
Such a property underlies the construction of the Penrose tiling shown in
Fig.2.6. The so-called Golden rectangle is a rectangle in which the ratio of
length to width is given by � . When you snip o¤ squares from a Golden
rectangle a series of nested Golden rectangles is obtained. If one connects
the successive points where these squares divide the sides in Golden ratios,
you obtain a logarithmic spiral that coils inward. Due to these plethora of
interesting properties the Golden mean has been profusely implemented in
arts such as painting, sculpture, and architecture.[45]
This number can be de�ned in several ways. For example, a segment is said

to be divided in the Golden mean if the ratio of the whole segment to the
larger part is equal to the ratio of the larger to the smaller part. If we take
the smaller segment as unit and label the larger part as the unknown x, this
geometrical de�nition can be expressed as

x

1
=
x+ 1

x
; (2.1)

which leads to the algebraic equation x2 = x + 1, whose positive solution
is given by the irrational number x+ = � = (

p
5 + 1)=2 = 1:6180339887:::.

The other solution of the quadratic algebraic equation is negative, and can
be expressed as x� = ���1. Accordingly, we get the following expressions
relating the Golden mean, its square, and its reciprocal

�2 = � + 1; ��1 = � � 1: (2.2)

To our purposes, the Golden mean can be also obtained from the Pythagorean
pentagram shown in Fig.2.8, where � now appears as the ratio between the
diagonal and the side of the original pentagon. One can readily check that
the size of the original pentagon is related to the size of the smaller one by the
scale factor �2. Since this process can be recursively applied to de�ne smaller
pentagons inside the previous ones, we realize that the entire di¤raction pat-
terns is hierarchically arranged according to a principle of scale invariance
symmetry. In fact, the so-called in�ation symmetry is a characteristic feature
of the quasilattice of Bragg re�ections from a quasicrystal. Once a vector
basis for its indexation have been chosen, an alternative basis of di¤raction
vectors can be found with vectors parallel to the original ones and an irra-
tional number as scale factor. Let us consider, for instance, the basic relation
�2 = � + 1: By successively multiplying it by � we get

�3 = �2 + � = 2� + 1;

�4 = 2�2 + � = 3� + 2;

�5 = 3�2 + 2� = 5� + 3;

:::

�n = �Fn + Fn�1; (2.3)
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where we have introduced the so-called Fibonacci numbers, which are de�ned
by the sequence Fn = f1; 1; 2; 3; 5; 8; 13; 21; :::g, where each number in the
sequence is just the sum of the preceding two. Accordingly, any power of �
can be expressed as a linear combination of two successive Fibonacci num-
bers. Making use of Eq.(2.3) along with Table 2.2 one can properly order the
di¤erent di¤raction peaks along the radial directions of the di¤raction pat-
tern shown in Fig.2.8 in terms of appropriate linear combinations of Fibonacci
numbers with the Golden mean. Thus, the translation symmetry characteris-
tic of classical crystals is replaced by an in�ation/de�ation symmetry in the
case of quasiperiodic crystals. Their characteristic scale factor is given by the
Golden mean, which sets in this way a new physical scale in the arrangements
of matter.

2.4.3 The Fibonacci world

Fibonacci numbers are ubiquitous, unexpectedly emerging in di¤erent places.
In chemistry, for example, one �nds Fibonacci numbers when counting the
number of Kekulé structures, k; in zigzag fused linear chains of benzoic rings.
Thus, we have k = 5 for phenanthrene, k = 8 for chrysene, k = 13 for pirene,
k = 21 for fulminene, and so on.[46] Most of these polycyclic aromatic hy-
drocarbons are widespread through diverse astrophysical environments like
dense molecular clouds, planetary nebulae, evolved stars, protoplanetary neb-
ulae, meteorites, comets, or interplanetary dust particles, so that we can �nd
the blueprints of Fibonacci numbers in the electronic structure of these com-
pounds everywhere in the universe.[47] In biology, the widespread appearance
of ordering patterns based on the Fibonacci sequence is well established in
many botanical arrangements.[48] Curiously, the basic methods of study in
phyllotaxis ("leaf arrangement" in Greek), like the representation of leaf dis-
tribution as a point-lattice on a cylinder, were introduced in 1837 by Auguste
Bravais (1811-1863), one of the founders of classical crystallography.[49]

In Western civilization Fibonacci numbers were introduced, along with the
modern notation for the so-called Arabic (truly Hindu) numerals, by Leonardo
Pisano (ca. 1170-1240) in his celebrated book Liber Abacci (1201),[1] although
the sequence Fn = f1; 1; 2; 3; 5; 8; 13; 21; :::g was not referred to as the Fi-
bonacci series up to nineteenth century (1877) by the French mathematician
Edouard Lucas (1842-1891).[50] The terms in this sequence are obtained from
the recursive equation Fn = Fn�1 + Fn�2; starting with F1 = 1 and F2 = 2:
Thus, the sequence is perfectly ordered, but the rule used to generate it has
nothing to do with periodicity. On the contrary, it is closely related to certain
in�ation properties connecting these numbers with the Golden mean. The
close relationship between Fibonacci numbers and the Golden mean is nicely
illustrated by the so-called Binet formula (after the French mathematician
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Jacques Phillipe Marie Binet, 1786-1856)

Fn =
1p
5

�
�n � (�1)n��n

�
; (2.4)

which allows one to �nd the value of a Fibonacci number if its place in the se-
quence is known, hence avoiding the cumbersome procedure of recursively cal-
culating all the precedent numbers in the sequence. This is a quite remarkable
formula, since it indicates that a countable in�nite set of integer numbers (the
Fibonacci ones) can be exactly obtained by simply adding suitable integers
powers of irrational numbers (the Golden mean and its reciprocal). Another
mathematical relationship between the Fibonacci series and the Golden mean
is given by the asymptotic limit

lim
n!1

Fn
Fn�1

= � ; (2.5)

which succinctly accounts for the property (discovered in 1611 by Johannes
Kepler) that the ratio of two successive larger and larger Fibonacci numbers
comes closer and closer to the Golden mean. However, the process of con-
vergence is very slow, since the Golden mean is the "most irrational" among
the irrational numbers. This property can be grasped by considering the
continued fraction given by the expression

� = 1 +
1

1 + 1
1+ 1

1+ 1
1+:::

; (2.6)

which is entirely composed of ones, so that it very slowly converges towards its
limiting value. In order to determine this value we can proceed the direct way,
by a series of successive approximations, interrupting the continued fraction
farther and farther down. In so doing, we get the approximant series

1;
2

1
;
3

2
;
5

3
;
8

5
;
13

8
; ::: (2.7)

which, according to Eq.(2.5) precisely converges towards the Golden mean.
The symbolical analog of the Fibonacci sequence, constructed using two

types of letters, say A and B, can be obtained from the substitution rule
A ! AB and B ! A, whose successive application generates the sequence
of letters A;AB;ABA;ABAAB;ABAABABA; ... and so on. In this way,
we get a perfectly ordered "word" which is not periodic at all. We note that
the construction process guarantees that the total number of letters of a Fi-
bonacci word is a Fibonacci number and the ratio of A�s over B�s approaches
the Golden mean as the size of the Fibonacci word is progressively increased.
It also guarantees that no BB pairs appear in the entire word. In this regard,
it is worth noting that a Fibonacci lattice can be regarded as a particular
class of random dimer alloy (see Section 1.7) where strong repulsions exist
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between B species, such that two B species do not appear in succession. A
very remarkable property of this string of letters is that it endows self-similar
properties, so that any pattern of letters we arbitrarily choose in the origi-
nal sequence is found in the sequence on another scale. Another interesting
property is related to the Conway�s theorem, stating that given an arbitrary
portion of a Fibonacci word we will �nd a replica of it at a distance smaller
than twice is length. This property is illustrated for the short words ABAB
and AABABAA in the longer Fibonacci word

ABAABABAABAABABAABABAABAABABAABAAB

ABAABABAABAABABAABABAABAABABAABAAB:

As we will see in the following chapters of this book, a considerable number
of works have focused on systems whose relevant physical parameters are
arranged according to the Fibonacci sequence. Several reasons can be invoked
to account for the interest spurred by the Fibonacci lattice (and other closely
related self-similar lattices) in the condensed matter community during the
last twenty years. We can highlight the following ones:

� From a conceptual point of view, the Fibonacci lattice can be consid-
ered as the one-dimensional analogue of some celebrated quasiperiodic
arrangements in higher dimensions like, for example, the Penrose or
Ammann tilings in two and three dimensions, respectively.

� The recourse to orderings based on the successive application of an in-
�ation rule is particularly well suited to grow superlattices made of a
sequential deposition of alternating layers of di¤erent materials.

� A number of rigorous mathematical results have been restricted to a
few basic aperiodic sequences, including the Fibonacci sequence as a
paradigmatic case.

2.5 Crystallography in six dimensions
2.5.1 Hyperspace

Since its very beginning in 1912, in order to determine the structure of crys-
tals traditional crystallography relies primarily on x-ray di¤raction, rather
than electron di¤raction, because x-ray di¤raction techniques provide a good
quantitative tool. Conversely, it is quite di¢ cult to precisely measure crys-
talline length parameters by electron microscopy. Accordingly, the �rst high-
resolution x-ray scattering measurements of the AlMn quasicrystalline phase
discovered by Shechtman were welcomed with the greatest expectation.[51]
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Those measurements showed that the obtained di¤raction patterns can be
indexed to a mixture of conventional face-centered cubic Al and a new phase
whose reciprocal vectors can be described by a sum of the form,

q =
6X
i=1

niqi (2.8)

where ni are integers and qi are vectors pointing to the vertices of an icosa-
hedron given by

q1 = (1; � ; 0); q2 = (1;�� ; 0); q3 = (0; 1; �);
q4 = (0; 1;��); q5 = (� ; 0; 1); q6 = (�� ; 0; 1); (2.9)

where � is the Golden mean and the components of the qi vectors are referred
to a suitable Cartesian reference frame. Thus, just as the Bragg lattice of
ordinary crystals is generated by a basis of three vectors, the icosahedral
patterns can be also generated by a suitable basis, although six in number.
In this way, all the di¤raction peaks could be expressed as an integer linear
combination of these six vectors. For instance, the second strongest peak in
the di¤raction pattern reported in Ref.[51] can be indexed as (110001), which
leads to q =(2� � ;0; 1).
It was subsequently realized that it is useful to think of a six dimensional

periodic lattice, with basis vectors ei, which are properly projected into the
usual three-dimensional space in the form ei = (ek; e?), where k denotes
the physical space and ? denotes the so-called perpendicular space.[52] For
instance, to achieve an icosahedral QC structure a six-dimensional simple
cubic lattice is rotated around the origin by the 6� 6 matrix,[13]

R =
1p
4 + 2�

0BBBBBB@
� � 0 �1 0 1
0 0 1 � 1 �
1 �1 �� 0 � 0
� �� 1 0 �1 0
�1 �1 0 �� 0 �
0 0 � �1 � �1

1CCCCCCA : (2.10)

The second three coordinates, e?, of the resulting 6D ei vector determine
whether or not a lattice point is projected. If positive, then the �rst three
coordinates,ek, represent the real-space position of this point. In this way,
icosahedral structures can also be described by space-group operations con-
sisting of translations combined with rotations, as in the case of periodic
crystals. The translations, however, take place in a 6D space, and the point-
group describes generalized six-dimensional rotations and re�ections. In this
regard the considered structure is quite di¤erent from the usual incommensu-
rate structures, previously studied in Section 1.3, which involve at least two
independent lengths.[53]
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A general Bragg vector can be then written as

gk =
�

a

6X
i=1

nie
i
k; (2.11)

where a represents the "quasilattice" constant. For each Bragg vector given
by Eq.(2.11), there corresponds a unique partner in orthogonal space

g? =
�

a

6X
i=1

nie
i
?: (2.12)

Accordingly, the di¤ractions spots can be labeled by six generalized Miller
indices and the di¤raction pattern is spanned by six linearly independent
reciprocal-lattice vectors ei, according to expressions (2.11) and (2.12). The
main theme is well known from algebra. When you have a great number of
unknowns in a mathematical problem, you must manage to �nd out a suitable
number of equations relating them. Otherwise, no closed solution is generally
possible. Analogously, the most fruitful way to deal with a complex prob-
lem some times consists in introducing new degrees of freedom in order to
get a suitable description of complex physical systems with the aid of a more
elaborated mathematical framework. The systematic use of complex num-
bers in di¤erent domains of mechanics, acoustics, electronics, etc. provides a
nice example of this approach. The generalization of Miller�s indexing scheme
from three to six dimensions just represents another instance of this fruitful
approach in crystallography. Although the physical meaning of the vectors
given by Eq.(2.12) is not immediately clear, it turns out that they play a
signi�cant role in quasicrystallography. In fact, a close inspection of the elec-
tron di¤raction pattern shown in Fig.2.8 reveals another unusual feature of
quasicrystals crystallography: the intensity of the di¤racted beams does not
decrease as a function of the centre, as it does for a periodic crystal according
to the atomic scattering amplitude.
This feature can be easily understood within the superspace projection

framework sketched in Fig 2.12 if one assumes that the intensities decay with
the magnitude of g?. Current model structures of QC�s are usually carried
out in the framework of hyperspace crystallography, a mathematical recipe
that treats a QC as a periodic structure embedded in a higher (than three)
dimension space. Thus, for example, the icosahedral quasilattice in three di-
mensions can be generated from a cubic lattice de�ned in six dimensions.[54]
Starting with the square lattice in the plane a line gk with an irrational slope
is drawn (which de�nes the so-called parallel space), surrounded by a parallel
strip of �nite width, W , measured in the so-called perpendicular space g?.
This window de�nes the acceptance domain, since only those square lattice
points inside the strip are projected onto gk: If experimental resolution is rep-
resented by the pair of dashed lines shown in Fig.2.12 then only the lattice
vectors between these lines give rise to observable peaks. Increasing the reso-
lution of the spectrometer has the e¤ect of moving the dashed lines outward
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FIGURE 2.12
Construction of the Fibonacci chain and the 3/2 rational approximant through
the cut and project algorithm. (Courtesy of Stephan Roche).

to a larger jg?j, thus �lling in the regions between peaks on the gk axis with
weaker peaks. Then, if the gk axis is incommensurate with the underlying
lattice, the projections will be dense. We note that two projections with very
nearly equal values of gk can arise only at the expense of having their corre-
sponding lattice vectors widely separated in the orthogonal g? direction. In
this way, the main qualitative features observed in the QC di¤raction patterns
can be nicely visualized.
The atomic structure determination of QCs is best achieved in the context

of hyperspace crystallography where the periodicity is recovered in higher di-
mensions. For icosahedral QCs the periodic space has six dimensions and
decomposes into two orthogonal 3D subspaces: the parallel (physical space)
and the perpendicular (complementary) space. The 6D unit cell is deco-
rated by 3D objects known as "occupation domains," which describe the local
atomic environment in the physical space. This approach allows modelling
and re�nement of the structure against experimental di¤raction data in a
way similar to that achieved for usual 3D periodic crystals.[55] Nevertheless,
the amount of observed di¤raction data is rather limited in general, which
precludes a detailed re�nement of the chemical order in ternary QCs. From
this perspective, the discovery of the �rst stable binary icosahedral QC in the
Cd(Yb,Ca) family was a signi�cant breakthrough, due to its simple chemical
composition.
A lot of information is encoded in the mathematical recourse to higher

dimension crystallography to describe ideal QC structures. A half of this
information is used to describe the three dimensional appearance of QCs in



The notion of aperiodic crystal 53

the physical space through the matrix projection from hyperspace. What
about the information remaining in the perpendicular space? As we will see,
this extra information is related to two new concepts directly related to higher
dimensional crystallography: the phasonic defects and the notion of crystalline
approximants.

2.5.2 The notion of phason defects

Within the cut-and-project framework we can introduce kinds of defects which
are speci�c of quasiperiodic systems. Let us consider the construction de-
picted in Fig.2.12, but now describing a distribution of atoms rather than
an ensemble of Bragg spots in the reciprocal superspace. In the particular
case of a 2D superspace, if the slope is ��1 and the width of the acceptance
domain coincides with the projection of the fundamental unit cell K, we ob-
tain a Fibonacci lattice, characterized by the presence of long (A) and short
(B) segments arranged according to the Fibonacci sequence. Analogously,
the celebrated Penrose tiling can also be obtained via projection of a �ve-
dimensional periodic lattice onto a planar surface.[13] On the other hand, if
the slope is a rational approximant of the golden mean (3/2, for instance) we
obtain a periodic lattice, whose unit cell is given by the sequence ABAAB.
As we see, a translation of the square lattice along the E? direction causes
some original lattice points to move outside the acceptance window and some
others to move into it. As a consequence, a number of local rearrangements
in the original projected sequence take place. For example, some local strings
of the form ABA turn to the form AAB in the Fibonacci sequence. These
sort of rearrangements are called phason �ips and can give rise to novel phys-
ical properties. In fact, while a distortion of the lattice along the Ek space
corresponds to a phonon propagation, a distortion of the lattice along the E?
space de�nes a kind of di¤usive motion which is speci�c to QCs. Note that
square lattice points near the edges of the acceptance window fall very easily
outside it, while points close to its center are very robust against phason ef-
fects, and are responsible for the system stability.[56] In this sense, one may
think of introducing phason �ips by changing the geometrical properties of
the acceptance window on their own. For example, by de�ning it in terms
of a sinusoidal function instead of a straight line we can introduce a periodic
modulation in the overall phason distribution.
An interesting physical consequence of the phason �ip notion is that one

may describe a continuous transformation of a one-dimensional lattice from
quasiperiodic to periodic order by simply changing the slope of the Ek line.
In this way, one realizes that the very notion of defect can be addressed from
a completely di¤erent viewpoint. In fact, while one usually considers the
presence of defects as destroying periodic order, in this case one starts with
a quasiperiodically ordered structure and, by increasing the number of pha-
sonic defects, one actually improves the periodic order in the system. Quite
interestingly, the progressive transition from quasiperiodic to periodic order
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could be assessed, at least in principle, performing a systematic experimen-
tal study of the acoustic (or optical) response of certain aperiodic structures
as a number of planar defects (mimicking phasonic defects) is progressively
introduced in its way towards the periodic limit.[57]

2.5.3 Approximant phases

In every alloy system the true QC is accompanied by compositionally related
classical crystals, having huge unit cell sizes, often forming micro-twinned net-
works with nearly aperiodic symmetries. These crystals not only have very
similar compositions, but also structures closely resembling that of the true
QC, from which they can nevertheless be distinguished. For these reasons such
crystals are called approximants. In some systems, however, only the approx-
imants are thermodynamically stable and the QCs need to be produced by
rapid cooling. Nevertheless, the de�nition of such an approximant is still a
useful one. Approximant phases are not to be confused with giant-unit-cell
intermetallics, sometimes also termed "complex metallic alloys," exhibiting
complex structures that contain some hundred up to several thousand atoms
in the unit cell. Examples are the Mg32(Al,Zn)49 compound discussed in
Chapter 1, with 162 atoms in the unit cell, orthorhombic �0-Al74Pd22Mn4 (258
atoms in the unit cell),[58, 59] �-Al4Mn (586 atoms in the unit cell),[60] cubic
�-Al3Mg2 (1168 atoms in the unit cell),[61] and the heavy-fermion compound
YbCu4:5, comprising as many as 7448 atoms in the supercell.[62] These giant
unit cells contrast with elementary metals and simple intermetallics whose
unit cells in general comprise from single up to a few tens atoms only. The
giant unit cells with lattice parameters of several nanometers provide trans-
lational periodicity of the crystalline lattice on the scale of many interatomic
distances, whereas on the atomic scale, the atoms are arranged in clusters with
polytetrahedral order, where icosahedrally-coordinated environments play a
prominent role. The structures of complex metallic alloys thus show duality;
on the scale of several nanometers, these alloys are periodic crystals, whereas
on the atomic scale, they resemble cluster aggregates. The high structural
complexity of complex metallic alloys together with the two competing phys-
ical length scales� one de�ned by the unit-cell parameters and the other by
the cluster substructure� may have a signi�cant impact on the physical prop-
erties of these materials, such as the electronic structure and lattice dynamics.
On this basis, complex metallic materials are expected to exhibit novel trans-
port properties, like a combination of metallic electrical conductivity with
low thermal conductivity, and electrical and thermal resistances tunable by
varying the composition.
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2.6 IUCr: A new de�nition of crystal
"Then came the quasicrystals, and I realized that we didn�t

even understand what order is, from a mathematical point of view"
(Marjorie Senechal, 1997)[14]

In the interval spanning from 1984 to 1990 an increasing number and variety
of quasicrystals were progressively found. Most of them were thermodynami-
cally stable samples exhibiting a high degree of structural perfection, compa-
rable to that observed in the best periodic crystals. Accordingly, the arrange-
ment of atoms in QCs, which was originally regarded as some sort of defective
order, occupying an intermediate position between the short-range correla-
tion typical of amorphous materials and the long-range-order characteristic of
periodic crystals, eventually was regarded as a new kind of long-range order.
Accordingly, a number of tentative de�nitions for the novel quasicrystalline
materials was introduced in the literature, generating some terminological
confusion. Thus, QCs were successively referred to as "a metallic phase with
icosahedral point group symmetry and no translational symmetry,"[24] "ma-
terials with point-group symmetries incompatible with crystal translational
symmetry,"[35] or "an arrangement of atoms which in a di¤raction experi-
ment produce in�nitely sharp Bragg peaks in a pattern which exhibits overall
icosahedral symmetry."[63]
This unsatisfactory state of the a¤airs prompted the International Crystal-

lographic Union to approve, in April 1991, the establishment of a Commission
on Aperiodic Crystals with the membership of J. M. Pérez-Mato (Chairman),
G. Chapuis, M. Farkas-Jahnke, M. L. Senechal, and W. Steurer. According
to their terms of reference:

In the following by �crystal�we mean any solid having an es-
sentially discrete di¤raction diagram, and by �aperiodic crystal�
we mean any crystal in which three-dimensional lattice periodic-
ity can be considered to be absent.[64]

In the new de�nition, the essential attribute of crystallinity is transferred
from real space to reciprocal space. Consequently, within the crystalline fam-
ily we can now distinguish between periodic crystals, which are periodic on the
atomic scale, and aperiodic crystals, lacking lattice periodicity in full agree-
ment with the earlier Shrödinger�s proposal (see Section 2.1). This broader
de�nition re�ects our current understanding that microscopic periodicity is a
su¢ cient but not necessary condition for crystallinity. At the same time, it
suggests that the de�nition of QC should not include the requirement that
they possess an axis of symmetry that is forbidden in periodic crystals. Thus,
the presence of a mathematically well de�ned, long-range atomic order should
be properly regarded as the generic attribute of solid state matter rather
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FIGURE 2.13
Classi�cation of di¤erent types of aperiodic solids attending to the dimen-
sionality of their aperiodic order. From left to right and from top to bottom
we have representatives of an icosahedral quasicrystal, the Penrose tiling,
a decagonal quasicrystal, a Fibonacci code bar,[66] an aperiodic photonic
crystal,[66] and a dielectric Fibonacci multilayer (more details in the text).

than mere periodicity. In fact, in the last decades many examples of aperi-
odic crystals have been fully characterized by di¤raction techniques, and we
can currently distinguish three types of aperiodic crystals: incommensurately
modulated crystals, composites, and quasicrystals.[13, 65]
The key question regarding the very nature of any possible crystal (either

a periodic or aperiodic one) can then be formulated in the following terms:
which are the necessary and su¢ cient conditions for a given arrangement of
points to exhibit an essentially discrete Fourier transform?

2.7 Aperiodic crystals classi�cation schemes

At this stage we realize that, in principle, a condensed matter phase can
exhibit di¤erent kinds of order (namely, periodic or aperiodic) along di¤erent
directions, so that we can properly speak of isotropic or anisotropic aperiodic
crystals.
In order to illustrate this notion, in Fig.2.13 we present a classi�cation of

aperiodic crystals attending to their aperiodic order dimensionality, i.e., the
number of spatial dimensions in which the aperiodic order occurs. For any
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given solid its spatial dimension, nD; is derived from the sum of its periodic
dimension (labelled by the corresponding row number) plus its aperiodic di-
mension (labelled by the corresponding column number). Allowed entries are
restricted by the condition n � 3: In addition, the coordinates of a given solid
in the chart indicate the relative importance of aperiodic versus periodic order
in its structure. For example, the icosahedral quasicrystal shown at the left
upper corner, with coordinates (3,0), exhibits quasiperiodic order along the
three dimensions of space, so that it can be regarded as a suitable example
of isotropic aperiodic crystal. On the contrary, decagonal quasicrystals lo-
cated at the middle of the chart, with coordinates (2,1), exhibit quasiperiodic
order in the planes perpendicular to the decagonal axis, but are periodically
arranged along this axis, so that they must be regarded as a suitable example
of anisotropic aperiodic crystals. In this case, we have a condensed matter
phase where two di¤erent kinds of order coexist, namely 1D periodic order
along with 2D quasiperiodic order. Quite interestingly, the hybrid nature of
the arrangement of matter in these alloys has measurable physical e¤ects,
which we will discuss in Chapter 3. At the right lower corner of Fig.2.13 we
have another interesting instance of a hybrid-order system, a Fibonacci het-
erostructure, with coordinates (1,2). In this system a series of 2D periodic
layers are stacked following a quasiperiodic 1D pattern. As we will see in
Chapter 4, these kind of structures have been arti�cially grown and, as such,
they properly illustrate the technological potential related to the very notion
of aperiodic order in materials science which we will explore in more detail in
Chapters 7 and 8.
Following the line of reasoning inspiring the classi�cation scheme just in-

troduced one may think of DNA as a sort of hybrid order system exhibiting
1D aperiodic order (as determined by the base pairs sequence) superimposed
to 3D periodic order (corresponding to the sugar-phosphate backbone helix).
The apparent extra-dimension in this case is related to the fact we are really
dealing with two separate subsystems in the DNA helix, namely the nucleotide
subsystem and the backbone system. Although both subsystems are strictly
speaking 3D, in practice the planar Watson-Crick conjugate nucleobases are
usually regarded as an e¤ective one-dimensional chain as far as one is mainly
concerned with the coding properties of the macromolecule. We will study the
physical properties of double-stranded DNA helices in great detail in Chap-
ter 6.

2.8 Some milestones in the aperiodic crystal route
� 1944 E. Schrödinger�s proposal of aperiodic crystals to describe the na-
ture of the gene
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� 1952 W. Cochran, F. H. C. Crick, and V. Vand present the full theory
of x-ray di¤raction by helices

� 1953 Helical structure of DNA is proposed by J. Watson and F. H. C.
Crick on the basis of x-ray di¤raction studies by R. Franklin and M. H.
F. Wilkins

� 1972 de Wol¤ introduces the higher-dimensional crystallography ap-
proach to describe the structure of incommensurate modulated phases

� 1974 R. Penrose obtains a quasiperiodic tiling of the plane containing
just two di¤erent tiles

� 1982 A. L. Mackay reports on optical di¤raction patterns obtained from
Penrose tiling

� 1982 D. Shechtman obtains �ve-fold electron di¤raction patterns from
AlMn alloys

� 1984 D. Shechtman, I. Blech, D. Gratias, and J. W. Chan report on
the �nding of alloys exhibiting both long-range translational order and
�ve-fold symmetry

� 1984 The notion of quasiperiodic crystal is introduced by D. Levine and
P. J. Steinhardt

� 1985 R. Merlin and co-workers grow the �rst Fibonacci superlattice
based on semiconductor materials

� 1985 First representative of the dodecagonal quasicrystalline phase is
reported by T. Ishimasa, H. U. Nissen, and Y. Fukano

� 1985 First representative of the decagonal quasicrystalline phase is re-
ported by L. Bendersky

� 1986 B. Dubost and co-workers announce the discovery of the �rst ther-
modynamically stable icosahedral phase in the AlCuLi system exhibiting
a triacontahedral growth morphology

� 1987 First representative of the octagonal quasicrystalline phase is re-
ported by N. Wang, H. Chen, and K. H. Kuo

� 1987 Stable GaMgZn quasicrystals with dodecahedral solidi�cation mor-
phology are reported by W. Ohashi and F. Spaepen

� 1987-1990 High structural quality icosahedral phases containing tran-
sition metals are reported by A. P. Tsai and co-workers in the alloy
systems AlCu[Fe,Ru,Os] and AlPd[Mn,Re]
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� 1991 The Commission on Aperiodic Crystals of the International Crys-
tallographic Union broadens the de�nition of crystal in order to include
both periodic and aperiodic crystals

� 1994 Fibonacci dielectric multilayers are �rst grown and the self-similarity
of their optical spectral portraits is experimentally shown by W. Geller-
mann, M. Kohmoto, B. Sutherland, and P. C. Taylor

� 1995 High structural quality icosahedral phases containing rare-earth
atoms in the alloy system ZnMg(RE) are reported by A. P. Tsai and
co-workers

� 2000 The �rst binary icosahedral phase is found in the Cd(Y,Ca) alloy
system by A. P. Tsai and co-workers

� 2005 A photonic quasicrystal with centimeter scale cells, exhibiting size-
able stop bands for microwave radiation, is constructed using stereolitho-
graphy by W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin
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3
Quasiperiodic crystals

3.1 Quasicrystalline alloys
3.1.1 Quasicrystal paradoxes

From a macroscopic point of view crystals are characterized by regular shapes
and �at surfaces. According to these phenomenological criteria thermody-
namically stable QCs, exhibiting regular shapes and �at surfaces, should be
regarded as common crystals by all standards.
This point is illustrated in Fig.3.1 where we compare di¤erent represen-

tatives of both periodic and aperiodic crystal families. As we can see, all
samples nicely meet the phenomenological criteria for a piece of matter to
be considered a "crystal." Accordingly, had quasicrystalline alloys been found
to spontaneously occur in nature from ancient times, then they would most
probably have been regarded as another instance of mineral crystals represen-
tatives, for they exhibit all the basic features most of them show up.
Nevertheless, quasicrystalline alloys were not discovered this way. On the

contrary, they were unexpectedly found, once the theoretical framework aimed
to understand the nature of crystal kingdom from a microscopic viewpoint
had been completely elaborated. That theory is mathematically rigorous and
very successful in accounting for the structure of every form of matter found to
date. And such a rigorous and successful theory explicitly forbids the growth
morphologies exhibited by quasicrystalline alloys!
Thus the discovery of quasiperiodic crystals was a terrible shock for the

crystallographical, solid state, and condensed matter communities, demanding
an appropriate answer for this apparent paradox. It was a hectic period of
intellectual storm, as we have described in Section 2.3. The �nal solution
fortunately arrived soon. It was as simple as every piece of wisdom usually
uses to be: our theoretical understanding was entirely based on the very
notion of periodic arrangements of atoms in space. But what about aperiodic
ones? We had simply missed them in constructing classical crystallography.
Consequently, all the conceptual troubles stemming from the discovery of this
new form of matter were rooted on epistemological shortcomings rather than
pointing to any sort of pathological state of matter. The message from Nature
was that matter can display well-ordered patterns which are more complex
than those imposed by mere periodicity. Thus, the notion of aperiodic crystal
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FIGURE 3.1
Periodic and aperiodic crystals gallery. (a) AlCuCo quasicrystalline alloy ex-
hibiting a decaprismatic growth habit, (b) Quartz (SiO2) crystal exhibiting a
hexagonal prismatic habit, (c) Calcite (CaCO3) crystal exhibiting a hexagonal
growth morphology, (d) AlCuRu quasicrystalline alloy exhibiting a dodecahe-
dral growth habit, and (e) Fluorite (CaF2) crystal exhibiting a cubic growth
morphology.
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generalizes the one of periodic crystal and lifts the prohibitions about the
rotational symmetries that can leave the material invariant. In this way,
the puzzle due to the crystallographical restriction theorem was eventually
�xed, forcing new progress in our understanding of the atomic arrangements
in solids.[1]
Nevertheless, shortly after the discovery of thermodynamically stable qua-

sicrystalline alloys of high structural quality, it was progressively realized that
these materials occupy an odd position among the well-ordered condensed
matter phases. In fact, since QCs consist of metallic elements one would ex-
pect they should behave as metals. Nonetheless, as we will describe below,
it is now well established that transport properties of stable QCs are quite
unusual by the standard of common metallic alloys, as most of their transport
properties resemble a more semiconductor-like than metallic character. In this
way, we were led to face a second quasicrystal paradox: that of a peculiar class
of metallic alloys which do not behave as common metallic alloys usually do.

3.1.2 Unusual properties of quasicrystals

"If real quasicrystals exist, as suggested by Shechtman et al., they
are sure to possess a wealth of remarkable new structural and
electronic properties" (D. Levine and P. J. Steinhardt, 1984) [2]

"I point out that there is no reason to expect these alloys to have
unusual physical properties" (L. Pauling, 1987) [3]

Once the existence of a new kind of condensed matter phase was established
(Section 2.3.4), the question naturally arose regarding the possible in�uence
of its characteristic quasiperiodic order on its physical properties. Unfortu-
nately, the �rst obtained QCs were metastable, preventing a signi�cant study
of several physical properties, in particular the temperature dependence of
their transport properties. Even the �rst thermodynamically stable QCs, ob-
tained in the systems AlCuLi and GaMgZn, were unsuitable to this end, since
they were usually contaminated with small crystalline inclusions and exhibited
a relatively large number of structural imperfections (see Fig.2.10). The dis-
covery of thermodynamically stable quasicrystalline alloys of high structural
quality in the AlCu(Fe,Ru,Os), AlPd(Mn,Re), ZnMg(RE), and Cd(Yb,Ca)
icosahedral systems, as well as the AlCo(Cu,Ni) decagonal system, allowed
for detailed experimental studies of intrinsic transport properties of quasicrys-
tals. In this way, unusual behaviors in the temperature dependence of elec-
trical conductivity, Hall and Seebeck coe¢ cients, speci�c heat, and thermal
conductivity were progressively reported.[4, 5, 6, 7, 8, 9, 10, 11]

3.1.2.1 dc conductivity

Some characteristic electrical transport anomalies are graphically summarized
in Figs.3.2 and 3.3. Fig.3.2 gives the electrical resistivities, �, measured at
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FIGURE 3.2
Room temperature resistivity of icosahedral (triangles) and decagonal
(squares) QCs is compared to that of their respective constituent elements.

room temperature for di¤erent QCs and their constituent (pure) elements. It
can be seen that the pure elements are good metals, possessing low electri-
cal resistivities. On the contrary, quasicrystalline alloys composed of these
elements show electrical resistivities which are higher by several orders of
magnitude, and much higher than typical values for conventional metallic al-
loys (both crystalline and amorphous), whose representative values fall in the
region between the horizontal dashed lines in Fig.3.2.
In Fig.3.3 the striking behavior of the electrical resistivity of quasicrys-

talline alloys is further highlighted by considering its variation with tem-
perature. For typical metals resistivity decreases as the temperature is de-
creased and it can even completely vanish at low enough temperatures for
those materials reaching the superconducting state. Such a behavior is illus-
trated for the case of aluminum (the main constituent of an important class of
QCs) in Fig.3.3. Conversely, the electrical resistivity of QCs progressively in-
creases as the temperature is decreased, suggesting the possibility of reaching
a metal-insulator transition in high-quality icosahedral quasicrystals at low
temperatures.[12, 13, 14, 15] On the other hand, the electrical conductivity
steadily increases as the temperature increases up to the melting point, and
its value very sensitively depends on minor variations of the sample stoichiom-
etry, as it is illustrated in Fig.3.4.
Accordingly, attending to their electrical properties quasicrystalline phases

are marginally metallic and should be properly located at the border line
between metals and semiconductors.[16, 17, 18] To illustrate this point, the
room temperature electrical resistivities of several classes of materials are
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FIGURE 3.3
The general temperature dependence of electrical resistivity for icosahedral
QCs based on aluminium is compared with that corresponding to aluminium,
its main alloying element. (Courtesy of Claire Berger).

FIGURE 3.4
Temperature dependence of the electrical conductivity for four diferent qua-
sicrystalline samples up to 1000 K. The inset illustrates the sensitivity of the
residual conductivity value to minor variations in the sample composition.([7]
Courtesy of Claire Berger. Reprinted �gure with permission from Mayou D,
Berger C, Cyrot-Lackmann F, Klein T, and Lanco P 1993 Phys. Rev. Lett.
70 3915 c 1993 by the American Physical Society.)
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FIGURE 3.5
Room temperature electrical resistivity is compared for di¤erent materials of
technological interest. Quasicrystals are located at the border line between
metals and semiconductors.

compared in Fig.3.5. It can be seen that quasicrystals �ll the gap between
metals and semiconductors, exhibiting electrical resistivity values comparable
to those reported for doped conducting polymers, metallic macrocycles, and
fullerenes.

Underlying these results a basic fundamental question remains, concerning
whether the purported anomalies in the quasicrystals transport properties
should be mainly attributed (or not) to the characteristic quasiperiodic order
of their structure. Two di¤erent approaches to this question are found in the
literature: on the one hand, those trying to explain the transport properties of
QCs in terms of concepts originally developed to describe amorphous solids;
on the other hand, those advocating for speci�c treatments, aimed to exploit
the physical implications of the quasiperiodic order notion. To the present,
both approaches have obtained partial successes in describing di¤erent experi-
mental data, thus spurring the interest for a suitable theory of quasicrystalline
matter. A clear indication on the signi�cant role played by the kind of order
(i.e., periodic or quasiperiodic) in the transport properties of the underly-
ing structure was provided by a series of studies on the transport properties
of decagonal quasicrystals belonging to the AlCo(Cu,Ni) system. The atomic
arrangement in these thermodynamically stable quasicrystals is periodic in the
tenfold growth direction, and quasiperiodic in the plane perpendicular to it
(Fig.2.9). Therefore, the study of their physical properties allows for the com-
parison between the transport properties in the quasiperiodic plane and those
in the periodic direction in the same sample. Quite interestingly, a remarkable
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FIGURE 3.6
The electrical resistivity temperature dependence along two di¤erent direc-
tions exhibits quite di¤ererent behaviors in the decagonal QC AlCuCo.[19]
Note that, at any given temperature, the resistivity values di¤er by about an
order of magnitude depending on the kind of order present in the underlying
substrates.

anisotropy in the electrical resistivity, thermopower, and thermal conductivity
was reported for high-quality, single-grained decagonal quasicrystals.[19, 20]
Thus, for example, when measured along the decagonal axis (periodic order)
the electrical resistivity increases with temperature, as usually occurs in met-
als. On the contrary, when the electrical resistivity is measured along the
quasiperiodic plane it decreases with temperature (Fig.3.6). In a similar way,
the electronic contribution to the thermal conductivity appears to be almost
completely suppressed in the quasicrystalline plane, whereas the heat trans-
port along the periodic direction behaves like that observed in usual periodic
crystalline metals.[19] These transport anisotropy measurements provide com-
pelling evidence on the existence of physical e¤ects intrinsically related to the
quasiperiodic order of the lattices.

Additional evidence on the role played by the novel kind of order present
in these materials is that their electrical conductivity signi�cantly decreases
as the structural quality of the sample is improved (e.g., by annealing), in
striking contrast with periodic crystals, whose electrical transport properties
improve when structural imperfections are removed upon heating. Conse-
quently, neither the notion of metal nor that of semiconductor can be applied
to QCs, clearly demanding the introduction of a more adequate concept to
describe them. To this end, the possible existence of general trends, allow-
ing for a systematic classi�cation of QCs according to their related transport
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coe¢ cients, appears as a very promising starting point.

3.1.2.2 Inverse Matthiessen rule

Strong evidence on a possible qualitative universal behavior of the electri-
cal conductivity of icosahedral QCs was reported from the observation that
the conductivity curves of four di¤erent quasicrystalline samples are nearly
parallel up to about 1000 K (see Fig.3.4), so that one can write[7]

�(T ) = �(0) + ��(T ); (3.1)

where �(0) measures the sample dependent residual conductivity, and ��(T )
is proposed to be a general function. According to this expression the contri-
bution to the sample conductivity due to di¤erent sources of scattering seems
to be additive. This is just the opposite to what happens to normal metals,
where the resistivities due to di¤erent sources of disorder are additive. This
remarkable behavior, referred to as inverse Matthiessen rule,[7] is further il-
lustrated for a broader collection of QC samples in Fig.3.7. It has been also
observed in quasicrystalline approximants,[21] and even in amorphous phases
prior to their thermally driven transition to the QC phase (see Fig.3.11).[22]
These �ndings indicate that the inverse Matthiessen rule may be a quite

general property of structurally complex alloy phases closely related to qua-
sicrystalline compounds. Then, the question arises concerning the possible
existence of a suitable physical mechanism supporting the presumed univer-
sality of the ��(T ) function. In fact, the parallelism of the �(T ) curves is
di¢ cult to understand in terms of a classical thermally activated mechanism,
since the temperature dependence of �(T ) does not follow an exponential law
of the form exp(�Eg=kBT ); where kB is the Boltzmann constant. The inade-
quacy of this �tting implies the absence of a conventional semiconducting-like
gap in QCs.[25] Additional evidence comes from the fact that, for the heavily
doped semiconductors, the �(T ) curve decreases at high enough temperatures
when all the impurity levels have become ionized. No evidence of such a
limiting threshold has been observed in QCs.
On the other hand, signatures of electron-electron scattering, spin-orbit

interaction, chemical disorder e¤ects, and quasiperiodicity e¤ects have been
inferred from the temperature dependence of �; although their relative role is
still awaiting for a precise experimental and theoretical clari�cation.[26] Con-
sequently, one would expect that di¤erent �ts to the experimental data may
be more or less adequate depending on the temperature ranges considered,
since the relative importance of di¤erent physical mechanisms at work will
depend on their own temperature scales.

3.1.2.3 Current-voltage curves

In this regard it is noteworthy to mention that characteristic current-voltage
(I-V) curves of AlCuFe icosahedral quasicrystals exhibit a perfect Ohmic be-
havior at low temperatures (T ' 4 K) for bias voltages which vary by seven
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FIGURE 3.7
Diagram comparing the electrical conductivity temperature dependences for
di¤erent quasicrystalline samples belonging to the AlCuFe (�); AlCuRu (O),
and AlPdMn () families. From top to bottom their chemical compositions
read as follows: Al63Cu24:5Fe12:5, Al62:8Cu24:8Fe12:4, Al70Pd20Mn10,
Al62:5Cu25Fe12:5, Al70Pd20Mn10, Al65Cu21Ru14, Al65Cu20Ru15, and
Al65Cu19Ru16. Data for AlCuFe samples were kindly provided by Claire
Berger. Data for AlCuRu and AlPdMn samples after Refs. [23] and [24],
respectively.
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FIGURE 3.8
Double logarithmic I-V plots of an icosahedral Al63Cu25Fe12 phase sample
(kindly provided by Jean Marie Dubois) at T = 9; 45; 65; 100; 175, and 230
K. The inset shows the linear representation of the same data. (Courtesy of
Javier García-Barriocanal).

orders of magnitude.[27] Such a linear behavior holds as the sample tempera-
ture is progressively increased (Fig.3.8), suggesting that a linear I-V behavior
may be a common property of quasicrystals. This behavior lends support to
the possible presence of relatively extended states close to the Fermi level and
can be understood in the light of the electronic structure of the considered
samples (see Sec.3.3.1).

In fact, it is generally accepted that the electronic structure of most icosa-
hedral QCs is characterized by the presence of three relevant energy scales
close to the Fermi level. First, the Hume-Rothery stabilization mechanism
gives rise to a broad pseudogap on the energy scale of about 1 eV. Second,
hybridization e¤ects among d-states and sp-states give rise to the presence
of a narrow dip of about 0.1 eV close to the Fermi level. Finally, resonant
e¤ects due to the quasiperiodic distribution of transition metal clusters along
with possible chemical bonding e¤ects are related to the existence of �ner
structure features in the density of states (DOS), on the scale of about 0.01
eV.[28] Accordingly, one would expect to observe some nonlinearity related
to the presence of these spectral features as soon as the energy change of the
charge carriers involved in the measurement process is in the range 0.01 - 1 eV.
Now, the highest electric �elds applied in these experiments are in the range
E = 50 � 100 V/cm, so that we get the electron energy " ' eEL0 ' 10�5

eV, where L0 ' 20 Å is a rough estimate of the electronic mean free path in
these materials.[27] Certainly, this �gure is small enough to play a subsidiary
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role in the considered I-V measurements. In other words, stronger electric
�elds should be applied in order to observe the expected quasiperiodic e¤ects
in these materials.

3.1.2.4 Optical conductivity

The study of optical properties, performed over a very broad spectral range,
is a powerful experimental tool for identifying the spectrum of excitations
in a solid. In this way, several intrinsic parameters, such as the plasma fre-
quency, relevant excitations due to phonons, or the strength of interband
transitions, can be evaluated. To this end, one experimentally obtains the
re�ectivity curve as a function of the incoming electromagnetic radiation fre-
quency, R(!), and derives from it the optical conductivity curve �(!) by
means of the so-called Kramers-Krönig transformation of the re�ectivity spec-
trum. This transformation requires the knowledge of the optical responses at
very low and very high frequencies, which are generally obtained from suitable
extrapolations.
Several contributions are involved in the �(!) curve of simple metals. One

is due to intraband transitions of conduction electrons and can be analyzed
using the Drude model for free electrons

�(!) =
�(0)

1 + (!�)2
; (3.2)

where �(0) is the dc conductivity and � is the relaxation time. This contri-
bution becomes dominant at low frequencies and results in a characteristic
Lorentzian function centered at the zero frequency, known as the Drude peak,
followed by a rapid decay of the optical conductivity at large frequencies. A
second contribution (located at the far-infrared region of the spectrum) is re-
lated to the presence of optical phonon modes, which are activated when the
incoming radiation frequency is equal to or exceeds the necessary excitation
energy. Additional contributions come from transitions involving both the
valence and conduction bands (interband transitions) in the visible spectral
range. Good conductors show a re�ectance close to 100% at frequencies be-
low the onset of absorption due to interband transitions and a characteristic
sudden decay of R(!) (known as the plasma edge) as the frequency increases
approaching the value

!2p �
ne2

m"0
; (3.3)

referred to as the plasma frequency, where n is the number of electrons per
unit volume and "0 is the vacuum dielectric constant. This frequency de�nes a
threshold value. At low frequencies (i.e., ! < !p), the free electrons can couple
to the oscillating electromagnetic �eld of incoming photons giving rise to a
collective motion referred to as plasma oscillation. Accordingly, no radiation
can propagate and the radiation �eld falls exponentially inside the solid. On
the other hand, at large enough frequencies (i.e., ! > !p), the electromagnetic
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FIGURE 3.9
(a) The re�ectivity spectrum at room temperature of i-AlPdMn (b) The op-
tical conductivity obtained by Kramers-Krönig transformation of the re�ec-
tivity spectrum is compared to a phenomenological �t.(From ref.[30]. With
permission from Elsevier.)

wave can propagate and the medium becomes transparent. Thus, a metal is
basically transparent to light for wavelengths smaller than the plasmon cut-o¤
�p = c=!p; and absorbing and re�ecting above.

Generally speaking, the optical conductivity of icosahedral QCs studied so
far is quite di¤erent from that of either a metal or a semiconductor. Thus,
re�ectance of high quality icosahedral samples was found to be signi�cantly
small (about 60%) in a wide wavelength region from about 300 nm (UV region)
to 15 �m (IR region), and several unusual features were observed in the optical
conductivity:

1. The far infrared �(!) is very weak and no Drude peak appears (Fig.3.9),
though extrapolation to the zero frequency at the low-frequency re-
gion yields conductivity values in good agreement with the measured
dc conductivity.[29, 30, 31, 32, 33] Two di¤erent explanations have been
proposed to account for the unusual absence of a Drude peak. In a
�rst approach, the low �(!) was assigned to an extremely low density
of states at the Fermi level due to the presence of a pseudogap in the
band structure of QCs, hence leading to a substantially small value of
�(0) in Eq.(3.2).[34] Another approach is based on the localization of
charge carriers due to the quasiperiodicity of the structure, which leads
to an anomalous di¤usion mechanism. In that case, Drude�s formula for
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the optical conductivity may adopt the form

�(!) = Ae2N(E)�(2� + 1)

�
�

1� i!�

�2��1
; (3.4)

where A is a constant, � is the Gamma function, N(E) is the den-
sity of states, and � is a di¤usion exponent which depends on the
energy.[35] The real part of this expression reduces to Eq.(3.2) in the
case � = 1, while values as low as � = 0:07 and � = 0:03 were found
from �tting analysis of the �(!) curves of AlCuFeB and AlPdMn QCs,
respectively.[33]

2. All the studied QCs exhibit a typical absorption feature overlapping
the low frequency tail of the far-infrared region. This relatively broad
feature (which splits into two separate contributions at about 25 and
35 meV in most cases) is ascribed to phonon e¤ects. At higher ener-
gies (� 0:4 eV) the optical conductivity progressively rises reaching a
peak at about 0:7 eV (i-ZnMgY, i-ZnMgTb), 1:2 � 1:5 eV (i-AlCuFe,
i-AlPdMn), or 2:6 � 2:9 eV (i-AlPdRe), after which the conductivity
decreases. This absorption feature is commonly ascribed to excitations
across a characteristic pseudogap related to the Hume-Rothery stabiliza-
tion mechanism (Section 3.3.1). Note that the location of the pseudogap
absorption feature correlates with the width and depth of the related
pseudogap for the di¤erent quasicrystalline families.

In summary, unlike disordered metals (where a Drude model on the strong-
scattering limit is applicable) or semiconductors (with a well developed con-
ductivity gap), the re�ectivity spectra of icosahedral phases display low optical
conductivity on the far-infrared energy range and a marked absorption in the
visible.
These characteristic features are also observed in typical approximant phases,

such as 1/1 AlMnSi, indicating that unusual optical properties are not spe-
ci�c to long-range quasiperiodic order. Nevertheless, for decagonal phases
di¤erent behaviors of the �(!) curve can be clearly established between the
quasicrystalline and the periodic directions (Fig.3.10).[36] In fact, a Drude
peak is present when light is irradiated within a narrow area parallel to the
periodic axis, whereas no peak is detected in a plane perpendicular to it. The
analysis of the optical data shows that contrarily to the case of icosahedral
QCs, there is no clear evidence for the presence of a marked pseudo-gap at
the Fermi level.

3.1.2.5 Thermoelectric power

Thermoelectric power describes the electric response of a sample due to the ap-
plication of an external temperature gradient through the relationship �V =
S(T )�T , where S(T ) is the so-called Seebeck coe¢ cient. During the last
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FIGURE 3.10
The optical conductivity of the decagonal AlCoCuSi quasicrystal for the pe-
riodic (short-dashed line) and the quasiperiodic (solid line) directions is com-
pared with the conductivity of the icosahedral AlCuFe studied in Ref.[29]
(solid dots). In the inset the quasiperiodic conductivity in the far-infrared
part of the spectrum is shown. (Reprinted �gure with permission from Basov
D N, Timusk T, Barakat F, Greedan J, and Grushko B 1994 Phys. Rev. Lett.
72 1937 c 1994 by the American Physical Society.)
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decade the thermoelectric power of samples belonging to di¤erent icosahe-
dral families has been measured. Reported data refer to a broad range of
stoichiometric compositions and cover di¤erent temperature ranges in the
interval from 1 K to 900 K. From the collected data the following gen-
eral conclusions can be drawn for high-quality QCs containing transition
metals.[37, 38, 39, 40, 41]

� Room temperature thermoelectric power usually exhibits large values
(50-120 �VK�1) when compared to those of both crystalline and disor-
dered metallic systems (1-10 �VK�1).

� The temperature dependence of the Seebeck coe¢ cient usually deviates
from the linear behavior, exhibiting pronounced curvatures (either posi-
tive or negative) at temperatures above � 50�100 K. This behavior is at
variance with that exhibited by ordinary metallic alloys where the S(T )
curve is dominated by electron di¤usion yielding a linear temperature
dependence.

� Small variations in the chemical composition (of just a few atomic per-
cent) can give rise to sign reversals in the thermopower curve.

� The S(T ) curves exhibit well-de�ned extrema in several cases. Both the
magnitude and position of the extrema observed in the thermoelectric
power curves are extremely sensitive to minor variations in the chemical
stoichiometry of the sample.

On the other hand, thermopower measurements of rare-earth bearing QCs
in the system i-ZnMg(Y,Tb,Ho,Er) exhibit markedly linear temperature de-
pendences above � 50 K.[42] An analogous behavior has been reported for the
thermodynamically stable CdYb QC, which also contains rare-earth atoms.[43]
Such di¤erent behaviors among the i-AlCu(Fe,Ru,Os) and i-AlPd(Mn,Re)
families (bearing transition metals) and the i-ZnMg(RE) and i-CdYb fami-
lies (bearing rare-earth atoms), strongly suggest that chemical e¤ects may be
playing a signi�cant role.

3.1.2.6 Hall coe¢ cient

Let us consider the following experimental situation: an external electric
�eld, Ex, is applied to a wire extending in the x-direction so that a current
density jx �ows. If a transverse magnetic �eld Bz pointing in the positive
z-direction is applied the resulting Lorentz force j�B = �jxBz |̂ acts to
de�ect the charge carriers in the negative y-direction. This gives rise to an
electrostatic �eld Ey in the y-direction (the so called Hall �eld) that opposes
the charge motion. In the equilibrium the Hall �eld will balance the Lorentz
force, and current will �ow only in the x-direction. The Hall coe¢ cient is then



78 Aperiodic Structures in Condensed Matter

de�ned as[44]

RH �
Ey
jxBz

= � 1

nqc
: (3.5)

According to Eq.(3.5) the value of the Hall coe¢ cient measures the den-
sity of carriers and its sign indicates their nature (i.e., electrons q = �e;
or holes q = +e). Experimental measurements of the Hall coe¢ cient of
samples belonging to di¤erent icosahedral families, covering a broad range
of stoichiometric compositions, have been reported during the last decade.
[6, 15, 25, 38, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54] In this way, several
anomalous properties have been reported in the temperature dependence of
the Hall coe¢ cient, RH(T ); within the interval 4.5 K to 300 K.

� Low temperature values suggest small carrier densities, within the range
n ' 1020 � 1021 cm�3; which is an unusually low �gure for alloys made
of good metals.

� Positive or negative values at low temperatures have also been observed.
Moreover, in some cases after increasing the temperature, a sign reversal
is observed.

� In some instances, RH(T ) and S(T ) change their signs at closely related
temperatures (Table 3.1).

� The Hall coe¢ cient is strongly sensitive to minor variations in the sam-
ple stoichiometry, and annealing conditions.

� A linear correlation between the temperature dependence of the Hall
coe¢ cient and the electrical resistivity, extending from 4 K up to room
temperature, was reported for i-AlCuFe samples with varying resistivi-
ties and exhibiting Hall coe¢ cients of both signs.[50]

TABLE 3.1
Comparison between the temperature values at
which the Hall and Seebeck coe¢ cients change
their sign for a given sample. The mark *
indicates extrapolated values.

Sample TH0 (K) TS0 (K) Reference
Al62:5Cu25Fe12:5 392� 349 [40]
Al63Cu25Fe12 389� 393� [41]
Al65Cu20Ru15 137 162 [6]
Al70Cu15Ru15 370� 285 [6]
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3.1.2.7 Thermal conductivity

The thermal conductivity of QCs belonging to di¤erent families has been
measured, covering di¤erent temperature ranges, and the following general
conclusions can be drawn from the collected data:

� Although most metallic alloys are good heat conductors, the thermal
conductivity of QCs is unusually low, even lower than that observed
for thermal insulators of extensive use in aeronautical industry, such as
titanium carbides or nitrides, doped zirconia, or alumina. For example,
in AlPdMn icosahedral phases the thermal conductivity at room tem-
perature is comparable to that of zirconia (1Wm�1K�1), and this value
decreases to about 10�4Wm�1K�1 below 0:1K.[55]

� Assuming that QCs obey the Wiedemann-Franz law (see Section 3.1.2.8)
one estimates that the contribution of electrons to the thermal transport
is, at least, one order of magnitude lower than that due to phonons over
a wide temperature range (0:1K � T � 200K).[56]

� The thermal di¤usivity of these alloys is extraordinarily low, even lower
than that of zirconium oxide.[57]

The low thermal conductivity of QCs can be understood in terms of two
main facts. In the �rst place, the charge carrier concentration is low (see
Section 3.3.1), so that heat must propagate by means of atomic vibrations
(phonons). In the second place, in the energy window where lattice thermal
transport is expected to be most e¢ cient the frequency spectra of quasiperi-
odic systems is highly fragmented. As a consequence (see Section 5.5), the
corresponding eigenstates become more localized and thermal transport is
further reduced. Physically, this e¤ect can be attributed to the fact that qua-
sicrystal lattices have a fractal reciprocal space, lacking a well de�ned lower
bond as that provided by the lattice parameter in the case of periodic crystals.
Consequently, the transfer of momentum to the lattice is not bounded below,
which gives rise to a signi�cant degradation of thermal current through the
sample.[58]

3.1.2.8 Wiedemann-Franz law

The Wiedemann-Franz law links the electrical conductivity, �(T ), and the
charge carriers�contribution to the thermal conductivity, �e(T ), of a substance
by means of the relationship �e(T )=�(T ) = L0T; where T is the temperature
and L0 = (kB=e)

2 �0 is the Lorenz number, where kB is the Boltzmann
constant, e is the electron charge, and �0 depends on the sample�s nature.
Thus, for metallic systems �0 = �2=3; and we get the Sommerfeld�s value
L0 = 2:44 � 10�8 VK�2; while for semiconductors we have �0 ' 2:[60] The
Wiedemann-Franz law expresses a transport symmetry arising from the fact
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that the motion of the carriers determines both the electrical and thermal cur-
rents at low temperatures. As the temperature of the sample is progressively
increased, the validity of Wiedemann-Franz law will depend on the nature of
the interaction between the charge carriers and the di¤erent scattering sources
present in the solid. In general, the Wiedemann-Franz law applies as far as
elastic processes dominate the transport coe¢ cients, and usually holds for ar-
bitrary band structures provided that the change in energy due to collisions
is small compared with kBT .[44] Accordingly, one expects some appreciable
deviation from Wiedemann-Franz law when electron-phonon interactions, af-
fecting in a dissimilar way to electrical and heat currents, start to play a
signi�cant role.[61] On the other hand, at high enough temperatures the heat
transfer is dominated by the charge carriers again, due to umklapp phonon
scattering processes, and the Wiedemann-Franz law is expected to hold as
well.

Since QCs consist of metallic elements one should expect they would be-
have as metals do, hence reasonably obeying the Wiedemann-Franz law. This
working hypothesis is routinely assumed when studying the thermal trans-
port properties of these materials in order to estimate the phonon contribu-
tion to the thermal conductivity, �ph(T ); by subtracting to the experimental
data, �mes(T ); the expected electronic contribution according to the expres-
sion �ph = �mes � L0T�. Nonetheless, since most transport properties of
stable QCs are quite unusual by the standard of common metallic alloys, it
seems quite convenient to check up on the validity of this law for QCs, since
our understanding of thermal properties in these materials should be substan-
tially revised if it does not hold.[9] In fact, according to the phenomenological
approach discussed in Section 3.4 one expects signi�cant deviations of the
ratio �e(T )=�(T ) from its ideal behavior above � 50 K, due to electronic
structure e¤ects.[62]

A suitable experimental measure of the Wiedemann-Franz law validity over
a given temperature range can be gained from the study of the magnitude
�mes(T )=�(T ) = L(T ) + '(T ), where the so-called Lorenz function is de-
�ned by the relationship L(T ) � �e(T )

T�(T ) , and '(T ) accounts for the phonon
contribution to the heat transport. A study of the temperature variation of
the �mes=� ratio in several intermetallic compounds showed that the exper-
imental data may be �tted by a linear temperature dependence of the form
�mes=� = LT +B over the temperature range 350-800 K.[1, 63] By comparing
the slopes obtained for pure aluminum and icosahedral AlCuFe samples the
ratio LQC=LAl ' 1:21 was obtained, hence indicating an enhanced Lorenz
number for QCs at high temperatures. In a similar way, room temperature
L(T ) values larger than L0 have been experimentally reported, ranging from
L300=L0 = 1:15;[64] to L300=L0 = 1:43:[65] Therefore, the available experi-
mental information indicates an enhancement of the Lorenz number value in
the high temperature regime, in agreement with some theoretical results.[66]
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3.1.2.9 Magnetic properties

The response of a material in the presence of an external magnetic �eld H
is determined by the value of the magnetization vector M through the rela-
tionship M =�H, where � measures the magnetic susceptibility of a given
material. Diamagnetic materials are characterized by negative values of �,
indicating that the magnetic particles in the material act against the applied
magnetic �eld. On the contrary, paramagnetic materials are characterized
by positive values of �. In a metal composed of non-magnetic atoms (i.e.,
atoms with no intrinsic magnetic moments) the magnetic susceptibility is de-
termined by two main contributions: the Lenz response of ion core electron
orbitals to the external �eld (Larmor�s diamagnetism, �L) and the conduc-
tion electron�s contribution �e, which, in turn, can be split into the e¤ect
of spin electrons aligning in a direction parallel to H (Pauli paramagnetism,
�p) and the Lenz response of free electrons (Landau diamagnetism, �l). In
the free electron approximation the Pauli�s contribution is proportional to
the density of states at the Fermi level, �p = �2BN(EF ), where �B is the
Bohr magneton, and the Landau�s contribution amounts �l = ��p=3, so that
�e = �p+�l = 2�p=3 > 0; and the conduction electron�s contribution becomes
paramagnetic. The core electron�s contribution is more di¢ cult to determine
but in most metals and metallic alloys the temperature independent contri-
bution to the magnetic susceptibility, �0 = �L + �e; takes on positive values
typical of a paramagnetic response. For instance, one gets �0 = +0:6� 10�6
emu/g for both aluminum metal and the ��AlCuFe alloy phase.

At variance with this typically metallic behavior, i-AlCuFe QCs and approx-
imant phases are diamagnetic in a broad temperature range, with magnetic
susceptibility values comprised within the interval [�0:6;�0:4]�10�6 emu/g.
A similar behavior has been reported for i-AlPdRe, i-GaMgZn, and i-MgZnY
representatives.[67] It is interesting to note that the more diamagnetic samples
are generally also the more resistive ones. The emergence of a diamagnetic
behavior in these QCs is attributed to a weak Pauli term contribution due to
the existence of a pseudogap close to the Fermi level and to an anomalously
strong Landau term �l = �(m=m�)

2�p=3, resulting from a peculiar band
structure, characterized by �at bands with large e¤ective masses m�.[68]

The temperature dependence of the magnetic susceptibility of i-AlCuFe
samples can be �tted to the form �(T ) = �0+AT

2; where the parabolic term
is ascribed to a temperature dependent Pauli susceptibility. In fact, the Pauli
paramagnetic contribution is temperature independent as long as the DOS at
the Fermi level does not vary. However, the chemical potential slightly shifts
with the temperature (see Eq.(5.42)) and this variation can have a signi�cant
in�uence in those systems exhibiting sharp features in the DOS near the Fermi
level. This is precisely the case of most i-AlCuFe samples (see Section 3.3.2),
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so that the Pauli susceptibility can be expressed as

�p(T ) = �2BN(EF )
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(3.6)
which properly accounts for the experimental data reported for AlCuFe.[69]
Nevertheless, this expression can not account for the linear dependence �(T ) =
�0+AT reported for i-AlPdRe samples, which indicates the existence of sub-
stantial di¤erences in the electronic structure of both quasicrystalline families.
Quite remarkably a diamagnetic behavior is also observed in QCs containing

magnetic atoms such as i-AlPdMn, i-AlSiMn, and ZnMg(Ho,Yb,Tb,Er). The
temperature dependence of the magnetic susceptibility in these phases obeys
a Curie-Weiss law

�(T ) = �0 +
C

T � � ; (3.7)

where �0 is comprised within the interval [�0:6;�0:4] � 10�6 emu/g, and
the second term describes the contribution due to the presence of ions with
incomplete orbitals giving rise to a net angular momentum J (Curie paramag-
netism). The Curie constant is usually expressed as

C =
g2�2BJ(J + 1)Nm

3kB
; (3.8)

where g is the Landé factor (g = 2 for Mn atoms) and Nm measures the
number of magnetic atoms. In the case of the i-AlPdMn phases the analysis
of the obtained measurements indicates that only a minor fraction (i.e., 0.04%
- 4%) of the Mn atoms present in the QC carry a magnetic moment.[70] This
fraction increases rapidly with the Mn concentration in the alloy QC. These
Mn atoms are an intrinsic feature of the QC phase, although the precise
location of the magnetic Mn sites could not be identi�ed because of both
their small number and the uncertainties in the chemical decoration of the
quasilattice structure. Thus the magnetic momentum formation on Mn atoms
is very sensitive to environmental e¤ects determined by atomic distances,
coordination number, and the kinds of atoms around Mn ones. For instance,
Mn sites with a low Al coordination experience weaker sp-d hybridization
e¤ects, which favour the appearance of a magnetic moment.[71]
Whereas the magnetic properties of QCs containing Mn atoms are mainly

determined by the number of Mn atoms carrying a magnetic moment, the
magnetic behavior of ZnMgRE QCs containing rare-earth atoms with par-
ticularly strong magnetic moments such as Ho,Yb,Tb, and Er is strongly
in�uenced by the nature of the magnetic ordering of these atoms. In fer-
romagnetism, for instance, all the magnetic moments point in the same di-
rection, whereas in antiferromagnetism neighboring atoms point in alternate
directions. The presence of relatively large, negative values of � (from �5 K
to �26 K) in Eq.(3.7) indicates the existence of dominant antiferromagnetic
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exchange interactions between magnetic atoms. In fact, the direct con�r-
mation of the presence of short-range spin antiferromagnetic correlations in
i-ZnMgHo[72] spurred the interest of theoretical works predicting that long-
range ferromagnetic order is possible in QCs.[73] However, previous claims of
both antiferromagnetic,[74] and ferromagnetic,[75] QC phases may be prob-
ably related to the presence of secondary magnetic crystalline phases in the
considered samples.[76]
Evidences of the so-called spin glass transitions have been observed in both

i-AlPdMn and i-ZnMgRE QCs which take place at relatively low tempera-
tures of a few kelvin degrees (as compared to those usually observed in con-
ventional alloys which are one order of magnitude larger).[67] In fact, due
to the icosahedral symmetry, atoms in a QC �nd themselves in a variety of
di¤erent local environments, which means that magnetic interactions often
become "frustrated." In other words, there is no possible con�guration that
allows magnetic moments to align in their preferred directions. A well-known
example is that of antiferromagnetic spins on a triangular lattice: the three
spins cannot be arranged so that all neighboring spins are antiparallel. The
low value of the transition temperature is explained by the relatively small
fraction of magnetic atoms present in QC phases. The very existence of such
a transition indicates that quasiperiodic order is su¢ cient to e¤ectively cou-
pling the magnetic atoms (via delocalized d electrons through the so-called
Ruderman-Kittel-Kasuya-Yoshida interactions) in order to induce a transition
leading to the spin glass state. Magnetic properties of decagonal phases in
AlCuCo and AlPdMn systems also indicate the presence of anisotropy e¤ects.
Thus the value of the local magnetic moments for the i-AlPdMn is about twice
as large as those for the d-AlPdMn.[77]

3.1.2.10 Mechanical and tribological properties

Quasicrystals are noteworthy for their hardness (comparable to that of silica),
low surface energy, and low friction.[78] The in�uence of commensurability
on friction has been examined by a number of experimental and theoretical
studies.[79, 80] In the ideal case, when two workpieces with incommensurate
lattices are brought in contact, the minimal force required to achieve sliding
(known as the static frictional force) vanishes, provided the two substrates
are sti¤ enough.[81] Thus, it has been observed that friction becomes negli-
gible for incommensurate surfaces sliding under conditions of elastic contact.
In real situations, however, physical contact between two (uncontaminated)
surfaces is generally mediated by third bodies acting like a lubricant �lm. In
that case the sliding interface should be properly described in terms of three
characteristic lengths, corresponding to the periods of both substrates and
the lubricant layer.
Scanning tunneling microscopy studies have revealed the presence of struc-

tures closely related to the Golden mean in quasicrystalline surfaces. For
example, on the surface of AlPdMn icosahedral quasicrystals atomic terraces
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are separated by steps of three di¤erent heights whose values are related, not
by a simple integer, but by the irrational number � ' 1.618.[82, 83] This
means that the spacing between similar planes of the bulk structure has not
one but two dominant spacings, and this is re�ected in the step heights ob-
served on the surface. In this way, the bulk quasiperiodic order of the sample
naturally emerges to its surface, hence suggesting that quasicrystal surfaces
can act as templates for the growth of thin �lms having quasicrystalline order
as well.[84, 85]
However, recent theoretical studies indicate that the best low-friction regime

is achieved for incommensurabilities related to cubic irrational numbers rather
than to quadratic irrationals, like the Golden mean.[86] A suitable example of
cubic irrational number is provided by the so-called spiral mean, which satis-
�es the equation !3 � ! � 1 = 0. Its rational approximants are generated by
the recursion relation Gn+1 = Gn�1+Gn�2 with G�2 = G0 = 1 and G�1 = 0;
leading to the sequence Gn = f1; 0; 1; 1; 1; 2; 2; 3; 4; 5; 7; 9; 12; 16; 21; 28; :::g
whose terms satisfy the asymptotic limit, lim(Gn+1=Gn) = ! ' 1:3247:::.
According to these results, the low friction observed in QCs cannot be sim-
ply justi�ed in terms of their characteristic Fibonacci-based surface ordering.
Quite interestingly, experimental studies on friction anisotropy of a clean,
decagonal AlNiCo QC, whose surface terminations exhibit periodic as well
as Fibonacci-like atomic ordering along di¤erent directions, reveal a strong
connection between interface atomic structure and the mechanisms by which
energy is dissipated.[87] This result suggests that electronic and phononic
contributions probably play a signi�cant role in the tribological properties of
QCs. Other attractive properties of QC surfaces, which are currently inten-
sively explored, include oxidation resistance,[88, 89] low surface energy,[90]
and catalytic activity.[91, 92, 93, 94]

3.1.3 On the nature of chemical bond

"It is the metallic bonding that makes it possible. I am doubt-
ful whether they will ever make quasicrystals out of anything other
than metals" (John W. Cahn 1997) [95]

As it is well known, metallic substances exhibit a number of characteristic
physical properties which are directly related to the presence of a speci�c kind
of chemical bond among their atomic constituents: the so-called metallic bond.
In fact, it is precisely the existence of the metallic bond which accounts for
both the atomic structure and physical properties of metallic compounds.[96]
For the sake of comparison in Table 3.2 we list a number of representative
physical properties of both metals and QCs. By inspecting this Table one
realizes that quasicrystalline alloys signi�cantly depart from metallic behavior,
resembling either ionic or semiconducting materials (respectively labeled I or S
in Table 3.2). Thus, QCs are an intriguing example of solids made of typical
metallic atoms which do not exhibit any of the physical properties usually
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signaling the presence of metallic bonding.

TABLE 3.2
Comparison between the physical properties of QCs and typical metallic
systems.

PROPERTY METALS QUASICRYSTALS
MECHANICAL ductility,malleability brittle (I)

Young modulus
TRIBOLOGICAL relatively soft very hard (I)

low friction coe¢ cient
easy corrosion corrosion resistant

ELECTRICAL high conductivity low conductivity (S)
resistivity increases with T decreases with T (S)

small thermopower large thermopower (S)
MAGNETIC paramagnetic diamagnetic
THERMAL high conductivity very low conductivity (I)

high speci�c heat values low speci�c heat values
high melting points

OPTICAL Drude peak IR absorption (S)

Therefore the fundamental question arises concerning whether these anom-
alous properties should be mainly attributed (or not) to the characteristic
quasiperiodic order of QCs structure. In this regard, several experimental ev-
idences strongly suggest that the nature of the chemical bonding determining
the local atomic arrangements would play a signi�cant role in most physical
properties of these materials. [97, 98, 99] In fact, there are several hints point-
ing towards the important role of chemical bonding in the emergence of the
unusual physical properties of QCs, namely:

1. Transport measurements show that the structural evolution from the
amorphous to the quasicrystalline state (Fig.3.11) is accompanied by a
parallel evolution of the electronic transport anomalies, clearly indicat-
ing the importance of short-range e¤ects on the emergence of several
transport anomalies.

2. Transport measurements also indicate that these anomalies are more
pronounced in the case of QCs, hence suggesting that the relative in-
tensity of the anomalous behavior is signi�cantly emphasized due to the
presence of long-range quasiperiodic order.

3. Many unusual physical properties of QCs are also found in approximant
phases.

4. Certain anomalous transport properties, like a high resistivity value or a
negative temperature coe¢ cient, are also observed in some crystalline al-
loys consisting of normal metallic elements whose structure is unrelated
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FIGURE 3.11
Temperature dependent electrical conductivity of an AlCuFe �lm for di¤erent
annealing states for the amorphous and for the icosahedral quasicrystalline
phase. (From Ref.[100]. With permission from Elsevier.)

to the structure of QCs (as, for instance, the Heusler-type Fe2VAl alloy)
which share with them certain characteristic features in the electronic
structure (i.e., a narrow pseudogap).[101]

5. Transport properties of metallic alloys with complex unit cells, having a
similar number of atomic species than those of approximant phases, but
not exhibiting the local isomorphism property, are typically metallic.[102]

6. Other kinds of aperiodic crystals, like incommensurately modulated
phases and composites (see Section 1.3), do not show the physical anom-
alies observed in QCs.

According to (1)-(4) the emergence of physical anomalies in QCs should
be traced back to chemical bonding e¤ects (short-range), giving rise to some
characteristic features in the electronic structure close to the Fermi level (such
as the presence of a narrow pseudogap), which are generic but not speci�c of
QCs.[104] Thus, chemical e¤ects may ultimately become more important than
quasiperiodic order e¤ects in explaining the unusual behavior of these materi-
als. Accordingly, crystalline approximants, which exhibit a local atomic envi-
ronment very similar to their related QC alloys, appear as natural candidates
to investigate the relative importance of short-range versus long-range order
e¤ects on the transport properties. This conclusion is further supported by
(5) and (6), which indicate that mere structural complexity is not a su¢ cient
condition to give rise to the emergence of anomalous transport properties in
complex metallic alloys.
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FIGURE 3.12
Chemical elements found in thermodynamically stable quasicrystal alloys.
Main forming elements (Al, Ti, Zn, and Cd) are circled. The second ma-
jor constituents are squared. Minor constituents are marked with a diamond.
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Most atomic elements composing thermodynamically stable quasicrystalline
alloys observed to date belong to the chemical family of metals, located at ei-
ther alkaline, earth-alkaline, transition metals, or rare-earth groups (Fig.3.12).
From this chart we see that most metallic atoms are able to participate in the
formation of quasicrystalline phases under the proper stoichiometric condi-
tions, in agreement with Cahn�s conjecture quoted above. On the other hand,
certain chemical trends can also be appreciated in di¤erent QC families. For
instance, the minor atom constituent in the systems

Al63Cu25
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Ru
Os
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Al70Pd20

�
Mn
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,

belongs to the same group of the Periodic Table, hence indicating the im-
portance of their chemical valence for the stability of the compound. This
fact has been successfully exploited in order to obtain the family of stable
quaternary QCs given by the formula (Fig.3.13)
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Several chemical trends are also observed in the transport properties of
QCs belonging to the AlCu(Fe,RuOs) and AlPd(Mn,Re) families (Table 3.3).
Thus, it is seen that increasing the atomic number of the third (incomplete d
band) transition metal signi�cantly increases the low temperature electrical
resistivity of the sample as well as its temperature dependence as measured
in terms of the ratio R = �(4 K)/�(300 K).[105]

TABLE 3.3
Chemical trends in the properties of the
electrical resistivity of aluminium based
icosahedral QCs.

SAMPLE �(4 K)�104 �
cm R
AlCuFe 1 2.2
AlCuRu 2.5 4
AlCuOs 14 4.5
AlPdMn 1 2.3
AlPdRe 120 190

This trend may be due to the relativistic contraction of the s and p states
relative to the d and f states. On the one hand, this contraction lowers the
orbital energies of s and p states. On the other hand, this contraction screens
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FIGURE 3.13
Chemical valence trend observed in quaternary quasicrystals associated to the
AlPd(X,Y) family. [103]
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FIGURE 3.14
A three-dimensional perspective of the �3 in�ated cluster forming the ba-
sic icosidodecahedron structural motif of i-CdYb phase. ([107] Reprinted by
permission from Macmillan Publishers Ltd.: Nature Materials 6 58 c 2007.)

the nucleus, causing the outer d electrons to experience lesser binding and
therefore a larger spatial extent. Thus, the relativistic lowering of the energy
of the s and p bands, and the associated raising of the energy of the d bands
brings these bands closer to each other, hence favouring sp-d hybridization
e¤ects leading to an increase of cohesive energy.

3.2 Quasicrystals as a hierarchy of clusters

Most structural models of quasiperiodic crystals and their approximants are
based on one or more characteristic structural units, commonly referred to as
clusters. For instance, building units of about 50 atoms with a geometry close
to that of a Mackay icosahedron have been experimentally identi�ed in the
structure of AlPdMn and AlCuFe QCs, as deduced from X-ray and neutron
di¤raction data.[106] More recently, the atomic structure of YbCd5:7 was de-
rived from a detailed x-ray di¤raction analysis and described in terms of three
basic building units (Fig.3.14).[107] These building units adopt well de�ned
polyhedral shapes and can be expressed as regular arrangements of atoms in
clusters, generally adopting point group icosahedral symmetries (dodecahe-
dron, icosahedron, icosidodecahedron, triacontahedron). The role of clusters
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as possible structural units is supported by the fact that such clusters can be
universally identi�ed in bulk structures of most QCs, and are common also in
approximants.
For instance, two families of chemically di¤erent pseudo-Mackay icosahe-

dra (PMI) clusters (containing 51 atoms instead of the 54 atoms included
in a Mackay cluster, see Fig.2.3) were identi�ed in the icosahedral AlPdMn
structure. Each PMI is made of three centrosymmetrical atomic shells: a
core of nine atoms, an intermediate icosahedron of 12 atoms, and an exter-
nal icosidodecahedron of 30 atoms (Fig.3.15(a)). The last two shells have
practically equal radii and constitute altogether the surface of the PMI whose
diameter is very close to 0.96 nm. The small inner core is a piece of a pen-
tagonal dodecahedron whose 20 atomic sites are only partially occupied in a
way which probably �uctuates from PMI to PMI within the structure. Two
families of PMI can be distinguished attending to the chemical decoration of
the outer shell.[108, 109, 110] The calculated atomic density of an individual
PMI is 64 at/nm3, which is close to the measured density of the bulk materials
within the experimental accuracy. Starting from an individual PMI the entire
self-similar atomic structure can be grown following an in�ation process via
successive substitutions of atoms by PMIs with proper rescaling. Here, in�a-
tion means that a subset of special points from the original structure (i.e., the
PMI cluster) are found in an identical arrangement when increased by a scale
factor �3. A planar section of the AlPdMn structure along the �vefold axis
is shown in Fig.3.15(b). Note that in order to preserve the density and sto-
ichiometry of the solid under the in�ation growing scheme some overlapping
is required.
On the basis that the i-AlCuFe phase is almost iso-structural to the i-

AlPdMn one, with Cu (Pd) being equivalent to Fe (Mn), respectively, Gratias
and co-workers proposed an uni�ed structural model for both QCs families
in terms of three basic clusters (Fig.3.16). The model is globally consistent
with the chemical order obtained in previous structural investigations of these
alloys.[111]
Certainly, one may consider the systematic use of geometrical clusters in

structure determination as a matter of mere convenience, but both their use-
fulness and ubiquity naturally leads one to take a step further and speculate
about the very possibility of considering QCs as molecular solids composed of
actual atomic clusters arranged in a hierarchical way. Some evidences favour-
ing the existence of clusters as stable physicochemical entities come from direct
imaging techniques, such as secondary electron imaging,[112] x-ray photoelec-
tron di¤raction,[113] or STM.[114] These studies support the picture of QCs
as cluster aggregates, namely, a three-dimensional quasiperiodic lattice prop-
erly decorated by atomic clusters which have the same point symmetry of the
whole QC.[115] In fact, several experimental facts strongly suggest that local
atomic order, on the scale of a few nanometers, plays an essential role in the
emergence of the peculiar electronic properties of these materials, probably
due to the formation of a number of covalent bondings among di¤erent atoms
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FIGURE 3.15
(a) Structure of a pseudo-Mackay icosahedron. Similar clusters can be iden-
ti�ed in the bulk of icosahedral AlPdMn and AlCuFe, although other types
of clusters can be identi�ed as well.(b) Arrangement of pseudo-Mackay-type
icosahedra showing the hierarchical, self-similar arrangement of overlapping
clusters. ([108] Reprinted �gures with permission from Janot C 1996 Phys.
Rev. B 53 181 c 1996 by the American Physical Society.)

FIGURE 3.16
The main con�gurations of the di¤erent clusters in the uni�ed model proposed
for i-AlCuFe and i-AlPdMn. ([111] Reprinted �gures with permission from
Quiquandon M and Gratias D 2007 Phys. Rev. B 74 214205 c 2007 by the
American Physical Society.)
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grouped in clusters.[22, 116]
Then, a major question in the �eld is whether clusters are physically sig-

ni�cant, chemically stable entities, or simply geometrical coincidences.[117]
Now, when thinking of clusters as physical entities, rather than convenient
geometrical tiles, one should properly address the following issues, which are
the focus of intensive current research:

� What is the number and structure of the di¤erent atomic clusters which
are compatible with the chemistry of the system?

� What is the nature of the chemical bonding among the atoms belonging
to a given cluster, as well as among di¤erent clusters themselves? For
example, it may occur that a given cluster may act as a chemically
stable structure when isolated, but it progressively loses its identity
when assembled to form a solid, due to strong interactions with close
neighbors. Then, along with the stability of clusters we should also
consider those aspects related to their reactivity.

� What is the more appropriate packing rule (including possible overlap-
pings) between clusters at di¤erent hierarchical stages?

Another fundamental question related to the possible existence of clusters
in QCs has to do with the quasicrystalline growth process itself. In fact, how
do QCs grow? So far it is not clearly known what speci�c qualities (if any) sys-
tems must possess in order to form quasiperiodic instead of periodic crystals.
In both cases, they form via nucleation and growth, starting from a micro-
scopic nucleus, which spontaneously arises from the solid phase, and spreads
outward, converting the system from liquid to solid. A fundamental puzzle in
QC physics is to understand how the growth phase nucleation, occurring at a
short-range scale, can lead to a structure with long-range quasiperiodicity. In
this regard, QCs cannot grow like periodic crystals, where the nucleus surface
acts as a template for copying a unit cell via local interactions. Rather, QCs
require specialized growth rules that dictate their formation. Using molecular
simulations it has been shown that the aperiodic growth of dodecagonal QCs is
controlled by the ability of the growing QC nucleus to incorporate kinetically
trapped atoms into the solid phase with minimal subsequent rearrangement.
This process occurs through the assimilation of stable icosahedral clusters by
the growing QC.[118] In this way, the probability of formation of a highly
complex structure from its elements is increased by means of the successive
inclusion of nested cluster units.[119]
Cleavage and annealing experiments have also been interpreted as proof for

the existence of clusters in QCs with a high mechanical stability,[120] though
it seems that most mechanical properties reported for QCs (with the excep-
tion of a brittle-ductile transition at elevated temperatures) can be properly
accounted for in terms of usual processes (including the additional phasonic
freedom degree).
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3.3 Electronic structure of icosahedral quasicrystals
3.3.1 Fermi level pseudogap

It was pointed out by William Hume-Rothery (1899-1968) in 1926 that certain
metallic compounds with closely related structures but apparently unrelated
stoichiometries exhibit the same ratio of number of valence atoms to number
of atoms (the so-called e=a ratio).[121] For example, the isostructural phases
with compositions CuZn, Cu2Al, and Cu5Sn share the value e=a = 1:5; if
one considers the valence values Cu = 1; Zn = 2, Al = 3, and Sn = 4. Other
alloys which may be placed in this class are CuBe, AgZn, AgCd, AgMg, Ag3Al,
and AuZn. A more striking example is provided by the so-called -alloys, the
principal representatives of which are Cu5Zn8, Cu9Al4, Cu31Sn8, and Fe5Zn21.
These crystals are cubic, with 52 atoms arranged within icosahedral clusters
in the unit cell. Adopting the value Fe = 0 for the valence value of iron atoms,
all these alloys share the value e=a = 21=13 = 1: 615384:::. Note the presence
of Fibonacci numbers in the e=a ratio, which, according to the asymptotic
limit given by Eq.(2.5), suggests e=a ' � (1.6180...) for these alloys.
Hume-Rothery rule is explained as resulting from a perturbation of the

energy of the valence electrons by their di¤raction by the crystal lattice.
In fact, it was pointed out by Marcel Louis Brillouin (1854-1948) that the
energy distribution is perturbed when an electron has such a wave length
(� = h=

p
2mE) and direction as to permit Bragg re�ection from an im-

portant crystallographic plane.[122] The perturbation is of such nature as
to stabilize electrons�energy with energy just equal or less than that corre-
sponding to Bragg re�ection and to destabilize electrons with a larger en-
ergy. Hence, special stability would be expected for metals with just the right
number of electrons. This number is proportional to the volume of a poly-
hedron in reciprocal space (the so-called Brillouin-Jones zone), corresponding
to the crystallographic planes giving rise to the perturbation. For instance,
the corresponding polyhedron for the -alloys is bounded by twelve {330}
and twenty-four {411} planes (as derived from x-ray di¤raction data) and
contains 22.5 electrons per 13 atoms,[123] a �gure close to the expected ratio
e=a = 21=13.
Although QCs have a dense reciprocal space, only a few di¤raction peaks

have very strong intensities. The Hume-Rothery criterion can then be applied
to QCs by introducing a pseudo-Brillouin zone with the help of the most
intense di¤raction spots.[124, 125] Due to their great symmetry, in the case
of icosahedral QCs this zone is quite close to spherical shape, so that the
di¤raction condition can be expressed in the form

Khkl = 2kF ; (3.9)

where Khkl is the reciprocal vector of the considered di¤raction plane, kF =
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3
p
3�2n is the radius of the Fermi sphere, and n is the electron number per

unit volume. Eq.(3.9) has been successfully used to explain the stability of
i-QCs containing elements with a full d-band, like Al56Li33Cu11 (e=a = 2:12),
Zn43Mg37Ga20 (e=a = 2:2), Zn60Mg30(RE)10 (e=a = 2:1), or Zn80Sc15Mg5
(e=a = 2:15), by adopting the valence values Li = 1, Mg = 2, Sc = 3; Ga = 3,
and RE = 3. In all these samples the redistribution of electronic states due to
the Fermi sphere-pseudo Brillouin zone interaction gives rise to a signi�cant
reduction of the density of states (pseudogap) close to the Fermi energy. [98,
104, 126]

For alloys containing a small concentration of a transition element one can
properly extend the Hume-Rothery mechanism by assuming that transition
atoms take electrons from the conduction band, hence adopting a negative
e¤ective valence.[127] Nevertheless, the increase of electrostatic energy due
to a transfer of several electrons on one atom is unrealistic in metallic al-
loys. Subsequent studies based on the Linear-Mu¢ n-Tin-Orbital method[128]
provided a more suitable physical picture to account for the apparent nega-
tive valence. According to this view this e¤ect arises from a combined ef-
fect of strong hybridization between the sp states and the transition metal
d orbitals along with the di¤raction of sp states by Bragg planes. As a
consequence, there is an increase of the sp component of the DOS below
the Fermi energy as compared to the free electron DOS, but contrarily to
the d orbitals these additional states are delocalized and do not lead to a
strong electrostatic energy.[28] Thus, in QCs bearing transition metal atoms,
such as AlCu(Fe,Ru,Os) or AlPd(Mn,Re), the presence of hybridization ef-
fects between sp aluminum states and 3d transition metal states enhances
the (structure related) Fermi surface-Brillouin zone di¤raction e¤ect, further
deepening the pseudogap close to the Fermi level. In fact, the role of sp-d hy-
bridization in both cohesion energy and transport properties has been demon-
strated for a series of QCs belonging to the AlCu(Fe,Ru) and AlPd(Mn,Re)
families.[129, 130, 131, 132, 133]

The precise value of the e¤ective valence of transition metals generally de-
pends on the approach used and the considered sample. Some representatives
values are listed in Table 3.4 for the sake of illustration.

TABLE 3.4
E¤ective valence values for some typical transition metals.

Cr Mn Fe Co Ni
Raynor �4:66 �3:66 �2:66 �1:61 �0:71
LMTO[28] �3:2 �2:7(�2:0) �2:5 �1:3(�0:9) �1:0

Making use of Raynor�s values (along with Pd = 0) one obtains e=a =
1:75 and e=a = 1:73 for Al65Cu20Fe15 and Al70Pd20Mn10, respectively. By
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comparing with the electron per atom ratio obtained in the case of stable QCs
not containing transition metal atoms (i.e., e=a = 2:1�2:2), we conclude that
they belong to di¤erent Hume-Rothery families. In fact, on the basis that QCs
and their approximants share similar electron concentrations the possibility
of obtaining new quasicrystalline compounds via pseudogap electronic tuning
has rendered promising results in the CaAuIn and MgCuGa systems.[134]
The binary i-Cd(Yb,Ca) family, which is composed of divalent atoms, has
e=a = 2:0, a value which lies close to that of the full d band representatives.
Notwithstanding this, the role played by hybridization e¤ects in the stability
of the i-Cd(Yb,Ca) phase is signi�cantly larger than that coming from the
Fermi-surface-Brillouin zone mechanism in this binary QC.[135, 136] In this
case the orbitals involved in the hybridization process come from occupied Cd-
5p and unoccupied Yb-5d (or Ca-3d) orbitals, which highlights the importance
of chemical bonding aspects in these quasicrystalline compounds. In fact, the
in�uence of sp-d hybridization on the electronic structure of di¤erent Al-Mn
alloys has been recently studied by photoelectron spectroscopy, and it has
been con�rmed that these hybridization e¤ects alone can produce a pseudo-
gap, even in the absence of Hume-Rothery mechanism.[137]
In summary, two main features can be observed in the DOS close to the

Fermi energy in high quality, thermodynamically stable QCs containing tran-
sition metal atoms: a structurally induced broad minimum (� 1 eV width)
due to the Hume-Rothery mechanism and a narrow and sharply con�ned dip
(� 0:1 eV width) due to hybridization e¤ects involving the transition metal
bands. [138] The physical existence of the electronic pseudogap has received
strong experimental support during the last decade, as indicated by mea-
surements of the speci�c heat capacity, [139] photoemission, [140] soft x-ray
spectroscopies,[141, 142] magnetic susceptibility, and nuclear magnetic reso-
nance probes.[143]

3.3.2 Fine spectral features

As we have previously commented, the presence of a pseudogap is a generic
feature of QCs, but it is not a speci�c one, since certain periodic crystals
can also exhibit a substantial depletion of the electronic DOS close to the
Fermi level.[144] In this regard, the possible existence of a spiky structure in
the electronic DOS over an energy scale of about 10 meV, obtained in self-
consistent ab initio calculations dealing with several suitable quasicrystalline
approximants,[145] was considered as a promising characteristic feature of
quasiperiodic crystals DOS. In this sense, it was argued that these peaks
may stem from the structural quasiperiodicity of the substrate due to cluster
aggregation,[108] or d-orbital resonance e¤ects.[146]
Experimental investigation of AlCuFe quasicrystalline �lms by scanning

tunneling spectroscopy at low temperatures gave evidence for a narrow, sym-
metric gap of about 60meV wide located around the Fermi level.[147] A sub-
sequent STM investigation of better resolution on AlCuFe and AlPdRe qua-
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FIGURE 3.17
The di¤erential conductance for the Al63Cu25Fe12-Al tunnel junction at a
temperature of T = 2 K at two di¤erent energy scales: �60 meV (main frame)
and �300 meV (inset). Data �le courtesy of R. Escudero. (Adapted from
ref.[151]. Reprinted �gure with permission from Maciá E 2004 Phys. Rev. B
69 132201 c 2004 by the American Physical Society.)

sicrystalline ribbons con�rmed the presence of a pseudogap of about 50meV
wide, but did not show evidence for �ner structures in the DOS over the energy
region extending about 0:5 eV from the Fermi level.[148] The existence of a
sharp DOS valley of about 20meV at the Fermi level in both quasicrystalline
and approximant phases has been con�rmed by nuclear magnetic resonance
studies, which probe the bulk properties of the considered samples.[149] All
these observations indicate that the dip centered at the pseudogap is not a
surface feature and that both its width and depth are sample dependent.
The dependence of the pseudogap structure with the temperature was also
investigated by means of tunnelling and point contact spectroscopy, and it
was reported that the width of the broad pseudogap remains essentially un-
modi�ed as the temperature is increased from 4K to 77K. On the contrary,
the dip feature centered at the Fermi level exhibits a signi�cant modi�cation,
deepening and narrowing progressively as the temperature is decreased.[150]

In Fig.3.17 we show low temperature tunneling spectroscopy measurements
corresponding to the quasicrystalline sample i-Al63Cu25Fe12:[150] These mea-
surements reveal a broad pseudogap extending over an energy scale of about
0.6 eV (shown in the inset) along with some �ne structure close to the Fermi
level (labeled 1 and 2 in the main frame). The broad pseudogap stems from
the Fermi surface pseudo-Brillouin zone interaction, while the dips may be
respectively related to hybridization e¤ects between d-Fe states and sp-states
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(feature labeled 1 in Fig.3.17) and d-orbital resonance e¤ects (feature labeled
2 in Fig.3.17). Nevertheless, the possible existence of the spiky component of
the DOS is still awaiting for a de�nitive experimental con�rmation.[152, 153]
In fact, di¢ culties in the experimental investigation of �ne structure in the
DOS arise from the requirement of a high energy resolution, as the peaks and
gaps to be observed are only a few meV wide. Thus, as we have previously
mentioned, both high resolution photoemission and tunneling spectroscopies
have failed to detect the theoretically predicted dense distribution of spiky
features around the Fermi level. Several reasons have been invoked in or-
der to explain these unsuccessful results. Among them the existence of some
residual disorder present even in samples of high structural quality has been
invoked as a plausible agent to smear out the �ner details of the DOS.[154] It
has also been argued that photoemission and STM techniques probe the near
surface layers, so that sharp features close to the pseudogap could be removed
by subtle structural deviations near the surface from that of the bulk, as those
reported for annealed QC surfaces.[155]
On the other hand, detailed analysis of higher-resolution, extensive ab-

initio calculations of several QC approximants suggests that a signi�cant
contribution to the spiky DOS component may probably stem from numer-
ical artifacts,[156] hence explaining the absence of experimental evidences.
Notwithstanding this, recent tunnelling spectroscopy measurements performed
in icosahedral QCs at low temperature (5:3K) have provided additional exper-
imental support for the existence of a large number of energetically localized
features close to the Fermi level in the electronic structure of the 5-fold surface
of an i-AlPdMn sample at certain local regions.[157]

3.4 Phenomenological transport models

3.4.1 Spectral conductivity models

An important open question in the �eld regards whether the purported
anomalies in the transport properties observed in high-quality quasicrystals
can be satisfactorily accounted for by merely invoking band structure e¤ects
or, conversely, they must be traced back to the critical nature of the electronic
states. At this stage, it seems quite reasonable that the proper answer should
likely require a proper combination of both kinds of e¤ects.
In fact, on the one hand, certain experimental facts, such as the relative

insensitivity of the speci�c heat electronic term  to thermal annealing as
compared to the strong dependence of the electrical conductivity, suggest
that the low values of residual conductivity �(0) cannot be satisfactorily ex-
plained by solely invoking the existence of the pseudogap. This conclusion
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FIGURE 3.18
Spectral conductivity curve in the energy interval �1 eV around the Fermi
level as obtained from Eq.(3.10) for the electronic model parameter values i
and �i indicated in the frame.

is further stressed by the unrelated variations of �4K and  among di¤erent
AlPdRe samples.[15] On the other hand, it has been suggested that when the
energy spacing between the electronic bands in the vicinity of Fermi level be-
comes very small, as it occurs in the case of quasicrystalline approximants, the
transport may turn out to be anomalous because tunneling occurs between
di¤erent bands, causing the instability of the wave packet coherence.[159]

In order to make a meaningful comparison between band structure calcula-
tions and experimental measurements one should take into account possible
phason, �nite lifetime, and temperature broadening e¤ects. In so doing, it is
observed that most �ner details in the DOS are signi�cantly smeared out and
only the most conspicuous peaks remain in the vicinity of the Fermi level at
room temperature.[101] These considerations convey one to reduce the number
of main spectral features necessary to capture the most relevant physics of the
transport processes. To this end, it is useful to consider the spectral conduc-
tivity function, �(E); de�ned as the T �! 0 conductivity with the Fermi level
at energy E. Generally speaking the conductivity spectrum should take into
account both the DOS structure and the di¤usivity, D(E); of the electronic
states, according to the relationship �(E) / N(E)D(E): Thus, although it
may be tempting to assume that the �(E) function should closely resemble the
overall structure of the DOS, it has been shown that dips in the �(E) curve
can correspond to peaks in the DOS at certain energies.[160, 161, 162, 163]
This behavior is likely to be related to the peculiar nature of critical electronic
states close to the Fermi level.[163, 164, 165, 166]
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Two fruitful results have been reported regarding the main features of the
spectral conductivity function in QCs. On the one hand, it has been shown
that the main qualitative features of the �(T ), S(T ); and RH(T ) curves can
be accounted for by considering an asymmetric spectral conductivity func-
tion characterized by a broad minimum exhibiting a pronounced dip within
it, hence encompassing the transport properties of both amorphous phases
and QCs within a uni�ed scheme.[22] On the other hand, a series of ab ini-
tio studies have shown that the electronic structure of both QCs and ap-
proximant phases belonging to the AlCu(Fe,Ru) and AlPd(Mn,Re) icosa-
hedral families can be satisfactorily described in terms of a spectral resis-
tivity, �(E) = ��1(E), exhibiting two basic spectral features close to the
Fermi level, namely, a wide and a narrow Lorentzian peak, according to the
expression,[160, 161, 162, 167]

�(E) = ��

�
1

(E � �1)2 + 21
+

�2
(E � �2)2 + 22

��1
; (3.10)

where the wide Lorentzian peak is related to the Hume-Rothery mechanism
and the narrow Lorentzian peak is related to sp-d hybridization e¤ects. Quite
remarkably, this model is able to properly �t the experimental �(T ) and S(T )
curves in a broad temperature range. This model includes six parameters, de-
termining the Lorentzian�s heights (��=i) and widths (� i), their positions
with respect to the Fermi level, �i, and their relative weight in the overall
structure, � > 0. The parameter �� is a scale factor measured in (
cm eV)�1

units. Suitable values for these electronic model parameters can be obtained
by properly combining ab initio calculations of approximant phases with ex-
perimental transport data of icosahedral samples within a phenomenological
approach.[151, 168, 169, 170] In Fig.3.18 the overall behavior of the �(E)
curve is shown for a suitable choice of the model parameters. By comparing
this �gure with Fig.3.17 we see that Eq.(3.10) properly captures the main
spectral features of realistic samples.

3.4.2 Transport coe¢ cients

From the knowledge of the spectral conductivity function the temperature-
dependent transport coe¢ cients can be obtained by means of the Kubo-
Greenwood version of the linear response theory.[171, 172, 173] The central
information quantities are the kinetic coe¢ cients

Lij(T ) = (�1)i+j
Z
�(E) (E � �)i+j�2

�
� @f
@E

�
dE; (3.11)

where f(E;�; T ) is the Fermi-Dirac distribution function, E is the electron
energy, and � is the chemical potential. In this formulation all the microscopic
details of the system are included in the �(E) function. From the knowledge
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of the kinetic coe¢ cients one obtains the electrical conductivity

�(T ) = L11(T ); (3.12)

the thermoelectric power,

S(T ) =
1

jejT
L12(T )
�(T )

; (3.13)

the electronic thermal conductivity,

�e(T ) =
1

e2T
L22(T )� T�(T ) S(T )2; (3.14)

and the Lorenz function

L(T ) � �e(T )

T�(T )
(3.15)

in a uni�ed way. As a �rst approximation one generally assumes �(T ) �
EF : Then, by expressing Eqs.(3.12-3.15) in terms of the scaled variable x �
(E � �)�, where � � (kBT )

�1, the transport coe¢ cients can be rewritten
as[62, 66, 174, 175]

�(T ) =
J0
4
; (3.16)

S(T ) = �kBjej
J1
J0
; (3.17)

�e(T ) =
k2BT

4e2

�
J2 �

J21
J0

�
; (3.18)

L(T ) =

�
kB
eJ0

�2 ����J0 J1J1 J2

���� ; (3.19)

in terms of the reduced kinetic coe¢ cients

Jn(T ) =

Z
xn�(x) sech 2(x=2)dx : (3.20)

These kinetic coe¢ cients, in turn, can be expressed in the form

J0c
�1
0 =

4�2

3
��2 + a3�

�1H1 + a4H0 + 4a0; (3.21)

J1c
�1
0 =

4�2

3
a1�

�1 + a5H1 + a3�(4� q0H0);

J2c
�1
0 =

28�

15

4

��2 + a6�H1 + a5(4� q0H0)�
2 +

4�2

3
a0;

where c0 � �� (1 + �2)
�1, and the coe¢ cients ai were de�ned in Ref.[62].

We have introduced the auxiliary integrals

Hk(�) �
1Z

�1

xk

��2x2 � 2��1q1x+ q0
sech 2(x=2)dx; (3.22)
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where q0 � ""21"
2
2 (1 + �2)

�1, q1 = (1�2 + ��12) (1 + �2)
�1
; "2i � 2i +

�2i ; and " � 1"
�2
1 + �2"

�2
2 . By inspecting Eq.(3.22) we realize that the

auxiliary integral H1 identically vanishes in the case q1 = 0; due to the odd
parity of the integrand. In that case, taking into account the Fourier transform
relationship

1

x2 + a2
=
1

2a

1Z
�1

e�a!ei!xd!; (3.23)

the auxiliary integral H0 can be properly rearranged in the form

H0(�) �
�2

2a

1Z
�1

e�a!d!

1Z
�1

ei!x sech 2
�x
2

�
dx; (3.24)

where a2 � q0�
2. Now, the second integral in Eq.(3.24) is just the Fourier

transform of the function 4�! cosech (�!); so that one �nally obtains [66]

H0 �
2��2

a

1Z
�1

e�a!! cosech (�!)d! = 4q�10 ~�&H(2; 1=2 + ~�); (3.25)

where ~� � pq0�=2� is a scaled variable and &H(s; a) �
P1
k=0(k+ a)

�s is the
Hurwitz Zeta function, which reduces to the Riemann Zeta function in the
case a = 1.[176] Making use of these analytical expressions Eq.(3.21) can be
rearranged in the matrix form0@J0

J1
J2

1A =
4�2c0
3

0@ 3
�2
~J00 0 1

0 ~J11 0
~J20 0 7�2

5

1A0@ 1

��1

��2

1A ; (3.26)

where ~J00 � a0+a4q
�1
0
~�&H ; ~J11 � a1+12a3q

�1
0 f(~�); ~J20 � a0+12a4q

�1
0 f(~�);

with f(~�) � ~�
2
(1 � ~�&H): In this way, under the assumption that q1 is neg-

ligible in Eq.(3.22), one obtains closed analytical expressions for the di¤erent
transport coe¢ cients. It turns out that this assumption is a reasonable one
for several QCs of interest. In fact, as we will see in Section 3.4.3, the values
q1 = �0:025 eV, q1 = �0:015 eV, and q1 = �8:8 � 10�5 eV are respec-
tively obtained for AlMnSi approximant phases,[170] i-AlCuFe QCs,[151] and
i-AlPdRe QCs.[177] We notice that the smaller q1 value corresponds to higher
structural quality QCs whereas the largest one is obtained for an approximant
crystal. Accordingly, we can con�dently assume the limiting behavior q1 ! 0
properly applies to ideal QCs.
In the more realistic case q1 6= 0 we can obtain useful information by ex-
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panding Eq.(3.22) in Taylor series around the Fermi level to get

H0 '
4

q0

�
1 +

�2

3

4q21 � q0
q20

��2
�
; (3.27)

H1 '
8�2q1�

�1

3q20

�
1 +

14�2

5

2q21 � q0
q20

��2
�
:

In this way, one obtains approximate analytical expressions for the electrical
conductivity and Seebeck coe¢ cient curves, [178]

�(T ) = �(0)[1 + bT 2�(T )]; (3.28)

with
�(T ) = �2 + �4bT

2 + �6b
2T 4; (3.29)

and

S(T ) = �2jejL0T
�1 + �3bT

2

1 + �2bT
2 + �4b

2T 4
; (3.30)

where b � e2L0; L0 = �2k2B=3e
2 = 2:44 � 10�8 V2K�2 is the Lorenz num-

ber. These expressions are valid in the low temperature regime, up to about
� 50� 100 K.[62] The coe¢ cients �n can be explicitly expressed in terms of
the electronic model parameters and contain detailed information about the
electronic structure of the sample. For instance, the �rst order phenomeno-
logical coe¢ cients are de�ned in terms of the electronic model parameters as
[178]

�1 � �
1�1"

4
2 + ��2"

4
1

""41"
4
2

; (3.31)

�2 �
1"

6
2

�
"21 � 4�21

�
+ �"61

�
"22 � 4�22

�
""61"

6
2

+ 4�21; (3.32)

and can be related to the topology of the spectral conductivity function �(E)
by means of the following expressions,

�1 =
1

2

�
d ln�(E)

dE

�
EF

; (3.33)

and

�2 = 2�
2
1 +

1

2

�
d2 ln�(E)

dE2

�
EF

: (3.34)

Thus, from the knowledge of the phenomenological coe¢ cients �1 and �2 we
can obtain suitable information concerning the slope and curvature of the
DOS close to EF .
According to Eq.(3.28), the electrical conductivity temperature dependence

can be expressed as a product involving two di¤erent contributions. The �rst
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FIGURE 3.19
Diagram comparing the temperature dependences of the �(T ) function de�ned
by Eq. (3.29) for di¤erent quasicrystalline samples belonging to the AlCuFe
(�); AlCuRu (O), and AlPdMn () families. Solid lines are a guide for the
eye. ([178] Reprinted �gure with permission from Maciá E 2002 Phys. Rev.
B 66 174203 c 2002 by the American Physical Society.)

one is given by the �(0) factor and describes the residual conductivity of the
sample. This term will be the one responsible for the overall low conduc-
tivity values observed in these materials. The second contribution is given
by the function 1 + bT 2�(T ) and describes the temperature dependence of
the electrical conductivity as the temperature is increased. It is worth noting
that by identifying ��(T ) � �(0)�(T )bT 2; Eq.(3.28) essentially reduces to
the empirically proposed inverse Matthiessen rule given by Eq.(3.1). There-
fore, the second term in Eq.(3.1) can be regarded as a product involving a
universal parabolic function, bT 2; modulated by the sample dependent factor,
�(0)�(T ). The �(T ) contribution can be straightforwardly determined from
experimental data. For the sake of illustration, in Fig.3.19 the temperature
dependence of the �(T ) term corresponding to the samples shown in Fig.3.7
is plotted in a semilog plot. Quite remarkably, the temperature dependence
of the �(T ) function exhibits a nearly universal behavior at high enough tem-
peratures, as expected (see Section 3.1.2.2).

As we have mentioned in Section 3.1.2.5, in the low temperature regime
the thermoelectric power of QCs belonging to the i-AlCu(Fe,Ru,Os) and i-
AlPd(Mn,Re) families exhibits a linear dependence with T . At temperatures
above � 50� 100 K, however, the S(T ) curve clearly deviates from the linear
behavior, exhibiting pronounced curvatures. This behavior can be readily de-
scribed by means of Eq.(3.30). In fact; in the low temperature limit Eq.(3.30)
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reduces to the linear form

S(T ! 0) = �2jejL0�1T � m0T: (3.35)

The sign of the slope m0 is determined by the sign of the parameter �1
which, in turn, depends on the electronic structure of the sample according
to Eq.(3.33). Therefore, Eq.(3.35) reduces to the well-known Mott�s formula
S = �jejL0(d ln�(E)=dE)E=� in the low temperature limit: It then follows
that Mott�s formula will properly describe the thermoelectric power of QCs
as far as the remaining coe¢ cients �2; �3; and �4 in Eq.(3.30) are negligible
as compared to �1: Since these coe¢ cients are multiplied by the temperature
dependent factors bT 2 and b2T 4; respectively, it is clear that the range of va-
lidity of Mott�s formula will be strongly dependent on the electronic structure
of the sample.

3.4.3 Application examples

In this Section we will illustrate the phenomenological framework intro-
duced in the previous one by relating the main topological features of the
experimental �(T ) and S(T ) curves to certain characteristic features of the
electronic structure of the samples. The key point of this approach relies on
the analytical coe¢ cients �n, which can be regarded as phenomenological pa-
rameters containing information about the electronic structure of the sample.
Since the values of the �n coe¢ cients can be also determined from the analy-
sis of the experimental transport curves, one can obtain useful information
about the spectral conductivity function �(E) from the topological features
present in these curves. The �rst step consists in determining the values of
the �n coe¢ cients from suitable �ts to the experimentally obtained transport
curves. The next step will be then to determine the electronic model para-
meters i, �i, and � from the obtained �n values making use of previously
derived analytical formulae. Due to the involved nature of the analytical ex-
pressions relating the phenomenological coe¢ cients to the model parameters,
this is a rather cumbersome task. Fortunately, even the partial knowledge of
some phenomenological coe¢ cients su¢ ces to gain some physical insight onto
certain relevant features of the electronic spectrum of the sample, as we will
see in the following examples.

3.4.3.1 Icosahedral quasicrystals

Let us consider the quasicrystalline sample i-Al63Cu25Fe12 whose di¤erential
conductance curve measured at 2 K is shown in Fig.3.17. Since some spectral
features are apparent in this tunneling spectroscopy measurement one may be
tempted to extract the model parameters de�ning the spectral conductivity
function �(E) directly from them. From a �tting analysis of the data shown
in Fig.3.17 one gets 1 = 587�1 meV, �1 = �5:2�0:5 meV, �2 = �16:1�0:5



106 Aperiodic Structures in Condensed Matter

FIGURE 3.20
Comparison between the temperature dependence of the Seebeck coe¢ cient
of Al63Cu25Fe12 quasicrystal in the temperature range 1-300 K as deter-
mined from experiment (open circles) and the analytical expression given by
Eq.(3.30) The solid line is obtained by explicitly considering the chemical po-
tential temperature dependence.([151] Reprinted �gure with permission from
Maciá E 2004 Phys. Rev. B 69 132201 c 2004 by the American Physical
Society.)

meV, and 2 = 7 � 1 meV. However, this 2 value, describing the electronic
structure at very low temperatures, cannot be straightforwardly used in or-
der to describe the transport coe¢ cients at signi�cantly higher temperatures.
In fact, ab initio calculations showed that narrowest spectral features half-
width values progressively broaden as the temperature increases.[162] Indeed,
a thermal broadening of the dip around the Fermi level has been experimen-
tally reported for di¤erent quasicrystalline samples.[150]

To circumvent this shortcoming it is convenient to derive the width of the
narrowest spectral feature by taking into account physical information con-
tained in the thermopower curve, which is extremely sensitive to the �ner
details in the electronic structure. From a linear �t to the thermopower
data shown in Fig.3.20 (in the temperature range 6 � 70 K) one obtains
m0 = �0:219 � 0:002 �VK�2, and making use of Eq.(3.35) we have �exp1 =
+4:49 � 0:03 (eV)�1. Plugging the obtained 1; �1; �2; and �

exp
1 values into

Eq.(3.31) we get 2 = 55 � 1 meV. This value is about eight times larger
than the value originally obtained from tunneling measurements, hence con-
�rming the importance of thermal broadening e¤ects. The relative weight of
both Lorentzian peaks is then determined from the expression (derived from
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Eq.(3.31))

� = �1
2

�
"2
"1

�4
�1 + �

exp
1 "21

�2 + �
exp
1 "22

; (3.36)

which yields � = 1:07� 0:03. Finally, the conductivity scale parameter �� can
be determined from the knowledge of the experimental residual conductivity
value �(0) as[178]

�� =
�(0)

�
(1"

�2
1 + �2"

�2
2 ); (
�1cm�1eV�1): (3.37)

Taking the low temperature electrical conductivity value �(0) = 188 (
cm)�1

measured for an i-Al63Cu25Fe12 sample at 4:2 K,[179] one gets �� = 1180� 90
(
cmeV)�1. In Fig.3.20 we compare the experimental thermopower curve
(open circles) with the analytical expressions given by Eq.(3.30) (dashed line).
At low temperatures S(T ) follows a linear behavior up to about T1 ' 70 K.
At higher temperatures the thermopower progressively deviates from linearity,
showing a broad minimum. Finally, as the temperature is further increased the
S(T ) curve steadily increases, suggesting the probable existence of a crossing
point where the thermoelectric power will change its sign, though experimental
data do not allow for an accurate estimate of this crossing temperature.
By comparing Figs.3.17 and 3.20, we can gain some physical insight on the

relationship between the electronic structure and transport properties. First,
we note that the deviation from the linear behavior starts when the thermal
window reaches a half-width of about �E ' kBT1 = 6:0 meV. This value is
close to the spectral peak position �1 = �5:2 meV; hence suggesting that as
far as the thermal window remains located inside the pseudogap�s dip fea-
ture (box 1 in Fig.3.17), the thermopower exhibits a metallic-like behavior.
Then, as temperature increases and charge carriers located at the little bump
between both dip features start to play a more signi�cant role in the trans-
port properties, the S(T ) curve progressively deviates from linear behavior,
attaining a broad minimum at T2 = 216 K (determined from a 4th degree
polynomial �tting). The thermal window half-width for this temperature is
�E ' kBT2 = 16:9 meV. This value is very close to the spectral resistivity
peak position �2 = �16:1 meV, hence suggesting that the minimum of the
thermopower occurs when the charge carriers located within the second dip
spectral feature (box 2 in Fig.3.17) are playing a major role in the transport
properties. Afterwards, as the temperature is further increased and the states
belonging to the broad pseudogap component begin to contribute signi�cantly
to the transport, the thermoelectric curve progressively rises towards positive
values. Accordingly, one observes a progressive transition from metallic-like to
semiconductor-like thermopower signatures as the Fermi level shifts through
both spectral features due to a progressive temperature increase.[39, 145, 180]
This example illustrates the potential of this approach in order to gain

information about the electronic structure of quasicrystalline samples from
the study of the experimental S(T ) curves over a broad temperature range.
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One reasonably expects that a sharper view about the main electronic features
of the considered QC samples would ultimately emerge from a combined study
of the di¤erent transport coe¢ cients, �(T ); S(T ) and RH(T ), over di¤erent
temperature ranges. The physical information gained in this way may help
to clarify the possible existence of �ner details in the electronic structure of
quasicrystalline samples, like the much debated spiky features, which remain
a fundamental open question in the science of QCs.

3.4.3.2 Quasicrystalline approximants

This phenomenological approach can straightforwardly be extended to other
systems whose electronic structure around the Fermi level is characterized
by two main peaks separated by a well de�ned pseudogap centered at the
Fermi level. This includes the broad class of icosahedral quasicrystalline ap-
proximants. As a suitable sample we consider the Al82:6�xMn17:4Six (x = 9)
�-phase,[181] which is a well documented representative of the 1/1-cubic ap-
proximants class. This approximant exhibits a sign reversal in the thermoelec-
tric power with increasing temperature (a feature which cannot be accounted
for in terms of the Mott formula usually employed to study metallic alloys),
in close analogy with the behavior observed in some high quality QCs. The
main goal of this example study is to gain some insight into those physical
properties intrinsically related to local order e¤ects as compared to those re-
lated to the characteristic quasiperiodic order of QCs. To this end, we �rst
determine the phenomenological coe¢ cients values from a combined �tting
analysis of di¤erent experimental transport curves. Then we derive the ap-
proximant crystal spectral conductivity function and compare it with that
corresponding to the i-QC sample studied in Section 3.4.3.1.
In Fig.3.21 we show the temperature dependence of the electrical conduc-

tivity for the Al73:6Mn17:4Si9 cubic approximant. The curve exhibits a typical
metallic behavior up to � 100 K, where the conductivity attains a minimum
and then it progressively increases as the temperature is further increased.
The �(T ) curves of several QCs also exhibit a similar behavior in the low
temperature regime (Fig.3.7).
In Fig.3.22 we show the temperature dependence of the thermoelectric

power for the same approximant phase. The thermopower shows a remark-
able nonlinear behavior, exhibiting a broad minimum at about T1 = 160 K,
and changes its sign twice at about T0 = 50 K and 260 K, respectively. This
anomalous behavior resembles that observed for several icosahedral QCs.[37,
38, 39, 40, 41]
From the knowledge of the complete set of phenomenological parameters

one can derive the corresponding electronic model parameters following the al-
gebraic procedure described in Ref.[170]. In Fig.3.23 we compare the spectral
conductivity functions corresponding to the Al73:6Mn17:4Si9 cubic approxi-
mant and the AlCuFe QC studied in the previous Section. By inspecting this
�gure we see that the spectral conductivity of the quasicrystalline phase is
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FIGURE 3.21
Electrical conductivity as a function of temperature for the Al73:6Mn17:4Si9
cubic approximant (open circles). The solid line corresponds to the best �t
curve �(T ) = �0(1 + BT 2 + CT 4 + DT 6) with �0 = 312:6 � 0:2 (
cm)�1;
B = (�3:50�0:08)�10�6 K�2; C = (1:91�0:02)�10�10 K�4; D = (�1:07�
0:02)� 10�15 K�6; with a correlation coe¢ cient r = 0:9824:([170] Reprinted
�gure with permission from Maciá E, Takeuchi T, and Otagiri T 2005 Phys.
Rev. B 72 174208 c 2005 by the American Physical Society.)
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FIGURE 3.22
Thermoelectric power as a function of temperature for Al73:6Mn17:4Si9 cubic
approximant (open circles). The solid line corresponds to the best �t curve
given by S(T ) = �0:0488T (a + fT 2 + gT 4)=(1 + BT 2 + CT 4 + DT 6) with
a = 0:29� 0:05 (eV)�1; f = (6� 2)� 10�5 K�2; and g = (�1:1� 0:3)� 10�9
K�4; with Pearson �2 = 0:562. ([170] Reprinted �gure with permission from
Maciá E, Takeuchi T, and Otagiri T 2005 Phys. Rev. B 72 174208 c 2005
by the American Physical Society.)
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FIGURE 3.23
Spectral conductivity function derived from the electronic model parame-
ters obtained for the Al73:6Mn17:4Si9 cubic approximant (solid line) and an
Al63Cu25Fe12 icosahedral QC (dashed line). ([170] Reprinted �gure with per-
mission from Maciá E, Takeuchi T, and Otagiri T 2005 Phys. Rev. B 72
174208 c 2005 by the American Physical Society.)

both deeper and broader than that corresponding to the approximant phase,
thus indicating a less e¤ective Hume-Rothery mechanism for the approximant
crystal. On the other hand, the presence of a well de�ned spectral feature at
about �0:03 eV may be indicative of hybridization e¤ects likely related to
bond formation in the approximant sample. Accordingly, these results sup-
port the view that short-range chemical e¤ects are playing a signi�cant role
in the stabilization of approximant phases.[126]

3.4.3.3 Complex metallic alloys

As a �nal example let us consider alloys exhibiting complex unit cells, com-
posed of many (102-103) atoms, but which are not quasicrystalline approx-
imants (see Section 2.5.3). In some cases these alloys also exhibit unusual
physical properties, presumably related to their structural complexity. For
instance, the electrical resistivity of the �0 phase of the Al-Pd-Mn alloys sys-
tem shows an almost negligible temperature dependence between 4 and 300
K (Fig.3.24).[182] While weakly temperature-dependent resistivities are not
uncommon for both amorphous alloys and bulk metallic glasses lacking long-
range ordered crystalline lattices,[104] the temperature-independent resistiv-
ity of �0-Al-Pd-Mn was observed on monocrystalline samples of good lattice
perfection and structural homogeneity.
The corresponding thermopower curves are displayed in Fig.3.25. Their
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FIGURE 3.24
Electrical conductivity of AlPdMn complex alloys as a function of temper-
ature. Solid curves are best �ts obtained by a simultaneous analysis of the
conductivity and thermopower data.

values are small and show a rather smooth behavior with several changes of
the slope within the investigated temperature range. Following the procedure
described in previous sections one obtains the spectral conductivity functions
shown in Fig.3.26. In this �gure the �(E) curves for two �0-AlPdMn samples
are compared to those corresponding to the Al63Cu25Fe12 icosahedral qua-
sicrystal and the Al73:6Mn17:4Si9 1/1 cubic approximant previously studied
(Fig.3.23). We observe that the spectral conductivity curves of these phases
are deeper at Fermi energy and steeper in the wings, indicating the existence
of a pseudogap in both the icosahedral and approximant compounds. The
absence of a pseudogap in the case of �0-AlPdMn samples indicates that the
Hume-Rothery mechanism is therefore less e¤ective and the electrical con-
ductivity is consequently higher. The �(E) curves of the �0-AlPdMn sam-
ples are relatively �at as compared to those corresponding to Al63Cu25Fe12
and Al73:6Mn17:4Si9 compounds. Thus, the origin of the almost temperature-
independent electrical conductivity of the �0-AlPdMn complex alloys can be
then traced back to the speci�c form of the spectral conductivity, which ex-
hibits very weak variation over the energy scale of several meV around the
Fermi level. In contrast to the i-AlPdMn phases, �0-AlPdMn complex metallic
alloys do not exhibit a pseudogap at the Fermi level in the spectral conduc-
tivity. Yet, they show some �ne structure that yields observable e¤ects in the
temperature-dependent thermoelectric power curves. These electronic struc-
ture related e¤ects highlight the di¤erence between �0-AlPdMn phase and
conventional free-electron alloys.
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FIGURE 3.25
Thermoelectric power of AlPdMn complex alloys as a function of tempera-
ture. Solid curves are best �ts obtained by a simultaneous analysis of the
conductivity and thermopower data. (From ref.[169]. With permission from
IOP Publishing Ltd.)

FIGURE 3.26
Comparison among the spectral conductivity functions corresponding to qua-
sicrystals, approximant phases, and complex metallic alloys. (From ref.[169].
With permission from IOP Publishing Ltd.)
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4
Aperiodically layered materials

4.1 A novel design: Fibonacci superlattices

The notion of quasiperiodic crystal was a major epistemological breakthrough
in condensed matter science. It provides a natural extension of the classical
crystal notion when the periodic order of the atoms is replaced by a qua-
siperiodic one. It was then natural that the notion of quasiperiodic order
was readily applied to other possible building blocks in the arrangements of
matter. Thus, shortly after the pioneering works by Shechtman and Stein-
hardt, the notion of quasiperiodic order was extended from the atomic scale
proper of metallic alloys to the submicrometer scale typical of semiconductor
heterostructures (see Section 1.4). In fact, on 21 October 1985, Roberto Mer-
lin and co-workers reported in Physical Review Letters the �rst realization
of a semiconductor-based quasiperiodic superlattice.[1] The sample, grown
by molecular beam epitaxy, consisted of two basic building blocks arranged
according to the Fibonacci sequence (Fig.4.1). These building blocks were
each composed of a bilayer of AlAs and GaAs and satis�ed the thickness ratio
dA=dB ' 1:595, a value relatively close to the Golden mean value � = 1:618:::.
The sample consisted of F14 = 377 bilayers and had a total thickness of � 1:85
�m (nominal value L = dAF13 + dBF12 = 1:91 �m).
The room-temperature x-ray di¤raction pattern showed a signi�cant num-

ber of peaks superimposed to the main satellite re�ections of the GaAs layers
(inset Fig.4.2). These peaks occur in a geometric progression with � as a
common ratio, according to the expression

qm1;m2 =
2�

�
m1�

m2 ; (4.1)

where � � �dA + dB is an average of the relative thicknesses of blocks A
and B; and mi are integers. This expression indicates that the peaks can be
labeled as a series of multiples of the Golden mean, hence highlighting the
self-similar arrangement of the di¤raction peaks (we recall that for a periodic
superlattice the distance between successive peaks is approximately constant).
In fact, one can easily check that Eq.(4.1) satis�es the relationship qm1;m2+1 =
qm1;m2

+ qm1;m2�1. Making use of Eq.(4.1) the x-ray results were also used
to obtain an experimental value for the Golden mean: � exp = 1:630� 0:015:
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FIGURE 4.1
Schematic arrangement of GaAs and AlAs bilayers deposited following the
Fibonacci sequence ABAAB.... The AlAs layers (electronic barriers) have all
the same (nominal) thicknesses (17 Å), whereas the GaAs layers (electronic
wells) take on two di¤erent values (42 and 20 Å). (Values taken from ref.[2].)
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The Fourier transform of the ideal Fibonacci sequence consists of a dense
set of di¤raction peaks given by the wave vectors,[3]

qn1;n2 =
2�

�
(n1 + n2�); (4.2)

where ni are integers. Keeping expression (2.3) in mind one realizes that
Eq.(4.2) reduces to Eq.(4.1) when n1 and n2 are successive Fibonacci num-
bers. In actual experiments the entire di¤ractogram pro�le is dominated by
peaks which can be properly labeled in terms on integers belonging to the set
f1; 2; 3g, which are Fibonacci numbers themselves. This fact indicates that
Eq.(4.1) and (4.2) are essentially equivalent in practice.
According to these expressions one expects that every increase in exper-

imental resolution will reveal new peaks in what was previously unresolved
background. This characteristic feature was nicely demonstrated by high-
resolution x-ray di¤raction (synchrotron) studies, clearly demonstrating the
presence of two kinds of order (namely, periodic and quasiperiodic) coexisting
in the same sample at di¤erent length scales (Fig.4.2).[4] This novel feature
distinguishes quasiperiodic superlattices from usual periodic ones, opening
promising avenues for new materials design.
In fact, since di¤erent physical phenomena have their own relevant physical

scales, by properly matching the characteristic length scales of elementary ex-
citations propagating through the system, one can exploit the physical prop-
erties related to the quasiperiodic order we have introduced in the system.
To this end, one should consider the possible role of structural imperfections
which are inevitably introduced during the growth process. Quite interest-
ingly, detailed structural characterization studies have shown that disorder
does not seriously disrupt the overall coherence of the quasiperiodic sequence,
so that most physical properties related to quasiperiodic order are robust
enough. This property prompted the interest in the potential applications
of quasiperiodic layered structures composed of di¤erent materials arranged
according to di¤erent kinds of aperiodic sequences.[2]

4.2 General aperiodic heterostructures
4.2.1 Substitution sequences and matrices

The rapid progress achieved in growth technologies, like molecular beam epi-
taxy, magnetron sputtering, or vacuum deposition, has made it possible to
grow arti�cial structures with di¤erent aperiodic modulations of chemical
composition along the growth direction. For the sake of illustration in Table
4.1 we list some representatives among the plethora of aperiodic heterostruc-
tures grown during the last two decades.
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FIGURE 4.2
High-resolution di¤raction pro�le of the GaAs/AlAs Merlin�s Fibonacci su-
perlattice. The dots represent synchrotron x-ray data and the line is the
calculated Fourier intensity. A low-resolution scan showing the overall ap-
pearance of the x-ray scattering is plotted in the inset. The shaded region
indicates the range of the high-resolution scan shown in the main �gure. For
relatively great reciprocal space vectors one observes a series of evenly spaced
re�ections, corresponding to the (002), (004), and (006) GaAs planes, while
for smaller reciprocal space vectors one obtains a dense set of peaks which
can be properly labeled by successive powers of � progression.([4] Reprinted
�gure with permission from Todd J, Merlin R, Clarke R, Mohanty K M and
Axe J D 1986 Phys. Rev. Lett. 57 1157 c 1986 by the American Physical
Society.)
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TABLE 4.1
Aperiodic superlattices based on semiconductor materials have been
mainly grown by molecular beam epitaxy (MBE), most metallic
multilayers have been grown by magnetron sputtering (MS), and dielectric
multilayers have been grown by vacuum deposition (VD), lithographic
techniques (L), or electric poling (EP).

MATERIALS SEQUENCE GROWTH REF
GaAs/AlAs Fibonacci MBE 1985 [1]
GaAs/AlAs Thue-Morse MBE 1991[5]

GaAs/Ga1�xAlxAs Fibonacci MBE 1987 [6]
Si/GexSi1�x Fibonacci MBE 1987 [7]

GaAs/Ga0:5Al0:5As/AlAs Ternary self-similar MBE 1990 [8]
Nb/Cu Fibonacci MS 1986 [9]
Nb/Ta Fibonacci MBE 1988 [10]
Ta/Al Fibonacci MS 1991 [11]
Ta/Al Ternary Fibonacci MS 1992 [12]
Mo/V Precious means MS 1990 [13]
W/Ti Fibonacci MS 1996 [14]
LiNbO3 Fibonacci L 1989 [15]
SiO2/TiO2 Fibonacci VD 1994 [16]
LiTaO3 Fibonacci EP 1997 [17]
PbS/CdS Fibonacci/TM VD 1997 [18]

Na3AlF6/ZnS Cantor VD 2002 [19]
porous Si Thue-Morse 2007 [20]



130 Aperiodic Structures in Condensed Matter

A common feature of all these systems is that the ordering of layers can
be speci�ed in terms of the so-called substitution sequences. A substitution
sequence is formally de�ned by its action on an alphabet A = fA;B;C:::g,
which consists of certain number of letters. In actual realizations each letter
will correspond to a di¤erent type of building block in the heterostructure.
The substitution rule starts by replacing each letter by a �nite word, as it
is illustrated in Table 4.2. The corresponding aperiodic sequence is then
obtained by iterating the substitution rule g starting from a given letter of
the set A in order to obtain an aperiodic string of letters. For instance,
the Fibonacci sequence is obtained from the continued process A ! AB !
ABA! ABAAB ! ABAABABA! ABAABABAABAAB ! ::::

TABLE 4.2
Substitution rules most widely considered in the study of
self-similar layered systems, where n and m are positive integers.

SEQUENCE SET A SUBSTITUTION RULE
Fibonacci fA;Bg g(A) = AB g(B) = A
Silver mean fA;Bg g(A) = AAB g(B) = A
Bronze mean fA;Bg g(A) = AAAB g(B) = A
Precious means fA;Bg g(A) = AnB g(B) = A
Copper mean fA;Bg g(A) = ABB g(B) = A
Nickel mean fA;Bg g(A) = ABBB g(B) = A
Metallic means fA;Bg g(A) = ABn g(B) = A
Mixed means fA;Bg g(A) = AnBm g(B) = A
Thue-Morse fA;Bg g(A) = AB g(B) = BA

Period-doubling fA;Bg g(A) = AB g(B) = AA
ternary Fibonacci fA;B;Cg g(A) = AC g(B) = A

g(C) = B
Rudin-Shapiro fA;B;C;Dg g(A) = AB g(B) = AC

g(C) = DB g(D) = DC
paper folding fA;B;C;Dg g(A) = AB g(B) = CB

g(C) = AD g(D) = CD

Other popular sequence was �rst introduced by Axel Thue in 1906,[21] and
then rediscovered by Morse in 1921.[22] The so-called Thue-Morse sequence
has been extensively studied in the mathematical literature as the prototype of
a sequence generated by substitution. In this case the continued process reads
A ! AB ! ABBA ! ABBABAAB ! ABBABAABBAABABBA ! :::.
The number of letters in this sequence increases geometrically, N = 2n; where
n indicates the iteration order. In the in�nite limit the relative frequency of
both kinds of letters in the sequence takes the same value, i.e., �A = �B =
1=2. This result contrasts with that corresponding to the Fibonacci sequence,
where �A = ��1; and �B = ��2. Another important di¤erence is that in the
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Fibonacci sequence B letters always appear isolated, whereas in Thue-Morse
sequence both dimers AA and BB appear alike.
The introduction of the so-called period-doubling sequence originated in

the theory of dynamical systems. It describes the behavior of any system at
the accumulation point of a period-doubling cascade.[23] For this sequence
the continued process reads A! AB ! ABAA! ABAAABAB ! :::. The
number of letters in this sequence increases as N = 2n (like the Thue-Morse
sequence) but letters B appear always isolated (like the Fibonacci sequence)
and their relative frequency in the in�nite limit is �A = 2=3; and �B = 1=3.
To each substitution rule we can associate a substitution matrix as follows

S =

0BB@
nA[g(A)] nA[g(B)] nA[g(C)] :::
nB [g(A)] nB [g(B)] nB [g(C)] :::
nC [g(A)] nC [g(B)] nC [g(C)] :::

::: ::: ::: :::

1CCA ; (4.3)

where ni[g(j)] indicates the number of times a given letter i appears in the
substitution rule g(j), irrespective of the order in which these letters occur.
The dimension of the substitution matrix is then determined by the number of
di¤erent letters included in the basic alphabet A. For the sake of illustration,
the substitution matrices corresponding to the aperiodic sequences shown in
Table 4.2 are listed in second column of Table 4.3.
It can be checked that all these matrices are primitive, that is, all entries

of SN are strictly positive integers (i.e., sij 6= 0), for some N � 1. This con-
dition guarantees that, (i) the word resulting from the successive application
of the corresponding substitution sequence is self-similar in the N !1 limit,
and (ii) the substitution matrix eigenvalue with larger modulus (sometimes
referred to as Frobenius eigenvalue), say �+, is real, positive and larger than
one.[24] The components of the Frobenius eigenvector, once normalized, read

�A =
�+ � nB [g(B)]

�+ + nB [g(A)]� nB [g(B)]
�B =

nB [g(A)]

�+ + nB [g(A)]� nB [g(B)]
(4.4)

for binary sequences (analogous expressions are obtained for sequences con-
taining three or more letters) and they respectively indicate the frequencies
of letters A and B in the in�nite sequence N !1 limit. For instance, mak-
ing use of the data included in Table 4.3 we readily obtain the well-known
results � =(��1; ��2); � =(1=2; 1=2), and � =(2=3; 1=3), for the Fibonacci,
Thue-Morse, and period-doubling sequences, respectively.
An alternative way of constructing self-similar aperiodic sequences relies on

a successive concatenation process. This process starts with an appropriate
set of short length words, say S0 = A and S1 = AB, and then proceeds by
successively applying a concatenation rule. For instance, in the case Sn =
Sn�1 � Sn�2, where � denotes the concatenation operation, we get S2 = S1 �
S0 = ABA; S3 = S2 � S1 = ABAAB; S4 = S3 � S2 = ABAABABA; and so
on. It is realized that the sequence obtained in this way corresponds to the
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TABLE 4.3
Substitution matrices and their related eigenvalues for the aperiodic sequences listed
in Table 4.2. Those sequences satisfying the Pisot property are explicitly indicated
(bolded names).

SEQUENCE S detS trS EIGENVALUES

Fibonacci
�
1 1
1 0

�
�1 1 �� =

1�
p
5

2

Silver mean
�
2 1
1 0

�
�1 2 �� = 1�

p
2

Bronze mean
�
3 1
1 0

�
�1 3 �� =

3�
p
13

2

Precious means
�
n 1
1 0

�
�1 n �� =

n�
p
n2+4

2

Copper mean
�
1 1
2 0

�
�2 1 �+ = 2; �� = �1

Nickel mean
�
1 1
3 0

�
�3 1 �� =

1�
p
13

2

Metallic means
�
1 1
n 0

�
�n 1 �� =

1�
p
1+4n
2

Mixed means
�
n 1
m 0

�
�m n �� =

n�
p
n2+4m

2

Thue-Morse
�
1 1
1 1

�
0 2 �+ = 2 �� = 0

Period-doubling
�
1 2
1 0

�
�2 1 �+ = 2; �� = �1

ternary Fibonacci

0@ 1 1 00 0 1
1 0 0

1A 1 1 �+ ' 1:466
���2;3�� ' 0:826

Rudin-Shapiro

0B@ 1 1 0 01 0 1 0
0 1 0 1
0 0 1 1

1CA 0 2 �+ = 2; �2 = 0; �3;4 = �
p
2

paper folding

0B@ 1 0 1 01 1 0 0
0 1 0 1
0 0 1 1

1CA 0 3 �+ = 2; �1 = 1; �3;4 = 0
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Fibonacci sequence. In a similar way, the ternary Fibonacci sequence listed
in Table 4.2 can be obtained from the concatenation rule Sn = Sn�1 � Sn�3;
starting with S0 = A; S1 = AB; and S2 = ACB. The construction rule
of the Thue-Morse sequence is somewhat more involved. It is de�ned by
the concatenation rule Sn = Sn�1 � S+n�1; where S+n�1 is the complement of
Sn�1, which is obtained from the substitution rule A+ = B and B+ = A.
This concatenation rule guarantees the presence of a mirror symmetry plane
at the concatenation point for the odd order sequences, which also form a
palindrome, that is a word which reads backwards the same as forwards (e.g.,
ABBABAABBAABABBA for the n = 5 Thue-Morse sequence).

4.2.2 Di¤racting heterostructures

By analyzing the spectrum of a given substitution matrix one can obtain rele-
vant information about the nature of the order present in the related sequence.
In fact, according to the Bombieri-Taylor theorem,[25] if the spectrum of the
substitution matrix S contains a Pisot-Vijayaraghavan number, then the lat-
tice is quasiperiodic; otherwise it is not. A Pisot-Vijayaraghavan number
(also called a Pisot number for short) is a positive algebraic number (i.e., a
number which is obtained from the solution of an algebraic equation) greater
than one, all of whose conjugate elements (the other solutions of the algebraic
equation) have absolute value less than unity. The smallest and second small-
est Pisot numbers are respectively given by the positive root of the equations
x3 � x � 1 = 0 (i.e., x+ ' 1: 324 7) and x4 � x3 � 1 = 0 (i.e., x+ ' 1: 380 3):
The golden mean, satisfying the algebraic equation x2� x� 1 = 0; is another
instance of Pisot number.

We have seen that the presence of a quasiperiodic distribution of scattering
centers is a su¢ cient condition for e¢ cient di¤raction, so that this mathe-
matical property has deep physical implications. Quite remarkably, given a
multilayered structure whose layers are arranged according to a certain sub-
stitution sequence, the study of the Pisot property allows one to relate some
basic features of its di¤raction spectra to the algebraic properties of the cor-
responding substitution matrix. As an illustrative example let us consider
the case of the so-called precious mean sequences, de�ned by the substitution
rule A ! AnB; B ! A (Table 4.2). Among the members of this family we
�nd the golden mean (Fibonacci), silver mean or bronze mean, among oth-
ers. Their Frobenius eigenvalues read (n �

p
n2 + 4)=2 (Table 4.3). Sincep

n2 + 4 > n we conclude that all the representatives of this family satisfy the
Pisot property, so that the corresponding layered structures are quasiperiodic.
Physically this means that their Fourier spectrum can be expressed as a �-
nite sum of weighted �-Dirac functions (i.e., Bragg peaks).[24] In fact, several
experimental studies[13] have con�rmed that quasiperiodic heterostructures
satisfying the Pisot property exhibit discrete di¤raction peaks which can be
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properly labeled in terms of the expression

qm1;m2 =
2�

�0
m1�

m2
+ : (4.5)

This expression properly generalizes Eq.(4.1), where the Frobenius eigenvalue
�+ now plays the role of the golden mean in Eq.(4.1), and �0 is a suitable su-
perlattice average wavelength. On the contrary, heterostructures based on the
metallic mean sequence, de�ned by the substitution rule A! ABn, B ! A;
do not exhibit sharp di¤raction peaks.[26] Among the members of this family
we �nd copper and nickel means (Table 4.2) and their Frobenius eigenvalues
read (1�

p
1 + 4n)=2 (Table 4.3). We realize that none of the representatives

of this family satis�es the Pisot property for n � 2, so that the corresponding
sequences are not quasiperiodic. It is interesting to note that the metallic and
precious mean sequences are complementary among them, in the sense that
the invariants associated to their substitution matrices are related through
the relationship detS $ � trS (see Table 4.3).
On the basis of these algebraic complementary behaviors one can under-

stand some properties of the substitution sequences referred to as mixed means
in Tables 4.2 and 4.3. In fact, although these sequences were originally thought
of as possible generalizations of Fibonacci one,[27] it was subsequently real-
ized that they do not satisfy the Pisot property, so that they exhibit poor
di¤raction spectra. The reason for labeling them as mixed means stems from
the fact that their substitution matrix can be properly decomposed as a sum
of the substitution matrices corresponding to the precious means, the metallic
means, and the Fibonacci sequence, according to the expression

S =

�
n 1
m 0

�
�
�
n 1
1 0

�
+

�
1 1
m 0

�
�
�
1 1
1 0

�
: (4.6)

Accordingly, the term generalized Fibonacci sequence should be properly
restricted to sequences exhibiting the same basic properties as in the Fibonacci
case, namely, in�ation symmetry and a Fourier spectrum consisting of Bragg
peaks. Quite remarkably, the sequences generated from the substitution rules
A ! Bn�1AB, B ! Bn�1A, nicely �t those requirements. In fact, one can
readily check that their related substitution matrices,

S =

�
1 1
n n� 1

�
; (4.7)

have the same algebraic invariants than those of precious means (see Table
4.3). In particular, both kinds of substitution matrices share the same char-
acteristic polynomial, and can thus be considered as formally equivalent from
the viewpoint of the Pisot property.[28]
It has been experimentally con�rmed that superlattices composed of more

than two building blocks arranged according to substitution sequences satis-
fying the Pisot property also di¤ract. For instance, ternary Fibonacci mul-
tilayers composed of three kinds of Ta/Al bilayers building blocks exhibit a
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series of Bragg peaks which can be labeled in terms of the expression,[12]

qn1;n2;n3 =
2�

D
(n1�

2
+ + n3�+ + n2); (4.8)

where D = �2+dA + �+dC + dB , and the value of �+ is given in Table 4.3.
By inspecting Table 4.3 we see that all the di¤racting superlattices we have

considered so far not only satisfy the Pisot property but also have jdetSj = 1.
It turns out that the Pisot nature of a substitution sequence provides a �rst
criterion which demarcates those sequences possessing Bragg peaks from the
rest. The unimodular condition jdetSj = 1 is a second criterion to distinguish
between strictly quasiperiodic sequences and limit-quasiperiodic ones.[24] In
the �rst case, the di¤raction spectrum consists in Bragg peaks supported by
a Fourier module with rank equal to the letters of the alphabet set A. In the
limit-quasiperiodic case one also �nds a discrete component of its di¤raction
spectrum consisting of Bragg peaks. However, this component is supported
by a Fourier module with a countably in�nity of generators over the integers
(i.e., the reciprocal space has in�nite dimensions).
An interesting exceptional case is provided by the Thue-Morse sequence

which satis�es the Pisot property (see Table 4.3), but exhibits a singular con-
tinuous Fourier intensity.[29] This peculiar behavior can be explained by the
fact that this sequence contains palindromes of arbitrary length,[30, 31] along
with mirror symmetry planes hierarchically distributed through the chain.[32]
Note also that the substitution matrix associated to the Thue-Morse sequence
(see Table 4.3) coincides with that corresponding to the periodic sequence
A! AB; B ! AB, hence suggesting one may expect some periodic-like fea-
tures in its physical properties. In fact, high-resolution di¤raction studies of
Thue-Morse heterostructures (having a �nite size) have shown the presence
of relatively broad di¤raction peaks which can be indexed in terms of a set of
integer couples according to the expression

qm1;m2
= q0

2m1 + 1

3� 2m2
; (4.9)

which gives the accurate locations of most of the main di¤raction peaks.[5]
Accordingly, �nite realizations of Thue-Morse lattices exhibit an essentially
discrete di¤raction pattern, and according to the de�nition of aperiodic crys-
tal given by the IUCr, Thue-Morse heterostructures can be properly regarded
as aperiodic crystal representatives, albeit they can not be regarded as quasi-
periodic ones.

4.2.3 Cantor-like heterostructures

A fundamentally di¤erent type of multilayered structure can be constructed
in terms of the fractal sets introduced in Section 1.5. For instance, one may
consider the triadic Cantor set, which is obtained through the repetition of a



136 Aperiodic Structures in Condensed Matter

FIGURE 4.3
XTEM micrograph of the sixth generation of a triadic Cantor superlattice
grown by magnetron sputtering (only the �rst �ve generations are resolved in
the image). The segments and gaps correspond to nanometer sized (d = 1:4
nm) layers of amorphous Ge and Si, respectively. The superlattice contains
36 = 729 layers in total (nominal thickness of 1020: 6 nm). ([33] Reprinted
�gure with permission from Järrendahl K, Dulea M, Birch J, and Sundgren J
E 1995 Phys. Rev. B 51 7621 c 1995 by the American Physical Society.)

simple rule: divide any given segment into three equal parts, then eliminate
the central one, and continue this process. Though this is a usual way of
obtaining a Cantor set, it is by no means the only one. More general Cantor
sets can be generated by iterating the operation consisting in the division
of a segment in s = 2r � 1 equal parts (r > 2) and the removal of r �
1 of its pieces. The resulting structures are self-similar and have a fractal
dimension D = ln r= ln s. Alternatively, a Cantor structure can be obtained
by successively applying the substitution rules A! ABA:::BA (containing r
A�s) and B ! BBB:::B (containing s B�s). Thus, the triadic Cantor set is
obtained from the in�ation process A! ABA and B ! BBB. Making use of
this procedure di¤erent kinds of Cantor heterostructures have been grown by
alternatively depositing two di¤erent materials, say A and B, playing the role
of segments and gaps, respectively (Fig.4.3).[33, 34] The obtained structure
can be regarded as a �nite order approximant of a mathematical Cantor set.

We note that the resulting segments and gaps are mutually commensurate
by construction. Therefore, from a structural viewpoint quasiperiodic lattices
and fractal lattices belong to two di¤erent classes of aperiodic systems, since
quasiperiodic structures are composed of building blocks exhibiting two (or
more) incommensurate periods, while fractal lattices are not. In fact, one can
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readily check that the substitution matrix corresponding to a general Cantor
superlattice

S =

�
r 0

s� r s

�
(4.10)

has the eigenvalues �+ = s > 1 and �� = r > 1, so that none of the related se-
quences satis�es the Pisot property. The lack of quasiperiodic order, however,
does not prevent di¤raction at all, since the self-similar arrangement of layers
is perfectly able to do the job. In fact, di¤ractograms corresponding to the
Cantor superlattice shown in Fig.4.3 showed a series of relatively broad peaks
which can be indexed in terms of three integers, n1; n2; and n3, according to
the expression[33]

qn1;n2;n3 =
2�

d

n1
�n2+ (�

n3
+ � 1) : (4.11)

The Fourier transform of a Cantor superlattice of order n can be conve-
niently split in a contribution coming from the progressively thicker B blocks,
describing the gaps, (Bn), plus a term due to the A layers ensemble contribu-
tion (An); as follows [33, 35]

Fn(q) =

�
1� fA

fB

�
An(q) +Bn(q); (4.12)

where fA;B is the Fourier transform of layer A or B; respectively. Now, as
the order of the Cantor heterostructure is increased, the ensemble of A layers
progressively de�nes the characteristic self-similar pattern encoded in the in-
�ation rule, meanwhile B layers simply stack together to form progressively
thicker and homogeneous blocks. Accordingly, in the thermodynamic limit
the only contribution due to the B system is a � peak at q = 2�=d; where
d is the width of the B layers, and the main information regarding the �ne
peak structure is contained in the An(q) function, which exhibits conspicuous
self-similar features.[33, 35] Therefore, when comparing the structural prop-
erties of quasiperiodic and fractal lattices one realizes that the self-similarity
of the underlying structure (present in both kinds of lattices) is more readily
re�ected in the Fourier spectra of fractal lattices than quasiperiodic ones.
At this point, some re�ection on the fractality and self-similarity notions

is in order. Let us consider an initial segment and we take on it two points
generated by a random algorithm, then we discard the fraction of the seg-
ment de�ned by these two points and continue applying the same procedure
successively. In the thermodynamic limit the resulting structure is certainly
a Cantor set, but it is not self-similar at all.[36, 37] This interesting remark
clearly illustrates the fact that Cantor-like and self-similar features are not
necessarily equivalent notions.
This result is particularly relevant when considering the energy spectra of

both quasiperiodic and fractal structures. As we will see in Chapter 5, in
both cases we have highly fragmented spectra, exhibiting a well-de�ned, hi-
erarchical band splitting as the system�s size is increased. Thus, both kinds
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FIGURE 4.4
Classi�cation of multilayered systems attending to the nature of the order
they exhibit at di¤erent scales. (From ref.[40] Reprinted �gure from Maciá E
2006 Rep. Prog. Phys. 69 397 with permission from IOP Publishing Ltd.)

of structures possess energy spectra supported by Cantor sets in the thermo-
dynamic limit. Nevertheless, the energy spectra of fractal systems usually
exhibit strict self-similarity, characterized by the existence of a single scaling
factor along the spectrum. On the contrary, the scaling properties of the en-
ergy spectrum of aperiodic lattices must be described using the formalism of
multifractal geometry, since in this case a broad distribution of scaling factors
must be considered even in the simplest models.[38, 39] Accordingly, only in
the case of fractal systems a direct correlation between the geometry of the
structure and the related energy spectra has been clearly observed, as for
example in terms of the scalability and sequential splitting of light transmis-
sion spectra through Cantor dielectric multilayers,[19, 34] as we will discuss
in Chapters 7 and 8.

4.2.4 A classi�cation scheme

The possibility of growing devices based on an aperiodic stacking of di¤erent
layers introduces an additional degree of freedom, related to the presence of
two di¤erent kinds of order in the same sample at di¤erent length scales. This
characteristic property is illustrated in Fig.4.4, where we present a classi�ca-
tion of multilayered systems attending to the kind of order present at di¤erent
scales.
On the bottom panels we have systems based on usual periodic crystalline

layers which are stacked either periodically or aperiodically. Both classes of
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multilayered structures have been grown and fully characterized during the
last two decades. On the contrary, the structures presented on the top pan-
els are still awaiting for a de�nitive experimental realization. In fact, they
are based on quasicrystalline layers piled up either periodically or aperiod-
ically. Since the epitaxial growth of quasicrystalline thin �lms over both
crystalline and quasicrystalline substrates is a topic under intensive current
research,[41, 42, 43, 44, 45] we can con�dently expect that some representa-
tives of these classes may be obtained in the near future. In addition, one may
think also of hybrid multilayered structures where both crystalline and qua-
sicrystalline layers are stacked either periodically or aperiodically. Finally, one
may consider multilayers being composed of amorphous slabs (hence lacking
long-range order on the atomic scale) which are either periodically or aperi-
odically stacked. These systems may be regarded as hybrid order systems in
which both disorder and structural order coexist at di¤erent scales. A physical
realization of such multilayers is provided by Cantor superlattices considered
in Section 4.2.3 (Fig. 4.3).

4.3 Signatures of quasiperiodicity

In section 3.1 we saw that quasiperiodic crystals exhibit a number of anom-
alous transport properties, partially related to the presence of a quasiperiodic
order in the underlying atomic structure. Is there a similar set of anomalous
physical properties in aperiodically layered systems?
Earlier studies focused on metallic multilayers in which one has the poten-

tial to study the e¤ects of aperiodicity on a wide variety of problems which
may also lead to some insight into the behavior of three-dimensional qua-
sicrystalline alloys. In this sense, metallic multilayers can be used as model
systems in which it is possible to systematically study one-dimensional aperi-
odic order by varying a broad set of design parameters: the chemical nature
of layer constituents, the layer dimensions, the type of aperiodic arrangement
of layers, and the total number of layers.
Metallic multilayers were originally proposed by Ivan Schuller as arti�-

cial structures where the constituent layers have di¤erent crystal structures.
Therefore, one may �nd large di¤erences in the lattice parameters of metallic
multilayers, at variance with semiconductor based superlattices made of sim-
ilar materials exhibiting very close lattice parameters.[46] Within the broad
spectrum of possible metallic multilayers a lot of works were originally devoted
to the study of periodically alternating systems of the form ��� S�N�S�N ���,
where S and N denote superconducting and normal-metal (or lower critical
temperature superconducting layers), respectively. This class of arti�cially
prepared superconducting materials was of interest due to the presence of
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strong coupling between neighbor layers (proximity e¤ect). As a consequence
of the proximity of the lower critical temperature layers, the multilayer crit-
ical temperature, Tc, is reduced from the high-Tc layers bulk value. Another
interesting physical magnitude to study is the parallel upper critical �eld Hck,
which provides a direct probe of the interplay between the superconducting
coherence length in the growth direction �?, and the scales associated with
the arti�cially imposed multilayer modulation. Thus, a dimensional crossover
from anisotropic three-dimensional behavior to two-dimensional behavior was
observed in periodic Nb/Cu multilayers when �? is of the order of the copper
layer thickness.[47]
Following the �rst report of Fibonacci superlattices (FSLs) by Merlin and

co-workers, a series of Mo (Tc = 4:82 K) and V (Tc = 0:62 K) Fibonacci
multilayers were grown by magnetron-sputtering.[48] The dependence of the
superconducting transition temperature was studied as a function of the char-
acteristic wavelength � de�ned in Eqs.(4.1) and (4.2). It was observed that
Tc slowly increased as � increased, approaching the bulk Mo value, but this
e¤ect can be interpreted in terms of proximity e¤ects, as it was done in the
periodic multilayers case, so that no evidence of quasiperiodic related e¤ects
could be appreciated. On the other hand, the study of the parallel �eld be-
havior was also inconclusive as to whether some reported anomalies were due
(or not) to quasiperiodicity e¤ects.[48] Subsequent studies on Nb (Tc = 9:3
K) and Ta (Tc = 4:4 K) Fibonacci multilayers reported on the presence of
two upturns in the parallel upper critical �eld Hck with decreasing temper-
ature. These upturns were associated with dimensional crossover occurring
twice as the superconductor coherence length in the growth direction sam-
ple the two characteristic length scales 2dA and dA present in the Fibonacci
multilayer.[10] At �rst sight this result may be interpreted as a �rst evidence
of quasiperiodicity e¤ects in a physical magnitude. However, some re�ection
indicates that a similar double crossover should also appear in periodic S�N
multilayers having two di¤erent S-layer thicknesses of appropriate size rela-
tive to �?. In fact, the presence of AA layers in Fibonacci sequence is, in
essence, a short-range feature which is shared with a lot of both periodic and
aperiodic sequences.
A clearer evidence about the role of quasiperiodic order in the physical

properties of semiconductor based aperiodic multilayers was provided by the
study of the energy-level structure when a magnetic �eld is applied parallel
to the layers. In this �eld con�guration, carriers move in cyclotron orbits of
radius

p
~=eB; in the multilayer growth direction. Therefore, a magnetic �eld

can be considered as a very appropriate tool to study vertical motion of charge
carriers through an aperiodically modulated potential pro�le, provided that
the potential barriers are thin and low enough to allow an e¢ cient tunneling
of the carriers through them.[49] The energy-level structure of GaAs/GaAlAs
Fibonacci superlattices was thus probed measuring the luminescence intensity
as a function of the excitation energy (luminescence excitation spectroscopy)
and the obtained results were compared with similar experiments in periodic
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superlattices. In this way, it was veri�ed that the shape of the excitation
spectra properly re�ected the shape of the DOS and that the one-dimensional
quasiperiodic distribution of the barriers along the growth direction a¤ects the
carrier motion perpendicular to the layers very di¤erently from that of parallel
layers. In fact, the luminescence excitation spectra of Fibonacci superlattices
in magnetic �elds perpendicular and parallel to the superlattice layers are
strongly anisotropic. In particular, only the parallel-�eld spectra show well
resolved Landau levels which, in addition, show a characteristic self-similar
behavior as a function of the intensity of the applied parallel �eld.[49]
The observation of quasiperiodicity related e¤ects in the luminescence ex-

periments is directly related to the fact that the radius of the cyclotron orbits,
which span the range from 5.47 nm (Bk = 22 T) to 9.07 nm (Bk = 8 T), can
extend over a signi�cant portion of the superlattice, which is composed of
GaAlAs barriers of width 1.12 nm separated by GaAs wells of width 1.69 nm.
On the contrary, Fibonacci metallic multilayers were not well suited to this
end, because the superconducting coherence length in the considered samples
(�? ' 80� 130 Å) was much larger than the normal metal thickness (15� 30
Å), so that the superconducting layers are e¤ectively coupled and the possible
e¤ects due to quasiperiodicity are negligible.
Guided by this experience the next experiments were aimed at detecting

quasiperiodicity signatures in the physical properties of quasiperiodic het-
erostructures by focusing on the study of the electronic structure of semicon-
ductor based superlattices. Two di¤erent types of quasiperiodic modulation
were considered in GaAs/GaAlAs FSLs: one chose the GaAs to have the same
width but the GaAlAs barriers could have either di¤erent widths or di¤erent
heights. Photoluminescence excitation spectroscopy measurements showed
that, in the �rst case, the electronic states are localized in relatively short
portions of the heterostructure, whereas in the latter case some states may
delocalize through the structure.[50] In this way, FSLs with di¤erent type of
quasiperiodic modulation exhibited di¤erent electronic properties, somewhat
intermediate between those of periodic superlattices (completely delocalized
states) and random ones (exponentially localized states). Accordingly, one
should expect that related transport properties should also exhibit a similar
behavior.
The �rst application of optical spectroscopy to the investigation of per-

pendicular transport properties in FSLs was reported by Yamaguchi and co-
workers.[51] The sample used in their work consisted of two GaAs/AlAs FSLs
and an enlarged well, which is inserted between them (Fig.4.5). A portion of
the carriers generated in the FSL by photoexcitation recombine radiatively
or non-radiatively in the superlattice, and the other carriers �ow into the
enlarged well. Thus, the enlarged well acts as a sink for the carriers, which
subsequently undergo recombination. Consequently, two emission peaks are
observed in the photoluminescence spectrum. Comparison of the photolumi-
nescence spectra between the enlarged well and the superlattice emission pro-
vides information about the perpendicular transport of the carriers through
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FIGURE 4.5
Sketch of the conduction band potential pro�les for the Fibonacci superlattice
(SL) and the enlarged well (EW) inserted at the center. The energy level in
the EW and the miniband in the superlattice are also shown. (From ref.[51].
With permission from Elsevier.)

the superlattice.
In addition, the carrier transport was also investigated by measuring time

behavior of the superlattice and enlarged well peaks of the emission spectra.
From these measurements (in the picosecond time-scale) the time dependence
of carrier transport was calculated as well. By comparing the photolumines-
cence spectra corresponding to three di¤erent superlattices (random, periodic,
and quasiperiodic) several conclusions were drawn:

� the obtained spectra are quite di¤erent from one another, so that this
technique can be successfully used to discriminate the type of order (i.e.,
periodic, quasiperiodic, and random) present in a given heterostructure;

� the experimental results reasonably �t with the calculated ones. In
particular, an overall trifurcation pattern can be observed in the FSL,
with clear indication of additional fragmentation in at least one of the
main subbands (Fig.4.6);

� the localization degree of the carriers is largest for the random superlat-
tice, intermediate for the Fibonacci system, and smallest for the periodic
superlattice (even if one takes into account a common localization e¤ect
present in all the systems due to the monolayer width �uctuations);

� at intermediate temperatures (T = 50 K) the phonon assisted carrier
transport is faster in Fibonacci and periodic systems than in the random
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FIGURE 4.6
Photoluminescence spectrum of the superlattice emission (solid circles) and
the enlarged well emission (crosses) on the Fibonacci system at 4 K. There
appear three main peaks labeled A, B, and C. The peak A has substructure
designated A1 and A2. The solid line is the density of states calculated by
using the transfer matrix technique. (From ref.[51]. With permission from
Elsevier.)
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system, clearly suggesting that the electronic wavefunctions are more
extended in the former than in the latter.

As we will see in more detail in Chapter 5 spatial quasiperiodicity leads to
a hierarchical fragmentation pattern of electronic energy spectra in general
Fibonacci systems. This pattern can be probed by experiments in which an
electric �eld applied parallel to the superlattice quantum well layers induces
a change in the charge transmission, �T , through exciton lifetime broaden-
ing or exciton ionization. The detected electromodulated signal is directly
related to the change in absorption due to the applied electric �eld. Mea-
surements of the di¤erential transmission, �T=T , provide a way of deter-
mining the change in the absorption coe¢ cient of the excitonic transition,
which is correlated with the transition oscillator strength. Using this elec-
tromodulation spectroscopy technique the �rst generations of the electronic
spectrum hierarchical fragmentation pattern were observed in di¤erent kinds
of GaAs/GaAlAs Fibonacci superlattices.[52] The hierarchical structure of the
electronic spectrum, composed of three main bands with some inner structure,
was also reported from normal-incidence infrared re�ectance experiments in
a GaAs/GaAlAs Fibonacci superlattice.[53] Nonetheless, these observations
lacked resolution enough to clearly appreciate the prefractal structure of the
energy spectra.
In fact, in order to fully appreciate speci�c features of quasiperiodic sys-

tems, arising from the fractal nature of their energy spectra and the critical
nature of their states, the study of classical waves has a number of advan-
tages over the study of quantum elementary excitations since, in this case,
the presence of electron-phonon, electron-electron, or spin-orbit interactions
makes di¢ cult the analysis of data. Thus, a number of experimental studies
dealing with surface[54] and ultrasonic waves[15] in Fibonacci structures have
been reported, con�rming that characteristic self-similar features in the trans-
mission spectra are observable when the long-range aperiodic modulation is
established at the micrometer range. However, the clearest demonstration
of self-similar features in the physical properties of aperiodic systems was
obtained by measuring the optical transmission of quasiperiodic and fractal
stacks of dielectric layers.
The appealing possibility of probing the degree of localization of electro-

magnetic waves propagating through an optical multilayer constructed fol-
lowing the Fibonacci sequence was originally proposed by Mahito Kohmoto,
Bill Sutherland, and Kazumoto Iguchi in 1987, who analysed the rich frac-
tal structure of the transmission coe¢ cient as a function of the wavelength
of light at normal incidence.[55] Their theoretical proposal spurred the inter-
est for possible optical applications[56] as well as for new theoretical aspects
of light transmission in aperiodic media.[58, 59] In a subsequent work, the
optical transmission of a Fibonacci dielectric multilayer composed of stacks
of SiO2 and TiO2 thin �lms was reported.[16] Relative �lm thicknesses were
chosen such that the phase shift for normally incident light was the same, i.e.,
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FIGURE 4.7
Optical transmission as a function of the wave number for Fibonacci dielectric
multilayers composed of a di¤erent number of layers, ranging from N = 5 (S4)
to N = 55 (S9). The indices of refraction of the A (silicon dioxide) and B
(titanium dioxide) layers at 700 nm are nA = 1:45 and nB = 2:30. Relative
�lm thicknesses were dA = 121:0 nm and dB = 76:4 nm. The dielectric stacks
are sandwiched between 6.5 mm thick fused silica substrates. Curves a. are
experimental results and b. theoretical calculations. ([57] Reprinted �gure
with permission from Gellermann W, Kohmoto M, Sutherland B and Taylor
P C 1994 Phys. Rev. Lett. 72 633 c 1994 by the American Physical Society.)
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nAdA = nBdB . Furthermore, the individual layers were taken as quarter-wave
layers, since previous theoretical results indicated that quasiperiodicity e¤ects
are enhanced in this case. In Fig.4.7 experimental and theoretical results are
reported for a series of Fibonacci dielectric multilayers of increasing size. As
the number of layers composing the structure is progressively increased one
clearly appreciates a progressive fragmentation of the transmission spectra,
which follows the trifurcation hierarchical pattern predicted by theory. In ad-
dition, the self-similarity of spectra around the central wavelength is evident
by comparing the S6 and S9 (or S5 and S8) spectra. Similar results have been
recently reported from the experimental study of a one-dimensional waveguide
serial structure made of segments and loops of coaxial cable arranged accord-
ing to the Fibonacci sequence.[60] In this way, the study of classical waves
propagation through aperiodically modulated substrates has become a very
active research �eld in materials science in recent years, to which we will come
back in Chapters 7 and 8.
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5
One-dimensional quasiperiodic models

5.1 E¤ective one-dimensional systems

Broadly speaking, an obvious motivation for the recourse to one-dimensional
(1D) models in Solid State Physics is the complexity of the full-�edged prob-
lem. In the particular case of quasicrystalline matter this general motivation
is further strengthened by the lack of translational symmetry, though the
presence of a well-de�ned long-range orientational order in the system also
prevents a naive application of procedures speci�cally developed for the study
of random structures in this case. On the other hand, we can also invoke more
fundamental reasons supporting the use of one-dimensional models as a �rst
approximation to the study of realistic quasiperiodic systems. In fact, as we
will discuss in the following sections, most characteristic features of quasiperi-
odic systems, like the fractal structures of their energy spectra and related
eigenstates, can be explained in terms of resonant coupling e¤ects in the light
of Conway�s theorem. Therefore, the physical mechanisms at work are not so
dependent on the dimension of the system, but are mainly determined by the
self-similarity of the underlying structure. Consequently, in order to ascertain
whether some of the purported anomalies in the transport properties of qua-
sicrystals are directly related to the kind of order present in their structure (a
basic point for any general theory of quasicrystalline matter), the recourse to
one-dimensional models can be considered as a promising starting point, for
such models encompass, in the simplest possible manner, most of the novel
physics attributable to the quasiperiodic order.
Thus, shortly after the discovery of QCs, the study of phonon propagation

through aperiodic linear chains was considered as a �rst approximation to
understand quasiperiodic e¤ects in quasicrystals. Earlier models were based
on a harmonic chain composed of two kinds of masses, mA and mB , which
are arranged aperiodically, and two kinds of springs, KAA and KAB = KBA,
whose value will generally depend on the type of joined atoms (Fig. 5.1).
According to this description di¤erent kinds of models can be considered.
In the on-site model one assumes all the spring constants to be equal at
every site of the chain (Fig. 5.1b). In the transfer model, all the masses are
assumed to be identical instead (Fig. 5.1a). From a physical point of view,
one expects that the nature of the chemical bonding between the di¤erent
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FIGURE 5.1
Sketch illustrating di¤erent models considered in the literature: a) binary
transfer model, b) binary on-site model, c) ternary mixed model [13], and d)
Fibonacci binary mixed model.

atoms (and thereof the value of the spring constant representing the bond)
will depend on the nature of the involved atoms. In this case, the aperiodic
distribution of masses in the system induces a (generally di¤erent) aperiodic
distribution of spring constants in the chain (Fig. 5.1c-d). Therefore, in most
physical situations of interest, one must consider the so-called mixed models.
Earlier studies focused on the study of either transfer[1, 2, 3] or on-site models.
[4, 5] Subsequently, more general models were considered.[6, 7, 8, 9, 10, 11]
Ternary models, de�ned in terms of two di¤erent spring constants and three
di¤erent kinds of masses aperiodically distributed have been also considered
(Fig. 5.1c).[12, 13] Since most stable QCs found to date are ternary alloys
this class of models makes a closer connection with the chemical complexity
of these materials.[14] More general models, considering three di¤erent types
of bonds connecting �ve di¤erent types of masses have also been considered
in the literature.[15]
A standard way to study the acoustic and thermal properties of a lattice is

to consider a nearest-neighbor harmonic chain given by the Lagrangian

L =
1

2

NX
n=1

mn _�
2
n �

1

2

N�1X
n=1

Kn;n+1(�n � �n+1)2; (5.1)

where �n is the displacement of the nth atom from its equilibrium position;
mn, with n = A;B, is the corresponding mass, Kn;n�1 denotes the strength
of the harmonic coupling between neighbor atoms, and N is the number of
particles in the system. The dynamical equation for the normal modes �n =
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FIGURE 5.2
Tight-binding chain model describing the electron dynamics in terms of on-site
energies "n and transfer integrals tn;n�1.

une
i!t then reads

(Kn;n�1 +Kn;n+1 �mn!
2)un �Kn;n�1un�1 �Kn;n+1un+1 = 0; (5.2)

where ! is the vibration frequency. The main properties of the frequency
spectra of di¤erent kinds of aperiodic lattices are fully addressed in Section
5.4.
In a similar way, within the electron independent approximation, the prob-

lem of the electron dynamics moving through a mixed Fibonacci chain can be
described in terms of a tight-binding model, where the on-site energies "n (ac-
counting for the atomic potentials) are arranged according to the Fibonacci
sequence, and the transfer integrals tn;n�1 (accounting for the hopping of the
electron between neighboring atoms) are also arranged aperiodically (Fig.5.2).
The corresponding Schrödinger equation takes the form

(E � "n) n � tn;n�1 n�1 � tn;n+1 n+1 = 0; (5.3)

where E is the electron energy and  n is the wave function amplitude at site
n. By comparing Eqs.(5.2) and (5.3) we see that they are formally analo-
gous, hence indicating that the electron and phonon problems will share some
common properties, which we will exploit in the following sections.
Another interesting physical system which can be approximately described

in terms of an e¤ective one-dimensional description is provided by superlat-
tices and multilayered systems introduced in Chapter 4. We recall that in
order to grow a superlattice we must de�ne two distinct building blocks, say
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FIGURE 5.3
Sketch showing the key features of a continuous model describing a general
Fibonacci superlattice in terms of Dirac function potentials.

A and B, and order them according to either a periodic pattern or a given
aperiodic sequence. Each building block can be composed of one or more
layers of di¤erent materials and can have arbitrary thickness. In the case of
a chemically modulated structure one takes equally spaced blocks de�ning a
periodic array of period d and introduce a quasiperiodic modulation by means
of an appropriate choice of their chemical composition, as it is illustrated in
Fig.5.3(a) for a AlGaAs/GaAs semiconductor-based Fibonacci superlattice.
In principle one may consider a number of possible potential pro�les: square
barriers, V-shaped, sawtooth, parabolic. The square barrier conduction band
pro�le is shown in Fig.5.3(b) for the sake of illustration. More generally, one
can approximate the interaction of an electron with the underlying substrate
in terms of an arbitrarily sharply peaked potential approaching the �-function
limit (zero width and constant area), as depicted in Fig.5.3(c).
In this way, one should consider the following Schrödinger equation"

� ~2

2m

d2

dx2
�
X
n

�n�(x� nd)
#
 (x) = E (x); (5.4)

where the potential strength �n > 0 (attractive potentials) takes on two val-
ues, �A and �B , arranged according to the Fibonacci sequence. Express-
ing the electron wave function as a linear combination of atomic orbitals
 (x) =

P
n cn�n(x � nd), where �n(x � nd) =

p
�n exp(��njx � ndj) is

the normalized eigenfunction of a delta function placed at x = nd, and ne-
glecting the overlap involving three di¤erent centres, one obtains the following
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FIGURE 5.4
Sketch of a Fibonacci trans-polyacetylene chain modeled in terms of spherical
�-functions.

tight-binding equation [16, 17]

(E � �n)cn = tn;n+1cn+1 + tn;n�1cn�1; (5.5)

with �n = ��2n=2; and

tn;n�1 = �
q
�3n�n�1 exp(��n�1d): (5.6)

Another illustrative example of approximate one-dimensional system is pro-
vided by an array of CH units roughly representing the trans-polyacetylene
chain (Fig.5.4). There are two parameters that can be varied in a trans-
fer model, namely, the values of the short, RS ; and long, RL, bond lengths
between neighboring units.
It has been shown that the electronic band structure of quasi-1D polymers,

such as trans-polyacetylene, can be quite accurately described in terms of
�-functions of the form

V (r) =
1

r2
�(r �R): (5.7)

Physically this potential describes a highly localized force �eld which van-
ishes everywhere except on a spherical shell of radius R around the lattice
site. In that case the Schrödinger equation can be expressed as [18]

(�� �n) n �
e��Rn;n+1

Rn;n+1
 n+1 �

e��Rn;n�1

Rn;n�1
 n�1 = 0; (5.8)

where � =
p
�2E, �n =

p
2jEnj, is the on-site energy of the CH units, with

E < 0 the electronic energy, and Rn;n�1 measures the e¤ective bond lengths
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between neighboring CH units. We realize that Eq.(5.8) is formally analogous
to the previously considered tight-binding Eqs.(5.2), and (5.3), respectively
describing the phonon and electron dynamics through a chain, or Eq.(5.5)
describing the electron propagation through a superlattice along the growth
direction, by simply de�ning tn;n�1 � e��Rn;n�1=Rn;n�1. Note that these
e¤ective hopping integrals explicitly depend on the electron energy and they
decrease exponentially with the distance between nearest-neighbors, adopting
the functional form typical of s-like orbitals. Many other physical systems
of interest can be described in terms of tight-binding equations similar to
those introduced in the previously considered examples. In this way, some
important results have been obtained regarding the dynamics of elementary
excitations, like electrons, phonons, excitons, polaritons, spin waves, plas-
mons, or magnons propagating through di¤erent classes of aperiodic lattices.
[19, 20, 21] We will discuss the main features of the obtained results in the
following sections.

5.2 Classi�cation schemes based on spectral properties

A key question in any general theory of aperiodic systems regards the relation-
ship between their atomic topological order, determined by a given aperiodic
density function, and the physical properties stemming from their structure.
At the time being a general theory describing such a relationship is still lack-
ing, though most relevant physical properties can be reasonably analyzed
in terms of appropriate model Hamiltonians. Most rigorous, mathematical
results in the �eld have been derived from the study of nearest-neighbor,
tight-binding models described in terms of the Hamiltonian

(H )n = t n+1 + t n�1 + �Vn n; n 2 Z; (5.9)

where � > 0 measures the strength potential, and the potential sequence Vn
is generated according to some aperiodic substitution sequence (see Table 4.2
in Section 4.2.1), and then assigning a potential value to each letter of the
string, i.e., A ! VA and B ! VB . From a mathematical point of view these
models belong to the class of almost periodic Schrödinger operators, which
display unusual spectral properties.
According to Lebesgue�s decomposition theorem, the energy (or frequency)

spectrum of any measure in Rn can be uniquely decomposed in terms of just
three kinds of spectral measures (and mixtures of them), namely: pure-point
(�P ), absolutely continuous (�AC), and singularly continuous (�SC ) spectra,
in the form

� = �P [ �AC [ �SC : (5.10)
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Suitable examples of physical systems containing both the pure-point and/or
the absolutely continuous components in their energy spectra are well known,
the hydrogenic atom being a paradigmatic instance. On the other hand, the
absence of actual physical systems exhibiting the singular continuous com-
ponent relegated this measure as a merely mathematical issue. From this
perspective, the discovery of quasicrystals, followed by the fabrication of Fi-
bonacci semiconductor heterostructures, bridged the long standing gap be-
tween the theory of spectral operators in Hilbert spaces and the condensed
matter theory, spurring a considerable amount of work from both mathemati-
cian and physicist communities.[22, 23, 24] In fact, the energy spectrum of
most self-similar systems considered to date seems to be a purely singular
continuous one, which is supported on a Cantor set of zero Lebesgue measure.
Thus, the spectrum exhibits an in�nity of gaps and the total bandwidth of the
allowed states vanishes in the thermodynamic limit. This property has been
proven rigorously for systems based on the Fibonacci,[25, 26, 27] Thue-Morse,
and period doubling sequences.[28]
A particularly relevant result obtained from the study of Eq.(5.9) is the

so-called gap-labeling theorem, which provides a relationship between recip-
rocal space (Fourier) spectra and Hamiltonian energy spectra. In fact, this
theorem relates the position of a number of gaps in the energy spectra of
elementary excitations to the singularities of the Fourier transform of the
substrate lattice.[29, 30, 31] It is then convenient to focus on the nature of
the measure associated with the lattice Fourier transform, which is related to
the main features of the di¤raction pattern through the expression

IN (q) = jFN (q)j2 ; (5.11)

where IN is the intensity of the di¤raction peaks, N measures the system size,
q denotes the scattering vector, and FN is the Fourier transform of the lattice
atomic or electronic densities, depending on the type of scattering process. A
convenient description of the di¤raction spectra in the thermodynamic limit
can be made in terms of the integrated intensity function de�ned as

H(q) = lim
N!1

Z q

0

IN (q
0)

N
dq0: (5.12)

This function represents the normalized distribution of the di¤racted intensity
peaks up to a given q point in the reciprocal space. Note that a completely
analogous function can be introduced in the study of the energy spectra by
replacing the normalized intensity distribution by the density of electronic or
vibrational states, respectively. In such case we would express Eq.(5.12) in
the form

H(q) =

Z q

0

d�(q0); (5.13)

where � describes the corresponding spectral measure. Accordingly, we can
visualize the main features of the di¤erent Lebesgue measures by considering
di¤raction experiments as well.
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In the case of both periodic and quasiperiodic crystals there are intervals
along a given q axis where the intensity vanishes, so that H(q) remains con-
stant. These intervals are separated by Bragg peaks, where H(q) has �nite
jumps. The resulting scenario can be formally written as

H(q) =

Z q

0

X
n

gn�(q
0 � qn)dq0; (5.14)

where the sum runs over the countable set of Bragg peaks. Accordingly, the
weight of any set of di¤raction points in reciprocal space equals the sum of
the corresponding coe¢ cients gn in Eq.(5.14). A measure accomplishing this
property is said to be pure-point. For example, Fibonacci lattice�s Fourier
transform has a purely point measure, with a countable set of peaks.
On the other hand, the Thue-Morse lattice Fourier transform is no longer

composed of a countable set of points separated by well-de�ned intervals (it
does not contain � peaks), but it exhibits a structure similar to that of a Cantor
set. More precisely, the support of its Fourier spectrum can be covered by an
ensemble of open intervals with arbitrary small total length. This property
characterizes a purely singular continuous measure. It should be noted that
from a mathematical point of view the nature of a measure is determined by
its asymptotic limit (in�nite system size), so that one can observe a number
of relatively broad peaks in �nite systems, which progressively smear out as
the system size is increased, as it has been discussed in Section 4.2.2.
As an example of the third type of primitive measure component we have

the Rudin-Shapiro lattice possessing a purely absolutely continuous Fourier
transform. In this case, we have a di¤use spectrum, where the contribution to
H(q) of any interval on a given q axis is roughly proportional to its length. By
making these intervals arbitrarily small it can be proved that any single point
in the spectrum has zero weight and H(q) is both continuous and derivable,
so that it can be formally expressed as

H(q) =

Z q

0

f(q0)dq0; (5.15)

where f(q) is a positive function. This property de�nes an absolutely con-
tinuous measure and it is curiously shared with random sequences, which
also have the same kind of spectral measure. Such a result suggests that the
structure of the Rudin-Shapiro sequence could give rise to physical properties
qualitatively similar to those usually observed in disordered systems.[32]
In order to gain additional insight on the relationship between the type

of structural order present in an aperiodic solid (as determined by its lattice
Fourier transform) and its related transport properties (as determined by the
main features of the energy spectrum and the nature of its eigenstates) it is
convenient to introduce the chart depicted in Fig.5.5. In this chart we present
a classi�cation scheme of aperiodic systems based on the nature of their dif-
fraction spectra (in abscissas) and their energy spectra (in ordinates). In this
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FIGURE 5.5
Classi�cation of aperiodic systems attending to the spectral measures of their
lattice Fourier transform and their Hamiltonian spectrum energy. (From
ref.[33]: Maciá E 2006 Rep. Prog. Phys. 69 397. With permission from
IOP Publishing Ltd.)

way, we clearly see that the simple classi�cation scheme based on the periodic-
amorphous dichotomy is replaced by a much richer one, including nine dif-
ferent entries. In the upper left corner we have the usual periodic crystals
exhibiting pure point Fourier spectra (well de�ned Bragg di¤raction peaks)
and an absolutely continuous energy spectrum (Bloch-like wave-functions in
allowed bands). In the lower right corner we have amorphous matter exhibit-
ing an absolutely continuous Fourier spectrum (di¤use spectra) and a pure
point energy spectrum (exponentially localized wave-functions). By inspect-
ing this chart, one realizes that although Fibonacci and Thue-Morse lattices
share the same kind of energy spectrum (a purely singular continuous one),
they have di¤erent Fourier transforms, so that these lattices must be properly
classi�ed in separate categories.

At the time being, the nature of the energy spectrum corresponding to the
Rudin-Shapiro lattice is yet an open question. Numerical studies suggested
that some electronic states are localized in these lattices, in such a way that the
rate of spatial decay of the wave-functions is intermediate between power and
exponential laws. This means that the charge distribution is less spread than
in the case of the critical states observed in Fibonacci and Thue-Morse lattices
(which follow a power law), but the localization degree is still weaker than that
characteristic of a random medium.[32] These results clearly illustrate that
there is not a simple relation between the spectral nature of the Hamiltonian
describing the dynamics of elementary excitations propagating through an
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aperiodic lattice and the spatial structure of the lattice potential.
Spiral lattices provide an interesting instance of perfectly ordered systems

where both translational and orientational symmetries are discarded. These
lattices are based on the application of a simple mathematical algorithm. In
the �rst place we consider a generating spiral curve, which can adopt any
general form in polar coordinates, like r = a� (Archimedean), r = a

p
� (par-

abolic), r = ae� (logarithmic), and so on. Then the spiral lattice is obtained
by restricting r and � according to a quantization condition of the form [34]

r = an� ; � = �dn; (5.16)

where n = 0; 1; 2:::; � is the golden mean, and �d = 2�=� is referred to as the
divergence angle, and measures the angle between adjacent radius vectors r(n)
and r(n+1). Since the divergence angle yields irrational fractions of 2� we ob-
tain lattices entirely lacking rotational symmetry. Accordingly, their Fourier
transform does not show well-de�ned sharp spots, but di¤use rings similar to
the electron di¤raction patterns obtained from small areas of some amorphous
materials.[35] The spiral lattices generated in this way exhibit arrangements
analogous to those observed in many botanical structures and are character-
ized by self-similar in�ation or de�ation operations, like those observed in
quasiperiodic crystals. In fact, some examples of known mineral structures,
like clino-asbestos, hallosyte, or cylindrite, have been interpreted in terms of
spiral lattice based structural principles.[36] To the best of our knowledge, the
energy spectrum of elementary excitations propagating through spiral lattices
has not been yet reported, so that we have tentatively allocated them in the
upper right corner of the Fig.5.5 chart. In a similar way, we include in the
left lower corner of that chart the ideal quasicrystals, i.e., those without any
sort of structural defect, since theoretical arguments suggest that in a per-
fect, self-similar structure the presence of coherent resonance e¤ects among
the electronic states may e¢ ciently induce their localization, leading to a
perfectly isolating solid phase.[37]

5.3 Remarkable properties of singular continuous spec-
tra

5.3.1 Fractal nature of spectra

The study of the 1D Schrödinger equation with an aperiodic potential has
been the subject of a large number of works. Most of the studies devoted
to the nature of spectra in aperiodic systems have been mainly focused on
one-dimensional and two-dimensional systems by considering the dynamics of
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elementary excitations obeying the canonical equation

vn�n = tn;n�1�n�1 + tn;n+1�n+1; (5.17)

along with an appropriate set of boundary conditions. In Eq.(5.17), �n is
the amplitude of the elementary excitation at the nth lattice position, and
vn depends on the excitation energy (frequency), E (or !), as well as on
other characteristic physical magnitudes of the system, like atomic masses
mn, elastic constants Kn;n�1, or electronic binding energies "n (see Table
9.1). It turns out that this basic equation properly describes many systems of
physical interest (see Section 5.1), which can be described in terms of tight-
binding models within the single band approximation. For instance, in the
case of Fibonacci superlattices (see Fig.5.3) we have seen that this corresponds
to the situation in which we choose the (say GaAs) wells to have all the same
width but the barriers (say GaAlAs) to have either di¤erent widths (transfer
models) or di¤erent heights (on-site models).
The most relevant results reported by di¤erent authors from the study of

di¤erent systems described in terms of Eq.(5.17) can be summarized as follows:

� The energy spectrum of most self-similar systems exhibits an in�nity
of gaps and the total bandwidth of the allowed states vanishes in the
N ! 1 limit. This has been proven rigorously for systems based on
the Fibonacci [26, 27], Thue-Morse, and period doubling sequences;[26]
and it has been conjectured to be a general property of self-similar
systems.[38]

� The position of the gaps can be precisely determined through the gap
labeling theorem in some de�nite countable set of numbers.[29, 30, 31]

� Scaling properties of the energy spectrum can be described using the
formalism of multifractal geometry.[39, 40, 41]

For transfer models, a fragmentation scheme based on three main sub-
bands, which successively trifurcate in turn according to the typical Can-
tor set scheme was reported.[42, 43] On the other hand, the energy spec-
trum corresponding to on-site models exhibits four main subbands, which are
successively fragmented following a trifurcation pattern similar to that ob-
served for transfer models.[4] A similar fragmentation pattern is observed in
mixed models in which both diagonal and o¤-diagonal terms are present in
the Hamiltonian.[16, 17] An illustrative example of the spectrum structure
corresponding to this model class is shown in Figs.5.6 and 5.7. By inspecting
these �gures we clearly appreciate the following prefractal signatures:

� the spectra exhibit a highly-fragmented structure generally constituted
by as many fragments as the number of elements present in the chain,

� the energy levels appear in subbands which concentrate a high number
of states, and which are separated by relatively wide forbidden intervals,
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FIGURE 5.6
Fragmentation pattern of the energy spectrum of a trans-polyacetylene qua-
siperiodic chain. The number of allowed subbands increases as a function of
the system size expressed in terms of the Fibonacci order n as N = Fn:(From
ref.[44]. With permission from Elsevier.)

FIGURE 5.7
Self-similarity in the energy spectrum of a InAs/GaSb Fibonacci superlat-
tice.(From ref.[45]. With permission from IOP Publishing Ltd.) The left
panel shows the whole spectrum for an order n = 3 superlattice, whereas the
central and right panels show a detail of the spectrum for superlattices of
orders n = 6 and n = 9, respectively.
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� the degree of internal structure inside each subband depends on the total
length of the chain, and the longer the chain, the �ner the structure,
which displays distinctive features of a self-similar distribution of levels.

Taken altogether these features provide compelling evidence about the in-
trinsic fractal nature of the numerically obtained spectra, which will eventually
show up with mathematical accuracy in the thermodynamic limit N !1.

5.3.2 Critical eigenstates

The notion of critical wave function has evolved continuously since its intro-
duction in the study of aperiodic systems,[46] leading to a somewhat confus-
ing situation. For instance, references to self-similar, chaotic, quasiperiodic,
lattice-like, or quasilocalized wave functions can be found in the literature de-
pending on the di¤erent criteria adopted to characterize them.[3, 47, 48, 49,
50]. Generally speaking, critical states exhibit a rather involved oscillatory
behavior, displaying strong spatial �uctuations which show distinctive self-
similar features in some instances (Fig.5.8). As we can see the wave function
is peaked on short chain sequences but reappear far away on chain sequences
showing the same lattice ordering. This is a direct consequence of the under-
lying lattice self-similarity and, as a consequence, the notion of an envelope
function, which has been most fruitful in the study of both extended and lo-
calized states, is mathematically ill-de�ned in the case of critical states, and
other approaches are required to properly describe them and to understand
their structure.
Most interestingly, the possible existence of extended states in several kinds

of aperiodic systems, including both quasiperiodic [7, 9, 51, 52, 53, 54] and
non-quasiperiodic ones,[48, 55] has been discussed in the last years spurring
the interest on the precise nature of critical wave functions and their role
in the physics of aperiodic systems. From a rigorous mathematical point
of view the nature of a state is uniquely determined by the measure of the
spectrum to which it belongs. In this way, since it has been proven that
Fibonacci lattices have purely singular continuous energy spectra [25, 26] (see
Section 5.2), we must conclude that the associated electronic states cannot
be, strictly speaking, extended in Bloch�s sense. This result holds for other
aperiodic lattices (Thue-Morse, period doubling) as well, and it may be a
general property of the spectra of self-similar aperiodic systems.[38] We will
discuss this issue in more detail in Section 5.5.
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FIGURE 5.8
Squared amplitude distribution of a critical phonon normal mode in a Fi-
bonacci lattice composed of N = 2584 atoms with a mass ratio mA=mB =
34=21.

5.4 Frequency spectra of general Fibonacci lattices

In order to illustrate the main properties of one-dimensional aperiodic sys-
tems let us consider, as a model example, the phonon dynamics in the general
Fibonacci lattice introduced in Section 5.1 (see Fig.5.1d). A convenient way to
study transport properties in one-dimensional aperiodic systems relies on the
so-called transfer matrix technique (see Section 9.2). Within this approach
the equation of motion given by Eq.(5.2) is cast in the form�

un+1
un

�
=

 
vn

Kn;n+1
�Kn;n�1
Kn;n+1

1 0

!�
un
un�1

�
� Tn

�
un
un�1

�
; (5.18)

where vn � Kn;n�1 +Kn;n+1 �mn!
2. The allowed regions of the frequency

spectrum are determined from the condition

jtrMN (!)j �
�����tr(

1Y
n=N

Tn)

����� � 2; (5.19)

where MN (!) is the global transfer matrix, and N is the number of atoms
in the chain. The overall structure of the frequency spectrum corresponding
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FIGURE 5.9
Overall structure of the frequency spectrum for a mixed Fibonacci lattice with
N = 610, � = 2;  = 1:2, mA = 1, and kAB = 1, as given by the integrated
density of states (IDOS, see Section 9.5.1) and the transmission coe¢ cient, t
(see Section 9.5.2). ([10] Reprinted �gure with permission from Maciá E 2000
Phys. Rev. B 61 6645 c 2000 by the American Physical Society.)

to this system is illustrated in Figs. 5.9 and 5.10, where we show the fre-
quency dependence of several diagnostic tools (see Section 9.5) in terms of
the parametrized frequency � � mA!

2=KAB and some representative values
of the ratios � = mA=mB ; and  = KAA=KAB (the overall structure of the
frequency spectrum does not signi�cantly depend on the values adopted for
the di¤erent model parameters).[10]

As we can see, the frequency spectrum shows a splitting scheme, charac-
terized by the presence of several main subbands separated by well-de�ned
gaps. Inside each main subband the fragmentation scheme follows a trifurca-
tion pattern, in which each subband further trifurcates obeying a hierarchy
of splitting from one to three subsubbands. At low and intermediate frequen-
cies (0 � � � 2), the minima of the Lyapunov coe¢ cient take signi�cantly
low values. Conversely, starting about � = 2 we realize that these minima
monotonically increase with �. Since the Lyapunov coe¢ cient is related to
the inverse of the localization length of the corresponding vibration modes
(see Section 9.5.4), these results indicate that the high frequency phonons are
more localized than the low frequency ones. This result is additionally sup-
ported by the dependence of the transmission coe¢ cient with the frequency.
In fact, we observe that most of the low frequency phonons exhibit transmis-
sion coe¢ cients close to unity. On the contrary, starting at about � � 1:5,
we observe that, as the phonon frequency increases, the values of the corre-



166 Aperiodic Structures in Condensed Matter

FIGURE 5.10
Overall structure of the frequency spectrum for a mixed Fibonacci lattice with
N = 610, � = 2;  = 1:2, mA = 1, and kAB = 1, as given by the integrated
density of states (IDOS) and the Lyapunov coe¢ cient, � (see Section 9.5.4).
([10] Reprinted �gure with permission from Maciá E 2000 Phys. Rev. B 61
6645 c 2000 by the American Physical Society.)

sponding transmission coe¢ cients progressively decrease.
We note that the presence of allowed states in the range 1 � � � 2 is directly

related to the quasiperiodic order of the chain, for the periodic binary chain
exhibits a broad gap over this frequency interval (Fig.5.11).
Additional physical insight can be gained by analyzing the spectrum within

the framework of real-space renormalization techniques (see Section 9.4). To
this end, the original Fibonacci chain is decomposed into a certain number of
minor subchains, according to a given criteria referred to as blocking scheme.
In principle, the choice of a suitable blocking scheme is arbitrary, although
in the study of quasiperiodic systems, the minimization of the information
entropy (in Shannon�s sense) seems to play a relevant role in the choice of ap-
propriate blocking schemes.[17] Guided by this criterion the original lattice is
decomposed in a series of trimers and tetramers of the form BAB and BAAB.
According to the construction rules for the Fibonacci lattice, the number of
trimers present in the chain, nBAB , equals the number of isolated A atoms.
Analogously, the number of tetramers coincides with the number of AA pairs.
Then, in the thermodynamic limit we have the limits lim (nBAB=N) = ��4

and lim (nBAAB=N) = ��3 (see Sections 2.4.3 and 4.2.1). Now, neglecting the
trivial translation modes �0 = 0, each trimer, if considered as an independent
dynamical system, contributes with two di¤erent normal vibration modes,
whose respective frequencies are given by �b = � , �d = 2 + �, and, anal-
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FIGURE 5.11
Comparison between the frequency spectrum of a periodic binary lattice
(dashed) and a Fibonacci lattice (solid) of the same size.

FIGURE 5.12
Correspondence between the main subbands in the frequency spectrum of a
Fibonacci lattice with N = 610, � = 0:5, and  = 2, and the normal modes
associated to the trimers and tetramers introduced in the renormalization
scheme. ([10] Reprinted �gure with permission from Maciá E 2000 Phys.
Rev. B 61 6645 c 2000 by the American Physical Society.)
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ogously, each tetramer contributes with three di¤erent normal modes given
by

�c = 1+� ; �e = +�+
p
(� � )2 + 2 ; �a = +��

p
(� � )2 + 2; (5.20)

where � � (1 + �)=2. Hence, we have �ve basic normal modes describing the
fundamental dynamical state of the Fibonacci lattice. If we assume that these
normal modes are coupled by a resonance e¤ect, we realize that the number
and frequencies of the normal modes which appear at the �rst stage of the
renormalization process respectively determine the number and approximate
location of the main subbands in the resulting phonon spectrum.[17, 56] In this
way, we can relate every main subband appearing in the frequency spectrum to
a speci�c normal mode. Such a procedure is illustrated in Fig. 5.12, where we
see that the lower frequency region of the spectrum (� < 1) contains two main
contributions: the lowest frequency contribution (� � 0:5), which is related
to the tetramers �a (contributing with ��3 states) and the frequency interval
0:5 � � < 1, which is related to the trimer�s normal mode �b (contributing
with ��4 states). Therefore, although both subbands are separated by a quite
narrow gap, their origin can be traced back to the dynamics of quite di¤erent
vibrating blocks in the lattice.

5.5 Nature of critical states in aperiodic systems
As we have seen, from a mathematical point of view all the states belonging
to the singular continuous spectra characteristic of Fibonacci, Thue-Morse,
and period-doubling aperiodic systems can be properly referred to as critical
eigenstates in a broad sense. However, this fact does not necessarily imply
that all these critical states behave in exactly the same way from a physical
viewpoint. In fact, physically states can be classi�ed according to their trans-
port properties. Thus, conducting states in crystalline systems are described
by periodic Bloch functions, whereas insulating systems exhibit exponentially
decaying functions corresponding to localized states. Within this scheme the
notion of critical states is somewhat imprecise because, generally speaking,
critical states exhibit a rather involved oscillatory behavior, displaying strong
spatial �uctuations at di¤erent scales.
A �rst step towards a better understanding of critical states was provided

by the demonstration that the amplitudes of critical states in a Fibonacci
lattice do not tend to zero at in�nity, but are bounded below through the
system.[27] This result suggests that the physical behavior of critical states
might be more similar to that corresponding to extended states than to lo-
calized ones. Accordingly, the possible existence of extended critical states in
several kinds of aperiodic systems was extensively discussed,[9, 7, 54] and ar-
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guments supporting the convenience of widening the very notion of extended
state in aperiodic systems to include critical states which are not Bloch func-
tions were put forward.[52]
The use of multifractal methods to analyze the electronic states in Fibonacci

lattices provided conclusive evidence on the existence of di¤erent kinds of
critical states, depending on their location in the highly fragmented energy
spectra. Thus, while states located at the edges or the band centers of the
main subbands exhibit a distinctive self-similar spatial structure, most of the
remaining states do not show any speci�c pattern.[47] A similar situation also
occurs in the phonon spectrum. In fact, when studying band structure e¤ects
in the thermal conductivity of Fibonacci quasicrystals one �nds a great variety
of critical normal modes,[11, 52] exhibiting quite di¤erent physical behaviors,
which range from highly conducting extended states to critical states whose
transmission coe¢ cient oscillates periodically between two extreme values,
depending on the system�s length.[51]
The term �critical" was originally borrowed from thermodynamics, where

it has usually been applied to describe a conventional phase transition where
a state undergoes �uctuations in certain physical properties which are the
same on all length scales. This situation is referred to as a passage through a
�critical point." At the critical temperature various thermodynamic functions
develop a singular behavior which is related to long-range correlations and
large �uctuations. Actually, the system should appear identical on all length
scales at, exactly, the critical temperature and, consequently, it would be scale
invariant. All these features, characteristic of thermodynamic phase transi-
tions, have been progressively incorporated to the study of both incommen-
surate and quasiperiodic systems. In fact, in the study of the Aubry model,
given by the Hamiltonian Eq.(5.9) with the potential Vn = � cos(nQ + �);
Q being an irrational number,[57] it was early realized that a metal-insulator
transition appears when the potential strength takes on the threshold value
� = 2, and that this process can be formally described as a phase transi-
tion a¤ecting the electronic energy spectrum topological structure. From this
point of view, the potential strength plays the same role as the temperature
plays in a usual thermodynamic system.
Following a chronological order the concept of critical wave function was

born in the study of the Anderson Hamiltonian which describes a regular lat-
tice with site-diagonal disorder. This model is known to have extended states
for weak disorder in 3D systems, as well as in 2D samples with a strong mag-
netic �eld. For strong disorder, on the other hand, the electronic states are
localized. For 1D systems it was proved that localized states decay exponen-
tially in space in most cases.[58] However, this exponential decay relates to
the asymptotic evolution of the envelope of the wave function while the short-
range behavior is characterized by strong �uctuations. The magnitude of
these �uctuations seems to be related to certain physical parameters, such as
the degree of disorder which, in turn, controls the appearance of the so-called
mobility edges. Approaching a mobility edge, from the insulator regime, the
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exponential decay constant diverges, so that the wave function amplitudes
can be expected to feature �uctuations on all length scales larger than the
lattice spacing. This singular fact turns out to be very convenient to explain
metal-insulator transitions. Actually, a localized state occupies only a minute
fraction of space. On the other hand, extended states should spread homoge-
neously over the whole sample. Both characteristics can be accommodated at
the mobility edge if one assumes a wave function with a �lamentary structure
like a net over the sample. Schreiber and Grussbach[59] gave an intuitive
picture of a critical wave function in 3D:

�A �lamentary structure over the whole sample, like a mesh with
openings on all scales or a curdled structure with lumps of all sizes,
could represent an extended state which nevertheless does not �ll
any �nite fraction of the volume."

The connection between this picture and that of a fractal object is not ca-
sual. It was early suggested by Aoki[60] that critical wave functions might
display self-similar �uctuations and, in this sense, they may be characterized
by some fractal dimensionality. Later on Soukoulis and Economou [61] numeri-
cally demonstrated the fractal character of certain eigenfunctions in disordered
systems and characterized their amplitude behavior by a fractal dimensional-
ity. What is more interesting, the fractal character of the wave function itself
is suggested as a new method for �nding mobility edges. The observation of
anomalous scaling of both the moments of the probability distribution and
the participation ratio near the localization threshold in the Anderson model
strongly suggested that a critical wave function cannot be adequately treated
as simply fractal.[62] Rather, since di¤erent moments scale in di¤erent ways,
the more general concept of multifractality has to be employed, yielding a
set of generalized fractal dimensions. In fact, as the computed wave func-
tion amplitudes are in general nowhere exactly zero, the dimension describing
the support of the wave function coincides with the dimension of the lattice
(usually the Euclidean dimension). Accordingly, the wave functions cannot
be described as homogeneous fractals.[61, 63, 64, 65, 66] From these stud-
ies it is concluded that wave function amplitudes exhibit a fractal behavior
not only at the mobility edge but more generally in both the insulator and
metallic regimes of disordered systems up to length scales of the order of the
localization length or the coherence length, respectively.
To the best of my knowledge, the �rst reference to �critical" wave functions

in incommensurate systems was due to Ostlund and Pandit.[67] In their orig-
inal treatment the term �critical" is intended to describe the existence of a
wave function which is not Bloch-like extended nor localized, but somewhere
in between[47, 68]

�wave functions which are neither localized nor extended in an
standard manner."
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FIGURE 5.13
A representative example of the overall spatial charge distribution of a critical
wavefunction in a quasiperiodic (Fibonacci) chain. ([52] Reprinted �gure with
permission from Maciá E and Domínguez-Adame F 1996 Phys. Rev. Lett. 76
2957 c 1996 by the American Physical Society.)

At this rather fuzzy level the notion of �criticality" can be understood as
follows. An extended wave function is expected to extend homogeneously
over the whole sample. On the other hand, for a localized wave function at a
particular site of the sample, one expects its probability density to display a
single dominant maximum at, or around, this site, and its envelope function
is generally believed to decay exponentially in space. On the contrary, a crit-
ical state is characterized by strong spatial �uctuations of the wave function
amplitudes. This unusual behavior, consisting of an alternatively decaying
and recovering of the wave function amplitudes, is illustrated in Fig.5.13.
Then, one can describe a critical state in a quasiperiodic system in the

following qualitative way:[69, 70] Let us assume that a given state  L spreads
over a region of characteristic length L. Then, Conway�s theorem implies that
a similar region must exist at a distance � 2L. If L is su¢ ciently long, then
both regions will be good candidates for a tunneling process between them,
so that we might express  2L = z L, where z is a damping factor roughly
measuring the probability amplitude of the tunneling event. Within such
a description the case z = 0 corresponds to strictly localized states, whereas
jzj = 1 is the signature of extended states. For intermediate localization cases,
one can write

 L ' L� ln jzj= ln 2 ' L��; (5.21)

where the precise value of jzj will be dependent on the parameters of the
considered model. In this way the spatial structure of the wave function am-
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plitudes is directly related to the topological properties of the quasiperiodic
substrate. In particular, the self-similar properties of most critical wave func-
tions can be traced back to the self-similarity of the lattice itself, through a
series of hierarchical tunneling events involving the overlap of di¤erent subsys-
tems at di¤erent length scales. Accordingly, one of the main results concerning
electronic localization in quasiperiodic chains is the power law behavior of the
envelope of the wave function  N ' N�� which characterizes most critical
states.

The nature of critical states can also be related to the scaling properties of
the electronic (or frequency) spectrum. In fact, one can focus on the scaling
properties of the bandwidth of a series of approximants of a quasicrystal. If
we consider an initial cube of length L in D dimensions, the spectrum of the
in�nite periodic system of unit cell L and LD atoms will be composed by LD

bands, irrespective of the nature (periodic, disordered, or quasiperiodic) of
the atoms in the considered cell. The typical bandwidth is then related to
the overlap degree between two states, namely,  a and  b, localized in two
adjacent cells, and can be qualitatively measured as W ' h ajHj bi. For
Bloch states with moduli  ' L�D=2 and with an average hopping amplitude
t from one site to another, one gets W ' t=L, as it is well known. The same
argument for a disordered unit cell involves a localization length �, and the
bandwidth is then given by W ' tLD�1e�L=�, which corresponds to a purely
discrete spectrum, as expected, in the limit L!1 . In a quasiperiodic system
the algebraic localization of typical wave functions, as described by Eq.(5.21),
gives rise to a scaling behavior of the bandwidths of the form W ' tL�� ,
where the exponent � > 1 is related to the distribution of ��s.[69]

5.6 The role of critical states in transport properties

As we have seen, from a physical viewpoint, the states can be classi�ed accord-
ing to their transport properties which, in turn, are determined by the spatial
distribution of the wave function amplitudes. An overall estimation about
the in�uence of critical states in the transport properties of quasiperiodic sys-
tems can be inferred from expression W ' tL�� . In fact, the mean group
velocity for a critical state can be approximated as v ' LW ' tL1�� . This
expression indicates that the mobility of the charge carriers goes to zero as the
system size grows, but this asymptotic limit is reached more slowly than it is
achieved in the case of exponentially localized states, whose mobility vanishes
at a pace determined by the relationship v ' tLDe�L=�.[69] This qualitative
result provides strong support to the view of critical states as occupying an
intermediate position between localized and extended states, although one
may be tempted to consider them closer to the last from a physical point of
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view.
In this Section we will focus on a class of critical wave functions belonging

to general aperiodic and fractal systems which are extended from a physical
point of view. This result widens the notion of extended wave function to
include electronic states which are not Bloch functions, and it is a relevant
�rst step to clarify the precise manner in which the aperiodic order of these
systems in�uences their transport properties. To this end, we will exploit an
algebraic formalism which allows one to give a detailed analytical account of
the transport properties of critical wave functions for certain particular val-
ues of the energy. In this way, we study the relationship between the spatial
structure of critical wave functions and their transport properties showing
that, although most critical functions exhibit rather low transmission coef-
�cients, it is possible to �nd certain wave functions which are among those
exhibiting higher transmission coe¢ cients in �nite aperiodic systems.

5.6.1 Extended critical states in general Fibonacci lattices

Let us consider the tight-binding model introduced in Section 5.1 (Fig.5.2)
describing the electron dynamics through a mixed Fibonacci chain in terms
of Eq.(5.3). Making use of suitable renormalization techniques (see Section
9.4) one can express the global transfer matrix in terms of a set of properly
renormalized transfer matrices RA and RB which are themselves arranged
according to the Fibonacci sequence. Each matrix R� can be interpreted as
an e¤ective transfer matrix describing the propagation of the electron through
the basic building blocks AB and ABA in terms of which the entire chain can
be decomposed. From the explicit evaluation of such matrices (see Eqs.(9.45))
one obtains the commutator[9, 52]

[RA;RB ] =
�(1 + 2)� E(1� 2)



�
1 0

E + � �1

�
; (5.22)

where  � tAA=tAB ; the origin of energies is de�ned in such a way that
"A = � = �"B ; and the energy scale is given by tAB � 1. This commutator
considerably simpli�es for the two cases mostly discussed in the literature,
namely the on-site ( = 1) and transfer (� � 0) models. The expression
(5.22) shows that the on-site model is intrinsically non-commutative, for the
commutator vanishes only in the trivial periodic case. On the contrary, in
the transfer model the R matrices commute for the energy value E = 0,
which corresponds to the center of the energy spectrum. Most interestingly,
according to expression (5.22), there exists always one energy satisfying the
relation

E� = �
1 + 2

1� 2 ; (5.23)

for any realization of the mixed model (i.e., for any combination of � 6= 0
and  6= 1 values). For these energies the condition [RA;RB ] = 0 is ful�lled
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FIGURE 5.14
Phase diagram ( in abscissas and E in ordinates) for a general Fibonacci
chain with N = 34 and � = 0:5. The energies corresponding to extended wave
functions are marked with a thin white line. (Courtesy of Roland Ketzmerick).

and, making use of the Cayley-Hamilton theorem (see Section 9.2) the global
transfer matrix of the system,MN (E�) � RnA

A RnB
B , can be explicitly evalu-

ated. From the knowledge ofMN (E�) the condition for the considered energy
value to be in the spectrum, jtr[MN (E�)]j � 2, can be readily checked and,
afterwards, relevant magnitudes describing their transport properties can be
explicitly determined as follows.
The global transfer matrices corresponding to the energies given by Eq.(5.23)

can be expressed in the closed form

MN (E�) =

�
UN �UN�1

�1UN�1 �UN�2

�
; (5.24)

where Uk(x) are Chebyshev polynomials of the second kind (see Section 9.2)
and x �

p
E2� � �2=2 � cos�. From expression (5.24) we get tr[MN (E�)] =

2 cos (N�); where we take into account the relationship Un � Un�2 = 2Tn
between Chebyshev polynomials of the �rst and second kinds (see Section
9.3). Consequently, we can ensure that these energies belong to the spectrum
in the quasiperiodic limit (N ! 1). An illustrative example of the energy
spectra of mixed Fibonacci chains for di¤erent values of the model parameters
is shown in Fig.5.14. Its characteristic fragmentation scheme is clearly visible.
One appreciates that the extended states given by Eq.(5.23) are located in the
densest regions of the phase diagram.
The Landauer conductance (see Sec.9.5.3) can be obtained by embedding

the Fibonacci lattice in an in�nite periodic arrangement of identical atoms
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FIGURE 5.15
Electronic charge distribution in Fibonacci lattices with N = F16 and (a)
 = 2, � = 0:75, E1 = �1:25 and (b)  = 2, � = 0:5, E2 = �5=6. Their
transmission coe¢ cients are, respectively, T (E1) = 0:5909 : : : and T (E2) =
0:9046 : : :. The wave function amplitudes have been calculated with the aid of
the matrix formalism making use of the initial conditions '0 = 0 and '1 = 1.
([52] Reprinted �gure with permission from Maciá E and Domínguez-Adame
F 1996 Phys. Rev. Lett. 76 2957 c 1996 by the American Physical Society.)

connected by hopping integrals t � tAB . In this way one gets[52]

GN (E�) � G0TN (E�) =
2e2

h

1

1 + (1�2)2
(4�E2

�)
2 sin

2 (N�)
: (5.25)

Two important conclusions can be drawn from this expression. In the �rst
place, the Landauer conductance is always bounded below for any lattice
length, which proves the true extended character of the related states. In
the second place, since the factor multiplying the sine in the denominator of
expression (5.25) only vanishes in the case  = 1, the critical states we are
considering do not verify, in general, the transparency condition TN (E�) = 1
(GN (E�) = G0) in the quasiperiodic limit.
For the sake of illustration, two representative examples are respectively

shown in Fig.5.15. The charge distribution shown in Fig.5.15(a) corresponds
to the state of energy E1 = �1:25 in a Fibonacci chain with N = F16 = 1597
sites and lattice parameters  = 2 and � = 0:75. The overall behavior of
the wave function amplitudes clearly indicates its extended character. At this
point it is worth to mention that, albeit its appearance, this wave function is
non-periodic: the sequence of values taken by the wave function amplitude is
arranged according to a quasiperiodic sequence. Fig 5.15(b) shows the charge
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FIGURE 5.16
Electronic charge distribution corresponding to the eigenstate E�(k = 1193) =
�13=50; belonging to a general Fibonacci lattice with N = F17 = 2584,
 = 1:5, and � = 0:1. Its transmission coe¢ cient is TN (E�) = 1.

distribution corresponding to the state of energy E2 = �5=6 in a system of
the same length and model parameters  = 2:0 and � = 0:5. At �rst sight, by
comparing both �gures, one may be tempted to think that the transmission
coe¢ cient corresponding to the wave function plotted in Fig.5.15(a) must be
higher than that corresponding to the wave function shown in Fig.5.15(b),
because the charge distribution of the former along the system is more ho-
mogeneous than that corresponding to the latter. Actually, however, making
use of expression (5.25), one �nds T (E1) = 0:5909 : : : and T (E2) = 0:9046 : : :,
which is precisely the opposite case.
However, it is also possible to �nd states satisfying the transparency condi-

tion in �nite Fibonacci systems whose lengths satisfy the relationship N� =
k�, k = 1; 2 : : :, in Eq.(5.25) which, in turn, implies

E�(k) = �
p
�2 + 4 cos2 (k�=N): (5.26)

In this way, these transparent states can be classi�ed according to a well
de�ned scheme determined by the integer k. An illustrative example is shown
in Fig.5.16.
From this plot we notice the existence of two di¤erent superimposed struc-

tures. In fact, a periodic-like, long-range oscillation with a typical wavelength
of about N sites is observed to modulate a quasiperiodic series of short-range
minor �uctuations of the wave function amplitude, typically spreading over a
few lattice sites. This qualitative description receives a quantitative support
from the study of its Fourier transform, showing two major components in
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FIGURE 5.17
The wave function versus the site number for a Fibonacci lattice with N =
2584 sites and E(k) = �2:5 cos(�=k) for di¤erent k values.([71] Reprinted
�gure with permission from Huang X and Gong C 1998 Phys. Rev. B 58 739
c 1998 by the American Physical Society.)

the Fourier spectrum corresponding to the low and high frequency regions,
respectively.
By combining Eqs.(5.23) and (5.26) we obtain the following relationship for

the values of the model parameters satisfying the transparency condition

� = �1� 
2


cos

�
k�

N

�
: (5.27)

A particularly interesting case occurs when N is exactly divisible by k. In
that case, the wave functions exhibit a remarkable spatial distribution, where
the quasiperiodic component (characteristic of short spatial scales) is nicely
modulated by a long scale periodic component (Fig.5.17). The periodicity of
the long scale modulation is a direct consequence of the divisibility properties
of Fibonacci numbers (since N = Fn),[71] namely that Fk is a divisor of Fpk
for all p > 0.[72] Accordingly, when one chooses the model parameters in
such a way they satisfy Eq.(5.27), with N=k = p 2 N; one will always get a
periodically modulated critical wavefunction.
Subsequent numerical studies of the energy spectrum of mixed Fibonacci

lattices have shown that a signi�cant number of electronic states exhibiting
very large transmission coe¢ cients (TN (E) = 0:99999) are located around
the transparent states given by Eq.(5.23).[73] This result suggests that these
critical states behave in a way quite similar to conventional extended states
from a physical viewpoint, albeit they can not be rigorously described in terms
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of Bloch functions. To further analyze this important issue the study of the ac
conductivity at zero temperature is very convenient, since it is very sensitive
to the distribution nature of eigenvalues and the localization properties of the
wave function close to the Fermi energy. In this way, by comparing the ac
conductivities corresponding to periodic and mixed Fibonacci lattices it was
concluded that both systems exhibit a similar behavior, though the value of
the ac conductivity takes on systematically smaller values in the Fibonacci
case, due to the fact that the ac conductivity involves the contribution of
non-transparent states within an interval of ~! around the Fermi level in this
case.[73]
In summary, for general Fibonacci systems in which both diagonal and o¤-

diagonal quasiperiodic order is present in their model Hamiltonian, we have
critical states which are not localized (i.e., TN (E�) 6= 0 8N; when N ! 1).
For �nite Fibonacci chains one can �nd transparent states exhibiting a physical
behavior completely analogous to that corresponding to usual Bloch states in
periodic systems (i.e., TN (E�) = 1) for a given choice of the model parameters,
prescribed by Eq.(5.27). There exist a second class of critical states, those
located close to the transparent ones, which are not strictly transparent (i.e.,
TN (E) < 1), but exhibit transmission coe¢ cient values very close to unity.
Finally, the remaining states in the spectrum show a broad diversity of possible
values of the transmission coe¢ cient (i.e., 0 < TN (E)� 1), in agreement with
the earlier view of critical states as intermediate between periodic Bloch wave
functions (TN (E) = 1) and Anderson localized states (TN (E) = 0).

5.6.2 Critical modes tuning

The rich variety of critical states in general Fibonacci systems suggests the
appealing possibility of modulating the transport properties of normal modes
propagating through a Fibonacci lattice by properly selecting the values of the
masses composing the chain (isotopic e¤ect). To this end, we will consider the
system studied in Section 5.4 and will extend the renormalization approach
discussed in Section 5.6.1 in order to study the phonon dynamics as well. The
commutator corresponding to the phonon problem reads (see Section 9.4)

[RA;RB ] =
�


(2 � 1� � [1 + �( � 1)])

�
1 0

2� �� �1

�
: (5.28)

Aside from the trivial, limiting case �! 0, this commutator vanishes for the
frequencies given by the expression

�� =
�� 2 + 1
�(1� ) : (5.29)

For the sake of illustration, let us consider the particular case given by the
condition KAA = KAB=2. In this case ( = 1=2), expression (5.29) reduces to
�� = 2 for any arbitrary choice of the masses mA and mB . In other words,
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the commutation frequency becomes independent of the values assigned to the
mass distribution through the Fibonacci lattice. The renormalized matrices
RA and RB (see Eq.(9.46)) then adopt the simple form

RA =

�
1 0

2(�� 2) 1

�
RB =

�
�1 0

2(1� �) �1

�
; (5.30)

and the corresponding power matrices can be easily evaluated by induction,
so that the transfer matrix reads

MN (�
�) � RnA

A RnB
B = (�1)nB

�
1 0

2(�Fn�2 � Fn�1) 1

�
: (5.31)

Two interesting consequences can be extracted from expression (5.31). In
the �rst place, we realize that the frequency �� = 2 belongs to the spectrum
regardless of the system length, since jtr[MN (�

�)]j = 2 in this particular case.
In the second place, if we choose the values for the masses in such a way that
their ratio satis�es the relationship � = Fn�1=Fn�2, we get MN (�

�) = �I,
where I is the identity matrix. Consequently, when the parameter � is a
rational approximant of the golden mean � = limn!1 (Fn�1=Fn�2) = (

p
5 +

1)=2, the state corresponding to the resonance frequency �� is a transparent
state with TN (�

�) = 1. An illustrative example of this kind of state is shown
in the inset of Fig. 5.18 for a lattice with N = 2584 and � = 1597=987.
The normal mode amplitudes have been obtained by iterating the dynamical
equation (5.18) with the initial conditions u0 = 0 and u1 = 1. The extended
nature of the state is clearly appreciated.
At this point, however, we must stress that the spatial structure of this

critical normal mode is determined by two di¤erent contributions, which cor-
respond to two separate scale lengths. Thus, although at long scales (greater
than, say, 100 sites) the state shows a distinct periodic-like pattern, such
an alternating pattern resolves into a series of quasiperiodic oscillations at
shorter length scales. Therefore, the structure of the critical normal mode is
not periodic, since the separation between two successive peaks takes on two
di¤erent values (108 and 109 sites) which alternate in a quasiperiodic fashion.
The relationship between the spatial structure of the normal modes and

their related transport properties is further explored by means of a power
spectrum analysis which allows us to describe the overall structure of the nor-
mal mode as a superposition of two basic contributions involving di¤erent scale
lengths. The existence of both contributions is conveniently illustrated in the
main frame of Fig. 5.18, where we plot the power spectrum of the normal mode
shown in the inset. In fact, we observe two main contributions in the power
spectrum. In the low frequency region, a major peak located at � = 0:00921
(� ' 108:5 sites) describes the overall periodic-like pattern. On the other
hand, starting at about � = 0:09, we observe a series of nested, subsidiary
features, characterized by the twin peaks labelled by the letters ai, bi, ci, and
di (i = 1; 2). Each couple of peaks groups around a frequency value given by
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FIGURE 5.18
Power spectrum of the normal mode shown in the inset and atomic displace-
ments in a Fibonacci lattice with N = 2584 and �1 = 1597=987 at the reso-
nance frequency �� = 2 (inset). ([11] Reprinted �gure with permission from
Maciá E 1999 Phys. Rev. B 60 10 032 c 1999 by the American Physical
Society.)

some of the successive powers of the inverse golden mean � = 1=� . These fea-
tures arrange according to a self-similar pattern, which extends through the
entire high frequency region of the power spectrum up to � ' 0:4. This self-
similar component of the power spectrum reveals the quasiperiodic nature of
the corresponding critical normal mode when it is observed at shorter scales.
The relative importance of the periodic-like versus the quasiperiodic-like con-
tribution can be roughly measured by the height ratio of their related peaks
in the power spectrum, i.e., IQP =IP ' 10�4. Therefore, we are considering
a critical normal mode which behaves as an extended, transparent state, but
still preserves a signi�cant degree of quasiperiodic order in its inner structure.
Now we shall consider the following question. According to the expression

(5.31) the transparency condition TN = 1 is achieved when � = Fn�1=Fn�2,
which corresponds to the best rational approximant to � for a given Fibonacci
lattice of length N . Let us consider the case where we assign to the parameter
� the successive values of the series �m � fFn�m=Fn�(m+1)g, with m =
1; 2 : : : giving progressively worse rational approximants of � . What will the
spatial structure and related transport properties of the corresponding critical
states be? To study this question, we consider the transmission and Lyapunov
coe¢ cients, respectively given by (see Sections 9.5.2 and 9.5.4)

TN (�
�) =

1

1 + (�Fn�2 � Fn�1)2
; (5.32)



One-dimensional quasiperiodic models 181

and

�N (�
�) =

1

N
ln [2 + 4(�Fn�2 � Fn�1)2]; (5.33)

where, without any loss of generality, we have adopted the reference values
mA = KAA � 1. Then assigning di¤erent �m values into (5.32) and (5.33) we
can study the mass ratio dependence of TN and �N coe¢ cients for di¤erent
system lengths.

TABLE 5.1
Systematic variation of the transmission
and Lyapunov coe¢ cients with the mass
ratio parameter �m for the resonant
normal mode �� = 2 corresponding to a
Fibonacci lattice with N = 2584.

m �m TN (�
�) L=2584

1 1597=987 1:00000 1:44269
2 987=610 0:99999 1:44268
3 610=377 0:99999 1:44266
4 377=233 0:99993 1:44239
5 233=144 0:99957 1:44089
6 144=89 0:99685 1:42971
7 89=55 0:97928 1:36131
8 55=34 0:87245 1:05302
9 34=21 0:50000 0:55811
10 21=13 0:12755 0:29588
11 13=8 0:02072 0:19038

In Table 5.1 we summarize the results for a Fibonacci lattice withN = 2584,
where L = ��1 estimates the localization length of the corresponding states.
In the �rst place, as �m progressively worsens as a � approximant, we observe
a systematic degradation of the transport properties of the resonant state,
which evolves from an extended character (TN ' 1, L=N > 1) to a clearly
localized one (TN ' 0:1, L=N < 1). In the second place, we observe that the
extended-localized transition is a relatively sudden episode, taking place in a
narrow window of mass ratio values around the critical value �� = �8. This
transition also occurs for other system lengths, although the precise value of
�� depends on N .
In Fig. 5.19 we show the power spectrum and the amplitude distributions

of a critical normal mode undergoing this transition. The critical normal
mode shown at the left-hand inset (�7) has a high value of the transmission
coe¢ cient (TN ' 0:97), and uniformly spreads through the Fibonacci lattice
(L=N ' 1:36). Conversely, the transmission coe¢ cient of the critical normal
mode shown at the right-hand inset (�8) has signi�cantly decreased TN ' 0:84
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FIGURE 5.19
Power spectrum of the critical normal mode shown in the left-hand inset and
atomic displacements in a Fibonacci lattice with N = 2584 at the resonance
frequency �� = 2 for �7 = 89=55 (left-hand inset) and �� = 55=34 (right-hand
inset). ([11] Reprinted �gure with permission from Maciá E 1999 Phys. Rev.
B 60 10 032 c 1999 by the American Physical Society.)

and L=N ' 1, indicating a sudden stretching of its spatial extent. The overall
structure of the power spectrum is analogous to that shown in Fig. 5.18, but
a closer inspection reveals some interesting di¤erences. Thus we observe a
shift of the periodic-like peak position towards higher frequencies describing
the presence of the long-range modulation amplitude. Conversely, the nested
twin peak features broaden, undergoing a substantial shift towards the lower
frequency region of the spectrum. Finally, the ratio IQP =IP ' 10�3 increases
by an order of magnitude, indicating the progressive relevance of the role
played by the quasiperiodic contribution.
It is worth to note that the spatial structure of the critical normal mode

shown in the left-hand inset exhibits a long-range (about 900 sites) amplitude
modulation containing a series of higher frequency quasiperiodic oscillations
of minor amplitude. This complex spatial modulation has been previously
reported as a characteristic signature of wave propagation on quasilattices
in a few experimental studies dealing with Rayleigh surface acoustic waves
propagating on the quasiperiodically corrugated surface of a piezoelectric sub-
strate (LiNbO3),[74] and coherent acoustic phonons in GaAs/AlAs Fibonacci
superlattices.[75]
Finally, we will brie�y comment on the interesting behavior of the criti-

cal normal mode when the Fibonacci lattice satis�es the condition �Fn�2 �
Fn�1 = 1. In this case the amplitude distribution exhibits a peculiar signa-
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FIGURE 5.20
Power spectrum of the critical normal mode shown in the inset and atomic
displacements in a Fibonacci lattice with N = 2584 and �9 = 34=21 at the
resonance frequency �� = 2 (inset). ([11] Reprinted �gure with permission
from Maciá E 1999 Phys. Rev. B 60 10 032 c 1999 by the American Physical
Society.)

ture, where a complex arrangement of self-similar �uctuations of the normal
mode amplitudes seems to be modulated by a broad, smooth envelope cov-
ering the entire system�s length, as shown in the inset of Fig. 5.20. The
overall structure of the corresponding power spectrum exhibits an intricate
pattern, where a signi�cant overlapping of di¤erent nested peaks occurs as a
consequence of their progressive broadening. Notwithstanding this, we can
clearly appreciate the signi�cant in�uence of the quasiperiodic contribution
over the periodic-like one, as indicated by the relatively high value of the ratio
IQP =IP ' 0:01.
These results properly illustrate the rich physical behavior of critical states

and the way the di¤erent spatial structures they display can a¤ect their re-
lated transport properties. In fact, when studying band structure e¤ects in
the thermal conductivity of Fibonacci quasicrystals a great variety of crit-
ical normal modes are found. [10, 76] These modes exhibit quite di¤erent
physical behaviors, which range from highly conducting extended states to
critical states whose transmission coe¢ cient oscillates periodically between
two extreme values, depending on the system�s length.[10, 51] In this sense,
it is quite reasonable to assume that the transport properties of these criti-
cal normal modes are substantially a¤ected by the quasiperiodic order of the
underlying lattice.
Similar results concerning the existence of extended states in other kinds of
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self-similar structures, like Thue-Morse chains and hierarchical lattices, have
been reported in the literature,[4, 77] and its role in the transport properties
has been analyzed in detail in terms of multifractal formalism on the basis
that fractal dimension is directly associated to the localization degree of the
eigenstates.[78, 79] More precisely, the phonon di¤usivity, D; is related to the
spectrum e¤ective bandwidth S �

S
i�!i; where �!i denotes the length of

each subband in the spectrum, by a power law of the form

S � L�D; (5.34)

where L = Fn for Fibonacci lattices and L = 2n for Thue-Morse and period-
doubling lattices, respectively, with n denoting the generation index of the
sequences. Note that S is nothing but the Lebesgue measure of the energy
spectrum (see Section 5.2), so that this result provides another example of
the signi�cant in�uence of the aperiodic order of the lattice on the transport
properties.

5.6.3 Critical states in Koch fractal lattices

Prior to the discovery of quasicrystals it was suggested by some authors that
fractal structures, which instead of the standard translation symmetry exhibit
scale invariance (see Section 1.5), may be suitable candidates to bridge the
gap between crystalline and disordered materials.[80] Such a possibility was
further elaborated by subsequent works on inhomogeneous fractal glasses,[81]
a class of structures which are characterized by a scaling distribution of pore
sizes and a great variety in the site environments. On the other hand, the
unexpected �nding of quasicrystalline alloys exhibiting forbidden crystallo-
graphic symmetries was originally thought as corresponding to a phase in-
termediate between a crystal and a liquid, but subsequently interpreted as a
natural extension of the notion of a crystal to structures with quasiperiodic,
instead of periodic, translational order, as it has been explained in Chapter
2. From this perspective it is interesting to compare the physical properties
related to these two novel representatives of the orderings of matter, namely,
quasicrystals and fractals.
Albeit both kinds of structures possess peculiar electronic spectra supported

by Cantor sets of zero Lebesgue measure [25, 80], it was earlier pointed out
that electron dynamics on fractal substrates may be richer and more com-
plex than that encountered in simpler quasiperiodic structures, like those
described in terms of the on-site or transfer Fibonacci chains.[82] Thus, both
numerical and analytical evidences of localized, critical, and extended wave
functions alternating in a complicated way have been reported for several
fractal models.[51, 83, 84, 85, 86, 87] In addition, it was reported that the
interplay between the local symmetry and the self-similar nature of a fractal
gives rise to the existence of persistent superlocalized modes in the frequency
spectrum.[88] This class of states arises as a consequence of the fact that
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FIGURE 5.21
a) Sketch of the model Koch lattice considered. The di¤erent sites are labeled
by integers. b) Sketch of the renormalization scheme mapping the Koch lattice
into a linear chain. (Reprinted �gure with permission fromMaciá E 1998 Phys.
Rev. B 57 7661 c 1998 by the American Physical Society.)

the minimum path between two points on a fractal does not always follow
a straight line.[89] Consequently, the general question regarding whether the
nature of the states might be controlled by the fractality of the substrate is
an interesting open question, well deserving further scrutiny in both quasi-
periodic and fractal lattices.
As a suitable model example we shall consider the tight-binding model on

the Koch lattice introduced by Andrade and Schellnhuber.[90] The motiva-
tion for this choice stems from the fact that this model Hamiltonian can be
exactly mapped onto a linear chain, and the corresponding electron dynam-
ics expressed in terms of just two kinds of transfer matrices. In this way we
can use the same algebraic approach discussed in the study of electron and
phonons in general Fibonacci systems in the previous sections. The model is
sketched in Fig.5.21, and its tight-binding Hamiltonian is given by [90]

H =
X
n

fjnihn+ 1j+ jnihn� 1j+ �f(n) [jn� 1ihn+ 1j+ jn+ 1ihn� 1j]g ;

(5.35)
where � is the cross-hopping integral introduced by Gefen [91] (indicated by
dashed lines in Fig.5.21(a)) and

f(n) = �(0; n) +
k�1X
s

�(
4s

2
; n(mod4s)); (5.36)
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with k � 2 and �4k=2 � n � 4k=2, describes the e¤ective next-nearest-
neighbor interaction in the kth stage of the fractal growth process. We shall
consider a �nite fractal lattice embedded in an in�nite periodic arrangement
of identical sites connected by hopping integrals h. The main e¤ect of allowing
electron hopping across the folded lattice is the existence of sites with di¤erent
coordination numbers along the lattice, a characteristic feature of fractals
which is not shared by quasiperiodic lattices. Depending on the value of their
respective coordination numbers we can distinguish two-fold (circles), three-
fold (full triangles), and four-fold (squares) sites. We then notice that even
sites are always two-fold, a fact which allows us to renormalize the original
lattice mapping it into the linear form sketched in Fig.5.21(b).[90] The hopping
integrals represented by single bonds appear always isolated from one another.
The hopping integrals represented by double bonds can appear either isolated
or forming trimers. Consequently, there are three possible site environments
in the renormalized Koch lattice which, in turn, de�ne three possible types of
transfer matrices, labelled F, G; and H in Fig.5.21(b). Now, by introducing
the matrices A � HG and AB � FF, it can be shown by induction that the
global transfer matrix at any given arbitrary stage k of the fractal growth
process,Mk, can be iteratively related to that corresponding to the previous
stage,Mk�1, by the expression [90]

A�1Mk =M2
k�1BM2

k�1; (5.37)

with k � 2 and M1 � A. In this way, the topological order of the lattice is
translated to the transfer matrices sequence describing the electron dynamics
in a natural way. The matrices A and B are unimodular (i.e., their deter-
minant equals unity) for any choice of � and for any value of the electron
energy, E, and the commutator reads [51]

[A;B] =
�E(E2 � 2)(2 + �E)

r3

�
(2� E2)r r2

(1� E2)(E2 � 3) (E2 � 2)r

�
; (5.38)

where r � 1 + �E, and we have de�ned the energy scale in such a way that
the hopping integrals along the chain equal unity. The commutator (5.38)
vanishes in four di¤erent cases. i) The choice � = 0 reduces the original Koch
lattice to a trivial periodic chain, so that all the allowed states, �2 � E � 2,
are extended. ii) The center of the energy spectrum, E = 0, which corresponds
to an extended state.[90] iii) E = �

p
2. iv) The family of states satisfying

E = �2=�. For these energies the condition [A;B] = 0 is ful�lled, so that the
global transfer matrix of the system,Mk � AnABnB , with nA = 4k�1+1, and
nB = 4

k�2 + 1, can be explicitly evaluated. From the knowledge of Mk the
condition for the considered energy value to be in the spectrum, jtr[Mk]j � 2,
can be readily checked and, afterwards, its transmission coe¢ cient can be
explicitly determined.
Let us consider, in the �rst place, the energies E = �

p
2. In this case we
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get

tr[Mk] = �
1

(1�
p
2�)nA�nB

� (1�
p
2�)nA�nB : (5.39)

A detailed study of the condition jtr[Mk]j � 2 in (5.39) indicates that the only
allowed states correspond to � = �

p
2, for which trMk = �2. Consequently,

these states are just two particular cases of the more general family (iv) which
we shall discuss next.
By taking E = �2=� we get B = �I, where I is the identity matrix, so

that Mk = �AnA . Making use of the Cayley-Hamilton theorem, the global
transfer matrix corresponding to the energies E = �2=� can be expressed in
terms of Chebyshev polynomials of the second kind, Um(x), with x � cos� =
�1 + 8��2 � 8��4, in the closed form

Mk =

�
UnA�1 � UnA �qUnA�1
qUnA�1 UnA�2 � UnA�1

�
; (5.40)

where q � 2(�2�2)=�2. From expression (5.40) we get tr[Mk] = �2 cos (nA�)
(where we take into account the relationship Un�Un�2 = 2Tn between Cheby-
shev polynomials of the �rst and second kinds (see Section 9.3)) and, conse-
quently, we can ensure that these energies belong to the spectrum in the
fractal limit (k !1). The transmission coe¢ cient at a given iteration stage
reads

Tk(�) =
1

1 +
h
�(��2)
2(��1) sin (nA�)

i2 ; (5.41)

where the plus (minus) sign in the factor of sin (nA�) corresponds to the
choices h � 1 and h � r = �1, respectively, for the hopping integral of
the periodic leads. From expression (5.41) we realize that the transmission
coe¢ cients corresponding to the family (iv) are always bounded below for any
stage of the fractal growth process, which proves their extended nature in the
fractal limit. In addition, the choices � = �2 (E = �1) correspond to states
which are transparent at every stage of the fractal growth process, a fact which
ensures their transparent nature in the fractal limit as well. Furthermore, it
is possible to �nd a number of cross-hopping integral values satisfying the
transparency condition Tk = 1 at certain stages of the fractal growth given
by the condition nA� = p�; which allows us to label the di¤erent transparent
states at any given stage k, in terms of the integer p.
In Fig.5.22 we plot the transmission coe¢ cient (5.41) at two successive

stages k = 2 and k = 3, as a function of the cross-hopping value. In the �rst
place, we note that the number of � values supporting transparent states,
��, progressively increases as the Koch curve evolves toward its fractal limit,
according to the power law �� = 2(4

k�1+1). It is interesting to compare this
�gure with the number of sites, N = 4k + 1, present, at the stage k, in the
Koch lattice. Thus, we obtain �� = (N + 3)=2, indicating that the number
of Koch lattices able to support transparent states increases linearly with the
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FIGURE 5.22
Transmission coe¢ cient as a function of the cross-hopping integral at two
di¤erent stages (a) k = 2, and (b) k = 3. Peaks are labelled from left to right
starting with p = �4 in (a). Label B corresponds to p = 0. Label C indicates
the transparent state at � = 2. (Reprinted �gure with permission from Maciá
E 1998 Phys. Rev. B 57 7661 c 1998 by the American Physical Society.)
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system size and, consequently, that the fractal growth favors the presence
of extended states in Koch lattices. In particular, we can state that, in the
fractal limit, there exist an in�nitely numerable set of cross-hopping integrals
supporting transparent extended states in the Koch lattice.
Another general feature shown in Fig.5.22 is the presence of a broad plateau

around � = 2 where the transmission coe¢ cients take values signi�cantly close
to unity. In addition, as � separates from the plateau the local minima in the
transmission coe¢ cient, Tmin, take on progressively decreasing values which
tend to zero in the limits � ! 1 and � ! 1. This behavior suggests that
the best transport properties in the family (iv) should be expected for those
states located around the plateau.
Up to now we have shown that, as the Koch lattice approaches its frac-

tal limit, an increasing number of cross-hopping integrals are able to support
transparent states in the E = �2=� branch of the phase diagram. But, for
a given value of �; how many of the related extended states at an arbitrary
stage, say k, will prevail in the fractal limit k !1? From a detailed analysis
of expression (5.41) it was found that the considered states can be classi�ed
into two separate classes. In the �rst class we have those states which are
transparent at any stage k. In the second class we �nd states whose transmis-
sion coe¢ cient oscillates periodically between T = 1 and a limited range of
Tmin 6= 1 values depending on the value of the label integer p and the fractal
growth stage. Two general trends have been observed in this second class of
extended states. First, the values of Tmin are signi�cantly lower for states
corresponding to p < 0 than for states corresponding to p > 0. Second, at
any given fractal stage, the values of Tmin are substantially higher for states
associated to cross-hopping integral values close to the plateau than for states
corresponding to the remaining allowed � values. We must note, however, that
not all these almost transparent states are expected to transport in much the
same manner, as suggested by the diversity observed in the values of Tmin.
In Fig.5.23 we provide a graphical account of the most relevant results ob-

tained so far. In this Figure we show the phase diagram corresponding to
the model Hamiltonian given by Eq.(5.35) at the �rst stage of the fractal
process (shadowed landscape) along with two branches corresponding to the
states belonging to the family E = �2=� (thick black lines). In the way along
each symmetrical branch we �nd three particular states whose coordinates are
respectively given by (�1;�2), (�

p
2;�

p
2), and (�2;�1). Three of them,

corresponding to the choice � > 0, are indicated by full circles labelled A,
B, and C in Fig.5.23. These states correspond to transparent states whose
transmission coe¢ cients equal unity at every k. The remaining states in the
branches correspond to almost transparent states exhibiting an oscillating be-
havior in their transmission coe¢ cients. By comparing Figs.5.22 and 5.23 we
realize that the positions of the transparent states A-B-C allow us to de�ne
three di¤erent categories of almost transparent states according to their re-
lated transport properties. The �rst class (I) includes those states comprised
between the state A, at the border of the spectrum, and the state B, located
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FIGURE 5.23
Phase diagram showing the Koch lattice spectrum at k = 1 (shadowed areas)
and the branches corresponding to the extended states family E = �2=�.
(Reprinted �gure with permission from Maciá E 1998 Phys. Rev. B 57 7661
c 1998 by the American Physical Society.)

at a vertex point separating two broad regions of the phase diagram. The
second class (II) includes those states comprised between the state B and the
state C close to the plateau in the transmission coe¢ cient around � = 2.
Finally, the third class (III) comprises those states beyond the state C. The
states exhibiting better transport properties belong to the classes II and III,
and correspond to those states grouping around the plateau near the state
C for which the values of Tmin are very close to unity. As we move apart
from state C, the transport properties of the corresponding almost transpar-
ent states become progressively worse, particularly for the states belonging to
the class III, for which values of Tmin as low as 10�3 can be found.

In conclusion, we realize that in the study of general, aperiodic systems,
eigenstates can be classi�ed attending to two complementary criteria, namely,
their spatial structure and the value of their related transmission coe¢ cient.
In the case of periodic crystals or amorphous materials both criteria are di-
rectly correlated. In periodic crystals we have Bloch states exhibiting a pe-
riodic spatial structure and T = 1 (transparent state). On the other hand,
uncorrelated random systems have exponentially localized wavefunctions with
T = 0 (localized states). Quasiperiodic crystals display a richer class of
wavefunctions, generically referred to as critical states, exhibiting a modu-
lated spatial structure and a broad diversity of transmission coe¢ cient values
(0 < T � 1). Two points should be highlighted regarding the transmis-
sion coe¢ cient values: i) since T 6= 0 in general, strictly localized states are
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not present in quasiperiodic systems; and ii) the very possibility of having
T = 1 in some particular cases indicates that the notion of transparent state
must be widened to include eigenstates which are not Bloch functions at all.
Finally, fractal systems generally possess an even richer variety of wavefunc-
tions, stemming from their inherent combination of self-similarity (a property
shared with quasiperiodic chains) and fractal dimensionality (manifested by
the presence of sites with di¤erent coordination numbers along the chain).

5.7 Transport properties of Fibonacci superlattices

5.7.1 dc conductance

The rich fractal structure displayed by the energy and frequency spectra of
self-similar aperiodic systems should be re�ected, to some extent, in its trans-
port properties. Evidences supporting this to be the case were reported in
some experimental works dealing with FSLs (see Section 4.3). Generally
speaking there are two factors which must be taken into account in order
to evaluate the relative importance of typical quasiperiodic e¤ects on the per-
pendicular electronic transport of FSLs. On the one hand, since these e¤ects
are essentially quantum in nature, we must consider systems with strong cou-
pling between adjacent blocks. For instance, in the FSL model introduced in
Section 5.1 the e¤ective coupling threshold between nearest-neighbor blocks
is given by the condition d < 3 in Eq.(5.6). This condition is ful�lled by
GaAs-GaAlAs superlattices (electron e¤ective mass m� = 0:067) with peri-
ods ranging from 70Å to 340Å and height barriers in the interval 4meV to
100meV, respectively. On the other hand, we should consider electron-phonon
scattering e¤ects which tend to disrupt coherent quantum transport. These
e¤ects crucially depend on the sample temperature and it may be con�dently
expected that their in�uence can be neglected at very low temperatures. In
this case the relationship between the electrical conductance at zero temper-
ature and the transmission coe¢ cient, TN (E), is given by the well-known
dimensionless single-channel Landauer formula (Eq.(9.87) in Section 9.5.3).
The energy dependence of the transmission coe¢ cient can be obtained in a
straightforward manner in the transfer-matrix formalism by embedding the
�nite FSL in an in�nite periodic lattice of identical blocks.
A representative example of the obtained results is shown in Fig.5.24, where

one clearly appreciates a well di¤erentiated trifurcation structure of conduc-
tance peaks, which mimics that corresponding to the energy spectrum ap-
proximating a prefractal Cantor-set structure.
In order to obtain realistic outcomes from the model, it is convenient to

include �nite-temperature e¤ects. To this end we shall consider the expression
given by Eq.(9.88) in terms of the transmission coe¢ cient (Section 9.5.3). The
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FIGURE 5.24
Landauer conductance at zero temperature for a FSL with N = 987; d =
2:5; and �B=�A = 0:9. Energy measured in eV. ([16] Reprinted �gure with
permission from Maciá E, Domínguez-Adame F, and Sánchez A 1994 Phys.
Rev. B 49 9503 c 1994 by the American Physical Society.)

temperature dependence of the conductance curves will depend on the precise
value of the chemical potential of the sample. The Fermi energy, EF , of the
free electron gas is related to the chemical potential �, by the expression

� = EF

"
1� �2

12

�
kBT

EF

�2
� �4

80

�
kBT

EF

�4
+ : : :

#
; (5.42)

where kB is the Boltzmann constant. At low enough temperatures the chem-
ical potential essentially coincides with the Fermi level, and we will use it
as a free parameter in order to explore the main transport features of the
considered FSL. An illustrative example is shown in Fig.5.25.
At high temperatures the �(T; �) curves saturate, reaching stable asymp-

totic values at about kBT ' 0:4: This value is of the order of the contact�s
bandwidth 
 = 4e�d ' 0:33 eV, so that all available electrons contribute to
the electronic transport in the superlattice growth direction in the high tem-
perature regime, independently of the adopted � value. On the contrary, the
general form of the �(T; �) curve strongly depends on the adopted � value at
low temperatures. If the chemical potential is close to a set of transmission
peaks the conductance exhibits several characteristic humps. This is the case
of curve I. Conversely, if the chemical potential is located in a main gap region,
the conductance monotonically increases with temperature to reach a limiting
value and no relevant features are present at all, as seen in curve III. Finally,
if the chemical potential lies in an intermediate region a pronounced broad
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FIGURE 5.25
In�uence of the energy spectrum on the �nite-temperature conductance of
a FSL. In (a) we show the transmission coe¢ cient for a superlattice with
N = 55; d = 2:5; and �B=�A = 0:85. The vertical dashed lines indicate the
location of the chemical potential in three di¤erent cases: (I) � = �0:628, (II)
� = �0:585, and (III) � = �0:4. The corresponding conductance curves as
a function of the temperature are shown in (b). Energy is measured in eV.
([16] Reprinted �gure with permission from Maciá E, Domínguez-Adame F,
and Sánchez A 1994 Phys. Rev. B 49 9503 c 1994 by the American Physical
Society.)
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hump occurs due to the contribution of nearest transmission peaks. Such a
hump is shown in curve II. Thus, it is clear that the occurrence of conductance
humps at low temperatures is intimately related to the fragmented nature of
the energy spectrum. These di¤erent kinds of conductance behaviors can be
related to the position of the chemical potential � by means of the following
expression in the low temperature limit [16]

�(T; �) ' ~� coth
�
~��
� 3X
i=1

i

cosh2
�
~��i

� ; (5.43)

where ~� � (2kBT )�1, �i � Ei � �;Ei denotes the position of the main peaks
of conductance triplets, i is the characteristic strength of each transmission
peak, and � is the width of the triplet. Thus, once the chemical potential
has been �xed, the evolution of the conductance curve is determined by four
basic parameters. In consequence, Eq.(5.43) provides a suitable tool to obtain
relevant parameters characterizing the fragmentation splitting pattern of the
electronic structure from experimentally measured conductance curves �ts. In
the case of actual superlattices typical bandwidths are in the range 
 ' 100
meV, so that the high temperature regime will be attained at T ' 
=10kB �
1100 K (see Fig.5.25). Accordingly, conduction humps due to the �rst level
of fragmentation may be observable at about T � 200 K, whereas conduction
spikes due to the third level of splitting could be appreciated at temperatures
below T � 20 K.

5.7.2 Disorder e¤ects

From an experimental point of view, however, two major limitations appear
to fully appreciate the characteristic �ngerprints of fractal energy spectra
from transport measurements in aperiodic superlattices. In the �rst place, it
is not possible to fabricate perfect aperiodic structures. Interface roughness
appears during growth in actual aperiodic superlattices: Protrusions of one
semiconductor into the other cause in-plane disorder and break translational
invariance parallel to the layers. Although x-ray di¤raction studies show that
the characteristic structural order of aperiodic superlattices is preserved under
moderately large growth �uctuations (see Section 4.1), the way this robust
aperiodic order can in�uence the transport properties of actual, defective sys-
tems deserves a close inspection. In fact, the observation of inhibition of
vertical transport in periodic superlattices with intentional disorder[92] (in
agreement with the theory of localization in one-dimensional disordered sys-
tems) suggests the possible existence of a competition between the long-range
aperiodic order and the unintentional short-range disorder. On the other
hand, only �nite arrangements with a limited number of layers can be usu-
ally manufactured, even in the most favorable experimental conditions. In
this sense, the observation of fragmentation patterns in the energy spectra
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of short aperiodic superlattices using di¤erent experimental techniques (see
Section 4.3) spurs further analyses regarding whether fractal-like spectra are
to be expected in actual systems with an increasingly large number of layers.
Two important questions then follow quite naturally: First, what are the

e¤ects of unintentional disorder in the splitting scheme of the energy spectrum
of aperiodic superlattices? Second, what are the �nite size e¤ects on their
fractal-like properties? As we will see, the presence of small �uctuations in
the sequential deposition of layers considerably smear out the self-similarity
property of the energy spectra on increasing the system size, as the coupling
between electronic states is progressively reduced due to the loss of quantum
coherence. Thus, fractal-like spectra with a richness of �ner details such as
those obtained from numerical analyses of ideal systems are not to be expected
in realistic superlattices (see Section 5.8.2), though quantum coherence is still
strong enough in short systems to give rise to a measurable hierarchical set of
subminibands in the electronic spectra and to in�uence their related transport
properties to some extent.
As a representative model system we consider a quantum-well based GaAs-

Ga0:65Al0:35As superlattice with the same barrier thickness b = 32Å in the
whole sample and two di¤erent well widths a = b and a0 = 35Å, respectively,
arranged according to the Thue-Morse or Fibonacci sequences. The height of
the barrier for electrons is given by the conduction-band o¤set (250meV) at
the interfaces and the origin of electron energies is at the GaAs conduction-
band edge. We will focus on electronic states close to the bandgap and ne-
glect non-parabolicity e¤ects hereafter, so that a one-band Hamiltonian suf-
�ces to describe those states. The e¤ective masses are m�

GaAs = 0:067m and
m�
GaAlAs = 0:096m, m being the free-electron mass. Physical magnitudes of

interest can be easily computed using a transfer-matrix formalism in this sim-
ple picture. Because the in-plane average size of structural defects depends on
the growth conditions and it is unknown in most cases, one is forced to develop
a simple approach, describing local excess or defect of monolayers by allowing
the quantum-well thicknesses, �zn; to �uctuate uniformly around the nomi-
nal values a+ b or a0 + b, according to the expressions �zn = a(1 +W&n) + b
or �zn = a0(1 +W&n) + b, where W is a positive parameter measuring the
maximum �uctuation and &n�s are distributed according to a uniform prob-
ability distribution P (&n) = 1 if j&nj < 1=2 and zero otherwise. Note that
&n is a random uncorrelated variable, even when the lattice is constructed
with the constraint that the mean values of �zn follow the aperiodic se-
quences. This approximation should be valid whenever the mean-free-path of
electrons is much smaller than the in-plane average size of protrusions as elec-
trons only detect micro-quantum-wells with small area and uniform thickness.
Therefore, each micro-quantum-well presents a slightly di¤erent value of its
thickness and, as a consequence, resonant coupling between electronic states
of neighboring GaAs layers is decreased. To get an accurate description of
electron dynamics, average over all possible con�gurations of disorder is in-
deed required because the number of interface defects as well as their mean
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FIGURE 5.26
Phase diagram for a (a) GaAs-Ga0:65Al0:35As Fibonacci superlattice withN =
F11 = 144 wells and (b) GaAs-Ga0:65Al0:35As Thue-Morse superlattice with
N = 128 wells. The energy is measured from the conduction-band edge in
GaAs. (From [94]. With permission from IOP Publishing Ltd.)

thickness vary from layer to layer.
Figure 5.26(a) shows the dependence of the energy spectrum structure on

the amount of disorder,W . For a perfect (W = 0) FSL the overall structure of
the energy spectrum is characterized by the presence of four main subbands.
Inside each main subband the fragmentation pattern follows a trifurcation
scheme in which each subband further splits from one to three subsubbands.
Therefore, the energy spectrum of perfect and �nite FSLs presents distinct
pre-fractal signatures. The situation changes when randomness is introduced.
In fact, although the tetrafurcation pattern of the perfect FSL still remains,
the �ner details corresponding to successive steps in the hierarchical splitting
scheme are progressively smeared out on increasing the disorder due to growth
�uctuations. Figure 5.26(b) shows the dependence of the spectrum structure
with the degree of disorder present in a Thue-Morse superlattice. For a perfect
system the fragmentation scheme agrees with that previously discussed in the
framework of the Kronig-Penney model,[93] and displays pre-fractal signatures
as well. Accordingly, the presence of the short-range disorder reduces the
resonant coupling between quantum-wells and, consequently, it weakens the
physical mechanism giving rise to the self-similar pattern.
To investigate the e¤ects due to the competition between long-range ape-

riodic order and short-range disorder on the transport properties, one can
evaluate the localization length, `, as a function of the energy (Fig.5.27). For
the perfect (W = 0) case one obtains a very spiky structure. Each peak cor-
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FIGURE 5.27
Localization length for (a) a perfect GaAs-Ga0:65Al0:35As Fibonacci superlat-
tice with N = F11 = 144 wells (solid line) as compared to a disordered one
(W = 0:05) of the same length (dashed line) and (b) the same comparison
for a Thue-Morse superlattice with N = 128 wells. Averages are taken over
50 realizations of the superlattice. (From [94]. With permission from IOP
Publishing Ltd.)
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responds to a quasi-level, and most of them completely extend through the
superlattice, their localization length being one order of magnitude greater
than the system length. Note that the distribution of peaks re�ects the overall
fragmentation of the energy spectrum. On the contrary, when growth �uctu-
ations are introduced, the localization length distribution becomes smoother
and its value remains always smaller than the superlattice length, clearly re-
vealing the onset of localization e¤ects. This general trend is observed for both
Fibonacci and Thue-Morse superlattices (TMSL), though some remarkable
di¤erences are also observed between both kinds of aperiodic superlattices.
Thus, one observes that, in the perfect TMSL, there exists a signi�cant num-
ber of states whose localization length is several orders of magnitude greater
than the system size. This fact is related to the presence of extended states
in the TMSL.[93] In addition, the mean value of ` is lower for the defective
TMSL, hence indicating that the e¤ects of localization are more intense in
FSLs than they are for TMSLs with the same amount of disorder. Therefore,
in presence of the same degree of growth �uctuations, TMSLs should exhibit
better transport properties than FSLs. Finally, notice that the localization
onset is more pronounced at the edges of the energy spectrum; meanwhile in
the central regions of the spectrum (about 110 meV) the localization length
almost equals the system size.
In summary, from Figs. 5.26 and 5.27 we see that moderate �uctuations in

the sequential deposition of layers have signi�cant e¤ects on both the energy
spectrum and the spatial extension of wave functions. The fractal-like nature
of an arbitrary spectrum is determined by two complementary features. In the
�rst place, the energy spectrum becomes more and more fragmented as the
aperiodic superlattice length grows. The physical origin for this fragmentation
stems from resonant tunneling e¤ects between electronic states of neighboring
quantum-wells (short-range e¤ects). In the second place, the splitting scheme
of the energy spectrum must display a self-similar pattern. The physical origin
for this self-similarity can be traced back to the structural self-similarity of
the superlattice itself which, in turn, is imposed by the aperiodic ordering of
the system (long-range e¤ects). Taking both facts into account we conclude
that the purported robustness of the aperiodic order present in aperiodic
superlattices is not su¢ cient, by its own, to guarantee the fractal-like nature
of the energy spectrum in the presence of disorder, because the main e¤ect
of growth �uctuations is precisely to weaken the resonant coupling between
electronic states. Hence, albeit the structural aperiodic order is preserved in
the presence of moderate �uctuations, the self-similarity related to it can not
be properly expressed, in its �ner details, in the energy spectrum due to the
loss of quantum coherence as a consequence of short-range e¤ects.
The relative importance that this competition between long-range order

and short-range disorder has on the transport properties depends critically
on the length of the system. The values of the localization length shown in
Fig.5.27 indicate that wave functions no longer spread over the whole aperi-
odic superlattice, as they do in the perfect case, but their degree of extension
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amounts to a signi�cant fraction of the system size in contrast with the usual
view of localized states extending over just a few wells. Thus, one can safely
conclude that distinctive features of a fractal-like spectrum can be experimen-
tally observed in aperiodic superlattices of practical interest, whose length is
smaller than certain threshold length. The value of this threshold length will
depend on the heterostructure quality attained during the growth process.

5.8 Beyond one-dimensional models
Most theoretical analyses discussed so far have been concentrated on simple
single-band models in one dimension, and the e¤ects of the full crystalline
structure of each layer in a given aperiodic superlattice have remained unex-
plored. This topic will be brie�y addressed in this concluding section.

5.8.1 Two-band models

An extended version of the single-band on-site model was considered in Ref.[95]
according to the Hamiltonian given by

H =
X
i

jii
�
"�1 0
0 "�2

�
hij �

X
i;j

jii
�
t11 t12
t21 t22

�
hjj; (5.44)

which describes a two-band nearest-neighbor tight-binding system. The on-
site energies describing the two levels associated to each lattice site, "�1 and "

�
2 ;

are arranged according to the Fibonacci sequence, where the label � denotes
the respective sites being A or B. The transfer integrals between the orbitals
of nearest-neighbors sites are taken to be independent of the atomic species,
in analogy with the single-band on-site model given by Eq.(5.3). Making use
of the transfer-matrix formalism the corresponding Schrödinger equation can
be expressed in the 4� 4 matrix form0BB@

 1;n+1
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 1;n
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1CCA =

0BB@
t22
� (E � "1) �

t12
� (E � "2) 1 0

� t21
� (E � "1)

t11
� (E � "2) 0 1

1 0 0 0
0 1 0 0

1CCA
0BB@

 1;n
 2;n
 1;n�1
 2;n�1

1CCA ; (5.45)

where E is the electron energy and � � t11t22 � t212 describes an e¤ective
transfer integral which plays a role analogous to that played by the actual
transfer integral t in the single-band transfer matrix element (E � ")=t. This
e¤ective hopping term describes band hybridization e¤ects involving the bands
related to the "A;B1 and "A;B2 atomic levels, and it vanishes when the resonance
condition t12 =

p
t11t22 is satis�ed. Physically, this situation corresponds to
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FIGURE 5.28
Band structure of the GaAs/AlAs Fibonacci superlattice composed of 144
GaAs layers and 89 AlAs layers. The position of the energy levels in the bulk
GaAs and AlAs is indicated by arrows on the right-hand side. (From ref.[95].
With permission from IOP Publishing Ltd.)

the creation of an almost �at region in the energy dispersion curve and the
corresponding increase in the electronic e¤ective mass.
In Chapter 6 we will see that two-band Hamiltonians of the form given by

Eq.(5.44), leading to 4 � 4 transfer matrices like Eq.(5.45), can be fruitfully
applied to study charge migration in double-stranded DNA chains. In turn,
double-chain quantum models have been recently proposed for studying some
basic features of charge transport in icosahedral QCs.[96]

5.8.2 Three-dimensional e¤ects

Hirose and co-workers considered a GaAs/AlAs Fibonacci superlattice com-
posed of single monolayers of GaAs and AlAs by using a semi-empirical tight-
binding method. The electronic state at the position r in the crystal lattice
is expressed as a linear combination of atomic orbitals as[95]

	lk(r) =
1p
N

2FnX
j

5X
�

C�;lj;k e
ik�Rj��(r�Rj); (5.46)

where � denotes the orbital states s, px; py, pz; and s�; j runs over the site
number, N is the number of atoms in a unit cell, and l indicates the band
index. The parameters were chosen to reproduce the experimentally deter-
mined band structures of bulk GaAs and AlAs, and second-nearest neighbor
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interactions were included in order to reproduce the L-point energies. The
resulting band structure (in a plane perpendicular to the superlattice direc-
tion) is shown in Fig.5.28 for a FSL with 233 monolayers. As one appreciates
both the valence and conduction bands are greatly fragmented. By compar-
ing the superlattice band structure with the energy levels in the bulk one can
distinguish two types of dispersion in the valence band which are respectively
related to the bands originating from heavy and light holes, respectively. The
heavy hole band (reaching the X point in the diagram) has a smaller disper-
sion and is divided into three subbands around the � point, as expected from
the study of simpler FSL models. On the contrary, the light hole band is
much wider and no clear fragmentation pattern can be observed. A similar
band structure is appreciated for the conduction band, though the trifurcation
pattern is not easily resolved in this case. Above 3.0 eV this splitting is clear-
est, but strong hybridization between GaAs s and AlAs p bands occur in the
energy interval 2.5-3.0 eV, signi�cantly smearing out the �ner details. Accord-
ingly, one concludes that self-similar structure is destroyed by hybridization
e¤ects in more realistic descriptions of the superlattice structure. This general
trend was con�rmed by subsequent studies considering several monolayers in
each FSL slab (thickness e¤ect) as well as including spin-orbit coupling in
the treatment (in order to break the degeneracy in the heavy hole band).[97]
In general, a characteristic trifurcation scheme is only found at some points
of the superlattice Brillouin zone, mainly in the vicinity of the � point, and
for some energy ranges. Certainly, the main reasons for the absence of such
clear fragmentation patterns in the energy spectrum of more realistic systems
stems from their intrinsic complexity. In fact, these models include a large
number of model parameters: di¤erent on-site energies and transfer integrals
for the di¤erent orbitals, the valence band o¤set and the three-dimensional
crystal geometry of the layers, and the e¤ect of quasiperiodicity have a di¤er-
ent impact on each one of them.
The absence of clear self-similar features in the energy spectrum of realistic

Fibonacci heterostructures has been extensively analyzed by considering the
propagation of di¤erent kinds of elementary excitations like sagittal elastic
waves or polaron optical modes in three-dimensional FSLs.[98] In these cases
the waves have several components, whose dynamics couples with the aperi-
odic structure of the substrate in a complex way. For instance, sagittal waves
have two di¤erent components in the sagittal plane formed by the propagation
direction and the FSL growth direction. As a consequence of their mixing the
energy spectrum becomes blurred, which makes di¢ cult the possible identi-
�cation of clear self-similar patterns, as those shown, for instance, in Fig.5.7
for simpler models.
The nature of the wave functions was analyzed by comparing some repre-

sentative states of the sp3s� model with those corresponding to a single-band
on-site model. In this way, it was concluded that the localization is enhanced
by the interband hybridization in the sp3s� model, although the phase corre-
lation characteristic of Fibonacci systems is not destroyed so that the wave
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function remains critical.[95] A more detailed study on thickness e¤ects in the
wavefunction localization in terms of the local DOS for some selected states
showed the presence of selective spatial localization in the thickest slabs of
the lowest conduction and highest valence band states, respectively.[97, 99]
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6
The aperiodic crystal of life

The detailed mechanism by means of which a gene or a virus mole-
cule produces replicas of itself is not yet known. (...) It might hap-
pen, of course, that a molecule could be at the same time identical
with and complementary to the template on which it is moulded.
(...) If the structure that serves as a template (the gene or virus
molecule) consists of, say, two parts, which are themselves com-
plementary in structure, then each of these parts can serve as the
mould for the production of a replica of the other part, and the
complex of two complementary parts thus can serve as the mould
for the production of duplicates of itself. (Linus Pauling, 1948 [1])

There was an even more remarkable suggestion by Linus, which he
made some time in the late 1940s � that the gene might consist
of two mutually complementary strands. (Francis Crick, 1992 [2])

Despite the clear picture of how the gene may be duplicated, Paul-
ing failed to discover the structure of DNA. Instead he proposed
an incorrect three-stranded model of DNA structure with phos-
phates in the middle and bases on the outside. He had used as a
clue for this proposal the manner in which phosphate groups form
a helical array in certain minerals. (Alexander Rich, 1995 [3])

It was really partly a matter of bad luck, because although he was
hoping to get some good x-ray patterns himself, he used the old
x-ray patterns that Astbury had taken of DNA. We know now
that they were a mixture of the two forms: the A and the B form.
So he was using data which did not correspond to any real single
structure. (Francis Crick, 1992 [4])

209
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FIGURE 6.1
An early x-ray photograph of DNA taken by W. T. Astbury in the 1930s.
Two characteristic features stemming from the stacked bases are indicated by
arrows. (Adapted from [5, 6]).

6.1 The double helix
6.1.1 Di¤raction by helices

Shortly after the pioneering introduction of x-ray techniques by van Laue and
Bragg, structural analyses were soon devoted to the study of complex organic
polymers able to condense in a partially ordered phase. Thus, cellulose (the
main component of the cell wall in most plants) or keratin (a protein present
in natural hair or wool �bers) were considered in the 1920s and 1930s; and
diverse DNA samples in the late 1940s and early 1950s. In this way, it was
progressively realized that helical arrangements may play a signi�cant role
in a growing number of �brous polymers. In Fig.6.1 we show one of the �rst
di¤raction pictures of a nucleic acid taken by William T. Astbury (1898-1961)
in 1936. Although the image is quite blurry, two characteristic features at the
north and south regions of the meridian axis suggest a spacing of about 3.34
Å along the �ber axis, which was properly interpreted as

revealing a close succession of �at nucleotides standing out per-
pendicularly to the long axis of the molecule to form a relatively
rigid structure. [5]

This was not still a helix, however, but in 1949 Sven Furberg, a research
student working under John Bernal, proposed a DNA structure based on a
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single-strand helix (with the sugar units perpendicular to the bases) in his Ph.
D. thesis.[7] This orientation of the units in a nucleotide subsequently proved
correct and was a considerable help to Francis H. C. Crick (1916-2004) and
James D. Watson (1928) in their �nal model.[8] A speci�c helical di¤raction
theory was then required in order to properly interpret the obtained x-ray
di¤raction patterns. The demand for a theoretical framework was pressing
when quite speci�c models, based on a judicious combination of x-ray dif-
fraction data and stereochemical information about acceptable bond lengths,
bond angles, and hydrogen bonding interactions, were proposed for several
�lamentous proteins by Pauling and his collaborators.
The full theory of di¤raction by helices, including a proper formula for the

form factor, was �rst reported and successfully applied to explain the dif-
fraction patterns of certain synthetic polypeptides by W. Cochran, F. Crick,
and V. Vand.[9] A version of the formalism was independently developed by
Alexander R. Stokes (1919-2003), but it was published in 1955,[10] after the
double-helix crucial discovery years.[11] In what follows, we shall brie�y intro-
duce some basic results of the helix di¤raction theory, which are convenient
to properly understand the most signi�cant features of DNA structure and
biological functionality. Let us consider a wire of in�nitesimal thickness curled
around to form a uniform helix of in�nite length, constant radius R, and pitch
P , given by the equations

x = R cos'(z) (6.1)

y = R sin'(z)

z = z

where '(z) = 2�z=P , and z measures the distance along the helix axis. The
value of the Fourier transform at a point q in the reciprocal space is given by

F(q) = A

Z
f(r)eiq�rdr; (6.2)

where A is an appropriate constant, f(r) is the electron density through the
scattering helix, r =xi+yj+zk is the position variable given by Eq.(6.1), and
the integral is taken over all space. Assuming f(r) � f0 for a uniform helix,
and expressing the volume element as dr = �R2dz; Eq.(6.2) can be written
in the form,

F(q) = Af0�R
2

Z
exp [i(qxR cos'+ qyR sin'+ zqz)] dz: (6.3)

In order to exploit the cylindrical symmetry of the helix it is convenient to
express the components of the reciprocal space vector q in cylindrical coor-

dinates, so that qx = qr cos and qy = qr sin , where qr =
q
q2x + q

2
y and

tan = qy=qx. In this way, Eq.(6.3) can be rewritten as[9]

F(q) = Af0�R
2

Z
exp [i fRqr cos('�  ) + zqzg] dz: (6.4)
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A helix curve can be seen as a composition of a translation along the Z
axis plus a uniform rotation about this axis. Since the helix repeats itself
at a distance P in the Z direction, the scattering is analogous to that of a
one-dimensional di¤raction grating with spacing P . Therefore, the di¤rac-
tion pattern of a uniform helix in reciprocal space occurs along a series of
equidistant lines (whose spacing is determined by the helix pitch) rather than
the Bragg spots one obtains from a three-dimensional crystal. These lines,
referred to as layer lines, are at right angles to the Z axis in reciprocal space,
and they are given by the series (Fig.6.2),

qz(n) = 2�
n

P
; (6.5)

with n 2 Z. Accordingly, Eq.(6.4) can be rearranged in the form [12]

F(q) = F0
X
n

In�
�
qz � 2�

n

P

�
; (6.6)

where F0 � Af0PR
2=2, and we have introduced the auxiliary integral

In = ein 
Z 2�

0

eiu cos('� )ein('� )d'; (6.7)

where u � Rqr. This integral can be evaluated by using the identityZ 2�

0

eix cos �ein�d� = 2�inJn(x); (6.8)

where Jn(x) denotes the nth-order Bessel function of the �rst kind.[13] Thus,
adopting � � ' �  in Eq.(6.7), and taking into account the identity in =
ein�=2, one �nally obtains[9]

F(q) = 2�F0
X
n

Jn(u)e
in( +�=2)�

�
qz � 2�

n

P

�
: (6.9)

For a given value of n; Eq.(6.9) gives the amplitude and phase of the x-
ray scattering on the nth layer line. The intensity of the di¤raction peaks is
given by In(q) = jFn(q)j2 / jJn(u)j, which is independent of the angle  
and the resulting pattern has cylindrical symmetry. In addition, from the
mathematical properties J�n(u) = (�1)nJn(u), and J2n(�u) = J2n(u), n =
0; 1; 2 : : :, one realizes that the di¤raction pattern In(q) / jJn(u)j will be
symmetric with respect to the qr and qz axes, respectively (Fig.6.2).
Thus, the presence of Bessel functions is a natural consequence of the cylin-

drical symmetry in helical di¤raction, where they replace the trigonometric
functions one �nds in usual di¤raction by three-dimensional lattices. Bessel
functions characteristically begin with a strong peak and then oscillate like a
damped sine wave as the argument increases. The position of the �rst strong
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FIGURE 6.2
Di¤raction pattern of a continuous helix of radius R and pitch P . Main
di¤raction spots are arranged along a series of lines (layer lines) labeled by
integer values n. The lines are perpendicular to the meridian axis qz and are
separated by a distance 1=P . The characteristic cross-shaped pattern stems
from the symmetry properties of Bessel functions.

peak depends on the order of the Bessel function. For n = 0 the Bessel func-
tion attains its maximum in the middle of the di¤raction pattern (i.e., for
u = 0). For n 6= 0 the position of the �rst strong peak occurs when the
argument is approximately equal to n, so that

qr(n) '
n

R
: (6.10)

On the other hand, one �nds that the order of the Bessel function occurring
on a certain layer line, say k (counted from the middle of di¤raction pattern),
is just the same as the layer line, that is, Jk. Then, since the order of the
Bessel function progressively increases with the layer line, the �rst strong peak
progressively shifts from the meridian axis in the di¤raction pattern giving rise
to a cross-like pattern, which is a characteristic feature of di¤raction by a helix
(Fig.6.2). The semi-angle  of the cross can be obtained from the ratio

tan  =
qr(n)

qz(n)
=

P

2�R
; (6.11)

which takes the same value for any value of n. Eq.(6.11) relates the helix
radius with its pitch value (which can be directly determined from the layer
lines separation), so that one can obtain R from the  value measured from the
di¤raction picture. In addition, Eq.(6.11) has the following geometrical mean-
ing: as a point on the helix moves through one pitch, its z value changes by
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P , and its projection on the XY plane travels round a circle of circumference
2�R, so that the rise angle ' of the helix in physical space is directly related
to the di¤raction pattern cross geometry through the relationship ' ' .[8]
Now, actual DNA helices are not continuous at the atomic level, but they

consist of repeating groups of atoms clustered in a number of basic structural
motives (i.e., phosphate groups, sugars, nucleobases, counterions, and water
molecules), so that they must be properly regarded as helical polymers rather
than helical coils. A helical polymer is one in which the monomer units are
aligned along a regular circular helix and are all equivalent under the sym-
metry operations of the helical screw axis. The symmetry properties of a
discontinuous helix can be characterized by measuring the distance between
two successive repeating motives (e.g., sugar-phosphate groups) in the macro-
molecule (the so-called rise per residue p) along with the angle you must turn
between one motif and the next. As a consequence, the structure is character-
ized by two superimposed periods, namely P and p. For instance, for B-DNA
with eleven nucleotides in the basic unit cell, one has P = 34 Å and p = 3:4 Å.
The di¤raction properties of the resulting structure can be described in terms
of two one-dimensional di¤raction gratings aligned along the same direction
(namely, the Z axis), but with a �xed relative displacement between them.
Accordingly, the corresponding layer-lines are now given by

qz(n;m) = 2�

�
n

P
+
m

p

�
; (6.12)

instead of Eq.(6.5), and Eq.(6.9) generalizes to

F(q) = 2�F0
X
n;m

Jn(u)e
in( +�=2)�

�
qz � 2�

n

P
� 2�m

p

�
: (6.13)

When P=p can be expressed as a ratio of whole numbers the main e¤ect of
shifting from a continuous to a discontinuous helix is to introduce new helix
crosses in the di¤raction pattern, with their origins displaced up and down the
meridian axis of the di¤raction pattern by a distance 1=p (Fig.6.3). Thus, we
obtain a denser set of layer-lines which are mutually separated a distance l=P 0

in reciprocal space. For a given vale of l, the intensity along the corresponding
layer-line is governed by Eq.(6.13) where the various integer couples (n;m)
must be chosen to satisfy the selection rule

l

P 0
=
n

P
+
m

p
: (6.14)

This creates a diamond-like shape in the di¤raction pattern, where the merid-
ian diamonds are nearly void of intensity (Fig.6.3). For instance, in the case
corresponding to B-DNA, P 0 = P = 10p, and Eq.(6.14) reads l = n + 10m.
The layer-lines labeled by the integer n describe the contribution due to the
sugar-phosphate backbones, which can be regarded as a nearly continuous
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FIGURE 6.3
Ideal di¤raction pattern of a DNA double-helix with p = 0:34 nm, P =
3:4 nm, R = 1 nm, and ' = �=5. The layer-lines satisfy the condition
l = n + 10m; where allowed n and m values are determined by the sugar-
phosphate and nucleobase electronic density distributions, respectively. The
dashed area covers the reciprocal space region shown in Fig.6.2. Note the
empty features arising from destructive interference e¤ects due to the presence
of two simultaneously di¤racting helices in double-stranded DNA (see Fig.6.4).
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FIGURE 6.4
The basics of di¤raction by two linear gratings mutually displaced by a �xed
amount explains the extinction of the n = 4 layer-lines corresponding to the
B-DNA molecule sketched on the left. (Adapted from [14].)

helical distribution of electron density. Although the bases are irregular in
their chemical composition and geometrical structure, they scatter coherently
because they behave like thin slabs of almost constant electronic density seen
edge-on by the x-ray beam propagating perpendicularly to the �ber axis. The
discrete contribution due to the bases is given by the layer-lines labeled by m
integers, so that the spectra due to the bases are much more widely spaced
than the layer-lines of the backbone, and in practice only the m = 1 spec-
trum is observed (Fig.6.3). Therefore, x-ray patterns do not give the sequence
of bases, but only the average separation between successive bases along the
helix axis.
On the other hand, when P=p cannot be expressed as a ratio of whole

numbers, layer-lines for all values of n and m are present, �lling the whole
reciprocal space.[9] It should be noted that this situation corresponds to an
incommensurate structure, such as those described in Section 1.3, and it is
remarkable that the very possibility of a reciprocal-space �lling di¤raction
pattern was explicitly mentioned in the original paper by Crick and co-workers
two decades before the systematic study of incommensurate structures by de
Wol¤ (see Section 1.3).
Previous calculations can be readily extended to the case of two identical

helices of pitch P sharing a common symmetry axis, mutually separated by a
distance �P along the helical direction. The di¤raction by this double-helix
structure can be described in terms of two identical di¤raction gratings on the
same straight line, but with a �xed relative displacement (Fig.6.4). In order
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to constructively interfere, successive pairs of rays scattered from A centers
in Fig.6.4 must have a path length di¤erence equal to an integer multiple of
their common wavelength, i.e., P sin �n = n�, where n indicates the order of
the considered layer-line. Similarly, the grating composed of B centers will
produce exactly the same di¤raction pattern. Now, although both gratings
give the same amplitude function, they are shifted with respect to each other.
Therefore, there is a varying phase di¤erence between the two functions, so
that interference phenomena occur.[14] As a consequence, the intensities of
the resulting x-ray di¤raction pattern vary from one layer-line to another. In
the case of B-DNA � = 3=8 (note the presence of two Fibonacci numbers in
the quotient), so that the path length di¤erence between the rays scattered by
A and B centers is � = 5n�=8. For n = 4, this amounts to 5�=2, so that the
resulting amplitude of the waves scattered by one grating is � out of phase
with that of the other, and the resulting total amplitude is zero. Thus in the
x-ray pattern of a double-stranded helix there would be a characteristic zero
of intensity for the n = 4 line. In actual DNA samples, however, the intensity
of this layer is not exactly zero, because the two helices run in opposite sense
and the cancellation is not complete (Fig.6.6).
So far we have considered the di¤raction by a single double-helix molecule.

In actual �ber di¤raction experiments one usually has an ensemble of helical
molecules rather than an isolated one in the volume inside the x-ray beam. In
that case one must consider the location of each molecule with respect to the
laboratory frame XYZ, say R�:The intensity of the di¤raction pattern due to
the phosphate groups from a double-stranded helical molecules ensemble is
then given by [15, 16]

I(q) / N

1X
n;m=�1

�qz;l cos
2(n�)J2n(u) + �qz;0J

2
n(u)

X
� 6=�

D
eiQ:(R��R�)

E
(6.15)

where N is the number of molecules in the x-ray beam, l is given by Eq.(6.14),
and 2� is the azimuthal angle between strands in the double helix. The �rst
term in Eq.(6.15) describes intramolecular scattering and its physical infor-
mation has been previously described. The second term in Eq.(6.15) describes
the intermolecular scattering, and it only contributes in the equatorial plane
(qz = 0) in practice.

6.1.2 Unveiling double-stranded DNA

When one takes x-ray data one gets essentially the three-dimensional Fourier
components of the electron density. But, in so doing, one only gets half
of the information, since experiments provide the amplitudes of the Fourier
components but not their phases. In order to surmount such a di¢ culty
Pauling realized that one may fruitfully combine data provided by di¤raction
techniques with information gained from the study of suitable chemical con-
straints such as bond distances and angles. In fact, Pauling nicely illustrated
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FIGURE 6.5
X-ray di¤raction patterns from �bers at 98% (left) and 79% (right) relative
humidity, illustrating typical B- and A- patterns, respectively. (From Ref.[17].
With permission.)

the capabilities of this approach by solving the three-dimensional structure
of the so-called �-helix, present in a number of proteins. Watson and Crick,
who developed the duplex model for DNA, used the methods that Pauling had
developed, paying careful attention to bond angles, distances, and hydrogen
bonding interactions. The chemical clues obtained in this way were associated
with the di¤raction pattern produced by DNA molecules, ultimately leading
them to the correct structure. The method of solution adopted by Crick and
Watson was essentially of trial and error, since the number of di¤raction data
was much fewer than the number of parameters needed to fully describe the
structure, and an explicit solution was an impossibility. It was necessary in-
stead to postulate plausible models and calculate their di¤raction patterns,
comparing these with observation.

Rosalind Franklin was reluctant to use (our) approach because
she wanted to use the method by Patterson, which is a di¢ cult one.
For that reason she concentrated on the A form of DNA which gave
much better spots and much more information, and put aside the
B form, even though she had produced a picture which essentially
gave the game away and showed that the structure was helical.
(Francis Crick [18])

A major discovery reported by Rosalind Franklin (1920-1958) and Raymond
Gosling (1926) was that there existed two main structural forms of �brous
DNA in the biological samples considered by them, which were referred to
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as A and B, respectively (Fig.6.5).[19] The so-called A-DNA type patterns
correspond to low hydrated samples and were �rst obtained by Maurice H.
F. Wilkins (1916-2004) and Raymond Gosling in 1950, though they were not
initially published in print. Franklin and Gosling also discovered that it was
possible to reversibly pass from A to B form and vice versa by changing the
relative water content of the �ber, the A form being drier (i.e., 75% relative
humidity) and the B form wetter (i.e., 90-95% relative humidity).[19] The
spectacular reversible change in the overall pattern of spots corresponding to
the A and B forms of DNA was taken as re�ecting a reversible change of the
internal structure of DNA molecules themselves, mediated by the interaction
of the DNA molecules with surrounding water molecules. Indeed, a more
perfect crystallinity could be frequently attained by strong drying followed by
re-wetting, a process which mimics usual thermal treatments (annealing) to
remove defects in crystals. In this way, it was realized that Astbury pictures
(Fig.6.1) were much more blurred than those obtained by Franklin and Gosling
because it turned out that his �bers were in a mixed A and B state.
The A form consists of microcrystalline regions, in each of which the DNA

molecules are arranged in a periodic fashion. Thus, the A form DNA �ber
exhibits long-range order leading to interference e¤ects between the x-rays
scattered by di¤erent molecules in the same microcrystal, as prescribed by
Eq.(6.15). The resulting di¤raction patterns display a signi�cant number of
relatively sharp spots near the center of the pattern (Fig.6.5). On the con-
trary, in the B form the helix axes are all aligned, but the relative orientations
of the molecules around the helix axis are randomly distributed through the
sample, so that there are not constructive interference e¤ects between the
x-ray scattered by di¤erent molecules, and the observed pattern is that from
a single molecule. As a consequence, the di¤raction pattern of the B form is
simpler and can be readily interpreted in terms of the theory introduced in
Section 6.1.1. In fact, a clear succession of layer-lines can be clearly appre-
ciated, and the intensity along the nth line is proportional to the square of
the Bessel function Jn, as prescribed by Eq.(6.13). Quite ironically, the now
celebrated B-DNA type pattern, taken in May 1952 by Franklin and Gosling
(Fig.6.6), was set aside for nearly a year, because it was considered to be too
simple to provide enough crystallographical information!
Notwithstanding this, four basic structural parameters of the B-DNA helix

can be obtained by closely inspecting Photo 51 in the light of the results
presented in Section 6.1.1:

1. from the relative distance between two successive layer-lines one gets
the helix pitch (P = 3:4 nm)

2. making use of Eq.(6.11) one gets the helix radius (R = 1 nm) from the
meridian angle of the cross, 

3. from the vertical diagonal of the meridian diamonds (see Fig.6.3) one
gets the nucleotide repeat (p = 0:34 nm)
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FIGURE 6.6
Di¤raction pattern of the sodium salt of DNA �bers extracted from a thy-
mus gland and puri�ed, known as Photo 51. The material in the �bre com-
prises a macroscopic number of long, roughly parallel, negatively charged DNA
strands, Na+ counter ions, and a relatively high quantity of solvating water
(up to ten water molecules per nucleotide). The solvated cations and water
molecules are in an amorphous state and cause di¤use, background scattering.
([11] Reprinted by permission from Macmillan Publishers Ltd.: Nature 171
740 c1953.)
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4. by combining the results obtained in 1 and 3 one gets the number of
nucleotides by helix turn nb � P=p = 10

In addition, the two strong spots on the equator (qz = 0) in the di¤rac-
tion pattern shown in Fig.6.6 correspond to the �rst order of intermolecular
scattering described by the second term in Eq.(6.15). They give the smallest
Q at which Q:(R� �R�) = 2�s; s = 0;�1;�2; : : :. Their location provides
the interaxial spacing d between nearest neighbors helices in the x-ray beam
according to the expression

Q =
4�p
3d
; (6.16)

which corresponds to an hexagonal packing of the helices. Higher order dif-
fraction peaks cannot be seen because this packing does not extend to cover
a very long-range and due to the relatively small number of molecules in the
�ber as well.[16]
On the other hand, the study of the A-DNA patterns, exhibiting a signif-

icant number of sharper di¤raction spots, indicated that the A-DNA crystal
lattice pertained to the monoclinic space group (a = 2:2 nm, b = 4:0 nm,
c = 2:8 nm, � = 97o; centered on ab faces) with nc molecules per unit cell
oriented along the c axis. The structure was nearly a hexagonal close pack-
ing of long rod-like molecules, the deviations from exact hexagonal symmetry
arising from interactions between the grooves of the backbones of neighboring
molecules pressed to each other by the partial removal of water (in comparison
with the hydrated B-DNA form).[19] In fact, the water content of a sample
at 75% relative humidity shows that there are 8 molecules of water per nu-
cleotide, whereas one �nds up to 20 molecules of water per nucleotide in the
B-DNA form. From the knowledge of the unit cell volume V = 1:22� 10�26
m3, determined from x-ray measurements, Franklin and Gosling determined
the value of nc by using the measured density of the A-DNA �ber � = 1471
kg m�3, through the relationship

nc =
�V

nM
; (6.17)

where n = 11 is the number of nucleotides by helix turn, and M ' 475 �
1:66 � 10�27 kg is the mean molecular weight of a nucleotide (including a
nucleobase, a sugar, a NaPO4 phosphate, and eight water molecules). By
plugging the numerical values in Eq.(6.17) one obtains nc = 2:07, hence indi-
cating the presence of two DNA molecules per unit cell. This fact, along with
the presence of a binary symmetry axis perpendicular to the ac plane of a
monoclinic crystal, led Crick to conclude that the DNA molecule itself should
also have a two-fold symmetry axis perpendicular to the backbone. But since
the sugar-phosphate backbone of nucleic acids was known to be an oriented
polymer (due to the asymmetric attachments of each pentose to its two phos-
phate neighbors), the only possible way to have a two-fold symmetric molecule
with such polar strands was to assume that it possessed an even number of
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strands, arranged along the same direction in complementary sense. In this
way, Pauling�s conjecture opening this Chapter, originally based on purely
stereochemical motivations, was addressed on an entirely crystallographical
basis.
As it has been previously indicated, in the study of biomolecules the solution

of the structure cannot be completely determined from x-ray measurements
alone, but one usually also needs some help from chemistry. By 1950 Er-
win Charga¤ (1905-2002) discovered an important regularity: although the
sequence of bases along the DNA chains was complex, and the base com-
position of di¤erent DNA�s varied considerably among di¤erent species, the
numbers of adenine and thymine bases were always equal in all studied cases,
and so were the numbers of guanine and cytosine bases.[20] Inspired by this
remarkable �nding, one of the keys to DNA molecular structure was the dis-
covery that, if the bases were joined in pairs by hydrogen-bonding, the overall
dimensions of the pairs of adenine and thymine and of guanine and cyto-
sine were identical. This meant that a DNA molecule containing these pairs
would be structurally regular (i.e., there would exist a common and �xed ra-
dius value) in spite of the sequence of bases being aperiodically distributed.
In addition, the chemical constraint imposed by this base pairing implies that
the sequence of bases in one chain runs in opposite direction to that in the
other. As a result, one chain is complementarily identical to each other if
turned upside down. This symmetry operation nicely �ts with the crystallo-
graphical data obtained from a close analysis of A-DNA microcrystals leading
to the presence of a two-fold symmetry axis, as previously mentioned.
Finally, the base-pairing restriction requires that A in one chain must be

linked to T in the other, and similarly G to C. Thus, the sequence along one
chain can vary without restriction (providing a physical realization of the one-
dimensional aperiodic crystal, endowed with full coding capabilities, originally
proposed by Schrödinger), but the sequence in the other chain is completely
determined by Charga¤�s rule, and is said to be complementary to it. The
deep biological implications of this complementarity in order to allow for ef-
�cient self-similar assemblies was readily noted by the scienti�c community.
Thus, biological functionality relies on a nice combination of chemical diver-
sity (the di¤erent chemical �avours of the bases allowing for huge informative
capabilities when properly ordered in speci�c aperiodic sequences) and chem-
ical speci�city due to the complementary interaction between purines and
pyrimidines mediated by hydrogen-bonding.
In summary, two di¤erent kinds of order coexist at the same structural

level in DNA: the helicoidal arrangement of sugar-phosphate groups (periodic
order component) and the stacking of nucleobase pairs along the helix axis
(aperiodic order component). X-ray di¤raction techniques are able to reveal
most structural features related to the periodic component, but the possibility
of determining the base sequence by x-ray di¤raction analysis is prevented by
several factors. First, the blurry appearance of the broad spots at the north
and south regions of the meridian axis does not allow for an accurate enough
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analysis. Second, di¤raction techniques lack the chemical resolution necessary
to properly discriminate the chemical nature of the di¤erent nucleobases. In
fact, the commonly used Sanger sequencing method relies on chemistry to
read the bases G, A, C, and T in DNA. Nevertheless, this method is still
much too slow and costly for reading the personal genetic codes.[21] Thus,
the proliferation of the large-scale DNA-sequencing projects for applications
in clinical medicine, health care, and criminal research has driven the quest
for alternative methods to reduce time and cost. This quest has spurred new
perspectives in nanotechnology looking for methods entirely based on physical
principles allowing for non-invasive analysis of a huge number of nucleotides
along the DNA strands. Accordingly, new technologies for low-cost genome
sequencing must be evaluated not only by their accuracy but also by the
length of the genome fragments which can be sequenced at once. Among the
di¤erent proposals which have been discussed in the literature during the last
few years, in the following sections we will explore those approaches based on
the study of the electrical and thermal response of nucleotides for potential
DNA sequencing.[22, 23]

6.2 Electronic structure of nucleic acids

Physicists are used to considering a number of properties of matter such as
electrical and thermal conductivity, optical or magnetic responses following
the application of electromagnetic �elds, generation of electrical currents in
response to external thermal gradients, and so on. In most considered cases
the samples studied in these experiments have no signi�cant biological role,
but in some instances (e.g., when considering proteins or DNA), they certainly
have. In that case, when macromolecules of biological interest are considered
from the viewpoint of condensed matter physics, a fundamental question nat-
urally arises regarding the potential role of certain physical properties on the
biological functions of these macromolecules. Thus, the role of charge migra-
tion in DNA mutation repair has been extensively discussed during the last
decade, and the possible existence of correlation e¤ects in electrical conduc-
tivity due to the presence of long-range spatial correlations in DNA has been
also explored in detail. In this way, the �eld of transport properties in aperi-
odic systems brings useful concepts and approaches to the fundamental study
of the possible relationship between information storage (determined by the
order of appearance of nucleotides) and physical properties directly related to
the electronic structure of nucleic acids.

To this end, a number of ab initio calculations based on the density func-
tional theory have been performed during the last decade.[24, 25, 26, 27]
The case of the homopolymers poly(dG)-poly(dC) and poly(dA)-poly(dT) has
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FIGURE 6.7
Energy bands close to the Fermi level as a function of the wave vector k
of a polyG-polyC molecule in dry conditions. In the plot results obtained
from ab initio calculations (dots) are compared to those derived from a one-
dimensional tight-binding model with one orbital per unit cell (curve). � indi-
cates the HOMO-LUMO gap, �i the gap between closest orbitals in the gua-
nine system (relevant to optical transitions), WH(L) are the HOMO (LUMO)
bandwidths, respectively.[24] (Courtesy of Emilio Artacho).
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FIGURE 6.8
Surfaces of constant charge density for the states corresponding to the lowest
unoccupied band and highest occupied band of a polyG-polyC molecule in
the A form in dry conditions.[24] (Courtesy of Emilio Artacho).

been extensively considered, along with some related structures like poly(GC)-
poly(CG).[28] In order to reduce the computational e¤ort earlier calculations
did not take explicitly into account either the water shell or the cations around
the sugar-phosphate backbone. Accordingly, these preliminary works focused
on the dry A-DNA electronic structure. Close to the Fermi level it shows well
de�ned, narrow bands separated by a broad gap (2-3 eV). The valence bands
in A-poly(dG)-poly(dC) and A-poly(dA)-poly(dT) consist of 11 states, that
is, one per base pair in the unit cell. In the case of poly(dG)-poly(dC) the
topmost valence band has a very small bandwidth (Fig.6.7). This band is
associated with the �-like highest occupied molecular orbital (HOMO) of the
guanines. The charge density of the states associated with this band appears
almost exclusively on the guanines, with negligible weight either in the back-
bones or in the cytosines (Fig.6.8). The lowest conduction band is signi�cantly
broader and it is made of the lowest unoccupied molecular orbital (LUMO) of
the cytosines. Similar results are obtained for A-poly(dA)-poly(dT) chains,
where the charge density appears concentrated on the HOMO orbitals of the
adenines, and exhibit a broader valence band width (� 0:25 eV).[26]
The spatial separation of the HOMO and LUMO orbitals in the purines

and pyrimidines, respectively, can be understood as a direct consequence of
the Watson-Crick hydrogen-bonding interaction, which is by far not a weak
interaction. In fact, let us suppose we have two DNA bases in�nitely separated
from each other. Their HOMO and LUMO will both reside on the respective
residues, and one can consider these orbitals are degenerate. Now, let us
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FIGURE 6.9
Schematic energy level diagram around the Fermi level of a fully hydrated
double-stranded polyG-polyC molecule in the Z conformation. The Fermi
level positioned in the middle of the gap has been chosen as the zero of energy.
The HOMO (located at about -0.6 eV) is associated to guanines. The states
immediately below the top of the valence band are also related to G. The
�rst C localized state is located at 0.78 eV below the top. The bottom of
the conduction band is a charge transfer state related to Na+ counterions and
PO�4 groups. The �rst excited state with a strong C base character (�

�) is
located at 2.85 eV above the Fermi level and the �rst �� G state is at 3.18 eV.
The � ! �� gap is 3.94 eV for cytosine and 3.82 eV for guanine bases. ([25]
Reprinted �gure with permission from Gervasio F, Carloni P and Parrinello M
2002 Phys. Rev. Lett. 89 108102 c 2002 by the American Physical Society.)

bring the bases nearer to each other, so as to switch on the complementary
H-bonding. This interaction will lift the level degeneracy, so that the frontier
orbitals will be shifted towards each other. As a consequence, the HOMO of
the whole complex will reside on one of the bases, whereas the LUMO on its
Watson-Crick partner.[29]

The phosphate groups of the DNA molecule are negatively charged. Hence
positive protons or metal cations (usually referred to as counterions) are nec-
essary to neutralize and stabilize DNA in physiological conditions. Water also
plays a crucial role to this end. Hydrophobic forces compel DNA to adopt the
B-form, and the polarity of the water molecules helps screen DNA�s charges.
The comparison of the electronic structures corresponding to dry DNA struc-
tures with those obtained for wet conditions shows that the LUMO location
is quite sensitive to the environment conditions. Thus the inclusion of Na+

cations evenly distributed through the backbone gives rise to the presence of a
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FIGURE 6.10
E¤ects of sodium counterions and water on the molecular orbitals of a short
(5�-GAAT-3�) B-DNA molecule. Panels (a) and (b) show the projected DOS
of wet DNA on the bases�molecular orbitals (pz), on the phosphates (PO4),
and on the sugars. Panel (c) contains the same for dry DNA (i.e., all water
molecules removed). A rather large ���� gap is observed between the guanine
HOMO and the thymine LUMO. Some energies associated with water and
counterions orbitals appear in the � � �� gap, which are rather close to the
LUMO. (From ref.[27]. Courtesy of Robert G. Endres.)
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band related to the Na-phosphate groups between the �-electron bands of the
base molecules, so that the LUMO moves from cytosines to the phosphate-
cations system when in presence of Na+ for both A-poly(dA)-poly(dT) and
A- poly(dG)-poly(dC).[26] A similar e¤ect takes place when water is included
along with cations, and the gap value is increased due to the signi�cant role of
water in shielding the DNA from the electrostatic �eld of counterions (Figs.6.9
and 6.10).
Accordingly, the water shell and the counterions can lead to the presence

of a number of states in the main � � �� energy gap (which can be regarded
as impurity states), hence e¤ectively doping the DNA molecule. This e¤ect is
substantially reduced in longer B-type DNA chains, since the Na-Na nearest-
neighbor distance is about three times as long as that of the A-type DNA. In
addition, in the A-type, the Na ion is located inside the backbone structure,
whereas in the B-type it lies in the outermost part.
The main features of the electronic structure obtained from numerical re-

sults have been experimentally con�rmed by means of some spectroscopic
techniques.[30, 31, 32] In particular, it has been con�rmed that the HOMO
originates in the DNA bases, in agreement with numerical calculations, for
both polyG-polyC and polyA-polyT duplexes forming a mixture of A- and
B-DNA forms.[30] It has been also demonstrated that when holes are doped
in polyG-polyC by chemical oxidation the doped hole charge is localized on
G, but not on cytosine, deoxyribose, or phosphates.[32]
Before concluding this section some words are in order regarding the possi-

ble role of aperiodicity in the electronic structure of DNA. In fact, as we com-
mented at the end of Section 6.1.2, the spatial arrangements of the di¤erent
nucleobases can not be determined from x-ray measurements, so that it would
be appealing to explore the possibility of gaining useful information about the
nucleobases sequence from electronic structure related properties. Numerical
calculations comparing the DOS of double-stranded DNA (containing up to
200 bps) of a human oncogene and a random sequence constructed in the
proportion A:C:G:T = 1:1:1:1 indicated that the overall electronic structure
of aperiodic DNA chains is rather sequence independent, and the valence and
conduction bands originate from the HOMO and LUMO orbitals of the single
bases, in complete analogy with the results obtained from the study of periodic
chains.[33] The main di¤erence between both cases is the large value of the
���� energy gap obtained for aperiodic chains, probably related to the pres-
ence of four di¤erent nucleobases which mimics alloying e¤ects in solids. Thus,
attending to their electronic structure one should expect a semiconductor-like
behavior for both periodic and aperiodic DNA chains, though the particu-
lar outcome of a given experiment will signi�cantly depend on environmental
conditions (determining the presence and distribution of doping levels due to
solvated counterions in the sugar-phosphate backbone) as well as the relative
alignment between the DNA molecular orbitals and the Fermi level at the
contacts. As we will discuss in Section 6.4.5 these states can play a signi�cant
role for understanding room temperature thermally activated charge transfer
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in the DNA molecule.

6.3 Charge transfer in DNA: What experiments say
A. Szent-Györgyi (...) has come to the idea in 1941 that proteins
have to be conductors. This hypothesis was �rst not accepted
because of the too large gap and non-periodic nature of a protein
chain (János Ladik [34])

Following a suggestion by Szent-Györgyi (1893-1986),[35] a number of ex-
periments measuring the electrical conductivity of dry proteins and nucleic
acids were performed in the 1960s yielding positive results that were inter-
preted in terms of the classical expression for semiconductor conduction

� = �0 exp

�
� Eg
kBT

�
(
 cm)�1; (6.18)

with the �tting parameters listed in Table 6.1.

TABLE 6.1
Energy gap width, Eg, asymptotic electrical conductivity,
�0; and room temperature conductivity values for some
biopolymers.[36, 37]

SAMPLE Eg (eV) �0 (
 cm)�1 �(300 K) (
 cm)�1

DNA 0:90 � 108 8� 10�8
myosin 0:88 5� 102 8� 10�13
collagen 0:45 4� 10�3 1� 10�10

For the sake of comparison we recall that the conductivity values of di¤erent
conducting polymers range from almost metallic values for heavily doped poly-
acetylene (� 104 (
 cm)�1) to semimetallic values for polythiophene (40-500
(
 cm)�1); and semiconducting values for polysquarines (1-10�5 (
 cm)�1)
at room temperature.[38, 39] In those early measurements some specimens
were in crystalline state and others in the powdered and �brous state. In
the later case the samples were prepared in the form of pellets compressed
between brass electrodes. In this case, the results are certainly in�uenced by
charge transport between polymer strands in close proximity to each other,
which cast some doubts about the reliability of these experiments in order to
extract information about the intrinsic conduction properties of the polymers
themselves.[40]
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First attempts to infer charge transfer from �uorescence measurements on
double-stranded DNA spurred a great interest. In those studies a donor and
an acceptor moiety are attached to the DNA at a given distance, and upon
photo-excitation a single charge carrier (usually a hole) is injected into the
chain, travels the distance, and �nally recombines at the acceptor site. Thus,
the DNA conductivity was assessed from charge transfer rates as a function
of the distance between the donor and acceptor sites, suggesting that duplex
DNA is somewhat more e¤ective than proteins as a medium for charge transfer
but it does not function as a molecular wire.[41]

In recent years, a number of experimental measurements aimed to directly
probe the electric current as a function of the potential applied across the DNA
molecules have been reported.[42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]
These experiments are performed in a variety of conditions, where impor-
tant factors including DNA-substrate interaction, contact e¤ects with the
electrodes, relative humidity, the spatial distribution of counterions, and the
nucleotide sequence nature (i.e., periodic or aperiodic one) are not kept con-
stant. This state of a¤airs considerably makes di¢ cult a proper comparison
among di¤erent experimental reports, which range from completely insulat-
ing to semiconducting and even superconducting behaviors.[27] For the sake
of illustration in Table 6.2 we list some results reported for the same kind of
DNA sample by di¤erent research groups.

TABLE 6.2
Di¤erent electrical
conductivity values
reported in the
literature for ��
phage DNA samples
measured under
di¤erent conditions.

� (
 cm)�1 REF.
800 [44]
1� 3 [52]

10�4 � 10�5 [43]
< 10�6 [53]
< 10�6 [50]

From the collected data three main conclusions can be drawn. First, long
DNA samples of biological origin are typically more insulating than short syn-
thetic oligomers, generally exhibiting a semiconducting behavior. Second, by
all indications the structure of the DNA helix when deposited on dry surfaces
may be very di¤erent from that found by crystallization of DNA in solution,
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FIGURE 6.11
Di¤erential conductance versus applied voltage at 100 K for a 10.4 nm long
double-stranded poly(dG)-poly(dC) DNA chain trapped between two plat-
inum electrodes that are 8 nm apart. The di¤erential conductance shows a
clear peak structure. Good reproducibility can be seen from the six nearly
overlapping curves. The inset shows two typical I-V curves. ([48] Reprinted
by permission from Macmillan Publishers Ltd.: Nature 403, 635 c 2000.)

so that the DNA-substrate interactions are critical in determining the con-
ductivity of an immobilized molecule, generally leading to poor conductivity.
Third, the role of contacts deserves a particular attention. In many mea-
surements, contact with metal electrodes was achieved by laying down the
molecules directly on the electrodes. In this case, it is rather di¢ cult to prove
that the DNA molecule is in direct contact with the electrodes. Even so, the
weak physical adhesion between DNA and metal may produce an insulating
contact.

Figure 6.11 shows the characteristic I-V curve for a 10.4 nm-long (30 bp),
double stranded poly(G)-poly(C) DNA molecule connected (by physical ad-
hesion) to two metal (Pt) nanoelectrodes. The measurements were performed
at temperatures ranging from room temperature down to 4 K. The general
shape of the obtained current-voltage curves was preserved for tens of sam-
ples (though their details varied from curve to curve) and they indicated a
relatively large-bandgap (�2 eV) semiconducting behavior. The possibility
of ionic conduction was ruled out by measurements that were performed in
vacuum and at low enough temperature, where no ionic conduction is possi-
ble. The voltage dependence of the di¤erential conductance exhibits a peaked
structure, which is suggestive of the charge carrier transport being mediated
by the molecular energy bands of DNA.[48]
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A more elaborated experimental approach allows for measurement of the
electrical conductivity in a systematic way. The experimental set-up is formed
by well-characterized monolayers of 5�end thiol-modi�ed single stranded DNA
over a gold surface. The complementary DNA chain, which is also modi�ed
with a thiol at its 5�end, is attached onto a gold nano particle of 10 nm in
diameter (Fig.6.12a). Hybridization of the two strands yields an insulating
ssDNA monolayer in which some dsDNA chains can be easily identi�ed by
the gold nanoparticle connected to them. A conductive tip is then used to
form a contact to the gold nano-particle, and through this contact the I-
V curves are measured. It is estimated that up to 10 dsDNA molecules can
connect simultaneously between the gold-nanoparticle and the underlying gold
surface although it is likely that the number of connected DNA molecules
is smaller. The measured I-V curves show a characteristic semiconductor
behavior (Fig.6.12b), and show current values of the order of 220 nA at 2.0
V. Subsequent experiments with smaller gold nanoparticles (about 5 nm in
diameter), able to simultaneously attach two or three molecules only, have
con�rmed that single short dsDNA chains can support up to � 70 nA.[54]
In Fig.6.13 measurements of the electrical transport through short ds-DNA

chains (8-14 bps) in aqueous solution (where the B-DNA native form is fa-
vored) are shown. The contact is formed through a thiolated chemical bond
between the electrode (Au) and the DNA molecule, whose 3�end has been
modi�ed with a C3H6SH linker. In the same bu¤er solution a gold STM tip,
which is covered with an insulating layer over most of the tip surface except
for its end, is brought into contact (Fig.6.13a). Once contact is formed the
tip is pulled backwards and the resulting current is monitored with a piezo-
electric transducer. Distinct steps at integer multiples of 1.3�10�3 G0 (where
G0 = 1=12906 


�1 is the conductance quantum) were observed in the current
when the tip is pulled away, which were interpreted as consecutive breaking
of DNA strands that connect both electrodes. Then, to measure transport
through a single DNA molecule, the tip retraction is halted at the position
of the last step and one measures the characteristic I-V curve. The curves
obtained through three di¤erent single molecules show a rather smooth ohmic
pro�le, coinciding with the average values of conductivity obtained from the
pulling experiments. The measurement approach allows to accumulate larger
statistics (i.e., over 500 individual measurements) than most previous experi-
ments. Similar measurements were performed on DNA duplexes of the form
5�-CGCG(AT)mCGCG-3�, where some GC bps are replaced by AT ones, in
order to analyze sequence e¤ects on the transport properties. The conduc-
tance histograms also reveal well-de�ned peaks, which are located near inte-
ger multiples of 7:5 � 10�5 G0 and 3:6 � 10�6 G0, for m = 1 and m = 2,
respectively. The conductance data can be described by an expression of the
form G = Ae��L; where L is the length of the AT bridge, with A = (1:3
�0:1) � 10�3 G0 and � = 0:43 � 0:01 Å�1.[56] These �ndings are consistent
with a tunneling process across AT regions between the GC domains and
properly demonstrate the existence of sequence dependence e¤ects.
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FIGURE 6.12
(a) Schematic diagram of the system layout. A smoothed gold substrate
is covered with a packed monolayer (� 4 nm thick) of 26-bp long single-
stranded DNA molecules of a non-periodic sequence (5�-CAT TAA TGC TAT
GCA GAA AAT CTT AG-3�), chemically connected to the substrate via a
propyl-thiol end group. Complementary strands, similarly connected to a
10 nm gold particle, are hybridized with the monolayer single strands. The
gold particles are contacted by means of a metal covered AFM tip to close
the electrical circuit. (b) A set of current-voltage curves that were measured
on di¤erent gold nano particles on di¤erent samples, tips, and dates. One
can appreciate as a common feature the presence of a small semiconducting
gap.(From ref.[55]. With permission c 2005 National Academy of Sciences,
USA.)
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FIGURE 6.13
(a) Schematic illustration of a single ds-DNA conductance measurement. (b)
Current-voltage characteristic curves of three di¤erent ds-DNA samples con-
taining 8 bps [5�-(GC)4-30-thiol linker]. Lines are obtained by recording cur-
rent versus bias voltage. The open squares are obtained from the peak po-
sitions of the conductance histograms at di¤erent bias voltages. (Reprinted
with permission from ref.[56]. Copyright (2004) American Chemical Society.)
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Making use of the same experimental condition (i.e., all measurements car-
ried out in aqueous solution with the B-DNA chemically bounded to the
electrodes) the change of conductance that occurs if a single base, a single
base-pair, or two separate bases in the stack are modi�ed was investigated.
These intentional mismatches give rise to the so-called single-nucleotide poly-
morphisms and their study can shed some light onto the causes of mutation-
related cancers. The measurements of the transport properties of 11 and 12
bp long duplexes showed that the alteration of a single base in the stack can
either increase or decrease the conductivity of the dsDNA helix, depending on
the type of the mismatched base. Therefore, the presence of a single base pair
mismatch can be identi�ed from conductance measurements and can cause a
change in the conductance of short dsDNA by as much as an order of mag-
nitude depending on the speci�c sequence of the DNA chain. For instance,
the sequence 5�-CGCGAATTGCGCG-3�was hybridized �rst with its com-
plement and showed a conductance value of 3:6 � 10�6 G0, in accordance
with that previously reported for the closely related 5�-CGCG(AT)2CGCG-3�
chain. Now, upon replacement of two of the thymines by guanines, two mis-
matched A-G pairs were introduced in the duplex and the conductance of the
mutated DNA dropped to a value of 1:7� 10�6 G0.[57] Conversely, the con-
ductance of the sequence 5�-GGAGCCCGAGG-3�, containing a triplet G-C
bp in the central position, is signi�cantly enhanced (G = 1� 10�5 G0). This
result is in good agreement with the idea that HOMO guanine orbitals favour
charge migration, whereas short A-T sequences create a tunneling barrier for
charge hopping through guanines along the DNA stack. However, although
duplexes containing C-G and T-G pairs would have similar pathways in a
guanine-hopping scheme, they actually have quanti�able conductivity di¤er-
ences, hence indicating that the coupling of an individual base to its neighbors
and the structural stability of the duplex itself (T-G is not a Watson-Crick
bp) are extremely important in the charge transfer dynamics.[57] In this re-
gard, a clear enhancement of conductivity observed in moist conditions has
been interpreted as properly illustrating the interplay between the structural
conformation of DNA molecules and their conductivity.[58]
These promising results spur the interest in exploring the possible identi-

�cation of speci�c genes, or at least to distinguish coding regions from non-
coding ones, on the basis of di¤erential change in electrical signals. To this
end, a nanoelectronic platform based on single-walled carbon nanotubes was
fabricated for measuring electrical transport in single-molecule ssDNA and
dsDNA samples of a 80 bp long DNA fragment encoding a portion of the
H5N1 gene of the avian In�uenza A virus.[59] To enhance the contact e¢ -
ciency a covalent bonding between an amine-terminated DNA molecule and a
carboxyl-functionalized carbon nanotube was established and the DNA mole-
cule was suspended over a nanotrench in order to mitigate the problem of
compression-induced perturbation on the charge transport. A non-linear I-V
characteristic curve was observed indicating a semiconducting behavior (gap
width � 1 eV, p-type conduction) in both aqueous (sodium acetate bu¤er)
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FIGURE 6.14
Schematics illustrating a method to chemically attach single-walled nanotubes
(SWNT) with duplex DNA strands. (a) Functionalized point contacts made
through the oxidative cutting of a SWNT wired into a device (b) bridging
by functionalization of both strands with amine functionality (c) bridging by
functionalization of one strand with amines on either end. (From ref.[60].
Reprinted by permission from Macmillan Publishers Ltd.: Nature Nanotech-
nology 3 163 c 2008.)
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and vacuum (10�5 torr) conditions. About a 25-40 pA (0.5-1.5 pA) current at
1V was measured for dsDNA (ssDNA) duplexes, respectively, at ambient con-
ditions. The resistance increased in both cases in vacuum, presumably due to
the depletion of water molecules in the hydration shell surrounding DNA (as
well as possible conformational changes in the double helix at high vacuum).
The obtained current values are about three orders of magnitude lower than
those reported in refs.[48, 54] for three times shorter dsDNA chains, which
indicates a nearly exponential current dependence with the chain length. In
fact, following a similar approach currents within the range � 15 � 100 nA
(comparable to those previously reported from STMmeasurements) were mea-
sured for 15 bp long DNA duplexes with aperiodic sequences depending on
the semiconducting (lower currents) or metallic (higher currents) nature of
the single-walled carbon nanotube electrodes.[60] In these latter experiments
a special attention was paid to (i) the method of DNA attachment (Fig.6.14),
and (ii) the in�uence of mismatched base-pairs in the charge transfer e¢ -
ciency. It was reported that no signi�cant di¤erences were appreciated in the
conductance measurements when using the two connection strategies shown
in Fig.6.14. This result clearly indicates that e¢ cient charge transfer takes
place from one strand to the other during the charge migration process. On
the other hand, the resistance of duplexes with a single GT or CA mismatch
increases by about 300-fold relative to the well-matched ones, lending support
to the strategy of detecting point-mutation regions through electrical signaling
techniques.
From basic principles it is expected that a ssDNA molecule will carry only

a feeble current due to lack of structural integrity. This has been exper-
imentally con�rmed in a systematic way by comparing the single-molecule
conductance of short thiolated ssDNA and dsDNA homopolymers in aqueous
solution (sodium phosphate) at room temperature. In this way, it has been
reported that the conductance measured for 5�-C6S-(dG)15-(dC)15-C6S-3�du-
plexes (G = 1:4�10�6 G0) between gold metallic contacts compares well with
that measured for 5�-C6S-(dG)7-C6S-3�single-stranded chains (G = 1:6�10�6
G0) at 0.2 V bias potential. Accordingly, the conductance of the double-
stranded structures is about an order of magnitude higher than that for single-
stranded ones with similar number of bases (such a conductivity di¤erence is
signi�cantly greater for oligo-dC, oligo-dT, and oligo dA chains). This obser-
vation clearly demonstrates that the interactions between the base pairs and
stacking e¤ects play a vital role in electron transport through DNA.[61]
In summary, the reported experiments demonstrate the high sensitivity of

DNA electrical conductivity to several factors. Firstly, we have the structural
complexity of nucleic acids, which is signi�cantly in�uenced by its close sur-
rounding chemical environment (humidity degree, counterions distribution)
a¤ecting the integrity of the base-pair stack, as well as by the unavoidable
presence of thermal �uctuations. Secondly, the kind of order present in the
DNA macromolecule plays an important role in determining their transport
characteristics: periodically ordered polyG-polyC chains exhibit semiconduct-
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ing behavior, whereas biological �-phage chains are more insulating. From
general considerations one expects that the presence of four di¤erent types of
nucleotides favors localization of charge carriers, reducing transfer rate due
to backscattering e¤ects stemming from a larger chemical diversity. Never-
theless, the presence of long-range spatial correlations among di¤erent bases
in certain fragments of the genome in biological samples will favor transport
via resonant e¤ects. Accordingly, a proper description of charge migration
through these samples would require a balanced treatment of both physical
e¤ects. Finally, measuring charge transport in a DNA chain is strongly biased
by the invasive role of contacts, the charge injection mechanism, the quality of
the DNA-electrode interface, and the possible interaction with some inorganic
substrate, or other components of the experimental layout. In consequence,
undivided caution has to be paid when interpreting results of a particular ap-
proach in order to properly discriminate the relative role of intrinsic properties
(v.g. base pair sequence e¤ects) from both contact conditions and environ-
mental e¤ects.

6.4 Modeling charge migration in DNA

One of the dreams of the theoreticians is to solve the Schrödinger
equation with a potential that is given by a one-dimensional array
of the real DNA and protein sequences. (...) This problem has
been a main theme in quantum molecular biology, which I would
like to call the Schrödinger�s dream. (Kazumoto Iguchi, [62])

As we have seen, the fundamental question regarding the intrinsic conduct-
ing nature of di¤erent kinds of DNA samples is far from being de�nitively
settled down. In the �rst place, nucleic acids can be classi�ed in two broad
classes, namely, duplex and single-stranded molecules of either DNA or RNA.
In turn, each class can be further split into biological (i.e., samples extracted
from living organisms, like viruses, bacteria or eucaryotic cells) and arti�cially
engineered molecules (e.g., polyG-polyC, polyA-polyT, or polyGC-polyCG
chains). In addition, fragments of biological DNAs can be further split into
coding (the so-called introns) and non-coding ones (exons). In general, syn-
thetic nucleic acids considered so far comprise short oligonucleotides where
relatively few base pairs (bps) are periodically arranged. These structures
are quite di¤erent from the biological ones, in which several thousands to
millions of bps are aperiodically distributed, exhibiting characteristic scale
invariant properties due to the presence of long-range correlations in certain
regions.[63, 64, 65, 66, 67, 68, 69] Accordingly, biological DNAs exhibit a



The aperiodic crystal of life 239

greater chemical complexity, determined by their bp sequencing. As a general
trend, experimental results reported in Section 6.3 indicate that i) periodic
synthetic DNAs transport charge better than aperiodic biological samples,
and ii) double-stranded DNA exhibits electrical conductance values orders of
magnitude higher than single-stranded chains of comparable length.
The question whether DNA is an insulator, a semiconductor, or a metal is

often raised. This terminology originates from the �eld of solid-state physics
and it is intimately related to the electronic structure of the considered system.
As it has been discussed in Section 6.2, the electronic structure of periodic
DNA chains resembles that of doped semiconductors, in agreement with most
current-voltage curves obtained to date. From a theoretical point of view the
question is not so clear in the case of aperiodic DNA duplexes of biological
interest (see Section 6.5), though experimental measurements for relatively
short chains have shown similar results to those obtained for periodic chains
of comparable size.
Another important fundamental question refers to the physical mechanisms

responsible for charge migration through DNA. In organic crystals based on
stacked planar molecules the characteristic time scales for charge motion from
molecule to molecule by means of a coherent tunneling mechanism are deter-
mined by the single particle transfer integral t according to the expression
~=t, with typical values of the order of fs.[70] Depending on the DNA se-
quence composition, its length and e¤ective temperature, the value of the
transfer integral between stacked bases can vary over a relatively broad inter-
val, ranging from t0 = 0:01 to t0 = 0:4 eV.[24, 53, 71, 72, 73, 74, 75] These
�gures yield charge migration time scales within the range 1:6 � 65:8 fs for
coherent tunneling. On the other hand, long-time molecular dynamics simu-
lations of DNA lead to typical �uctuation angles for roll and twist modes of
the bps of order 5-9 deg in the ps to ns time window,[76] in agreement with
dynamic Stokes shifts experimentally observed in the �uorescent spectrum of
DNA.[77] The strength of these local �uctuations compares with those due
to thermally excited phonon modes in linear-chain materials. Accordingly,
strong interaction between the electronic degrees of freedom and molecular
vibrations may reduce the coherent tunneling time scale from fs to ps.
Nevertheless, femtosecond spectroscopy experiments aimed at determining

the rates of DNA charge-transport processes unveiled an unusual two-step
decay process with characteristic time scales of 5 and 75 ps, respectively.[78]
Although the 5 ps time scale roughly accommodates to the above mentioned
electron-phonon coupling scenario, the second-stage step is still about one
order of magnitude larger than the typical ps time scale �gure for lattice or
intramolecular dynamical degrees of freedom, and can not be accounted for in
terms of a coherent tunneling mechanism. Rather, a reversed situation, char-
acterized by localized electronic states undergoing thermally induced hopping
migration, has been suggested. In this way, large-scale structural �uctuations
would interfere with the � orbital overlap mediated charge transfer, lead-
ing to longer relaxation times.[79] To this end, one should either consider
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twist oscillations of successive base pairs or radial oscillations stemming from
hydrogen bonds stretching vibrations. However, since the dynamics of angu-
lar twist and radial vibrational modes evolve independently on distinct time
scales they can be regarded as decoupled degrees of freedom in the harmonic
approximation.[80] Over the longest (ns) timescales currently accessible by
full-atomistic modular dynamics simulations the helix undergoes large-scale
global oscillatory motions dominated by rise and twist oscillations of the bp
planes as a whole. These motions dominate the range of molecular conforma-
tions generated by thermal agitation and are of high relevance to any biological
process which relies on shape recognition.
Generally speaking, any current measured through a DNA molecule results

from the carrier injection onto the stack of bases, combined with the intrinsic
conduction along the DNA sequence. Charge transfer in DNA has been proven
to be mainly conveyed by intrastrand � � � coupling, through either sequen-
tial incoherent hopping or coherent tunneling.[81, 82] The latter mechanism
might be expected to dominate the conduction in the very low temperature
regime, specially in the case of periodic oligonucleotides. At low voltage, the
main contribution to the resistance comes from the metal-DNA junction po-
tential mismatch (barrier), whereas for high enough voltage, new conduction
channels are provided by the molecular states. The current intensity versus
applied voltage I-V characteristics are thus somehow inferred from the energy
di¤erence between the metallic work function and the lowest ionization energy
levels of the DNA (in the case of hole transport).[83]
The study of the DNA conductance over a temperature range also provides

information about the transport mechanisms (activated charge hopping, in-
tramolecular thermal �uctuations) and relevant energy scales. The role of
vibration modes on the temperature dependence of the conductance is deter-
mined by the Debye temperature of the system, which has been estimated
as �D ' 166 K.[84] Thus, DNA acoustic modes will signi�cantly a¤ect the
conductance at low temperatures, but at room and higher temperature (the
melting point of DNA is located within the range TM = 320�340K, depending
on the sequence composition and environmental conditions) one expects dy-
namical e¤ects will have no noticeable temperature dependence, in agreement
with experimental measurements performed in polyG-polyC and polyA-polyT
oligomers composed of 15 bps.[84]
In order to properly describe the charge transfer mechanisms we must con-

sider a model Hamiltonian accounting for di¤erent scales of time and space
by means of an adequate choice of generalized coordinates describing both
electronic and dynamic DNA degrees of freedom. In the following we will
�rst present a basic formalism to compute transmission coe¢ cients of DNA
chains connected to two external metallic leads.[85] Some basic properties of
current-voltage characteristics in the coherent regime will be also addressed.
Then, in Section 6.5, we will investigate the e¤ect of long range correlations
on charge transfer in several types of DNA, from arti�cially aperiodic to long
range correlated genomic sequences.
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6.4.1 E¤ective single-stranded chains

Figure 6.7 illustrates the excellent agreement between the DNA band struc-
tures calculated from detailed, fully atomistic, ab initio calculation (points)
and a one-dimensional, tight-binding chain model (solid line). This result
demonstrates that each base pair contributes with one single orbital which
interacts negligibly with other orbitals in the pair.[24] In fact, quantum me-
chanical studies show that hydrogen bonding interaction gives rise to a spatial
separation of the HOMO and LUMO in the nucleobase system, so that hole
(electron) transfer proceeds through the purine (pyrimidine) bases, where
the HOMO (LUMO) carriers are located in polyG-polyC (polyA-polyT),
respectively.[24, 29] For instance, in the case of a polyG-polyC chain the
central sites will model the G nucleotide only, with the e¤ect of the C bases
being neglected as not so relevant for transport due to their di¤erent on-site
HOMO/LUMO energies (see Section 6.2). Thus, as a �rst approximation, the
basic physics of charge transport in DNA molecules can be addressed in terms
of a simple model with one single orbital per base pair plus a transfer para-
meter describing the coupling between successive neighbors. Accordingly, ne-
glecting charge transfer within the Watson-Crick base pairs, one can consider
an e¤ective one-dimensional tight-binding model given by the Hamiltonian,

H1D =

NX
n=1

"nc
y
ncn �

N�1X
n=1

tn;n+1(c
y
ncn+1 + c

y
n+1cn); (6.19)

where N is the number of nucleotides, cyn (cn) is the creation (annihilation)
operator of a charge at site n, the on-site energies "n describe the energetics of
a charge located at bp site n, and tn;n+1 is the hopping integral simulating the
� � �-stacking between adjacent nucleotides. Since base-pairs are modelled
by a single site, the DNA is e¤ectively described as a binary sequence of G:C
(identical to C:G) and A:T (or T:A) pairs with links between like (G:C-G:C
or A:T-A:T) or unlike (G:C-A:T, A:T-G:C) pairs.
The so-called �shbone model (Fig.6.15) retains the central conduction chan-

nel in which individual sites represent a base-pair.[86] However, these central
sites are now further linked to upper and lower sites, representing the back-
bone. The backbone sites themselves are not interconnected along the back-
bone. In some previous models a transport channel associated to the pos-
sible hopping of charge carriers between successive phosphate groups along
the backbone was considered.[87, 88, 89] However, �rst principle calcula-
tions, showing that the phosphate molecular orbitals are systematically be-
low the base related ones, do not favour the presence of such a transport
channel.[27, 90] The Hamiltonian of the �shbone model is given by

HF =
NX
n=1

X
q=";#

("n+"
q
n)c

y
ncn�

N�1X
n=1

X
q=";#

tn;n+1(c
y
ncn+1+H:c:)+t

q(cyncn;q+H:c:);

(6.20)
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FIGURE 6.15
The �shbone model for electronic transport along DNA corresponding to the
Hamiltonian given by Eq.(6.19). Every link between sites implies the presence
of a hopping amplitude.[91] (Courtesy of Rudolf A. Römer).

where H:c: stands for the Hermitian conjugate and the transfer integral tq

with q ="; # gives the hopping from each site on the central branch to the
upper and lower backbone respectively. The on-site energy at the sites of the
upper and lower backbone is given by "qn, with q ="#.
The backbone sites can be decimated in order to reduce Eq.(6.20) to an

e¤ectively renormalized Hamiltonian of the form given by Eq.(6.19) where
the on-site energies of the renormalized bases, ~"n, are now energy-dependent

~"n(E) = "n +
t"
2

E � ""n
+

t#
2

E � "#n
: (6.21)

Alternatively, one may consider Eq.(6.19) as describing a single-stranded
DNA chain. In that case "n are usually chosen according to the ionization po-
tentials of the respective bases. By considering nearest-neighbors interactions
only, H1D can be cast in terms of the unimodular matrices

Qn �
�
2xn �1
1 0

�
; (6.22)

where xn = (E � "n)=2tn;n+1, with n = fG,A,C,Tg: There exist di¤er-
ent kinds of transfer matrices, depending on the kind of nucleotides be-
ing considered, and the global transfer matrix is obtained from the product

MN (E) =
1Y

n=N

Qn. As an illustrative example which can be analytically
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solved let us consider a periodic chain with the unit cell GACT. If one as-
sumes all the transfer integrals to be the same, the dispersion relation is given
by (see Section 9.2),[92]

4t4 sin2(2k)�t2(2E�"T �"A)(2E�"C�"G)+
Y

i=G;A;C;T

(E�"i) = 0; (6.23)

where k is the wave vector. Thus, the energy spectrum of a polyGACT
single-stranded DNA (see Fig.6.21) is composed of two relatively wide bands
(WA = 0:15 eV centered at 8:198 eV, and WC = 0:16 eV centered at 8:844
eV), related to the adenine and cytosine bases respectively, plus two narrower
bands (WG = 0:04 eV centered at 7:422 eV, and WT = 0:05 eV centered at
9:535 eV), which are related to the guanine and thymine bases respectively.
These allowed bands are separated by the relatively broad gaps �GA = 0:830
eV, �AC = 0:488 eV, and �CT = 0:583 eV.

6.4.2 Double-stranded chains

A central simpli�cation of the one-dimensional, wire model is the description
of a DNA base-pair as a single site. By doing so, one ignores the possible role
of H-bonds in the charge transfer process, and one also loses the distinction
between a pair with, say, a G on the 5�strand of the DNA and a C on the 3�
side, and one where C sits on the 5�and G on the 3�, i.e., G:C is equal to C:G.
This de�ciency of the wire model may be overcome by modelling each DNA
base as an independent site. The hydrogen-bonding between base-pairs is then
described as an additional transfer integral perpendicular to the DNA helix.
This two-channel model (usually referred to as the ladder model [87, 91]) is a
planar projection of the structure of the DNA with its double-helix unwound.

Earlier ladder models considered a quantum system in which there are two
main chains (describing each DNA strand) and bridges between face-to-face
sites along the chains (describing the H-bonds between complementary bases,
Fig.6.16a). Each site is decorated with an on-site energy value describing the
HOMO or LUMO orbital associated to that site and charge carriers hop to the
nearest-neighbor sites along the same strand (intrachain hopping) as well as
from one strand to the other (interstrand hopping, Fig.6.16b). Another ver-
sion of this model consists of an alternate repetition of sugar-phosphate sites
in the two main chains so that there are bridges only between the base sites
in the main chains (Fig.6.16c). Subsequent, more elaborated works have in-
cluded the sugar-phosphate contribution by analogy with the treatment given
in the �shbone model, as it is illustrated in Fig.6.17. The ladder model Hamil-
tonian corresponding to the system shown in Fig.6.16b can be expressed in
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FIGURE 6.16
Ladder models of a double-stranded DNA. (a) A schematic diagram of DNA
basic building blocks: P (phosphate groups), S (sugar), A (adenine), T
(thymine), G (guanine), and C (cytosine). (b) A simple ladder model where
each site represents an entire nucleotide unit (phosphate-sugar-base). (c) A
decorated ladder model where sugar-phosphate units are separated from the
bases which, in turn, are connected through H-bonds forming Watson-Crick
base-pairs.[87] (Courtesy of Kazumoto Iguchi).
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FIGURE 6.17
Fishbone ladder model for the electronic transport through DNA. There are
two central branches, linked with one another, with interconnected sites where
each one represents a complete base. Additional links describe the coupling
of each base to the backbone.[91] (Courtesy of Rudolf A. Römer).

the form[93]

H2D =
NX
n=1

�̂nc
y
ncn �

N�1X
n=1

t̂n;n+1(c
y
ncn+1 + c

y
n+1cn); (6.24)

where

cn �
�
cn;A
cn;B

�
(6.25)

are the charge destruction operators at site n in the chain m 2 fA;Bg, and

�̂n �
�
"n;A tAB
tAB "n;B

�
; t̂n;n+1 �

�
tAn;n+1 0
0 tBn;n+1

�
; (6.26)

where "n;m is the on-site energy of site n in the strandm, tmn;n+1 is the nearest-
neighbor transfer integral between nth and (n + 1)th sites in strand m, and
tAB = tBA are the interstrand hopping integrals. A similar expression is ob-
tained for the system shown in Fig.6.17 by properly decimating the backbone
sites,[85, 91] to get

�̂0n �
�
~"n;A tAB
tAB ~"n;B

�
; (6.27)

where

~"n;m = "n;m +
tqn
2

E � "qn;m
: (6.28)
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We note that the 2D Hamiltonian given by Eq.(6.24) is formally analogous
to the 1D Hamiltonian given by Eq.(6.19), so that the higher dimensionality
of the ladder model is properly described by generalizing the scalar nature of
the model parameters present in Eq.(6.19) to the matrix form corresponding
to the magnitudes cn, �̂n, and t̂n;n+1 in Eq.(6.24). It is also interesting to
note that while the intrastrand hopping terms tmn;n+1 (describing the � � �

orbital coupling) are included into the t̂n;n+1 matrix, the H-bonding mediated
interstrand coupling is incorporated into the �̂n matrix instead. In this way,
the algebraic formalism adopted to describe the dsDNA Hamiltonian properly
distinguishes the di¤erent types of chemical interactions in the macromolecule.
Finally, we see that the possible contribution due to �� � couplings between
neighboring bases belonging to complementary strands can be easily included
into the description by assigning non-zero values to the non-diagonal terms in
the matrix t̂n;n+1.
Making use of the transfer-matrix formalism the two coupled Schrödinger

equations related to the Hamiltonian given by Eq.(6.24) can be expressed in
the compact form

(EI� �̂n) n = t̂n;n�1 n�1 + t̂n;n+1 n+1; (6.29)

where

 n �
�
 n;A
 n;B

�
; (6.30)

 n;m is the wave function amplitude at site n in the strandm, and I is the 2�2
identity matrix. Eq.(6.29) properly generalizes the canonical motion equation
for elementary excitations moving in one-dimensional lattices (Eqs.(5.3) and
(5.17)) to the two-dimensional case. Explicitly, Eq.(6.29) reads[87, 94, 95]

(E � "n;A) n;A = tAn;n�1 n�1;A + t
A
n;n+1 n+1;A + tAB n;B (6.31)

(E � "n;B) n;B = tBn;n�1 n�1;B + t
B
n;n+1 n+1;B + tAB n;A;

which, in turn, can be expressed in terms of 4� 4 matrices of the form

Tn(E) =

0BBBB@
E�"n;A
tAn;n+1

� tAn;n�1
tAn;n+1

� tAB
tAn;n+1

0

1 0 0 0

� tAB
tBn;n+1

0
E�"n;B
tBn;n+1

� tBn;n�1
tBn;n+1

0 0 1 0

1CCCCA ; (6.32)

from which one can obtain the electronic structure and transport properties
in terms of the transmission and Lyapunov coe¢ cients (see Sections 9.2, 9.5.2,
and 9.5.4).[87, 88] Making use of this approach the charge transfer in DNA
has been studied in a number of works. In this way, the very weak distance
dependence of charge rates experimentally measured for the DNA sequence
(G:C)(T:A)m(G:C)3, for di¤erent m values, was explained in terms of the
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ability of charge carriers to bridge from one strand to the other depending on
the ratio of intra- and interstrand neighboring base-base couplings.[94] These
results properly illustrate the importance of increasing the coordination degree
among nearest neighbors when going from one-dimensional to two-dimensional
quantum models. The role of such a dimensionality e¤ect on the very nature
of the wave functions in DNA ladder models was discussed in detail and it was
concluded that the intrinsic DNA correlations, arising from the Watson-Crick
base pairing, do not su¢ ce to give rise to the presence of extended states
when four values of the on-site energies corresponding to the G, C, T, and A
bases are randomly assigned in one of the strands (say "n;A), with the same
probability, while the sites of the second strand are set to follow Charga¤�s
complementary rule.[95, 96]
As we have seen in Section 6.2, quantum chemical and ab initio band struc-

ture calculations reveal the existence of di¤erent subsystems in DNA, each
one of them characterized by its own energy scale. Thus, the description of
the electronic energetics of more realistic double-stranded DNA chains, as
that shown in Fig.6.18a, must take into account three di¤erent contributions
stemming from (i) the nucleobase system, (ii) the backbone system, and (iii)
the environment, as it is sketched in Fig.6.18b. In the nucleobase system one
must include the HOMOs associated to one of the strands along with the
LUMOs associated to the complementary one, as well as the Watson-Crick
H-bonding interactions. Attending to the energies involved in the di¤erent in-
teractions, the resulting energy network can be hierarchically arranged, start-
ing from high energy values related to the on-site energies of the bases and
sugar-phosphate groups (8� 12 eV),[97, 98, 99] passing through intermediate
energy values related to the hydrogen bonding between Watson-Crick pairs
(� 0:5 eV),[97, 100] and the coupling between the bases and the sugar moiety
(� 1 eV),[98] and ending up with the aromatic base stacking low energies
(0:01 � 0:4 eV).[97, 101, 102, 103] The energy scale of environmental e¤ects
(1 � 5 eV) is related to the presence of counterions and water molecules,
interacting with the nucleobases and the backbone by means of hydration,
solvation, and charge transfer processes. It is about one order of magnitude
larger than the coupling between the complementary bases, and about two
orders of magnitude larger than the base stacking energies.
One can recover the mathematical simplicity of the wire model, keeping

at the same time a realistic description of the rich DNA chemistry, mak-
ing use of a two-step renormalization approach. For the sake of illustra-
tion, in Fig.6.19a we introduce a tight-binding model for a double stranded
polyGACT-polyCTGA unit cell including four di¤erent nucleotides. This unit
cell provides a basis for both periodic and aperiodic longer DNA chains, where
"j , with j = fG,C,A,T}, are the on-site energies of the bases, tj is the hop-
ping integral between the sugar�s oxygen atom and the base�s nitrogen atom,
and tGC (tAT ) respectively describe the hydrogen bonding between comple-
mentary bases. The backbone�s contribution is described by means of the
on-site energies j ; introduced in Fig.6.19b. In general, j will depend on
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FIGURE 6.18
(a) Quantum chemical description of a realistic double-stranded DNA chain
including the sugar-phosphate backbone and the presence of solvated counte-
rions. The isosurface plot of the HOMO of B-poly(dG)-poly(dC) derived from
ab initio calculations is shown in side-view. The dark and gray surfaces show
positive and negative isovalues, respectively. (Adapted from ref.[26].) (b)
Diagram illustrating the overall energetics of a double-stranded DNA model
shown in (a) including the di¤erent parameters considered in the DNA tight-
binding model described in the text. ([105]. Reprinted �gure with permission
from Maciá E 2006 Phys. Rev. B 74 245105 c 2006 by the American Physical
Society.)
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FIGURE 6.19
Sketch illustrating the two step renormalization process mapping a ds-DNA
chain into a linear diatomic lattice. a) Starting e¤ective tight-binding model
for the polyGACT-polyCTGA unit cell. b) renormalized model after the �rst
decimation step. c) renormalized model after the second decimation step.
([105]. Reprinted �gure with permission from Maciá E 2006 Phys. Rev. B 74
245105 c 2006 by the American Physical Society.)
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the nature of the neighboring base as well as the presence of water molecules
and/or counterions attached to the backbone, according to the overall scheme
illustrated in Fig.6.18b.
In order to obtain a simple mathematical description, containing most of

the relevant physical information, we will map the tight-binding model shown
in Fig.6.19a into the equivalent binary lattice model shown in Fig.6.19c. To
this end, the Watson-Crick bps are �rst renormalized to obtain the branched
tight-binding model shown in Fig.6.19b. The topological structure of the
renormalized chain shown in Fig.6.19b coincides with that of the �shbone
model (Fig.6.15), but in the renormalized model the parameters ~" and � j
entail substantial physicochemical information concerning nucleotide interac-
tions and backbone gating e¤ects. In fact, the renormalized on-site energies
and transfer integrals are respectively given by ~"n = tij , and [104]

� j = tj +
"j
tj
(E � j); j = fG;C;A; Tg: (6.33)

Note that the renormalized on-site energies (given by the hydrogen bond-
ing energy scale) are now about one order of magnitude smaller than the
original ones (given by the ionization potentials of the nucleobases), so that
the e¤ective � � � overlap integral describing the aromatic base stacking be-
tween adjacent nucleotides becomes energetically relevant and it is explicitly
included into the model by means of the hopping integral t0. Next, the back-
bone contribution is decimated to obtain the one-dimensional lattice shown
in Fig.6.19c, where the renormalized on-site energies are now given by

�(E) = tCG +
�2G(E � C) + �2C(E � G)

(E � G)(E � C)
;

�(E) = tAT +
�2A(E � T ) + �2T (E � A)

(E � A)(E � T )
: (6.34)

In this way, the original polyGACT-polyCTGA chain is mapped into the
equivalent diatomic lattice shown in Fig.6.19c, where the renormalized "atoms"
correspond to the Watson-Crick complementary pairs in the DNA molecule.
The renormalized on-site energies enclose substantial physicochemical infor-
mation about the Watson-Crick bp energetics, including the nucleobases on-
site energies, the transfer integral between backbone and base states, the hy-
drogen bonding between the complementary bases, and the sugar-phosphate
backbone on-site energies. In this way, one obtains a realistic description, in-
cluding 15 physical parameters, {"j ; tj ; j ; tGC ; tAT ; t0}, fully describing the
energetics of the DNA molecule in terms of just three variables (i.e., �; �; t0)
in a uni�ed way in terms of the e¤ective one-dimensional Hamiltonian

~H1D =
NX
n=1

~"n(E)c
y
ncn � t0

N�1X
n=1

(cyn+1cn + c
y
ncn+1); (6.35)
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where ~"n(E) 2 f�(E); �(E)g. Within the framework of the transfer matrix
formalism and considering nearest-neighbor interactions only, the Schrödinger
equation of the renormalized binary chain shown in Fig.6.19c can be expressed
in terms of the following transfer matrices

Q� �
�
2x �1
1 0

�
; Q� �

�
2y �1
1 0

�
; (6.36)

where x = (E � �)=2t0 and y = (E � �)=2t0: Assuming periodic boundary
conditions the dispersion relation is given by the relationship

2 cos(qNa�) = tr[(Q�Q�)m] � tr[Mm(E)]; (6.37)

where q is the wave vector, N is the bp number, a� measures the separation
between neighboring bps along the helix axis, and m � N=2. Since both Q�
and Q� are unimodular matrices, we can make use of the Cayley-Hamilton
theorem (see Section 9.2) to express the global transfer matrix of the DNA
chain as

Mm(E) =

�
Um + Um�1 �2yUm�1
2xUm�1 �Um�1 � Um�2

�
; (6.38)

where Um(z); with z � 1
2 tr[Q�Q�] = 2xy � 1; are Chebyshev polynomials of

the second kind. In this way one gets,

4t20 cos
2(qa0) = E2 � (�+ �)E + ��; (6.39)

which has the typical form for a binary chain, though in this case the renormal-
ized on-site energies, �(E) and �(E), explicitly depend on the charge carriers
energy E after Eq.(6.34), leading to rather involved analytical expressions. In
order to grasp the basic energy spectrum structure one can introduce two sim-
pli�cations. First, according to x-ray experiments the counterions condense
around the nucleic acid chain in a tightly bound layer.[106, 107] Accordingly,
a homogeneous charge distribution through the backbone can be assumed as
a �rst approximation, so that j � . Second, the transfer integral describing
the coupling between the sugar and the neighbor base takes on essentially the
same values for the di¤erent nucleotides,[98] and one can con�dently assume
tj � t as well: Thus, Eq.(6.34) simpli�es to

�(E) = �0 + �1E +
2t2

E �  ; �(E) = �0 + �1E +
2t2

E �  (6.40)

where �0 � a0 � �1; �0 � b0 � �1; a0 � tGC + 2("G + "C); b0 � tAT +
2("A + "T ); �1 � ("2G + "2C)=t

2, and �1 � ("2A + "2T )=t
2. Plugging Eq.(6.40)

into Eq.(6.39) one obtains [105]

E4 +AE3 +BE2 + CE +D = 0; (E 6= ) (6.41)

where the polynomial coe¢ cients depend on the di¤erent model parameters.
Therefore, though the renormalized chain includes only two "atomic" species,
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the energy spectrum is composed of four bands, as one expects for the tetranu-
cleotide unit cell shown in Fig.6.19a. This result properly illustrates that the
renormalized chain encompasses a full quantum description of the DNA en-
ergetics and the detailed structure of the energy spectrum will depend on the
adopted model parameters.

TABLE 6.3
Model parameters adopted for the
double-stranded DNA shown in
Fig.6.19.

Model Hamiltonian parameters (eV)
"G = 7:77 "C = 8:87
"A = 8:25 "T = 9:13

 = 12:27
t = 1:5

tGC = 0:90 tAT = 0:34
t0 = 0:15

By considering the realistic values listed in Table 6.3 we obtain the energy
spectrum shown in the left panel of Fig.6.20. The location of the di¤erent
allowed bands and their respective bandwidths are listed in Table 6.4.

TABLE 6.4
Locations of the allowed bands centers (Ei), bandwidths
(Wi), and gap widths (�ij) in the energy spectrum of the
polyGACT-polyCTGA chain.

Band center (eV) Band width (meV) Gap width (eV)
E1 = �14:209 W1 = 269 -
E2 = �0:423 W2 = 120 �12 = 13:591
E3 = +6:440 W3 = 29 � = 6:788
E4 = +11:595 W4 = 177 �34 = 5:052

As we see, the energy spectrum consists of four narrow bands separated by
wide gaps. The wide separation among the di¤erent allowed bands stems from
hybridization e¤ects between the nucleobase system and the sugar-phosphate
backbone.[86, 104] We note that the obtained bandwidths compare well with
the values reported for short (5-12 bp) polyG-polyC and polyA-polyT chains
from �rst principles band structure calculations (HOMO bandwidths ' 50�
400 meV; LUMO bandwidths ' 100� 300 meV, see Section 6.2). Assuming,
as it is usual, that each bp contributes one free charge carrier, the HOMO
band is centered at E = �0:423 eV, yielding an HOMO-LUMO gap width� =
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FIGURE 6.20
The band structure (left) and the Lyapunov exponent as a function of the
energy (right) for the periodic polyGACT-polyCTGA chain derived from
Eqs.(6.41) and (6.43), respectively, making use of the model parameters listed
in Table 6.3. The origin of energy is set at "G. More details in the text.
([105]. Reprinted �gure with permission from Maciá E 2006 Phys. Rev. B 74
245105 c 2006 by the American Physical Society.)
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6:79 eV. This �gure occupies an intermediate position between numerically
obtained values for polyG-polyC chains (7:4�7:8 eV),[108] and photoemission
spectroscopy measurements (4:5 � 5:0 eV) performed in polyG-polyC and
polyA-polyT chains.[109, 110]
The information about the overall structure of the energy spectrum ob-

tained from the dispersion relation is complemented with the density of states
(DOS, see Section 9.5.1). From the de�nition of the variables z; x; and y; and
Eq.(6.40), one obtains

D(E) =
y(�1 � 1) + x(�1 � 1)� 2t2(x+ y)(E � )�2

4t0
p
xy(1� xy)

: (6.42)

Due to the one-dimensional nature of the considered model the obtained DOS
is characterized by a number of sharp features (van Hove singularities) given
by the conditions E = �; E = �; and 4t20 = (E ��)(E � �); which determine
the allowed band edges positions. In addition, we also have a resonant feature
at E = : This resonance is a characteristic signature of the sugar-phosphate
subsystem, which is shown as a dashed line in the left panel of Fig.6.20.
The system transport properties are related to the localization degree of the

di¤erent states belonging to the spectrum. The Lyapunov coe¢ cient measures
the localization length of eigenstates. Therefore, it is quite useful in order
to establish a relationship between the energy spectrum and the transport
properties of the system (see Section 9.5.4). In the case of the polyGACT
duplex one obtains

�(E) = lim
m!1

1

4m
ln
�
2 + 4U2m�1

�
4x2y2 + (x� y)2

��
: (6.43)

The length dependence of the logarithm appearing in Eq.(6.43) is deter-
mined by the Chebyshev polynomials Um�1(z); which remain always bounded
for E 6= . Accordingly, one gets �(E)! 0 in the thermodynamic limit, hence
indicating the extended nature of these eigenstates. This result is properly
illustrated in the right panel of Fig.6.20, where we clearly appreciate the cor-
relation between small Lyapunov coe¢ cient values and the presence of allowed
bands. We also note the presence of a localized state corresponding to the
resonant state E = : In this case, the product xy diverges in Eq.(6.43), so
that we obtain �(E) ! 1 (i.e., the localization length �(E) ! 0). The res-
onant state E =  is determined by the backbone on-site energies, which in
turn depend on environmental e¤ects due to solvation and hydration processes
involving the cations and the water shell. Therefore, this Hamiltonian model
is able of including the existence of localized states in the HOMO-LUMO gap
stemming from environmental e¤ects, in agreement with previous results ob-
tained from detailed ab initio calculations.[25, 27] In this regard, we note that
the number of resonant localized states within the gap region will be increased
by properly relaxing the condition j �  in the treatment.
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6.4.3 The role of contacts

In Section 6.3 we learnt that contacts between the DNA sample and the exper-
imental set-up play a very important role in order to properly determine the
intrinsic DNA electrical transport properties. In fact, an increasing number of
transport experiments have shown that deliberate chemical bonding between
DNA and metal electrodes is a prerequisite for achieving reproducible con-
ductivity results.[49, 50, 51] Accordingly, the study of contact e¤ects on the
charge migration e¢ ciency is an important issue to be considered in realistic
models of DNA transport.
In general, modeling the geometry and bonding character of the contact at

the interface is a very delicate issue, since detailed information on both the
metal geometry and DNA chemical bonding at the contacts is poorly known.
Consequently, when modeling the DNA-contact interface within the tight-
binding approach, one introduces an e¤ective parameter � dealing with the
tunneling probability between the frontier orbitals, thus roughly encompass-
ing bonding e¤ects at the interface. Broadly speaking, one expects the binding
to metallic leads would a¤ect the electronic structure of the molecule. If so,
we should consider the states belonging to the coupled molecular-metallic sys-
tem rather than those of the molecular subsystem alone.[111] Thus we shall
consider henceforth that the coupling between the contacts and the mole-
cule is weak enough, so that the lead-molecule-lead junction can be properly
described in terms of three non-interacting subsystems. Besides, as a �rst
approximation, we neglect the �nite cross section of the electrodes (only one
channel for charge transfer at the Fermi level). Thus, the lead-DNA global
system will be described by means of the tight-binding Hamiltonian

H = H1D +HC +HL ; (6.44)

where H1D is either given by Eq.(6.19) or Eq.(6.35),

HC = ��
�
cy0c1 + c

y
1c0 + c

y
N+1cN + c

y
NcN+1

�
; (6.45)

describes the DNA-metal coupling, where � measures the coupling strength,
and

HL =
�1X
l=0

"Mc
y
l cl � tM (c

y
l cl+1 + c

y
l+1cl) +

+1X
l=N+1

"Mc
y
l cl � tM (c

y
l cl+1 + c

y
l+1cl)

(6.46)
gives the energetics of the metallic leads at both sides of the DNA chain, where
"M is related to the metallic work function, while tM is the hopping term, so
that the leads dispersion relation is given by E = "M +2tM cos k. Then, sites
comprised between [�1; 0] [ [N + 1;+1] belong to the leads, whereas sites
n = 1; : : : N are associated to a single-stranded DNA chain of size N . The
transmission coe¢ cient is computed using the transfer matrix formalism in
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FIGURE 6.21
Transmission coe¢ cient curve for a polyGACT chain with N = 60, tM =
1:0 eV, t = 0:4 eV, and � = 0:4 eV (top panel); � =

p
0:4 eV (central

panel); and � = 0:8 eV (bottom panel). Energy "M is adjusted to simulate a
resonance with the G-HOMO energy level, "M = "G. ([92] Reprinted �gure
with permission from Maciá E, Triozon F, and Roche S 2005 Phys. Rev. B
71 113106 c 2005 by the American Physical Society.)
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which the time independent Schrödinger equation is projected into a localized
basis (see Section 9.5.2).
As a suitable representative example, the charge transport through a pe-

riodic polyGACT tetranucleotide chain, connected to metallic leads at both
ends, will be considered. In Fig.6.21 we show the transmission patterns for a
system with tM = 1:0 eV and t = 0:4 eV for several values of the DNA-metal
coupling. We can readily see the narrow G and T bands at the edges as well
as the relatively broader A and C bands at the central regions of the energy
spectrum. By decreasing t these bands progressively stretch, eventually col-
lapsing into the series f"jg; describing the energy levels of a set of isolated
nucleotides. From the top and bottom panels we realize that, depending on
the value adopted for � , the obtained transmission coe¢ cient does not reach
in general the full transmission condition TN (E) = 1 due to the symmetry
breaking related to the coupling of the G (T) end nucleotides at the left (right)
leads, respectively. This transmission degradation is a direct consequence of
interference e¤ects between the DNA energy levels and the electronic struc-
ture of the leads at the metal-DNA interface. It was obtained that the optimal
system con�guration for e¢ cient charge transfer is determined by the reso-
nance condition � =

p
t � tM .[92] A complete set of such resonant states is

shown in the central panel of Fig.6.21. Quite interestingly, one realizes that,
due to resonance e¤ects, a stronger coupling to the leads does not always re-
sult in a larger conductance through the system.[112] Subsequent works have
exploited the existence of this optimal charge injection condition to study the
charge migration e¢ ciency through more realistic duplex chains.[94]
Similar results are obtained in the case of a double-stranded DNA chain by

replacing the base on-site energies "j by the renormalized ones �(E) and �(E)
in the Hamiltonian H1D in Eq.(6.44). The Landauer conductance GN (E) (see
Section 9.5.3) can be obtained from the knowledge of the matrix elements
of the metal-DNA-metal transfer matrix MN (E) = LN (Q�Q�)

m�1L1; with
m = N=2, where the contact matrices

L1 =

�
2x ��
1 0

�
; LN = ��1

�
2y �1
� 0

�
(6.47)

describe the coupling between the DNA and the metallic leads in terms of the
coupling strength � � �=t0. After some algebra one gets,

Gm(E) = G0

(
1 + (x� y)2U2m�1 + t2M

[f�(E;Um)� 2(x+ y)Um�1 cos k]2

(E � E�)(E+ � E)

)�1
(6.48)

where the auxiliary function f�(E;Um) � ��1(Um�1 + Um) + �(Um�2 +
Um�1) describes contact e¤ects,[92] and E� = "M � 2tM de�ne the allowed
spectral window as determined by the metallic leads bandwidth. The term
(x � y)2U2m�1 in Eq.(6.48) accounts for the greater chemical diversity of a
polyGACT-polyCTGA chain as compared to either polyG-polyC or polyA-
polyT chains (for which x = y), and its main physical e¤ect is to reduce the
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FIGURE 6.22
Transmission coe¢ cient as a function of the energy for a periodic polyGACT-
polyCTGA duplex with N = 4 bps. ([105] Reprinted �gure with permission
from Maciá E 2006 Phys. Rev. B 74 245105 c 2006 by the American Physical
Society.)

overall conductance of the former with respect to that obtained for the sim-
pler ones. In Fig.6.22, the energy dependence of the transmission coe¢ cient is
shown as a function of the injected charges energy at zero bias. In the insets
the transmission band pro�le is magni�ed. As we see, the full transmission
condition is ful�lled for all four bands, indicating the extended nature of their
eigenstates. By taking y = x in Eq.(6.48) we obtain the transmission spectra
for the polyG-polyC chain (the expression for polyA-polyT is then obtained
by simply replacing x ! y). In this way, we can assign the central bands in
the energy spectrum to GC bps, while the edge bands in the spectrum are
related to the AT bps. Since the central bands are closer to the adopted Fermi
energy, we conclude that the charge transfer will be dominated by the HOMO
band in the considered system, so that it will exhibit a p-type behavior, in
agreement with the experiments reported in Section 6.3.

6.4.4 Helicoidal structure and dynamical models

In physiological conditions DNA double helix exhibits a full-�edged three-
dimensional (3D) geometry, so that every two consecutive bases are twisted by
a certain angle (�0 ' �=5 in equilibrium conditions). As a result, the orbital
overlapping is substantially reduced, yielding smaller values for the � � �
transfer integral values.[27, 113] Therefore, one should expect a signi�cant
reduction of the charge transfer e¢ ciency stemming from purely geometrical
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FIGURE 6.23
Sketch illustrating the adopted DNA model at two di¤erent scale lengths. a)
At the molecular level the corresponding dynamical degrees of freedom are
described in terms of cylindrical coordinates. b) the pz atomic orbital over-
lapping between neighboring nucleobases is described in terms of Cartesian
coordinates referred to the nucleobase center of mass. Its position, in turn, is
determined by the relative twist and radial variables, �n;n+1, and rn; at the
molecular scale. ([116] Reprinted �gure with permission from Maciá E 2007
Phys. Rev. B 76 245123 c 2007 by the American Physical Society.)

considerations (dimensionality e¤ect).
At the molecular level the basic dynamical building-blocks are the sugar-

phosphate groups and the nucleobases. As a �rst approximation the nucle-
obases can be treated as identical point masses or rigid platelets, helically
arranged and mutually connected by means of elastic rods, which describe
the sugar-phosphate backbone (Fig.6.23).[80, 114, 115] Adopting the refer-
ence frame indicated in Fig.6.23a, the position of the nth nucleobase can be
expressed as xn = rn cos'n, yn = rn sin'n, and zn = c'n, where n labels the
considered bp along the DNA double strand, rn and 'n are usual cylindrical
coordinates, and c = h0=�0, h0 ' 0:34 nm being the equilibrium separation
between two successive bp planes (B-DNA form). Thus, the Euclidean dis-
tance between two neighboring bases can be expressed as

dn;n�1 =
q
c2�2n;n�1 + r

2
n + r

2
n�1 � 2rnrn�1 cos �n;n�1; (6.49)

where �n;n+1 � 'n+1�'n (�n;n�1 � 'n�'n�1) measures the relative angular
displacement between two adjacent bps. In equilibrium conditions (i.e., rn =

R0 ' 1 nm, �n;n�1 = �0 8n) Eq.(6.49) reduces to l0 =
q
h20 + 4R

2
0 sin

2(�0=2) '
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0:7 nm. The shortest path between two points (not directly above the other)
on a cylinder of radius R0 is given by the arc length between two consecutive
points along the helix, according to the formula

sn;n�1 =

Z 'n+1

'n

q
R20 + c

2d': (6.50)

In the limit of small twist oscillations (rn = R0, �n;n+1 n 1) Eq.(6.49) reads

dn;n�1 =
q
R20 + c

2 �n;n�1 � ��n;n�1 = sn;n�1; (6.51)

so that the Euclidean distance given by Eq.(6.49) coincides with the helix arc
length in this case.
The e¤ective model Hamiltonian can be expressed as the sum of two main

contributions H = He + Hl, where He describes the charge carrier dynam-
ics over the �-stacked electronic system and Hl describes the duplex DNA
dynamics. The electronic degrees of freedom of a double-stranded DNA (in-
cluding sugar-phosphate and environmental e¤ects) are described by properly
generalizing the e¤ective Hamiltonian given by Eq.(6.35) in the form

He =
NX
n=1

~"n(E)c
y
ncn �

N�1X
n=1

tn;n+1(�n;n+1)(c
y
n+1cn + c

y
ncn+1) : (6.52)

Eq.(6.52) describes the charge carrier propagation through a DNA duplex in
terms of an equivalent monatomic lattice, where the renormalized "atoms"
correspond to complementary pairs in the original DNA molecule whose on-
site energies ~"n(E) are given by Eq.(6.34), and the transfer integral tn;n+1
now explicitly describes the angular dependence of the aromatic base stacking
between adjacent nucleotides.
When describing the phonon dynamics in DNA one can disregard the inner

degrees of freedom of the bases, since we can separate the fast vibrational
motions of atoms about their equilibrium positions from the slower motions
of molecular groups. In this way, three characteristic vibrational states have
been usually considered in DNA normal mode calculations, namely, the stretch
oscillations of each base back and forth with respect to the center of mass
of the system located at the helical axis (radial oscillations), longitudinal
oscillations of the bps planes along the helix axis, and twist oscillations of each
bp as a whole around the helical axis. A treatment of the lattice dynamics,
describing the motion of two complementary bases of reduced mass �n from
their equilibrium position can be introduced in terms of the following lattice
Hamiltonian (in cylindrical coordinates)

Hd =
X
n

 
p2'
2Jn

+
p2r + p

2
z

2�n

!
+ UH + US + UB ; (6.53)
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where Jn is the reduced moment of inertia for the relative motion of the bp,
n runs over the number of bps, and Uk denote di¤erent elastic potentials
describing:

� the radial stretching of the hydrogen bonds connecting complementary
bases in the opposite strands of the double helix,[80, 117, 118]

UH =
NX
n=1

Dn

h
e��n(rn�R0) � 1

i2
; (6.54)

where the adopted Morse potential accurately describes both the attrac-
tion due to the H-bonds forming the bps and the repulsion of the nega-
tively charged phosphates in the backbone of the two strands screened
by the surrounding solvent. Note that sequence dependence is explic-
itly considered by adopting a site dependence in the model parameters
Dn and �n which will take on two di¤erent values depending on the
considered base pairs (i.e., G:C or A:T).[112]

� the stacking interaction between adjacent base pairs:

US =
ks
2

N�1X
n=1

[1 + Ee�b(rn+rn+1�2R0)](rn � rn+1)2; (6.55)

where ks is an e¤ective elastic constant. This interaction is character-
ized by the exponential term that e¤ectively modi�es a harmonic-like
radial oscillation and describes local constraints in nucleotide motions,
which result in long-range cooperative elastic e¤ects.[117] Physically,
this constraint describes the change of the next-neighboring stacking in-
teraction due to distortion of the H-bonds connecting a given bp.[112]
In this regard, this stacking interaction di¤ers from that due to hy-
bridization of the � electronic systems of neighboring bp planes along
the helical axis, which will be described in terms of Eqs(6.58)-(6.60)
below. The description of the radial degree of freedom in terms of the
non-linear potential given by Eqs.(6.54) and (6.55) is more realistic than
a purely harmonic approach and has been successful in capturing de-
naturation e¤ects as well as transcription initiation processes in various
DNA chains.[118, 119, 120]

� the harmonic coupling between neighboring bases along the helical strand:

UB = k
N�1X
n=1

(dn;n+1 � l0)2; (6.56)

where k is an e¤ective force constant, dn;n+1 is given by Eq.(6.49), and
l0 is the equilibrium distance between neighboring phosphate groups,
describing harmonic oscillations along the backbone.
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In order to get a basic picture of the physical e¤ects related to the coupling
between electronic and dynamical degrees of freedom, we shall focus on the
low frequency twist mode, hence keeping rn = R0 8n. In that case, one can
express the lattice Hamiltonian in the form

Hl =
1

4m�2

NX
n=1

p2';n + k
N�1X
n=1

 s
c2�2n;n+1 + 4R

2
0 sin

2

�
�n;n+1
2

�
� l0

!2
;

(6.57)
where m is the base mass, � is the e¤ective helix arc length introduced in
Eq(6.51), p';n is the angular momentum, k is an e¤ective force constant, and
l0 is the equilibrium distance.
Hamiltonians (6.52) and (6.57) describe the most relevant physics of the

DNA molecule and its environment in terms of the model parameters ~"n(E)
and tn;n�1(�n;n�1). As it is illustrated in Fig.6.23b, the overlapping between
�-orbitals of stacked bps depends on the euclidean distance between atoms

belonging to neighboring nucleobases, given by dij =
q
l2ij + h

2
ij , and the

transfer integral between successive bps can be expressed in the form,[27]

tn;n�1(rn; �n;n�1) = t0
�
1� ��l�20 (r2n + r

2
n�1 � 2rnrn�1 cos �n;n�1))

�
; (6.58)

where t0 is the transfer integral corresponding to the planar geometry and
�� � 1 + j�pp�j=�pp�, where �pp� and �pp� describe the hybridization matrix
elements between neighboring bases pz orbitals. In this way, one recovers the
usual expression tn;n�1 = t0 for a planar model (i.e., rn = R0, 'n � 0 8n).
If one adopts a rigid helix geometry (i.e., rn = R0, �n;n�1 = �0 ), Eq.(6.58)
takes the form

tn;n�1(R0; �0) = t0

"
1� ��

�
2R0
l0

sin
�0
2

�2#
: (6.59)

Since �� > 0; we get tn;n�1(R0; �0) < t0. Therefore, the main e¤ect of
explicitly considering the helical geometry is to reduce the strength of the
��� base coupling in the equilibrium con�guration, as expected. Let us now
relax the equilibrium structure, allowing for the propagation of low frequency
twist oscillations (acoustic modes), but keeping the radial variable describing
H-bonding stretch oscillations �xed (no optical modes). In that case, Eq.(6.58)
can be approximated as

tn;n�1(R0; �n;n�1) ' t0
�
1� ��2n;n�1

�
; (6.60)

for small enough twists, where the dimensionless parameter � � ��(R0=l0)2 > 0
measures the coupling strength between the charge and the lattice system.[124,
125, 126, 127, 128] Albeit its approximate nature, Eq.(6.60) reasonably repro-
duces the main features of the transfer integral versus twist angle dependence
derived from detailed quantum-chemistry calculations,[129] as it is illustrated
in Fig.6.24.
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FIGURE 6.24
Transfer integral as a function of the twist angle between neighboring GG
(squares) bases in the same strand (after Ref.[129]). Solid lines are obtained
from expression t = tjj [1 � �jj(� � �jj)

2] with tGG = 0:119 eV, tCC = 0:042
eV,[129] �GG = 17; �CC = 63; �GG = 42; and �CC = 36, respectively. ([116]
Reprinted �gure with permission from Maciá E 2007 Phys. Rev. B 76 245123
c 2007 by the American Physical Society.)
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FIGURE 6.25
The Landauer conductance (in G0 units) as a function of the Fermi level
energy of a polyG-polyC oligomer with N = 10 bps corresponding to the
planar model (gray curve) is compared to that corresponding to the helicoidal
model at the equilibrium con�guration. The model parameters are "G = 7:77
eV; "C = 8:87 eV, tGC = 0:90 eV,[97] t = 1:5 eV [87], t0 = 0:15 eV,  = 12:27
eV, and � = tM = 0:15 eV [105]. The origin of energy is set at "G. ([116]
Reprinted �gure with permission from Maciá E 2007 Phys. Rev. B 76 245123
c 2007 by the American Physical Society.)

Plugging Eq.(6.60) into Eq.(6.52) one obtains the following nearest-neighbor
tight-binding equation of motion

(E � ~"n(E)) n � t0
�
1� ��2n;n+1

�
 n+1 � t0

�
1� ��2n;n�1

�
 n�1 = 0; (6.61)

where  n is the electronic wave function at site n. This expression general-
izes the equation of motion usually considered within the framework of the
Su-Schrie¤er-Heeger Hamiltonian,[130] including the quadratic dependence
�2n;n�1 in the o¤-diagonal terms (instead of a linear one). Thus, non-linearity
emerges in Eq.(6.61) as a natural consequence of the three-dimensional DNA
geometry.
At very low temperatures the bases remain very close to the equilibrium

positions, hence providing a suitable physical scenario to estimate the main
contribution of purely geometrical (helical) e¤ects on the charge transport.
In that case, one can reasonably assume �n;n+1 = �0 8n, so that Eq.(6.61)
reduces to

(E � ~"n(E)) n � �0( n+1 +  n�1) = 0; (6.62)

where �0 � t0
�
1� ��20

�
. For the sake of simplicity let us consider homopoly-

mer chains, like polyG-polyC or polyA-polyT, so that all the on-site energies
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are equal. Assuming periodic boundary conditions the dispersion relation can
be expressed as E = �(E) + 2�0 cos(kl0) or E = �(E) + 2�0 cos(kl0), re-
spectively, where k is the wave vector. This expression has the typical form
for a monatomic chain, though in this case the renormalized on-site energy
�(E) or �(E) explicitly depends on the charge carrier�s energy according to
Eq.(6.34). In the case of polyG-polyC chains, the energy spectrum consists
of two asymmetric bands of width

W� =

p
�� �

p
�� � 4�0

2(�1 � 1)
; (6.63)

separated by a gap of width

�g =
4�0 �

p
�+ �

p
��

2(�1 � 1)
; (6.64)

where �� = (a0 � 2�0)2 � 8(�1 � 1)t2 + ( � 2a0 � 4�0).[131] Completely
analogous expressions are obtained for polyA-polyT chains. By inspecting
Eqs.(6.63) and (6.64) one realizes that the overall electronic structure depends
on several physical mechanisms, including the aromatic base stacking between
neighboring bps, whose value depends on the helicoidal structure in terms
of the parameter �0. Thus, helicoidal geometry produces two main e¤ects
in the electronic structure of DNA: (i) the HOMO and LUMO bandwidths
shrink, and (ii) the width of the gap increases with respect to the values
obtained for planar models. Both changes degrade charge transport e¢ ciency.
In fact, in Fig.6.25 we compare the Landauer conductance corresponding to
the helicoidal and planar models. As we see, the net e¤ect of introducing
helical structure is to reduce the conductance spectral width as compared to
the value obtained for �0 = 0.

6.4.5 Thermal and vibrational e¤ects

The relative motion of bases can either occur in a synchronized manner (nor-
mal modes propagation at low temperatures) or incoherently (due to thermal
motion at higher temperatures). At physiological temperatures the relative
orientation of neighboring bases becomes a function of time, thereby modify-
ing their mutual overlapping in a complex way. Accordingly, realistic treat-
ments of charge migration in DNA should take into account (i) the intrinsic
three-dimensional, helicoidal geometry of DNA, and (ii) the coupling between
charge motion in DNA and its molecular dynamics, as we have described in
the previous Section. In so doing, the question arises as to which DNA vibra-
tion modes should be taken to be coupled to charge motion and which ones
should not. As a �rst approximation the transfer integral values were usu-
ally computed for idealized molecular DNA geometries assuming that t does
not signi�cantly change with the molecular geometry during charge migration
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(the so-called Condon approximation). However, it was subsequently demon-
strated that the electronic coupling between nucleobases is very sensitive to
structural �uctuations and the Condon approximation is rather limited.[113]
Making use of molecular dynamics calculations it was shown that the standard
deviation of the coupling of nucleobases is much larger than its average value.
This result indicates that charge transport in DNA preferentially occurs in
speci�c conformations, which may considerably deviate from the canonical
B-DNA structure.[121] Therefore, the electronic couplings found for idealized
B-DNAs can substantially di¤er from the corresponding values averaged over
thermally accessible DNA con�gurations. Accordingly, a combined quantum
mechanical- molecular dynamics approach should be used in order to obtain
more accurate estimates of electronic couplings. In fact, recent studies fol-
lowing this approach have revealed that transfer integral values are extremely
sensitive to conformational �uctuations, so that the transport e¢ ciency cal-
culated ignoring thermal �uctuations can be underestimated by several orders
of magnitude.[122, 123]

6.4.5.1 Incoherent thermal e¤ects

The role of thermal �uctuations on the charge transfer e¢ ciency has been
discussed in a number of works, where the structural �uctuations of the DNA
double helix are described by sampling the initial angular velocities and twist
angles from a Boltzmann distribution at a given temperature.[112, 124, 125,
126, 127, 129, 132, 133] Most of these works considered a Hamiltonian of the
form

H =

NX
n=1

"nc
y
ncn � t0

N�1X
n=1

cos(�n;n+1)(c
y
n+1cn + c

y
ncn+1); (6.65)

which describes charge migration along a single-stranded chain. By comparing
Eq.(6.65) with the double-stranded DNA Hamiltonian given by Eq.(6.52) we
observe that the transfer integral has been particularized to the form tn;n�1 '
t0 cos �n;n�1, where �n;n+1 is the relative twist angle. In addition the Watson-
Crick energetics is simpli�ed as ~"n(E)! "n in the kinetic energy term. Each
�n;n+1 is an independent random variable that follows a Gaussian distribution
with average h�n;n+1i = 0, whereas the variance is taken according to the
equipartition law, i.e., h�2n;n+1i = kBT=I


2, where I is the reduced moment
of inertia for the relative rotation of the two adjacent bases and 
 is the
oscillator frequency of the mode (I
2=kB = 250K). In the small �uctuations
approximation one further considers t0 cos(�n;n+1) � t0(1� �2n;n+1=2), which
coincides with Eq.(6.60) for � = 1=2. Some illustrative examples of the result
derived from Eq.(6.65) are shown in the �gures below.
In Fig.6.26 we show the temperature dependent transmission coe¢ cient for

a periodic polyG-polyC DNA chain, whereas in Figs.6.27 and 6.28 this magni-
tude is shown for two representative samples of biological interest: a sequence
extracted from the sequenced part of the Human chromosome 22 (Ch22), and
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FIGURE 6.26
Transmission coe¢ cient at T = 40 K (left) and T = 120 K (right) for a
polyG-polyC chain with 30 bp.[127] (Courtesy of Ai-Min Guo).

FIGURE 6.27
Temperature dependent transmission coe¢ cient for a 20nm chain sequence
extracted from the human chromosome Ch22 at di¤erent temperatures.
(Adapted from ref.[134]. Courtesy of Stephan Roche).
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FIGURE 6.28
The transmission coe¢ cient for a �-bacteriophage based sequence with 60 bps
at T = 0 K (panel on the left) is compared with that corresponding to a �nite
temperature one (panel on the right). (Adapted from ref.[134]. Courtesy of
Stephan Roche).
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FIGURE 6.29
Temperature dependent transmission coe¢ cient for periodic polyG-polyC (left
frame), Fibonacci-GC (middle frame), and random DNA (right frame) for
some selected values of the energy (expressed in eV).[127] (Courtesy of Ai-
Min Guo).

a short sequence extracted from the complete �-phage DNA genome (see Sec-
tion 6.5.3). In Fig.6.27, the temperature dependent transmission coe¢ cient for
the chain (cttcgggagg ctgaggcgga tgaatcacga ggtcaggagt tcaa-
gaccag cctggccaac) extracted from the Ch22 (starting site position =
150.000) is shown. As expected, temperature yields misorientations of adja-
cent bases that result in temperature dependent base-base hoppings. At low
temperatures (T = 20 � 60 K), the transmission spectrum presents a rela-
tively large number of transmitting states, due to a breaking of level degener-
acy. At higher temperatures, the number of transmitting states progressively
decreases but interestingly there persist many states with high transmission
coe¢ cient at temperatures as high as � 160 K. A similar behavior is obtained
for the �-phage chain sequence �1-gggcggcgac ctcgcgggtt ttcgctattt
atgaaaattt tccggtttaa ggcgtttccg, as well (Fig.6.28).
Quite interestingly, the robustness of these high transmission states seems

to be closely related to the topological order of the underlying lattice. This
property is illustrated in Fig.6.29. In the random lattice the transmission
coe¢ cient progressively decreases as the temperature is increased as a conse-
quence of reduced quantum coherence. This trend is also observed for most
energy states in the periodic and quasiperiodic chains, but in both systems
there also exist some energy values exhibiting just the reversed behavior, i.e.,
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FIGURE 6.30
Geometries of a (G:C)2 stack: (a) symmetric structure and (b) B-form struc-
ture. (c) A snapshot from the molecular dynamics trajectory with the largest
electronic coupling value between both bps.[123] (Courtesy of Alexander
Voityuk).

the value of the transmission coe¢ cient increases with temperature for a cer-
tain temperature range. For instance, for Fibonacci-GC (middle frame) the
transmission coe¢ cient peaks at T = 7 K and T = 20 K for the energy values
E = 6:975 eV and E = 7:171 eV, respectively, indicating a thermal enhance-
ment of electrical conductance. Such an enhancement can also be observed
in the polyG-polyC chain at a somewhat higher temperature (T = 25 K) for
the state with energy E = 6:90 eV.

Therefore, thermal �uctuations in base stack conformation play an impor-
tant role in determining charge mobility within DNA. It is then expected that
the motion of surrounding water molecules and counterions will play a signif-
icant role as well. In order to address this issue one needs to identify which
are the DNA helix structural parameters related to a high charge transfer ef-
�ciency. In fact, since electronic couplings between nucleobases are very sen-
sitive to conformational changes (Fig.6.24) [113] di¤erent conformations must
exhibit di¤erent conduction properties. Indeed, studies based on molecular
dynamics and quantum chemical calculations have pinpointed a number of
snapshots showing base stack conformations exhibiting very strong electronic
couplings (Fig.6.30). According to the calculations, undertwisted structures
(�n;n�1 < 20o) are of special interest because strong couplings are found over
a wide range of the remaining structural parameters considered.[123] The �nd-
ing of these particularly favorable structural con�gurations may be indicating
a relatively general trend, likely related to the presence of some current en-
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hancement due to coupling to certain normal modes. This appealing issue
will be analyzed in more detail in the next section.

6.4.5.2 Normal modes dynamical e¤ects

As mentioned before, normal mode calculations have usually considered a sub-
stantially reduced number of freedom degrees for DNA, namely, the stretch
oscillations of each base back and forth with respect to the center of mass of
the system located at the helical axis, and the twist oscillations of each bp
as a whole around the helical axis. In this section we will focus on coherent
transport due to the coupling between low frequency vibration modes and
charge motion through duplex DNA, explicitly taking into account its char-
acteristic helical geometry. To this end, we shall consider the equations of
motion, derived from Eq.(6.57) via the canonical equations, which read

�'n =
k

m�2

��
1� l0

dn;n+1

�
fn+1(�)�

�
1� l0

dn;n�1

�
fn�1(�)

�
; (6.66)

where fn�1(�) � c2�n;n�1 + R20 sin �n;n�1. The low frequency response is
obtained linearizing Eq.(6.66) by considering only linear terms of the Taylor
expansion to obtain �'n ' !20('n+1 + 'n�1 � 2'n); where !0 �

p
k=m is the

natural twist frequency of each base. The corresponding dynamical equation
for the variables �n;n�1 is then straightforwardly derived to get

��n;n+1 � ��n;n�1 = !20(�n+1;n+2 � 3�n;n+1 + 3�n;n�1 � �n�1;n�2): (6.67)

This expression describes a correlated motion involving three consecutive
bps (codon unit cell). Searching for solutions in the form of linear waves we
plug the ansatz �n;m =

p
2�0e

i!t cos ((n+m)q=2), where q is the wave num-
ber, into Eq.(6.67) to obtain the dispersion relation !2 = 4!20 sin

2(q=2).[80]
Finally, inserting �n;m into Eq.(6.61) one can express it in the form

(E� ~"n) n� (�0�B
Tn(~
))	n;+� 2B
(1�
2)Un�1(~
)	n;� = 0; (6.68)

where B � t0��
2
0; 	n;� �  n+1 �  n�1, Tk(~
) and Uk�1(~
) are Cheby-

shev polynomials of the �rst and second kinds, respectively (see Section 9.5),
~
 � 2
2 � 1, and 
 � 1 � !2=2!20 (
 2 [�1; 1]). This expression prop-
erly extends Eq.(6.61) by including charge-lattice interaction (the so-called
polaron) e¤ects. The e¤ect of twisting on charge transport through DNA
has been investigated by considering two types of polarons depending on the
coupling between the transfer integral and nucleotides geometry: radial po-
larons (where charge induced deformations mainly a¤ect the radial variables)
and twist polarons. By all indications twist polarons can transport charge
in a very e¢ cient way (even in the presence of a base-pair inhomogeneity),
whereas radial polarons experience either re�ection or trapping.[135]
By inspecting Eq.(6.68) we realize that the motion equation considerably

simpli�es in the cases 
 = 0 and 
 = �1. In the case 
 = 0 (i.e., ~
 = �1,
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FIGURE 6.31
HOMO-LUMO bands for a polyGACT-polyCTGA chain corresponding to the
vibrational states !� and !+ (left panel). The overall electronic spectrum
structure is shown in the right panel on a broader energy scale. The spectra
have been derived from Eq.(6.69) making use of the same model parameters
used to plot Fig.6.25. ([116] Reprinted �gure with permission from Maciá E
2007 Phys. Rev. B 76 245123 c 2007 by the American Physical Society.)
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! =
p
2!0), Eq.(6.68) reduces to Eq.(6.62). In this way, when a charge

couples to the q = �=2 vibrational state the resulting charge dynamics mimics
that corresponding to the equilibrium con�guration one. The frequencies
corresponding to the cases 
 = �1 (i.e., ~
 = 1) are located at the edges of
the frequency spectrum (!+ = 0 and !� = 2!0): Then, using the relationship
Tn(1) = 1; 8n, Eq.(6.68) takes the form

(E � ~"n(E)) n � ��( n+1 +  n�1) = 0; (6.69)

where �+ = t0(1�2��20) and �� = t0 are respectively labelled after frequencies
!�. The mathematical structure of Eq.(6.69) describes a charge propagating
through a linear chain with an e¤ective transfer integral whose value depends
on the considered frequency. We note that, broadly speaking, an increase
in the transfer integral value usually contributes to a lowering of the system
energy (see Eq.(6.52)) so that the charge gets localized by its interaction
with the lattice (polaronic e¤ect).[130, 136, 137] In the !+ case, however, the
transfer integral becomes negative (�+ = �1:3t0 ' �0:2 eV for � = 2:9) and
charge becomes delocalized instead. The normal modes corresponding to the
DNA codon shown in Fig.6.23a are !1 = 0 = !+, !2 = �!0, and !3 =

p
3�!0,

where � � f(�0)l
�1
0 ��1 ' 0:961. Therefore, the lowest frequency state !+ is

a normal mode describing the simultaneous rotation of all bps around the
helical axis by an arbitrary amount. On the other hand, the coupling of the
charge to the !� vibration state results in a competition between dynamical
and helicoidal e¤ects, so that the equation of motion reduces to that of an
e¤ective 2D model in this case.
The energy spectra corresponding to the e¤ective hopping �� are shown in

Fig.6.31 for the polyGACT-polyCTGA DNA chain studied in Section 6.4.2.
By comparing both spectra two main features can be observed close to the
Fermi level: (i) a signi�cant broadening of the band widths; and (ii) a nar-
rowing of the HOMO-LUMO gap width for the !+ spectrum as compared
to the !� one. Therefore, the coupling with the low band edge vibrational
state results in a signi�cant improvement of the charge transport e¢ ciency
through the DNA chain, as it is illustrated by the broadening of the Landauer
conductance spectral window shown in Fig.6.32. A similar broadening e¤ect
has been reported for polyA-polyT chains with 15 bps as arising from com-
pressional acoustic modes propagating through the helical axis (although in
the case of a polyG-polyC chain of the same length a narrowing e¤ect was
observed instead).[84]
Although an ensemble of bps twisting back and forth around the helix axis

generally results in a degraded charge transfer e¢ ciency, a signi�cant improve-
ment of charge migration can occur via charge coupling to the lattice modes
at low temperatures. In fact, from basic physical principles one expects the
acoustic modes will signi�cantly a¤ect the conductance at temperatures be-
low the Debye temperature, which measures the temperature above which all
modes begin to be excited, and below which modes begin to be progressively
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FIGURE 6.32
The Landauer conductance (in G0 units) as a function of the Fermi level
energy of a polyG-polyC oligomer with N = 10 bps corresponding to the
planar model (dashed curve) is compared to that corresponding to a 3D model
coupled to the !+ normal mode (solid line). The model parameters are those
used in Fig.6.25. The origin of energy is set at "G. ([116] Reprinted �gure
with permission from Maciá E 2007 Phys. Rev. B 76 245123 c 2007 by the
American Physical Society.)
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inactive. By assuming a speed of sound in B-DNA form of 1900 ms�1,[138] and
a lattice constant of approximately 0.34 nm, the Debye temperature was esti-
mated as �D ' 166 K for longitudinal compression modes.[84] On the other
hand, speci�c heat measurements of biological DNA samples over the temper-
ature range 0:5� 5 K suggest signi�cantly smaller values ( �D ' 20� 40 K)
for torsional modes.[139] Accordingly, it is reasonably expected that charge-
vibration coupling e¤ects would require low temperature measurements of the
DNA electrical conductance to be clearly appreciated.

6.5 Long-range correlations: The biophysicist viewpoint

6.5.1 General motivations

Amongst the various physical, chemical, or biological phenomena that might
be inferred from sequence correlations, charge transfer properties deserve par-
ticular attention. Indeed, the nature of DNA-mediated charge migration has
been related to the understanding of damage recognition process, protein
binding, or with the task of designing nanoscale sensing of genomic muta-
tions, opening new challenges for emerging nanobiotechnologies.[63, 64, 65, 82]
Short and long range correlations between base pairs further provide valuable
information to distinguish between almost random distributions, and more
complex sequences, whose long range correlations might also be associated
with some biological properties (folding, introns vs exons featuring).[66, 67,
68, 69, 140]
As mentioned in Section 1.8, biological and arti�cial DNA molecules signif-

icantly di¤er in size, chemical complexity, and their kind of structural order.
Consequently, one can hardly expect that results obtained from the study of
the oversimpli�ed synthetic molecular systems may be directly extrapolated
to understand the physical properties of complex DNA molecules of biological
interest. In fact, both the sugar-phosphate backbone and the nucleotide bases
sequence are periodically ordered in, say, polyG-polyC chains, whereas in bi-
ological DNA the nucleotide bases are aperiodically ordered instead. From
general principles one expects the aperiodic nature of the nucleotide sequence
distribution would favour localization of charge carriers in biological nucleic
acids, reducing charge transfer rate due to backscattering e¤ects. Neverthe-
less, this scenario must be re�ned in order to take into account correlation
e¤ects among nucleotides reported in biological DNA samples, since these
correlations can enhance charge transport via resonant e¤ects.[134, 141, 142]
Scale invariant properties in complex genomic sequences with thousands

of nucleotide base pairs have been investigated from a mathematical view-
point, and in particular wavelet analysis has revealed complex �ngerprints.
Such studies clearly show that correlations are present at di¤erent scales, and
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that they are strongly sequence dependent. The statistical signi�cance of the
regular features in nucleotide sequences should be estimated with respect to
the corresponding characteristics for random DNA sequences with the same
nucleotide composition. To gather deeper insight of the e¤ect of correla-
tions in electronic transfer, in the following sections we discuss the electronic
transmission properties of various correlated and uncorrelated DNA sequences
connected to metallic leads.

6.5.2 Fibonacci DNA

In order to get some insight into the nature of charge transport in DNA mole-
cules of biological interest, for which exact or even approximate analytical re-
sults are not available, the study of quasiperiodic systems exhibiting character-
istic self-similarity properties may be of considerable help. One typical aspect
of any quasiperiodic system is the presence of some repeating features which
show up as some sort of building blocks of these structures. As an archetypal
example, let us consider the Fibonacci-GC sequence, which is constructed
starting from a G base as a seed and following the in�ation rule G! GC and
C! G. This gives successively, G,GC,GCG,GCGGC,GCGGCGCG, � � � , and
so forth. In the thermodynamic limit the ratio of (majority) G bases over (mi-
nority) C bases will approach the golden mean value � = (1+

p
5)=2 � 1:618.

A symmetrical in�ation rule (C!CG and G!C) can be also used to gen-
erate a Fibonacci chain where the roles of majority and minority bases are
exchanged.
Since the basic building block in the Fibonacci in�ation rule is the dimer

GC, we brie�y review some basic properties of the periodic polyGC chain
for the sake of illustration. Its electronic structure is given by the dispersion
relation (see Section 9.2)

4t2 cos2 q = E2 � ("C + "G)E + "C"G; (6.70)

so that the energy spectrum of a GC chain is composed of two wide bands
separated by a gap of width �GC = "C � "G = 1:12 eV, as it is illustrated
in the left-top panel of Fig.6.33. The transmission coe¢ cient for a GC chain
embedded between guanine leads is given by (see Section 9.5.2)

TN (E) =

�
1 +

�2GC
4t2 � (E � "G)2

U2N
2 �1

(v)

��1
; (6.71)

where U2m�1(v) is a Chebyshev polynomial of the second kind, and v � (E �
"C)(E � "G)=2t

2 � 1. The next approximant in the series is the periodic
polyGCG chain. In that case the energy spectrum is composed of three bands,
as can be readily checked from the dispersion relation

2t3 cos 3q = (E � "G)2(E � "C)� t2(3E � 2"G � "C); (6.72)
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FIGURE 6.33
Energy dependent transmission coe¢ cient for a �nite length Fibonacci-GC
series approximants of increasing length. The spectrum is de�ned within
["M �2tM = 5:75; "M +2tM = 9:75] with "M = 7:75 eV and tM = 1 eV. ([134]
Courtesy of Stephan Roche).

and its electronic spectrum consists of three bands separated by two gaps. As
we proceed by considering higher order approximants to the Fibonacci DNA,
new bands and gaps progressively appear in the energy spectrum, showing
a hierarchical nested structure (Fig.6.33). In the bottom panels of Fig.6.33
we compare the energy dependence of the transmission coe¢ cient numerically
obtained for Fibonacci approximants with an increasing number of bases. It
can be clearly appreciated that, as the system grows larger, several peaks with
high transmission values remain at certain energy values. In addition, some
degree of clustering around these resonant energies can be appreciated. It has
been shown that the global structure of the asymptotic electronic spectrum of
quantum quasiperiodic lattices can be obtained in practice by considering very
short approximants to in�nite quasiperiodic chains (see Section 5.3). To check
this result in the present context, let us consider the third order approximant
of a Fibonacci chain, which corresponds to the periodic poly(GCGGC) chain
containing �ve nucleotides in its unit cell. Its dispersion relation is given by

2t5 cos(5q) =
�3

E � "C
� �t2 (5E � 4"G � "C) + t4 (5E � 3"G � 2"C) ; (6.73)

where �(E) � (E � "G) (E � "C). The energy spectrum of a GCGGC chain
is thus composed of three broad bands, whose centers are located at the
energies E2 = 6: 915 eV; E3 = 8: 143 eV; and E4 = 9: 527 eV, plus two
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FIGURE 6.34
Transmission coe¢ cient spectrum for a Fibonacci-GC approximant containing
150 base-pairs.[127] (Courtesy of Ai-Min Guo).

narrower bands located at the edges of the spectrum at E1 = 6: 190 eV and
E5 = 10: 213 eV. This electronic structure accurately described the location
of the main bands and gaps in the highly fragmented energy spectrum shown
in Fig.6.34. Accordingly, there exist a set of resonant energies which are
robust enough to persist against backscattering e¤ects due to the presence of
C bases interspersed in the Fibonacci-GC chain. Thus, one may be tempted
to think that these states should exhibit good transport properties even in
the thermodynamic limit.
To further substantiate such a possibility let us consider the transmission

coe¢ cient corresponding to the poly(GCGGC) chain embedded between gua-
nine loads, which is given by [134]

TN (E) =
h
1 + q(x; y)U2N

5 �1
(w)
i�1

; (6.74)

where w = 16x2y3�16xy2�4yx2+3y+2x; and q(x; y) is a rational function.
According to Eq.(6.74) the roots of the Chebyshev polynomial label a full
transmission peak series given by cos(5k�=N) = w; with k = 0; :::; N: Then,
as the Fibonacci chain length is increased, less and less states will present
good transmissivity, due to the progressive fragmentation of the spectrum.
Nonetheless, a signi�cant number of resonant states, satisfying the full trans-
mission condition given by Eq.(6.74), will persist in the thermodynamic limit.
For instance, states belonging to the broader central bands around E2 ' 6:9
eV and E3 ' 8:1 eV are very robust to the progressive fragmentation of the
energy spectrum, as it can be seen in the bottom frames of Fig.6.33.
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FIGURE 6.35
The energy spectra of successive approximants of the Fibonacci DNA chain
are compared to that corresponding to the polyGACT-polyCTGA chain. The
model parameters are listed in table 6.3. ([105] Reprinted �gure with permis-
sion from Maciá E 2006 Phys. Rev. B 74 245105 c 2006 by the American
Physical Society.)

These basic results can be generalized to the more realistic case of the
double-helix DNA models considered in Section 6.4. By inspecting the renor-
malized binary lattice shown in Fig.6.19c we realize that, instead of consid-
ering a periodic chain with unit cell ��; we could arrange the G:C and A:T
complementary pairs according to the Fibonacci sequence, by means of the
substitution rule �! �� and � ! �. In this way, we obtain the series of unit
cells ��; ���; �����; ��������; :::. The �rst representative in this series
coincides with the periodic polyGACT-polyCTGA chain (recall that, accord-
ing to Eq.(6.34), the bps G:C/C:G and A:T/T:A are indistinguishable in the
renormalized chain). The following terms in the sequence describe periodic
DNA chains whose unit cell becomes progressively more complex, attaining
the quasiperiodic order characteristic of the Fibonacci sequence in the ther-
modynamic limit N !1. Accordingly, the systematic study of these approx-
imants series provides useful information regarding the progressive emergence
of quasiperiodic order in the system.

Following the approach introduced in the previous section the dispersion
relations of a successive series of approximants can be obtained from the
knowledge of the corresponding global transfer matrices, respectively given by
Q�Q�Q�; Q�Q�Q�Q�Q�; and so on. The corresponding spectra are shown
in Fig.6.35. By inspecting this �gure we see that the four bands originally
present in the energy spectrum of the polyGACT-polyCTGA chain become
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progressively fragmented as we consider successive approximants. Thus, the
two central bands in the energy spectrum of the �� chain split into two sub-
bands in the energy spectrum of the ��� approximant, into three subbands in
the energy spectrum of the ����� approximant, and into �ve subbands in the
energy spectrum of the �������� approximant. As we see, this fragmen-
tation scheme follows the series {1; 2; 3; 5; :::.} subbands. In a similar way,
we see that the edge bands in the energy spectrum of the �� chain follow
the fragmentation scheme {1; 1; 2; 3; :::g subbands: In both cases the fragmen-
tation scheme is described by the Fibonacci series Fn = f1; 1; 2; 3; 5; 8; :::g.
Thus, the total number of subbands composing the spectrum of a given ap-
proximant can be expressed as 2F��1 + 2F��2 = 2F� ; where � is the number
of Watson-Crick bps contained in the approximant unit cell.
This kind of highly fragmented energy spectrum is a typical feature of

quasiperiodic systems (see Section 5.3) and gives rise to the presence of two
di¤erent energy scales in the DNA spectrum. On the one hand, we have a
large energy scale (within the range 5 � 14 eV) determined by the width of
the gaps among the main bands. On the other hand, due to the progressive
fragmentation of these main bands, an increasing number of narrow gaps
progressively appear in the spectra of higher order approximants. In this way,
the emergence of the quasiperiodic order naturally introduces a speci�c, small
energy scale in the DNA electronic structure, ranging from about 0:1 � 0:5
eV for the low order ����� approximant, to values well below 100 meV for
higher order approximants. The presence of these small activation energies in
the electronic structure brings an additional mechanism in order to explain
the anomalous absorption feature observed at low (10� 100 meV) energies in
optical conductivity spectra of biological DNA samples.[143]
What is the nature of the states belonging to this highly fragmented spec-

tra? For systems described in terms of Fibonacci on-site Hamiltonians it has
been rigorously proven that the energy spectrum is singular continuous and
the amplitudes of their eigenstates do not tend to zero at in�nity but are
bounded below throughout the system, yielding the value �(E) = 0 in the
thermodynamic limit (see Section 5.5). This result certainly holds for the
Fibonacci DNA chain as well. In Fig.6.36 we illustrate the progressive frag-
mentation of the energy spectrum around the energy value E ' �0:4 eV for
increasing order Fibonacci DNA approximants. As we can see, a self-similar,
nested structure, characteristic of the long-range quasiperiodic order present
in Fibonacci systems, progressively appears in the Lyapunov coe¢ cient over-
all structure as the complexity of the corresponding unit cell is increased for
successive approximants. Nevertheless, the vanishing of the Lyapunov expo-
nent should not be naively interpreted as indicating a Block-like nature for the
electronic states (see Section 9.5.4). In most quasiperiodic systems we have
critical wavefunctions whose amplitudes are roughly modulated by scaling ex-
ponents and one may reasonably expect their related transport properties to
be more similar to those corresponding to extended states than to localized
ones (see Section 5.6.1). The in�uence of the nature of the electronic states
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FIGURE 6.36
Lyapunov coe¢ cient as a function of the energy for successive approximants
of the Fibonacci DNA chain containing N = 6 bp (3 �� unit cells, solid gray),
N = 12 bp (4 ��� unit cells, dotted curve), and N = 20 bp (4 ����� unit
cells, solid black). ([105] Reprinted �gure with permission from Maciá E 2006
Phys. Rev. B 74 245105 c 2006 by the American Physical Society.)

on the transport properties of di¤erent kinds of aperiodic sequences can be
studied in terms of the energy averaged transmission coe¢ cient [144]

�T (N) =

RW+

W�
TN (E)

h
1 + cosh

�
E��
kbT

�i�1
dERW+

W�

h
1 + cosh

�
E��
kbT

�i�1
dE

; (6.75)

whereW� denote the edges of the allowed energy spectrum and � is the chem-
ical potential. The transmission coe¢ cient is obtained following the proce-
dure described in Section 6.4.3 for the model Hamiltonian given by Eq.(6.44).
Making use of Eq.(6.75) one can estimate the intrinsic resistivity of the DNA
molecule from the expression (see Section 9.5.3)

�(N) = G�10
1� �T (N)
�T (N)

�R20
Nh0

; (6.76)

where R0 = 1 nm and h0 = 0:34 nm are the B-DNA form equilibrium val-
ues. Fig.6.37 plots the dependence of the resistivity on the length for di¤erent
types of periodic and aperiodic sequences. Notice that polyG has the highest
conductivity with < � >� 10�4 
cm, whereas the conductivity of polyGC
is about one order of magnitude lower (see the inset). For a given length
value the resistivity of aperiodic sequences is larger than that of periodic
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FIGURE 6.37
Dependence of the electrical resistivity with the chain length (expressed in
terms of the number of base-pairs, n) for di¤erent kinds of aperiodic chains
(main frame) according to the following key: Rudin-Shapiro (RS), G! GGC
and C ! CCG (SQ4), G ! GGC and C ! GG (SQ2). Inset: averaged
transmission coe¢ cient �T (n) versus n for polyG and polyGC chains in the
range n = 20 to n = 300 bp. The DNA chain is described in terms of the
Hamiltonian given by Eq.(6.44) with model parameters t = tM = � = 1 eV
and "M = "G = 7:75 eV.[144] (Courtesy of Ai-Min Guo.)
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ones, as expected from basic principles. (Note that the relative resistivity
relation of aperiodic versus periodic chains in Fig.6.37 bears a close similar-
ity with that exhibited by quasicrystalline versus periodic alloys in Fig.3.2,
see Section 3.1.2.) The resistivity value of the aperiodic lattices based on
the substitution sequences SQ2 and SQ4 progressively decreases as the chain
length is increased, clearly indicating that long-range correlations favor the
electrical conductance. In this regard, it is interesting to note that the �(n)
curve corresponding to the sequence SQ2 (which satis�es the Pisot property
and it is therefore quasiperiodic, see Section 4.2.1) almost parallels the �(n)
curve corresponding to the polyG chain. On the other hand, the �(n) curve
corresponding to the sequence SQ4 (which is not quasiperiodic) becomes es-
sentially independent of the system length, hence indicating that long-range
correlation e¤ects just balance backscattering e¤ects. Finally, we observe that
the resistivity of the Rudin-Shapiro sequence (which shares a di¤use Fourier
spectrum with random lattices, see Section 5.2) increases as the chain length is
increased. This behavior can be understood as indicating that backscattering
e¤ects are dominant over short-range correlations e¤ects in this case.
Recent studies on the magnetic properties of biological DNA samples, in-

dicating the existence of well de�ned currents (apparently on a micron scale)
in ��DNA molecules support the presence of some sort of extended states
in these biopolymers.[145] Additional evidence for charge transport through
double-stranded DNA oligonucleotides with a non-periodic nucleotide sequence
has been obtained from current-voltage curves showing currents within the nA
range (see Section 6.3). Therefore, the nature of electronic states in complex
macromolecules of biological interest and their related transport properties is
an interesting open topic in the �eld of condensed matter biophysics.

6.5.3 Biological DNA chains

The DNA sequence of the �rst completely sequenced human chromosome 22
contains about 33:4 � 106 nucleotides. Statistical analyses have unveiled the
presence of long range power law correlations which are inferred from scale
invariance properties.[140] However, at variance to common substitution ape-
riodic sequences (see Section 4.2.1), no construction rule allows to generate the
whole chain, so that these correlations are of an intrinsically di¤erent nature.
It is an important question to identify the limits of coherent charge trans-
port in such a complex DNA sequence, that may be related with biological
features.[146] Given the huge amount of nucleotides, the physically relevant
task would rather be to determine to which extent charge transfer takes place
through the G-HOMO, in comparison with uncorrelated chains. The results
previously obtained for quasiperiodic chains will help us deepen our discus-
sion about the relation between long range correlations and charge transport
in aperiodic systems. Indeed, scale invariance characteristic of quasiperiodic
sequences illustrates the way correlations among di¤erent bases at several
scales give rise to a similar scaling of transmission properties. We thus start
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FIGURE 6.38
Transmission coe¢ cients for chromosome 22 based sequences with increasing
number of base pairs. Bottom-right : Energy dependent Lyapunov coe¢ cient
for two chromosome 22 based sequences. ([134] Courtesy of Stephan Roche.)

focusing on Ch22-based sequences extracted from the sequenced part entitled
NT011520 containing 182.606 bp and retrieved from the Biotechnology Infor-
mation (NCBI). The �rst 20nm sequence is constructed by starting from site
1:500 of the full NT011520 sequence and then extracting the �rst 60 �rst bp,
namely gtgaaacccc atctctacta aaaatccaaa aaaattagcc gggtgtg-
gtg gcaggcgcct. Next sequences are constructed by adding the following
next 60 bp of the sequence. Fig.6.38 presents the energy-dependent trans-
mission coe¢ cients and Lyapunov coe¢ cients of chains with lengths between
20 nm and 90 nm. Lyapunov coe¢ cients are computed for two Ch22-based
�nite sequences (Fig.6.38-bottom right). Compared to the quasiperiodic case
(Fig.6.33), it is striking that self-similarity seems absent from the spectrum,
so that the scaling in chromosome 22 relies on a totally di¤erent kind of long
range correlations.

Let us now consider the case of the �-phage DNA whose transport properties
have been widely investigated experimentally (see Section 6.3). Its complete
genome contains 48502 base pairs with a total length of about 16�m. In
Fig.6.39 we show the transmission spectra for short sequences of the chain
but with increasing number of base pairs, corresponding to systems from
20 nm to 80 nm long. The starting sequence with 60bp is �1-gggcggcgac
ctcgcgggtt ttcgctattt atgaaaattt tccggtttaa ggcgtttccg while
larger sequences are constructed from �1 by successively adding the next 60bp
of the complete sequence. The transmission spectrum is critically length de-
pendent. By increasing the sequence length, transmission degrades and for
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FIGURE 6.39
Energy dependent transmission coe¢ cients for �-bacteriophage-based se-
quences with increasing number of bp. The e¤ect of thermal �uctuations
on the energy spectrum structure of the genome fragment containing 60bp
is shown in the bottom-right panel. (Adapted from ref.[134]. Courtesy of
Stephan Roche.)

lengths above � 100 nm, almost all states are strongly backscattered by the
energetic pro�le. Di¤erent parts of the �-phage sequence have also been in-
vestigated, suggesting that the exact details of a given transmission pattern
critically depend on the exact structure of the sequence.[125] In conclusion,
genomic DNA sequences do manifest long range correlations which however
can not be assumed to be self-similar in the usual sense.

Self-similarity as present in quasiperiodic chains has been demonstrated to
induce extended states at a �nite number of energies. The whole spectrum
presents scale invariant features associated with the progressive partitioning
of the spectrum with increasing length. To further illustrate this point in
Fig.6.40 we explicitly compare the transmission coe¢ cients of ideal quasiperi-
odic (Fibonacci) and biological DNAs. In both cases, TN (E) is characterized
by a series of resonant peaks with high transmission. As the sequence length
increases, fewer states will present good transmissivity, due to the progressive
fragmentation of the spectrum, although several peaks with high transmission
remain at certain energy values, and new ones may appear. For Fibonacci and
Ch22-based sequences, these resonant energies are robust enough to persist
against backscattering e¤ects due to interspersed G bases along the sequence.
In addition, the Lyapunov coe¢ cient shown in Fig. 6.41 illustrates intrinsic
properties of the two correlated, albeit of di¤erent nature sequences. Indeed,
the series of main elliptic bumps found in the Fibonacci sequence with 60
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FIGURE 6.40
Transmission coe¢ cient for Fibonacci-GC (left frames) and Ch22-based se-
quences (right frames). Inset: TN (E) obtained from Eq.(6.74) for a periodic
approximant of length N = 50 bp. (From ref.[141]. Reprinted �gure with
permission from Roche S, Bicout D, Maciá E and Kats E 2004 Phys. Rev.
Lett. 92 109901 c 2004 by the American Physical Society.)

bp is reproduced in the 480 bp sequence, which present additional features
associated with the partitioning of spectrum. While self-similarity fully char-
acterizes the quasiperiodic sequence, the scaling properties in Ch22 rely on a
totally di¤erent kind of long range correlations, with no hints of self-similar
patterns.
In contrast, the fragmentation of the spectrum strongly a¤ects the transmis-

sivity of the uncorrelated random sequences (not shown here). All resonant
states (when any) are evenly a¤ected and the corresponding transmission de-
creases as the sequence length is increased. From a statistical analysis over
many random sequences, it clearly appears that Ch22-based sequences exhibit
much higher charge transfer e¢ ciency over much longer distances in compar-
ison with uncorrelated random sequences.

6.5.4 Comparison between di¤erent species

As shown before, genomic sequences have di¤erent long range correlations
which result in more or less general trends in charge transfer. The case of
Human and Pygmy Chimpanzee D1s80 DNA is particularly interesting since,
despite their lack of periodicity, such sequences contain a large number of GG-
pairs that have critical consequences on charge transfer. But more striking
is the particularly strong e¢ ciency of delocalization in the case of Pygmy
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FIGURE 6.41
Lyapunov coe¢ cient for Ch22-based (main frame) and Fibonacci- GC quasi-
periodic sequences (inset). (From ref.[141]. Reprinted �gure with permission
from Roche S, Bicout D, Maciá E and Kats E 2004 Phys. Rev. Lett. 92
109901 c 2004 by the American Physical Society.)

Chimpanzee D1s80 DNA when compared to its Human counterpart.
Fig.6.42 shows the transmission coe¢ cient spectra for an increasing number

of base pairs in the case of Pygmy Chimpanzee and Human D1s80 DNA. The
charge transfer properties corresponding to relatively long chains are shown
to be particularly stable, as compared to that observed in other samples of
biological interest. In particular, charge transfer through a chimpanzee�s se-
quence is much more e¢ cient, since its transmission coe¢ cient is enhanced by
several orders of magnitude as compared to the �-bacteriophage transmission
coe¢ cient corresponding to chains longer than 80 nm. Even more striking
is the fact that the transmission corresponding to the Human D1s80 DNA
sequence is more quickly damped with increasing sequence length. In fact,
although it is supposed that this gene encodes similar biological functions
in both Human and Chimpanzee genomes, the corresponding charge trans-
fer properties turn out to be quite di¤erent, as deduced from their related
transmission �ngerprints.
In Fig.6.43 a comparison between the tunneling currents of di¤erent D1s80

sequences is shown. As found in the case of transmission coe¢ cients, the
D1s80 chimpanzee sequence appears much more conductive when compared
with the D1s80 human sequences. This di¤erence can be understood in terms
of density of repeating units that are very important in such sequences.
The possible relation between electric transport properties and the gene

coding/non-coding character of genomic sequences corresponding to di¤erent
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FIGURE 6.42
Transmission coe¢ cients for D1s80-based sequences extracted from the
Pygmy chimpanzee (upper diagram) and Human (lower diagram) genetic
codes. (Adapted from ref.[134]. Courtesy of Stephan Roche).

FIGURE 6.43
Tunneling currents for chains extracted from the D1s80 chimpanzee (main
frame) and human (inset) sequences as a function of applied bias for EM =
6:75 eV while all other hopping integrals are set to 1. ([134] Courtesy of
Stephan Roche).
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FIGURE 6.44
Comparison of the transmission coe¢ cient corresponding to the propagation
of charge through a sequence of 240 nucleotides located around the ith one in
a fragment of the yeast chromosome III. All states comprised in the energy
interval 5.75-9.75 eV are included and the value t = 1 eV is adopted for the
��� coupling transfer integral. The coding regions included in the range from
5000th to 30000th nucleotides are shaded. An enlarged plot corresponding to
the 22000th to 24000th interval is shown in the inset.[147] (Courtesy of Chi-
Tin Shih).
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species has been thoroughly discussed, combining the transfer matrix formal-
ism and symbolic sequence analysis, in a number of works.[147, 148] Making
use of the Hamiltonian given by Eq.(6.44), energy-averaged transmission spec-
tra were obtained for several sequences of complete genomes. The statistical
results reported indicate that, when all possible states contribute to conduc-
tion, most sharp peaks of the averaged transmission coe¢ cients are mainly
located in the protein coding region (Fig.6.44). At �rst sight, this result
suggests that coding regions might exhibit larger conductance values than
non-encoding ones. This correlation, however, is very sensitive to the value
of the � � � stacking coupling adopted in the calculations, and signi�cantly
depends on the particular genome sequence being considered. Thus, when
realistic values of the transfer integral (t � 0:5 eV) are adopted, the electronic
conductance becomes poorer in the coding regions, reversing the trend ob-
served for larger transfer integral values. On the other hand, it was reported
that coding regions have larger conductance values for yeast chromosomes III,
VIII and X, and Ureaplasma parvum sequences, whereas for Acinetobacter sp.
ADPI, Deinococcus radidurans, and Chlamidia trachomatis D/UW-3/Cx se-
quences the coding regions exhibit smaller conductance.[147] Subsequent work
has demonstrated that the relation between the transmission e¢ ciency and
the coding nature of a given sequence is strongly dependent on the incident
energy of the injected carrier as well.
The biophysical emerging scenario relates charge transfer properties and

long-range oxidation mechanisms in DNA molecules with important biological
processes in living organisms, as that played by the so-called base excision
repair enzymes. These enzymes locate di¤erent kinds of DNA joint mutations
or mismatches between complementary bases by probing the DNA-mediated
charge transport. Accordingly, it has been tentatively suggested that certain
cancerous mutations could shortcut the DNA repair process, hence leading to
carcinogenicity.[148]
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7
Exploiting aperiodic order in technological
devices

7.1 Periodic versus aperiodic

The notion of aperiodic order, that is, order without periodicity, brings in a
novel paradigm in Condensed Matter Physics. The fundamental nature of this
notion has been profusely illustrated in previous Chapters, where the physical
properties of such diverse systems as quasicrystalline alloys, semiconductor
heterostructures, metallic and dielectric multilayers, or di¤erent classes of
both synthetic and biological DNA chains have been considered. In this and
the next chapter we will turn our attention towards more practical issues.
It usually occurs that the development of novel, more e¢ cient devices is of-

ten hindered by the lack of materials with the proper combination of desirable
properties for some speci�c application. For this reason, much e¤ort has re-
cently been directed towards the search of materials possessing these desirable
properties. The most common approach adopted for this quest is to try to
synthesize new materials. In the light of the results reviewed in the preceding
Chapters quasicrystalline alloys can certainly provide these raw materials for
certain applications. In addition, a novel, complementary approach gradually
appears: it consists in designing aperiodic structures aimed to achieve a better
performance than usual periodic ones for some speci�c applications. In this
way, wandering across the aperiodic order realm we will progressively go from
the workings of nature to the workshop of craftsmen.
Clear indications on certain advantages of quasiperiodic systems over peri-

odic ones come from the non-linear optics �eld, where it was shown that sec-
ond harmonic generation processes (aimed at producing high energy photons
�say, in the blue region of the electromagnetic spectrum �by properly com-
bining low energy ones) were more e¢ cient in Fibonacci dielectric multilayers
(FDM, see Section 4.3) in virtue of their richer Fourier�s spectrum structure.
In fact, due to their higher space-group symmetry, quasiperiodic multilayers
can provide more reciprocal vectors to the so-called quasi-phase-matching op-
tical process, and this ultimately results in a more plentiful spectrum structure
than that of a periodic multilayer.[1] The importance of the role played by
the quasiperiodicity of the substrate is further highlighted when considering
third harmonic generation processes, where it has been shown that the con-
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version e¢ ciency in a quasiperiodic multilayer is increased by a factor of eight
in comparison with the two-step process required for an usual third-harmonic
generator based on periodic systems.[2, 3] In a similar way, emission enhance-
ment e¤ects occurring at wavelengths corresponding to multiple resonance
states in light-emitting SiN/SiO2 multilayered structures arranged according
to the Thue-Morse sequence have been demonstrated as well.[4] On this basis,
the possibility of designing quasiperiodic structures able to simultaneously
phase match any two non-linear interactions by properly introducing an ape-
riodic modulation of the non-linear coe¢ cient in ferroelectric devices has been
proposed in one [5] and two dimensions.[6]
The non-linear properties of optical heterostructures can also be used to

fabricate a compact-sized compressor for laser pulse. This compression is
physically determined by the group velocity dispersion in the material, so that
one can expect that by adding more layers to a periodic multilayer one should
obtain narrower optical bands and the compression e¤ect will be increased.
However, this is inevitably accompanied by an increase of the total thickness
of the structure, which is undesirable. In this context, the recourse to aperi-
odic structures, exhibiting a signi�cantly larger fragmentation of their optical
spectrum for similar system sizes, appears as a natural choice. Inspired by
this principle, the laser compression performance of both periodic and FDMs
made from high-index ZnS and low-index Na3AlF6 layers has been experimen-
tally compared. As expected from theoretical considerations, the Fibonacci
structure exhibits a compression enhancement due to its larger group velocity
dispersion.[7]
The possible use of di¤erent kinds of photonic multilayers based on porous

silicon nanotechnology has been tested for the detection of gases, liquids, and
biological molecules. The sensing mechanism is based on the refractive in-
dex changes of porous silicon due to the partial substitution of the air in the
pores on exposure to biochemical substances. The refraction index change
is transduced, in turn, in a characteristic shift of the re�ectivity spectrum.
In a recent study the sensitivities of resonant optical biochemical sensors,
based on both periodic and Thue-Morse porous silicon multilayers, were com-
pared. The measurements clearly indicated that the aperiodic multilayer is
more sensitive than the aperiodic one.[8] The physical reason for the observed
improvement was traced back to the following properties: i) for a given sys-
tem size Thue-Morse multilayers have less interfaces than the periodic ones,
hence exhibiting a higher �lling capability, and ii) multiple interference e¤ects
give rise to a great number of narrower resonance transmittance peaks in the
aperiodic multilayers, hence increasing their spectral resolution for detection
of vapors and liquids. On these basis, a novel approach for optical sensing,
based on the excitation of critically localized modes in two-dimensional de-
terministic aperiodic structures generated by the Rudin-Shapiro sequence has
been recently introduced.[9]
These few examples nicely illustrate the main point we will address through

this Chapter, namely, that carefully designed aperiodic structures can satis-
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FIGURE 7.1
(a) Fibonacci heterostructure based on a sequential deposition of AsGa (A)
and AsAlGa (B) semiconductor bilayers is sandwiched between AsGa peri-
odic heterostructures. (b) The corresponding conduction band pro�le. The
Fibonacci heterostructure is embedded between contacts (periodic potentials)
whose bandwidth 
 is shadowed. Charge carriers are injected from the left
contact. Due to interference e¤ects a fraction of the carriers are backscattered
and the rest propagate through the Fibonacci heterostructure and reach the
contact on the right (arrows). The energy spectrum of the Fibonacci het-
erostructure is fragmented in four main bands (labeled a,b,c, and d), which
further split themselves according to a hierarchical fractal scheme as the sys-
tem size is increased (lower magni�cation). (From [10]. With permission from
IOP Publishing Ltd.)

factorily cope with certain physical requirements necessary for the fabrication
of improved devices of technological interest.

7.2 Layered systems

7.2.1 From quantum to classical waves

As we discussed in Chapter 4, the one-dimensional ordering introduced in
the manufacturing process of heterostructures gives rise to novel physical
properties (such as the formation of minibands) which re�ect the long-range,
quantum correlation present in these superstructures. In fact, the electronic
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properties of superlattices are determined by both the chemical nature of the
constituent bulk materials and the layer thicknesses, so that these structures
can be grown, in principle, to tailor their electronic properties at will. In this
sense, one of the most appealing motivations for the experimental study of
aperiodic heterostructures is the theoretical prediction that they should ex-
hibit peculiar quantum states, associated to highly fragmented fractal energy
spectra displaying self-similar patterns (see Sections 5.3 and 5.4).

What is the physical reason for the presence of such a fragmented band
structure in quasiperiodic systems? In essence the existence of allowed bands
separated by forbidden gaps stems from resonant tunneling e¤ects between
states belonging to neighboring building blocks. Now, since the structural
self-similarity of the superlattice guarantees the existence of suitable resonant
conditions at all scales, a fractal energy spectrum naturally arises from a del-
icate balance between short-range and long-range e¤ects in these systems.[11]
Evidence of a hierarchical fragmentation pattern in the electronic spectra
of short heterostructures has been con�rmed using di¤erent experimental
techniques (see Section 4.3). Accordingly, the possibility of using Fibonacci
heterostructures as e¢ cient electronic �lters was theoretically considered as
well,[12] according to the basic principles sketched in Fig.7.1.

However, a number of severe limitations appear in realistic set-ups due
to electron-phonon, electron-electron, or spin-orbit interaction e¤ects, which
make it a very di¢ cult task to e¢ ciently exploit spectrum fractal features in
actual electronic applications. At this point it is important to note that multi-
ple scattering and interference of scattered waves can be found in quantum as
well as in classical physical processes. In quantum physics some representative
examples are resonant tunneling of a particle through a sequence of potential
barriers, development of energy bands in periodic crystals, or the progressive
emergence of a fractal-like energy spectrum in quasiperiodic superlattices. In
classical physics we found the development of resonant transmission bands
in a Fabry-Perot interferometer, formation of stop and transmission bands
in multilayered dielectric mirrors, or the scaling properties of transmission
spectra in fractal multilayer structures. Accordingly, in order to fully ap-
preciate the �ngerprints of quasiperiodic order, the study of classical waves
propagating through a quasiperiodic substrate o¤ers a number of advantages
over the study of quantum elementary excitations. Thus, a number of exper-
imental studies dealing with the propagation of elastic waves,[13, 14] third
sound,[15] and ultrasonic waves[16] in Fibonacci systems have been reported,
con�rming that characteristic self-similar features in the transmission spectra
are observable at di¤erent scale lengths, up to the micrometer range.

Similarly, light transmission in aperiodic media has deserved a major at-
tention in order to understand the interplay between optical properties and
the underlying aperiodic order of the substrate. The mathematical analogy
between the Schrödinger equation describing the motion of an electron with
an energy " and e¤ective mass m, under the action of a potential V (z), in one
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FIGURE 7.2
a) Sketch of a FDM grown along the z direction, b) electronic potential pro�le
V (z) for an electron propagation along the growth direction, c) refractive
index pro�le n(z) for a classical (electromagnetic) wave propagating through
the structure).

dimension
~2

2m

d2 

dz2
+ ["� V (z)] = 0; (7.1)

and the Helmholtz equation describing a monochromatic electromagnetic wave
of frequency ! propagating in a lossless, dispersionless medium with a variable
index of refraction pro�le n(z)

d2E

dz2
+

�
!2

c2
n2(z)� k2k

�
E = 0; (7.2)

where E is the transversal component of the electric �eld, kk is the wave vector
in the XY plane (perpendicular to the propagation direction z), and c is the
vacuum speed of light, provides a powerful tool to relate electron motion in
superlattices to electromagnetic waves propagating in multilayers (Fig.7.2).
In the case of periodic media a general description, which borrows some basic
notions like Bloch waves or Brillouin zones from condensed matter theory,
has been developed,[17] and successfully applied to numerous optical devices,
such as dielectric multilayer mirrors, beamsplitters, �lters and so on, which
are of common use in nowadays optoelectronics and optical communication
applications.[18, 19] In this way, the so-called photonic crystal concept has
been introduced to describe optical systems which exhibit large frequency
stop bands due to interference e¤ects, in close analogy with the presence of
a band structure in conventional atomic lattices, or the formation of energy
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minibands in superlattices. Naturally, the very notion of photonic crystal
can be extended to describe the properties of aperiodic photonic structures
as well. To this end, one can consider that the optical properties of the
medium are modulated by a quasiperiodic refraction index function, n(z),
in Eq.(7.2). The resulting structure could be properly regarded as a one-
dimensional photonic quasicrystal. Similarly, one could construct a photonic
fractal with a self-similar refraction index pro�le by arranging the structure
according to a certain fractal pattern.[20]

Fibonacci dielectric multilayers have been intensively studied during the
last decade,[21, 22, 23, 24, 25, 26, 27, 28, 29] since they provide a canoni-
cal example of quasiperiodic structures for optical applications. Nevertheless,
other classes of self-similar structures also exhibit interesting photonic proper-
ties. For instance, the optical transmission spectra of multilayers based on the
metallic mean sequences (which do not have the Pisot property, see Sections
4.2.1 and 4.2.2) were compared with those of multilayered structures based on
the precious means (which exhibit the Pisot property). The observed di¤er-
ences nicely illustrate the fact that both kinds of aperiodic systems belong to
quite di¤erent aperiodic order domains.[25, 30] The optical properties of mul-
tilayers based on the Thue-Morse sequence, characterized by a singular con-
tinuous Fourier spectrum (see Section 5.2), have also received a considerable
attention during the last two decades.[29, 31, 32, 33, 34] The presence of band
gap scaling, similar to that previously observed in Fibonacci multilayers,[23]
along with the presence of an omnidirectional band gap, has been experi-
mentally con�rmed for representatives of this class, based on the stacking of
either Si/SiO2,[35] or TiO2/SiO2 layers,[36] according to the Thue-Morse se-
quence. The physical origin of the fundamental band gaps in structures with
di¤erent Fourier measures but sharing the self-similar property can then be
properly attributed to the presence of short-range correlations among certain
basic building blocks interspersed through the whole multilayer.

On the other hand, the possible localization of light by e¤ect of the quasi-
periodic order has been explored both theoretically and experimentally. Re-
cent experiments have studied the propagation of light through porous silicon
Fibonacci multilayers by means of ultrashort pulse interferometry. A strongly
suppressed group velocity has been observed for frequencies close to a main
band gap.[37] Calculations show that the optical path drift naturally occur-
ring during the growth of the Fibonacci multilayer triggers the localization of
the �rst few band edge modes, although preserving some �ngerprints of their
characteristic self-similar pattern.[38]

Finally, it should be noted that most basic results obtained from the study
of aperiodic dielectric multilayers can be readily extended to the case of
acoustic waves propagating through aperiodic superlattices, where discrete
dips in the transmission coe¢ cient have been reported both theoretically [39]
and experimentally.[40]
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FIGURE 7.3
X-ray re�ectivity of multilayer structures with refractive indices nA = 0:9200
and nB = 0:9995, each layer thickness being d = 5 nm. Results for peri-
odic approximants of the form a) (ABAAB)m with m = 47 (N = 235), b)
(ABAABABA)m withm = 29 (N = 232), c) (ABAABABAABAAB)m with
m = 18 (N = 234), and d) a Fibonacci multilayer with N = F12 = 233 are
shown. (From ref.[41]. With permission from Elsevier.)

7.2.2 Optical engineering

As previously mentioned, the isomorphism of Shrödinger and Helmholtz equa-
tions provides a helpful interplay of basic concepts in modern optoelectronics.
On one hand, basic features known for electrons in periodic, quasiperiodic,
and random potentials have been successfully transferred to classical elec-
tromagnetic waves, introducing challenging concepts in photonic engineering
(photonic band gaps design and light localization). On the other hand, knowl-
edge gained from the study of optical properties of complex structures can be
extended to understand some electronic properties of complex nanostructures
with characteristic length scale on the order of electron de Broglie wavelength
(1� 10 nm) instead of optical wavelength (10� 103 nm).
It is clear that in any multilayer stack, characterized by a given dielectric

function n(z) in Eq.(7.2), a number of resonant modes exist corresponding
to transmission of waves throughout the structure without re�ection. These
modes are properly described in terms of their related transmission TN (!),
or re�ection RN (!), spectra, where N measures the number of layers in the
stack. In this way, by considering di¤erent kinds of refraction index pro�les
(i.e., periodic, quasiperiodic, self-similar, random) a characteristic �spectral
portrait�could be assigned to every multilayer structure. For the sake of illus-
tration in Fig.7.3 we show the x-ray re�ectivity spectra for a series of periodic
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FIGURE 7.4
Overall re�ectivity in units of d as a function of the number of layers N in
periodic approximants (dashed line) and Fibonacci multilayers of similar size
(solid line). (From ref.[41]. With permission from Elsevier.)

approximants of the Fibonacci multilayer. In all cases, two main re�ection
peaks are observed at about � = 150Å and � = 250Å, along with a set of
subsidiary peaks, whose number increases as the order of the approximant in-
creases. As a consequence, the envelope of the re�ectivity spectrum, RN (�),
becomes more and more spiky as the considered multilayer approaches the
quasiperiodic limit. This property can be quanti�ed by means of the expres-
sion

PN =

"Z �max

�min

RN (�) d�

#2
Z �max

�min

R2N (�) d�

; (7.3)

which gives an estimation of the overall re�ectivity of the sample as a function
of the number of layers. The amplitude of di¤erent re�ectivity peaks can be
characterized by the scaling of PN with the number of layers, the higher its
value the higher the whole re�ectivity. Figure 7.4 shows the results obtained
in both periodic approximants and in the Fibonacci multilayer as a function
of the number of layers. Periodic multilayers present an almost constant value
of PN for di¤erent number of layers. On the contrary, the value of PN for
Fibonacci multilayers increases monotonically with N and it is always larger
than the corresponding value for periodic approximants of the same size. In
fact, whereas the number of high re�ectance peaks in periodic multilayers
changes only slightly on increasing the number of layers, the fragmentation
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FIGURE 7.5
Sketch illustrating a) the propagation of light through a periodic dielectric
multilayer (on the left) and a FDM (on the right), b) the sequence of Gi+1;i
and Li auxiliary matrices, c) the sequence of light transfer matrices Ki+1;i,
and d) the renormalization scheme adopted for the FDM (on the right).

process characteristic of the energy spectrum in quasiperiodic multilayers gives
rise to the occurrence of new re�ectivity peaks. This leads to an overall
increase of the re�ectivity, allowing for a �ne tuning of di¤erent narrow lines
at the same time. In this way, Fibonacci multilayers based on high-Z/low-Z
metallic layers, like those grown by alternating deposition of V/Mo, W/Ti,
or Ta/Al thin �lms[42] (see Section 4.2.1), may be e¢ ciently used as selective
�lters of soft x-rays.[41]
From the considered example two basic questions naturally arise. Is it pos-

sible to predict the transmission spectrum main features from the knowledge
of the n(z) modulating function for a given multilayer stack? Is there any fun-
damental di¤erence in the transmission properties among di¤erent classes of
aperiodically arranged optical multilayers? In this Section we will discuss the
basic properties of optical devices based on quasiperiodically ordered struc-
tural designs, comparing their optical performance with that corresponding
to the more usual periodic arrangements.

7.2.2.1 Periodic dielectric multilayers

In order to properly compare the optical response of both periodic and qua-
siperiodic systems we will rely on the transfer matrix technique (see Section
9.2). This approach is particularly well suited to our purposes, since it de-
scribes the optical response of the global system in terms of the light behavior
in contiguous layers (Fig.7.5). We will focus on light propagating through lay-
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ered aperiodic multilayers composed of linear, homogeneous, lossless materials
with no optical activity, under general incidence conditions. When studying
the propagation of light in multilayered systems one must consider the prop-
agation across the interface separating two neighboring layers (described by
the matrices Gi+1;i in Fig. 7.5(b)), along with the light propagation within
each layer (described by the matrices Li in Fig. 7.5(b)). For electromagnetic
waves with electric �eld amplitude perpendicular to the plane of light path
(TE waves), one has[21]

Gi+1;i �
�
1 0

0 ni cos �i
ni+1 cos �i+1

�
; Li �

�
cos �i � sin �i
sin �i cos �i

�
; (7.4)

where ni are the refractive indices, �i are the refraction angles determined by
Snell�s law, �i � nidik cos �i are the layer phase thickness, di are the widths of
the layers, and k = 2�=� is the wave vector in vacuum. The transmission of
light through a binary multilayer composed of two di¤erent materials can be
properly described in terms of a product involving the matrices [see Fig. 7.5(c)]

KAA � GAALA =

�
cos �A � sin �A
sin �A cos �A

�
;

KAB � GABLB =

�
cos �B � sin �B

u�1 sin �B u�1 cos �B

�
;

KBA � GBALA =

�
cos �A � sin �A
u sin �A u cos �A

�
;

KBB � GBBLB =

�
cos �B � sin �B
sin �B cos �B

�
; (7.5)

where u � R�, with R � nA=nB and � � cos �A= cos �B . Let us consider
a multilayer made of � bilayers AB which repeat periodically (Fig.7.5, left
panel). In this case the global transfer matrix can be straightforwardly ex-
pressed in terms of the auxiliary matrices (7.5) in the formMN � Q� , where
N = 2� is the total number of layers and

Q =

�
cos �A cos �B � u sin �A sin �B � sin �A cos �B�u cos �A sin �B
sin �A cos �B + u

�1 cos �A sin �B cos �A cos �B � u�1 sin �A sin �B

�
:

(7.6)
Since Q is unimodular (i. e., its determinant is unity) we can make use of
the Cayley-Hamilton theorem for unimodular matrices in order to explicitly
evaluate the matrixMN in the closed form (see Section 9.2)

MN =

 
T� +

(u�1�u)U��1
2 sin �A sin �B ��+U��1
��U��1 T� � (u�1�u)U��1

2 sin �A sin �B

!
;

(7.7)
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where �� � sin �A cos �B + u�1 cos �A sin �B , T�(w) and U��1(w) are Cheby-
shev polynomials of the �rst and second kinds, respectively, and

w � 1

2
trQ = cos �A cos �B �

u+ u�1

2
sin �A sin �B : (7.8)

From Eq.(7.7) the dispersion relation for the periodic multilayer can be easily
obtained from the condition cos [q�(dA + dB)] = trMN=2, which leads to the
well-known expression[43]

cos [q(dA + dB)] = cos �A cos �B �
u2 + 1

2u
sin �A sin �B : (7.9)

The transmission coe¢ cient can be obtained from the standard expression

TN =
4

jjMN jj+ 2
; (7.10)

where jjMN jj denotes the sum of the squares of the four elements of the global
transfer matrix. From Eq.(7.7) one obtains

TQPN =
1

1 +
�
u2�1
2u

�2
U2N

2 �1
(w) sin2 �B

: (7.11)

Expressions given by Eqs.(7.9) and (7.11) hold for any arbitrary wavelength
electromagnetic wave impinging onto the system at any arbitrary incidence
angle.

7.2.2.2 Quasiperiodicity e¤ects in the light transmission

Let us now consider a FDM consisting of two kinds of layers, labelled A and
B, which are arranged according to the Fibonacci sequence, obeying the con-
catenation rule Sj+1 = Sj�1Sj , for j � 1, with S0 = B and S1 = A.[21]
The number of layers is given by N = Fj , where Fj is a Fibonacci number
(see Section 2.4.3). The resulting structure for S4 is shown in Fig. 7.5 (right
panel). Therefore, to obtain the global transfer matrix we must evaluate a ma-
trix product involving three di¤erent types of transfer matrices (KAA, KBA,
and KAB) which, in addition, are quasiperiodically ordered. At this point,
we shall take advantage of the transfer matrix renormalization technique (see
Section 9.4) to obtain an analytical expression for the transmission coe¢ cient
of light propagating in a FDM. The key point consists in renormalizing the set
of transfer matrices Ki+1;i according to the blocking scheme QB � KAA and
QA � KABKBA = Q. Note that the renormalized transfer matrix sequence
is also arranged according to the Fibonacci sequence and, consequently, the
topological order present in the original FDM is preserved by the renormal-
ization process. Now, we realize that the Qi matrices commute under certain
circumstances. In fact, after some algebra one gets

[QA; QB ] =
u2 � 1
u

sin �A sin �B

�
� cos �A sin �A
sin �A cos �A

�
: (7.12)
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The commutator (7.12) vanishes in three di¤erent cases (u > 0): i) The
choice u = 1 is satis�ed for the special case nA� = nB (which reduces to
the trivial periodic case nA = nB under normal incidence conditions), and
the choices ii) �A = n�, and iii) �B = n�, with n = 1; 2 : : :. Therefore,
in order to satisfy the commutation condition (7.12), it is not necessary to
impose restrictive conditions onto both kinds of layers simultaneously. For
those wavelengths verifying the condition [QA; QB ] = 0, we can express the
global transfer matrix of the system as MN � QpAQ

q
B , where p = Fj�2 and

q = Fj�3. Note that for a FDM of lengthN , p indicates the number of B layers
present in the system. Since the matrices QA and QB are unimodular for any
choice of the system parameters and for any value of the light wavelength one
can exploit the Cayley-Hamilton theorem in order to explicitly evaluateMN

in terms of Chebyshev polynomials, as we did in the study of the periodic
case.
Taking into account the commutation conditions ii) and iii) we are led to

consider three di¤erent possible situations:

� The case �A � �B = n�, which implies nAdA� = nBdB . In this case the
half-wavelength condition is satis�ed at every layer. Therefore, QA =
I and QB = (�1)nI, where I denotes the identity matrix, and the
transparency condition, TN = 1, is trivially obtained.

� The case �B = n�, for which the global transfer matrix has the form

MN = (�1)np
�
cos  � sin 
sin  cos 

�
; (7.13)

where  � n�Fj�1R�=�, and � � dB=dA measures the �lling factor. In
this case, we get TN = 1 for any � as well. Physically this result can be
easily interpreted if we keep in mind that, when the B layers satisfy the
half-wavelength condition, the transmission properties of the FDM will
depend entirely on the interaction of light with the layers of material A.
Now, since the optical behavior of the double layers AA is completely
equivalent to that of single A layers (GAA = I) and, according to the
Fibonacci sequence, B layers always appear �anked by A layers, those
wavelengths satisfying the resonance condition n� = 2nBdB cos �B will
e¤ectively see a periodic distribution of A layers separated by fully trans-
parent slabs of constant width dB . In this case the two-component FDM
will behave like an equivalent homogeneous periodic medium, character-
ized by an e¤ective thickness d0 � Fj�1dA, and a refraction index nA.
Note that, if instead of imposing the half-wavelength condition onto B
layers, we make the substitution B ! A, replacing all the B type lay-
ers originally present in the FDM by type A ones, we should obtain a
homogenous system of length NdA > d0. Consequently, the FDM will
exhibit an e¤ective optical phase shrinkage for those wavelengths satis-
fying the resonance condition. It should be noted, however, that this
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FIGURE 7.6
Dependence of the transmission coe¢ cient with the design parameter �, for
n = 1 and � = 1, corresponding to S4 (thick solid line), S5 (thin solid line),
and S6 (dashed line) FDMs. We have considered that A (B) layers are com-
posed of SiO2 (TiO2) whose indices of refraction (at 700 nm) are nA = 1:45
and nB = 2:30, respectively. The inset shows a scheme for a FDM resonating
microcavity. ([45] Reprinted �gure with permission from Maciá E 1998 Appl.
Phys. Lett. 73 3330 c 1998 by the American Institute of Physics.)

e¤ect is a generic property of any system exhibiting short-range corre-
lations, and, therefore, it is not speci�c of self-similar arrangements. In
fact, a similar behavior was reported in photonic crystals with correlated
disorder.[44]

� This physical scenario changes substantially if we impose the condition
�A = n�. In this case, the layers of material A become fully transparent
to the incoming light and, consequently, the transmission properties of
the FDM will depend on the interaction of light with the layers of ma-
terial B. The key point now is to realize that these layers are spaced
by two di¤erent distances, dA and dAA = 2dA, arranged according to
a quasiperiodic sequence. Hence, those wavelengths satisfying the res-
onance condition n� = 2nAdA cos �A will e¤ectively see a quasiperiodic
distribution of B layers, instead of a periodic one. In this case, the
global transfer matrix for the FDM can be expressed in the closed form

MN = (�1)nFj�1
�

cos 0 �u sin 0
u�1 sin 0 cos 0

�
; (7.14)

where 0 � p�B . The explicit evaluation of the transmission coe¢ cient
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leads to[45]

TQP =
1

1 +
�
u2�1
2u

�2
sin2(p')

; (7.15)

where ' = n��(R�)�1.

In Fig. 7.6 we show the dependence of the transmission coe¢ cient with � for
three FDMs containing N = 5, N = 8, and N = 13 layers, under normal in-
cidence conditions. By inspecting this �gure we observe that the curves T (�)
are symmetrical with respect to the axis � = R = 1:5862 : : :, and they exhibit
a series of maxima (Tmax = 1) and minima (Tmin ' 0:814). The number of
both maxima and minima increases as the FDM size increases, and their rel-
ative positions shift with respect to the symmetry axis. Physically the origin
for such oscillatory patterns can be understood as follows. Under the A layer
resonance condition, which �xes the value for the incoming light wavelength,
the constructive or destructive nature of the interferences, arising from the
interaction of light with the quasiperiodic distribution of B layers, will be
strongly dependent on the precise relationship between � and the structural
parameters dA and dB . Thus, when � = R we get the well known relationship
nAdA� = nBdB , corresponding to the particular case where both A and B
layers simultaneously satisfy the resonance condition. Interestingly, Fig. 7.6
shows that there exists a signi�cant number of additional values of � for which
transparency condition is satis�ed in FDMs of variable length. Conversely, if
we choose the value of � in such a way that the wavelengths satisfying the
resonant condition at the A layers verify the quarter-wavelength condition at
the B layers, the quasiperiodic distribution of B layers e¢ ciently backscat-
ter the incoming light, resulting in a signi�cant reduction of the transmission
coe¢ cient value. For any choice of the parameter � other than those just de-
scribed, the transmission coe¢ cient will adopt di¤erent values in the interval
Tmin � T � 1. Accordingly, � can be regarded as a control design parameter
able to determine the overall FDM optical behavior, varying from that cor-
responding to a selective �lter (T = 1) to that proper of a re�ective coating
(Tmin).
On the other hand, plugging n = � = 1 in Eq.(7.15) we see that, when

� = R=2 or � = 3R=2, the transmission coe¢ cient attains an extreme value,
which should be a minimum or a maximum depending on the parity of the
integer p: when p is even we get T = 1, while for odd p we have T =
Tmin. Since the parity of the Fibonacci numbers exhibits the recurrence odd-
odd-even, the transmission coe¢ cients corresponding to consecutive Sj FDMs
should alternate accordingly, as it is illustrated in Fig. 7.6 for the FDMs
corresponding to p = 2, p = 3, and p = 5. This interesting property could
be used to construct resonating optical cavities where an "even" FDM (for
instance S4), exhibiting full transmission, is sandwiched between two "odd"
FDMs (for instance S5), behaving as optical mirrors. A sketch of such a device
is shown, as an inset, in Fig. 7.6.
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As discussed above, in order to compare the relative performance of qua-
siperiodic and periodic dielectric multilayers it is convenient to focus on the
case �A = n�. In so doing, Eqs.(7.11) and (7.15) are conveniently rewritten
in the form,[46]

TQP =
1

1 + a(R; x) sin2 [p bn(R; x; �)]
; (7.16)

and

TP =
1

1 + a(R; x) sin2 [� bn(R; x; �)]
; (7.17)

where we made use of Snell�s law, R sin � = sin �B , to introduce the auxiliary
variable x � sin2 �, describing the light incidence geometry (�A � �), and we
have also introduced the auxiliary functions

a(R; x) �
�
R2 � 1
2R

�2
(1� x)�1(1�R2x)�1; (7.18)

and

bn(R; x; �) � n�y

r
1�R2x
1� x ; (7.19)

where y � �=R = nBdB=nAdA measures the phase ratio between both dielec-
tric layers. In Fig. 7.7 we show the dependence of the transmission coe¢ cient
with the phase ratio y for a periodic multilayer with � = 4 (dashed line) and a
FDM with p = 3 (solid line), both of them containing N = 8 layers, under nor-
mal incidence conditions. This �gure exhibits a series of maxima and minima
similar to those plotted in Fig.7.6. Nevertheless, the physical origin of such
an oscillatory pattern is somewhat di¤erent in this case. Thus, when y = 1
(nAdA = nBdB) both A and B layers simultaneously satisfy the resonance
condition, and the long-range order of the layers sequence becomes irrelevant.
However, for y 6= 1 the optical response of periodic and quasiperiodic mul-
tilayers progressively di¤ers as the phase ratio is progressively increased (or
decreased), in the way displayed in Fig. 7.7.
A particularly interesting situation occurs if we choose the phase ratio value

in such a way that the wavelengths satisfying the half-wavelength condition
at the A layers of the periodic multilayer verify the quarter-wavelength con-
dition at the B layers of the FDM. In this case, the quasiperiodic distribution
of B layers e¢ ciently backscatter the incoming light, resulting in a signi�cant
reduction of the transmission coe¢ cient value. Conversely, the periodic mul-
tilayer exhibits full transmission for the same wavelength. From Eqs. (7.18)
and (7.19) we obtain that this condition is satis�ed when y = k=2njp��j, with
k = 1; 3; 5 : : :. The cases corresponding to k = 1 and k = 3 are indicated by
vertical lines in Fig. 7.7. This behavior opens the possibility of constructing
a mixed device composed of both periodically and quasiperiodically arranged
multilayers, so that the refractive index contrast and the layers thicknesses
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FIGURE 7.7
Dependence of the transmission coe¢ cient with the phase ratio y for a periodic
multilayer with � = 4 (dashed line) and a Fibonacci dielectric multilayer with
p = 3 (solid line) containing N = 8 layers, under normal incidence geometry
and n = 1. For the sake of illustration we have taken nA = 1:45 and nB = 2:30
as suitable representative values. The vertical lines indicate the phase ratios
satisfying the condition y = 1=2 and y = 3=2, respectively. ([46] Reprinted
�gure with permission from Maciá E 2001 Phys. Rev. B 63 205421 c 2001
by the American Physical Society.)
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FIGURE 7.8
Dependence of the transmission coe¢ cient with the angle of incidence � for
a periodic multilayer with � = 4 (dashed line) and a Fibonacci dielectric
multilayer with p = 3 (solid line) containing N = 8 layers and n = 1, for the
case y = 1. We have taken nA = 1:45 and nB = 2:30. ([46] Reprinted �gure
with permission from Maciá E 2001 Phys. Rev. B 63 205421 c 2001 by the
American Physical Society.)

determining the phase ratio value can act as control design parameters able
to determine the optical response of their di¤erent constitutive substructures
from that corresponding to a selective �lter (T = 1) to that proper of a re-
�ective coating (Tmin). It is worth to highlight, at this point, that such a
mixed device can be viewed as an hybrid order device made of two di¤erent
kinds of subunits, each one exhibiting a di¤erent kind of topological ordering
which respectively gives rise to a reversal in the value of the corresponding
transmission coe¢ cients. The key point here is that such a complementary
behavior can be obtained by just changing the kind of topological order in the
stacking sequence of layers composing each subunit, so that both the chemical
nature of the di¤erent layers and the wavelength of the incoming light remains
unchanged. This is a quite remarkable result, since the pertinent codes to al-
ternate between periodic and quasiperiodic orderings in the sequence of the
di¤erent layers can be easily implemented in current state-of-the-art deposi-
tion processes.

Such a complementary behavior can be further exploited under oblique
angle incidence conditions. In Fig. 7.8 we show the dependence of the trans-
mission coe¢ cient with the angle of incidence, �, for the periodic multilayer
(dashed line) and the FDM (solid line) previously considered in Fig. 7.7, for
the case � = R. Both transmission curves exhibit a series of maxima, whose
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number increases with the length of the system. By inspecting Fig. 7.8 we
can distinguish two di¤erent regimes. At low incidence angles the optical
response of both periodic and quasiperiodic multilayers is quite similar, al-
though the transmission curve for the FDM systematically departs from that
corresponding to the periodic multilayer, exhibiting lower transmission values.
The second regime starts at the critical angle value x2 ' 0:48 where a crossing
point between both transmission curves occurs. Afterwards, the transmission
curve for the FDM suddenly grows as the incidence angle is increased, reach-
ing a broad peak at x ' 0:67 and it rapidly decreases again to reach another
crossing point with the periodic multilayer transmission curve at x3 ' 0:75.
A similar oscillatory pattern repeats itself as the incidence angle is further
increased, determining the subsequent crossing points.
In summary, these results suggest the possibility of exploiting the quasiperi-

odic order of the system by properly matching the wavelength of the incoming
light with some of the di¤erent characteristic lengths present in the aperiodic
substrate. Thus, by properly choosing the di¤erent design parameters, as
determined by the refractive index contrast, R, and the multilayer �lling fac-
tor, �, we can select speci�c resonance conditions, directly associated to the
quasiperiodic order of the substrate. In addition, we can also play with the
incidence angle geometry of the incoming light in order to further exploit the
capabilities previously determined by the architecture of the multilayer. In
fact, the most relevant feature of the transmission curves shown in Fig. 7.8 is
the existence of broad incidence angle intervals where the periodic and quasi-
periodic multilayers respectively exhibit complementary optical responses, in
the sense that when one of them exhibits high T values the other one exhibits
low T values (and vice versa). This complementary behavior suggests the
possibility of constructing resonating optical devices that exploit the novel
interference possibilities associated to the coexistence of di¤erent kinds of
topological order (i.e., periodic and quasiperiodic order) in a given arrange-
ment of the substrate. In this way, plentiful possibilities for new tailored
materials should appear. This appealing possibility will be further analyzed
in Section 8.2.1.

7.2.2.3 Number recognition

Within the framework described in previous sections propagation of classical
waves in aperiodic multilayers can be usefully exploited for number recognition
and data storage purposes.[47] To this end, one should consider a multilayer
composed of K di¤erent types of materials as a number written in base K.
Thus, layered structures built of two di¤erent substances will correspond to
binary numbers, where layers with low (high) refraction index are labelled with
symbol "0" ("1"), respectively (Fig.7.9). For instance, periodic multilayers
consisting of alternating high/low refraction indices of the form 10, 1010,
101010, . . . correspond to decimal numbers 2, 10, 42,. . . , respectively. In
Table 7.1 we list the binary sequence equivalence of the shorter Fibonacci
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FIGURE 7.9
Sketch illustrating the di¤erent code number capabilities of di¤erent dielectric
multilayers depending on the type of order (periodic, Fibonacci sequence, or
Thue-Morse sequence) in the arrangement of their layers. We note (see the
diagrams on the right) that depending on the stacking order (which determines
the binary representation of the refraction index pro�le) three multilayers
with the same number of layers (N = 8) will code for three diferent decimal
numbers values.
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multilayers (containing up to 21 layers) along with their associated decimal
numbers and their prime factors.

TABLE 7.1
Binary number representation of Fibonacci multilayers of increasing size. The prime
factor decomposition of the associated decimal numbers is given in the column on
the right.

FIBONACCI MULTILAYER N = Fn CODE NUMBER PRIME FACTORS
0 1 0 �
1 1 1 1
10 2 2 2
101 3 5 5
10110 5 22 2� 11

10110101 8 181 181
1011010110110 13 5814 2� 32 � 17� 19

101101011011010110101 21 1488 565 5� 13� 22 901

The key point of this approach is that due to multiple scattering and in-
terference e¤ects the propagation of an electromagnetic wave through the
multilayer results in the formation of a characteristic transmission (or re�ec-
tion) pattern, which could be properly used to identify the number associated
to each multilayer. In this sense, transmission coe¢ cients could be regarded
as spectral portraits allowing to identify the value of the number associated
to a given multilayer by means of a suitable physical process (light propaga-
tion). Due to the sensitivity of interference processes to minor modi�cations
in the arrangement of the layers this method allows for an e¢ cient detection
of possible errors in the layer distribution in a non-invasive way. This prop-
erty could be used in optical data recording and read-out, though it is clear
that not only the identi�cation of certain speci�c numbers (i.e., those related
to a given substitution sequence) but also the possibility to code and identify
any given number is necessary for information coding. In this regard, the
very possibility of performing operations with numbers using wave propaga-
tion through multilayer based Fabry-Perot interferometers was illustrated.[47]
In the same vein, a systematic analysis of progressive sequential splitting of
some peaks in the spectral portraits of Cantor dielectric multilayers (see Sec-
tion 4.2.3) revealed a direct correlation between their associated number value
and its prime factors (Fig.7.10).[47, 48]

7.2.3 Thermal emission control

The multilayered structures considered up to now are made of lossless, linear
optical materials. Some interesting results are obtained when one considers
more realistic materials, able to couple with the electromagnetic �eld. For
instance, one may consider that some of the layers are able to absorb a fraction
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FIGURE 7.10
(a) Spectral portrait of a triadic Cantor dielectric multilayer of second gener-
ation corresponding to the decimal number 325. (b) Progressive splitting of
the transmission spectrum as the generation of the Cantor multilayer is pro-
gressively increased: 2nd generation (short dash), 3rd generation (long dash),
and 4th generation (solid line). (Courtesy of Sergey V. Gaponenko.[47])

of the incident radiation. In that case, the intensity of light propagating
through the system decays exponentially according to the expression I(!) =
I0e

��z, where

� =
2n00!

c
(7.20)

measures the absorption per unit length for an electromagnetic wave of fre-
quency ! propagating in a medium of complex index n = n0 + in00. Thus,
the absorptance increases linearly with increasing frequency. Now, even in
the case of highly absorptive materials, not all incident radiation is usually
absorbed by a given material. This is because the material re�ects some
radiation at its surface, with a re�ection coe¢ cient given by

RS =

����n0 � nn0 + n

����2 ; (7.21)

where n0 is the refraction index of the surrounding medium. Now, according
to the Kircho¤�s second law, the ratio of the thermal emittance to the ab-
sorptance is a constant, independent of the nature of the material, and that
constant is unity only when the material is a perfect blackbody. Therefore,
most absorbing materials behave as the so-called gray-body when heated, ex-
hibiting emittance values lower than unity. An ingenious way to circumvent
this shortcoming, enhancing the thermal emissivity of a given material above
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FIGURE 7.11
A multilayered stack (thin �lm) made of alternating layers of refractive indices
nA (real) and nB (complex) coats a thick absorbing substrate of refraction
index nC . The entire structure is embedded in a medium, taken to be air
(n = 1). Di¤erent working regimes are obtained depending on the adopted
absorbers distribution (shadowed layers). In a) the absorbers are periodically
distributed, whereas in b) and c) they are respectively arranged according to
the Fibonacci and Thue-Morse sequences.

that corresponding to its gray-body value at certain frequencies was proposed
on the basis of the structural design depicted in Fig.7.11. In order to fully
understand the physical principle of the proposed device we must recall some
basic concepts.

Thermal radiation is just spontaneous emission that is thermally pumped
and that has a blackbody spectrum, which is in thermal equilibrium with its
surroundings. The radiant power per unit area emitted by the surface of a
perfect blackbody is given by P = cu=4, where c is the vacuum speed of light
and u is the energy density per unit frequency ! at a given temperature T ,
which can be written as

u(!; T ) = N(!)
~!

e
~!
kBT � 1

; (7.22)

where N(!) is the electromagnetic density of modes. For free-space boundary
conditions one has

N(!) =
2!2

�2c3
; (7.23)
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so that one obtains the well-known Planck law [49]

P(!; T ) = ~!3

2�2c2
1

e
~!
kBT � 1

: (7.24)

Now, it has been observed that quantum con�nement e¤ects modify the
spontaneous emission processes in photonic band gap multilayered structures.
Accordingly, one should expect a modi�cation of the thermal radiation in such
systems. A convenient way to deal with this problem within the framework of
the transfer matrix technique relies on the evaluation of the so-called thermal
optical power

E(!) = 1�R(!)� T (!); (7.25)

where R(!) and T (!) are the re�ection and transmission coe¢ cients, respec-
tively. Eq.(7.25) is physically interpreted as the ratio of the optical power
emitted at frequency ! into a spherical angle element d
 by a unit surface
area of the thin �lm, to the power emitted by a blackbody with the same
area at the same temperature. In this way, the power spectrum of the heated
multilayered system located in front of an emitting hot surface (Fig.7.11) is
given by the expression

~P(!; T ) = E(!)P(!; T ); (7.26)

which properly modi�es Planck�s law given by Eq.(7.24).[50, 51]
In order to evaluate the thermal optical power some care must be taken

into account for complex indices of refraction used to model the presence of
absorbing dielectric layers (which will emit upon thermal excitation). Some
illustrative results are shown in Fig.7.12. Let us �rst consider the case where
a periodic �lm coating sits atop the heated substrate (Fig.7.12a). As we see
the �lm signi�cantly blocks heat radiation emitted by the substrate at the
frequencies corresponding to the photonic crystal bandgap (!=!0 = 1) as ex-
pected, but we also observe that the substrate�s emission is enhanced from
the gray-body level all the way up to the perfect blackbody rate at a number
of frequencies corresponding to the pass-band transmission resonances of the
multilayered �lm. This occurs because the thin �lm acts as an antire�ective
coating at these resonances, hence removing the impedance mismatch given by
Eq.(7.21). In this way, all the radiation incident from the left tunnels through
the multilayer structure into the substrate for these selected frequencies, so
that the substrate e¤ectively behaves as a perfectly absorbing blackbody in
that case.[51] A similar enhancement of the substrate�s thermal emittance at
certain resonance frequencies accompanied by the corresponding inhibition at
the stop-bands is observed in the aperiodically arranged thin �lm coatings as
well. In the case of the Fibonacci coating (Fig.7.12b) a characteristic trifur-
cation splitting can be clearly appreciated around a number of frequencies,
and one �nds a strong emittance within the spectral range corresponding to
the midgap in the periodic case. In fact, the presence of allowed bands in
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FIGURE 7.12
Thermal radiation spectra as a function of the reduced frequency (�0 = 700
nm) under normal incidence conditions for a device as that shown in Fig.7.11
with nA = 1:45 (SiO2) and nB = 1:0 + 0:01i, where the thin �lm coat layers
are respectively arranged according to the following sequences (a) periodic,
(b) Fibonacci (N = 377), (c) Thue-Morse (N = 512), and period-doubling
(N = 512). The perfect blackbody thermal spectrum is given by the dotted
curve, whereas the dashed curve gives the thermal spectrum for the substrate,
with refractive index nC = 3 + 0:03i. The temperature is chosen so that the
blackbody (Wien) peak is aligned with the midgap frequency !0 = 2�c=�0.
All the curves are properly normalized by this peak power. ([52] Courtesy of
Eudenilson L. Albuquerque. With permission from IOP Publishing Ltd.)
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FIGURE 7.13
The same as in Fig.7.12, but considering that B layers are composed of a
metamaterial with refraction index nB = �1:0 + 0:01i. ([52] Courtesy of
Eudenilson L. Albuquerque. With permission from IOP Publishing Ltd.)

certain forbidden regions of the periodic system is a characteristic feature
of quasiperiodic systems (see Fig.5.11 for an illustration of this e¤ect in the
phonon spectrum of Fibonacci lattices). An analogous pattern is observed
in the thermal spectrum corresponding to the Thue-Morse thin �lm, whereas
that corresponding to the period-doubling sequences is more similar to the
periodic one around the !=!0 = 1 spectral range. In all the aperiodic arrange-
ments, however, one has a richer thermal emission spectrum, re�ecting in a
conspicuous way the highly fragmented nature of their transmission pro�les.
Quite interestingly, these spiky thermal emission spectra can be substantially
smoothed (hence obtaining broader spectral ranges with enhanced emittance)
by using metamaterials in the composition of the multilayer coat (Fig.7.13).

Metamaterials are arti�cially constructed composites exhibiting a negative
electrical permittivity � together with a negative magnetic permeability �
in the same frequency range. This yields a negative refractive index (i.e.,
n = i2

p
j�j
p
j�j = �p�� ). One of the main features of negative refraction

index materials is that the electric �eld E, the magnetic �eld H, and the
wave vector k form a left-handed triplet. Due to that, these materials are
also referred to as left-handed materials, because they support waves with the
phase velocity opposite to the direction of the energy �ow. Moreover, their
phase and group velocity are antiparallel, since usually the group velocity has
the same direction as the energy �ow (Poynting vector). It has been shown
that multilayered structures made of alternating layers of metamaterials and
ordinary dielectrics can exhibit a new type of photonic bandgaps which are
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not based on interference e¤ects. The �rst kind of the so-called non-Bragg gap
arises naturally when the volume average refractive index of the multilayer,
�n, equals zero. The second kind appears in dispersive materials at frequencies
where either � or � vanishes in the metamaterial.[54] The average refraction
indices for nth order Fibonacci and Thue-Morse multilayers are given by[55,
56]

�nF (n) =
nAdAFn�1 + nBdBFn�2
dAFn�1 + dBFn�2

; �nTM =
nAdA + nBdB
dA + dB

; (7.27)

where we note that �nTM does not depend on the system size, since the number
of A layers and B layers is just the same in a Thue-Morse sequence of any
order. On the other hand, making use of Eq.(2.5) one gets the quasiperiodic
limit

lim
n!1

�nF (n) =
nAdA� + nBdB
dA� + dB

: (7.28)

The non-Bragg zero-�n gap condition for these aperiodic multilayers then
reads nA = �nB� and nA = �nB���1, for Thue-Morse and Fibonacci mul-
tilayers, respectively, where � = dB=dA is the �lling ratio and the indices of
refraction generally will depend on the frequency. Therefore, the precise lo-
cation of the zero-�n gap can be �nely tuned by properly choosing the optical
parameters of the system. From Eqs.(7.27) we see that the central frequency
of the zero-�n gap depends on the kind of order present in the structure.
Thus, the location of this gap in the Thue-Morse multilayer coincides with
that present in the periodic sequence generated from the substitution rule
A ! AB, B ! AB, which shares the same substitution matrix (see Section
4.2.1).
The possibility of tailoring the thermal emittance of a substrate by coating

it with a �lm composed of alternating negative and positive refraction index
materials arranged according to a triadic Cantor set has been numerically
analyzed as well.[57] As it can be appreciated from Fig.7.14, the sequential
splitting characteristic of self-similar Cantor sets gives rise to the presence of
narrow emittance peaks located at the midgap frequency region. Thus, while
a full refection band appears in the emittance spectra of periodic multilayers,
Cantor-type ones exhibit sharp and narrow resonances throughout the band
even for low generation numbers.

7.2.4 Photovoltaic cells

A photovoltaic cell is a device that converts solar energy into electricity by
means of the so-called photovoltaic e¤ect. This e¤ects consists in the gener-
ation of an electron-hole pair from the absorption of a photon with energy
enough to promote an electron from the valence band to the conduction band
in a semiconducting material. The theoretical e¢ ciency of ideal solar cells
signi�cantly depends on their electronic band structure, since the photon-
induced electrical current originates from the di¤erence between the rates of
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FIGURE 7.14
Thermal emittance (absorptance) spectra for periodic �lms based on alternat-
ing negative/positive refraction index materials are compared to those corre-
sponding to triadic Cantor type ones of similar size. The adopted optical
parameters are nA = 1:41, nB = �2:0, and nC = 3 + 0:03i. (From ref.[57].
With permission from IOP Publishing Ltd.)

photon absorption and photon emission due to radiative recombination of the
electron-hole pairs. Thus, though the theoretical thermodynamic limit is as
high as 93%, standard devices based on silicon p-n junctions yield a sunlight-
to-electricity e¢ ciency of about 33%. This low e¢ ciency spurred a �urry of
research aimed at improving this �gure. Among the di¤erent proposals re-
ported to date, we will focus on those based on photon-induced transition
at intermediate energy levels,[58] since this approach signi�cantly bene�ts
from the highly fragmented structure of the energy spectrum in quasiperi-
odic systems.[59] In this case, the photovoltaic e¢ ciency is enhanced due to
the presence of a number of new possible excitation channels between the
valence (conduction) bands and the intermediate bands, which allow for the
absorption of additional, lower energy photons (Fig.7.15). In usual, crystalline
materials an intermediate band can be introduced in several ways: impuri-
ties, lone pair bands, or superlattice stacking (leading to the formation of
minibands). Now, it is reasonable to expect that di¤erent intermediate band
structures give di¤erent e¢ ciency limits. In addition, for a �xed band gap
value (the most usual situation in practical applications), the photovoltaic ef-
�ciency limit progressively increases from the predicted ideal e¢ ciency of 63%
for one intermediate band up to 76% and 80% for two and three intermediate
bands, respectively (Fig.7.16). These results strongly suggest that the trench
between the thermodynamic limit and reported e¢ ciencies in actual devices
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FIGURE 7.15
Band diagrams of solar cells based on (a) a typical p-n semiconductor, (b) an
intermediate band structure, and (c) a highly fragmented multiband structure
as that sketched for a semicoductor based Fibonacci superlattice in Fig.7.1.
The model solar cell combines a negative-contact band (NB), a positive-
contact band (PB), and a number of intermediate narrower bands. It is as-
sumed that all incident photons with energy equal or greater than the band
gap "g are absorbed, and they generate one electron-hole pair, whereas ra-
diative recombination annihilates those pairs. The balance of electrons gives
the current, which is delivered to an external load by the positive and nega-
tive contacts, yielding an electrical work qV . Non-radiative transitions (v.g.
electron-phonon interactions) between any two bands are forbidden in ideal
conditions.
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FIGURE 7.16
Limiting e¢ ciency for solar cells with one (k = 1), two (k = 2), and three
(k = 3) intermediate bands as a function of the band gap "g. The lines are a
guide to the eye. ([59] Courtesy of Ru-wen Peng).

may gradually be �lled by considering materials having highly fragmented
energy spectra in photovoltaic cells.
The quest for the optimum band structures to be considered to this end

opens promising avenues in semiconductor based materials science engineer-
ing which naturally lead one to the consideration of aperiodic materials. In
fact, one reasonably expects that devices based on aperiodic arrangements
(including Fibonacci, Thue-Morse, or Cantor superlattices as representative
examples, Fig.7.17) are a quite natural choice, for they properly combine the
presence of highly fragmented miniband electronic structures, with a self-
similar distribution of energy levels (see Sections 5.3 and 5.7), hence further
contributing to improve the photovoltaic e¢ ciency by adding up the contri-
butions coming from electronic transition involving lower and lower energy
scales.

In summary, in this Section we have analyzed on the possibility of exploit-
ing aperiodic order in devices based on aperiodic multilayered structures. As
we have seen, in many instances the recourse to Fibonacci, Thue-Morse, or
fractal arrangements of layers enhances the response obtained from periodic
arrangements. One of the main lessons to be extracted from the di¤erent ex-
perimental realization described in this Section is that aperiodic order is able
by itself to endow a previously existing device with novel properties, opening
new avenues for innovative applications on the basis of well-known physical
mechanisms. Such a feature has been illustrated in some detail in the case
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FIGURE 7.17
Electronic miniband structures for several periodic and aperiodic
In0:49Ga0:51P/GaAs superlattices whose band-edge diagram is shown in
the inset. The structural parameters of the superlattices labelled by the
index number read as follows: 1) N = 21, a = b = 2:5 nm, 2) N = 21,
a = b = 3:5 nm, 3) is composed of two parts, one with N = 10, a = b = 2:5
nm, and the other with N = 11, a = b = 3:5 nm, 4) N = 21, a = 2:5 nm,
b = 3:5 nm; 5) N = 16, a = 2:5 nm, b = 3:5 nm; 6) N = 21, a = 2:5 nm,
b = 3:5 nm; where N is the number of layers, and a (b) are the thicknesses
of blocks A (B). ([59] Courtesy of Ru-wen Peng. With permission from IOP
Publishing Ltd.)
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of resonant optical cavities, multiband �lters, x-ray mirrors, thermal emis-
sivity control, and photovoltaic cells. Many more applications are currently
being considered in these[60, 61, 62] and other related �elds of technologi-
cal interest as, for instance, the propagation of acoustic waves in phononic
circuits,[39] or the physical properties of ferromagnetic,[63] piezoelectric,[64]
or piezomagnetic[64] superlattices based on aperiodic sequences.

7.3 Photonic and phononic quasicrystals

In the previous Section we have discussed how aperiodic order a¤ects the
physical properties of quasiperiodic multilayered systems in one-dimension.
In this Section we will address a further extension of quasiperiodicity e¤ects
by considering bulk aperiodic systems in two and three dimensions. In so
doing, we will usually deal with composite materials which do not exist in
nature and provide a remarkable example of materials by design.[65]

For the sake of illustration, let us start by introducing a nice experiment
which was originally designed in order to study the nature of the frequency
spectrum of an acoustic system analogous to a two-dimensional Schrödinger
equation with a quasiperiodic potential. The system consists of a number of
tuning forks (natural frequency 440 Hz) glued into a heavy aluminum plate
patterned according to a standard Penrose tile (Fig.7.18a). The tuning forks
are mounted at the centers of the rhombuses, with the two tines oriented in
line with the shorter diagonal. The tuning forks are coupled to each other by
means of 1-mm-diameter steel wire arcs which are spot welded from one tine
of a tuning fork to that of a nearest neighbor. Using the four sides of each
rhombus as a reference, four nearest neighbors are identi�ed, and each tine of
a tuning fork is coupled to the two nearest tines of the adjacent tuning forks.
In this way, four di¤erent lengths (3.7, 5.8, 7.26 and 7.77 cm) are distributed
through the system forming a quasiperiodic network of coupled resonators.
An electromagnet is positioned near one tine of the array, and an ac current
is passed through it in order to drive the system, and its response is moni-
tored with four electric guitar pickups positioned next to random tines in the
array. The resulting resonant frequencies correspond to the eigenvalues of the
two-dimensional quasiperiodic system. The obtained frequency spectrum is
shown in Fig.7.18, along with its related DOS. In analogy with the phonon
spectra of general Fibonacci lattices, the frequency spectrum of the Penrose
tile exhibits four characteristic bands (labeled A, B, C, and D) separated by
the corresponding gaps �, �, and . In addition, a series of subsidiary gaps
appear at di¤erent locations within the four main bands, giving the overall
spectrum the typical appearance of a code-bar pattern. Quite remarkably,
the widths of these bands and gaps are in ratios involving the golden mean,
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FIGURE 7.18
(a) Schematic drawing of a tuning fork quasicrystal based on the Penrose tile
(for the sake of drafting simplicity the tuning forks are not drawn with their
actual orientation in the experimental setup). The frequency spectrum (c) and
the DOS (b) of the tuning fork quasicrystal were determined as a composite of
the resonant spectra obtained from twenty di¤erent positions in the Penrose
lattice. The DOS is obtained as the inverse of the di¤erence in frequency
for neighboring eigenvalues in the frequency spectrum. ([66] Reprinted �gure
with permission from He S and Maynard J D 1989 Phys. Rev. Lett. 62 1888
c 1989 by the American Physical Society.)
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namely, C=B = � , A=B = �2, �=� = =� = � .[66] The presence of fre-
quency stop bands allows one to extend the photonic crystal notion to its
analogous acoustic version, the so-called phononic crystal. Accordingly, most
characteristic features of energy spectra in one-dimensional quasiperiodic sys-
tems, namely, hierarchical fragmentation and scalability, are also present in
the spectra of two-dimensional ones.

7.3.1 Optical devices in two dimensions

Let us consider a periodic photonic crystal in two or three dimensions ex-
hibiting a characteristic photonic gap over a certain frequency range. What
happens to the photonic gap if one replaces the periodic arrangement of the
constitutive elements by an aperiodic one? This question was addressed by
several groups both theoretically and experimentally, concluding that two-
dimensional photonic band-gaps can be obtained in systems comprised of qua-
siperiodic arrangements of dielectric materials. This property is illustrated in
Fig.7.19 for two octogonal arrangements of dielectric cylinders in air. The
frequency spectrum corresponding to the arrangement shown in Fig.7.19a ex-
hibits a number of relatively broad gaps inside which TM mode propagation
(with the magnetic �eld parallel to an axis perpendicular to the plane) is for-
bidden (Fig.7.19c), whereas the connected work shown in Fig.7.19b is required
in order to obtain a sizable spectral gap for TE mode propagation (with elec-
tric �eld parallel to the cylinders). The fact that isolated cylinders are good
in order to obtain band gaps for the TM modes while a connected network
is necessary for the TE modes is not a speci�c feature of quasiperiodic order,
since it was previously reported for periodic systems.[67, 68]
Point defects (missing cylinders) or line defects (missing rows of cylinders)

can be respectively used to create highly localized defect modes or to form
waveguides in photonic band-gap systems in both periodic and aperiodic sys-
tems alike (Fig.7.20). In the case of quasiperiodic arrangements the absence
of translational symmetry leads to some speci�c di¤erences, namely, the point
defect properties become much richer and the light guides derived from quasi-
periodic systems become more frequency selective.[69] To further check these
properties an octogonal photonic crystal was constructed as a 23 � 23 array
of alumina cylinders (� = 8:9) of diameter 6.12 mm, with L = 9 mm, embed-
ded in a Styrofoam template. Its wave guiding properties were measured in
the microwave region (7.5-12.5 GHz) for the TM modes. It was found that
both the position and width of the predicted band-gap do not signi�cantly
depend on the light propagation direction in the plane, that is, one obtains
a complete gap for the TM. When compared with similar gaps in periodic
photonic crystals it was found that complete gaps in photonic quasicrystals
allow for a more uniform light re�ection. This property stems from the fact
that the �rst Brillouin zone has more symmetries in quasiperiodic crystals,
so that these structures are able to support much more isotropic band-gaps
as compared to conventional photonic crystals based on periodic square or
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FIGURE 7.19
Two related quasiperiodic photonic band-gap systems are formed placing 164
dielectric cylinders (� = 10) in the vertices (a), or along the sides (c), of a
two-dimensional quasiperiodic lattice with octogonal symmetry. The cylinders
occupy a volume fraction of 30% (a) or 25% (c) in an air (� = 1) background.
The octogonal pattern is a tile composed of squares and rhombuses (acute
angle of 45o) of equal side L. The quasi-lattice constant is then given by
a = (6+4

p
2)L. The DOS for TM modes and TE modes are shown in (b) and

(d), respectively. (Adapted from ref.[67]. Reprinted �gure with permission
from Chan Y S, Chan C T and Liu Z Y 1998 Phys. Rev. Lett. 80 956 c
1998 by the American Physical Society.)
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FIGURE 7.20
Schematic of straight (a) and bending (b) waveguide designs in the octogo-
nal quasicrystal. The corresponding transmission spectra are shown in (c).
(Adapted from ref.[72]. Reprinted with permission. c 1999, American Insti-
tute of Physics.)

hexagonal lattices, hence favoring the possible appearance of a complete gap
in these systems. Nevertheless, one should keep in mind that quite isotropic
photonic band-gaps are also obtained for Archimedean tilings, which are peri-
odic structures displaying high order local rotational symmetry (see Fig.1.2).
[70, 71]
Two types of waveguides (a straight guide and a bending guide with two

90o shape corners (Fig.7.20a and b, respectively)) were fabricated by properly
removing three rows of cylinders in the octogonal lattice. The measured trans-
mission spectra indicate a very clear guiding e¤ect in the gap region. However,
the transmission curve is not so smooth as that corresponding to periodic
crystals. In the octogonal crystal a number of small peaks and dips appear
in the transmission pro�le, specially in the case of the bending waveguide
(Fig.7.20b). These ripples appear due to the presence of a more complex
resonance pattern in the quasiperiodic system, so that the presence of ape-
riodic order is not so bene�cial in this case.[72] The existence of a complete
bandgap in a two-dimensional Penrose lattice made of dielectric alumina rods
was experimentally reported in the microwave regime and similar waveguiding
properties (straight and 90o sharp bend) were observed by removing one row
of rods from the perfect Penrose lattice.[73]
To open a complete gap in two-dimensional photonic crystals the refractive

index needs to be larger than 2. This condition is easily obtained in systems
like those shown in Fig.7.20, but it rules out the possibility of using polymer
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FIGURE 7.21
(a) The Samp�i in�ation tiling starts with a big parent square-triangle tiling
(thick, dashed lines) from which one generates an o¤spring square-triangle
tiling (thin, solid lines).[78] (b) Representation of the dodecagonal crystal
reciprocal lattice, showing 12-fold symmetry. The Brillouin zone (white do-
decagon) corresponds to the cell highlighted in (a) with a thick line. (c)
The corresponding experimental transmission along the �� J direction. The
illuminating laser wavelength � = 633 nm compared to the photonic qua-
sicrystal pitch of a = 260 nm with a �lling factor of 28%. The shadowed area
highlights the gap for both TE (dashed line) and TM (solid line) wave polar-
izations. (Adapted from refs.[78] and [80]. Reprinted �gure with permission
from Oxborrow N and Henley C L 1993 Phys. Rev. B 48 6966 c 1993 by
the American Physical Society.)
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materials to fabricate periodic photonic crystals because their refractive in-
dices are typically lower than 1.7. Compared with periodic photonic crystals,
photonic quasicrystals have a smaller threshold value of refractive index to
open a complete gap. For example, the threshold value is n = 1:26 for an oc-
togonal quasilattice, which indicates that optoelectronic components based on
photonic quasicrystals may be realized in low refractive index materials such
as silica, glasses, and polymers. Motivated by this possibility a high-quality
octogonal photonic crystal was fabricated by using a laser induced microex-
plosion method. The resulting structure consisted of air cylinders embedded
in a polymer material dielectric matrix arranged according to the pattern
shown in Fig.7.19a. Thus, in this case one has a complementary design where
the holes (low dielectric constant) play the role of cylinders and the air sub-
strate is replaced by a suitable resin with a higher value of �. Fabry-Pérot
cavities were then fabricated by removing the central layer of holes in these
systems.[74]
As we have seen, the anisotropy of a photonic bandgap depends on the

symmetry of the photonic crystal lattice: the higher the degree of local sym-
metry the more isotropic the resulting band-gap. Accordingly, as the order of
the symmetry increases, the Brillouin zone becomes more circular, resulting
in the formation of a full band-gap (Fig.7.21b). Thus, it was natural to in-
vestigate aperiodic structures exhibiting progressively higher-order rotational
and mirror symmetries, such as those found in 10-fold,[75] 12-fold, 14-fold, 18-
fold,[76] or even 40-fold and 120-fold quasiperiodic lattices.[77] Experimental
evidence for complete bandgaps for both TE and TM polarizations was re-
ported for dodecagonal quasicrystals based on a square-triangle tiling obeying
the Stamp�i in�ation rule (Fig.7.21a).[79] The photonic QCs were composed
of 150-nm air pores (�lling fractions 28-30%) separated by a distance a = 260
nm in a 260 nm thick silicon nitride slab (n = 2:02) which is capped above
and below by silicon dioxide to con�ne the light in two-dimensions. In con-
trast to periodic lattices, the TM bandgap lies exactly in the middle of the
TE bandgap, leading to an e¢ cient overlapping for both polarization states in
the resulting complete photonic bandgap (Fig.7.21c). According to numerical
simulations this bandgap remains open for very low refraction index materials
such as glass (n = 1:45) with similar �lling fractions.[80] This property makes
photonic QCs very promising for a number of optical applications. For in-
stance, anomalous refraction and focusing properties of electromagnetic waves
in the microwave region (resembling that reported for superlenses based on
negative refraction index materials) were demonstrated for dodecagonal QCs
consisting of dielectric cylinders (� = 8:6) and radii 3.0 mm embedded in a
Styrofoam template according to the arrangement shown in Fig.7.21a with
a lattice constant of a = 10 mm.[81] Recent numerical studies suggest that
these anomalous properties arise from complex scattering e¤ects and short-
range interactions associated with certain symmetry points in the photonic
QCs, which are not present in periodic photonic crystals.[82] This photonic
QC is composed of pure dielectric materials and therefore is subject to far
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FIGURE 7.22
(a) Schematics of a dodecagonal Penrose lattice. (b) Distribution of the elec-
tric �eld at the frequency � = 10:53 GHz corresponding to a sharp peak within
the bandgap. (c) Measured (dotted line) and calculated (solid line) transmit-
tance of a defect-free Penrose dodecagonal crystal. (Adapted from ref.[83].
Reprinted �gure with permission from Wang Y, Hu X, Xu X, Chang B and
Zhang D 2003 Phys. Rev. B 68 165106 c 2003 by the American Physical
Society.)

less absorption loss than the usual metal-based metamaterials. Since the in-
creased absorption in metals prevents the scaling of these metamaterials to
the optical wavelengths, the e¤ective negative refractive index obtained in this
QC structure in the microwave regime could be reasonably expected to hold
in the optical wavelengths as well.

The occurrence of localized modes in defect-free photonic QCs arising from
the competition of self-similarity and aperiodicity was reported in a di¤erent
dodecagonal structure (the so-called dodecagonal Penrose lattice) based on
the tiling of squares and two kinds of rhombi, whose acute angles are 30o and
60o, respectively (Fig.7.22a). In the experimental setup 229 alumina cylinders
(� = 8:9) are inserted in a polystyrene foam template (� = 1:04). The radius
of the cylinders is 3.0 mm and the side length of the square and the rhombi
is 12.1 mm. The measured transmittance shows a �rst gap located from 8.06
to 11.38 GHz which exhibits three sharp peaks at certain speci�c frequencies
(Fig.7.22c). This feature is quite di¤erent from the results obtained for both
perfect photonic crystals and defect free octogonal and decagonal photonic
QCs, where the transmission spectra are smooth inside the gaps. Therefore,
the experiment proves the existence of some electromagnetic waves which are
localized in the dodecagonal sample only, hence indicating some peculiar fea-
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ture of 12-fold symmetry as compared to either 8-fold and 10-fold ones. A
plausible physical scenario accounting for this di¤erence can be introduced
by considering the delicate balance between delocalization e¤ects due to long-
range self-similarity (measured in terms of the local isomorphism prescribed
by the Conway�s theorem, see Section 2.2.2) and con�nement e¤ects related
to the absence of periodicity in this system.[83] In fact, numerical calculations
showed that the distribution of the electric �eld at the three frequencies cor-
responding to peaks within the bandgap was essentially con�ned in the two
concentric dodecagonal rings in the central part of the structure (Fig.7.22b).
The existence of such localized modes can be fruitfully exploited in order to
design single-cell resonators with high quality factors,[84] or coupled-resonator
optical waveguides.[85]
Most basic results reported for photonic quasicrystals can be readily ex-

tended to phononic quasicrystals as well. The existence of gaps in such
materials provides an opportunity to con�ne and control the propagation of
acoustic waves in a completely analogous way. Thus the possibility of design-
ing �at lenses by using quasiperiodic arrays of steel cylinders embedded in
air background has been theoretically discussed, comparing the behavior of
some acoustic QCs and superlenses based on a periodic distribution of meta-
materials. In this case, the motivation for using the high-symmetry QC is to
maintain an e¢ cient interference of waves (long-range order) while reducing
the orientational order of the system (crystallographical restriction theorem
is relaxed) to get a more isotropic propagation.[86]

7.3.2 Three-dimensional arrays

As we have seen the complete photonic band gap appears due to the overlap-
ping of band gaps in all the possible directions. To this end, a high degree of
symmetry is an advantage as it makes the optical properties more isotropic
and the operation less dependent on the angle of the incident light. Now, for
a three-dimensional periodic distribution of the dielectric function one gener-
ally has di¤erent periodicities associated to di¤erent directions in a solid and,
correspondingly, di¤erent frequencies for the band gap centers. In that case, a
relatively large size is required for these stop bands to properly overlap to each
other in order to give rise to a complete band gap. This condition is achieved
by constructing dielectric-air lattices with materials having a high refractive
index contrast. Such a requirement could be certainly relaxed to some extent
if the considered solid exhibits a more isotropic periodicity, so that the Bril-
louin zone is close to being spherical. Motivated by this basic principle, several
theoretical studies were performed, and it was concluded that lattices with
diamond symmetry have the minimum permittivity modulation contrast nec-
essary for the appearance of a complete band gap among the materials based
on periodic order. Now, it is well known that quasicrystals have higher point
group rotational symmetries and long-range quasiperiodic order, so photons
can be di¤racted as e¢ ciently as they are by periodic structures. Therefore,
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their band structure can be almost isotropic and such structures are reason-
ably preferable for the appearance of a complete photonic band gap.[87] In
fact, in photonic QCs the complex wave scattering processes can con�ne light
by interference e¤ects, giving rise to the phenomenon of light localization even
in the absence of disorder. Another advantage of photonic quasicrystals is that
they are best suited to phase matching for nonlinear optical e¤ects such as
frequency conversion.
Following this guiding idea a photonic quasicrystal based on a generalized

version of Penrose tiling in three dimensions was created by stereolithography
method. The 3D-Penrose tiling consists of a quasiperiodic arrangement of
a prolate and an oblate rhombohedron similar to those considered by Am-
mann (Fig.2.7). This sample exhibited large stop bands in certain directions
in the microwave range.[88] Three-dimensional photonic quasicrystals were
subsequently obtained for the infrared,[89] and visible ranges,[90] by using
laser writing and optical interference holography, respectively. The ability of
3D-Penrose tiling to form complete band gaps has been recently illustrated in
the case of phononic quasicrystals as well.[91]

7.4 Complex metallic alloys

7.4.1 The basic strategy: Smart materials

In order to be of technological relevance a novel material should present chal-
lenging properties, but it should also be easy to produce in the desired shape,
stable in operating conditions, of low cost, and non-toxic. In addition, it must
benchmark already existing materials currently used in existing devices. It is
clear that it is by no means easy to ful�ll these criteria in full, so that materials
engineering research is progressively adopting new strategies. Metals-based
industries nowadays rely largely on materials based on elementary metals and
binary metallic alloys to which a number of additional elements are added
in smaller quantities to tailor them for particular properties. These metal-
lic alloys are mostly either periodic crystals slowly grown from the melt, like
those samples obtained by means of Czochralski, Bridgman, or �ux growth
techniques, or amorphous alloys obtained by rapid quenching. On the other
hand, di¤erent classes of quasicrystals and their related approximant phases
(see Section 2.5.3) have been synthesized by conventional metallurgy tech-
niques. These samples resist thermal treatment without transforming into
usual periodic crystals upon annealing (see Table 2.1). Most of these stable
quasicrystals consist of aluminum mixed with transition metals, like Fe, Ni,
or Co; or normal metals, like Mg and Zn (see Section 3.1.3). Stable quasicrys-
tals were also discovered in titanium based alloys,[92] and in the Mg-Zn-rare
earth system.[93] In addition, a binary quasicrystalline phase was discovered
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in Cd(Ca,Yb) system.[94] Among all of them the icosahedral AlPd(Re,Mn)
and AlCuFe phases have been widely considered for practical applications.
In particular, the AlCuFe icosahedral alloy has a higher commercial interest
because it is made of inexpensive components.
In Chapter 3 we reviewed most relevant physical properties of QCs, and

we realized that these solids exhibit a plethora of anomalous behaviors (as
compared to common metallic systems), resembling those of either semi-
conducting or ionic materials in most cases. These anomalous behaviors
are shared by their approximants and, to a lesser extent, are also observed
in a number of metallic phases located near the QC-forming region in the
phase diagrams. For instance, we recall that the electrical resistivity of the
�0 phase of the Al-Pd-Mn alloys system showed an almost negligible tem-
perature dependence between 300 and 4 K (see Section 3.4.3).[95] While
weakly temperature-dependent resistivities are not uncommon for both amor-
phous alloys and bulk metallic glasses lacking long-range ordered crystalline
lattices,[96] the temperature-independent resistivity of �0-Al-Pd-Mn was ob-
served on monocrystalline samples of good lattice perfection and structural
homogeneity. It is interesting that �0-Al-Pd-Mn possesses another unusual
physical property� an anomalously low thermal conductivity, which is as low
as that of amorphous SiO2, a known thermal (and electrical) insulator. This
combination of a temperature independent electrical resistivity of moderate
value along with a remarkably low thermal conductivity supports the potential
interest of �0-Al-Pd-Mn and related complex metallic alloys for technological
applications as "smart" materials (e.g., temperature independent electrical
resistors with low heat dissipation).
In alloys consisting of three or more components, including not only metals

but also metalloids or rare earths, phases are quite frequently formed whose
crystal structure is based on giant unit-cells containing up to hundreds or
even thousands of atoms. All these unit cells have a substructure based on
polyhedral atom arrangements or clusters that partially overlap or are linked
by bridging elements, which are making up the unit cells (Fig.7.23). Since
the complex structure puts restrictions on the stoichiometry, the structurally
complex alloy phases exist only within fairly narrow ranges of composition.
Accordingly, it is natural to group together all these odd metallic phases by
taking into account their most characteristic distinctive feature: all of them
possess giant unit cells. As a result these materials, referred to as complex
metallic alloys, can o¤er unique combinations of properties which are excluded
in conventional materials. Among these we �nd (see Section 3.1.2):

� Combination of high hardness with low thermal conductivity for thermal
barriers design

� Low friction coe¢ cients combined with corrosion and oxidation resistant
properties, reduced solid-solid adhesion, and wetting by polar liquids for
hard coating applications
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FIGURE 7.23
A view of the �0-AlPdMn skeleton structure along the [010] direction. Mn
atoms form a planar �attened-hexagon lattice and are located in the centres
of pseudo-Mackay icosahedra.[97] The two interpenetrating polyhedra that
form the outer shell of the pseudo-Mackay cluster (a 12-atom Pd icosahedron,
white atoms) and a 30-atom Al icosidodecahedron (black atoms) are shown.
([98] Courtesy of Janez Dolin�ek).
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� Thermoelectric �gure of merit tunable by composition variation for ther-
moelectric applications

� Combination of good infrared light absorption properties with high-
temperature stability for heat conversion

� Enhanced hydrogen storage capacity under reversible conditions for bat-
teries industry.

Another possible strategy in order to obtain novel materials with improved
properties for speci�c applications is to combine two or more constituent ma-
terials with signi�cantly di¤erent physical or chemical properties which remain
separate on a macroscopic level within the whole structure (the so-called com-
posites). Among composites, a quasicrystalline precipitation-strengthened
steel is marketed by Sandvik Steel in Sweden. The steel is strong, relatively
ductile, corrosion-resistant, and resistant to overaging. The steel is attractive
for tools in the health industry (surgery, dentistry, acupuncture) and com-
prises key components of a �wet�electric shaver currently marketed by Philips.
Another type of bulk composite is an Al-based alloy which can be formed by
rapid solidi�cation and powder processing. The quasicrystals form by precip-
itation, yielding nanoscale particles surrounded by an Al matrix.[99, 100]
New materials opening a wide variety of adjustable properties for opti-

cal applications are based on composites consisting of inhomogeneous media
with metal particles in a dielectric matrix (the so-called cermets). In Sec-
tion 3.1.2.4 we saw that quasicrystals of high structural quality show optical
properties which are quite di¤erent compared to those of usual insulators,
semiconductors, or metals. In particular, they exhibit a relatively high ab-
sorption at visible wavelengths combined with a signi�cant thermal stability,
which can be exploited in order to design solar selective absorbers for heat
production.[101, 102]
A type of composite which is promising involves polymers with quasicrys-

talline �llers. Tests with certain high-performance thermoplastic resins have
shown that quasicrystalline AlCuFe particles signi�cantly enhance the wear
resistance of the polymers. This e¤ect is not understood, but it may be related
to a combination of the hardness, low friction, and low thermal conductivity
intrinsic to the quasicrystal. At the same time, key thermochemical char-
acteristics of the polymer, that is, its glass and melting transitions, are not
degraded, and this indicates that the quasicrystal does not catalyze cross-
linking or other disadvantageous reactions in the resin, so that it may be
potentially used as a prosthetic biomaterial.[103]

7.4.2 Hard coatings and thermal barriers

Quasicrystals are very brittle at low and intermediate temperatures. The
toughness of single grains is less than 0.5 MPa m

1
2 . In contrast, metallic crys-

tals like aluminum are characterized by a toughness value about two orders
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of magnitude higher. As a result quasicrystals have little resistance to crack
propagation below 450 �C. Hence, they are not very useful as bulk materials
but may be more fruitfully employed as surface coatings or as composites. In
such a case, the mechanical integrity is supplied by the substrate or the matrix,
while the quasicrystal o¤ers supplemental functions. For instance, quasicrys-
tals have gained most attention as coatings which combine wear resistance
with low friction and/or low adhesion. One product has been marketed which
exploits these properties�the quasicrystal-coated frying pan, sold by Sitram
under the trademark CybernoxTM . The quasicrystal is not directly compet-
itive with Te�on R in terms of its so-called non-stick property, but adhesion
for many foods is reduced relative to a metal pan, and of course the coating is
much harder than Te�on R. The hardness means that normal cutlery can be
used with the quasicrystal coating, an attractive feature relative to Te�on R.
Furthermore, the low thermal conductivity also presents an advantage in the
cookware, since it leads to even surface heating.[99]
The brittleness of quasicrystals is overcome at high temperatures. Above

about 450 �C, quasicrystals become plastic and deform more and more with
applied stress. Deformation is facilitated by dislocations, as in conventional
crystals. However, in contrast to conventional crystals, there is no work hard-
ening. This proves the absence of pinning centers and indicates a viscous
�ow regime that might be due to some internal friction between supposedly
undeformable atomic entities.[104]
The oxidation resistance of quasicrystals does not signi�cantly depart from

that of aluminum alloys or compounds. When in contact with pure O2 or
air, the quasicrystal surface is soon covered by a thin layer of pure alumina.
In good metals like aluminum, the energy of the clean-surface is typically 1
Jm�2 or greater. Very low values in the range of 0:40� 0:60 Jm�2 have been
reported recently for Al-based quasicrystals, assuming a certain form of the
analytic dependence of the friction coe¢ cient on surface energy.[105] Other,
more indirect evidence that the surface energy of quasicrystals is indeed small
can be deduced from a comparison of contact angles measured by depositing
small liquid droplets on the surface of a quasicrystalline sample as well as on
reference samples such as Te�on R, metals, or a bulk oxide such as alumina.
By making certain assumptions, the contact angle can be related fairly simply
to the reversible adhesion energy W of a given liquid onto the surface, larger
angles and poorer wetting corresponding to smaller values of W . Poor wet-
ting is an appropriate description of the interaction between carefully polished
Al-rich quasicrystals and water. Correspondingly, their reversible adhesion en-
ergy with water is only 25 % larger than that of Te�on (55 and 44 mJm�2,
respectively) and one-third of that of window glass. The fundamental origin
of this behavior is not yet understood, but a natural question is whether it
is controlled by the properties of the surface of the quasicrystal, or those of
the bulk.[106] Quasicrystals always carry a thin surface oxide layer, consist-
ing mainly of aluminum oxide.[107] However, bulk alumina is comparable to
window glass in that it is completely wet by water, indicating a high value of
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W . Thus, wetting of the quasicrystals is probably not controlled, at least to
zeroth order, by the surface layer, but rather in some way by the underlying
atomic and electronic structure of the bulk. (Note that this discussion is only
demonstrably valid for water; common organic solvents wet quasicrystals well,
and this indicates that the wetting may depend on the polarity of the liquid).
Surface friction is a further important issue for quasicrystals. Numerous

experiments using a spherical diamond pin have demonstrated that friction is
lower on a quasicrystal ( � = 0:04� 0:05) than on steel ( � = 0:07) of compa-
rable hardness. With more conventional riders such as mild steel or WC �Co,
the comparison is less favorable due to the transfer of material from the in-
denter to the surface. During such friction measurements, a major drawback
arises from the brittleness of the contacting bodies and hence formation of
wear particles. However, scratch tracks indicate that quasicrystals subjected
to repetitive and severe shear develop some ductility during this process, and
consequently they acquire an ability to self-repair. This brittle-to-ductile be-
havior might be associated with the nucleation of crystalline nanometer-sized
grains within the quasicrystalline matrix.[108]
Thermal barriers based on quasicrystalline alloys can also be manufactured

as thick coatings by thermal spraying techniques or magnetron sputtering.
This application relies upon bulk properties of quasicrystals, namely, low ther-
mal conductivity and plasticity at high temperature. As such, the quasicrystal
is a poor heat conductor which is additionally able to resist the shear stress, if
any, generated at the interface with the substrate due to the di¤erence in ther-
mal expansion coe¢ cients. In contrast to zirconia, such a di¤erence is small,
since expansion coe¢ cients for quasicrystals, in the range of (13�16)� 10�6

K�1, are close to those of metallic alloys. In comparison to metals, quasicrys-
tals also resist oxidation and corrosion by sulfur at high temperature. The
main drawback to using quasicrystals comes from their rather low melting
temperature and signi�cant atomic mobility. Intercalation of a thin di¤usion
barrier, typically made of an oxide such as Y2O3, allows the latter di¢ culty
to be easily overcome. A speci�c composition with nearly congruent melting
at 1170 �C was developed to enhance the temperature range in which qua-
sicrystalline thermal barriers may be useful. Although not competitive with
doped zirconia above 1050 �1100 �C, such barriers were successfully tested at
950 �C in a real-time ground test of an aircraft engine. Application to other
combustion engines, to power generators or, in general, to heat insulation of
fast-moving mechanical parts is also of interest.[100, 109]

7.4.3 Hydrogen storage

A hydrogen molecule approaching a metal can be dissociated at the interface,
absorbed at appropriate surface and near surface sites, and dissolved at in-
terstitial sites of the host metal. The ability to absorb hydrogen in metals
or alloys is greatly dependent upon chemical a¢ nity between hydrogen and
host atoms, type of interstitial sites, and the total number and actual size of
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interstitial sites in the crystal. There are basically two types of interstitial
sites in crystal lattices, namely, octahedral and tetrahedral interstices. The
sites that the hydrogen atoms occupy �rst depend on the physical size of the
interstices as well as the chemical a¢ nities between hydrogen and the metal
atoms surrounding the sites.

Following the discovery of the second largest group of thermodynamically
stable QCs in the TiZrNi system, studies on the hydrogenation properties of
such QCs started, searching for suitable samples for their possible applica-
tion as hydrogen-storage materials.[92] In fact, although the local structure of
icosahedral phases is not yet completely known in all detail (see Section 3.2),
di¤raction studies of the i-TiZrNi phase indicated that it is based on Bergman
atomic clusters as main building blocks (see Fig.2.1).[110]

TABLE 7.2
Distribution of interstices in di¤erent types of lattices.

LATTICE TETRAHEDRAL OCTAHEDRAL TOTAL
fcc 8 13 21
bcc 24 18 42
QC 140 0 140

This cluster contains a signi�cantly large number of tetrahedral interstitials
and no octahedral interstitials, clearly outnumbering the amount of interstices
available in the case of common cubic lattices (see Table 7.2). Thus, one can
reasonably expect that the more complex structure of quasicrystalline phases
may provide a lot of suitable sites for hydrogen absorption. The hydrogen ab-
sorption properties of icosahedral phase powders has been compared to those
of both amorphous and crystalline samples of interest in hydrogen energy in-
dustry (such as LaNi5 or TiFe hydrides) in high pressure vessels experiments
as well as by using electrochemical hydrogenation at room temperature.[111]
The maximum hydrogen concentrations obtained for TixZr83�xNi17 QCs, with
41 � x � 61 ranged within 1:50� 1:74 hydrogen-to-metal ratio. These �gures
are not as good as those reported for the most e¢ cient materials discovered for
hydrogen storage purposes (i.e., Mg and V, with an hydrogen-to-metal ratio of
2.0), but are certainly better than those obtained for the samples TiFe (0.98),
LaNi5 (1.00), and Mg2Ni (1.33) of common use in H-batteries research. In ad-
dition, hydrogen in the icosahedral phase can be desorbed comparatively more
easily than in the amorphous phase. After hydrogen desorption by heating the
hydrogenated icosahedral phase powder to 800 K, the quasilattice constant
of the icosahedral phase completely returned to that before hydrogenation,
showing good reversibility for the absorption and desorption of hydrogen. It
was also observed that after a second gas-phase loading of hydrogen, the icosa-
hedral phase is still stable, though it now coexists with a (Ti,Zr)H2 hydride
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phase.

In summary, the maximum hydrogen concentration for the TiZrNi QC phase
powders reach to about 60% either by gas-phase or electrochemical loading of
hydrogen. They perform better than crystalline materials of comparable spe-
ci�c mass because the occurrence of icosahedral quasiperiodic order enforces
the formation of a greater number of interstitial sites that can be occupied by
protons. This level exceeds that of commonly used hydrides, promising new
hydrogen-storage material for fuel-storage and battery applications. [111]

7.4.4 Surface catalysis

The potential application of QCs for catalysis was �rst investigated regard-
ing the catalytic activity of various ultra-�ne particles extracted from AlPd,
AlPdMn, AlCuFe, or AlCuCo alloys by spark evaporation. It was observed
that the generation of hydrogen from the temperature decomposition of metha-
nol (CH3OH ! CO + 2H2) started at signi�cantly lower temperatures than
with the conventional crystalline catalysts like Pd or Cu. Results also showed
that the highest quantity of hydrogen was formed on the catalysts under
quasicrystalline form.[112] Subsequently, the catalytic properties of i-AlCuFe
QCs with various compositions were investigated for the steam reforming reac-
tion of methanol. This endothermic process takes place above 500 K between
methanol and water steam, according to the formula CH3OH + H2O ! CO2
+ 3H2.[113, 114] This reaction is an e¤ective way to produce hydrogen un-
der mild reaction conditions, e.g., for fuel cells. The high brittleness of QCs
allows one to prepare large amounts of ultra-�ne powders through grinding,
without losing chemical homogeneity. The quasicrystal is prepared as a pow-
der, then crushed to maximize surface area, and �nally leached in NaOH or
Na2CO3. The leaching selectively removes Al and Al oxides, leaving each par-
ticle consisting of concentric layers. At its core the solid is quasicrystal, and
at its perimeter it consists of porous Al-OH that supports dispersed nanopar-
ticles of Cu and Fe. The Cu nanoparticles are far more resistant to sintering
than Cu particles in the Cu-based catalysts that are the current industrial
standard. Therefore, i-AlCuFe QCs shows a unique combination of proper-
ties that makes it an e¢ cient catalyst, namely, low cost of the raw elements,
brittleness to warrant large speci�c areas after grinding, and optimum Fe/Cu
concentration ratio.[100]

7.4.5 Thermoelectric materials

During the last few years we have witnessed a growing interest in searching
for novel, high performance thermoelectric materials for energy conversion.
The e¢ ciency of thermoelectric devices depends on the transport coe¢ cients
of the constituent materials and it can be properly expressed in terms of the
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�gure of merit given by the dimensionless expression

ZT =
T�S2

�e + �ph
; (7.29)

where T is the temperature, �(T ) is the electrical conductivity, S(T ) is the
Seebeck coe¢ cient, and �e(T ) and �ph(T ) are the thermal conductivities due
to the electrons and lattice phonons, respectively. The appealing question
regarding what electronic structure provides the largest possible �gure of merit
was addressed some time ago, concluding that (i) the best thermoelectric
material is likely to be found among materials exhibiting a sharp singularity
(Dirac delta function) in the density of states close to the Fermi level, and
(ii), in that case, the e¤ect of the DOS background contribution onto the
�gure of merit value may be quite dramatic, the �gure of merit value being
inversely proportional (in a marked non-linear way) to the DOS value near
the singularity.[115]
Quite interestingly the electronic structure of quasicrystalline alloys satis�es

these requirements in a natural way, since it exhibits a pronounced pseudo-
gap at the Fermi level as well as some narrow features on the DOS close to
the Fermi level (see Section 3.4.1). At �rst sight it may seem surprising to
propose a metallic alloy as a suitable thermoelectric material, since it is well
known that metallic compound usually exhibit very low ZT � 10�3. However,
such a proposal makes sense due to the peculiar transport properties of QCs
(see Section 3.1.2).[116] In fact, their electrical conductivity (i) is remarkably
low (ranging from 100 to 5000
�1 cm�1 at room temperature), (ii) it steadily
increases as the temperature increases up to the highest temperatures of mea-
surement (T ' 900 K), and (iii) it is extremely sensitive to minor variations in
the sample composition. This sensitivity to the sample stoichiometry is also
observed in other transport parameters, like the Hall or Seebeck coe¢ cients,
and resembles doping e¤ects in semiconductors. In addition, the tempera-
ture dependence of the Seebeck coe¢ cient: (i) is clearly non-linear, exhibiting
well-de�ned extrema in most instances, (ii) small variations in the chemical
composition give rise to sign reversals in the S(T ) value, and (iii) for a given
sample stoichiometry it shows a strong dependence on the heat treatments
applied to the sample.[117] Therefore, the electronic transport properties of
quasicrystalline alloys exhibit unusual composition and temperature depen-
dences, resembling more semiconductor-like than metallic character. Further-
more, the thermal conductivity of QCs is unusually low for a metallic alloy
and it is mainly determined by the lattice phonons (rather than the charge
carriers) over a wide temperature range. Thus, for most icosahedral phases the
thermal conductivity at room temperature is comparable to that of zirconia
(� 1 � 2 Wm�1K�1). This low thermal conductivity of QCs is particularly
remarkable in the light of Slack�s phonon-glass/electron-crystal proposal for
promising thermoelectric materials,[118] and it has considerably spurred the
interest on the potential application of QCs as thermoelectric materials from
an experimental viewpoint.
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Consequently, according to their transport properties, quasicrystalline al-
loys are marginally metallic and should be properly located at the border
line between metals and semiconductors. Thus, QCs bridge the gap between
metallic materials and semiconducting ones, occupying a very promising po-
sition in the quest for novel thermoelectric materials. In fact, it has been
recently pointed out that the electrical conductivity of i-AlPd(Mn,Re) QCs
may be strongly dependent on the bonding nature of their constitutive icosa-
hedral clusters, so that small changes in the cluster structure may induce a
metallic-covalent bonding conversion (see Section 3.1.3).[122] Thus, one of the
main advantages of QCs over other competing thermoelectric materials is that
one can try to modify both the electrical conductivity and the thermoelectric
power, without losing the low thermal conductivity, by properly varying the
sample stoichiometry.[117]

TABLE 7.3
Room temperature transport coe¢ cients values for di¤erent
quasicrystalline families, after: a) Ref. [117], b) Ref. [119], c)
Ref. [120], d) estimated, e) Ref. [122], and f) Ref. [121].

Sample �(
�1cm�1) S (�V K�1) �(Wm�1K�1) ZT
AlCuRu 250b 27b 1:8d 0:003
AlCuFe 310b 44b 1:8c 0:01
CdYb 7000f 16f 4:7f 0:01

AlCuRuSi 390b 50b 1:8d 0:02
AlPdRe 175e 95e 0:7e 0:07
AlPdMn 640a 85a 1:6a 0:08

According to their chemical composition QCs can be grouped into several
families. In Table 7.3 we list the transport coe¢ cients values for those rep-
resentatives yielding the best �gure of merit values at room temperature.
From the listed data we appreciate a progressive trend towards larger val-
ues of ZT resulting from the synthesis of suitable QCs. Furthermore, sig-
ni�cantly enhanced �gure of merit values are obtained at higher tempera-
tures. Thus we have ZT = 0:25 for i-AlPdMn samples at T = 550 K;[123]
ZT = 0:11 for i-Al71Pd20Re9 samples at T = 660 K, and ZT = 0:15 for
i-Al71Pd20(Re0:45Ru0:55)9 samples at T = 700 K.[122]
As we have seen in Section 3.4.1 the �(T ); S(T ); and �e(T ) curves of several

quasicrystals can be consistently described in terms of the two-Lorentzian
spectral conductivity functions given by Eq.(3.10). Then plugging Eqs.(3.16)-
(3.18) into Eq.(7.29) one gets[124, 125]

ZT =
J21

J0J2 � J21 + c2J0'
; (7.30)

where c � 2e=kB and '(T ) � �ph(T )=T: As we explained in Section 3.4.3,
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FIGURE 7.24
Dependence of the thermoelectric �gure of merit as a function of the phe-
nomenological coe¢ cient �1 at T = 300 K (solid line); T = 400 K (dashed
line), and T = 500 K (dot-dashed line). ([124] Reprinted �gure with permis-
sion from Maciá E 2004 Phys. Rev. B 69 184202 c 2004 by the American
Physical Society.)

the reduced kinetic coe¢ cients, Jn, can be expressed in terms of series of phe-
nomenological coe¢ cients, �i; which, in turn, can be related to experimental
transport curves.

In Fig.7.24 we plot the ZT curve as a function of the phenomenologi-
cal coe¢ cient �1 value at di¤erent temperatures, as derived from Eq.(7.30)
for a suitable choice of the model parameters. The ZT (�1) curve exhibits a
deep minimum, where ZT almost vanishes, �anked by two maxima at about
�1 ' �25 (eV)�1 and �1 ' +40 (eV)�1. Considering this curve in the light
of Eq.(3.33) several conclusions can be drawn concerning the relationship be-
tween the ZT curves and the sample�s electronic structure. First, when the
Fermi level is located close to the pseudogap minimum, Eq.(3.33) yields very
small �1 values. In that case, we will obtain small �gures of ZT at room
temperature, in agreement with the experimental results. Note, however,
that the minimum of the ZT (�1) curve does not coincide with �1 = 0; so
that as the temperature is increased we obtain progressively larger values of
ZT; in agreement with experimental �ndings as well. Second, as the Fermi
level progressively shifts from the pseudogap�s minimum (due to a systematic
change in the sample stoichiometry, for instance), the ZT values progressively
increase attaining well de�ned maxima. Note that these maxima reach di¤er-
ent peak values depending on the sign of �1. Accordingly, we conclude that
best thermoelectric performances will be expected for those stoichiometries
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able to locate the Fermi level below the minimum of the pseudogap, and that
the deeper the pseudogap the larger the resulting �gure of merit at a given
temperature. Finally, we observe that as temperature increases the ZT (�1)
maximum below (above) the Fermi level progressively increases (decreases)
and shifts towards (away from) the pseudogap�s minimum located at �1 = 0:
This behavior indicates that the precise stoichiometry to get an optimal ther-
moelectric performance will depend in general on the working temperature
for the considered sample.
From this study one concludes that band structure e¤ects play a signi�cant

role in the thermoelectric performance of i-AlPdRe QCs (and likely in other
quasicrystalline phases containing transition-metals as well). In particular
we �nd that samples whose Fermi level is located at the pseudogap�s mini-
mum exhibit very small ZT values. This condition occurs for stoichiometries
yielding e=a ' 1:74: Thus, the most stable samples (e.g., Al68:5Pd22:9Re8:6;
Al69:4Pd21:2Re9:4; Al70Pd20Re10) are also the worse ones for thermoelectric
applications. On the the hand, large �gure of merit values are expected for
those samples exhibiting narrow features in the DOS close to the Fermi level,
like i-Al70:5Pd21Re8:5.[126, 127] Consequently, it seems reasonable to expect
that relatively high values of the �gure of merit may be obtained by a ju-
dicious choice of sample composition, working temperature, and Peltier cell
structural design.[125]

7.5 DNA-based nanoelectronics

7.5.1 Peltier nanocells

The experimental way to the possible use of organic molecules in the design
of nanoscale thermoelectric devices was opened up by the measurement of an
appreciable thermoelectric power (+18 �V K�1 at room temperature) over
guanine molecules adsorbed on a graphite substrate using a STM tip.[128]
Subsequently, the thermoelectric response of phenyldithiol organic molecules
chemisorbed on gold surfaces was theoretically analyzed, and Seebeck co-
e¢ cient values comparable to those obtained in previous experiments were
reported.[129] Similar values (+22 �V K�1 at room temperature) have been
recently reported on a sample of FeCl3-doped polythiophene.[130] Although
these �gures are too small to be of interest for most current thermoelectric ap-
plications, it is reasonable to expect that they may be signi�cantly enhanced
by a proper choice of the materials composing the thermoelectric nano-cell.
Thus, the thermoelectric potential of some conducting polymers, like poly-
thiophene and polyaminosquarine, has been recently reviewed on the basis
of their electronic band structures.[130] Also, the thermoelectric properties
of nanocontacts made of single-wall carbon nanotubes have been numerically
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studied, concluding that doped semiconducting nanotubes may exhibit very
high �gures of thermoelectric merit.[131].

In fact, the extreme sensitivity of thermopower to �ner details in the elec-
tronic structure suggests that one could optimize the device�s thermoelectric
performance by properly engineering its electronic structure. With the aim
of exploring such a possibility, a systematic theoretical study on the ther-
moelectric properties of DNA nucleobases guanine (G), cytosine (C), adenine
(A), and thymine (T) �either as single units or forming dimers or trimers �
connected to metallic leads at di¤erent temperatures was performed.[132, 133,
134] The obtained results showed that relatively large thermopower values can
indeed be obtained by properly locating the system�s Fermi level. In addition,
the thermoelectric response of trimer nucleobases exhibits two resonant fea-
tures where the Seebeck coe¢ cient attains large values (200� 400 �V K�1 at
room temperature), closely resembling recently reported thermopower curves
of silicon based atomic junctions.[135] Since both the location and the mag-
nitude of these peaks sensitively depend on the energetics of the considered
trimer, one may think of introducing a thermoelectric signature for di¤erent
codons of biological interest,[134] in close analogy with the transversal elec-
tronic signature recently proposed for single-stranded DNA chains.[136, 137]

In this Section, we will analyze the thermoelectric response of more realis-
tic double-stranded DNA (dsDNA) chains, in order to estimate the potential
of synthetic DNA chains as thermoelectric materials. From an applied view-
point the convenience of synthetic versus biological DNA based thermoelectric
devices is twofold: (i) synthetic DNA strands can be polymerized at will in or-
der to �t any prescribed design; and (ii) quantum chemical calculations show
the existence of convenient charge channels in periodic dsDNA chains. Thus,
charge transfer mainly proceeds via hole (electron) propagation through the
purine (pyrimidine) bases, where the HOMO (LUMO) carriers are respectively
located in polyG-polyC (polyA-polyT) chains (see Section 6.2). In fact, exper-
imental current-voltage curves show that double-stranded poly(dA)-poly(dT)
chains behave as n-type semiconductors, whereas poly(dG)-poly(dC) ones be-
have as p-type semiconductors.[138] Accordingly, these synthetic DNAs may
provide the basic building blocks necessary to construct a nanoscale thermo-
electric cell, where the DNA chains will play the role of semiconducting legs
in standard Peltier cells, as it is illustrated in Fig.7.25.

In order to substantiate this proposal, one must consider the energy depen-
dence of Seebeck coe¢ cient, S; and thermoelectric power factor (S2�, where
� is the electrical conductivity) of polyG-polyC and polyA-polyT chains at
room temperature. The duplex DNA molecules are modeled in terms of the
renormalized one-dimensional e¤ective Hamiltonian given by Eq.(6.35) and
Eq.(6.44), and the transmission coe¢ cient is derived by embedding the chain
between two semi-in�nite leads (see Sections 6.4.2 and 6.4.3). Within the
transfer matrix framework, considering nearest-neighbors interactions only,
the corresponding Schrödinger equation can be expressed in the form
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FIGURE 7.25
Sketch illustrating the basic features of a nanoscale DNA based Peltier cell.
A polyA-polyT (polyG-polyC) oligonucleotide, playing the role of n-type, left
(p-type, right) semiconductor legs, are connected to organic wires (light boxes)
deposited onto ceramic heat sinks (dark boxes). ([141] Reprinted �gure with
permission from Maciá E 2007 Phys. Rev. B 75 035130 c 2007 by the
American Physical Society.)
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where  n is the wavefunction amplitude for the energy E at site n; 2x �
(E � �)=t0 describes the DNA energetics, and the ratio � � �=t0 measures
the DNA-lead coupling strength (the Schrödinger equation for polyA-polyT
is obtained by just replacing � $ �). The transmission coe¢ cient at zero
bias as a function of energy is given by [139]

TN (E) =
n
1 +W�1 �(E � "M )UN�1 � 
(UN + �2UN�2)�2o�1 ; (7.32)

whereW � (E�E�)(E+�E); with E� � "M �2tM ; de�ne the allowed spec-
tral window determined by the lead�s bandwidth, 
 � tM=�, and Uk(x) are
Chebyshev polynomials of the second kind. By inspecting Eq.(7.32) we realize
that the transmission coe¢ cient in general does not reach the full transmission
condition TN = 1. In fact, even in the most favorable conditions for charge
transport (i.e., E = "M ) we get TN ("M ) =

�
1 + (�U�N�2 + �

�1U�N )
2=4
��1

<
1; where U�k � Uk(xM ); and 2xM = ("M � �("M ))=t0. This transmission
degradation stems from contact e¤ects.[140]
From the knowledge of the transmission coe¢ cient given by Eq.(7.32) the

conductance through the lead-DNA-lead system is determined using the Lan-
dauer formula (see Section 9.5.3)

GN (EF ) = G0TN (EF ); (7.33)

where G0 = 2e2=h ' 1=12906 
�1; and EF denotes the Fermi level. On the
other hand, the Seebeck coe¢ cient is obtained from the expression [129]

SN (EF ; T ) = �jejL0
�
@ lnTN (E)

@E

�
EF

T; (7.34)

where e is the electron charge, L0 � �2k2B=3e
2 = 2:44 � 10�8 V2K�2 is the

Lorenz number, and T is the temperature. Making use of Eqs.(7.32) and
(7.33) into Eq.(7.34) one gets,[141]

SN (EF ; T ) = ~S0(T )�G

(
B(EF ) +

�
@ lnh(E)

@E

�
EF

)
; (7.35)

where ~S0(T ) = 2jejL0T; �G � 1�GN=G0; B(EF ) � (EF �"M )=W (EF ), and
h(E) � (E � "M )UN�1 � 
(UN + �2UN�2). The Seebeck coe¢ cient is then
expressed as a product involving three contributions. The factor ~S0 sets the
thermovoltage scale (in �VK�1eV units) and accounts for the linear temper-
ature dependence of SN . The factor �G links the thermopower magnitude
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to the conductance properties of the chain, so that the Seebeck coe¢ cient
progressively decreases (increases) as the conductance increases (decreases),
vanishing when TN = 1; as expected from basic transport theory. The last
factor in Eq.(7.35) depends on two additive contributions in turn. The value
of B(EF ) depends on the relative position of the Fermi level with respect to
both the band center, "M ; and the band edges, E�; of the contacts. Thus,
its contribution vanishes when EF ! "M , whereas B (and consequently SN )
asymptotically diverges as the Fermi level approaches the spectral window
edges (i.e., EF ! E� ): Finally, the logarithmic derivative term in Eq.(7.35)
contains most physically relevant information, accounting for (i) contact ef-
fects (related to the coupling constants � and 
); (ii) size e¤ects (described
by the N parameter dependence), and (iii) resonance e¤ects related to the
DNA energetics by means of the Chebyshev polynomials�argument

x(EF ) � x0 = �
1

2t0

�
b+ (a1 � 1)EF +

2t2

EF � 

�
: (7.36)

Since we are mainly interested in the study of the intrinsic transport prop-
erties of DNA chains, we will minimize contact e¤ects by adopting tm = t0 = �
henceforth, so that � = 1 and 
 = t0. Thus, we can rewrite Eqs.(7.33) and
(7.35) in the form

GN (EF ) =
G0

1 + C(EF )U2N�1
; (7.37)

where C(EF ) � [�(EF )� "M ]2 =W (EF ); and

SN (EF ; T ) = ~S0(T ) [1� TN (EF )]
"
B(EF ) +

P2(EF )

EF � 
+

�
@ lnUN�1

@E

�
EF

#
;

(7.38)
where

P2(EF ) �
a1(EF � )2 � 2t2

a1(EF � )2 + (a0 � "M )(EF � ) + 2t2
: (7.39)

By comparing Eqs.(7.35) and (7.38) we see that the logarithmic derivative
in Eq.(7.35) has been split into two separate contributions. The �rst one in-
cludes sugar-phosphate backbone e¤ects through the  parameter dependence.
In particular, since P2() = �1; we realize that SN asymptotically diverges
as the Fermi level approaches the backbone on-site energy (i.e., EF !  ). In
general, the  value will depend on the chemical nature of the nucleotides, as
well as the possible presence of water molecules and/or counterions attached to
the backbone.[142] Accordingly, this resonant enhancement of thermoelectric
power strongly depends on environmental conditions a¤ecting the DNA elec-
tronic structure (see Fig.6.20). Finally, the Chebyshev polynomial logarithmic
derivative appearing in Eq.(7.38) describes size e¤ects in the thermoelectric
response for DNA chains of di¤erent length.
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FIGURE 7.26
Room temperature dependence of the Seebeck coe¢ cient as a function of the
Fermi level energy for a G-C (solid curve) and A-T (dashed curve) Watson-
Crick base pairs. Inset: The Landauer conductance as a function of the Fermi
level energy for the same base pairs. The origin of energies is set at the guanine
contact level "M = "G � 0 eV. ([141] Reprinted �gure with permission from
Maciá E 2007 Phys. Rev. B 75 035130 c 2007 by the American Physical
Society.)
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FIGURE 7.27
Seebeck coe¢ cient as a function of the Fermi level energy for a polyG-polyC
(solid curve) and a polyA-polyT (dashed curve) oligomer with N = 5 base
pairs. The vertical dashed line separates the energy regions exhibiting n-
type and p-type thermopowers, respectively. Inset: The Seebeck coe¢ cient
as a function of the Fermi level energy for an A-T Watson-Crick base pair
(solid line) is compared to that corresponding to a polyA-polyT oligomer with
N = 5 (dashed line). ([141] Reprinted �gure with permission from Maciá E
2007 Phys. Rev. B 75 035130 c 2007 by the American Physical Society.)

In Fig.7.26 we plot the thermopower and electrical conductance curves as a
function of the Fermi energy obtained from Eqs.(7.37) and (7.38) for both G-
C and A-T complementary pairs (N = 1) connected to guanine wires at both
ends. The S(E) curves exhibit typically metallic values (1� 10 �VK�1) over
a broad energy interval around the guanine energy level and then suddenly
grow (in absolute value) as EF approaches the band edges (due to the B(EF )
contribution). As we can see, the thermoelectric response is very similar for
both kinds of Watson-Crick pairs, though the Seebeck coe¢ cient is somewhat
larger for the A-T one, due to its smaller conductance value (shown in the
inset). In this case (U0 = 1) the transmission coe¢ cient reduces to T1 =
(1 + C)�1 and the corresponding conductance curves attain the maximum
G1 ' 3: 8� 10�5 (G1 = 5: 182 7� 10�6 ) 
�1 at the resonance energy E�1 =
8: 64 � 10�2 (E�1 = 5: 50 � 10�2 ) eV for G-C (A-T) bp, respectively. These
conductance values are remarkably large (in particular, the G-C base pair
value is about one order of magnitude larger than the values usually reported
for organic molecular junctions [143]) accounting for the small values of the
Seebeck coe¢ cient in the energy interval �0:2 . E . 0:2, as prescribed by
the �G factor in Eq.(7.35).
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As the number of base pairs composing the DNA chain is progressively in-
creased several topological features (i.e, maxima, minima, and crossing points)
appear in the thermopower curves, as it is illustrated in Figs.7.27 for the case
N = 5. As we see, the Seebeck coe¢ cient is characterized by the presence
of two peaks around a crossing point located at the energy E0 = �0:116
eV. The thermopower values attained at the peaks are signi�cantly high, and
compare well with the values reported for benchmark thermoelectric materi-
als. Nevertheless, as the Fermi level shifts away from the resonance energy, the
Seebeck coe¢ cient signi�cantly decreases, clearly illustrating the �ne tuning
capabilities of thermopower measurements. On the contrary, the thermo-
electric response of the polyA-polyT chain is rather insensitive to the chain
length. This is illustrated in the inset of Fig.7.27, where we compare the
thermoelectric curves of a single A-T base pair and a N = 5 polyA-polyT
oligomer: This property is related to the fact that both adenine and thymine
energy levels are far above the contact Fermi level; meanwhile the guanine
level is just aligned to the contact one in the polyG-polyC chain. In that
case, a pronounced resonance peak (saturating at the quantum conductance
value G0) appears in the conductance curve, as it is shown in the inset of
Fig.7.28. On the other hand, according to Eq.(7.34) the main features of the
polyG-polyC Seebeck coe¢ cient shown in Figs.7.26 and 7.27 can be properly
accounted for in terms of the conductance curve shown in this inset. In fact,
when the Fermi level is located at the left (right) of the conductance peak the
slope of the transmission coe¢ cient curve TN (E) is positive (negative) lead-
ing to n-type (p-type) thermopower, respectively. In addition, the steeper the
conductance curve the higher the thermopower value close to the resonance
energy. Finally, we note that the crossover energy E0 de�nes two di¤erent
regimes where the polyG-polyC oligomer alternatively exhibits n-type or p-
type thermopower. In this regard it is worth mentioning that when the Fermi
level is located above E0; the Seebeck coe¢ cient of each DNA chain exhibits
contrary signs, so that the polyG-polyC chain behaves as a p-type material,
while the polyA-polyT chain behaves like a n-type one, in agreement with
previous experimental results.[138]
By properly combining the previous results, making use of the typical values

LN = 0:34 � N nm for the length, and R = 1 nm for the radius of B-form
DNA, we can determine the magnitude of the thermoelectric power factor
PN = �NS

2
N = GNLNS

2
N=(�R

2) for the considered samples. The overall
shape of the power factor is mainly determined by the energy dependence of
the Seebeck coe¢ cient. In fact, in the case N = 1 the power factor takes
on relatively small values over a broad range of energies located around the
conductance peak, but it signi�cantly increases as the Fermi level approaches
the band edges, as it was previously discussed. In the case N = 5; in addition
to this general behavior the power factor also attains signi�cantly large values
close to the resonance energy of the polyG-polyC chain due to the presence of
the above mentioned Seebeck coe¢ cient peaks. The values of the power factor
maxima attained in this case (P5 = 1:5� 3� 10�3 Wm�1K�2) nicely �t with
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FIGURE 7.28
Seebeck coe¢ cient as a function of the Fermi level energy for a polyG-polyC
oligomer with N = 5 base pairs and  = 4:5 eV (solid curve),  = 4:0 eV
(dashed curve), and  = 3:0 eV (dotted curve) with � = tM = 0:15 eV, and
"M = 0 eV. Inset: Landauer conductance as a function of the Fermi level
energy for the same samples shown in the main frame. ([141] Reprinted �gure
with permission from Maciá E 2007 Phys. Rev. B 75 035130 c 2007 by the
American Physical Society.)

those reported for benchmark thermoelectric materials (P = 2:5� 3:5� 10�3
Wm�1K�2) at high temperatures.[144] On the contrary, the power factor is
completely negligible for polyA-polyT oligonucleotides.

Up to now, we have neglected the possible in�uence of environmental e¤ects,
keeping a �xed value for the backbone related on-site energy : However, the
sensitivity of thermopower to possible backbone e¤ects should be considered
in any realistic treatment, for the presence of a number of counterions located
along the DNA sugar-phosphate backbone (mainly in the vicinity of nega-
tively charged phosphates) as well as the grooves of the DNA helix (mainly
near the nitrogen electronegative atoms of guanine and adenine) is expected.
In Fig.7.28 we compare the Seebeck coe¢ cient as a function of the energy
for di¤erent  values for a polyG-polyC chain with N = 5. By inspecting
this plot we realize the remarkable role played by environmental e¤ects on
thermopower. In fact, by systematically varying the on-site energy parameter
from  = 4:5 eV (no environmental e¤ects) to  = 3:0 eV, the thermoelectric
response of the DNA chain can be modulated from typically semiconduct-
ing values to typically metallic ones. As expected from basic theory (see
Eq.(7.35)), the degradation of the thermopower is related to a progressive
enhancement of the DNA conductance. This result is shown in the inset of
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Fig.7.28, where we plot the systematic variation of the polyG-polyC oligomer
conductance as  is progressively decreased.
In summary we conclude that the thermoelectric response of short dsDNA

chains strongly depends on (i) the chemical nature of the considered DNA
chain and (ii) the relative position between the contacts Fermi level and the
DNA molecular levels. Thus, while the thermoelectric power of polyA-polyT
oligomers is quite insensitive to the number of base pairs composing the chain,
polyG-polyC oligomers exhibit a strong dependence on the chain length. Ac-
cordingly, we can e¢ ciently optimize the power factor of polyG-polyC chains
by properly shifting the Fermi level position close to the resonance energy,
which plays the role of a tuning parameter. On the other hand, depending on
the EF position, n-type and p-type thermoelectric responses can be simulta-
neously obtained for polyA-polyT and polyG-polyC DNA chains, respectively.
This is a very convenient feature in order to design DNA based thermoelec-
tric devices, where both oligomers would play the role that semiconducting
materials legs usually play in standard Peltier cells (Fig.7.25). To this end,
the relatively low value of the polyA-polyT chain Seebeck coe¢ cient could be
signi�cantly improved by connecting it to adenine wires, rather than guanine
ones, in order to get a proper alignment between the contacts Fermi level and
the DNA molecular levels.
The thermoelectric quality of a material is expressed in terms of the di-

mensionless �gure of merit given by Eq.(7.29). Therefore, the potential of
DNA oligomers as thermoelectric materials will ultimately depend on their
thermal transport properties. We can make a rough estimation of ZT by
assuming that the thermal transport properties recently reported for a series
of simple organic semiconductors (e.g., pentacene) are representative of more
complex biomolecules as well. In particular, it seems reasonable to expect
that the thermal conduction is dominated by phonon transport in most or-
ganic compounds, leading to small thermal conductivities in general. In fact,
room temperature thermal conductivity values in the range � = 0:25 � 0:50
Wm�1K�1 were measured for di¤erent organic �lms.[145] On the other hand,
it is well known that the thermal conductivity of low dimensional systems is
usually lower than the bulk, accounting for the higher thermoelectric perfor-
mance reported for multilayers and nanowires.[146] Accordingly, bulk values
provide an upper limit to the expected thermal conductivity.
A suitable estimation of thermal conductivity for ideal coupling between a

ballistic thermal conductor and the reservoirs relies on the quantum of thermal
conductance g0 = �2k2BT=(3h) = 9:46� 10�13T WK�1; which represents the
maximum possible value of energy transported per phonon mode.[147] In the
regime of low temperatures four main modes, arising from dilatational, tor-
sional, and �exural degrees of freedom, are expected for a quantum wire.[148]
Therefore, the thermal conductivity of a DNA oligomer of length LN = 0:34N
nm will be given by �N ' 4g0LN=(�R

2) = 0:02 Wm�1K�1 (at T = 10 K)
and �N ' 0:6 Wm�1K�1 (at room temperature) in optimal conditions. By
taking the value � ' 0:1 Wm�1K�1 as a suitable reference value, along with
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the power factors values previously obtained, we get ZT ' 4:5�9:0 for polyG-
polyC chains with �ve base pairs at room temperature (well above the usual
highest ZT ' 1� 2 for conventional bulk materials).[149] These remarkably
high �gure of merit values (comparable to those exhibited by best thermo-
electric materials,[150]) must be properly balanced with the signi�cant role
played by unavoidable environmental e¤ects, stemming from the presence of
a cation/water molecules atmosphere around the DNA chain, on the actual
thermoelectric e¢ ciency of DNA based nano-cells. In addition, the role of
polarons (whose formation is a very common process for organic polymers
with a �exible backbone such as DNA) in the electrical transport e¢ ciency
will deserve a closer scrutiny.[151, 152, 153, 154] Broadly speaking, the on-
site interaction of the charge carrier with phonon modes tends to localize it,
leading to charge transfer rates within the range � = 5�75 ps, as reported by
experiments.[155] These values are much larger than the charge transfer rates
related to coherent tunneling, which are given by � ' t0=h ' 0:03 ps. Ac-
cordingly, one reasonably expects that the presence of polarons will give rise
to a degradation of the charge transfer e¢ ciency, as compared to that corre-
sponding to coherent transport conditions. According to Eq.(7.35) a decrease
in the charge transfer e¢ ciency is generally accompanied by an enhancement
of the Seebeck coe¢ cient. On this basis, one could then expect that polaronic
e¤ects would lead to further improvement in the thermoelectric properties of
DNA chains.
In summary, prospective studies on the thermoelectric properties of syn-

thetic DNA oligonucleotides suggest that these materials are suitable candi-
dates to be considered in the design of highly-performing, nano-scale sized
thermoelectric cells. Experimental work aimed to test the actual capabilities
of DNA based thermoelectric devices under di¤erent environmental condi-
tions as well as to accurately determine the thermal transport properties of
synthetic DNA samples would be then very appealing.

7.5.2 Codon sequencing

As it was mentioned at the end of Section 6.1, there currently exists a growing
interest in the search for new sequencing methods entirely based on physical
principles able to allow for non-invasive analysis of a huge number of nu-
cleotides along the DNA strands. In this regard, scanning tunnel spectroscopy,
which directly detects the molecular levels of single DNA bases, has been ex-
ploited during the last few years. In fact, nucleobase-modi�ed tip STM mea-
surements demonstrate the ability to identify the di¤erent DNA nucleobases
due to selective chemical interactions, although it remains a chemically based
rather than a purely physically based technique.[156]
In this Section, we will consider the possibility of looking for coding se-

quence regions (introns) in long DNA fragments by employing thermoelectric
measurements, hence complementing the dc conductivity based approach in-
troduced in Section 6.5. To this end, we shall analyze the thermoelectric
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performance of short DNA chains connected between metallic contacts at
di¤erent temperatures in order to estimate the possibility of directly sens-
ing triplet nucleobases associations (including codons in codifying regions)
via their thermoelectric signature. We shall consider the single-strand DNA
Hamiltonian given by Eq.(6.19). In the case of a trimer oligonucleotide we
have three nucleobases of energies "�1 ; "

�
2 , and "

�
3 ; respectively, coupled with

hopping terms t and �t. Depending on the DNA sequence composition, its
length, and temperature the e¤ective value of the hopping integral t can
vary over a relatively broad range. We will adopt the values tCC = 0:3 eV,
tGG = 0:25 eV, tTT = 0:13 eV, and tAA = 0:035 eV in the case of homopoly-
mers, and tGT = 0:083 eV, tTG = 0:26 eV, tAC = 0:11 eV, and tCA = 0:37
eV in the study of heteropolymers. These values were derived from ab initio
calculations for 5�-XY-3�intrastrand stacked pairs.[157] In this way, a more
realistic description for codon triplets of biological interest is provided. We
will consider values within the range � = 0:1� 0:5 eV for the base-metal elec-
tronic coupling. Finally, we have considered two di¤erent contact parameters
of technological interest. On the one hand, one corresponds to a molecule
connected to an open edge of a graphene sheet at both sides. In this way, the
spectral window is approximately given by the graphite � bandwidth [�6:8; 0]
eV, corresponds to the tight-binding parameters tM = 1:7 eV, and "M = �3:4
eV. On the other hand, we consider platinum contacts corresponding to the
tight-binding parameters tM = 2:2 eV, and "M = �5:4 eV, determining the
allowed spectral window [�9:8;�1:0] eV.
In the �rst place we shall consider the transport properties corresponding

to GGG, AAA, CCC, and TTT codon trimers, respectively, codifying for
glycine, lysine, proline, and phenylalanine amino acids in the homo sapiens
genetic code. In this case we have � = 1. In the main frame of Fig.7.29 we
show the CCC thermopower curve for � = 0:5 eV. This curve is characterized
by three peaks and two crossing points E0 and E�, respectively de�ning three
di¤erent regimes exhibiting p-type or n-type thermopower alternatively. In
the upper inset of Fig.7.29, we compare the conductance of a C monomer, a
CC dimer, and CCC trimer as a function of the Fermi energy. While the dimer
conductance is degraded as a consequence of dimerization e¤ects, we observe
that the trimer conductance is signi�cantly enhanced as compared to that
corresponding to both C and CC bases over a broad energy range. In addition,
a well de�ned, narrow resonance peak is located at about E� = �3: 35 eV,
which is �anked by a shallow conductance minimum at about E0 = �4:57
eV. Taking into account Eq.(7.34) the origin of the crossing points in the
thermopower curve can be properly traced back to these topological features.

Now we consider the transport properties corresponding to TGT, CAC,
and TTG codon trimers, respectively codifying for cysteine, histidine, and
leucine amino acids in the homo sapiens genetic code. The aim is to com-
pare their properties with those previously obtained for the TTT and AAA
trimers in order to see the e¤ects stemming from the change of one of their
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FIGURE 7.29
Room temperature dependence of the Seebeck coe¢ cient as a function of
the Fermi level energy for a CCC trimer with � = 0:5 eV, tM = 1:7 eV,
"G = �7:75 eV, "A = �7:95 eV and "T = "C = �8:30 eV, and "M = �3:4 eV.
(Upper inset) Landauer conductance as a function of the Fermi level energy
for CCC (solid line), CC (dot-dashed line), and C (dashed line) nucleobases.
(Lower inset) Environmental e¤ects in the thermopower due to the presence of
backbone counterions giving rise to nucleobase energy shifts within the range
�E = �1 eV (dotted line) and �E = +1 eV (dashed line). (From ref.[139].
With permission from IOP Publishing Ltd.)
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FIGURE 7.30
Dependence of the room temperature thermopower as a function of the Fermi
level energy for a) TTT and TGT codons; b) CCC and CAC codons; and c)
TTT and TTG codons connected to platinum leads with � = 0:5 eV, tM = 2:2
eV, and "M = �5:4 eV. (From ref.[134]. With permission.)

original nucleobases (� 6= 1 in this case). In Fig.7.30a and b we respectively
compare the thermopower curves for the TTT/TGT and CCC/CAC trimers
as a function of the Fermi energy. We can see that the thermopower is sub-
stantially reduced upon the substitution of the central nucleobases in both
cases. This is a general feature of the codons obeying the formula XYX. This
result strikingly contrasts with the small e¤ect associated to the substitution
of an end nucleobase instead, as it is illustrated in Fig.7.30c. Accordingly,
the thermoelectric properties of codons obeying the general formula XXY are
quite similar to those observed for the corresponding homonucleotides.
In summary, the presence of resonance e¤ects among electronic levels in

oligonucleotides composed of three nucleobases leads to a signi�cant enhance-
ment of the thermoelectric signal. By comparing the transport curves cor-
responding to di¤erent types of trimers we see that a characteristic thermo-
electric signature can be used to identify the XYX type codons from XXX
homonucleotide ones on the basis of their di¤erent thermoelectric responses.
Since the coding properties of DNA introns are closely related to codon triplet
associations this preliminary result may enclose some biological relevance well
deserving a more detailed study by means of more realistic modeling of both
the electronic structure of nucleotides and the codon-lead bonding geometry.
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8
Novel designs based on the aperiodic order

8.1 Order and design: The technological viewpoint
In the previous Chapter we have seen that aperiodic order can be fruitfully
exploited in a number of structures with potential practical applications. For
instance, one can grow layered structures consisting of a large number of
aperiodically arranged �lms. The simplest example of such nanostructured
materials is a two-component Fibonacci heterostructure, where layers of two
di¤erent materials (metallic, semiconductor, superconductor, dielectric, ferro-
electric, ceramics) are arranged according to the Fibonacci sequence. A key
feature of these man-made materials is the presence of two kinds of order in
the same sample at di¤erent length scales: At the atomic level we have the
usual crystalline order determined by the periodic arrangement of atoms in
each layer, whereas at longer scales we have the quasiperiodic order deter-
mined by the sequential deposition of the di¤erent layers. This long-range
aperiodic order is arti�cially imposed during the growth process and can be
precisely controlled. Since di¤erent physical phenomena have their own rele-
vant physical scales, by properly matching the characteristic length scales we
can e¢ ciently exploit the aperiodic order we have introduced in the system,
hence opening new avenues for technological innovation. In this way, new
perspectives in the design of resonating optical devices that exploit the in-
terference possibilities associated to the quasiperiodic order of the substrate,
such as optical microcavities or broad multidirectional re�ection devices, were
discussed in Sections 7.2 and 7.3, respectively.
An important lesson we can learn from the examples presented in these

preceding Sections is that several characteristic features of energy spectra of
most aperiodic structures are closely related with a number of properties of
interest in the design of useful devices. For the sake of illustration we will list
the following ones:

� The presence of forbidden symmetries in photonic quasicrystals al-
lows for the existence of higher order rotational axes leading to more
isotropic complete band-gaps in omnidirectional mirrors,

� the presence of in�ation symmetries in both photonic QCs and ape-
riodic multilayers gives rise to the presence of a denser reciprocal space,

371



372 Aperiodic Structures in Condensed Matter

favoring higher harmonics generation processes in non-linear optics,

� the presence of critical states leads to the occurrence of highly local-
ized optical modes in defect-free photonic and phononic QCs of interest
for the fabrication of high quality factor resonators as well as coupled-
resonator waveguides,

� the presence of a highly fragmented energy spectrum becomes par-
ticularly useful for a number of applications as laser compression (de-
termined by small group velocities), high spectral resolution (arising
from the presence of very narrow transmission peaks for a given spectral
range), �ne �ltering tuning (since re�ectance of aperiodic coatings in-
creases with length), selective enhancement of thermal emission for some
selected frequencies, a signi�cant e¢ ciency enhancement of photovoltaic
cells, or an improved frequency selectivity in acoustic waveguides.

In addition to these properties, directly related to the fractal nature of
energy spectra in aperiodic systems (see Chapter 5), one can also bene�t
from purely structural features of these aperiodic arrangements. For example,
both Thue-Morse and Fibonacci multilayers have less interfaces than periodic
ones for a given system size, which is convenient in order to reduce losses
and dispersion e¤ects. As another illustrative example, we can mention the
large number of tetrahedral interstices in the structure of icosahedral QCs, a
property of interest for hydrogen-storage purposes.
Nevertheless, along with these useful aspects, quasiperiodic structures also

present an important shortcoming of fundamental nature, namely, that both
fractal features and long-range quasiperiodicity require a critical size to prop-
erly manifest themselves. Accordingly, in practical applications one must
reach a balance between those e¤ects related to the presence of energy losses
and dispersion e¤ects (requiring relatively small systems) and bene�cial as-
pects stemming from self-similarity and quasiperiodicity related e¤ects (which
require a large enough system).
Another interesting conclusion we can draw from the diverse aperiodic sys-

tems presented in Chapter 7 concerns the very nature of the geometric pat-
terns adopted in the design of a given aperiodic structure. As we can readily
see, most earlier designs were simply based on those aperiodic sequences (in
layered systems) or spatial arrangements (in two or three dimensional systems)
which had been previously considered in the mathematical literature, namely
Fibonacci, Thue-Morse, Rudin-Shapiro, period-doubling sequences, on the
one hand, and Penrose tiles, on the other hand. With the exception of the
Fibonacci sequence (which can be profusely found in a number of actual sys-
tems in Nature, like botanical arrangements, or morphogenetic patterns),[1]
the remaining aperiodic structures were originally introduced following more
theoretical motivations, basically. Certainly, this is a rather natural proce-
dure from a fundamental point of view, and it has proved very fruitful indeed.
However, as the �eld of aperiodic systems progressively matures, and the
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FIGURE 8.1
Scheme of a hybrid-order optical resonating microcavity based on three sub-
units. A full transmission periodic dielectric multilayer is encased between
two quasiperiodically ordered ones, acting as optical mirrors, and vice versa.
Thick, darker layers are made of titanium oxide, while the thin ones are made
of silica.

knowledge of fundamental aspects paves the way towards practical applica-
tions, it is reasonable to expect that the quest for speci�c aperiodic orderings,
able to yield an improved performance, will gradually grab the limelight.
This line of thought naturally introduces a new way of thinking in the �eld

of aperiodic arrangements of matter, opening the search for those aperiodic
orderings which may be more bene�cial for some speci�c technological ap-
plications. Accordingly, in this Chapter we aim to take a step ahead in the
aperiodic order realm by addressing this appealing issue in some detail.

8.2 One-dimensional designs
8.2.1 Hybrid order multilayers

Up to now we have considered periodic and aperiodic arrangements of matter
as two separate categories of order in Nature, each one exhibiting a number of
characteristic features, and the spotlight has been focused on aperiodically or-
dered structures as they substantially widen the possibilities of novel designs.
A broader approach considers the construction of mixed devices composed of
both periodically and quasiperiodically arranged multilayers in order to prop-
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erly blend in their speci�c features, thereby obtaining new capabilities. Such
devices can be viewed as hybrid order systems made of two di¤erent kinds
of subunits, each one exhibiting a di¤erent kind of topological order.[1] Some
examples of this kind of arrangement are illustrated in Figs.8.1 and 8.4. The
key point here is that one just changes the ordering in the stacking sequence
of layers composing each subunit, so that the chemical nature of the di¤erent
layers remains the same, a remarkable point for industrial implementation.
The introduction of these subunits endows the system with an additional de-
sign parameter, bridging the gap between the atomic level characteristic of
the microstructural domain of each layer and the mesoscale level associated
to the long-range order of the entire device as a whole. Therefore, since each
subunit can sustain a speci�c kind of order (i.e., periodic or aperiodic) we
are able to introduce a modular design in the multilayered structure by prop-
erly selecting the ordering sequence in each subunit. Noteworthy, this sort of
modular design naturally mimics the basic structural principles observed in
several macromolecules of biological interest.
These mixed structures were originally proposed in the �eld of linear op-

tics in order to obtain complementary optical responses, ranging from that
corresponding to a selective �lter to that proper of a re�ective coating, by
properly choosing the incidence angle geometry.[2, 3] In Fig. 8.1 a sketch
illustrating possible designs for optical devices based on the mixed architec-
ture just described is shown. They correspond to resonant-cavities where a
high transmission periodic (quasiperiodic) multilayer is encased between high
re�ectivity Bragg re�ectors based on quasiperiodic (periodic) dielectric mul-
tilayers. The basic principle can readily be extended to the construction of
broad omnidirectional re�ection bands on the basis of complementary band
gap design. The main idea is that gaps appearing in the highly fragmented
quasiperiodic units compensate for the relatively broad band regions appear-
ing in the periodic ones. In this way, one can optimize engineered combina-
tions of quasiperiodic and periodic short multilayered stacks in order to obtain
not too thick photonic heterostructures (v.g., [ABA]4[BAABA]2[BA]7), ex-
hibiting large omnidirectional re�ection.[4, 5] In the same vein, the possible
use of a hybrid order structure of the form periodic/Cantor/periodic dielectric
multilayer was also proposed for its applications as a polychromatic �lter.[6]
Though originally proposed for optical applications, the properties of such
hybrid order structures have been also considered in the �eld of acoustics,[?]
thermal waves propagation,[7] and phononic crystals as well.[8]
From a mathematical viewpoint the nature of spectra in hybrid order struc-

tures is an interesting open problem. A representative example of the ob-
tained numerical results is shown in Fig.8.2 for the frequency spectrum of a
Fibonacci/periodic/Fibonacci hybrid structure. For the sake of illustration,
in Figs.8.2 a and b the frequency spectra of periodic and Fibonacci chains
are respectively presented. In the Fibonacci spectrum one can readily see the
characteristic fragmentation scheme, as well as the presence of three allowed
bands in the region corresponding to the gap in the binary chain (see Fig.5.11).
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FIGURE 8.2
Frequency eigenvalues versus ordering number for (a) a binary periodic chain
with N = 244 atoms; (b) a Fibonacci lattice with N = 377 atoms; (c) a
hybrid chain formed by a periodic chain including 116 atoms sandwiched
between two Fibonacci lattices including 377 atoms each (N = 986 atoms).
The model parameters are mA = 4:805 � 10�23 g, mB = 1:791 � 10�22 g,
KAA = 4:416 � 104 dyn/cm, KAB = 4:724 � 104 dyn/cm, and they describe
an Al/Ag metallic multilayer. (Courtesy of Victor R.Velasco).
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FIGURE 8.3
Normalized atomic displacements u(n) versus the atom order number n
through (a) the Fibonacci/periodic/Fibonacci hybrid structure whose fre-
quency spectrum is shown in Fig.8.2, corresponding to the eigenvalue ! =
15:68 GHz; (b) a hybrid structure formed by the periodic repetition 64 times
of an AB block sandwiched between two seventh-order Thue-Morse multilay-
ers, corresponding to the eigenvalue ! = 40:006 GHz with the same model
parameters as those indicated in Fig.8.2. (Courtesy of Victor R.Velasco).

By inspecting Fig.8.2 one realizes that the spectrum of the hybrid structure
shares some characteristic features with both the periodic and the quasiperi-
odic frequency spectra. Thus, the hybrid spectrum preserves a high degree of
fragmentations over all the considered frequency range, but the energy bands
located at the intermediate frequency region in the isolated Fibonacci lattice
are pushed towards lower frequency values, nearly closing the gap between 20
and 30 GHz typical of the quasiperiodic lattice.

Intimately related to these modi�cations in the overall spectral structure,
one may expect that the competition between highly fragmented spectra sup-
porting critical eigenstates (a characteristic feature of quasiperiodic systems)
and continuous spectra possessing Bloch eigenfunctions (typical of periodic
systems) should give rise to some peculiar eigenstates in these hybrid struc-
tures. Two illustrative examples are shown in Fig.8.3 for Fibonacci/periodic
and Thue-Morse/periodic hybrid structures. In Fig.8.3a one can appreciate
an extended vibration pattern, corresponding to a frequency which simultane-
ously belongs to the energy spectra of both Fibonacci and periodic chains. The
vibration pattern looks pretty regular in the periodic portion of the structure
(a reminiscent feature of a typical Bloch-like function), whereas it exhibits
�uctuations at several scales in the quasiperiodic portions of the structure
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FIGURE 8.4
Diagram showing di¤erent possible designs of hybrid systems obtained by
combining periodic and aperiodic multilayers.

(showing typical self-similar �ngerprints).[7] Conversely, in Fig.8.3b we show
the vibration pattern corresponding to a frequency value which belongs to the
energy spectrum of the periodic unit, but not to the Thue-Morse one. In this
case, the atomic displacements are essentially con�ned to the periodic block
(thus acting as a kind of phononic cavity) and exhibit a notable regularity, as
expected for a Block-like function.[9] In this way, the presence of two di¤er-
ent kinds of order in the underlying substrate of the hybrid order structure
naturally a¤ects the energy spectrum and the spatial distribution of its eigen-
states. Though we have focused on the aperiodic/periodic/aperiodic systems
it is clear that one should expect similar physical behaviors for other possible
combinations of periodic and aperiodic units. In fact, there exist many ways
of constructing such combinations, opening a broad avenue for the design of
new kinds of multilayered systems. For instance, one may think of reversing
the order type in the previously considered structure, thus obtaining peri-
odic/Fibonacci/periodic or periodic/Thue-Morse/periodic multilayers. Sim-
ilarly, one may mix together di¤erent kinds of aperiodic sequences as, for
instance, Fibonacci/Thue-Morse/Fibonacci or Fibonacci/Thue-Morse/Rudin-
Shapiro, and so on. A graphical account of some possible designs based on
hybrid order multilayered structures is shown in Fig.8.4.

8.2.2 Conjugation and mirror symmetries

Following this line of thought one may also consider systems entirely based
on quasiperiodic arrangements of layers where the role played by the A and
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FIGURE 8.5
Dependence of the transmission coe¢ cient with the incidence angle for the
conjugated order device sketched in the inset, with nA = 1:46 (SiO2), nB =
2:35 (TiO2) (type I subunit) and nA = 2:35 (TiO2), nB = 1:46 (SiO2) (type II
subunit). Inset: Scheme of a conjugated order optical resonating microcavity
based on three quasiperiodic subunits, where a Fibonacci dielectric multilayer
(with N = 8), showing high transmission, is encased between two Fibonacci
multilayers (with N = 5), acting as optical mirrors. Dark (white) layers
correspond to low (high) refractive index materials, respectively. (Adapted
from Ref.[3]. Reprinted �gure with permission from Maciá E 2001 Phys. Rev
B 63 205421 c 2001 by the American Physical Society.)

B layers is respectively interchanged. In that case the characteristic long-
range quasiperiodic order is preserved under transformations involving the
conjugation operation A+ = B and B+ = A. This invariance, which follows
from the very de�nition of the Fibonacci sequence, has interesting physical
implications which can be exploited in the design of optical devices, as that
shown in the inset of Fig.8.5 which consists of two kinds of quasiperiodic
subunits. In the �rst one (labeled I), the A (B) layers are composed of low
(high) refractive index materials. In the second one (labelled II), the values
of the refractive indices assigned to the layers A and B are reversed, so that
the total internal re�ection angle condition is achieved when x0 ' 0:4 (i.e.,
� ' 40o, see Section 7.2.2.2). Consequently, the second unit behaves as a
perfect mirror for incidence angles verifying x > x0. The key point here is
the possibility of combining both kinds of units in order to construct e¢ cient
optical microcavities by a judicious choice of the incidence angle geometry.
In the main frame of Fig.8.5 the dependence of the transmission coe¢ cient
with the incidence angle � for the optical device just described is shown. The
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subunits are composed of SiO2 (TiO2), whose indices of refraction (at 700 nm)
are nA = 1:45 and nB = 2:30, respectively. From this �gure one sees that a
resonant cavity to work at speci�c incidence angles could be constructed by
making a structure where a Fibonacci multilayer exhibiting full transmission
at the incidence angle x ' 0:67 ' 55� is sandwiched between two Fibonacci
multilayers behaving as perfect mirrors at this angle. It is also worth noting
that by properly selecting the refraction indices of the layers�materials, it
would be possible to achieve broad multidirectional re�ection devices based
on hybrid order structures.
The basic principle inspiring the combination of conjugated quasiperiodic

structures can be readily extended to consider other kinds of aperiodic se-
quences as well. In fact, the possibility of obtaining a selective con�nement
of certain normal modes in composite systems based on the combination of
Fibonacci/Fibonacci�, Thue-Morse/Thue-Morse�, and Rudin-Shapiro/Rudin-
Shapiro� stacks has been recently reported (the symbol � here indicates the
conjugation operation A+ = B and B+ = A).[10] The multilayers are de-
scribed by nearest-neighbor force constants (see Section 5.4) and the cor-
responding masses particularized to aluminum and silver layers (respectively
containing two or three Al or Ag atoms each). Since the Thue-Morse sequence
is invariant under the conjugation transformation by construction (see Section
4.2.1) one realizes that the energy spectrum of the Thue-Morse/Thue-Morse�

multilayer does not exhibit any new feature, simply reducing to that corre-
sponding to a higher order generation one. On the contrary, Fibonacci and
Rudin-Shapiro based structures exhibit di¤erences in the frequency spectrum
(e.g., reduction and partial closing of some primary and secondary gaps) as
compared to the original (i.e., not combined) multilayer. The most remark-
able feature is the presence of spatial con�nement of the atom displacements
in just one of the sequences forming the composite structure for certain fre-
quency ranges. This selective con�nement of the atomic vibrations is achieved
due to the interplay of di¤erent aperiodic orders (original and conjugated one)
at di¤erent scales, and may be useful, at least in principle, for �ltering and
guiding systems.[10] It could also be exploited to enhance the local interac-
tion of electromagnetic (Kerr e¤ect) or stress (piezoelectric e¤ect) �elds in
non-linear media.
Thue-Morse sequence has mirror symmetry by construction, which most

other substitutional sequences considered so far, as the Fibonacci, period-
doubling, or Rudin-Shapiro ones, lack. Nevertheless, one can intentionally
introduce an internal mirror symmetry in these sequences by

1. reversing the order of the letters in the original sequence (i.e., ABAAB !
BAABA), and

2. concatenating the original sequence to the reversed one to obtain the
string of letters ABAABjBAABA.[11]

It is clear that the resulting sequence has mirror symmetry with respect to
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the back slash plane by design. In so doing, the structure is endowed with a
nested series of dimer-like positional correlations among the letters, starting
from the mirror symmetry plane (i.e., AfB[AfA[B=B]AgA]BgA). This struc-
tural correlation, in turn, will induce a series of resonant transmission e¤ects
(in close analogy to the resonance e¤ects earlier considered in the study of
the random dimer model, see Section 1.7). This interesting feature was used
to manipulate the resonant transmission properties at speci�c wavelengths by
designing and growing a symmetric Fibonacci/Fibonacci�1 multilayer (the
symbol �1 here indicates the letters reversal operation) based on TiO2 and
SiO2 dielectric layers. The measured transmission spectra indicated the po-
tential applications of this kind of aperiodic structures in multiwavelength
narrow band �lters and wavelength division multiplexing devices.[12]
The vibrational properties of aperiodic systems with arti�cially imposed

mirror symmetry were numerically studied in the case Fibonacci/Fibonacci�1,
Thue-Morse/Thue-Morse�1, and Rudin-Shapiro/Rudin-Shapiro�1 heterostruc-
tures based on aluminum and silver layers.[13] A number of localized modes
(absent in the original aperiodic systems) were found in the wide primary
gaps and near the band edges of the Fibonacci based mirror structures. These
modes only appear when even order Fibonacci generations are considered, as
they appear due to the formation of a BB dimer at the mirror plane in that
case. Since the presence of BB dimers is forbidden in Fibonacci sequences, its
presence can be properly regarded as a structural defect, breaking the ideal
quasiperiodicity of the Fibonacci sequence. Accordingly, this defect dimer
gives rise to the presence of some isolated modes in gap regions of the fre-
quency spectrum. In the Rudin-Shapiro based structures, analogous localized
modes near the band edges were also found, whereas in the Thue-Morse based
structures no such features are found, as expected. From a practical view-
point, the existence of localized modes in the gaps could be used for �lter and
guiding purposes.[13]
In summary, making use of certain formal operations (letter conjugation,

letters reversal), followed by concatenation of the obtained sequences (re-
garded as structural building blocks), one can exploit additional symmetries
in the resulting aperiodic structures. The combination of these systems among
them, as well as with periodic ones, would result in a next generation of struc-
turally complex systems based on aperiodic orderings. The possible emergence
of unexpected physical properties of possible technological interest will prob-
ably deserve further attention on these systems from researchers working in
the �eld in the years to come.

8.2.3 Distorted quasiperiodicity

In Section 2.5 we learnt that quasiperiodic structures can be obtained by
means of a suitable projection from periodic arrangements de�ned in a higher
dimensional hyperspace. One can then imagine a further generalization by
considering the projection of a quasiperiodic lattice according to a certain
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FIGURE 8.6
Sketch showing the principle of introducing a distortion into a one-dimensional
quasiperiodic multilayer system by means of a projection scheme.

rule in order to obtain a distorted quasiperiodic structure. In so doing, one in-
troduces some additional design parameters in the projected structure, which
are directly related to the adopted projection rule. For the sake of illustration
let us consider that the original quasiperiodic sequence is arranged along the
abscissas of a Cartesian coordinate system, and the projected sequence is ob-
tained along the ordinates (Fig.8.6). The generated structure is then obtained
from the original by applying a projection rule of the form y(x; ki), where ki
are arbitrary parameters characteristic of the adopted rule. This approach
was originally introduced to obtain a broad omnidirectional re�ection band in
one-dimensional photonic QCs based on the Fibonacci sequence. To this end,
the power law y = x1+k was used, where k measures the distortion degree
introduced to the original Fibonacci multilayer.[14] In this way, the thickness
of each layer in the deformed Fibonacci system becomes variable and depends
on the sequential order j of the considered layer and the deformation degree
according to the expression

d0j = d[jk+1 � (j � 1)k+1]; j � 1 (8.1)

where d is the thickness of the considered layer in the original Fibonacci
sequence. In the particular case of a dielectric multilayer the change in the
layer thickness is accompanied by a change in its related optical thickness.
This originates a modi�cation of the optical properties in the multilayer which
can be precisely controlled by a judicious choice of the projection parameter k.
It is clear that this procedure can be immediately generalized to any arbitrary
sequence in order to obtain distorted Thue-Morse, Rudin-Shapiro, or period-
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doubling sequences for instance. On the other hand, for a given original
aperiodic sequence, one can properly vary the projection rule to tailor the
resulting distorted structure at will. The potential of this approach to design
useful orderings in multilayered devices is certainly extraordinary.

8.3 Two- and three-dimensional designs

8.3.1 Aperiodic squares

As we saw in Chapters 1 and 2, two-dimensional aperiodic tilings are collec-
tions of polygons capable of covering a plane with neither gaps nor overlaps in
such a way that the resulting overall pattern lacks any translational symmetry.
Recently, the possible e¤ects of aperiodic order in the electromagnetic radi-
ation properties of antenna arrays arranged according to quasiperiodic tiles
have been theoretically discussed, by considering how various tiling geome-
tries a¤ect directivity, sidelobe level, and bandwidth of the radiated �elds.[15]
Quite interestingly, the experimental realization of a small antenna put on top
of a planar structure exhibiting octagonal symmetry has con�rmed a very high
directivity at some frequencies as well as the suppression of the transverse elec-
tric surface waves at all frequencies on the surface of such a structure.[16] This
suppression can be understood as due to the fact that, in this aperiodic struc-
ture, the resonance frequencies of the squares and rhombuses building tiles are
incommensurate. Accordingly, there does not exist any frequency for which
the surface can support surface wave propagation and the overall transmission
of transverse waves is almost suppressed. A completely analogous result has
been recently reported for Penrose phononic crystals (see Section 7.3) made
of polymeric rods (vl = 1800 ms�1, vs = 800 ms�1, � = 1:14 kg m�3) with
a pentagonal cross section submerged in water at �lling fractions of 17%. In
this case, the reduction of the symmetry of the scattering object (from circu-
lar in the cylindrical rods to a polygonal one) can a¤ect the symmetry of the
system modes. In particular, for scatters with lower symmetry the resonance
frequencies should change with the direction of the incident wave, probably
leading to wider gaps.[17]
Nonetheless, these applications still rely on well-known aperiodic tiles, such

as Archimedean tiles (see Section 1.7) or Penrose-related tiles (see Section
2.2.2), and do not introduce truly innovative approaches in the �eld. A �rst
step forward in the quest for new aperiodic designs comes from the introduc-
tion of the so-called square Fibonacci tiling, which was originally proposed
as an illustrative example of quasicrystal without forbidden symmetries.[18]
This square is constructed as follows. Let us consider two identical Fibonacci
grids, each one consisting of an in�nite set of lines whose inter-line spacing
follows the Fibonacci sequence of short (unity) and long (�) distances. By
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FIGURE 8.7
(a) The square Fibonacci tiling; (b) substitution rules for obtaining the square
Fibonacci tiling. (Courtesy of Ron Lifshitz).

superimposing both grids at a right angle one gets a two-dimensional quasi-
periodic tiling with tetragonal point group symmetry (Fig.8.7a). This tiling
consists of three di¤erent tiles: a small square of dimensions 1 � 1, a large
square of dimensions ��� , and a rectangle of dimensions 1�� . This tiling can
also be generated by the cut-and-project method from a 4-dimensional space
(see Section 2.5) or using the substitution rules illustrated in Fig.8.7b. This
construction can be straightforwardly generalized to three dimensions to ob-
tain the cube Fibonacci tiling. It can also be generalized to any quasiperiodic
sequence as well.
Although these structures are unlikely to occur spontaneously in Nature,

they can be used in the design of aperiodic based devices for optical or acousti-
cal applications, as we saw in Chapter 7. From this perspective the knowledge
of their most relevant mathematical properties is worthwhile. The main ad-
vantage of these structures (as compared to more realistic structural models
for QCs, for instance) is that they are separable, namely electron or phonon
problems can be decomposed into separated one-dimensional problems, so
that possible dimensionality e¤ects can be more easily addressed. In this
way, the nature of both the energy spectra and eigenfunctions of the square
Fibonacci lattice has been studied. From the obtained results it has been
conjectured that a transition from singular continuous to absolutely contin-
uous spectra may occur in these Fibonacci based two-dimensional lattices in
going from one to two dimensions, leading to the emergence of extended wave
functions.[19]
The physical properties of photonic aperiodic crystals based on the Thue-
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Morse sequence have been recently explored as well. A two-dimensional Thue-
Morse grating was fabricated by single beam computer-generated holography
according to the recursive rule given by[20]

Mn+1 =

�
Jn �Mn Mn

Mn Jn �Mn

�
; (8.2)

where Jn is a 2n � 2n matrix in which each element is equal to one, and the
initial matrices to start iteration are

M1 =

�
1 0
0 1

�
; J1 =

�
1 1
1 1

�
: (8.3)

Note that J1 reduces to the Thue-Morse substitution sequence (see Table
4.3), andM1 is the identity matrix. Making use of Eq.(8.3) into Eq.(8.2) one
gets

M2 =

0BB@
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

1CCA ; M3 =

0BBBBBBBBBB@

1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1

1CCCCCCCCCCA
; . . . . (8.4)

It is easily veri�ed that any row and any column of the symmetric Mn

matrix is a Thue-Morse sequence of order n. The photonic properties of this
square Thue-Morse lattice, with dielectric cylinders (� = 12:25) located at the
"0" sites, was theoretically analyzed con�rming that the self-similarity and
long-range correlations of this structure give rise to the emergence of a rich
bandgap structure as well as to the presence of localized light wave states.[21]
On the other hand, studies on the optical behavior of two-dimensional Fi-
bonacci based lattices fabricated by electron-beam lithography on transpar-
ent quartz substrates reported on the presence of nearly localized plasmon
modes whose exact location can be accurately predicted from purely struc-
tural considerations. In this way, the quasiperiodicity of gold nanoparticles
distribution on the substrate has a signi�cant impact for the design and fabri-
cation of novel nano-plasmonic devices.[22] In this case, the two-dimensional
quasiperiodic lattice was obtained from a seed letter A or B by applying two
complementary Fibonacci sequence substitution rules gA : A ! AB; B ! A
and gB : A ! B, B ! BA (depending on whether the �rst element encoun-
tered in the letter matrix expansion is A or B) along the horizontal and the
vertical directions, alternatively. For the sake of illustration the �rst genera-
tions of the two-dimensional Fibonacci structures are shown below in matrix
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form

A! AB�
A B
B A

�
!
�
A B A
B A B

�
0@A B A
B A B
A B A

1A !

0@A B A A B
B A B B A
A B A A B

1A � � � :
Although the resulting structure does not coincide with that of the square

Fibonacci lattice introduced above, both the direct and reciprocal lattices ob-
tained agree very well in both cases. Following this approach two-dimensional
generalizations of both Thue-Morse and Rudin-Shapiro sequences have been
implemented to design metallic nanoparticles arrays of interest for plasmon
nanodetectors.[23]

8.3.2 Spherical stacks and optical lattices

In Section 7.2 we presented several instances of systems based on the aperiodic
stacking of many layers. A key feature of those systems is that every layer is
geometrically characterized by its thickness along the growth direction (it has
also a cross section, of course, but its value is physically irrelevant). This is not
the case if one considers non-planar geometries (i.e., cylindrical or spherical
ones) for the layers, as it is shown in Fig.8.8. In fact, the preservation of the
energy �ux in a solid angle along the radial direction requires the consideration
of the external (ri+1) and internal (ri) boundaries of each layer, so that one
must consider the order number of the layer, i, to properly express its thickness
di = ri+1 � ri. This is a direct consequence of the existence of a preferential
point in the system (its center) which breaks the homogeneity present in the
multilayers based on planar slabs. This means that, in general, the properties
of wave oscillations depend on the place of a layer with respect to the center
of the spherical cavity.

The mathematical treatment of wave propagation through spherical multi-
layers is similar to that described in Section 7.2 by expressing the Helmholtz
Eq.(7.2) in terms of a scalar function called the Debye potential �(r; �; ') as

d2�

dr2
+

�
!2

c2
n2(r)� l(l + 1)

r2

�
� = 0; (8.5)

where n is the refractive index, ! is the angular frequency, and l is the angular
momentum.[25] Eq.(8.5) can be solved in terms of the spherical Hankel func-
tions and the propagation of the wave can be described in terms of a series
of transfer matrices containing these functions. Nevertheless, in the spherical
multilayer case these transfer matrices are no longer unimodular, since their
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FIGURE 8.8
Geometry of a spherical multilayered system. A stack of multilayers arranged
according to the Fibonacci sequence is deposited on the surface of a mi-
crosphere. (From ref.[24]. With permission from Elsevier.)

determinant is given by the ratio (ri+1=ri)2 > 1.[26] Another consequence of
the spherical geometry is that the transfer matrix depends not only on the
thickness of the layer, but also on the distance of the considered block to the
center. As a result, the simple concatenation rule Sn+1 = SnSn�1, giving
the Fibonacci stacking sequence in homogeneous systems (see Section 4.2.1),
must be replaced by the following one for the spherical Fibonacci stack,[24]

Sn+1(n+ 1) = Sn(n)Sn�1(Fn+2): (8.6)

This result provides a clear illustration of the signi�cant role of geometric
three dimensional e¤ects in the very nature of aperiodic order in multilayered
systems.
As a �nal example of new designs based on aperiodic order in three dimen-

sions we will brie�y comment on the so-called optical lattices. In previous
chapters we have found many examples where the presence of quasiperiodic
long-range order in a lattice gives rise to the formation of sharp di¤raction
peaks due to interference processes coupling waves and matter. In optical
lattices several monochromatic travelling waves are combined to create an in-
terference pattern which exhibits long-range order. Then, such a light �eld
is used to trap small particles or atoms inside it. In the resulting structure
the atoms adopt a regular arrangement in space, but they are weakly coupled
among them, at variance with the usual situation in conventional solid mat-
ter. In fact, atomic gases condensates in optical lattices do not present either
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defects or phonons, o¤ering a powerful tool for investigating the quantum be-
havior of condensed matter systems under unique control possibilities. The
symmetry of the optical potential created by the interference of lasers is com-
pletely determined by the geometric arrangement of their beams. Therefore,
one can in principle design both periodic and quasiperiodic optical potentials
at will. Following this approach, the formation of a three dimensional quasi-
periodic optical lattice of Cs atoms by the interference of �ve or six laser beams
was reported some time ago.[27] Quite interestingly, a physical realization of
the geometrical cut-and-project method (see Section 2.5.1) was proposed for
creating a Fibonacci optical lattice. To this end, four laser beams build a
two-dimensional square lattice by their interference. A �fth laser beam is
then used to drive Rb atoms along the projection direction at an appropriate
angle (see Fig.2.12). By properly arranging the on-site energies of these atoms
one would obtain a physical realization of a Fibonacci lattice of atoms.[28] It
is then clear that optical quasiperiodic lattices o¤er dramatic possibilities for
designing a wide range of geometrical arrays able to con�ne Bose-Einstein
condensates of both fundamental and practical interest.[29] In this way the
notion of aperiodic order spreads over di¤erent domains of Condensed Mat-
ter, as previous concepts originally restricted to periodic arrangements are
properly generalized.

8.4 Beyond quasiperiodic order: Aperiodicity by design

At the beginning it was periodic thinking. Afterwards, quasiperiodic order
was discovered; �rst in mathematical kingdom, subsequently -and partially
by chance- in physical sciences as well. From the study of quasiperiodic sys-
tems it was progressively realized that the domains of ordered matter could
be expanded more and more. First steps in aperiodic condensed matter were
mainly guided by previous mathematical knowledge about quasiperiodic func-
tions along with some results obtained from the study of the structural and
physical properties of quasicrystals and aperiodic superlattices. In this way, a
variety of self-similar systems, some of them exhibiting long-range order based
on in�ation symmetries and/or substitution rules, other ones exhibiting both
in�ation and translation symmetries, like fractals, were systematically inves-
tigated.

Certainly, there exist many other ways to arrange a series of di¤erent layers
in an ordered aperiodic way other than the recourse to substitution sequences.
For instance, one may consider a multilayer where each layer is labeled by a
natural number in such a way that A layers correspond to prime numbers.
Since the number of primes progressively decays as one goes to larger integers
(the mean density of primes is approximately given by 1= ln p) the relative
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frequency of A layers vanishes as the system grows longer. Therefore, A
layers can be regarded as some sort of diluted impurity layers. Nevertheless,
an interesting property of primes is that they do not come infrequently in
pairs (called twin primes) like the couples (11,13) or (17,19), for instance.
In this way, twin primes introduce a short-range correlation among the A
layers, which is completely analogous to that characteristic of the random
dimer model (see Section 1.7). As a consequence, one should expect that the
presence of these correlations gives rise to the emergence of delocalized states
in this sort of multilayers.[30]
As the �eld is coming to reach a certain maturity, and some relationships

between spatial structure and physical properties are progressively disclosed,
a logical extension naturally appears: it consists in considering systems whose
building blocks are intentionally arranged according to certain aperiodic de-
signs in order to tailor their physical properties to achieve some speci�ed
requirement. In this case, the guiding principle is not the previous knowledge
about a sequence with some well-known mathematical (or even merely aes-
thetical) properties well deserving to be explored, but a purely technological
one. One has in mind a requirement which must be ful�lled, and tries to
�nd out the best arrangement of matter able to �t it. We will refer to the
systems obtained in this way as aperiodic systems by design. In so doing,
appealing aperiodic orderings are created by hand, generally following suit-
able optimization algorithms. Such a procedure essentially di¤ers from the
recursion methods usually considered in the study of aperiodic systems based
on the application of substitution rules or self-similar in�ation symmetries,
thereby substantially enriching the variety of aperiodic orders of interest in
Condensed Matter Physics.
A �rst example of aperiodic systems by design was spurred by the interest

in designing quasiperiodic structures able to simultaneously phase match any
two non-linear interactions. To this end, a suitable algorithm was used to
determine an aperiodic modulation of the non-linear coe¢ cient in ferroelectric
devices.[31] This procedure is an example of what is generally known as a
reverse engineering problem. Thus, the optimized structures are found by
numerically solving an optimization problem where a number of optimization
parameters (for instance, the layer thicknesses or the assignment of positive
and negative domains in a ferroelectric multilayer) are treated as independent
variables subjected to certain physical limitations (e.g., the existence of a
thickness small limit for the layers). The merit function to be optimized is
de�ned in terms of the physical magnitude of interest in the considered device.
For instance, if one is interested in optimizing the re�ectance R(�) of a mirror
or a coating over a given spectral range one may use a function of the form

f =
1

N

NX
j=1

[R0 �R(�j)]2 ; (8.7)

where N is the total number of layers and � the radiation wavelength. Follow-
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ing this approach a number of Mo/Si aperiodic multilayers were designed and
grown in order to attain a maximum re�ectivity over a speci�ed range of wave-
lengths or angles of incidence for XUV radiation for their use as mirrors,[32]
or analyzers,[33] (as we discussed in Section 7.2.1, Fibonacci multilayers ex-
hibited very promising re�ecting properties). Similar approaches have been
used to design e¢ cient aperiodic W/Si multilayer mirrors for x-ray plasma
diagnostic,[34] narrowband optical �lters able to simultaneously tune mul-
tiple wavelengths,[35] organic light-emitting diodes with an improved bright-
ness output,[36] or enhanced frequency converters for continuous-wave tunable
lasers.[37]
As we learnt in Section 2.6, the discovery of quasicrystalline alloys led to the

introduction of a more general de�nition of crystals, where the focus moves
from the physical space to the reciprocal space. We have also seen that the
most promising applications of aperiodic multilayers have been demonstrated
in the �eld of optics, where self-similarity provides plentiful reciprocal states
for quasi-phase matching in non-linear frequency conversion, or the existence
of forbidden, higher order symmetries leads to more isotropic Brillouin sur-
faces for the design of omnidirectional band gaps. Accordingly, it seems a con-
venient procedure to move from the physical space to the reciprocal one when
trying to search for novel designs of practical interest.[38] This very promising
approach has been recently explored, and a general theory to identify those
aperiodic structures having most useful band properties has been introduced
by means of a Fourier-space based inverse optimization algorithm. In this way,
one can manipulate the Fourier components of an aperiodic system to design
and engineer any desirable band gap and �eld localization characteristic.[39]
In addition to its practical interest, this approach properly accounts for a

very fundamental feature of quasiperiodic systems. In fact, periodic systems
have a unique scale length which is determined by the characteristic period
of their unit cell. On the contrary, both fractals and quasiperiodic structures
are more precisely de�ned in an asymptotic way. These asymptotic processes
involve longer and longer scales in physical space, which in turn give rise to
a rich, nested structure in reciprocal space, hence lacking a well de�ned scale
length. A nice illustration of this rich pattern in reciprocal space is shown in
Fig.2.8. As we discussed in previous chapters, the characteristic distribution of
nested peaks in reciprocal space, arranged according to a never ending (at least
in principle) self-similar pattern, is at the root of a number of both intriguing
and useful physical properties of aperiodic structures, like the extremely small
thermal conductivity of quasicrystalline alloys or the high symmetry of the
Brillouin zone of photonic QCs (see Figure 7.21b). In this way, one may think
of a new �eld for future technological research focusing on the smaller possible
features a system possesses in reciprocal space, rather than in physical space.
Such a topic research (which we could tentatively refer to as nano-reciprocal-
space science) closely follows the sequence of theoretical events which were
progressively disclosed as the novel paradigm of order without periodicity
attained its present status, and I guess it could pro�tably guide the next
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generation of Condensed Matter physicists and Materials Science researchers
alike, far beyond the still narrow frontiers of knowledge imposed by our current
limited understanding on the role of aperiodic order in Science and Technology.

8.5 Some open questions
Our journey is now about completion. I sincerely hope the reading of the pre-
ceding pages has provided the reader with some intellectual thrust, spurring
his/her interest in giving a closer look on the possible implication of aperiodic
order in his/her own research �eld. To this end, I would like to conclude
by listing some appealing topics which, in my opinion, well deserve a deeper
consideration in the years to come.

� What is a crystal?

At the time being we are still lacking a �nal de�nition for that notion.
Currently, we only have a provisional de�nition, distinguishing periodic crys-
tals from aperiodic ones. In addition, in the aperiodic crystals class, one can
distinguish among incommensurate composites, modulated phases, and qua-
siperiodic crystals. So far, we have found just four di¤erent symmetry classes
among quasicrystals to date, namely, icosahedral, decagonal, dodecagonal,
and octogonal ones. Is that all?
Certainly, one can think of many more possible arrangements of matter

giving rise to purely discrete di¤raction patterns and exhibiting beautiful and
subtle spatial symmetries, as compared with those formerly allowed by the,
now old-fashioned, crystallographical restriction theorem.[40, 41] Some hints
in that direction are provided by the current quest for novel dielectric struc-
tures and metamaterials based composites of interest for optical applications
and optoelectronics. I suspect that advances in technological innovation will
give us a plethora of ingenious complex designs of matter structures during
the next decades, most of them based on algorithmic rules far beyond the
relatively simple substitution sequences which played the main characters in
the aperiodic stage at early times. If so, how will we denominate them?
It is likely that the genealogical tree of aperiodic order will open new

branches, and elder ones will fan out in a fractal-like manner in order to ac-
commodate new structures in a coherent fashion. For instance, some time ago
the global structure of B6O oxide was deciphered as a hierarchical packing of
icosahedral boron clusters (see Section 1.4).[42] More recently, the x-ray pat-
terns of cubic aperiodic phases observed in melt-quenched Mg-Al and FeNbBSi
alloys have been described in terms of a periodic packing of truncated tetra-
hedra and Frank-Kasper polyhedra hierarchically arranged.[43] Inspired by
the example provided by the fruitful recourse to hyperspace crystallography
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in order to encompass most basic notions of classical crystallography within a
uni�ed theoretical framework based on group theory and projection matrices,
it is quite possible that the very notion of hypercrystals must be then intro-
duced to keep trace of the existence of an increasing hierarchy of complex
orderings of matter containing the previous simpler ones (namely, periodic
and quasiperiodic crystals!) in a uni�ed way. Thus, the higher dimensional
description has recently proved useful in order to describe a phase transfor-
mation in an incommensurate molecular crystal that essentially a¤ects the
interaction between the two composing structures rather than the individual
spatial structures themselves.[44] It is then reasonable to expect that, in con-
trast with periodic materials, many more types of phase transitions may be
considered in crystallographic systems belonging to the hyperspace realm.

� Organic Quasicrystals?

Closely related to the question regarding the possible existence of quasi-
periodic crystals exhibiting new axial symmetries (v.g., 7-fold or 9-fold,[45])
is the question about the very nature of chemical bond in currently known
QCs. As we know, the �rst representatives of quasiperiodic crystals class are
alloys composed of atoms belonging to the metallic families in the Periodic
Table. Nevertheless, the notion of aperiodic crystal was originally proposed in
the context of the debate about the nature of genetic material. Accordingly,
there is no fundamental reason preventing the spontaneous emergence of long-
range aperiodic order in non-metal based systems. In fact, the occurrence of
a quasicrystalline decagonal phase of silicon has been reported,[46] and the
possible existence of icosahedral quantum dots containing several hundreds of
covalently bounded Si atoms has been theoretically predicted from �rst prin-
ciple calculations.[47] In this regard, the possible existence of quasicrystals
based on an aperiodic stacking of C60 fullerenes has also been explored, with
no success so far.[48, 49] On the other hand, the discovery of liquid crystals
with quasiperiodic symmetries, in which the basic construction units of the
lattice are supramolecular aggregates instead of individual atoms, has been
reported and proposed for photonic applications.[50, 51, 52, 53] Therefore,
plenty of room is left for the search of new kinds of quasiperiodic arrange-
ments of matter in modern Materials Science.

� What about clusters?

A central problem in Condensed Matter Physics is to determine whether
quasiperiodicity leads to new physical properties which are signi�cantly dif-
ferent from those of crystalline or amorphous materials. In this context, what
physical properties should be expected from a solid mainly consisting of clus-
ters? The possibility of obtaining a semiconducting material by assembling
clusters composed of metallic atoms is of both theoretical and practical im-
portance. The question regarding whether or not QCs are typical representa-
tives of cluster-based solids and whether or not their formation, stability, and
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unusual properties can be explained by employing a cluster-based approach
remains open in the �eld.[54] For instance, one may speculate that quasiperi-
odicity may give rise to a novel kind of "recurrently" localized covalent bond,
characterized by an almost periodic modulation over large-scales (mimicking
the delocalized nature of usual metallic bonding) modulating a series of more
or less localized bumps at the typical scale of cluster structures (mimicking
the oriented geometries typical of covalent bonding networks).

� Fibonacci genomics?

As we have mentioned perviously, two kinds of order coexist in DNA, each
one related to two separate subsystems in the DNA helix, namely the nu-
cleotide subsystem and the backbone system. Thus, one has periodic struc-
tural order at the atomic scale in the sugar-phosphate backbone, which yields
discrete Bragg spots in x-ray di¤raction patterns, exhibiting a characteris-
tic cross-shaped pattern. On the other hand, one has aperiodic, informa-
tive chemical order at the molecular scale, as determined by the base pairs
sequence. The chemical order of the bps sequence can be properly charac-
terised by ab-initio quantum chemistry calculations, which nicely highlight
the emergence of molecular orbitals beyond the atomic scale. Therefore, from
a structural point of view DNA could be classi�ed as a periodic crystal (with
helical symmetry!), whereas the nucleobase system electronic structure, de�n-
ing most basic properties of DNA molecule, is e¤ectively aperiodic. Accord-
ingly, one may think of DNA as a sort of hybrid order system exhibiting
both aperiodic (stemming from the nucleobase subsystem) and periodic (cor-
responding to the sugar-phosphate backbone helix subsystem) order features
in its electronic structure. As a consequence, one may then think of probing
aperiodic order in DNA (that is reading the bps sequence!) by means of purely
physical (as opposed to current chemical based) techniques.[55] In particular,
could spectroscopic techniques or transport measurements be able to unveil
the aperiodic sequence of bps?
Current bioengineering techniques allow for the growth of oligonucleotide

sequences tailored at will. Thus, a nucleic acid arranged according to the
Fibonacci sequence, for instance a (G:C)(A:T)(G:C)(G:C)(A:T)(G:C)(A:T)...
oligonucleotide, may be easily synthesized. Such a molecule, where com-
plementary Watson-Crick base pairs play the role of As and Bs in the Fi-
bonacci�s substitutional rule, could be properly referred to as a DNA qua-
sicrystal approximant. Quite interestingly, the presence of short segments of
the Fibonacci sequence has been reported in several biological DNA chains.[56]
Along with this result some curious numerical relationships can be obtained
by factorizing the total number of base pairs in a given genome sequence. In
Table 8.1 we list the total number of base pairs, N , found in the genome of
several organisms and their corresponding factorization in prime numbers.
From the data listed in this table we realize that the genome length can

be usually expressed as a product involving both small and large prime fac-
tors. Although the biological relevance (if any) of this result is not clear,
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TABLE 8.1
Number of base pairs in several genomes and their prime factors decomposition.

ORGANISM N PRIME DECOMPOSITION REF.
Human chromosome 21 33; 127; 944 23 � 3� 72; 649 [57]

Chimpanzee chromosome 22 32; 799; 845 5� 13� 53� 9; 521 [57]
E. Coli 4; 639; 221 33 � 171; 823 [58]

Mycobacterium tuberculosis 4; 411; 529 1; 471� 2; 999 [59]
Haemophilus in�uenzae 1; 830; 137 19� 96; 323 [60]
Methanococus jannaschii 1; 739; 933 13� 17� 7; 873 [61]
Helicobacter pylori 1; 667; 867 1; 667; 867 [62]
Treponema pallidum 1; 138; 006 2� 569; 003 [63]
Mycoplasma genitalum 580; 070 2� 5� 19� 43� 71 [64]

these �ndings certainly highlight the convenience of gaining a deeper insight
into the mathematical structure of the genome design. To this end, suitable
mathematical approaches have been recently introduced in order to clarify the
evolution of repetitive DNA strings,[65, 66] within the framework of genomic
evolution by duplication.[67]
Last but not least, a number of studies have recently reported that DNA

based thin �lms may be used as promising materials for fabricating pho-
tonic and optoelectronic devices.[68] Accordingly, a better understanding of
the physical bases governing optical transitions in DNA macromolecules[69]
appears as a very appealing research topic in the aperiodic systems �eld.
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9
Mathematical tools

9.1 Almost periodic and quasiperiodic functions

From a mathematical viewpoint quasiperiodic functions are a special case
of almost periodic functions. The theory of these functions was developed by
Harald Bohr (1887-1951, brother of the well-known physicist Niels Bohr).[1] A
function f(x) is called almost periodic if for any arbitrary small number " > 0,
there are almost-periods P such that the shifted function di¤ers less than "
from the unshifted one, namely, jf(x)� f(x+P)j < "; for all x 2 Rn.[2, 3] In
general, the smaller the value of ", the larger becomes the required translation
P , although they are relatively dense in Rn. By this we mean that there are,
for each ", values R1 and R2 such that every sphere of radius R2 contains at
least one P satisfying the above condition, and in every sphere of radius R1
around any translation P satisfying the condition, there is no other translation
but P.
Almost periodic functions can be uniformly approximated by Fourier series

containing a countable in�nity of pairwise incommensurate frequencies. When
the set of frequencies required can be generated from a �nite-dimensional
basis, the resulting function is referred to as a quasiperiodic one. Let us
consider a quasiperiodic function given by its discrete Fourier decomposition

f(x) =
X
k

~f(k)eik:x; (9.1)

where the reciprocal vectors are de�ned by

k =
NX
j=1

njbj : (9.2)

If the minimal number of basis vectors bj is larger than three (i.e., N > 3),
then a higher dimensional description (see Section 2.5) is needed to describe
the reciprocal lattice, and the related structure is an aperiodic crystal. Oth-
erwise, we obtain a periodic crystal, which indicates that, in turn, periodic
functions are just a particular case of quasiperiodic ones.

399
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As an illustrative counter-example we can consider the function

f(x) = lim
N!1

NX
n=1

1

n!
sin
� x
2n

�
; (9.3)

which is almost periodic but not quasiperiodic, since its Fourier spectrum does
not have a �nite basis. The simplest one-dimensional example of a quasiperi-
odic function can be written as

f(x) = cos(x) + cos(�x); (9.4)

where � is an irrational number. It is interesting to note that this quasiperi-
odic function can be obtained as the one-dimensional projection of a related
periodic function in two dimensions

f(x; y) = cosx+ cos y; (9.5)

through the restriction y = �x: This property is the basis of the so-called cut
and project method, which is widely used in the study of quasiperiodic crystals
(see Section 2.5). In fact, since any quasiperiodic function can be thought of
as deriving from a periodic function in a space of higher dimension, most of
the basic notions of classical crystallography can be properly extended to the
study of quasicrystals in appropriate hyper-spaces.[4, 5]

9.2 Transfer matrix technique

Many problems of physical interest are described by linear ordinary second-
order di¤erential equations for which di¤erent types of transfer matrices can
be introduced.[6, 7, 8, 9] In this book we will focus on the description of
elementary excitations in low dimensional systems which can be reduced, as
a �rst approximation, to the study of one-dimensional lattice models de�ned
by the following general equation[10, 11, 12, 13]

vn�n = tn;n�1�n�1 + tn;n+1�n+1; (9.6)

along with an appropriate set of boundary conditions. In Eq.(9.6), �n is
the amplitude of the elementary excitation at the nth lattice position, and
vn depends on the excitation energy (frequency), E (or !), as well as on
other characteristic physical magnitudes of the system, like atomic massesmn,
elastic constants Kn;n�1, or electronic binding energies "n, as it is illustrated
in Table 9.1. The transfer integrals tn;n�1 describe the excitation transfer
from site n to its neighboring sites n � 1 (hence tn;n�1 = tn�1;n); and will
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TABLE 9.1
Values adopted by the di¤erent coe¢ cients appearing
in the general Eq.(9.6) depending on the considered
elementary excitation.

Parameters Electrons Phonons
�n  n un
vn E � "n Kn;n�1 +Kn;n+1 �mn!

2

tn;n�1 tn;n�1 Kn;n�1

generally depend on the excitation energy. It is convenient to cast Eq.(9.6) in
the following matrix form�

�n+1
�n

�
� Tn

�
�n
�n�1

�
; (9.7)

where

Tn(E) �
 

vn
tn;n+1

� tn;n�1
tn;n+1

1 0

!
(9.8)

is the so-called transfer matrix at site n. Let N be the number of sites of the
considered lattice. By iterating Eq.(9.7) N times one obtains�

�N+1
�N

�
�MN

�
�1
�0

�
; (9.9)

where �1 and �0 de�ne the initial conditions, and the global transfer matrix
is de�ned by the product

MN (E) =

1Y
n=N

Tn(E): (9.10)

From the knowledge of theMN (E) matrix elements, several magnitudes of
physical interest, like the density of states (see Section 9.5.1), the transmission
coe¢ cient (see Section 9.5.2), or the localization length (see Section 9.5.4),
can be readily evaluated. In this way, the transfer matrix formalism provides
a simple mathematical tool allowing for a uni�ed treatment of such diverse
problems as electron and phonon dynamics in both periodic and aperiodic lat-
tices (Chapter 5), charge transport through DNA chains (Chapter 6), optical
properties of dielectric multilayers (Chapter 7), the propagation of acoustic
waves in semiconductor heterostructures and metallic superlattices,[14, 15, 16]
or localization of elastic waves in heterogeneous media.[17]
In order to explicitly evaluate the global transfer matrix one usually must

calculate some power matrices. To this end, the recourse to the Cayley-
Hamilton theorem (named after the mathematicians Arthur Cayley (1821-
1895) and William Rowan Hamilton (1805-1865)) has proved very useful. To
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start with, we recall that the characteristic polynomial of a n � n matrix M
is given by the equation det(M��I) = 0, where I is the identity matrix and
� are the matrix eigenvalues. For 2� 2, 3� 3, and 4� 4 matrices this general
condition respectively reads

�2 � a1�+ detM = 0; (9.11)

�3 � a1�2 + �a2 � detM = 0; (9.12)

�4 � a1�3 + a2�2 � �a3 + detM = 0; (9.13)

where a2 = [(trM)2�tr(M2)]=2, a3 = [(trM)3 � 3tr(M2)trM + 2tr(M3)]=6,
and a1 = trM stands for the trace of matrix M. According to the Cayley-
Hamilton theorem any n�n square matrix over the real or complex �eld is a
root of its own characteristic polynomial,[18] so that Eq.(9.11) can be written
in the matrix form

M2 � 2zM+ IdetM = 0; (9.14)

where z � 1
2 trM is usually referred to as the semi-trace of matrixM. Analo-

gous expressions are derived from Eqs.(9.12) and (9.13) for higher dimensional
3� 3 and 4� 4 matrices. If M belongs to the Sl(2,R) group (i.e., detM =1,
so that M is referred to as an unimodular matrix), one can readily exploit
these matrix equations in order to properly express any higher power of M
as a linear combination of matrices I and M itself. For instance, in the case
of 2 � 2 unimodular matrices one can make use of Eq.(9.14) to obtain by
induction the expression

MN = UN�1(z)M�UN�2(z)I; (9.15)

where

UN �
sin(N + 1)'

sin'
; (9.16)

with ' � cos�1 z, are Chebyshev polynomials of the second kind satisfying
the recursion relation

Un+1 � 2zUn + Un�1 = 0; n � 1 (9.17)

with U0(z) = 1 and U1(z) = 2z. In the more general case, when detM =�6=1,
one gets[19]

MN = �(N�1)=2UN�1(~z)M��N=2UN�2(~z)I; (9.18)

where ~z � 1
2�

�1=2trM. Eq.(9.18) properly reduces to Eq.(9.15) when � =
1. The above results can be generalized to obtain arbitrary powers of any
dimensional square matrix by using polynomials of many arguments, which
generalize the Chebyshev polynomials given by Eq.(9.16).[19]
In a series of works devoted to the study of periodic superlattices it was

reported that Chebyshev polynomials play, for �nite systems, a similar role to
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the one played by Bloch functions in the description of transport properties
of in�nite periodic systems.[20] In addition, the ability of these polynomials
to properly describe the propagation of both quantum and classical waves in
locally periodic media (namely, systems having only a relatively small num-
ber of repeating elements) in a compact way has been recently illustrated,[7]
as well as the convenience of their use when describing the presence of ex-
tended states in correlated random systems.[21, 22] Chebyshev polynomials
are also very useful to perform numerical calculations in a broad collection
of one-dimensional quasiperiodic systems. In particular, closed analytical ex-
pressions for several diagnostic tools (see Section 9.5) can be derived in terms
of Chebyshev polynomials (see Chapters 5, 6, and 7).
The dispersion relation of periodic approximants of quasiperiodic lattices

can be obtained by imposing the cyclic boundary conditions �N+1 = eiqNa0�1
and �0 = e�iqNa0�N to Eq.(9.9), where q is the wave number and a0 is the
lattice constant. The motion equation then reads�

eiqNa0�1
�N

�
�
�
M11 M12

M21 M22

��
�1

e�iqNa0�N

�
; (9.19)

where Mij are the elements of the global transfer matrixMN (E). Equation
(9.19) leads to the system

eiqNa0�1 = M11�1 +M12e
�iqNa0�N (9.20)

�N = M21�1 +M22e
�iqNa0�N ; (9.21)

and solving for �N in Eq.(9.21) and plugging the obtained expression in
Eq.(9.20) one gets

eiqNa0 + e�iqNa0 detMN = trMN : (9.22)

Eq.(9.22) signi�cantly simpli�es when MN is unimodular, in which case
one obtains the dispersion relation

cos(qNa0) =
1

2
trMN (E): (9.23)

Alternatively, one can derive Eq.(9.22) by adopting the value � = eiqNa0 for
the eigenvalues appearing in the characteristic polynomial given by Eq.(9.11).
This approach can be extended to consider ladder quantum models described
in terms of 4�4 transfer matrices (see Section 6.4.2). In that case, by assuming
periodic boundary conditions, the motion equation reads0BB@

� 1;A
 0;A
� 1;B
 0;B

1CCA =

0BB@
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

1CCA
0BB@

 1;A
��1 0;A
 1;B

��1 0;B

1CCA ; (9.24)
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whereMij are the elements of the global 4�4 transfer matrixMN (E). Making
use of Eq.(9.13) its characteristic polynomial can be expressed as

�4 � a1�3+a2�2 � a3�+ a4 = 0; (9.25)

where a4 = detMN . Now, if � = eiqNa0 is a solution of the characteristic
polynomial describing a Bloch wave propagation towards the right through
the ladder, then the wave propagating with reversed momentum �q is also
a solution represented by ��1.[23, 24, 25] Accordingly, ��1 must also be an
eigenvalue of Eq.(9.25) so that,

��4 � a1��3+a2��2 � a3��1 + a4 = 0: (9.26)

Multiplying Eq.(9.26) by �4 and comparing the resulting polynomial with
(9.25) we get the additional conditions a1 = a3, and a4 = 1, so that MN is
unimodular too. Making use of these results and dividing Eq.(9.25) by �2 we
can reduce the original quartic equation to the following quadratic one:

u2 � a1u+ a2 � 2 = 0; (9.27)

where u � � + ��1 = 2 cos(qNa0). Finally, by solving Eq.(9.27) we obtain
the dispersion relation,[24]

cos(qNa0) =
1

4

�
trMN �

q
2tr(M2

N )�(trMN )2 + 8

�
; (9.28)

which properly generalizes Eq.(9.23) for 4 � 4 matrices. The double sign
indicates that we have two branches describing the bonding (antibonding)
states between the two parallel chains composing the ladder.
We note that Eqs.(9.25) and (9.26) impose the conditionMy

NJMN on the
matrixMN , whereMy

N stands for the Hermitian conjugate and

J =

0BB@
0 �1 0 0
1 0 0 0
0 0 0 �1
0 0 1 0

1CCA : (9.29)

This property characterizes the so-called symplectic property of MN .[24,
26, 27]

9.3 Trace map formalism
In the previous Section we have seen that the semi-trace plays an important
role in the study of dynamical systems characterized by unimodular trans-
fer matrices. The physical reason why these traces are so important is due



Mathematical tools 405

to its presence in the dispersion relations [Eqs.(9.23) and (9.28)] which, in
turn, determine the structure of the energy spectrum. This property can be
fruitfully exploited by means of the so-called trace map formalism, which was
introduced by Mahito Kohmoto on the basis of the following theorem.
Consider a set of matricesMn belonging to the Sl(2,R) group and satisfying

the concatenation rule Mn+1 =Mn�1Mn, then[28]

trMn+1 = trMntrMn�1 � trMn�2; n � 2: (9.30)

By de�ning zn �trMn=2, Eq.(9.30) is rewritten as the dynamical map

zn+1 = 2znzn�1 � zn�2; n � 2; (9.31)

usually referred to as the trace map. This map has the constant of motion[28]

I = z2�1 + z
2
0 + z

2
1 � 2z�1z0z1 � 1; (9.32)

determined by the initial conditions z�1 = trM0=2; z0 = trM1=2, and z1 =
trM2=2. The trace map formalism has been extended to other aperiodic binary
chains, such as those based in the Thue-Morse sequence, in which case it
reads[29, 30]

zn+1 = 4z
2
n�1(zn � 1) + 1; n � 2: (9.33)

The trace map formalism was also generalized to the case of ternary and
quaternary quasiperiodic lattices,[31] as well as to the case of continuous
potentials,[32] and generalized Fibonacci sequences.[33] More recently, the
trace map formalism has been further extended in order to describe Fibonacci
superlattices as well (see Chapter 4). The key feature of these aperiodic struc-
tures is the coexistence of two kinds of order in the same sample at di¤erent
length scales as it is illustrated in Fig.9.1. As a �rst approximation, the phys-
ical description is substantially simpli�ed by assuming all the force constants
to be equal, i.e., KA = KB = KAB � K: Within the transfer matrix formal-
ism the dynamic response of a Fibonacci superlattice composed of N layers
can then be expressed in terms of the global transfer matrix

MN = :::LBLALALBLA; (9.34)

where the layer matrices

LA � QnA
A =

�
2� 
 �1
1 0

�nA
; LB � QnB

B =

�
2� �
 �1
1 0

�nB
(9.35)

describe the phonon propagation through layers A and B as a product of
atomic matrices QA and QB , respectively. The atomic matrices are charac-
terized by the normalized frequency 
 � mA!

2=K; where ! is the phonon
frequency, the mass ratio � � mB=mA; and the number of atoms in each
layer nA(B), respectively. In a Fibonacci superlattice the layers are arranged
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FIGURE 9.1
Sketch illustrating the hierarchical arrangement of a Fibonacci heterostruc-
ture. At the atomic scale (top frame) the system can be modelled as a lattice
chain composed of two kinds of atomsmA and mB coupled via force constants
KA (layer A); KB (layer B), and KAB (interfaces): At a larger scale (bottom
frame) the system is described in terms of a sequence of layers of di¤erent
composition and width dA = nAaA and dB = nBaB ; respectively, where n� is
the number of atoms composing the layer and a� is its lattice constant. ([34]
Reprinted �gure with permission from Maciá E 2006 Phys. Rev. B 73 184303
c 2006 by the American Physical Society.)
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according to the Fibonacci sequence ABAAB..., which determines their or-
der of appearance in the matrix product given by Eq.(9.34). Making use of
the Cayley-Hamilton theorem the power matrices given by Eq.(9.35) can be
readily expressed as[34]

Lr =

�
Unr (xr) �Unr�1(xr)
Unr�1(xr) �Unr�2(xr)

�
; r = fA;Bg (9.36)

where Unr (xr) are Chebyshev polynomials of the second kind, xr � trQr=2,
and we have explicitly used Eq.(9.17). Since Lr is a product of Sl(2,R) group
elements, the layer matrices are unimodular themselves, and one can exploit
this fact in order to extend Kohmoto�s theorem, originally introduced to de-
scribe a Fibonacci lattice of atoms, to the Fibonacci superlattice case. In
fact, since det(L�r ) = 1, the set of superlattice transfer matrices MN given
by Eq.(9.34) satis�es the conditions of that theorem as well. Accordingly, the
dynamical map given by Eq.(9.31) can be properly applied to the Fibonacci
superlattice,[35] provided the initial conditions

z�1 =
1

2
trLB = TnB (xB); (9.37)

z0 =
1

2
trLA = TnA(xA); (9.38)

z1 =
1

2
tr(LBLA) = TnA(xA)TnB (xB) + (xAxB � 1)UnA�1(xA)UnB�1(xB);

(9.39)

where Tnr (xr) = cos[nr cos
�1(xr)] are Chebyshev polynomials of the �rst

kind, and we have used the relationship Un � Un�2 = 2Tn. Making use of
Eqs.(9.37)-(9.39) the invariant of the dynamical map is now given by

I = (xA � xB)2 U2nA�1(xA)U
2
nB�1(xB): (9.40)

In this way, the trace map formalism can be extended to discuss the phonon
propagation through a Fibonacci superlattice characterized by the presence of
two relevant physical scales. In fact, the dynamical map given by Eqs.(9.31)
and (9.37-9.39) can be physically interpreted as follows. By equating z�1 =
TnB (xB) � cos(qdB) and z0 = TnA(xA) � cos(qdA); where q is the wave
vector, we readily obtain the dispersion relation corresponding to the A or B
layer

!2 =
4K

mA(B)
sin2

�qaA(B)
2

�
; (9.41)

respectively. Analogously, the equation z1 � cos[q(dA + dB)] leads to the dis-
persion relation corresponding to the binary periodic superlattice with unit
cell AB.[36, 37] Accordingly, the initial conditions implementing the general-
ized trace map are directly related to the phonon dispersion relations corre-
sponding to the constituent layers (z�1 and z0) and the lowest order periodic
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approximant to the Fibonacci superlattice (z1). Consequently, the expression

zn � cos(qD); (n � 2); (9.42)

with D = FndA + Fn�1dB , can be properly regarded as the dispersion rela-
tion corresponding to successive Fibonacci superlattice approximants obtained
from a continued iteration of the trace map:[38]
The phonon spectrum of the Fibonacci superlattice can then be obtained

as the asymptotic limit of a series of approximants whose dispersion relations
are determined by the successive application of the trace map recursion rela-
tion given by Eq.(9.31). In so doing, one realizes that the dispersion relation
of a Fibonacci superlattice approximant can be generally split into two com-
plementary contributions. The �rst one describes a periodic binary lattice,
where the layers alternate in the form ABABABA:::. The other one includes
the e¤ects related to the emergence of quasiperiodic order in the system.[34]
A similar splitting was discussed in order to describe the general structure
of Fibonacci quasicrystals, where it was shown that their quasilattice can be
seen as an average periodic structure plus quasiperiodic �uctuations.[39]
In order to properly describe the phonon dynamics in �nite Fibonacci het-

erostructures where two kinds of order (periodic at the atomic scale and qua-
siperiodic beyond the layer scale) are present in the same sample at di¤erent
scale lengths, it is convenient to express the trace map in terms of nested
Chebyshev polynomials of the form TF� [Tnr (xr)] and UF��1[Tnr (xr)]; where
the variable xr describes the atomic scale physics and the function Tnr (xr)
describes the dynamics at the layer scale. This representation can be regarded
as describing a scale transformation, formally expressed as

Tnr (xr)! Xr: (9.43)

Since the trace map itself can be interpreted as giving the dispersion relation
of a given Fibonacci superlattice realization in terms of the dispersion relations
corresponding to lower order approximants, this nested structure provides a
suitable uni�ed description of the phonon dynamics in Fibonacci superlattices,
able to encompass their characteristic hierarchical structure in a natural way.
By applying this transformation to Eqs.(9.37)-(9.39) the trace map initial
conditions now read[34]

z�1 = XB ;

z0 = XA;

z1 = XAXB +
q
I + Y 2AY

2
B ; (9.44)

where Yr =
p
1�X2

r , and we have made use of the constant of motion I
given by Eq.(9.40). This result provides a direct link between the topological
self-similarity of these quasiperiodic heterostructures and the dynamics of
the elementary excitations propagating through them. In this regard, the
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emergence of speci�c features related to the quasiperiodic order imposed to the
heterostructure can be properly described in terms of the scale transformation
given by Eq.(9.43). The inclusion of interface e¤ects renders a much more
involved mathematical description, although it does not signi�cantly a¤ect
the underlying physics of the approach.[34]

9.4 Renormalization matrix methods
The formalism we are going to introduce is based on the transfer matrix tech-
nique discussed in Section 9.2. Real-space renormalization group approaches,
based on decimation schemes, have proved themselves very successful in order
to study the energy spectrum of aperiodic systems based on the application
of substitution rules.[40, 41, 42, 43, 44, 45] The convenience of such proce-
dures stems from the fact that, by properly decimating the original chain into
successively longer blocks, one is able to describe the elementary excitation
state corresponding to sites more and more farther apart. In order to fully
exploit the in�ation/de�ation symmetry characteristic of most aperiodic sys-
tems considered in this book it is convenient to renormalize the set of transfer
matrices instead of the lattice itself. Since these matrices contain all the rele-
vant information concerning the dynamics of the elementary excitations, this
approach becomes specially well suited to deal with those characteristic fea-
tures stemming from the long-range order of the underlying aperiodic system
for, as we will see below, it preserves the original quasiperiodic order of the
lattice at any stage of the renormalization process.
For the sake of illustration, let us �rst consider the electronic problem in

the general Fibonacci lattice given by Eq.(5.3), in which both diagonal and
o¤-diagonal terms are present in the Hamiltonian. The corresponding motion
equation can be cast in terms of the following matrices,[44]

X �
�
E�"B
tAB

�1
1 0

�
; Y �

�
�1 E�"AtAB

��1
1 0

�
;

Z �
�
E�"A
tAB

�
1 0

�
; W �

�
E�"A
tAB

�1
1 0

�
; (9.45)

relating three consecutive sites (ABA, AAB, BAA, and BAB) along the lat-
tice, where E is the electron energy, "A and "B are the on-site energies, tAB =
tBA and tAA are the corresponding transfer integrals and  � tAA=tAB > 0. In
the study of the phonon problem given by Eq.(5.2) the corresponding transfer
matrices are given by

X �
�
2� �� �1
1 0

�
; Y �

�
1 + �1 (1� �) ��1

1 0

�
;
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Z �
�
1 +  � � �

1 0

�
; W �

�
2� � �1
1 0

�
; (9.46)

where � � mB=mA,  � KAA=KAB , and � � mA!
2=KAB .

The global transfer matrix given by Eq.(9.10) then translates the atomic
sequence ABAAB : : : describing the topological order of the Fibonacci lattice
to the transfer matrix sequence : : :XZYXZYXWXZYXW describing the
behavior of electrons moving through it. In spite of its greater apparent
complexity, we realize that by renormalizing this transfer matrix sequence
according to the blocking scheme RA� ZYX and RB�WX, we get the
considerably simpli�ed sequence : : :RBRARARBRA.[44] The subscripts in
the Rs matrices are introduced to emphasize the fact that the renormalized
transfer matrix sequence is also arranged according to the Fibonacci one and,
consequently, the topological order present in the original lattice is preserved
by the renormalization process. Let N = Fn be the number of lattice sites,
where Fn is a Fibonacci number (see Section 2.4). It can then be shown by
induction that the renormalized sequence contains nA � Fn�3 matrices RA
and nB � Fn�4 matrices RB .
During the last two decades a signi�cant amount of work has been devoted

to the study of systems based on two simple kinds of transfer matrices, namely,
the so-called on-site and transfer models. In the on-site model one assumes
all the transfer integrals to be equal, so that Tn becomes unimodular at
every site of the chain. In the transfer model, all the on-site energies are
assumed to be identical (and usually set to zero), so that we have det(Tn) =
�tn;n�1=tn;n+1 6= 1; in this case. From a physical point of view, one expects
that the value of the transfer integral, coupling two neighbor atoms in the
lattice, will be determined by the chemical nature of these atoms which, in
turn, de�ne certain distribution of on-site energies along the chain. Therefore,
in most physical situations of interest, one must consider the so-called mixed
models, where both the on-site energies and the transfer integrals explicitly
appear in Eq.(9.8). In that case, one must usually deal with non-unimodular
transfer matrices at every lattice site.
Nevertheless, as we have seen in the previous Section, unimodular matrices

belonging to the Sl(2,C) group have a number of appealing mathematical
properties, rendering the study of on-site models much more easy than the
study of mixed ones. This fact has spurred the interest in searching for a
suitable transformation, able to reduce the general motion equation (9.6) to
the on-site form

un'n � t'n�1 � t'n+1 = 0; (9.47)

where 'n, un, and t are determined by the transformation rule. In this way,
the dynamics of elementary excitations in the original mixed system could
be described in terms of an e¤ective on-site model, while still preserving its
generality. Aiming at this goal, the local transformation �n ! 'n=�n was
introduced into Eq.(9.6).[46] This transformation can be physically interpreted
as a rescaling of the elementary excitation amplitude at each lattice site, where
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the parameter �n 2 C plays the role of a local scale factor, which is determined
from the relationship �n;n�1�

�
n � t�1n;n�1. Making use of this transformation

into Eq.(9.6) we obtain vnj�nj2'n � 'n�1 � 'n+1 = 0; which has the form of
Eq.(9.47) with t = 1 and un � vnj�nj2: Accordingly, both the the original on-
site energies, "n, and the excitation energies E (included in the un coe¢ cients)
are a¤ected by the transformation. Following a di¤erent approach a unitary
transformation satisfying the condition H = UH0U, where H and H0 are
tridiagonal Hamiltonian matrices related to Eqs.(9.6) and (9.47), respectively,
and U is a unitary diagonal matrix, was subsequently introduced.[47] In this
case, the energies of the eigenstates are not a¤ected by the transformation
and the elements of the transformation matrix are recursively obtained from
the knowledge of the original transfer integrals.
Inspired by these previous results, a local similarity transformation which

acts at two di¤erent scale lengths has been recently introduced. At the atomic
scale the transformation adopts the form

MnTnM
�1
n = e�~Tn; (9.48)

transforming a non-unimodular transfer matrixTn into a unimodular one, ~Tn,
where the phase factor e� plays the role of an e¤ective transfer term. Making
use of this transformation, the global transfer matrix given by Eq.(9.10) can be
expressed as a product of unimodular matrices, so that it becomes unimodular
itself. When acting on larger scale lengths, corresponding to short segments
of the original lattice, the main e¤ect of this transformation is to map the
original mixed lattice into an e¤ective on-site lattice which is related to the
original one by means of a renormalization process. Accordingly, the similarity
transformation can be properly regarded as a renormalization operator acting
on one-dimensional lattice models in this case.[48]
One starts making use of the decomposition property[49, 50]

Tn�
 

vn
tn;n+1

� tn;n�1
tn;n+1

1 0

!
=

�
t�1n;n+1 0
0 1

��
vn �1
1 0

��
1 0
0 tn;n�1

�
; (9.49)

so that, by properly rearranging the product given in Eq.(9.10), the global
transfer matrix can be expressed as

MN (E) = �N+1

"
1Y

n=N

Qn

#
��10 ; (9.50)

where

Qn �
�
vnt

�1
n;n�1 �tn;n�1

t�1n;n�1 0

�
(9.51)

are unimodular matrices and the boundary conditions are given by the non-
unimodular matrices
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�N+1 �
�
t�1N;N+1 0

0 1

�
; �0 �

�
t�10;1 0
0 1

�
: (9.52)

Then, one introduces a similarity transformation which acts locally in order
to express every Qn matrix in the form

Qn =M
�1
n PnMn; (9.53)

where

Pn =

�
vnt

�1
n;n�1 �e��n
e�n 0

�
(9.54)

and

Mn =

 
e�

�n
2 t

�1=2
n;n�1 0

0 e
�n
2 t

1=2
n;n�1

!
; (9.55)

where �n is a local phase factor which will be subsequently determined. By
plugging Eq.(9.53) into Eq.(9.50) we get

MN (E) = �N+1M
�1
N

"
1Y

n=N

Bn

#
M0�

�1
0 ; (9.56)

where

Bn = e
�n�1+�n

2

s
tn�1;n�2
tn;n�1

 
vn

tn;n�1
e��n � tn;n�1

tn�1;n�2
e��n��n�1

1 0

!
: (9.57)

At this point one exploits the degrees of freedom associated to the local
phase factor �n in order to further simplify Eq.(9.56). To this end, we impose
the condition

e�n+�n�1 � tn;n�1=tn�1;n�2; (9.58)

so that Eq.(9.57) reduces to

Bn =

�
un �1
1 0

�
; (9.59)

which can be regarded as a unimodular matrix adopting the standard on-site
model form with

un � vne
��nt�1n;n�1: (9.60)

Now, making use of Eq.(9.59) into Eq.(9.56) the global transfer matrix can
be expressed as

MN (E) = LN+1

"
1Y

n=N

Bn

#
L0; (9.61)
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where the boundary matrices are given by

LN+1 � �N+1M�1
N = e��N=2t

�1=2
N;N�1

�
e��N+1 0
0 1

�
; (9.62)

L0 �M0�
�1
0 = e�0=2t

1=2
0;�1

�
e�1 0
0 1

�
; (9.63)

and we have made explicit use of Eq.(9.58). By adopting periodic bound-
ary conditions we have t0;�1 = tN;N�1, �N+1 = �1; and �0 = �N ; so that
Eq.(9.61) adopts the simple form

MN (E) = L
�1
1

"
1Y

n=N

Bn

#
L1; (9.64)

where

L1 �
�
e�1 0
0 1

�
: (9.65)

From a physical viewpoint, Eq.(9.64) shows that the dynamics of elementary
excitations in any arbitrary system, originally described by means of transfer
matrices of the form given by Eq.(9.6), can be properly expressed in terms of
an equivalent on-site model given by the transfer matrices set {Bng.
The local phase factors �n appearing in Eq.(9.60) exhibit a very remarkable

feature, namely, their value at a given lattice site is determined by the values
of all the transfer integrals which precede it along the chain. In fact, by taking
logarithms in Eq.(9.58) and substituting successive terms into each other, one
obtains

�n = (�1)n
"
ln

 
tN;N�1

n�1Y
k=1

t
2(�1)k
k;k�1

!
+ �N

#
+ ln tn;n�1; n � 2; (9.66)

along with the boundary relation

�1 = ln t1;N � ln tN;N�1 � �N : (9.67)

According to Eq.(9.66), the value of the phase at a given site is a cumulative
magnitude expressing the correlations among di¤erent transfer terms in an
explicit form. Therefore, �n values will generally depend on the possible
presence of long-range correlations in the system. This general treatment is
valid for any arbitrary topological order of the lattice, as determined by the
sequence of appearance of the di¤erent transfer matrices in Eq.(9.10). In
order to illustrate the main features of this approach we will �rst consider
the periodic, ternary mixed model corresponding to the unit cell ABC, which
is illustrated in Fig.9.2. Taking tAB � t as a reference value we can express
tBC = bt and tCA = at; without loss of generality. Accordingly, the boundary
conditions read tN;N�1 = tBC = bt; and tN;1 � t1;0 = tAC = at in this
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FIGURE 9.2
A mixed ternary lattice is mapped into an equivalent renormalized monatomic
chain by decimating the AC dimers. ([48] Reprinted �gure with permission
from Maciá E and Rodríguez-Oliveros R 2006 Phys. Rev. B 74 144202 c
2006 by the American Physical Society.)

case. The translation symmetry ensures we have just three kinds of sites vA;
vB ; and vC , periodically arranged along the chain, satisfying �A = �1�3k;
�B = �2�3k; and �C = �3�3k; with k = 0; 1; :::. Making use of the condition
�4 = �1 � �A into Eqs.(9.66) and (9.67) we obtain �A = � ln b; �B = ln(b=a);
and �C = ln a; so that the transformed on-site energies given by Eq.(9.60)
read

uA = vA
b

at
; uB = vB

a

bt
; uC = vC

1

abt
: (9.68)

Making use of the Cayley-Hamilton theorem we obtain the power matrix

(BCBBBA)
m =

�
Um + uBUm�1 (1� uBuC)Um�1
(uAuB � 1)Um�1 �uBUm�1 � Um�2

�
; (9.69)

where m � N=3; and Um(z) are Chebyshev polynomials of the second kind
with

z � vAvBvC � t2(b2vA + a2vB + vC)
2abt3

: (9.70)

Plugging Eq.(9.69) into Eq.(9.64) we obtain

MN (E) =

�
Um + uBUm�1 e��1(1� uBuC)Um�1

e�1(uAuB � 1)Um�1 �uBUm�1 � Um�2

�
; (9.71)

so that we get tr[MN (E)]=2 = (Um � Um�2)=2 = Tm(z); where Tm(z) is a
Chebyshev polynomial of the �rst kind. Then, making use of Eq.(9.23), we
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�nally obtain the dispersion relation

2tABtBCtCA cos(3qa0) = uAuBuC � uAt2BC � uBt2CA � uCt2AB ; (9.72)

which is invariant under cyclic permutations of the atoms in the unit cell.
This procedure can be straightforwardly extended to obtain the dispersion
relation of periodic lattices with arbitrary unit cells.[48]
We note that the mixed ternary lattice is characterized by three local trans-

fer matrices, namely,

TA =

�
vA
t �a
1 0

�
; TB =

�
vB
bt �b

�1

1 0

�
; TC =

�
vC
at �

b
a

1 0

�
; (9.73)

none of which is unimodular. Quite remarkably, however, the product

Q � TCTBTA =
1

bt2

�
1
at

�
vAvBvC � b2t2vA � t2vC

�
b2t2 � vBvC

vAvB � t2 �atvB

�
(9.74)

belongs to the Sl(2,C) group, for any choice of the system parameters and for
any value of the elementary excitation energy. Accordingly, we can transform
Q to the form MQM�1 = e�~T,[48] where

~T =

�
trQ
e�
� e��

e�

1 0

�
: (9.75)

At this point we note that by de�ning trQ � E � ~�; the matrix ~T can be
properly regarded as a transfer matrix describing the elementary excitation
propagation through a monatomic lattice, composed of atoms of on-site energy
~� coupled to its neighbors through transfer integrals ~tk;k�1 = e��. Then, it
is tempting to think of Eq.(9.48) as describing an e¤ective renormalization of
the original mixed ternary lattice leading to the monatomic one. To con�rm
this physical scenario we shall consider the lattice pentamers ACBAC in the
ternary chain and decimate the AC sites, as it is illustrated in Fig.9.2. In so
doing, we obtain ~tn;n�1 = 1, and

E � ~� = vAvBvC � t2(b2vA + a2vB + vC)
abt3

; (9.76)

which coincides with trQ; as given by Eq.(9.74). Therefore, we conclude
that the similarity transformation given by Eq.(9.48) describes a local renor-
malization transformation, acting on certain segments of the original ternary
lattice in order to transform it into an e¤ective monatomic lattice. Since the
renormalized transfer integrals trivially reduce to the unity, all the relevant
physical information is now contained in the renormalized on-site energies ~�.
This approach can be straightforwardly extended to aperiodic lattices as

well. For instance, making use of Eqs.(9.45) we obtain

RA = �1
�
qy � x2 2 � y2

q �y

�
; RB =

�
q �y
x �1

�
; (9.77)



416 Aperiodic Structures in Condensed Matter

FIGURE 9.3
Renormalization scheme mapping a mixed Fibonacci lattice model into an
e¤ective on-site model, which proceeds according to the following steps: (a)
decimation of the B sites in the BAB trimers to obtain the renormalized
on-site energy sites ~�; (b) decimation of the AA dimers belonging to the
AABAA pentamers to obtain the renormalized on-site energy sites ~�; and (c)
decimation of the remaining AA dimers to obtain the on-site energy sites ~�.
The resulting aperiodic ternary lattice is shown in (d). ([48] Reprinted �gure
with permission from Maciá E and Rodríguez-Oliveros R 2006 Phys. Rev. B
74 144202 c 2006 by the American Physical Society.)

where x � E + "A; y � E � "A; and q � xy � 1. For the sake of simplicity
we set the origin of energies in such a way that "B = �"A; and �x the energy
scale so that tAB � 1 without loss of generality. It is readily checked that both
RA and RB matrices are unimodular for any choice of the system parameters
and for any value of the electron energy. Accordingly, we can transform them
to the form MARAM

�1
A = e�A ~TA and MBRBM

�1
B = e�B ~TB ; respectively,

where

~TA =

�
trRA

e�A
� e��A

e�A

1 0

�
; ~TB =

�
tr RB

e�B
� e��B

e�B

1 0

�
: (9.78)

Now, by analogy with the treatment introduced in the study of periodic
lattices, we note that by de�ning trRA � E�~� and trRB � E�~� the matrices
~TA and ~TB can be properly regarded as transfer matrices describing the
electron propagation through a lattice composed of atoms of on-site energy ~�
(alternatively ~�) coupled to their neighbors through transfer integrals ~tk;k�1 =
e��A (alternatively ~tk;k�1 = e��B ). To con�rm this physical picture we shall
consider the lattice trimers BAB in the Fibonacci chain and decimate the
B sites, as it is illustrated in Fig.9.3a. In so doing, we obtain E � ~� =
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xy � 2, which coincides with tr RB = q � 1; as given by Eq.(9.77). In a
similar way, we consider the lattice pentamers AABAA and decimate the AA
dimers, as indicated in Fig.9.3b, to obtain E � ~� = �1(x(y2 � 2) � 2y);
which coincides with trRA = �1(y(q � 1) � x2) as given by Eq.(9.77).
Therefore, we conclude that the similarity transformation given by Eq.(9.48)
describes a renormalization transformation in the quasiperiodic lattice case as
well. By simultaneously applying the renormalization transformations shown
in Figs.9.3a and 9.3b the original Fibonacci chain is mapped into the lattice
shown in Fig.9.3c, where some AA dimers, connected via  transfer terms,
still remain. In order to complete the renormalization of the original chain,
we decimate these dimers, obtaining the fully renormalized lattice shown in
Fig.9.3d, where E � ~� = y � . As we can see, the resulting lattice is now
composed of three di¤erent atoms, and all the transfer integrals coupling them
have the same value, ~t = tAB � 1. Therefore, the original binary Fibonacci
chain has been transformed in an equivalent ternary lattice which can be
properly described in terms of an on-site model. Broadly speaking we can
say that the reduction of the mixed model to an on-site one is obtained at
the cost of increasing the system�s chemical complexity (i.e., we now have
three di¤erent atomic �avors, rather than the original two). In addition, the
topological order present in the renormalized lattice is no longer described by
the Fibonacci sequence, although it still is an aperiodic one.

9.5 Diagnostic tools

The absence of a well suited mathematical framework to obtain general analyt-
ical results on the behavior of quasiperiodic systems has led to the progressive
introduction of what we have referred to as diagnostic tools.[51] These include
the density of states (DOS), the transmission coe¢ cient, the Landauer con-
ductance, or the Lyapunov coe¢ cient. Although the information that any
of these tools can supply by itself is not conclusive as rigorous proof, when
grouped together they can provide quite compelling evidence about the nature
of the spectrum and its related states.

9.5.1 Density of states

The density of states is an important quantity for the understanding of many
phenomena in a large number of physical systems. The interpretation of
experimental data is directly related to the DOS in many cases. For numerical
purposes it is convenient to introduce the DOS in terms of a closely related
magnitude, namely, the integrated density of states (IDOS), which is de�ned
as the number of states whose energy is smaller than E according to the
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expression

I(E) =

Z E

�1
D(E0)dE0; (9.79)

where D(E) is the density of states (DOS). This magnitude is always well
de�ned from a strict mathematical point of view, the energy spectrum being
singular continuous or not (see Section 5.2).[52] Eq.(9.79) can be numerically
determined by the node counting method proposed by Dean.[53] Plots of the
IDOS as a function of the energy are very useful in describing the global as
well as local structure of the energy (or frequency) spectrum of self-similar
systems (see Figs.5.9-5.12). The pattern of the IDOS of such systems corre-
sponds to the so called devil staircase, whose steps indicate the position of
gaps, thus clearly showing the fragmentation scheme of the spectrum. More-
over, the di¤erence of the relative heights between successive steps indicate
the number of states between gaps. This allows one to extract valuable infor-
mation regarding the level populations.[54] From the knowledge of the IDOS,
the DOS can be obtained by numerical derivation.
Alternatively, closed analytical expressions for the DOS can be derived from

the knowledge of the global transfer matrix given by Eq.(9.10) according to
the di¤erential expression,[24]

D(E)dE =
1

N
d

�
cos�1

�
1

2
trMN

��
: (9.80)

For the sake of illustration, let us consider the global transfer matrix cor-
responding to a double-stranded DNA chain given by Eq.(6.38) in Chapter 6,
whose semi-trace is given by

1

2
trMN =

UN=2 � UN=2�2
2

= TN=2(z) = cos

�
N

2
cos�1 z

�
; (9.81)

where

z(E) =
[E � �(E)][E � �(E)]

2t20
� 1; (9.82)

and �(E) and �(E) are given by Eq.(6.40). By plugging Eq.(9.81) into
Eq.(9.80) one gets

D(E) = � 1

2
p
1� z2

dz

dE
; (9.83)

and making use of the expression given in Eq.(9.82) one readily obtains
Eq.(6.42).

9.5.2 Transmission coe¢ cient

Let us consider a lattice composed of N atoms which is sandwiched between
two periodic chains (playing the role of metallic contacts), each one with on-
site energy " and transfer integral t. The dispersion relation of the contacts
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is then given by E = " + 2t cos�. From the knowledge of the global transfer
matrix MN (E) elements, Mij , one can obtain the transmission coe¢ cient,
TN (E), from the expression,[55]

tei�N
�
ei�

1

�
=

�
M11 M12

M21 M22

��
ei� + re�i�

1 + r

�
;

where r and t are the re�ection and transmission amplitudes, respectively.
Thus, one has

t = � 2i sin k e�i�N

M11e�i� +M12 �M21 �M22ei�
detMN ;

and after some algebra the transmission coe¢ cient TN (E) = jtj2 reads[10]

TN (E) =
4(detMN )

2 sin2 k

[M12 �M21 + (M11 �M22) cos k]2 + (M11 +M22)2 sin
2 k
: (9.84)

The transmission coe¢ cient is a useful quantity to describe the transport
e¢ ciency in quantum systems. Nonetheless, TN (E) is usually di¢ cult to be
directly measured experimentally. Relevant information on the transmission
properties can be gained by measuring current-voltage characteristics. How-
ever applying a voltage bias in between conducting leads contacting the chain
has also some in�uence on the scattering properties inside the system, and
direct information on intrinsic e¤ects on transmission should thus be con-
sidered with care. In experiments on molecular wires the electric current I
through the molecule is measured as a function of the voltage, V , and it can
be calculated from the expression,[56]

I(V ) =
2e

h

Z
TN (E; �) [fL(E; T; V )� fR(E; T; V )] dE; (9.85)

where fL(R) is the Fermi-Dirac distribution at the left (right) contacts, re-
spectively, and we assume the charges propagate from left to right. In this
expression the transmission coe¢ cient depends on the system�s length, N , the
charge carrier energy, E, and a lead coupling factor, �: If � were a function
of the applied voltage then T = TN (E; V ) as well. However, one usually
assumes the transmission coe¢ cient is evaluated a zero bias. This low bias
approach is a very good description for short molecules connected to metallic
leads. Nevertheless, in the case of large molecules the possible modi�cation
of the macromolecule electronic structure in the vicinity of the leads should
be considered for moderated biases.

9.5.3 Landauer conductance

Closely related to the transmission coe¢ cient, the Landauer resistance for-
mula appears as a very simple expression of the residual resistance of a one-
dimensional system in terms only of its scattering properties at the Fermi
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energy.[57] Accordingly, it is a useful magnitude in the context of molecular
electronics, which allows for a direct comparison with experimental current-
voltage curves, since one reasonably expects the energy interval under the
TN (E) curve to be proportional to the electrical current �owing through the
molecule.[58] The Landauer formula establishes the relationship between the
resistance of a �nite chain, �N (E), and the transmission coe¢ cient, TN (E),
as follows

�N (E) =
h

2e2
1� TN (E)
TN (E)

: (9.86)

Such formula should not depend on external leads and it has a range of ap-
plicability limited to the regimes where TN (E) � 1. In the case of reso-
nant (or ballistic) transmission, �N (E) obviously tends to zero, but in that
regime, the resistance is �xed by the contacts plus molecule system, and will
be limited to the so-called Landauer conductance G(E) = G0TN (E); where
G0 � 2e2=h ' 12906�1 
�1 is the conductance quantum. The use of the
Landauer resistance is specially relevant in the study of electron transport in
one-dimensional �nite systems, since Eq.(9.86) can be easily combined with
the transfer matrix formalism, considering that electrons enter in the system
by one of the edges and exit through the other side according to the expres-
sion given by Eq.(9.84). The generalization of such concept to more than
one dimension is not a trivial issue as it has been discussed by Landauer and
co-workers.[59]
The Landauer resistance has been widely used to characterize the local-

ization properties of one-dimensional disordered systems.[60] Thus, for expo-
nentially localized states the Landauer resistance increases exponentially with
the system size. On the contrary, for critical states the resistance �uctuates
and shows self-similar patterns. According to this result it was suggested
that, in the case of Fibonacci systems, the Landauer resistance should show
an algebraic dependence of the form �N � N � with � > 0.[61] This conjec-
ture, originally based on numerical results, was later con�rmed by means of
rigorous mathematical proofs.[62] Therefore, the power-law scaling of the re-
sistance might be regarded as a �ngerprint of critical states. On the other side,
for a given system size, the plot of the Landauer conductance as a function
of energy displays the global structure of the energy spectrum (see Fig.5.24).
Therefore, for ideal aperiodic systems (without structural defects) one can
reasonably expect that the Landauer conductance will show self-similar �uc-
tuations as a consequence of the highly fragmented structure of their energy
spectrum.[10, 63]
To derive Eq.(9.86) it was assumed that the temperature is low enough, so

that inelastic scattering (responsible for thermalization, energy dissipation,
and phase randomization) takes place inside the metallic contacts only. How-
ever, in actual systems the e¤ects of �nite temperature as well as the defects
present in the sample can hide �ner details of the energy spectrum, thus mak-
ing it di¢ cult to experimentally determine fractal features. This fact is of
great relevance if those features are to be applied in technological devices (see
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Figs.5.25 and 7.1). In this case it is convenient to make use of the formula[64]

�(T; �) =

R �
� @f

@E

�
TN (E)dER �

� @f
@E

�
[1� TN (E)]dE

(9.87)

for the dimensionless conductance of the system at �nite temperature, where
the integration is extended over the entire energy spectrum, f is the Fermi-
Dirac distribution and � denotes the chemical potential of the sample.

9.5.4 Lyapunov coe¢ cient

The Lyapunov coe¢ cient, �(E), provides the growth ratio of the wave function
of the eigenstate with energy E along the system. Accordingly, its inverse,
��1(E), determines the localization length of the eigenstate. Therefore, this
magnitude is quite useful in order to establish a relationship between the
energy spectrum and the transport properties of the system.
There exist several de�nitions of this parameter in the literature. Thou-

less pointed out the relation between the Lyapunov coe¢ cient and the local
structure of the spectrum, determined by the DOS (see Section 9.5.1),[65]

�(E) =

Z
ln

����4(E � E0)W

����D(E0)dE0 � ln jZj; (9.88)

where W is the conduction-band width and Z is the geometric mean of the
o¤-diagonal elements of the Hamiltonian. Gaps in the energy spectrum are
characterized by maxima of �, whereas allowed bands correspond to minima
of �. For systems arranged according to the Fibonacci sequence the energy
spectrum is singular continuous and, for Fibonacci tight-binding transfer-like
Hamiltonians, the condition �(E) = 0 for every state in the spectrum has
been rigorously proven.[66]
From a numerical point of view,[55, 66] it is more convenient to use the

expression

�(E) = lim
N!1

1

N
ln kMN (E)k (9.89)

whereMN (E) is the global transfer matrix of the system given by Eq.(9.10)
and jj:::jj stands for a suitable matrix norm. One can consider the matrix
norm

jjMN (E)jj = sup
jjMN jj
jj jj ; (9.90)

associated with the euclidean vector norm jj jj =
p
j 1j2 + j 0j2, where

 � ( 1;  0)t is the initial vector. At �rst sight, the Lyapunov exponent
seems to depend on the norm of this initial vector, but it has been shown
that, under very general circumstances, Eq.(9.89) can be expressed as[31, 55]

�(E) = lim
N!1

1

2N
ln(trMNMy

N ) = lim
N!1

1

2N
ln
�P

M2
ij

�
; (9.91)
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where y denotes the Hermitian conjugate. This expression is very useful in
numerical studies where the elements of the global transfer matrix,Mij(E;N);
can be evaluated in a recursive way. It allows for the derivation of closed
analytical expressions as well. For instance, plugging the matrix elements
given in Eq.(6.38) into Eq.(9.91), and making use of the relationship U2n +
U2n�1 � 2zUnUn�1 = 1, along with Eq.(9.17), one readily obtains Eq.(6.43).
Alternatively, one may use the expression[55, 67]

�(E) = lim
N!1

1

2N
ln�N ; (9.92)

where

�N =
kMNk2�
2

+

s
kMNk4�
4

� (detMN )2 (9.93)

is the largest eigenvalue of the matrix MNMy
N , and kMNk� �

qP
M2
ij is

the so-called trace matrix norm.
Several alternative de�nitions of the Lyapunov coe¢ cient can be found

in the literature aimed to relate it with several magnitudes of interest for
the study of the transport properties. For example, the following expressions
relating the Lyapunov coe¢ cient to the transmission coe¢ cient TN (E),[67, 68]

�(E) = � lim
N!1

1

2N
lnTN (E); (9.94)

or to the wavefunction values at the ends of the chain,

�(E) = lim
N!1

1

N
ln

���� N 0
���� ; (9.95)

have been extensively considered. When considering extended states belong-
ing to the allowed bands of periodically ordered crystalline systems one gets
�(E) = 0: In fact, in that case (i) the global transfer matrix elements oscillate
between two bounded values [i.e., we have jMN j � 2 in Eq.(9.89)], (ii) we have
a unity transmission coe¢ cient, hence vanishing Eq.(9.94), and (iii) the Bloch
wave functions satisfy the boundary condition  N �  0, hence vanishing
Eq.(9.95) as well. In the case of exponentially localized eigenstates Eq.(9.95)
can be related to the localization length as follows. Let  be an exponentially
localized state. Then, the wavefunction amplitude at site n can be expressed
as  n ' e�jn�n0j=�; where n0 indicates the site where the state exhibits its
maximum amplitude along the chain and � measures its localization length.
Accordingly,  n+1 ' e�jn�n0j=��1=�; so that

��1 = � ln
���� n+1 n

���� : (9.96)

By comparing Eq.(9.96) with Eq.(9.95) we see the Lyapunov exponent is re-
lated to the inverse localization length in the straightforward way �(E) = ��1
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in the limit n ! 0. Therefore, the Lyapunov exponent provides a direct
measure of the inverse localization length for exponentially localized states.
Works dealing with the so-called random dimer model (see Section 1.7), where
a number of impurity dimers are randomly interspersed in a host chain, have
considered the Lyapunov coe¢ cient as de�ned by Eq.(9.94), and used it to
discuss the localization length of resonant states. The criterion for the pres-
ence of delocalized states was the condition of �� N�1 for these states.[51]
Can this interpretation be directly extended to critical states characteristic of
quasiperiodic systems?
It is known that in the particular case of Fibonacci on-site models (see Chap-

ter 5) the norm of the global transfer matrix is polynomially bounded for every
state in the spectrum, i.e., jjMN (E)jj � N� ; when N goes to in�nity.[62] This
result prevents a naive extension of the argument presented when dealing with
exponentially localized states in order to interpret the Lyapunov exponent as
the inverse localization length. In fact, in this case we have critical wave-
functions whose amplitudes are roughly modulated by scaling exponents �
describing a power law behavior of an envelope as j nj ' jn � nkj�� . This
relation applies to the sites nk where the wave function has a local maximum.
These sites, in turn, are distributed in a self-similar way along the chain.
Then, for each one of these bumps in the wave function we get

ln

���� n+1 n

���� = �� ln ����1 + 1

n� n0

���� ; (9.97)

and the limit n! 0 yields vanishing Lyapunov exponents for any eigenvalue
in the spectrum.[66] The values for the exponents � corresponding to the
center (E = 0) and edges of the main subbands in the energy spectrum of the
Fibonacci chain (transfer model) can be analytically obtained.[28] Numerical
studies have shown that the function �(E); determined by means of Eqs.(9.91)
and (9.94), exhibits a self-similar pattern, re�ecting the highly fragmented,
fractal structure of the energy spectrum.[10] The multifractal nature of the
electronic spectrum structure probably requires the use of a set of exponents
�n, rather than a single one.[69]
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Thermal emittance spectra, 325
Thermal radiation spectra, 322
Thermodynamically stable quasicrys-

tals, 41, 42, 43, 65
Thermoelectric

materials, 345�348, 347
power, 104, 110, 113
signature, 360
temperature dependence, 108

Thermopower curves, 111
Thermopower measurements, 77
Three dimensional arrays

technological device aperiodic or-
der, 337
Three dimensional designs

aperiodic order novel designs, 382�
386
Three dimensional DNA geometry, 264
Three dimensional Fourier transform,

217
Three dimensional Penrose tiling, 338
Three dimensional photonic quasicrys-

tals, 338
Three dimensional quasiperiodic lat-

tice, 91
Thue-Morse chains, 184
Thue-Morse heterostructures, 135
Thue-Morse lattice Fourier transform,

158
Thue-Morse multilayers, 324, 372

periodic, 377
porous silicon, 300

Thue-Morse sequence, 130�131, 131,
135, 195, 300, 317, 320, 379, 405

substitution, 384
Thue-Morse superlattices (TMSL), 198,

327
Thue-Morse thin �lm, 323
Tilings. see also Penrose tiling

aperiodic crystal, 34�36
Archimedean, 7, 333
cube Fibonacci, 383
Euclidean plane, 34
�nite, 34
�vefold, 34�36
Kepler�s Aa, 35
Samp�i in�ation, 334
square Fibonacci, 382, 383
substitution rules, 383
two dimensional aperiodic, 382
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TMSL. see Thue-Morse superlattices
(TMSL)
Transfer matrix formalism, 255
Transitional metals valence, 95
Transmission coe¢ cient, 267, 287, 288,

309
bacteriophage based sequence, 268
curve, 256
dependence, 311, 314, 378
mathematical tools, 418
polyGACT chain, 256
spectrum, 278
transport e¢ ciency, 419

Transmission spectrum, 284
Trans-polyacetylene quasiperiodic chain,

162
Triadic Cantor set, 17, 135
Triadic Cantor superlattice, 136
Tuning fork quasicrystal, 330
Tunneling currents, 288
Twinning aperiodic crystal, 39
Two component Fibonacci heterostruc-

tures, 371
Two dimensional aperiodic tilings, 382
Two dimensional designs, 382�386
Two dimensional Fibonacci structures,

384
Two dimensional lattices, 246
Two dimensional optical devices, 331�

336
Two dimensional photonic crystals, 333
Two dimensional quasiperiodic lattice,

332

U
Unimodular transfer matrices, 404, 410

V
Vacuum deposition (VD), 129
Valence

quaternary quasicrystals, 89
transitional metals, 95

van Hove singularities, 254
VD. see Vacuum deposition (VD)
von Laue, Max, 10

W
Wantzel, Pierre, 6
Watson-Crick base pairs, 247, 250, 354
Wave functions

critical, 170, 171, 173
Fibonacci lattice, 176

Waves
Bloch, 303, 404
electromagnetic, 144, 308
propagation, 385
quantum to classical, 301�304
sinusoidal, 3

Wiedemann-Franz law, 79
electron-phonon interactions, 80
measure of validity, 80
thermal conductivity, 79

X
X-ray di¤raction patterns, 218
X-ray di¤raction techniques, 222
X-ray re�ectivity, 305
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