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Abstract. We present a general and useful method to predict the existence,

frequency, and spatial properties of gap states in photonic (and other) structures with a

gapped spectrum. This method is established using the scattering approach. It offers a

viewpoint based on a geometrical Fabry-Perot model. We demonstrate the capabilities

of this model by predicting the behaviour of topological edge states in quasi-periodic

structures. A proposition to use this model in Casimir physics is presented.

1. Introduction

One-dimensional multilayer photonic structures have proven to be important in

fundamental and applied physics as being simple and accessible systems which display

an equivalence to solid state systems. Periodic dielectric structures are, to some extent, a

photonic counterpart of a solid state crystal whose spectrum contains both transmission

bands and gaps [1]. Random dielectric structures have been used to study Anderson

localization of light [2, 3, 4, 5, 6, 7, 8, 9], and quasiperiodic structures have been

shown to be a photonic analogue of a solid state quasicrystal with a fractal spectrum

containing infinitely many gaps [10, 11, 12, 13, 14]. Gap states, which may occur in

any gapped spectrum are very useful due to their relatively high spectral isolation and

spatial localization. Several methods exist to generate such states, the most familiar

being defect states in periodic systems, similar to the insertion of a dopant into a

semiconductor crystal [15]. In the 1D case, a local defect inserted into a periodic chain

gives rise to a defect state in the gap, spatially localized around the defect, with perfect

transmission inside the band-gap. Also for the periodic case and under certain choice of

boundary conditions, a perfect photonic crystal may also give rise to surface (or edge)

gap states, where the electromagnetic field is localized at the boundary [15] (In solid

state electronic systems these states are termed Tamm and Shockley states [16, 17]).

A third scheme known to generate gap states, is a heterostructure composed of the

concatenation of two periodic chains of different periods or different unit cells, where
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the gap states are localized at the interface [18]. In all of the above cases, the existence of

gap states is attributed to the breaking of the crystalline discrete translational invariance

by the structural defect or boundary. For photonic crystals, the energy spectrum cannot

contain extended states with purely real wave vectors within the gaps. But evanescent

states with complex wave vectors are legitimate and allowed solutions of the eigenvalue

problem within the gaps. Therefore, any symmetry breaking feature such as a structural

defect or a boundary may generate evanescent gap states localized around the defect or

at the boundary respectively. When applying these considerations to quasicrystals, this

understanding deserves a closer look and further generalization. Although less known

than the periodic case, gap states may be easily induced in spectral gaps of quasiperiodic

structures. For instance, in the case of the Fibonacci photonic quasiperiodic chain, gap

states of all kinds have been observed: defect [19], boundary [20, 21] and interface

[22, 23] gap states. The origin of such gap states in structures lacking a definite spatial

symmetry is not that obvious. As a result of this lack of clarity, these gap states have

been given various names, such as defect states, perfect transmission resonances, and

various explanations have been given for their origin (see e.g. [24]).

In this note, we start from the fact that along with their vanishingly small density-

of-states (hereafter DOS) and transmittance values, spectral gaps are also characterized

by high reflectance. We argue that the notion of gap states generated by boundary

conditions bears a Fabry-Perot like meaning, and in that sense, many seemingly different

schemes used to produce gap states are actually of the same origin. Using the scattering

formalism [25], we derive a generalised effective Fabry-Perot condition to analyze gap

states. We then demonstrate this very general geometric viewpoint in analyzing edge

and interface states which have been recently used to characterise topological properties

of quasiperiodic chains [26]. In this test case, the Fabry-Perot description allows to

obtain the spectral locations of gap states and also to fully characterize their topological

content mapped onto a cavity effective length, a result not easily anticipated.

This note is organised as follows. Section 2 describes the scattering approach,

section 3 presents the effective Fabry-Perot model and section 4 its implementation

to the characterisation of topological boundary states for a 1D Fibonacci quasicrystal.

Finally, section 5 concludes and discusses our results.

2. Scattering analysis of 1D structures

2.1. Scattering phases - Total phase shift and spectral properties

We now introduce the scattering approach which offers a framework to study spectral

properties of any structures including those without obvious spatial symmetry, such

as quasiperiodic structures [25]. We recall that any quantum or wave system with

a potential defined w.r.t a free part can be probed using the scattering of waves with

wave vector k. For the sake of self coherence and simplicity of notations, we consider the

scattering of electromagnetic waves by a dielectric medium with a spatially modulated



Topological Boundary States in 1D: An Effective Fabry-Perot Model 3

i
L

i
R

o
R

o
L

𝒓𝟏𝒆
𝒊𝜽𝟏

𝒓𝟐𝒆
𝒊𝜽𝟐

𝑱𝟏

∝ 𝜽𝟏+𝜽𝟐

𝑱𝟐

𝒓𝒆𝒊𝜽

𝒓𝒆𝒊𝜽

𝟏

𝟏 |𝒕|𝒆𝒊𝜽𝒕

|𝒕|𝒆𝒊𝜽𝒕

(a) (d)

(b) (c)

Figure 1. (color online) The scattering problem. (a) A sketch for the notations

of incoming and outgoing waves. (b)-(c) Notations for the amplitude of the two

possible transmission experiments: incoming waves from the right or from the left.

(d) Notations for the virtual cavity in the interface between two general structures J1
and J2.

refractive index.

The scattering matrix S of a 1D structure is defined by(
oL
oR

)
=

(
−→r t

t ←−r

)(
iL
iR

)
≡ S

(
iL
iR

)
, (1)

where [i, o] stand for incoming and outgoing plane waves, [R,L] stand for right-hand

and left-hand side of the structure, [−→r ,←−r ] stand for the reflected wave amplitudes

corresponding to incoming waves from the left and from the right respectively, and t is

the transmitted amplitude (see Fig. 1a). The scattering matrix S is unitary, so that it

is diagonalizable under the form(
eiΦ1(k) 0

0 eiΦ2(k)

)
, (2)

and therefore may be fully described by means of two independent scattering phases.

One convenient choice of such phases is

δ(k)≡(Φ1 + Φ2) /2

Λ(k) ≡(Φ2 − Φ1)/2
, (3)

The scattering phase δ(k), known as the total phase shift, allows to obtain a simple and

very useful relation to ρ(k), the DOS [25], sometimes known as the Krein-Schwinger

formula, namely

ρ(k)− ρ0(k) =
1

2π
Im

∂

∂k
ln detS(k) =

1

π

dδ(k)

dk
, (4)
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where ρ0(k) is the DOS of the free system, i.e. without the scattering structure. Defining

the transmission and reflection complex amplitudes by

t≡|t|ei θt
−→r ≡rei

−→
θ

←−r ≡rei
←−
θ

(5)

again with the same arrow convention indicating incoming waves from left or right, and

using the unitarity condition, −→r ∗ t+←−r t∗ = 0, we obtain the additional expressions,

detS=e2iδ=−t/t∗ =←−r/−→r ∗

δ(k)=θt(k)+π/2 = 1
2

(−→
θ +
←−
θ
)
.

(6)

Note that the relations (6) and the whole scattering approach apply for finite structures

(where [t,−→r ,←−r ] are well defined), and are equally correct in the limit r2 = 1−|t|2 → 1.

Also notice that the notations −→r and ←−r in (1) and (6) represent the two possible

transmission experiments (see Figs. 1b and 1c) which are identical except for the phases

of the reflected amplitudes. Therefore, the total phase shift may be expressed using

either the transmitted phase shift or the sum of the two possible reflected phase shifts.

The second scattering phase Λ(k) in (3), complementary to δ(k), carries additional

information regarding the structure, unavailable through δ(k). Here we wish to promote

the use of a related phase, termed the chiral scattering phase [26] and defined by
←−r ≡−→r eiα, or equivalently by

α≡←−θ −−→θ . (7)

This phase, which monitors the difference between the two possible transmission

experiments in Figs. 1b and 1c, is equivalent to the phase 2Λ(k) in the limit

r2 = 1 − |t|2 → 1 as will be shown in the next subsection. The chiral phase has

been shown to be related to the topological nature of the spectrum [26], as we shall see

later on. Relations (6) and (7) are the starting point in deriving the generalised effective

Fabry-Perot model.

2.2. The chiral scattering phase α

The scattering matrix defined in (1) may be rewritten using (5)-(7) as

S = eiδ

(
re−

iα
2 i

√
1− r2

i
√

1− r2 re
iα
2

)
≡ eiδS̃. (8)

The phases Φ1 and Φ2 in (2) may now be calculated through the diagonalization of S̃
so that

P−1S̃P =

(
ei(Φ1−δ) 0

0 ei(Φ2−δ)

)
. (9)

The 2 eigenvalues of S̃ are the solutions λ1,2 = ei(Φ1,2−δ) of

λ2 − 2rλ cos
α

2
+ 1 = 0, (10)
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namely

λ1,2 = r cos
α

2
± i
√

1− r2 cos2
α

2
. (11)

This implies that

cos [± (Φ1,2 − δ)] = r cos
α

2
, (12)

or equivalently,

Φ1,2 = δ ± arccos
(
r cos

α

2

)
, (13)

which leads to the useful representation of (3)

Φ2 + Φ1 = 2δ for any r (14)

Φ2 − Φ1 = 2 arccos
(
r cos

α

2

)
= 2Λ . (15)

Expression (15) gives a precise relation between the phases Λ and α and the reflectance.

We can investigate this relation by writing

cos
Φ2 − Φ1

2
= r cos

α

2
. (16)

From (16) we can see that Φ2 − Φ1 = α for r → 1, but also for every value of r when

α = π. This means that for any nonzero value of r, the scattering phase Φ2−Φ1 follows

the behavior of α, but attenuated by the factor 0 < r < 1 for most part of the winding

of α. This behavior is the reason why we advocate the use of the scattering phase shift

α, which is a key quantity in the generalised effective Fabry-Perot model.

3. The effective Fabry-Perot model

3.1. Fabry-Perot interference condition and the winding of a phase

We begin with a qualitative argument. Any structure with a gapped spectrum is

equivalent to a well defined frequency-dependent mirror. Each of these multilayered

mirrors (with distributed reflection) is equivalent to a standard mirror with a frequency

dependent reflectance, and a frequency dependent phase shift upon reflection. We will

show that a cavity delimited by such multilayered mirrors, is equivalent to a Fabry-

Perot cavity with standard (phase conserving) mirrors and an effective (i.e. often non

geometric) cavity length.

In the usual Fabry-Perot description, a cavity is defined by two mirrors separated

by a geometrical length L. Such a cavity contains a discrete set of resonant wavelengths,

λm, obtained from the standard resonance condition

2L/λm = m, m∈Z. (17)

Equivalently, this resonance condition can be written in terms of the winding of a new

frequency dependent round-trip accumulated phase, θ
(0)
cav, termed the cavity phase and

defined by

θ(0)
cav (k, L) ≡ 4πL

λ (k)
, (18)
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where λ(k)=2π/k is the wavelength. Under this definition, the resonance condition in

(17) becomes

θ(0)
cav(km) = 2πm, m∈Z. (19)

We now wish to generalise these usual interference conditions and phase winding so as

to include the multilayered mirrors J1 and J2 on the left hand and right hand side of

the cavity respectively (see Fig. 1d). The mirrors J1 and J2 lend a non zero phase

upon reflection,
←−
θ 1 (k) and

−→
θ 2 (k) respectively, allowing to write a new and generalised

cavity phase as

θcav

(
k, L,

←−
θ 1,
−→
θ 2

)
≡ θ(0)

cav +
←−
θ 1 +

−→
θ 2. (20)

for which the resonance condition still applies by the generalisation of (19),

θcav(km) = 2πm, m∈Z (21)

Since this resonance condition holds also in the absence of a geometrical cavity namely

for two adjacent multilayer structures in the absence of separation, i.e. for which L = 0

and θ
(0)
cav = 0, it is thus possible to define a virtual cavity which still admits resonant

states. This winding condition can also be formulated as a Fabry-Perot condition (17)

but where the geometric length L is now replaced by a frequency-dependent effective

cavity length, L (k), built out of the sum of the geometrical and the virtual cavity

lengths, namely

L
(
k, L,

←−
θ 1,
−→
θ 2

)
≡ λ(k)

4π
θcav. (22)

Resonant states occur at gap frequencies satisfying the usual Fabry-Perot condition, this

time for the effective length, namely

2L(km)/λ(km)=m, m∈Z. (23)

We emphasize that although both (19) and (23) may hold for many values of k, only

a discrete set {km} of values within the spectral gaps (where the reflectance values

are sufficiently high) will support gap states. The figure of merit used to predict the

existence of gap states is the mutual reflectance R, to be defined later on. Additionally,

it is possible to show that the {km} values which fall within transmission bands will

result in so called perfect transmission resonances [23, 24], but this lies outside the

scope of this note.

3.2. Fabry-Perot interference condition from scattering theory

The idea of a frequency dependent cavity length can lead, in the case of a nontrivial

k-dependence in L(k), to some counterintuitive results such as a non-equal spacing of

resonant modes in frequency (unlike the traditional Fabry-Perot situation), and even

to the manifestation of a single Fabry-Perot mode spread into more than one resonant

frequencies. However, this idea of a frequency dependent cavity length is necessary even

in trivial cases, as shown in 4.3.
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The results (21) and (23) can be obtained in a more quantitative way for the case

L = 0, namely for the heterostructure [J1J2] made of the concatenation of the two sub-

structures J1 and J2 i.e. without geometric cavity. There exists a relation between the

scattering matrix S12 (k) of the heterostructure and the scattering matrices S1 (k) , S2 (k)

of the respective substructures J1 and J2. This relation is obtained starting from the

definitions

S1(2) ≡

(
−→r 1(2) t1(2)

t1(2)
←−r 1(2)

)
; S12 ≡

( −→
R T

T
←−
R

)
. (24)

Then, using the algebraically equivalent transfer matrix [25] defined by(
oR
iR

)
≡M

(
iL
oL

)
, (25)

such that

M1(2) =

(
1/t∗1(2)

←−r 1(2)/t1(2)

−−→r 1(2)/t1(2) 1/t1(2)

)
; (26)

and

M12 = M1 ·M2 ≡

(
1/T ∗

←−
R/T

−−→R/T 1/T

)
. (27)

The total phase shifts δ1, δ2, δ12 of the respective scattering matrices S1, S2, S12 are

obtained from

e2iδ1(2) = detS1(2) = −
t1(2)

t∗1(2)

=
←−r 1(2)

−→r ∗1(2)

; e2iδ12 = detS12 = − T

T ∗
=

←−
R
−→
R
∗ , (28)

and they can be related through

e2iδ12 = e2i(δ1+δ2) 1− (−→r 2
←−r 1)∗

−→r 2
←−r 1 − 1

(29)

which, using the definitions

eiϕ ≡ 1− (−→r 2
←−r 1)∗

−→r 2
←−r 1 − 1

=
1− ζ∗

ζ − 1
, (30)

where ζ ≡ −→r 2
←−r 1, can be rewritten under the simple form,

δ12 − (δ1 + δ2) =
ϕ

2
. (31)

Through ζ, two Fabry-Perot parameters are naturally introduced into the formalism.

From (29), we have ζ = r1r2exp
(
i
←−
θ 1 + i

−→
θ 2

)
≡ Reiθcav , where θcav has been defined

in (20) and R(k) ≡ r1r2 is the mutual reflectance of the substructures, related to the

finesse of the resultant Fabry-Perot cavity by

Finesse =
π
√
R

1−R
. (32)

Thus, we can rewrite the relation between the phase ϕ and the cavity parameters

(R, θcav) as

R cos
(
θcav + ϕ

2

)
= cos

(
ϕ
2

)
. (33)
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Figure 2. (color online) ϕ(θcav) for various values of the mutual reflectance R as

calculated from (34). The relation ϕ = −θcav holds only for perfect mutual reflectance

R = 1.

Equation (33) can be rewritten for nonzero R as

ϕ

2
= arctan

(
R cos (θcav)− 1

R sin (θcav)

)
. (34)

Using relations (30), (33) and (34), we are now in a position to predict the occurence of

gap states. The condition for the appearance of a single gap state km in a perfect gap

(R = 1) of the spectrum of [J1J2] is

δ12(km)−[δ1(km) + δ2(km)]=π + 2πm , (35)

where m ∈ Z. Using (30), this condition can equivalently be written as ϕ = 2πm

and it may be viewed as resulting from the Levinson theorem [27]. We may rephrase

the condition as: a new gap state will arise at frequencies for which ϕ completes a full

winding and the mutual reflectance is perfect. However, this relation is only approximate

for the more realistic case R < 1. From (33), one can see that for the perfect mutual

reflectance case, ϕ (θcav, R = 1) = −θcav, which yields the condition for the appearance

of a new state, θcav (km) = 2πm, i.e. nothing but the Fabry-Perot resonance condition

(21). In Fig. 2, we have studied the effect of varying R on the relation between ϕ,

and θcav as given by (34). We note that ϕ no longer covers the interval [0, 2π] and,

consequently never takes the (perfect reflection) resonant values as θcav does. Instead,

it becomes increasingly smeared as R decreases. This shows that in general, the Fabry-

Perot parameter θcav is indeed more suitable than ϕ to identify the appearance of new

gap states in structures with imperfect reflection.

In the next section, we apply the effective Fabry-Perot winding condition (21) to

the case of topological gap states in quasiperiodic structures. We show that in addition

to predicting the resonant frequencies as discussed, the effective Fabry-Perot model

allows to understand the spatial symmetry of the resonant modes as being driven by

the parity of the Fabry-Perot integer m in (21). In addition and to conclude this
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section, the effective Fabry-Perot model allows to have a unified description of all gap

states producing schemes. Through this ”geometrical” understanding, defect and surface

states have the same physical origin.

4. Topological edge states in quasi-periodic structures

4.1. The Fibonacci quasicrystal

The probing of topological edge states is a convenient and largely used method to

exhibit topological properties, either structural or spectral, of a given material [28, 29].

An important asset of a large class of quasicrystals and quasi-periodic structures is that

they have a rich topological content which starts to be systematically unveiled [26, 30].

Here, we wish to investigate part of these topological features using the properties

and the behaviour of conveniently created gap states obtained from the generalised

effective Fabry-Perot condition (21). Such edge states, localised at a boundary, have

been observed in quasi-periodic structures [20, 21] and have been analysed in terms of

their topological content both in the tight binding approximation [30] and by means of

a scattering approach [26].

A simple version of the Fibonacci quasicrystalline chain is defined from a two letters

alphabet {A,B}. The chain may be constructed by means of several equivalent iterative

rules (see [26] and references therein). Here we choose the characteristic function χm
which takes the two values ±1 respectively identified to the letters {B,A}, namely,

χm = sign
[
cos
(
2πmτ−1 + φ

)
− cos

(
π τ−1

)]
, (36)

wherem∈Z and τ = (1+
√

5)/2 is the golden mean. The angular degree of freedom φ can

be safely ignored for the infinite chain S∞ but not for any of its finite segments generally

defined by
−→
S j(φ)≡

[
χ1χ2 · · ·χFj

]
(with F1 = 1, F2 = 2, Fj>2 = Fj−2 + Fj−1). The

alphabet {A,B} generally represents a piecewise modulation of a physical parameter

(e.g. density, potential, dielectric constant etc.). Here we discuss the case of a dielectric

modulation, such that the letters {A,B} represent different values of refractive index

{nA, nB}, and different layer thickness {dA, dB}, as depicted in Fig. 3. The DOS and the

transmission spectrum of a Fibonacci dielectric structure, calculable using the scattering

approach, has a fractal structure [12, 13, 14] made out of a rich variety of bands and

gaps (see Fig. 4).

4.2. Gap states in a Fibonacci quasicrystal

One scheme recently proposed to produce gap states relevant for the topological analysis

of quasicrystals considers a symmetrized hetero-structure built out of a chain and its

mirror image (see Fig. 5.b). To that purpose, consider a given chain bounded from

one side by a perfect mirror (either metallic as in Fig. 5.a or index mismatch based

as in Fig. 5.c). Waves traveling towards the mirror plane are reflected back into the

chain, experiencing the dielectric modulation in a reverse order. An equivalent scattering
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Figure 3. (color online) Setup and notations for the dielectric scattering problem.

The alphabet {A,B} is characterised by a refractive index {nA, nB} and a thickness

{dA, dB}. The notations for the waves are as follows. {iL, oL} ≡ {E(→)
L , E

(→)
L } denote

the electric field amplitudes of incoming and outgoing waves at the left boundary,

respectively. Similarly, {iR, oR} ≡ {E(→)
R , E

(→)
R } are defined outside the right structure

boundary and {E(→)
j , E

(→)
j } is defined inside the dielectric structure.

(a)

(b)

Figure 4. (color online) The transmittance (T ≡ tt∗) spectrum (a) and the DOS

spectrum (b) for the Fibonacci segment
−→
S 10 as a function of the incoming waves

wavenumber k.

version of this setup consists in removing the mirror and instead unfolding the chain

with respect to the mirror plane. In that way, we create an artificial symmetric chain (an

artificial palindrome). From the previous description of a Fibonacci chain and using the

notations of section 3, we consider the artificial palindrome denoted by [J1J2] = [
−→
S j
←−
S j],

where
←−
S j(φ)≡

[
χFjχFj−1 · · ·χ1

]
. Note that symmetry-wise, the possible gap states

spatially localised around the interface of the artificial palindrome are equivalent to the

union of the possible edge states in the metallic mirror case (with a node in the mirror

plane/interface), and the possible edge states in the mismatch mirror case (with an

anti-node in the mirror plane/interface). Therefore, the artificial palindrome scheme is
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jS

A B 

… … 
jS… 

I 

Figure 5. (color online) (a) and (c): The Fibonacci chain segment
−→
S j (indicated by

black and white bars) bounded from the right by a metallic mirror (a) indicated by

an orange line and marked with “A”, or by a continuum with refractive index smaller

than that of the chain (c) indicated by a blue line and marked with “B”, hosting gap

states localised at the edge as requested by the boundary conditions. (b) The artificial

palindrome based on the same structure, hosting gap states localised in the interface

indicated by the dotted line and marked with “I”. The artificial palindrome scheme

serves as a generalised mirror hosting gap states of both spatial symmetries.

a generalised mirror/edge, hosting twice the number of gap states as compared to any

type of mirror. Noting that in the artificial palindrome case

δ1 = δ2 ≡ δ ;
←−
θ 1 =

−→
θ 2 ≡

←−
θ ;
−→
θ 1 =

←−
θ 2 ≡

−→
θ (37)

and using (6) and (7), the relevant scattering phase (20) for the artificial palindrome

rewrites as,

θcav

(
k, L,

←−
θ ,
−→
θ
)
=

4πL

λ (k)
+2
←−
θ =

4πL

λ (k)
+2δ + α, (38)

emphasizing that for the artificial palindrome, the cavity phase is a combination of the

independent scattering phases given in (3). Here we show that the resultant resonant

gap states of the Fibonacci quasi-periodic chain are of a geometric nature [26].

The DOS and transmission spectrum of [
−→
S j
←−
S j] have their bands and gaps

distributed as for the single (i.e. mirrorless) structure. Gap states are spatially localized

around the heterostructure interface [26] (see Figs. 6, and 7). Figure 7 shows that

scanning the angular degree of freedom φ in (36) does not change the spectral locations

of neither the bands nor the gaps, but significantly affects their spectral location. Such

a behaviour has been shown to be directly related to the topological (Chern) invariants

ascribed to each gap [26, 31, 32].

Now, we show how to obtain and characterise these states using the effective Fabry-

Perot model (21) (see also Fig. 8). For a given value of φ, one can calculate the phases

ϕ(k) and θcav (discussed before and depicted in Fig. 2) for each relevant spectral gap.
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9S 9S

(a) (b)

Figure 6. (color online) The appearance of gap states in the artificial palindrome

scheme for the Fibonacci segment
−→
S 9. (a) The DOS spectrum with new states

appearing at the gaps. (b) The spatial arrangement of the heterostructure indicated

by yellow and magenta bars, with a representation of the electric field intensity for the

gap state at k = 0.39 showing a node at the interface.



k      k



(b)(a)
jS jSjS

Figure 7. (color online) Topological gap states in the spectrum of the artificial

palindrome [
−→
S 10
←−
S 10]. (a) A semi 3D plot of the density of states as a function of

φ and k for the chain
−→
S 10. The φ-independent gaps are marked with dashed red

ellipses. (b) The same as (a), for the artificial palindrome [
−→
S 10
←−
S 10]. Gap states and

their traverse as a function of φ is observable.

The behavior of θcav=2
←−
θ , and ϕ=2δ12−4δ is examined for two selected spectral gaps,

characterized by different values of r2. Indeed, the winding range of θcav is unaffected by

values of the reflectance r2 different from unity, while ϕ ceases to cover the interval [0, 2π]

(even for r2 = 0.98, Fig.8.a). Thus, for any value of r2, the use of the condition (19) to

calculate the gap state frequencies for P is justified. Specifically, if this condition is met

within the spectral gap (orange arrows in Fig.8), then a gap state is expected to appear

at this frequency. The prediction power of this process is demonstrated in Fig. 9a. Later

on, we shall see that the appearance of gap states in single segments (no symmetrization)

with a reflective boundary condition can also be predicted using this exact process with

an additional selection rule required to meet the boundary condition. To illustrate the

geometrical origin of these topological gap states, we introduce a geometrical cavity
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Figure 8. (color online) The behavior of the phases ϕ(θcav,R) and θcav as a function of

the incoming waves wavenumber k for the artificial palindrome based on the Fibonacci

segment
−→
S 10, at two different spectral gaps (gap edges are indicated by red bars, and

the gap state frequency is indicated by orange arrows). (a) Gap around k = 0.385,

with R = r2 = 0.98. (b) Gap around k = 0.235, with R = 0.25.
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Figure 9. (color online) (a) DOS spectrum of the artificial palindrome based on

the Fibonacci segment
−→
S 10. Red circles mark the Fabry-Perot resonant wavevectors

km according to (21). Resonances within the spectral gaps are the subject of this

note, while the resonances lying within the bands are related to the so called perfect

transmission resonances. (b) The geometrical cavity setup: the substructures
−→
S 10,

and
←−
S 10 are separated by a region with a uniform refractive index (with a geometrical

cavity length approximately as long as
−→
S 10). The DOS spectrum (blue lines) and the

resonant condition prediction (red circles) are indicated.

in addition to the artificial palindrome virtual cavity (i.e. the sub-structures are now

separated by a uniform region of length L). This leads to a decreasing spectral distance

between successive Fabry-Perot resonances, and thus to the existence of more than one

resonance within a single gap as displayed in Fig. 9b. In the topological characterisation

of these gaps using the winding of the corresponding phase θcav [26], this process is

repeated for all values of φ to produce a gap state trajectory as a function of φ. This

result for two selected spectral gaps is displayed in Fig. 10.
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Figure 10. (color online) Topological gap states in the spectrum of the artificial

palindrome based on the Fibonacci segment
−→
S 10. (a) Colormap of θcav(φ, k) within

the gap around k = 0.385. Light green areas correspond to the Fabry-Perot resonance

condition (19). (b) Crossover of the gap states as a function of φ. The relative

spectral location of gap states (red) is compared to the Fabry-Perot resonance condition

(blue).(c)-(d) The same as (a)-(b) for the gap around k = 0.235.

As described earlier, the use of the effective Fabry-Perot model for heterostructures

with many spectral gaps, differs significantly from the usual Fabry-Perot resonance

“comb” picture. However, besides predicting the resonant frequencies, more information

may be extracted about the spatial properties of the gap states through the parity of the

Fabry-Perot integer, m in (21). In the usual Fabry-Perot picture for phase conserving

mirrors (a condition such that the refractive index of the outside world is significantly

smaller than the refractive indices nA and nB), odd m leads to anti-symmetric states

and even m leads to symmetric states (with respect to the mid-cavity coordinate). This

result is also true for our generalised virtual Fabry-Perot cavities. Figures 12 and 13

shows that the parity of m accurately predicts the existence of a node or an anti-node

in the mid-cavity coordinate for the virtual cavity setup. Figures 14 and 15 present the

same behavior for the case of an additional geometric cavity. In addition, figures 12-15

illustrate the geometric origin of boundary states either at the interface of the artificial

palindrome and of edge states in the case of reflective boundary conditions. The artificial

palindrome indeed plays the role of a generalized edge, hosting gap states of both spatial

symmetries (with respect to the mid-cavity coordinate). This additional characterisation

of gap states has been proposed to probe topological properties of spectral gaps in

quasiperiodic chains [32].

To emphasize the generality of this generalised Fabry-Perot approach, and to

illustrate the common origin of all gap states, we consider a single Fibonacci segment

with a single structural defect (in this case an additional “A” layer inserted within the

structure). The gap states which arise are termed defect states, and are depicted in

Fig. 16. However, if we slice this structure in the middle of the defect and consider
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Figure 11. (color online) The first 5 Fabry-Perot cavity resonant states (and

symmetry) for various mirror schemes. (a) The case with two index mismatch phase

conserving mirrors indicated by blue bars and marked “B”. (b) The case with two

metallic phase flipping mirrors indicated by orange bars and marked “A”. (c) The

hybrid case with a metallic mirror on one side, and an index mismatch mirror on the

other.
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Figure 12. (color online) The Fibonacci chain with a different choice of boundary

conditions. The DOS spectrum for
−→
S 9 based artificial palindrome is represented (in

blue), and for a metallic (dashed red) and a refractive index mismatch (dashed green)

reflective boundary conditions on the right edge. The effective Fabry-Perot model

intragap solutions km are depicted by purple circles.



Topological Boundary States in 1D: An Effective Fabry-Perot Model 16

(a) 

(b) 

(c) 

][ 99 SS

][ 9MS

][ 9MS 

Figure 13. (color online) The electric field intensity profile for selected gap states of

the structures of Fig. 12: (a) The
−→
S 9 based artificial palindrome. (b) The

−→
S 9 chain

with a refractive index mismatch boundary condition on the right edge. (c) The same

as (b) for a metallic reflective boundary.
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Figure 14. (color online) The same as Fig. 12 with an additional region with a

uniform refractive index. (a) The artificial palindrome case with a geometrical cavity

L (in blue), compared to the unperturbed structure (in red). The effective Fabry-Perot

model intra-gap solutions km are depicted by purple circles. (b) The same as (a) for

the refractive index mismatch boundary condition with an L/2 stand-off. (c) The same

as (b) for a metallic reflective boundary.
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Figure 15. (color online) The electric field intensity profile and spatial symmetry for

selected gap states of the structures of Fig. 14. (a) The
−→
S 9 based artificial palindrome

with a geometrical cavity L. (b) The
−→
S 9 chain with a refractive index mismatch

boundary condition on the right edge with an L/2 standoff to the structure. (c) The

same as (b) for a metallic reflective boundary.

the virtual Fabry-Perot cavity defined by the resultant sub-structures, we find that it

perfectly predicts the existence and frequency of the defect states, as well as their spatial

symmetry (through the parity of m).

4.3. A topological and wavelength dependent cavity length

On the specific example of gap states created in a quasicrystalline Fibonacci chain, it

is easy to understand the full meaning and importance of the notion of a k-dependent

effective cavity length previously discussed. In fact, the use of a k-dependent cavity

length as defined in (22) is required even in Fabry-Perot cavities with regular mirrors.

In order to clarify this last statement, let us discuss two standard cases for a Fabry-Perot

cavity of (geometrical) length L depicted in Figs. 11a and 11b. The first is delimited

by two dielectric mirrors with a constant dielectric mismatch which conserves phase.

The second contains two metallic mirrors, where each mirror contributes a reflected

phase shift of π which is frequency independent (up to the plasma frequency). The

Fabry-Perot resonant frequencies for both cases are well predicted without the use of

any phase shifts, by the standard formula 2L/λm = m where m ∈ Z, with the lowest
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Figure 16. (color online) The Fibonacci chain S9 with a non central single letter

defect. (a) DOS spectrum for the unperturbed structure (in blue) compared to that

of the same structure with a single non central defect (in red). The two intra-gap

solutions km of the effective Fabry-Perot model with m = 2, 3 are in purple circles. (b)

The electric field intensity of the defect gap states m = 2 (in red) and m = 3 (in blue)

on top of the structural detail (indicated by yellow and magenta bars).

order nontrivial state at λ1 = 2L. However, metallic and dielectric mirrors provide

different boundary conditions forcing nodes and anti-nodes in the electric field envelope,

respectively. Therefore, in the dielectric index mismatch phase conserving mirrors case

(Fig. 11a), odd states are anti-symmetric and even states are symmetric (with respect

to the mid-cavity coordinate) as expected. However, in the metallic mirrors case (Fig.

11a), the relation between spatial symmetry and the parity of m is the other way around.

Moreover, if we now consider a third non-standard Fabry-Perot cavity of cavity length

L with a dielectric mirror at one side and a metallic mirror on the other displayed in

Fig. 11c, we see that resonant states are now asymmetric, and the lowest order state

occurs at at λ = 4L, unaccounted for by the usual formula 2L/λm = m ∈ Z. These

deviations from the standard view are well understood when using the effective Fabry-

Perot cavity length assigning an additional λ
4

virtual length for each metallic mirror

following (22), and the resonant condition given by (23). In the all dielectric cavity,

the cavity phase shift is zero, i.e. L (λ) ≡ L, and resonant states occur at λm = 2L
m

,

with electric field anti-nodes at the boundaries, and with anti-symmetric (symmetric)

odd (even) states with respect to the mid-cavity coordinate (Fig. 11a). In the all metal

cavity case, we have L (λ) ≡ L + λ
2
, as each metallic mirror effectively extends the

cavity by λ
4

(Fig. 17). The resonant states are retrieved by solving λm = 2L(λm)/m self

consistently to arrive at λm = 2L
m−1

which gives identical frequencies to the all dielectric

case but for the opposite parity. This result, along with the fact that the effective and

the geometrical cavity center coordinates coincide, fully explains the spatial properties

of resonant states in an all metal Fabry-Perot cavity. In the hybrid cavity case, we have

L (λ) ≡ L+ λ
4
, as only one (metallic) mirror effectively extends the cavity by λ

4
(Fig. 18).

Solving λm = 2L(λm)/m self consistently gives λm = 2L/(m − 1
2
) yielding a different

set of resonant frequencies than previous cases, including λ1 = 4L. As the effective
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Figure 17. (color online) A sketch of case (b) in Fig. 11 clarified by replacing each

metallic mirror (dashed orange lines marked “A”) by a phase conserving mirror (blue

bars marked “B”), retracted by a quarter wavelength, i.e. a frequency dependent cavity

length.
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Figure 18. (color online) A sketch of case (c) in Fig. 11 clarified by replacing the

only metallic mirror (dashed orange lines marked “A”) by a phase conserving mirror

(blue bars marked “B”), retracted by a quarter wavelength, i.e. a frequency dependent

cavity length.

cavity center coordinate is shifted by λ
8

from the geometrical cavity center coordinate,

symmetric and anti-symmetric states for the effective cavity appear asymmetric with

respect to the geometrical cavity center coordinate.
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5. Discussion

We have presented a method which allows to determine the spectral and spatial

properties of gap states in photonic and electronic structures having a complex and

gapped spectrum. This method is a generalisation of the standard Fabry-Perot

calculation according to which relevant spectral frequencies result from a constructive

interference condition. We have shown that this condition is equivalent to the integer

winding of a properly defined phase characteristic of the Fabry-Perot cavity and which

encapsulates its relevant details, e.g. its reflectance. We have presented a complete

framework to determine systematically this cavity phase using scattering theory. We

have recalled that the unitary scattering matrix contains all the relevant information

about one or several scatterers in the form of a set of phases, precisely two for 1D

systems studied here. One phase, the total phase shift, allows to determine in an

elegant and practical way the change of spectral properties of large systems submitted

to a given perturbation or a modification of boundary conditions. It is extensively used

in a variety of problems such as the Casimir effects (static and dynamic) [33, 34, 35],

cavity optomechanics [36], surface physics, molecular or atomic (e.g. van der Waals)

interactions or the amplification of spontaneous emission (Purcell effect) [12].

The second phase of the scattering matrix, independent of the total phase shift, is

less ubiquitous. Nevertheless, we have shown that it allows to reformulate the Fabry-

Perot constructive interference condition as a type of Levinson theorem, and also to

properly account for existing symmetries and topological properties of the cavity. We

have shown that in general, non trivial spectral and spatial properties of the cavity modes

can be expressed in terms of those of the mirrors in the form of a generalised Fabry-

Perot interference condition with a frequency-dependent cavity length. We have applied

this approach to the study of topological properties of a 1D Fibonacci quasicrystal.

Its generalisation to cavities bounded by mirrors with topological properties may find

unexpected applications precisely in Casimir physics or optomechanics where topological

features may allow to change possibly in a continuous way the nature of the interaction

between the mirrors and thus the sign of the resulting Casimir force.
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