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ENS-PSL Research University, UPMC-Sorbonne Universités,

11 Place Marcelin Berthelot, 75005 Paris, France
2Department of Physics, Technion Israel Institute of Technology, Haifa 32000, Israel and

3Rafael Ltd., P.O. Box 2250, Haifa 32100, Israel
(Dated: July 5, 2016)

Topological properties are now understood to be a key feature of many different physical systems,
from topological insulators to quasicrystals. Such properties are often encoded into integer-valued
topological invariants, such as winding or Chern numbers, usually related to transport or spectral
measurements. We report on an experiment where the Chern numbers of quasicrystalline struc-
tures are directly determined by an interferometric approach. We show that all the possible Chern
numbers for finite-length Fibonacci chains can be observed directly in their diffraction pattern. Fi-
nally, we also demonstrate quantitatively the stability of these topological invariants with respect
to structural disorder.

PACS numbers: 41.20.Jb, 61.44.Br, 03.65.Vf, 73.43.Lp, 11.15.Yc

In the last few decades, several concepts issued from
topology, a well-established branch of mathematics, have
found increasing use in various areas of physics. Topology
generalizes the notion of symmetry classes by classifying
physical objects into distinct families, or classes, which
cannot be related by continuous deformations. A well-
known example from geometry is the Gauss classifica-
tion of surfaces in three-dimensional space by their genus,
roughly equivalent to the number of holes piercing them
(e.g. a doughnut cannot be continuously deformed into
a sphere). More generally, topological classes are charac-
terized by one or a set of integer numbers, called topo-
logical invariants due to their stability against a broad
range of perturbations which may be directly observ-
able. An iconic example from condensed matter physics
is the integer quantum Hall effect, where the Hall conduc-
tance σH of two-dimensional semi-conductors in a strong
magnetic field is quantized in integer multiples of a fun-
damental conductance σ0 [1]. The quantized behavior
can be linked to the topological properties of the filled
electronic bands in the presence of the applied magnetic
field, characterized by a so-called Chern number C such
that σH = Cσ0 [2, 3]. Chern numbers and other topo-
logical invariants play an important role in many other
situations, including the classification of topological de-
fects in symmetry-broken phases [4], quantum anomalies
[5], topological insulators and superconductors [6], band
structures with Dirac [7] or Weyl points [8, 9], and also
quasicrystals.

Quasicrystals (hereafter QC) are structures having
some of their physical properties (e.g. dielectric coeffi-
cient, potential, reflectivity, ...) modulated according to
a deterministic but non periodic pattern. Despite their
lack of periodicity, QC exhibit long-range order and show
sharp diffraction peaks [11, 12]. The discovery of QC
opened a new avenue for solid-state physics, material sci-

FIG. 1. Experimental setup. (a) Sketch of the optical setup
[10]. A collimated laser beam at a wavelength of 532 nm
diffracts off a grating programmed on a Digital Mirror De-
vice (DMD). The far-field diffraction pattern is measured on
a CCD camera. (b)When the grating is structured following
a Fibonacci sequence along the horizontal x direction (and
uniform along the vertical y direction), we observe diffrac-
tion peaks characteristic of the quasiperiodic structure of the
chain.

ence and photonics. A well-known example in one space
dimension is the Fibonacci chain (denoted as S∞), i.e.
an infinitely long one-dimensional structure modulated
according to the Fibonacci sequence [13]. The study of
propagating waves (acoustic, optical, matter, ...) propa-
gation in these quasiperiodic structures reveals a highly
lacunar fractal energy spectrum, with an infinite set of
energy gaps [13–15]. Each gap is centered at a location
kq = p+ q/τ in appropriate units [12], which also corre-
sponds to one of the peaks observable in the diffraction
pattern of the structure. Here q and p(q) are integers and
τ = (1 +

√
5)/2 is the golden mean.

Structural and transport properties of QC have been
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FIG. 2. Influence of the phason degree of freedom on the diffraction pattern of a Fibonacci grating. (a) Structure composed by
the juxtaposition of two identical Fibonacci chains along x (repeated along y). White lines correspond to reflecting mirrors (B
letters in the Fibonacci chain) and black to non-reflecting mirrors (A letters in the Fibonacci chain). For clarity, this example is
shown for a chain of length F6 = 13. (b) Measured diffraction pattern for two Fibonacci chains of length F10 = 89 as depicted
in Fig. 2A. Each line corresponds to the diffraction pattern for a given value of the phason degree of freedom Φ. The global
pattern is almost independent of Φ. (c) Structure composed by the juxtaposition of a Fibonacci chain and of the reversed chain
along x (repeated along y). (d) Measured diffraction pattern for the structure depicted in Fig. 2C with a length F10 = 89. (e)
Sketch of a transmission experiment. (f) Transmission of a 1D Fibonacci chain (as calculated in [16]). Gaps appear at the
same position as the peaks of the diffraction pattern. (g)-(i) Cuts along vertical lines of Fig. 2D for three different values of
kx = (2π/a)× (0.618 (g), 0.146 (h) and 0.472 (i)) corresponding respectively to Chern numbers q = 1,−3, 4.

well-studied, especially in 1D. The so-called gap labelling
theorem [17], among other works [18], has provided a
topological understanding of these properties. This the-
orem predicts, for the infinite Fibonacci chain S∞ (and
for a large class of QC), that the integrated density of
states N (kq) at wavenumbers kq inside a gap takes the
simple form

N (kq) = p+ q/τ. (1)

The integers q are Chern numbers [17, 19–21] and the
integers p(q) keep N (kq) normalized within [0, 1]. These
features have been widely studied [19, 20, 22] and recently
revisited [16, 21] in the wake of the growing interest in
topological properties of solid-state systems. In a recent
work, the gap-labelling theorem was used to identify the
experimental gaps observed in the fluorescence spectrum
of cavity polaritons in a quasiperiodic setup [15].

In this letter, we show that Chern numbers also charac-
terize a fundamental, purely structural aspect of QC and
can be directly measured in their diffraction pattern. We

realized a simple optical setup which allows us to gener-
ate any finite-length Fibonacci chain. The corresponding
Chern numbers – q in (1) – appear as winding numbers
clearly visible in the diffraction patterns of the Fibonacci
chains we studied. Moreover this new approach allowed
us to obtain a “topological map” of these chains and
to measure, in a simple setup, the Chern numbers as-
sociated to each peak. We measured all possible Chern
numbers (from q = −44 to q = +44) of a structure with
89 elements. Our method provides a new and original
experimental approach to study topological properties of
matter, different from transport or topological pumping
experiments which typically rely on edge states localized
on the boundaries [1, 6, 23], and from spectral measure-
ments using cavity polaritons [15, 24] or photonic crystals
[25].

In our experiment (see Fig. 1), we realized Fibonacci
chains using a Digital Micromirror Device (DMD), i.e.
an array of about one million micron-sized mirrors (“pix-
els”) of size a × a. Each mirror can be independently
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FIG. 3. Two-dimensional map of Chern numbers. (a) Exemplary reflectance of the DMD used for the data presented in this
figure. White (resp. black) pixels correspond to reflective (resp. non-reflective) mirrors. The bottom line is the Fibonacci
sequence for Φ = 0. The other lines correspond to the phase-shifted Fibonacci chains scanning Φ from 0 to 2π. For clarity,
this example is shown for a chain of length F7 = 21. (b) Two-dimensional diffraction pattern measured on the camera for a
set of 89 phase-shifted chains with F10 = 89 letters. The axes are calibrated to directly display the diffraction pattern as a
function of kx and ky. We observe peaks at the same positions along kx as in Fig. 2B but shifted along the vertical axis to

ky = q ×
(

2π
aFN

)
. We observe an asymmetry between the intensity of the diffraction peaks for positive and negative ky values.

This is not a fundamental property of Fibonacci chains. Rather it is an effect due to the structure of the DMD leading to an
asymmetric diffraction envelope. This feature originates from the structure of the micromirrors. (c) Zoom on Fig. 3B.

switched between a reflective (B) and a non-reflective (A)
state. We illuminated the grating with monochromatic
light [10], and observed the far-field diffraction pattern on
a CCD camera. According to Fourier optics, this pattern
is determined by the Fourier transform of the reflectance
of the DMD. For a given configuration {xB} of reflecting
pixels, the electric field amplitude in the Fourier plane

is given by A(kx) =
∑
B

eikxxB modulated by an enve-

lope function originating from the DMD structure. The
measured light intensity I is proportional to |A(kx)|2.

We now detail the construction of the configurations
{xB}. It is useful to first review a few properties of
finite-length Fibonacci chains SN , as opposed to the in-
finite chain S∞ discussed in the introduction. Finite-size
chains of given length form a family of one-dimensional
quasiperiodic structures, which are all segments of S∞,
and which can be deduced from each other by changing a
structural degree of freedom termed a phason [16]. In this
work we generate the SN chains using the characteristic
function approach. We define a discrete map χn taking,
for each pixel n, two possible values ±1 that we associate
to the state of the mirror (A = 1, B = −1). Among pos-
sible choices [26–28], we consider the form proposed in
[29],

χn(Φ) = sign
[
cos
(
2π n τ−1 + Φ + Φ0

)
− cos

(
π τ−1

)]
,

(2)
where we identify the phason Φ, which can be safely ig-
nored for S∞ but not for its finite segments SN (Φ)≡
[χ1χ2 · · ·χFN

] (here FN denotes the N th Fibonacci num-
ber). As shown in [16], for a given structure length FN ,
varying Φ over a period [0, 2π) induces a series of FN local
structural changes occurring one at a time and generat-

ing FN non-redundant chains (see Fig. 3A). The value
of Φ0 in (2) is chosen as Φ0 = −(FN + 1)π/τ so that
the chain SN (0) presents a palindromic symmetry (i.e. a
mirror symmetry with respect to its center).

The topological properties of finite-length QC – e.g.
the winding of scattering phases [16] or the topological
pumping of boundary states, as studied experimentally
in [21, 23] – are intimately connected to the phason. A
detailed construction based on the “Cut and Project”
method is presented in the Supplemental Material [10]
where we show that the reciprocal space of the (x,Φ) vari-
ables has the topology of a torus and the Chern numbers
associated to each diffraction peak are winding numbers
around the torus. Although the positions of the diffrac-
tion peaks and Eq. (1) are only approximate for finite
chains, we emphasize that the integer values of the Chern
numbers are exact even for finite size segments (see the
discussion in [10]). The finite size only results in the
existence of an upper limit to the Chern numbers.

As a preliminary experiment, we programmed along
the x-axis a Fibonacci grating of length L = F10×a, with
F10 = 89. We displayed one-pixel-large vertical lines ei-
ther in reflective (B) or non-reflective (A) state according
to Eq. (2) (see Fig. 1). We show in Fig. 1B the measured
diffraction pattern. Within our experimental resolution,
we cannot distinguish the positions of the peaks from
kq = p + q/τ (in units of 2π/a), the expected positions
for the infinite chain. In the following, we note A0(kx)
the diffraction amplitude from this reference chain and
I0(kx) the corresponding intensity.

To reveal the topological features hidden in this pat-
tern, we studied the effect of the phason degree of free-
dom by scanning over all chains corresponding to the
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FIG. 4. Robustness of the topological features against struc-
tural noise. (a) Diffraction pattern of the Fibonacci and re-
versed Fibonacci chain at Φ = 0 and for different levels of
noise η (see text). Each line corresponds to a single diffraction
pattern. The three white dotted lines correspond to three spe-
cific values of η = 0.73, 0.83 and 0.93 chosen as examples.(b)-
(d)Evolution of the diffraction pattern when varying Φ for
three different noise levels. (b) η = 0.73, (c) η = 0.83, (d)
η = 0.93).

FN distinct and relevant values of Φ. In a first experi-
ment, we measured the diffraction pattern of a grating
consisting of a Fibonacci chain next to itself (“SN +SN”
configuration) (see Fig. 2A). All the results are consoli-
dated to form the graph shown in Fig. 2B, where each
Φ value corresponds to a single diffraction measurement.
We observe vertical stripes located at a value kq corre-
sponding to gaps in the transmission spectrum (Fig. 2F).
These stripes are independent of Φ. In a second exper-
iment, following [16], we used a grating consisting of a
Fibonacci chain next to its mirror image (“SN+SN” con-
figuration) (see Fig. 2C). The resulting diffraction pattern
is strikingly different (see Fig. 2D). The vertical stripes
are now striated to form a regular and well-structured
pattern. The intensities, measured at the original loca-

tion of the diffraction peaks kq, vary sinusoidally with Φ
(Fig. 2G, 2H and 2I), with a period that we identify as
π/|q|, i.e. inversely proportional to the modulus of the
Chern number q associated to each peak. We also note
that the direction of the stripes is determined by the sign
of q.

We explain these observations in terms of a “Young’s
double slit” interference between the waves diffracted by
the two chains. In both experiments, (SN + SN ) and(
SN + SN

)
, the diffracted field is the coherent sum of

the amplitude for each chain. Changing Φ is equiva-
lent, as discussed in [10], to a translation by a vary-
ing distance along the infinite chain S∞ and thus to
an additional phase factor in the diffracted amplitude.
We show in the Supplemental Material [10] that, for a
given wavenumber kq, the phase shift of the diffracted
field with respect to the reference chain is qΦ. In the
first experiment (“SN + SN” configuration – Fig. 2A),
the diffracted fields for both chains at a diffraction
peak kq are summed so that the intensity is ISN+SN

=
|A0(kq)e

iqΦ(1 + e−iφS )|2 = 2I0(kq)(1 + cos(φs)), where
the phase φs = kqaFN is due to the separation between
the two “slits”. The diffraction pattern is thus indepen-
dent of the phason Φ. By contrast, in the second ex-
periment (“SN + SN” configuration – Fig. 2C), the two
chains SN and SN are related by a mirror symmetry. As
detailed in the Supplemental Material [10], this leads to
ISN+SN

= |A0(kq)e
iqΦe−iφS +A0(kq)e

−iqΦeiφS |2 and the
intensity at a diffraction peak is then given by

ISN+SN
(kq,Φ) = 4I0(kq) cos2(qΦ− φs) , (3)

a sinusoidal function of Φ with period π/|q| as observed
experimentally[30].

In a third experiment, we used the eiqΦ dependence of
the diffracted field in a different way which allowed us to
obtain a single-shot measurement of all available Chern
numbers q. We programmed each of the FN different
SN (Φ) chains on horizontal lines along the x-direction
that we piled up along the y direction, thereby forming
an FN ×FN array where the phason degree of freedom is
scanned from 0 to 2π along the vertical direction y. The
y direction can then be identified to Φ (see Fig. 3A) and
the measured diffraction pattern in the (kx, ky) plane is
associated to a pattern in the (kx, kΦ) plane with a nor-
malization of the ky axis by 2π/aFN . The diffraction
pattern of the FN × FN array is shown in Fig. 3B and
Fig. 3C. It displays a set of discrete peaks at well-defined
positions in the (kx, kΦ) plane. This result follows from
our previous analysis, i.e. from the eiqΦ dependence of
the diffracted field. We indeed observe an intensity pro-
file which exhibits peaks located at the values kq obtained
previously for single chains, but shifted along kΦ by a
quantity equal to the Chern number q. This direct mea-
surement of Chern numbers in a single-shot experiment
thereby provides a “topological map” of the Fibonacci
chain. For a finite chain of length FN , peaks with Chern
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numbers 0 < |q| ≤ FN/2 are expected [10]. In our exper-
iment having F10 = 89, we observe all the possible values
for the Chern numbers.

Finally, in a fourth experiment, we explored the ro-
bustness of the diffraction pattern and of its topological
features against structural noise. We studied a similar
configuration as in the second experiment (“SN + SN”)
but introduced noise by randomly selecting a fraction η
of the vertical lines (0 ≤ η ≤ 1) whose states (reflective
or non-reflective) were also chosen at random [10]. Thus,
η = 0 corresponds to a non-perturbed Fibonacci pattern
and η = 1 to a random chain. The resulting diffraction
pattern is averaged over many realizations of the noise
[10]. In Fig. 4A, we show how the diffraction pattern
evolves with increasing η. As expected, peaks are washed
out when increasing the fraction η. We select in Fig. 4B
three specific values of η (η = 0.73, 0.83 and 0.93) and
show the evolution of the diffraction pattern when scan-
ning Φ. Even for very weak peak signals, the modulation
of the peak amplitude is always present and keeps the
same frequency and direction. This demonstrates explic-
itly the expected robustness of the topological properties
of the Fibonacci chains captured by the winding with Φ
of the diffracted field.

In this work we demonstrate a simple way to mea-
sure topological invariants associated with quasicrys-
talline structures. Although we worked with the simplest
example, the Fibonacci chain, our method is not limited
to it and could be applied to many other quasicrystals.
A two-dimensional array of mirrors is also well suited to
extend this study to the determination of topological in-
variants for 2D tilings where much less is known than for
1D structures [31, 32].

A.D. and E.L. contributed equally to this work. We ac-
knowledge financial support from the European Research
Council under grant 258521 (MANYBO) and by the Is-
rael Science Foundation under grant 924/09. We thank
R. Mosseri for stimulating discussions.
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[12] P. Steinhardt and S. Östlund, Physics of quasicrystals
(World Scientific, 1987).

[13] M. Kohmoto, B. Sutherland, and K. Iguchi, Phys. Rev.
Lett. 58, 2436 (1987).

[14] J. M. Luck, Phys. Rev. B 39, 5834 (1989).
[15] D. Tanese, E. Gurevich, F. Baboux, T. Jacqmin,
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and M. Soljačić, Phys. Rev. Lett. 115, 253901 (2015).
[26] H. Kesten, Acta Arith. 12, 193 (1966).
[27] S. Ostlund and R. Pandit, Phys. Rev. B 29, 1394 (1984).
[28] C. Godreche and J. Oguey, Journal de Physique (France).

51, 21 (1990).
[29] Y. E. Kraus and O. Zilberberg, Phys. Rev. Lett. 109,

116404 (2012).
[30] Note that the topological information is thus contained

within only half the 2π-period of Φ.
[31] Y. E. Kraus, Z. Ringel, and O. Zilberberg, Phys. Rev.

Lett. 111, 226401 (2013).
[32] D. T. Tran, A. Dauphin, N. Goldman, and P. Gaspard,

Phys. Rev. B 91, 085125 (2015).
[33] E. Levy and et al., in preparation (2016).
[34] A. König and N. D. Mermin, Phys. Rev. B 56, 13607

(1997).
[35] A. König and N. D. Mermin, American Journal of Physics

68, 525 (2000).
[36] S. Parameswaran, A. Turner, D. Arovas, and A. Vish-

wanath, Nature Physics 9, 299 (2013).
[37] N. de Bruijn, Math. Proc. A84, 27 (1981).
[38] V. Elser, Acta Cryst. A42, 36 (1986).
[39] R. Zia and W. Dallas, Journal of Physics A 18, L341

(1985).
[40] R. Mosseri and F. Bailly, Journal de Physique I 2, 1715

(1992).

mailto:beugnon@lkb.ens.fr
http://dx.doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/RevModPhys.51.591
www.scopus.com
www.scopus.com
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/ 10.1103/RevModPhys.81.109
http://dx.doi.org/ 10.1103/RevModPhys.81.109
http://dx.doi.org/ 10.1126/science.aaa9297
http://dx.doi.org/10.1103/PhysRevLett.53.1951
http://dx.doi.org/10.1103/PhysRevLett.58.2436
http://dx.doi.org/10.1103/PhysRevLett.58.2436
http://dx.doi.org/10.1103/PhysRevB.39.5834
http://dx.doi.org/10.1103/PhysRevLett.112.146404
http://projecteuclid.org/euclid.cmp/1104179532
http://dx.doi.org/10.1103/PhysRevLett.57.1095
http://dx.doi.org/10.1103/PhysRevB.89.205111
http://dx.doi.org/10.1007/s00220-011-1220-2
http://dx.doi.org/10.1007/s00220-011-1220-2
http://dx.doi.org/ 10.1103/PhysRevLett.109.106402
http://dx.doi.org/ 10.1103/PhysRevLett.115.253901
http://dx.doi.org/10.1103/PhysRevB.29.1394
http://dx.doi.org/10.1103/PhysRevLett.109.116404
http://dx.doi.org/10.1103/PhysRevLett.109.116404
http://dx.doi.org/10.1103/PhysRevLett.111.226401
http://dx.doi.org/10.1103/PhysRevLett.111.226401
http://dx.doi.org/10.1103/PhysRevB.91.085125
http://dx.doi.org/10.1103/PhysRevB.56.13607
http://dx.doi.org/10.1103/PhysRevB.56.13607
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com


6

S1-METHODS

Optical setup

We used a 532 nm laser source to illuminate our Digital
Micromirror Device (DMD). The laser output is coupled
into an optical fiber used as a spatial mode filter. The
fiber output was expanded to obtain a Gaussian beam
with 1/e2 radius of about 5 mm, apertured to give a
roughly uniform illumination spot with a diameter of
about 2.5 mm. This size was chosen empirically to ob-
tain the sharpest observable diffraction peaks. For larger
beams the imperfections (in particular, lack of flatness)
of the DMD surface become more important and limit
the achievable spot sizes.

The DMD (model DLP7000 from Texas Instruments)
consists of a matrix of 1024 × 768 square micromirrors
with a size a = 14µm. The angle of incidence of the laser
on the DMD surface is on the order of 22◦ (see Fig. 5).
Depending on the mirror state the light is reflected al-
most perpendicularly to the DMD plane (state B) or to
a large angle and then blocked (state A). The diffracted
light is focused on a CCD camera using a 2′′ diameter
aspherical lens with a focal of f = 100 mm. The axes of
the CCD camera – corresponding to the reciprocal space
from the DMD plane – are calibrated by imprinting a
periodic lattice of period 2a on the DMD, which gives
peaks separated from the zeroth order by kx = π/a.

A A AB B

FIG. 5. Scketch of the DMD. Each mirror can be flipped
individually between two positions. In position B light is re-
flected perpendicularly to the DMD and focused on the cam-
era. In position A light is reflected with a larger angle and
then blocked far away from the diffraction structure.

Noise generation

We introduced noise in our DMD pattern in the follow-
ing way. The initial signal is the Fibonacci chain with its
mirrored image (see Fig. 2C in the main text). Noting FN
the chain length (we used FN = 89 in our experiments),
the total signal has a length of 2FN . We randomly choose
Nnoise mirrors without replacement from the 2FN -long
total chain. The state of the selected mirrors is then ran-

domly chosen between reflective and non-reflective with
equiprobability. The resulting one-dimensional chain is
then replicated on each line of the DMD, so that the final
pattern consists of a collection of vertical lines. This con-
stitutes a single realization of a noisy pattern with a level
of noise of η = Nnoise/(2FN ). Note that this algorithm
a priori generates independent noise for the two parts of
the chain (Fibonacci and mirrored Fibonacci).

To average over several realizations of the noise pat-
tern, we reproduced the procedure by randomly choosing
a new set of mirrors and randomly flipping them. Each
line from the figures 4A to 4D in the main text is ob-
tained by averaging the measured diffraction signal over
200 independent realizations of the noise. In order to
speed up the data acquisition process, we dynamically
control the DMD so that it scans over all the noise real-
izations during the CCD camera exposure time, and the
average is made while the image is recorded.

S2-DIFFRACTION AMPLITUDES

We detail here the calculations of the diffraction pat-
terns for various configurations studied in the main text.
The Fibonacci chain of length FN is defined by SN (Φ) ≡
[χ1χ2 · · ·χFN

] with the characteristic function given in
(2)

As in the main article, we choose Φ0 = −(FN + 1)π/τ ,
which is such that Φ = 0 corresponds to a palindromic
chain (i.e. SN = SN with SN ≡ [χFN

· · ·χ1]) [16]. The
reflectance Rn of a vertical line of pixels at position x =

na is given by Rn(Φ) = 1−χn(Φ)
2 which is either 0 ( pixels

A) or 1 (pixels B). The diffracted amplitude is thus
proportional to the sum of phase factors over all the B
pixels, namely

∑
B e

ikxxB(Φ).
We first consider a single chain SN (Φ) and a specific

wavevector kq corresponding to one of the peaks of the
diffraction pattern. The complex valued amplitude at
this wavevector kq reads

ASN
q (Φ) =

∑
B

eikqxB(Φ) ≡ ASN
q eiθq(Φ) (4)

where ASN
q and θq(Φ) are real numbers. The inverted

structure SN is obtained by replacing x by −x+ aFN (a
being the pixel size). We thus obtain the corresponding
diffraction amplitude as

ASN
q (Φ) =

∑
B

eikq(aFN−xB(Φ)) = ASN
q e−iθq(Φ)eikqaFN .

(5)
We now take advantage of two results. First, the

diffraction intensities at k = kq for the two structures
SN and SN are the same, and are independent of Φ,

|ASN
q (Φ)|2 = |ASN

q (Φ)|2 = (ASN
q )2. Second we note that,

for a palindromic chain, the diffraction amplitudes are
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the same and hence we have ASN
q (0) = ASN

q (0) leading
to kqaFN = 2θq(0).

We now proceed to describe the experiment “SN +
SN ”. Defining the spatial origin at the center, we obtain

ASN+SN
q (Φ) = ASN

q eiθq(Φ)(e−2iθq(0) + 1). (6)

As in the case of single chains, the diffraction intensities
are identical for the structure and its reverse “SN +SN ”,
and independent of Φ: |ASN+SN

q (Φ)|2 = 2(ASN
q )2(1 +

cos(2θq(0))).
Finally, we consider the experiment “SN + SN ”. We

obtain

ASN+SN
q (Φ) = ASN

q

(
ei[θq(Φ)−2θq(0)] + e−i[θq(Φ)−2θq(0)]

)
.

(7)
Unlike Eq. (6), the diffraction intensity 2(ASN

q )2(1 +
cos(2θq(Φ) − 4θq(0))) depends sinusoidally on θq(Φ). In
the next section we show that θq(Φ) is a linear function
of Φ. The diffraction intensity then depends sinusoidally
on Φ as observed experimentally.

S3-THE PHASE TERM θq(Φ)

Here, we wish to show that the phase term θq(Φ) in the
diffraction amplitude of Eq. (4) is linear with Φ, with a
slope equal to the Chern number q. A thorough proof will
be given elsewhere [33]. Figure 6 shows how the phase
θq(Φ) of the diffraction amplitude varies as a function
of Φ for different values of the wavevector kq (equiva-
lently, of the Chern number q). The total diffraction
phase θq(Φ) is a staircase following a linear function of
Φ with a slope q. Two more features are worth noting:

1. For a given value of q (i.e. of kq), the phases of SN
and SN are deduced from each other by changing
Φ into −Φ (see Fig. 6).

2. Changing kq into k−q is equivalent to changing Φ
into −Φ.

These results seem to be a rather general feature of the
diffraction pattern of both periodic and quasiperiodic
structures (see for instance, for a generic discussion not
restricted to 1D, [34–36]).

This linear dependence can be understood from a sim-
ple calculation. From the characteristic function χn in
Eq. (2), we note that changing Φ from an initial value
Φi by an amount ∆Φ is equivalent to a spatial trans-
lation along the chain. Specifically, for ∆Φ = 2π/τ ,
the resultant structure is translated by one pixel, and
therefore the diffraction amplitude ASN

q (Φi + 2π/τ) car-
ries an additional phase, θq(Φi + 2π/τ) = θq(Φi) + akq.
Using the approximation kq = (2π/a)(p + qτ−1), leads
to θq(Φi + 2π/τ) = θq(Φi) + 2πqτ−1 = θq(Φi) + q∆Φ.
As a variation of Φ by 2π corresponds to FN structural

(a) (c) (e) (g) 

(b) (d) (f) (h) 

FIG. 6. A numerical plot of the phase θq(Φ) of the diffraction
amplitude, as a function of Φ for the structures SN (in blue)
and SN (in red) and for the diffraction peaks kq for various
q. (a)-(b) q = ±1, respectively. (c)-(d) q = ±2, respectively.
(e)-(f) q = ±3, respectively. (g)-(h) q = ±4, respectively.

.

changes (see Fig. 7c), then the shift ∆Φ = 2π/τ is asso-
ciated with FN/τ structural changes. Since each struc-
tural change amounts to translate a single “B” pixel by
one pixel, each change contributes to q∆Φ/(FN/τ) =
2πq/FN to the additional phase in a staircase, which
completes q periods in one period of Φ. We thus write
the general phase term as a function of the modulation
phase as

θq(Φi + ∆Φ) = θq(Φi) + q∆Φ. (8)

S4-CHERN NUMBERS - STRUCTURAL ORIGIN

The purpose of this section is to provide a theoretical
description of the experiment reported in Fig. 3 of the
main article, i.e. to obtain the (kx, kΦ) map. We first
recall in subsection basic results of the well-known “Cut
and Project” construction of 1D quasicrystals, as well as
recent results obtained in [16] that will be useful for the
following. Then, in subsection , we describe the global
properties of the set {SN (Φ)} of all possible Fibonacci
chains of length FN . This set corresponds to the pattern
programmed on the DMD, and possesses specific geo-
metrical and topological properties that we unveil. Fi-
nally, using these properties, we explain in subsection
the observed diffraction pattern and describe it in terms
of Chern numbers.

Finite-size Fibonacci chains. Role of the phason

The “Cut and Project” (C&P) method generates a
quasiperiodic chain from a primitive Z2-lattice cut by
a line ∆ defined by v = u tan θ + const (see Fig. 7a).
We denote by ∆⊥ the direction perpendicular to ∆ and
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define an acceptance window as a band of width Ω cen-
tered at ∆. This realizes the “cut”. A C&P set is ob-
tained by projecting the Z2 points inside Ω on ∆ and
along ∆⊥. There are only two possible distances along ∆
between neighboring projections, denoted {A,B}. One
can generate the infinite Fibonacci chain S∞ by choosing
tan θ = τ−1, τ being the golden mean. The choice of an
origin on ∆ is irrelevant for the infinite chain S∞, but
not for finite chains SN of length FN : the origin fixes the
first letter and the iteration of the sequence. We note
that C&P and characteristic function methods, as used
in the main text, are related through the constant term
in the equation for ∆, namely v=u tan θ− Φ

2π .

FIG. 7. Phason driving in the Cut & Project method for the
slope τ−1. (a)-(b) The C&P method for the Φ values Φ0 and
Φ0−0.6π. An ellipse indicates the origin of the chain. The
10 first letters of the resulting sequences are in the insets.
Shifting the band Ω along the vertical axis induces two struc-
tural changes corresponding to points entering and leaving Ω
(red/green arrows). (c) Structural color plot. Black(white)
regions describe B(A) letters. Identical structural changes
(red circles, inset) occur when scanning Φ (e.g. green lines).

The C&P method allows to interpret the 2π-periodic,
structural degree of freedom Φ as the parameter driving
the rearrangement of letters along the Fibonacci chain
(see Fig. 7). For a chain of length FN , each value of Φ
generates a different segment of S∞, and corresponds to
some translation along ∆. Monitoring the phason Φ in-
duces a series of FN identical local structural changes
equivalent to the inversion of a single 6-letter string
BAABAB↔BABAAB. These changes occur one at a
time and are distributed according to a geometrical pat-
tern (see Fig. 7c). The Φ-axis, corresponding to the pha-
son direction, is infinite. However, since Φ is 2π-periodic,
the structural information in the phason direction is con-
tained in a single period.

To generate a finite chain SN of FN letters, the slope
of the cut ∆ defined by tan θ must not necessarily be
taken as an irrational number, but may be given by a
rational approximant p/q (as long as the unit cell of the

resultant periodic chain remains larger than FN ). For
the “standard” Fibonacci chain of length 89 (obtained
for instance with the substitution rule) S10(Φstd), the
approximant has to be at least as good as 34/55. Sim-
ilarly, to generate the complete set of FN finite chains,
SN (Φ), the slope can again be taken as another rational
approximant p/q (provided the unit cell of the resulting
periodic pattern is larger than 2FN + 1). For the set
{S10(Φ)} the approximant with the smallest possible p is
89/144.

The C&P method also allows to obtain the Bragg peak
structure of S∞ [37–39]. In the case of a finite segment
SN , we have observed experimentally that there still ex-
ist diffraction peaks, located at approximate values of the
exact Bragg peaks spatial frequencies, and also that we
were able to probe their topological properties by scan-
ning through the FN possible realizations (see Fig. 2 in
the main text).

Properties of the 2D set of Fibonacci chains {SN (Φ)}

We now consider the pattern described in Fig. 7c that is
programmed on the DMD and whose diffraction pattern
is the topological map of Fig. 3 in the main text. This
finite 2D structure may be described as another Z2-lattice
rotated by an angle ϕ with respect to the (x,Φ) axes (see
Fig. 8a).

(a) (b) 

FIG. 8. Structural properties of the 2D set {SN (Φ)} for N =
10. (a) The {SN (Φ)} structural x−Φ map created through the
Cut & Project method (see Fig. 7c) forms a tilted 2D crystal
with a unit cell indicated by red and blue squares. This map
is a torus obtained by wrapping the map along both axes, so
that the four blue squares coincide. (b) An illustration of the
resulting torus.

Disregarding the form factor of the 2D unit cell of this
structure, the remaining square lattice of points is repre-
sented by the function,

Q(x,Φ) =
1

4π2

∑
k,l

δ(x− k cosϕ− l sinϕ)

×δ(Φ + k sinϕ− l cosϕ),

(9)
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where the sum is over a finite set of integers (k, l). The
Fourier transform (disregarding the effect of the finite
size of the system on the peaks width) of the rotated
(x,Φ) Z2- lattice is also a Z2-lattice rotated with the
angle ϕ with respect to the reciprocal space (kx, kΦ), and
represented by,

F (kx, kΦ) =
∑
n,m

δ(kx −m cosϕ+ n sinϕ)

×δ(kΦ −m sinϕ− n cosϕ),

(10)

where the sum is over an infinite set of integers (m,n).
It is important to note that the rotation angle ϕ is not
given, for finite chains, by tanϕ = τ−1. For the set
{SN (Φ)} generated as discussed previously, the tiling an-
gle of this new Z2- lattice has always a fixed rational slope

tanϕ =
pN
qN

, (11)

where the two mutually prime integers (pN , qN ) depend
only on FN [33]. For S10, we have pN = 5 and qN = 8.

The 2π-periodicity of the set {SN (Φ)} in the phason
direction Φ, together with the fixed rational angle of ro-
tation ϕ, means that the set may be folded to form a
perfect torus (see Fig. 8b).

Diffraction pattern in terms of Chern numbers

We now discuss the diffraction pattern of the 2D struc-
ture of Fig. 7 to obtain both the (approximate) k values
of the Bragg peaks and the corresponding observable (ex-
act) Chern numbers.

The infinite reciprocal space of the finite set {SN (Φ)}
may be characterized by a finite quasi-Brillouin zone,
QBZN , (also a torus) which generalizes the usual notion
of Brillouin zone. We use the fact that the rotation angle
of the Z2 reciprocal lattice with respect to the (kx, kΦ)
axes is still described by tanϕ (see Fig. 9).

To build the torus QBZN in the (kx, kΦ) reciprocal
space, we set an origin (kx, kΦ) = (0, 0) at some point and
label them with the lattice coordinates [m = 0,n = 0].
The next step is to identify the three other corners of the
QBZN , using Eq. (11), to be [m = qN ,n = −pN ] where
(kx, kΦ) = (qN cosϕ + pN sinϕ, 0), [m = pN ,n = qN ]
where (kx, kΦ) = (0, pN sinϕ + qN cosϕ), and [m =
qN + pN ,n = qN − pN ] where (kx, kΦ) = (pN sinϕ +
qN cosϕ, pN sinϕ + qN cosϕ). These four points define
the torus QBZN as represented on Fig. 9. It exactly en-
closes FN points.

We now discuss the normalization of the reciprocal
space torus coordinates. The kx coordinates may be
normalized by (pN sinϕ+ qN cosϕ)

−1
= 1/

√
p2
N + q2

N

so that kx ∈ [0, 1]. After this normalization, the FN
points at which F (kx, kΦ) 6= 0 correspond to all possible
(approximate) Bragg peaks values kq. As for normaliza-
tion along the Φ-axis, it is obtained from the reciprocal

FIG. 9. Construction of the torus QBZN for N = 10 with
the corresponding values pN = 5 and qN = 8. The red circles
define the corners of the torus QBZN which encloses F10 = 89
points (lattice coordinates [m,n] are given). The fundamental
kΦ value, δkΦ corresponding to Chern number equal to 1, is
represented by the green circle. This lowest non zero value of
kΦ is obtained using the previous approximant (pN−1, qN−1)
in the Farey series. (a) An emulated lattice angled at ϕ (to set
notations). (b) The actual 2D Fourier transform of {SN (Φ)}
for N = 10.

lattice point (δkx, δkΦ) with δkΦ the smallest nonzero
value of kΦ. The (toroidal) vector between the origin and
this lattice point is instrumental to find all points within
the QBZN torus, namely through the recurrent addition
(and winding) of this vector (see Fig. 9). This single fun-
damental lattice point is defined by [m = qN−1, n =
−pN−1], where pN−1 and qN−1 are obtained using the
preceding approximant of the slope tanϕ = pN/qN in
the Farey sequence [33],

1

1
:

1

1
:

1

2
:

2

3
:

3

5
:

5

8
: · · · : pj

qj
: · · · . (12)

In reciprocal space coordinates, we have

(δkx, δkΦ) =

(
qN−1 cosϕ+ pN−1 sinϕ√

p2
N + q2

N

,

qN−1 sinϕ− pN−1 cosϕ

)
.

(13)

The expression of (δkx, δkΦ) corresponds to the con-
umbering method developed in [40] and we use it to set
the kΦ-scales in the reciprocal lattice. The normalized kΦ

coordinates correspond to the integer (Chern) numbers

C(n,m) ≡ kΦ

δkΦ
=

m sinϕ+ n cosϕ

qN−1 sinϕ− pN−1 cosϕ
= mpN+nqN

(14)
These Chern numbers describe how many times the phase
of the diffraction amplitude winds around the torus when
scanning over a period in the kΦ direction. The last
equality is obtained by noting that successive approxi-
mants in the Farey series in Eq. (12) fulfill |pN−1qN −
qN−1pN | = 1.
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The Fourier transform in Eq. (10) can be rewritten in
terms of the Chern numbers C and of the (approximate)
Bragg peak values kx as,

F (kx, C) =
∑
n,m

δ

(
kx −

m cosϕ− n sinϕ√
p2
N + q2

N

)
×δ(C −mpN − nqN )

(15)

where the integers (n,m) run over the torus QBZN now
entirely defined by

kx(m,n) = (mqN − npN ) /(p2
N + q2

N )

C(m,n) = mpN + nqN (16)

FIG. 10. A properly unwrapped torus QBZN for N = 10. The
red circles define the 4 corners of the torus QBZN of Fig. 9.
The fundamental kΦ value, δkΦ corresponding to Chern num-
ber equal to 1, is represented by the green circle. kΦ values
now come in pairs of equal magnitude and opposite sign. (a)
An emulated lattice angled at ϕ. (b) The actual 2D Fourier
transform of {SN (Φ)} for N = 10.

Additionally, a change of origin can be performed in
the kΦ toroidal dimension, such that all reciprocal lat-
tice points with FN/2 ≤ kΦ/δkΦ are wrapped around
the torus to have kΦ/δkΦ → FN/2 − kΦ/δkΦ. The total
number of points in the 2D torus QBZN is the number
of Chern integers available for a given N . It is given by
FN and we have |C(m,n)| ≤ FN/2.

Finally, we note that Chern numbers always appear in
pairs of opposite sign associated to the structure length
FN and its minimal Farey approximate tan(θ) = p/q.
For the lowest approximant (periodic system), the val-
ues C = ±1 will show up first, followed by higher paired
values while increasing the ratio p/q. It is worth noting
again that while the Chern numbers C(m,n) are always
integers, the (approximate) Bragg vectors kx(m,n) de-
pend on the chain length but they rapidly converge to
the exact Bragg value obtained for N →∞.
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