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I. ONE-CHANNEL AND 1D - THESIS RESULT

We consider 1D system

�d
2 

dx2
+ V (x) = k2 (1)

closed at x = 0, i.e.  (0) = 0. In the scattering situation, a perfect lead is attached at x = L, Fig. 1, while for
the closed system of length L, the corresponding boundary condition is imposed at x = L. For the scattering case,
solution in the lead, x > L, is written as

 (x) = e�ik(x�L) + ei�(k)eik(x�L); x � L: (2)

The re�ection delay time is de�ned as (??)

�(k) = ~
d�(E)

dE
=
1

vg

d�(k)

dk
; (3)

where vg = ~�1@E=@k is the group velocity.
The joint probability distribution of the re�ection phase ~� and the delay time � is

P (�; �) =
D
�
�
~� � � (k)

�
� (� � � (k))

E
; (4)

where � (k) and � (k) stand for the re�ection phase and the delay time obtained for a given realization of disorder and
energy E = k2.
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FIG. 1: Single-channel re�ection from 1D system of length L.

First, we relate �
�
~� � � (k)

�
to the density of states inside the sample. Scattering solution  (x) of the Schrodinger

equation (1) satis�es boundary condition  (0) = 0, while at x = L it is matched to the solution in the lead, Eq. (2).
Therefore, the logarithmic derivative of  (x) satis�es

 0(L)

 (L)
= k tan

� (k)

2
: (5)

On the other hand, with a �xed � (k) = ~�, Eq. (5) can be regarded as a second boundary condition for the solution
inside the sample. Then, one obtains an eigenvalue problem on x 2 [0; L] with the boundary conditions

 (0) = 0;
 0(L)

 (L)
= k tan

~�

2
(6)

(for example, ~� = � corresponds to the Dirichlet BC at x = L). For this eigenvalue problem, density of states (DOS)
per unit length

�~� (E) =
1

L

X
�

� (E � Ea) ; (7)

is related to the object �
�
~� � � (k)

�
as follows

�
�
~� � � (E)

�
=

�
@� (k)

@E

��1X
�

� (E � Ea) =
L�~� (E)

� (E)
; (8)

where de�nition (3) of the Wigner delay time, � (E) = @�(E)
@E , was used (~ = 1). Thus, DOS is related to the re�ection

phase and the delay time by

�~� (E) =
1

L
� (E) �

�
~� � � (E)

�
(9)

II. A RING WITH ONE SINGLE-CHANNEL LEAD

A. General

We consider here a simple system consisting of ring-shaped wire with one single channel lead attached to it, Fig.
2. This example was considered after Eric pointed out that DOS in the closed ring can be obtained from the delay
time as

2��ring (E) = lim
�!0

Im
d

dE
ln detS (E) ; (10)

where S (E) is the scattering matrix (also for multiple lead case) and � 2 [0; 1] is the coupling parameter (� = 1
corresponds to perfect coupling).
Below is a brief exercise checking explicitly the above statement.
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FIG. 2: A ring wire with one single-channel lead. The lead coordinate x is set to zero at the connection point. The ring
coordinate y is zero at the opposite point, changes clockwise and y = �L=2 at the connection point.

B. Description of the vertex

First, let us describe the boundary conditions on the lead connection point by the vertex scattering matrix [1].
Below two models are given, one for a completely symmetric and second for an asymmetric vertex.

1. A completely symmetric vertex

Here a symmetric vertex is described. Later on I have realized that this type of vertex is not appropriate for the
present needs, since it can not describe the detachment of the lead form the ring, which should involve an asymmetry
between the lead and the other legs of the vertex. However, description of the vertex has already been obtained and
is given below. After it, the more relevant model is considered.
Thus, we assume that the (three-leg) vertex is symmetric and its time reversal invariant (TRI) energy independent

scattering matrix is

s =

0@r t t
t r t
t t r

1A ; (11)

where r and t are the vertex re�ection and the transmission amplitudes. Departing for a moment from the main
notation of Fig. 2, the incident and out-coming waves in the vertex legs are e�ikxi and eikxi respectively. Then,
considering wave incident only from one lead and requiring the wavefunction continuity and the �ux conservation one
obtains

1 + r = t; (12)

1� jrj2 = 2 jtj2 ; (13)

since in the lead of incidence the solution is �
�
e�ikxi + reikxi

�
. Actually, the same conditions are obtained from

the unitarity property of the vertex scattering matrix, ssy = I. Thus, we have four parameters for r and t and three
equations (Eq. (12) has real and imaginary parts), which leaves a freedom for the choice of the re�ection strength,
i.e. for R = jrj2 (note that for 3-leg vertex jrj 6= 0). We write r =

p
Rei� and from Eq. (12) obtain

1 + 2
p
R cos�+R =

1�R
2

;

i.e.

cos� = �1 + 3R
4
p
R

: (14)

Thus, cos� < 0, while the allowed values of R are obtained from jcos�j < 1, which yields

R� 4
3

p
R+

1

3
< 0:
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The equality holds for

p
R =

2

3
�
r
4

9
� 1
3
=
2

3
� 1
3
;

therefore

1

3
�
p
R � 1: (15)

As mentioned in the beginning of the present section, this completely symmetric vertex is inappropriate, since
when the re�ection into the lead tends to unity (a complete re�ection), the same happens also inside the ring, i.e.
the desired periodic boundary conditions in the ring are in fact replaced with the Dirichlet ones at the location of the
vertex. This is not we wanted to obtain, which is taken care of below.

2. An asymmetric vertex

We need a model of the vertex allowing detachment of the lead, which leaves the unperturbed ring. This means
that in the corresponding limit the re�ection into lead tends to unity, while scattering of the wave inside the ring
vanishes. Thus, there should be no symmetry between the lead and the other two legs belonging to the ring. The
latter, of course can be assumed symmetric. Thus, the (TRI) vertex scattering matrix is

s =

0@r t t
t � �
t � �

1A ; (16)

where the �rst index belong to the lead, while the other two (invariant in respect to their permutation) belong to
the ring. Thus, the above scattering matrix is a symmetric unitary one with an additional symmetry in respect to
permutation of the indices i = 2; 3. As discussed in the note IIG below, Eq. (64), such matrix has (n = 3)

Nf2jng
sym =

1

2
n (n� 1) + 1 = 4; (17)

independent real parameters, one of which is for the overall phase. In order to determine the explicit parametrization
we use the unitarity condition, ssy = I, which yields equations

jrj2 + 2 jtj2 = 1; (18)

tr� + �t� + �t� = 0; (19)

jtj2 + j�j2 + j� j2 = 1; (20)

jtj2 + ��� + ��� = 0; (21)

one of which, e.g. the �rst one, can be seen to be linearly dependent with the rest (namely, adding the last two gives

2 jtj2 + j�+ � j2 = 1; (22)

substituting which into the second one, (�+ �) = � t
t� r

�, results in the �rst equation). Thus, we have 2� 4� 4 = 4
free real parameters, in accord with the above Nf2jng

sym = 4. These four parameters still should comply to some unitary
bounds, to be found from the above equation. In addition, the overall phase (one of the four parameters) can be
�xed by some external condition, which we choose as the wavefunction continuity inside the ring (which does not,
and must not, hold between the lead an the ring). Namely, subtracting (21) from (20) gives

j�� � j2 = 1! �� � = ei�; (23)

i.e. leaves the free phase, which can be �xed by the continuity condition inside the ring. The latter means

�� � = �1: (24)

This can be obtained by considering the case of the wave incident only at one edge associated with the ring, e.g.,
 2 (x2) =

�
e�ikx2 + �eikx2

�
and  3 (x3) = �eikx3 , so that  2 (0) = 1 + � = � =  3 (0).
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Thus, �xing (24), we need to express �, r and t in terms of three (i.e., 4 � 1) free parameters, which are left to
choose. De�ning

r =
p
Rei�r ; 0 � R � 1; (25)

t = jtj ei�t =
r
1�R
2

ei�t ; (26)

by Eq. (18), and using (19) and (24), one obtains

� = �1 +
p
Rei�

2
; � = 2�t � �r: (27)

In general, one can choose the free parameters as R, �r and �. In the following it seems su¢ cient to consider the
special simple case � = �, which gives

� =

p
R� 1
2

; (28)

� = 1 + � =

p
R+ 1

2
: (29)

�t =
� + �r
2

+ �n (30)

Thus, � vanishes and � ! 1 in the limit R ! 0, which is the desirable way of detachment of the lead from the ring.
Finally, we have the following parametrization in terms of R and �r:

r =
p
Rei�r ; 0 � R � 1; 0 � �r < 2�;

t = �i
r
1�R
2

ei�r=2;

� =

p
R� 1
2

;

� =

p
R+ 1

2
: (31)

The special limiting cases are R = 0; 1, which give

R = 0 : r = 0; t = �ie
i�r=2

p
2
; � = �1

2
; � =

1

2
;

R = 1 : r = ei�r ; t = 0; � = 0; � = 1;

C. Scattering solution for the ring with a completely symmetric vertex

Solution inside the ring (Fig. 2) is

 r (y) = cos ky;

which is the only way to satisfy the continuity condition

 r

�
y = �L

2

�
=  r

�
y =

L

2

�
for the generic case of kL 6= 2�n. Solution in the lead is written as

 l (x) =
cos (kL=2)

cos (�=2)
cos

�
kx+

�

2

�
;

where � is the re�ection phase [for the scattering matrix S (E)]. Phase � is found from the vertex boundary condition,
de�ned by the vertex scattering matrix (11). Let�s denote x1 = x, x2 = y+L=2 [for y ! �L=2] and x3 = � (y � L=2)
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[for y ! L=2]. Then

 1 (x1) =
cos (kL=2)

cos (�=2)

h
e�i�=2e�ikx1 + ei�=2eikx1

i
;

 2 (x2) = 2 cos k (x2 � L=2) = eikL=2e�ikx2 + e�ikL=2eikx2 ;

 3 (x3) = 2 cos k (L=2� x3) = eikL=2e�ikx3 + e�ikL=2eikx3 ;

which provides the incident and the outgoing amplitudes at the vertex. From the �rst raw in the vertex scattering
matrix (11) we have

cos (kL=2)

cos (�=2)
ei�=2 = r

cos (kL=2)

cos (�=2)
e�i�=2 + t

h
eikL=2 + eikL=2

i
;

which becomes, using Eq. (12),

ei�=2 � re�i�=2

cos �2
= 2t

�
cos kL=2 + i sin kL=2

cos (kL=2)

�
;

2 cos �2 � (1 + r) e
�i�=2

cos �2
= 2 (1 + r)

�
1 + i tan

kL

2

�
;

2� (1 + r)
�
1 + i tan

�

2

�
= 2 (1 + r)

�
1 + i tan

kL

2

�
: (32)

Substituting r =
p
Rei� yields

2�
�
1 +

p
R [cos�+ i sin�]

��
1 + i tan

�

2

�
= 2

�
1 +

p
R [cos�+ i sin�]

��
1 + i tan

kL

2

�
; (33)

the real and the imaginary parts of which are

Re : 2�
�
1 +

p
R cos�

�
+
p
R sin� tan

�

2
= 2

�
1 +

p
R cos�

�
� 2
p
R sin� tan

kL

2
; (34)

Im :
�
1 +

p
R cos�

�
tan

�

2
+
p
R sin� = 2

p
R sin�+ 2

�
1 +

p
R cos�

�
tan

kL

2
: (35)

The second one gives �
1 +

p
R cos�

��
tan

�

2
� 2 tan kL

2

�
=
p
R sin�;

tan
�

2
= 2 tan

kL

2
+

p
R sin�

1 +
p
R cos�

(36)

From Eq. (14), and writing sin� = �
p
1� cos2 �, we obtain

p
R sin�

1 +
p
R cos�

= �
p
R
p
1� cos2 �

1 +
p
R cos�

= �4
3

q
R�

�
� 1+3R

4

�2
1�R = �

s
R� 1

9

1�R ; (37)

which gives �nally the re�ection phase in terms of k, L and the vertex re�ection coe¢ cient R:

tan
�

2
= 2 tan

kL

2
�

s
R� 1

9

1�R : (38)

Note that 19 � R � 1 according to Eq. (15), i.e. the additive term on the right hand side changes from zero to in�nity
as R increases from 1

9 to 1. The lower value, R =
1
9 , corresponds to the "Neumann" boundary condition [1] on the

vertex, i.e.

3X
i=1

 0i (0) = 0: (39)
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It is convenient to introduce the coupling parameter

� =
9

8
(1�R) 2 [0; 1] ; (40)

in terms of which Eq. (38) becomes

tan
�

2
= 2 tan

kL

2
�
r
1� �
�

: (41)

D. Delay time and DOS - symmetric vertex

Now, using Eq. (41), we can calculate the delay time

� (E) =
d� (E)

dE
: (42)

Di¤erentiating Eq. (41) gives (E = k2 and R is assumed independent of E)

d�

dE
=
L

k

cos2 �2
cos2 kL2

: (43)

Using Eq. (41) and the identity

1

cos2 �
= 1 + tan2 �; (44)

yields

�� (E) =
d�

dE
=
L

k

1 + tan2 kL2

1 +
�
2 tan kL2 �

q
1��
�

�2 : (45)

For "perfect" coupling, � = 1, the delay time is a smooth function

�1 (E) =
L

k

1 + tan2 kL2
1 + 4 tan2 kL2

; (46)

which has maxima at kL = 2�n, where tan2 kL2 = 0. For � ! 0, delay time �� (E) tends to a sum of �-functions
(this is not immediately evident from the above expression for �� (E), but becomes clear by considering � (E) in
Eq. 41, which behaves like a staircase in the limit � ! 0). The "problem" is that the location of the �-functions
is kL = (2n+ 1)�, i.e. not the resonant condition inside the ring. This is because the used above model for the
vertex does not account for "clean" disconnecting of the lead from the ring, but rather for introducing a symmetric
�-function at the vertex in the limit � ! 0 (thus one has a ring with a �-function, instead of a ring with a detached
lead). In order to describe detachment of the lead, one needs to consider an antisymmetric vertex scattering matrix.

E. Scattering solution for the ring with an asymmetric vertex

Again, solution inside the ring (Fig. 2) is

 r (y) = cos ky;

which is the only way to satisfy the continuity condition

 r

�
y = �L

2

�
=  r

�
y =

L

2

�
for the generic case of kL 6= 2�n. Solution in the lead is written as

 l (x) = A cos

�
kx+

�

2

�
;
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where � is the re�ection phase [for the scattering matrix S (E)] and A is some complex amplitude. There are three
real parameters, A and �, and wee need three equations, obtained from the �rst two rows of the vertex scattering
matrix (16). Let�s denote x1 = x, x2 = y + L=2 [for y ! �L=2] and x3 = � (y � L=2) [for y ! L=2]. Then

 1 (x1) = A
h
e�i�=2e�ikx1 + ei�=2eikx1

i
; [lead]

 2 (x2) = 2 cos k (x2 � L=2) = eikL=2e�ikx2 + e�ikL=2eikx2 ; [upper part of the ring]

 3 (x3) = 2 cos k (L=2� x3) = eikL=2e�ikx3 + e�ikL=2eikx3 ; [lower part of the ring]

which provides the incident and the outgoing amplitudes at the vertex. From the �rst and second raws in the vertex
scattering matrix (16) we have

Aei�=2 = rAe�i�=2 + t
h
eikL=2 + eikL=2

i
;

e�ikL=2 = tAe�i�=2 + �eikL=2 + �eikL=2: (47)

Eliminating the amplitude A,

A =
e�ikL=2 � (�+ �) eikL=2

te�i�=2
; (48)

one obtains an equation for the re�ection phase �:

ei�=2 � re�i�=2
e�i�=2

=
2t2eikL=2

e�ikL=2 � (�+ �) eikL=2 ; (49)

which yields using Eq. (31)

S (E) = ei� = r +
2t2

e�ikL � (�+ �) =
�p

R� 1�R
e�ikL �

p
R

�
ei�r =

p
Re�iLk � 1
e�iLk �

p
R
ei�r (50)

F. Delay time and DOS - asymmetric vertex

From Eq. (50) one obtains the delay time (vg = dE=dk)

� (E) =
d� (E)

dE
=
1

vg

1

iei�
dei�

dk
=

=
1

vg

1

i

�
e�iLk �

p
R
�

p
Re�iLk � 1

iL
e�iLk�

e�iLk �
p
R
�2 (R� 1)

=
L

vg

1�R�
1�

p
Re�iLk

��
1� eiLk

p
R
�

=
L

vg

1�R
1 +R� 2

p
R cos (Lk)

=
L

vg

�
1 +

p
R
��
1�

p
R
�

�
1�

p
R
�2
+ 4
p
R sin2 Lk2

: (51)

In the limit R! 1 this becomes (using
R1
�1

1
s2+1ds = �)

lim
R!1

� (E) =
2L

vg
��

�
2 sin

Lk

2

�
= 2�

1

vg

1X
n=1

�

�
k � 2�

L
n

�
: (52)

This is almost the desired relation between the delay time and the DOS of the unperturbed ring

�ring (E) =
2

vg

1X
n=1

�

�
k � 2�

L
n

�
: (53)
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The problem is the missing factor of 2, which accounts for double degeneracy of the states in the ring (clockwise and
counter-clockwise wave in the ring. Thus, Eq. (52) means limR!1 � (E) = 2�

�ring(E)
2 . Assuming I have not done any

mistake in the above calculations, the missing factor can be related to the fact that the translational invariance of
the ring is removed for any �nite (1�R). This observation, however, is rather a hint for spotting the mistake than
an explanation (since, by the Weyl expansion, DOS should be proportional to L with a standard factor). Note that
I have made a shortcut and forced the symmetric solution inside the ring, cos ky, while this constrain is not valid
for exactly the eigenstate energies with kL = 2�n. Probably, de�ning the solution inside the ring in a general form
Ceiky + Be�iky is more careful and would restore the missing degeneracy factor. Alternativly, it may happen that
careful consideration of the scattering solution near and at kL = 2�n would show that the re�ection phase should
have a discontinuity of � as k crosses the values knL = 2�n.

G. Note: the number of the independent parameters of a unitary matrix with constrains

A unitary n� n matrix U satis�es

UUy = UyU = I; (54)

which reduces a number of the independent real parameters from 2n2 (i.e. twice the number of the matrix elements)
to n2. This can be obtained directly by counting the number of independent equations contained in Eq. (54). The
detailed equations corresponding to the matrix equations in (54) are respectively

nX
k=1

uiku
�
jk = �ij ;

nX
k=1

u�kiukj = �ij ; 1 � i; j � n; (55)

which can be shown to be equivalent, i.e. by multiplying the �rst one by u�ip and summing over all i:

nX
i=1

u�ip

nX
k=1

uiku
�
jk =

nX
k=1

"
nX
i=1

u�ipuik

#
u�jk = u�jp !

nX
i=1

u�ipuik = �pk; (56)

that follows because 1 � p; j � n are arbitrary. Thus, we are left with only one of the sums in (55), say the �rst one,

which is also symmetric in respect to the interchange of i and j (
Pn

k=1 ujku
�
ik =

hPn
k=1 u

�
jkuik

i�
=
hPn

k=1 uiku
�
jk

i�
=

�ij) , therefore the independent equations are

nX
k=1

uiku
�
jk = �ij ; 1 � i � j � n; (57)

which �nally yields n2 equation for the real parameters (n diagonal equations for the absolute values plus 2 � n2�n
2

o¤-diagonal equations. Finally, the number of the independent parameters for the general unitary matrix is

Ngen = 2n
2 � n2 = n2: (58)

This is an easily obtained result. Some di¢ culties arise, however, when additional constrains are added to the unitary
matrix, such as symmetries. The problem is that the constrain equations can be partially dependent on the general
equations given above, therefore the reduction of the number of the independent real parameters is not equal to the
number of the added equations. The relevant for me constrains are symmetric unitary matrix U = UT (e.g. for
the time reversal scattering matrix) and unitary matrix symmetric in respect to the interchange of some indices (i.e.
symmetric in respect to the interchange of the scattering channels).
Let start from the symmetric unitary matrix U = UT , which is the same as Uy = U� (this is NOT an orthogonal

matrix de�ned by OOT = I). As mentioned above, it is di¢ cult (at least for me) to count directly the total number
of the independent equations. It is, however, becomes a simple task once one uses the representation of the unitary
matrix in terms of the Hermitian one:

U = eiH ; H = Hy (59)

(an alternative useful representation is U = I+iH
I�iH ).
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First, one can �nd immediately a number of the independent real parameters for the general unitary matrix as
a number of the parameters for the Hermitian matrix, i.e. n diagonal (real) parameters (hii = h�ii) plus 2 � n2�n

2

parameters for the o¤-diagonal complex-valued elements, the total of n2 real parameter, as found before, Eq. (58).
Next, let us add the symmetry constrain, U = UT , which means

eiH =
�
eiH
�T
= eiH

T

! H = HT ! H = H�;

i.e. the Hermitian matrix H is real-valued. This gives the following number of real parameters (the o¤-diagonal
elements now yield only one parameter instead of two):

Nsym = n+
n2 � n
2

=
1

2
n (n+ 1) ; (60)

which is a result stated somewhere in the literature (for some reason I did not �nd the derivation...).
Finally, consider the symmetric unitary matrix with an additional symmetry of the interchange of some of the

indices (some of the scattering channels). The transformation matrix for the interchange of two indices, say i = 1 and
j = 2, is

Q12 =

0@ 0 1 01�(n�2)
1 0 01�(n�2)

0(n�2)�1 0(n�2)�1 I(n�2)�(n�2)

1A ; Q12 = Qy12; Q12Q
y
12 = I: (61)

The interchange symmetry is

U = Qy12UQ12 = Qy12e
iHQ12 = exp

h
iQy12HQ12

i
! Qy12HQ12 = H; (62)

i.e. the real Hermitian matrix H is also invariant under the index pair interchange. Thus, it remains to determine
the number of the degrees of freedom reduced by this constrain. Matrices Q12 interchange the corresponding rows
and columns, which gives (hij = hji)

H =

0@ h11 h12 � � �
h12 h22 � � �

h1;j=f3;ng h2;j=f3;ng H(n�2)�(n�2)

1A =

0@ h22 h12 � � �
h12 h11 � � �

h2;j=f3;ng h1;j=f3;ng H(n�2)�(n�2)

1A = Qy12HQ12: (63)

Thus, we have h11 = h22 and (n� 2) equations h1;j=f3;ng = h2;j=f3;ng, a total of (n� 1) constrains. Therefore, a
symmetric unitary matrix with an additional symmetry in respect to the interchange of a pair of indices (channels)
has the following number of the independent real parameters

Nf2jng
sym = Nsym � (n� 1) =

1

2
n (n+ 1)� (n� 1) = 1

2
n (n� 1) + 1; (64)

where the superscript f2jng means that two channels out of n are symmetric. To generalize this result to the case of
m channels between them, note that in order to increase m by one we need to add only one symmetry transformation
Qm;(m+1) (let us move all the symmetric channels to the lower indices). Then, generalizing Eq. (63) one sees that, for
m > 2, adding mth symmetric channel to (m� 1) ones increases the number of the added constrains by 2 + (n�m).
This is because we add one equation for the diagonal elements, (n�m) - for the interchanged column elements below
the diagonal, and only one more for all the interchanged column elements above the diagonal (since these parts of the
columns consist of identical elements). For example, for (m� 1) = 3 one has0BBBBBBBBB@

8<:� a a
a � a
a a �

9=;
8<:b c d
b c d
b c d

9=; � � �8<:b b b
c c c
d d d

9=;
8<:r f g
f s e
g e t

9=; � � �

...
...

. . .

1CCCCCCCCCA
;

after adding mth symmetric channel, the above diagonal part of the interchanged (m� 1)�th and m�th column would
only yield a single equation b = a. Thus, the total number of the additional constrains for m symmetric channels is

neq (m) = �1 +
mX
k=2

2 + (n� k) = �1 + (m� 1) (2 + n)� (m� 1) m+ 2
2

= (m� 1) 2n�m+ 2
2

� 1; (65)
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FIG. 3: Construction of the triadic cantor set. The energies are the ends of the intervals remained at each iteration.

and the remaining number of the independent real parameters is

Nfmjng
sym = Nsym � neq (m) =

1

2
n (n+ 1)� (m� 1) 2n�m+ 2

2
+ 1: (66)

Note that this result corresponds to the case when there are m � n channels symmetric between all of them. The
case when there are more than one "invariant subspaces" seems to be di¤erent.
As an example, consider the complete symmetry between the channels, i.e. m = n, where one has

Nfnjng
sym =

1

2
n (n+ 1)� (n� 1) n+ 2

2
+ 1 = 2; (67)

degrees of freedom, one of which corresponds to the overall phase of the matrix. Another example is the relevant case
for the present context, i.e. n = 3 and m = 2, which gives

N2�chan
sym (n = 3) = 4; (68)

degrees of freedom, one of which is overall phase. This overall phase can be �xed by some physical considerations
(e.g. wavefunction continuity at the scattering vertex).

III. HEAT KERNEL FOR CANTOR SET SPECTRUM (E.G., FOR FIBONACCI SUPERLATTICE)

A. Calculation of Z (t) for triadic Cantor set

We consider here the triadic Cantor, as de�ned in Eric�s note (Fig. 3). One starts with an interval [0; 1], whose

ends �0 =
n
�
(0)
0 = 0; �

(0)
1 = 1

o
constitute the spectrum �0 at the iteration n = 0. At the �rst iteration, n = 1,

the central third of the above interval is removed, so that the number of the ends is doubled and the spectrum

becomes �1 =
n
�
(0)
0 = 0; �

(0)
1 = 1=3; �

(0)
2 = 2=3; �

(0)
3 = 1

o
. At the subsequent iterations each time the central third of

the remaining intervals is removed and the number of the energies is doubled, while the obtained spectrum can be
iterated self-similarly as follows

�n =
n
�
(n)
k

ok=2n+1
k=0

! �n+1 =
n
�
(n+1)
k

ok=2n+2
k=0

=

�
1

3
�n

�
�
�
2

3
+
1

3
�n

�
: (69)

Namely, at each new iteration the spectrum of the previous one is scaled by the scaling factor l = 1
3 and copied twice

with the left edge at 0 and 2
3 . This iterative relation gives a simple iterative relation between the heat kernels:

Zn+1 (t) =
2n+2X
k=0

e��
(n+1)
k t =

2n+1X
k=0

e�l�
(n)
k t +

2n+1X
k=0

e
�
�
2l+l�

(n)
k

�
t

=
�
1 + e�2lt

� 2n+1X
k=0

e�l�
(n)
k t =

�
1 + e�2lt

�
Zn (lt) : (70)

Then, iterating this expression down to n = 0, and using Z0 (t) = 1 + e�t, one obtains

Zn (t) =
�
1 + e�2lt

� �
1 + e�2l

2t
��
1 + e�2l

3t
�
� � �
�
1 + e�2l

nt
�
=

nY
k=1

�
1 + e�2l

kt
�
: (71)
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B. Sum over the bands

In optically commensurate photonic supelattice, i.e. where the optical path changes by a multiple of 2� in both
layers when the wave number k is increamented by some �, the spectrum is repeated periodically in k with a period
� (the energy, or frequency, is proportional to k, i.e. ! = kc). If the introduced above �n represents one period of
the whole spectrum, then the total heat kernel is sum over the periods of the spectrum:

Ztot (t) =
1X
p=0

X
�n

e�(�k+cp�)t = Zn (t)
1X
p=0

X
�n

e�(cp�)t =
Zn (t)

1� e�(c�)t : (72)

C. Self-similar scaling relation for Zn (t)

The general expression (71) yields the following scaling realtion for Zn (t)

Zn

�
t

l

�
=

nY
k=1

�
1 + e�2l

(k�1)t
�
=

n�1Y
k0=0

�
1 + e�2l

k0 t
�
=

1 + e�2t

1 + e�2lnt

nY
k=1

�
1 + e�2l

kt
�

(73)

i.e.

Zn

�
t

l

�
=

1 + e�2t

1 + e�2lnt
Zn (t) : (74)

In the limit of large n, i.e., lnt� 1, this becomes

Zn

�
t

l

�
=
1 + e�2t

2
Zn (t) : (75)

For 1� t� l�n, this further reduces to (the )

Zn

�
t

l

�
=
1

2
Zn (t) : (76)

Here the scaling factor 1
2 is inverse to that in Eq. (2) of Eric�s note, which seams to be correct, since l =

1
3 and

heat kernel should decrease with t. Function satisfying scaling (76) can be of the form Zn (t) = t��f (ln t) with
� = � ln 2= ln l and periodic f (x+ ln l) = f (x):

Zn

�
t

l

�
=

�
t

l

���
f (ln t� ln l) = l�t��f (ln t) =

1

2
Zn (t) :

In the limit of small t� 1, scaling (75) becomes

Zn

�
t

l

�
=
�
e�t +O

�
t2
��
Zn (t) ; (77)

in agreement with the small-t approximation for Z (t) given in the next paragraph.

D. Small-t approximation for the heat kernel Z (t)

The small-t approximation for the heat kernel (71) can be obtained in di¤erent ways, one of which is the following

lnZn (t) = ln
nY
k=1

�
1 + e�2l

kt
�
=

nX
k=1

ln
�
1 + e�2l

kt
�

=
nX
k=1

ln

 
2e�l

kt e
lkt + e�l

kt

2

!
= n ln 2� t

nX
k=1

lk +

nX
k=1

ln

 
el
kt + e�l

kt

2

!

= n ln 2� t l � l
n

1� l +O
�
t2
�
;
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FIG. 4: Plot of f (x) = ln (1 + exp [�2ex]).

which yields

Zn (t) = 2
n exp

�
� l � l

n

1� l t+O
�
t2
��
: (78)

In particular, for limn!1 ln = 0 and using l
1�l

1
l =

l
1�l

1�l+l
l = 1 + l�ln

1�l we obtain

Zn

�
t

l

�
= 2n exp

�
� l � l

n

1� l
t

l
+O

�
t2
��
= e�tZn (t) ; (79)

in agreement with (77).

E. Oscillations of heat kernel Zn (t)

The oscillatory behaviour of Zn (t) takes place for t & 1 (while Zn (t) � 2ne�lt=(1�l) for t � 1). This becomes
evident by considering lnZn (t):

lnZn (t) =

nX
k=1

ln
�
1 + exp

�
�2ek ln l+ln t

��
=

nX
k=1

f (k ln l + ln t) ; (80)

where

f (x) = ln (1 + exp [�2ex]) (81)

plotted in Fig. 4. The sum in (80) is over the functions f (k ln l + ln t) shifted by a multiple of ln l = � ln 3 along
the axis ln t, as shown in Fig. 5. Now it is clear that Wn (y = ln t) = lnZn (t) has some periodic riples on the main
decreasing background for ln 3 . ln t . n ln 3. The background itself behaves like

�
n� ln t

ln 3

�
ln 2 + c, where c is some

constant of the order of unity (cf. Fig. 5). In order to write down this oscillations explicitly, one can use the Poisson
summation formula

1X
k=�1

g (k) =

1X
m=�1

ĝ (m) ; ĝ (m) =

Z 1

�1
g (k) e2�imkdk; (82)

where the actual limits of summation over k are de�ned by the support of g (x). (Note: there is also a special case of
the periodic summation formula,

1X
k=�1

g (x+ kT ) =
1

T

1X
m=�1

ĝ
�m
T

�
exp

h
2�i

m

T
x
i
; ĝ (m) =

Z 1

�1
g (x) e2�imxdx;

which requires, however, the in�nite summation over k).
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FIG. 5: Visual representation of the sum in (80).

In our case we have, denoting T = ln l�1,

Wn (y) =
nX
k=1

f (y � kT ) = 1

2
[f (y � nT )� f (y)] +

1X
m=�1

Z n

0

f (y � kT ) e2�imkdk;

where for the convenience we have added and subtracted the k = 0 term, and the �rst term on the right hand side
is required becouse of the exact limits of the integration in the integral on the RHS (the �-functions implied in the
Poisson summation are halved by these limits). Proceeding, one obtains

Wn (y) =
1

2
[f (y � nT )� f (y)] +

Z n

0

f (y � kT ) dk + 2
1X
m=1

Z n

0

f (y � kT ) cos (2�mk) dk

=
f (y � nT )� f (y)

2
+
1

T

Z y

y�nT
f (x) dx+

T

�m

1X
m=1

Z n

0

f 0 (y � kT ) sin (2�mk) dk;

where the intergation by parts was used for the oscillatory term. Let us consider separately the main non-oscillatory
term and the rest oscillatory ones. Substituting the function f from Eq. (81) we have

W (bg)
n (y) =

f (y � nT )� f (y)
2

+
1

T

Z y

y�nT
f (x) dx

=
1

2
ln
1 + exp

�
�2ey�nT

�
1 + exp [�2ey] +

1

T

Z y

y�nT
ln (1 + exp [�2ex]) dx:

This integral seems to be not expressible in elementary functions. Assuming that y = ln t� 1 and y � nT � �1, we
can rewrite it (semi-numerically) asZ y

y�nT
ln (1 + exp [�2ex]) dx =

Z �10

y�nT
ln (1 + exp [�2ex]) dx+

Z 1

�10
ln (1 + exp [�2ex]) dx

� 6:2108377 + (nT � 10� y) ln 2;

where the number was obtained using numerical integration in Mathematica. Thus

W (bg)
n (y) � 1

2
ln
1 + exp

�
�2ey�nT

�
1 + exp [�2ey] +

6:21084 + (nT � 10� y) ln 2
T

(83)

� 6:2108377� 10 ln 2
T

+

�
n+

1

2
� y

T

�
ln 2: (84)
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m �mam �mbm

1 9:7� 10�4 �7:2� 10�4

2 3:8� 10�8 2:4� 10�7

3 4:5� 10�8 �1:8� 10�11

4 �2:7� 10�9 4:1� 10�15

5 �1:5� 10�9 2:5� 10�16

TABLE I: NUmerical values of the expansion coe¢ cients am and bm

The oscillatory terms are

W (osc)
n (y) =

T

�m

1X
m=1

Z n

0

f 0 (y � kT ) sin (2�mk) dk =

=
T

�m

1X
m=1

Z n

0

f 0 (y � kT ) sin (2�mk) dk

=
1

�m

1X
m=1

Z y

y�nT
f 0 (x) sin

2�m [y � x]
T

dx

= � 1

�m

1X
m=1

Z y

y�nT

2ex

1 + exp [2ex]
sin

2�m [y � x]
T

dx:

Again, using the fact that f 0 (x) is peaked about zero, and assuming y = ln t � 1 while (y � nT ) � �1, one can
extend to in�nities the limits of the intergation in the last integral:

W (osc)
n (y) =

1

�m

1X
m=1

Z 1

�1

2ex

1 + exp [2ex]

�
cos

2�my

T
sin

2�mx

T
� cos 2�mx

T
sin

2�my

T

�
dx (85)

=
1X
m=1

am cos
2�my

T
+ bm sin

2�my

T
; (86)

where we have intruduced �
am
bm

�
=

1

�m

Z 1

�1

2ex

1 + exp [2ex]

�
sin 2�mxT
� cos 2�mxT

�
dx: (87)

The intergrals am and bm seem to be inexpressible analytically, and was calculated numerically for several values of
m, as shown in Table I. Comparison of the numerical and the analytical results is given in Fig. 6.

[1] T. Kottos and U. Smilansky, Quantum graphs: a simple model for chaotic scattering, J. Phys. A: Math. Gen. 36, 3501
(2003).



16

5 10 15 20
Ln t

0.002

0.001

0.001

0.002
W20

osc lnt

FIG. 6: Comparison of the numerical and the analytical results forW20 (y = ln t) = lnZ20 (t). From the numerical sum (n = 20)
the analytical expression for W (bg)

20 (y) is extracted, and the remaining oscillatory term is compared to the analytical expression
for W (osc)

20 (y).


