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Abstract – Spontaneous emission of a quantum emitter coupled to a QED vacuum with a deter-
ministic fractal structure of its spectrum is considered. We show that the decay probability does
not follow a Wigner-Weisskopf exponential decrease but rather an overall power law behavior with
a rich oscillatory structure, both depending on the local fractal properties of the vacuum spectrum.
These results are obtained by giving first a general perturbative derivation for short times. Then
we propose a simplified model which retains the main features of a fractal spectrum to establish
analytic expressions valid for all time scales. Finally, we discuss the case of a Fibonacci cavity
and its experimental relevance to observe these results.

editor’s  choice Copyright c© EPLA, 2013

Spontaneous emission results from the coupling of a
quantum system (an “atom”) to a quantum vacuum. This
is an important and widely studied phenomenon both from
fundamental and applied points of view [1], which allows
to probe properties of the quantum vacuum, its dynamics
and correlations. The wide zoology of behaviors depends
on spectral properties of the vacuum and on its coupling
to the atom [2]. A standard textbook description [1] con-
siders the coupling to a vacuum having a smooth and
non-singular density of photon modes, in which case,
the probability for spontaneous emission follows the well-
known Wigner-Weisskopf decay law |Ue(t)|2 = e−Γe(ωe)t.
Relevant definitions of the quantum amplitude Ue(t) and
of the inverse lifetime Γe(ωe) will be given below. This
description has been further developed towards quantum
emitters coupled to more complicated environments such
as semiconductors, QED cavities, photonic crystals and
micro-cavities [2]. The existence of singularities in the
spectrum of the vacuum leads to a qualitatively different
behavior which has been studied in various cases [2,3].
In this letter, we address the problem of spontaneous

emission from an atom coupled to a vacuum whose spec-
trum is characterized by a discrete scaling symmetry ex-
pressed by the property

µ(ω +∆ω)− µ(ω) =
µ(T (ω +∆ω))−µ(T (ω))

a
(1)

where µ(ω) is the integrated density of modes (IDOM).
The dimensionless scaling parameter a and the map T (ω)
provide a full characterization of the specific discrete

scaling symmetry. Introducing Nωu(ω) ≡ µ(ω) − µ(ωu),
the scaling relation (1) can be written more concisely as
Nωu(ω) = 1

aNT (ωu)(T (ω)). A spectrum described by (1)
is often called fractal [4], a denomination that we shall re-
tain all over but which covers a broad class of systems
that extends beyond the conventional self-similar char-
acter usually associated to fractals. Relevant examples
include cavities made out of quasi-periodic heterostruc-
tures [5], or cavities generated from deterministic self-
similar fractal structures like a Sierpinski gasket. The
prominent feature of fractal spectra, resulting from their
discrete scaling symmetry (1), is that they are highly lacu-
nar, possessing an infinity of gaps appearing at all scales1.
Singularities of a spectrum satisfying (1) correspond to

fixed points of the map T (ω). Around a fixed point ωu

the map can be linearized, T (ω) # ωu + T ′(ωu)(ω − ωu).
Thus, the IDOM obeys the equationNωu(ω) =

1
aNωu(ωu+

T ′(ωu)(ω − ωu)), whose general solution is

Nωu (ω) = |ω − ωu|α F
(
ln |ω − ωu|
ln |T ′(ωu)|

)
, (2)

where α = ln a
ln |T ′(ωu)| is the local (ωu-dependent) spec-

tral exponent and F(x) is a periodic function of period
unity2. Generically, α changes between zero and unity

1It is worth noticing that for a singular spectrum, the IDOM µ(ω)
is usually well defined, while its derivative, the density of modes

ρ(ω) = dµ(ω)
dω , may not be.

2Note that frequencies are dimensionless and expressed in units
of a coarse-graining frequency characteristic of the fractal spectrum.
In some cases, α is related to the non-local spectral dimension ds [6].
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spanning the range between smooth continuous and point
spectra [7].
We show below that the coupling of a two-level atom

whose resonance frequency is close to ωu leads to a similar
scaling behavior of the time-dependent decay amplitude
Ue(t), given in the long-time limit by

|Ue(t)|2 = t−2γ G
(
ln t

λ

)
, (3)

where G(x+1) = G(x) is another periodic function and γ is
a function of the spectral exponent α. The exponent γ, the
real parameter λ ≡ ln |T ′(ωu)| and the expression of G(x)
are direct consequences of the specific scaling relation (2).
Thus, for a fractal spectrum, spontaneous emission does
not follow the Wigner-Weisskopf exponential decay, a re-
sult which could be partly anticipated, since it is indeed
known that the existence of spectral singularities leads to
an algebraic time decrease of the decay probability [3].
But the existence of log-periodic fluctuations described by
the function G(x) is a direct consequence of the discrete
scaling symmetry (1).
Expression (3) constitutes the main result of this letter.

To establish it, we shall first recall some basic definitions
and results. Then, we will give a general perturbative
derivation starting from the Fermi golden rule, essentially
limited to small times. To go beyond this limit, we will
consider a model general enough to include all relevant
characteristics of a fractal spectrum, yet simple enough to
allow for a thorough analytical derivation.
A two-level atom (|g〉, |e〉), whose Hamiltonian is He =

h̄ωe|e〉〈e|, is coupled to the EM field described by HF =
h̄
∑

k ωka
†
kak, where k stands for an appropriate set of

quantum numbers. The atom-photon interaction is de-
scribed within the rotating wave approximation by the
Hamiltonian Hint =

∑
k(V

∗
k a

†
k|g〉〈e| + h.c.). The matrix

element Vk, which accounts for the strength of the cou-
pling, depends generally on the atom’s position. In the
initial state |e, 0k〉, the atom is in the excited state and no
photon is present. The probability amplitude Ue(t) to find
the quantum system in the initial state a time t after it
evolves with the total Hamiltonian H = He+HF +Hint is
defined by Ue(t) = 〈e, 0k|Û(t, 0)|e, 0k〉. The evolution op-
erator Û(t, 0), written in terms of the resolvent operator
Ĝ(z) = 1/(z −H), is [1]

Û(t, 0) =
1

2πi

∫ +∞

−∞
dEe−iEt/h̄(Ĝ−(E)− Ĝ+(E)). (4)

The matrix element Ge(z) ≡ 〈e, 0k|Ĝ(z)|e, 0k〉 = 1/(z −
h̄ωe−Σe(z)) of the resolvent defines the self-energy Σe(ω±
i0+) = ∆e(ω)∓ ih̄

2 Γe(ω) in terms of two spectral functions,
∆e(ω) and Γe(ω), which respectively account for the shift
and the spectral width of the atomic energy.
The spectral function Γe(ω) is related to the vacuum

response function

Φe(t) =

∫
dω

2π
Γe(ω) e

−iωt =

∫
dµ(ωk)

|Vk|2

h̄2 e−iωkt, (5)

by using the IDOM µ(ω) in the second equality. Within
the dipole approximation [1], the response Φe(t) is the
time correlation function

Φe(t) = h̄−2|dge|2〈0k|Êz(r, t)Ê
†
z(r, 0)|0k〉 (6)

of the electric-field component Êz(r, t) along the polar-
ization direction ẑ of the atom. Here, dge and r are, re-
spectively, the dipole matrix element and the position of
the atom. A convenient form of the probability amplitude
Ue(t) is given in terms of the Laplace transform Φ̃e(s) of
the response function [1]:

Ue(t) =
1

2πi

∫ c+i∞

c−i∞
ds

e(s−iωe)t

s+ Φ̃e(s− iωe)
. (7)

From the previous definitions and results we identify
two relevant energy scales for the problem of spontaneous
emission. One, Γe(ωe), is the strength of the coupling
between the emitter and the vacuum. The second energy
scale ∆ is given by the spectral width of Γe(ω). Their
ratio defines the dimensionless coupling parameter

g = Γe(ωe)/∆. (8)

In the weak-coupling limit, g & 1, the quantum ampli-
tude Ue(t) is determined by the pole in (7), given by the
approximate solution s ≈ −Φ̃e(−iωe) = −ih̄Σe(ωe + i0+).
This leads straightforwardly to the well-known Wigner-
Weisskopf exponential decay. At very long times, t (
Γ−1
e (ωe), this pole approximation breaks down, even in

free space, and both the probability amplitude Ue(t) and
the correlation function Φe(t), are dominated by the singu-
larity at the edge ω = 0 of the vacuum spectrum [1]. For
an atom coupled to the d-dimensional scalar QED vac-
uum Γe(ω) ∼ ρ(ω)|E(ω)|2, where the density of modes
ρ(ω) ∼ ωd−1 and the amplitude of the electric field
E(ω) ∼

√
ω, so that Γe ∼ ωd and Φe(t) ∼ 1/td+1 and,

according to (7), Ue(t) ∼ 1/td+1. In more structured
vacuum spectra such as in photonic crystals, the spectral
function Γe(ω) exhibits singularities of the type Γe(ω) =
C|ω − ωu|α−1θ(ω − ωu) around certain frequencies ωu [2].
In that case the coupling is strong and the pole approx-
imation is not valid. Instead, one obtains a generalized
exponential decay limited to small times well accounted
for by the Fermi golden rule, Ue(t)− 1 + Ct2−α. At large
times, it turns into an algebraic decrease Ue(t) + t−(2−α),
possibly coexisting with a non-decaying component [3].
We now consider a fractal vacuum spectrum obeying the

scaling (2). In this case the weak-coupling limit becomes
ill-defined, since the spectral function Γe(ω) ∼ ρ(ω) is
singular with a vanishing width ∆. Thus, according to (8),
we are effectively in a strong-coupling regime g ( 1, even
for a finite and small Vk. On the other hand, the short-
time perturbative limit remains applicable. We start with
this limit to present an intuitive explanation of the effect
of the vacuum spectrum fractality on the decay dynamics.
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At short times one obtains from (7) and (5)

|Ue(t)|2 ! 1−
∫ t

0
dt′ Γe(t

′), (9)

where

Γe(t) =
2t

h̄2

∫
dµ(ωk)|Vk|2

sin(ωk − ωe)t

(ωk − ωe)t
. (10)

While this expression constitutes textbook materials, we
wish to re-examine it in the context of a fractal spectrum.
The sinc function in (10) indicates that Γe(t) is a wavelet
(rather than a Fourier) transform of the spectral func-
tion Γe(ω). Generally, the wavelet transform Sw(a, b) of a
function s(x) is defined by [8]

Sw(a, b) ≡
1

a

∫
dx s(x)w

(
x− b

a

)
. (11)

It can be viewed as a mathematical microscope which
probes the function s(x) at a point b with a magnification
1/a and an optics specified by the choice of the specific
wavelet w(x). Thus, Γe(t) in (10) is the wavelet trans-
form of the IDOM µ(ω) at a frequency ωe, with a magni-
fication t and w(x) = sinc(x) as a probe. An important
property of the wavelet transform is that it preserves the
discrete scaling symmetry (1) of the probed function, here
the IDOM µ(ω) weighted by |Vk|2. For a smooth and con-
tinuous spectrum, the sinc function probes energy scales
of the order of t−1 and in the long-time limit it goes to
δ(ωk−ωe), so that Γe(t) becomes t-independent. However
there is no such well-defined limit for a fractal spectrum
and inserting (2) into (10) for ωe = ωu, we obtain instead3

Γe(t) = t1−α F̃1

(
ln t

ln |T ′(ωu)|

)
(12)

and from (9)

|Ue(t)|2 = 1− t2−α F̃2

(
ln t

ln |T ′(ωu)|

)
, (13)

where F̃1,2(x) are periodic functions of period unity. This
constitutes a short-time counterpart to the asymptotic re-
sult (3) [9]. The behavior of Γe(t) is illustrated in fig. 1
for the case of a Fibonacci quasi-periodic dielectric cavity
(to be discussed later on), whose IDOM is of the form (2).
We observe, as predicted by (12), an overall power law be-
havior with α ≈ 0.8, explainable by the renormalization
group analysis of [10], and also log-periodic oscillations
around it, which are the fingerprint of the underlying frac-
tal structure of the spectrum. Note that these log-periodic
oscillations are already noticeable for systems of finite size.
In order to go beyond the previous, short-time regime,

we consider the following model for the spectral function:

Γe(ω) =
C

π|ω − ωu|1−α

[
1 +A cos

(
2π

λ
ln

|ω − ωu|
Ω

)]
,

(14)

3We assume that |Vk|2dµ(ωk) also obeys the scaling form (2).
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Fig. 1: (Color online) Numerical results for Γe(t), given by (10),
for Fibonacci dielectric cavities Sj (defined in text) of different
lengths N . The photonic spectrum has been obtained from a
diagonal tight-binding description of the Fibonacci potential.
A constant matrix element |Vk|2 = V 2 was assumed in (10),
which amounts to averaging Γe(t) over the atom’s position in
the cavity. The dimensionless time t is in units of the tight-
binding hopping constant.

where 0 < α < 1 is the local spectral exponent introduced
in (2), C is the coupling strength, and 0 ≤ A ≤ 1 and Ω
define respectively the modulation amplitude and phase.
For simplicity, we let −∞ < ω < ∞. This expression
exhibits the basic features required to describe a fractal
structure of the vacuum, around ωu, as defined in (1) and
(2) with λ = ln |T ′(ωu)|. We have approximated the log-
periodic function by its first harmonic, which happens to
be a good approximation as shown in related situations
[6,11]. In the absence of log-periodic modulation, i.e. for
A = 0, we recover the known case of a singularity in the
spectrum [3]. The important point here is that the modu-
lation results from the scaling properties of the spectrum
defined in (1) and discussed subsequently. The model (14)
allows to obtain closed analytical expressions of the quan-
tum amplitude Ue(t) and therefore to recover previous re-
sults in the short-time limit and to study the long-time
limit which was not possible using the Fermi golden rule.
From (5), we obtain

Φe(t) = C
2e−iωut

πtα

[
Γ(α) cos

πα

2
−A ImF (t)

]
, (15)

where Γ(x) is the Euler Gamma function and we have

defined F (t) ≡ (Ωt)2iπ/λ cosh
(

π2

λ + iπα
2

)
Γ
(
α− 2iπ

λ

)
.

Thus, Φe(t) is not short-ranged in time. Consequently,
there is no Wigner-Weisskopf exponential decay. While
this is true already for A = 0, note that the log-
periodic modulation of Γe(ω) adds to Φe(t) an oscillatory
log-periodic term, which further modifies the behavior of
Ue(t). To investigate this point in more detail, we study
the pole structure in (7). The Laplace transform of Φe(t) is

Φ̃e(s− iωe) =
C

z1−α

[
csc

πα

2
+

A

2i

(
F̃ (z)− F̃ ∗(z)

)]
,

(16)
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Fig. 2: (Color online) Amplitude Ũe(t) calculated with the
model (14) for A = 0 (blue line) and A = 1 (red line). In both
cases α = 1

2 and λ = 1. The inset shows |Ũe(t)| in a semi-log
scale.

where z ≡ s + i∆ω, ∆ω ≡ ωu − ωe and F̃ (z) ≡(
z
Ω

)2πi/λ
sinh−1(π

2

λ − iπα
2 ). The poles sn in (7) are so-

lutions of s = −Φ̃e(s − iωe). For simplicity, we consider
∆ω = 0, in which case all the poles come in complex conju-
gate pairs. For A > csc

(
πα
2

)
e−π2/λ, the poles accumulate

near the origin and are distributed log-periodically with
the distance to it. In particular, for |sn|2−α # C, their
expression in the lower half-plane is [12]

sn ≈ −iΩeλ(
3−α
4 +n)+iθ0 , (17)

with θ0 ≡ λ
2π ln(A sin πα

2 ) and integer n. The corre-
sponding residues acquire a rather simple form, res(sn) ≈
−λ sin(πα/2)

2πiC s2−α
n esnt. Then, assuming e2π

2/λ % 1, and
for large times Ct2−α % 1, the probability amplitude
Ũe(t) ≡ eiωetUe(t) can be written as [12]

Ũe(t) = −
λ sin πα

2

πC
Im

+∞∑

n=−∞
s2−α
n esnt, (18)

where the summation was extended to +∞ exploiting the
condition on t (see footnote 4). Using (17), one can show
that only a few terms in the sum give the main contribu-
tion at a given time. Therefore, locally, the decay enve-
lope appears as a slow exponential, while it is algebraic
|Ue(t)| ∼ 1/Ct2−α over large time scales [12]. More inter-
esting is the discrete scaling symmetry displayed in (18),
namely

Ũe(βt) = βα−2 Ũe(t) with β = eλ, (19)

which is straightforward when using (17) in (18). More
generally, if for large t one can neglect the free term s
in the denominator in (7), then (19) follows immediately
from scaling properties of Φ̃e(s − iωe). Thus, as a result

4For ∆ω = 0, the amplitude Ũe(t) is real-valued owing to the
symmetry of the spectral function Γe(ω) in (14). Also, in certain
cases, the decaying part (18) coexists with a non-decaying term cor-
responding to the incomplete decay of the excited state [12].

100 101 102 103
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10−2

C2/3t

| Ũ
e(

t)
|

A = 0
A = 0.7

Fig. 3: (Color online) Absolute value of the amplitude, |Ũe(t)|,
calculated with the model (14) for A = 0 (blue line) and A =
0.7 (red line). In both cases α = 1

2 and λ = 1. The asymptotic
log-periodic structure is clearly observed for A = 0.7.

of (1), Ũe(t) takes precisely the form (3) with γ = 2 − α.
The log-periodic function G can be calculated from (18).
The decay amplitude Ue(t), plotted in fig. 2, has a much
slower decay (more that three orders of magnitude, see
inset) for A = 1, than for A = 0, i.e. without the
log-periodic modulation. As noted above, the decay
envelope appears as exponential since the power law in
(3) shows up at time scales larger than displayed in fig. 2.
The oscillating structure of Ue(t) shows beats resulting
from interferences between the dominant terms in (18).
The long-time power law decay with the log-periodic
modulation is shown in fig. 3, where the cases A = 0.7
and A = 0 are compared. The log-periodic structure
reflects the discrete scaling symmetry expressed by (19).
A physical realization of the previous results is provided

by a quantum emitter coupled to the vacuum of a quasi-
periodic, e.g. Fibonacci, dielectric cavity [13], made of a
sequence of slabs of two types, A and B, of width and re-
fractive index denoted, respectively, by dA, dB and nA, nB.
Fibonacci sequences Sj of such slabs are constructed by
recursion Sj≥3 = [Sj−2Sj−1], with S1 = B, S2 = A.
The spectral properties and the spatial behavior of the
corresponding eigenmodes in Fibonacci and similar quasi-
periodic structures have been extensively studied [5]. The
spectrum of the Fibonacci system Sj is highly fragmented,
with the degree of fragmentation increasing with j and the
contrast nA/nB [10,14]. More specifically, the IDOM µ(ω)
has a discrete scaling symmetry (1) governed by specific
p-cycles of the associated renormalization group transfor-

mation, with a = σp and σ = 1+
√
5

2 . Near fixed points of
a given p-cycle, the map T (ω) can be linearized, and µ(ω)
obeys (2) with α = lna

λ = lnσp

λ and λ = ln |T ′(ω)|. For in-
stance, for dAnA = dBnB = d, fixed points of a 6-cycle are
determined by ωnd

2πc = 2n+1
4 , where c is the vacuum speed

of light and n = 0, 1, . . . . Linearizing the map at these
points, one obtains eλ = |T ′(ωn)| = 1+8η4+4η2

√
1 + 4η4

with η = 1
2

(
nA
nB

+ nB
nA

)
[14]. Experimentally, a rea-

sonable contrast can be achieved with nA = 1.45 and
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nB = 2.23 [13], so that α = 0.898 and λ = 3.2 (see
footnote 5).
In conclusion, we have argued that spontaneous emis-

sion of a quantum emitter coupled to a vacuum character-
ized by a discrete scaling symmetry exhibits unusual and
measurable features. We have shown that the quantum
probability amplitude never follows the Wigner-Weisskopf
exponential decay, but rather an overall power law (whose
exponent depends on the fractal properties of the vacuum)
modulated by log-periodic fluctuations. These fluctua-
tions constitute an unambiguous fingerprint of the un-
derlying fractal structure. Underneath the slow algebraic
decay and log-periodic modulation, the probability ampli-
tude was shown to exhibit a rich dynamics with nearly pe-
riodic oscillations and beats resulting from interferences.
Finally, we have discussed the example of a Fibonacci
cavity, a non-fractal device but whose spectrum is char-
acterized by a scaling symmetry (1), and we have argued
that it may be a possible candidate to observe the unusual
features of spontaneous emission described in this letter.
Spontaneous emission constitutes a specific way to-probe
a fractal nature of spectrum. Thermodynamics [11] and
spatial correlations [15] provide other examples of physical
probes. Let us mention finally, that the approach devel-
oped here could be extended to related problems in quan-
tum mesoscopic physics (Coulomb blockade) and in the
study of quantum vacuum effects such as the dynamical
Casimir effect and the Schwinger and Unruh effects.

∗ ∗ ∗

This work was supported by the Israel Science Founda-
tion Grant No. 924/09.

REFERENCES

[1] Cohen-Tanoudji C., Dupont-Roc J. and Grynberg
G., Atom-Photon Interactions: Basic Processes and

5Actually, near the fixed points of the 6-cycle, IDOM µ(ω) scales
with a λ equal to half this value [10].

Applications (John-Willeys & Sons Inc.) 1992; Meschede
D., Phys. Rep., 211 (1992) 201.

[2] Lambropoulos P., Nikolopoulos G. M., Nielsen T.
R. and Bay S., Rep. Prog. Phys., 63 (2000) 455.

[3] Kofman A. G., Kurizki G. and Sherman B., J. Mod.
Opt., 41 (1994) 353; John S. and Quang T., Phys. Rev.
A, 50 (1994) 1764.

[4] Damanik D. and Gorodetski A., Commun. Math.
Phys., 305 (2011) 221 and references therein.

[5] Kohmoto M., Kadanoff L. P. and Tang C., Phys.
Rev. Lett., 50 (1983) 1870. For a review see Albu-
querque E. L. and Cottam M. G., Phys. Rep., 376
(2003) 225.

[6] Akkermans E., Dunne G. V. and Teplyaev A., EPL,
88 (2009) 40007.

[7] Schulz-Baldes H. and Bellisard J., Rev. Math. Phys.,
10 (1998) 1, arXiv:cond-mat/9706239.

[8] Ghez J.-M. and Vaienti S., J. Stat. Phys., 57 (1989)
415.

[9] Equation (13) corresponds to the small time limit. But it
should not be confused with the Zeno limit corresponding
to much smaller time scales. For a relevant discussion,
see, e.g., Kofman A. G. and Kurizki G., Nat. Lett.,
405 (2000) 546.

[10] Luck J. M. and Petritis D., J. Stat. Phys., 42 (1986)
289; Kohmoto M., Sutherland B. and Tang C., Phys.
Rev. B, 35 (1987) 1020; Luck J. M., Phys. Rev. B, 39
(1989) 5834.

[11] Akkermans E., Benichou O., Dunne G., Teplyaev
A. and Voituriez R., Phys. Rev. E, 86 (2012) 061125.

[12] Gurevich E. and Akkermans E., in preparation.
[13] dal Negro L., Yi J. H., Nguyen V., Yi Y., Michel

J. and Kimerling L. C., Appl. Phys. Lett., 86 (2005)
261905; Passias V., Valappil N. V., Shi Z., Deych L.,
Lisyansky A. A. and Menon V. M., Opt. Express, 17
(2009) 6636.

[14] Kohmoto M., Sutherland B. and Iguchi K., Phys.
Rev. Lett., 58 (1987) 2436; Würtz D., Schneider T.
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