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We report on the study of a polariton gas confined in a quasiperiodic one-dimensional cavity, described
by a Fibonacci sequence. Imaging the polariton modes both in real and reciprocal space, we observe
features characteristic of their fractal energy spectrum such as the opening of minigaps obeying the gap
labeling theorem and log-periodic oscillations of the integrated density of states. These observations are
accurately reproduced solving an effective 1D Schrödinger equation, illustrating the potential of cavity
polaritons as a quantum simulator in complex topological geometries.
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Free quantum particles or waves propagating in a
spatially varying potential present modifications of their
spectral density, which depend on the symmetry of this
potential. The richness of spectral distributions in con-
strained geometries has long been recognized. The case of a
periodic potential described by means of the Bloch theorem
is a significant example. The notion of spectral distribution
has been deepened in the wake of the discovery of
quasicrystals and it led to a classification of energy spectra
into absolutely continuous, pure point, and singular con-
tinuous spectral distributions [1]. The latter class proved to
be surprisingly rich and it encompasses a broad range of
potentials, such as quasiperiodic potentials which have been
thoroughly studied [2,3].
An interesting quasiperiodic potential can be designed

using a Fibonacci sequence. The corresponding singular
continuous energy spectrum has a fractal structure of the
Cantor set type [4–7], and it displays self-similarity, i.e., a
symmetry under a discrete scaling transformation.
Denoting ρðεÞ the relevant density of states (DOS) in ε
(either energy or frequency), a discrete scaling symmetry
about a particular value εu is expressed by the property

μðεu þ ΔεÞ − μðεuÞ ¼
μðεu þ βΔεÞ − μðεuÞ

α
; (1)

where μðεÞ ¼
R
ε
−∞ ρðε0Þdε0 is the integrated density of

states (IDOS), or density measure, and α and β are scaling
parameters which usually, depend on εu. Defining a shifted
IDOS by N εuðεÞ≡ μðεÞ − μðεuÞ, the general solution of
Eq. (1) can be written as [8]

N εuðεÞ ¼ jε − εujγF
!
ln jε − εuj

ln β

"
; (2)

where γ ¼ ln α= ln β is the local (εu-dependent) scaling
exponent and F ðzÞ is a periodic function of period unity,

whose (nonuniversal) form depends on the problem at
hand. Generally, the exponent γ takes values between zero
and unity, so that the density ρðεÞ is a singular function.
Such scaling properties of a fractal spectrum are expected
to modify the behavior of physical quantities [8]. Recently
studied examples include thermodynamic properties of
photons [9], random walks [10], the quantum diffusion
of wave packets [11], and spontaneous emission triggered
by a fractal vacuum [12]. The diffusion of a wave packet in
a quasiperiodic medium is predicted to be neither diffusive,
nor ballistic but to present a behavior characterized by
nonuniversal exponents and a log-periodic modulation of
its time dynamics. Experimental demonstration of these
specific properties of quasiperiodic structures is still miss-
ing as yet. We propose to use cavity polaritons to evidence
such a fractal behavior.
Cavity polaritons are quasiparticles arising from the

strong coupling between the optical mode of an optical
cavity and excitons confined in quantum wells [13]. They
have appeared recently as a promising system to realize
quantum simulators [14,15]. Engineering of the potential
landscape is possible and allows implementing a large
variety of physical situations such as 1D [14,16,17] and 2D
periodic potentials [18,19] with the generation of gap
solitons [17,20], nonlinear resonant tunneling devices
[21], or triangular [22] and honeycomb [23,24] lattices,
which enables the exploration of graphene physics.
Polaritons offer experimental possibilities not available
in 1D or 2D photonic quasicrystals such as direct time-
and energy-resolved measurements of the excitations in
both space and momentum domains. Thus, one can directly
visualize individual eigenmodes, and the dynamics of wave
packets.
In this Letter, we use this well-controlled system to

investigate both theoretically and experimentally the spec-
tral properties of a polariton gas in a quasiperiodic
potential. To do so, we have sculpted the lateral profile
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of a quasi-1D cavity in the shape of a Fibonacci sequence.
Using nonresonant excitation in the low density regime, we
probe the modes both in real and reciprocal space. We
observe a quantitative agreement between experiments and
the calculated modes and density of states. In particular, we
evidence features of a fractal energy spectrum, namely gaps
densely distributed and an integrated density of states
reflecting the existence of a discrete scaling symmetry as
expressed by Eq. (2).
In our sample, cavity polaritons are confined within

narrow strips (wire cavities), whose width is modulated
quasiperiodically. These wires are fabricated by processing
a planar high quality factor (Q ∼ 72 000) microcavity
grown by molecular beam epitaxy. It consists in a λ=2
Ga0.05Al0.95As layer surrounded by two Ga0.8Al0.2As=
Ga0.05Al0.95As Bragg mirrors with 28 and 40 pairs in the
top/bottom mirrors, respectively. Twelve GaAs quantum
wells of width 7 nm are inserted in the structure resulting
in a 15 meV Rabi splitting. 200 μm long wires with the
lateral dimension modulated quasiperiodically are designed
using electron beam lithography and dry etching [Figs. 1(a)
and 1(b)]. The modulation consists in two wire sections
(“letters”) A and B of same length a but different widths wA
and wB respectively [Fig. 1(b)]. The modulation of the wire
width induces an effective 1D potential for the longitudinal
motion of polaritons, as discussed in the sequel. The letters
are arranged according to the Fibonacci sequence [4] using
the recursion,

Sj≥3 ¼ ½Sj−2Sj−1#; and S1 ¼ B; S2 ¼ A; (3)

where ½Sj−2Sj−1#means concatenation of two subsequences
Sj−2 and Sj−1. The number of letters (length) of a sequence
Sj is given by the Fibonacci number Fj, such that
Fjþ1 ¼ Fj þ Fj−1. The ratio Fjþ1=Fj tends to the golden
mean σ ¼ ð1þ

ffiffiffi
5

p
Þ=2≃ 1.62 in the limit j → ∞, while

the corresponding sequence S∞ becomes rigorously qua-
siperiodic and invariant, i.e., self-similar, under the iteration
transformation Eq. (3). Our sample corresponds to S13
counting 233 letters with a ¼ 0.8 μm, wA ¼ 3.5 μm and
wB ¼ 1.86 μm. To study the polariton modes in these

quasiperiodic wires, we perform low temperature (10 K)
microphotoluminescence experiments. Single wires are
excited nonresonantly using a cw monomode laser tuned
typically 100 meV above the polariton resonances. The
excitation spot extends over a 80 μm-long region along the
wire. The sample emission is collected with a 0.65
numerical aperture objective and focused on the entrance
slit (parallel to the wire) of a spectrometer coupled to a
CCD camera. Imaging of the sample surface (the Fourier
plane of the collection objective) allows for studying the
spectrally resolved polariton modes in real (reciprocal)
space. Excitation power is kept low enough to stay below
the condensation threshold and obtain a nearly homo-
geneous population of the lower energy polariton states.
Figure 2(a) displays the spatially and spectrally resolved

emission measured on a single modulated wire cavity for an
exciton-photon detuning around −8 meV (defined as the
energy difference between the cavity mode at normal
incidence and the exciton resonance). Several polariton
modes are imaged. They present complex patterns of bright
spots distributed all over the region of the wire under
investigation. To understand the nature of these modes and
properties of their spectral density, we have calculated the
polariton eigenstates in such quasiperiodic structures.
In ourmodel, whose details are given in the Supplemental

Material [25], we describe the confined photon modes
using a 2D scalar wave equation with vanishing boundary
conditions on the boundary of the wire, considered as an
axially symmetric strip where the longitudinal coordinate
x ∈ ½0; L# (L being the length of thewire), and the transverse
coordinate −wðxÞ=2≤y≤wðxÞ=2. Here, wðxÞ > 0 accounts
for the x-dependent width of the wire [Fig. 1(c)], i.e., a
quasiperiodic sequence of segments of width wA and wB, as
defined in Eq. (3). In the Supplemental Material [25], we
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FIG. 1 (color online). (a) Scanning electron microscopy image
of an array of modulated wires. (b) Zoom on a particular wire,
showing the shape of the A and B letters. (c) Schematic of the
nominal potential corresponding to the lateral shaping of the
wire cavity.
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FIG. 2 (color online). (a) Spectrally and spatially resolved
emission measured on a single modulated wire (the linear
polarization parallel to the wire is selected). Bottom of the figure:
letter sequence corresponding to a part of the whole S13 potential
sequence. (b) Calculated polariton Fibonacci modes as a function
of energy and real space coordinate.
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show how to map this 2D problem onto a 1D Schrödinger
equation with the effective potential:

VðxÞ ¼ π2

w2ðxÞ
þ π2 þ 3

12

!
w0ðxÞ
wðxÞ

"
2

: (4)

The first term of VðxÞ is the usual adiabatic approximation.
The second term accounts for the sharpness of the steps.
It is not perturbative, and it cannot be neglected (see
Supplemental Material [25]). As clearly visible in Fig. 1,
the strip shape is not perfectly abrupt but presents some
smoothness in the width variation introduced by the actual
etching process. The smoothness scale is used as a fitting
parameter in the calculations. The eigenfunctions ϕqðxÞ and
eigenenergies EC;q are obtained numerically. To calculate the
polariton modes, we consider the radiative coupling between
excitons with a flat dispersion to the photon modes which we
have obtained in our simulations. Since the coupling is
diagonal in the index q, the resulting polariton eigenfunctions
and photons have the same spatial behavior. Figure 2(b)
shows the polariton modes thus obtained numerically. Since
experimentally we cannot resolve states which are separated
by less than the polariton linewidth, we have averaged the
intensity over eigenmodes close in energy. Thus, what
appears in Fig. 2(b) as bright intensity spots at different
energies are actually bands separated by gaps. Clearly the
calculation reproduces very accurately the spatial structure of
the polariton modes observed in the experiment. This direct
imagingof the Fibonaccimodes in a quasiperiodic structure is
a clear asset offered by cavity polaritons.
Probing the polariton modes in reciprocal space also

provides remarkable information about the eigenmodes.
This is illustrated on Fig. 3(a), where taking advantage of
the one-to-one relation between the angle of emission and
in-plane momentum of polaritons, far field imaging of the
polariton emission is shown for the same wire as in Fig. 2.
A complex band structure appears with the opening of gaps
not regularly spaced unlike the case of a periodic modu-
lation [17]. The calculated band structure reproduces the
measurements quantitatively [Fig. 3(b)].
In the rest of the Letter, we show that despite the finite

size of the system, both in the numerics and in the
experiments, fundamental physical properties are evi-
denced in this complex band structure which indicate the
onset of a fractal density of states. To study the spectrum
and the position of its gaps, it is convenient to rewrite the
quasiperiodic potential VðxÞ in Eq. (4) under the form,

VðxÞ ¼
X

n

χðσ−1nÞubðx − anÞ; (5)

valid in principle [4] for an infinitely long system namely
j → ∞ in (3). ubðxÞ [which depends on wðxÞ] describes the
shape of the letter B while the periodic function χðxÞ
defined, within [0,1], by χðxÞ ¼ 1 for 0 < x < 2 − σ and

χðxÞ ¼ 0 for 2 − σ < x < 1, accounts for the quasiperiodic
order. The Fourier transform of VðxÞ consists of Bragg
peaks and is given by

VðkÞ ¼ ~ubðkÞ
X

p;q

χqδðka − 2πðpþ qσ−1ÞÞ (6)

in standard notation. Since σ is irrational, each Bragg peak
of the quasiperiodic potential can be uniquely labeled with
a set ½p; q& of two integers so that the corresponding wave
number is k ¼ Qp;q ≡ ð2π=aÞðpþ qσ−1Þ. Similarly to the
Bloch theorem for a periodic modulation, we may expect
that a series of gaps opens at each independent Bragg peak
Qp;q. Thus, to label the gaps and to obtain the IDOS given
in Eq. (2), it is tempting to consider the quasiperiodic
potential VðxÞ as a small perturbation. Albeit not justified
in the present experimental case, we shall first use this
assumption since it allows us to give a more intuitive
derivation of the gap labeling. But the Bragg peaks being
a dense set, we must be cautious and first approximate
σ by its finite approximants σj ¼ Fjþ1=Fj as defined after
Eq. (3). Then, VðxÞ in Eq. (5) becomes a periodic
approximant Vjþ1ðxÞ, built from periodically repeated cells
Sjþ1 of length aFjþ1. Thus, the properties of the single cell
Sjþ1 studied experimentally are essentially those of the
periodic potential Vjþ1ðxÞ. Its Fourier transform Vjþ1ðkÞ is
obtained replacing σ by σj in Eq. (6). Vjþ1ðkÞ thus defined,
is the structure factor of a periodic structure and there-
fore it has a finite density of Bragg peaks spaced by
Δk ¼ 2π=ðaFjþ1Þ. Perturbation theory in jVj ≪ 1 is now
applicable. To first order, each Bragg peak k ¼ Qp;q ≡
ð2π=aÞðFjþ1pþ FjqÞ hybridizes the degenerate Bloch
waves at wave numbers 'Qp;q=2. The coupling between
these plane waves is best described by a two-level

1592

1593

1594

E
ne

rg
y 

(m
eV

) 1595

1596

[-1,2]

[1,-1]

[2,-3](a) (b)

THEORYEXPERIMENT

0-3
k (µm-1)

-1-2

[-4,7]
[4,-6]

[6,-9]

30
k (µm-1)

21

[-2,4]

[3,-4]

[-3,5]

FIG. 3 (color online). (a) Spectrally resolved far field emission
measured on the same wire cavity used in Fig. 2. (b) Correspond-
ing simulation. Position of the gaps labeled with two integers
½p; q& is indicated with red arrows.
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Hamiltonian with diagonal, ε≡ EQp;q=2 ¼ E−Qp;q=2, and
off-diagonal, Vq ≡ Vχq, matrix elements. The doubly
degenerate level ε splits into ε" jVqj and a gap of width
2jVqj opens at this energy. Accordingly, there is a one-to-
one correspondence between the Bragg peaks and the gaps
generated through the hybridization of plane waves, so that
each gap can also be labeled with the two integers ½p; q$.
Noting that Qp;qa=2π ¼ pþ qσ−1 is the proportion of
unperturbed eigenmodes whose energies are less than
ε ¼ EQp;q=2, the IDOS inside the ½p; q$-gap is

N ðε ¼ EQp;q=2Þ ¼ pþ qσ−1 ¼ qσ−1ðmod:1Þ (7)

for N ðε ¼ EQp;q=2Þ normalized to unity at EQ1;0
.

While the previous result has been obtained using
perturbation theory, it happens that it has a much broader
range of validity generally expressed by the so-called gap
labeling theorem [28] formulated by Bellissard and co-
workers. This theorem provides a precise framework for
applicability and allows us to compute values of the IDOS in
the gaps of the spectrum of 1D Schrödinger Hamiltonians
with bounded potentials VðxÞ. An important consequence of
that theorem is the topologically stable nature of the IDOS
values in the gaps which extends beyond perturbation theory.
Those specific values are obtained [28] from some pre-
scribed linear combinations of components of eigenvectors
of the corresponding substitution matrix characteristic of the
quasiperiodic potential. For the Fibonacci sequence defined
in Eq. (3), that prescription reduces to linear combinations of
1 and σ−1, namely, to Eq. (7). In Fig. 3(a), we indicate with
red arrows the labeling of the gaps using the set ½p; q$,
demonstrating that the positions of the gaps are accurately
determined by the positions of the Bragg peaks even for a
relatively short Fibonacci sequence such as considered here.
These positions are topological quantities, namely, indepen-
dent of the strength of the potential. These observed spectral
features are thus independent of the (large enough) sample
size and of the realization of the potential. These points are

further discussed in the Supplemental Material [25]. On the
other hand, the energy width of the gaps depends on the
heights of the Bragg peaks, i.e., on the details of the potential
ubðxÞ [and wðxÞ].
The peculiar structure of the emission spectrum appears

also clearly by considering the total emission intensity
IðεÞ nearly proportional to the DOS for low excitation
powers. Figure 4(a) displays peaks and dips corresponding,
respectively, to bands and pseudogaps. The measured
integrated intensity

R
ε
E0
Iðε0Þdε0 (with E0 being the lower

energy state), is reported in Fig. 4(b) together with the
numerically calculatedDOS and IDOS [Figs. 4(c) and 4(d)].
Applying Eq. (7), valid in principle in the infinite limit, to
the gaps ½2;−3$, ½−1; 2$, ½1;−1$ indicated in Figs. 4(b)–(d),
gives, respectively, N ðEQp;q=2Þ ¼ 0.15, 0.24, 0.38. These
numbers are in excellent agreement with the experiment,
confirming the good homogeneity achieved in populating
the polariton states.
For the infinite system, there exists an infinite series of

gaps at pþ qσ−1 ∈ ½0; 1$. Thus the energy spectrum, which
is the complementary of these gaps, is singular continuous.
It is a Cantor-like set whose total width vanishes. The high
resolution available in the numerics allows us to consider
finer details of the IDOS as predicted by the scaling form
Eq. (2). In Fig. 4(e), we have plotted in a log-log scale the
IDOS as a function of (properly normalized) energy. It is
noticeable that, even for such a finite sized system, we
indeed observe a power law behavior multiplied by a log-
periodic function. More interesting is the experimental
observation of these log-periodic oscillations, showing two
periods of oscillations, which constitutes a direct and so far
unobserved signature of the fractal character of the
Fibonacci spectrum.
In summary, probing the luminescence of a polariton gas

laterally confined by a Fibonacci quasiperiodic potential,
we have observed the characteristic behavior of the
associated fractal energy spectrum: gaps densely distrib-
uted, and an IDOS well described by the scaling form
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FIG. 4 (color online). (a) Measured total (angularly integrated) emission spectrum IðεÞ of the quasiperiodic wire and (b) spectrally
integrated emission intensity
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Iðε0Þdε0 (where E0 is the lower energy state). Calculated normalized DOS (c) and IDOS (d). (e) Display

of the log-periodic oscillations of the IDOS in a log-log plot of numerical (red) and experimental (blue) IDOS in the vicinity of E0

(normalized to ER ¼ ℏ2π2=ð8a2mpÞ, with mp the polariton mass).
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Eq. (2) and following the gap labeling theorem Eq. (7). We
have obtained a spectrally and spatially resolved image of
the polariton modes which is in good quantitative agree-
ment with theoretical and numerical results. Our results
support the idea that topological features of a fractal
spectrum are robust and show up quite accurately even
for a relatively short structure. Those results evidence the
great interest of cavity polaritons to study the anomalous
time expansion of a polariton wave packet [11], more
complex quantum systems, e.g., 2D quasicrystals [29], and
more generally to realize quantum simulators.
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