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GRADIENTS OF LAPLACIAN EIGENFUNCTIONS ON THE SIERPINSKI
GASKET

JESSICA L. DEGRADO, LUKE G. ROGERS, AND ROBERT S. STRICHARTZ

Asstract. We use spectral decimation to provide formulae for conmguthe harmonic
gradients of Laplacian eigenfunctions on the Sierpinsiskéa These formulae are given
in terms of special functions that are defined as infinite pctsl

1. INTRODUCTION

There are few functions more ubiquitous in Euclidean anstypsn the sine, cosine and
exponential, which are the eigenfunctions of the Laplaoman interval irR. In the theory
of analysis on fractals, the Laplacian eigenfunctions abfjuhave an even more promi-
nent role, as the Laplacian is the fundament#&kdéential operator on which the analysis
is based. Despite this, there are a number of interesting gpestions about the structure
of such eigenfunctions. In this paper we consider the loelbkliior of Laplacian eigen-
functions on the Sierpinski Gaske& @), in terms of the harmonic tangents and gradients
introduced by Teplyaev ir [6]. Using the spectral decimatioethod of Fukashima and
Shima[1] (see also Chapter 3 of [5]) we give infinite prodachiulae for the tangents at
boundary points, and use them to describe the one-sidedrtmat junction points. These
results may be seen as a Sierpinski Gasket version of thekwelln formulae for the
derivatives of the sine and cosine functions on an intetkialjgh the precise analogue on
[0, 1]is more complicated (see EquationsP.2-2.4).

The Sierpinski Gasket is the simplest non-trivial examjble fvactal to which the stan-
dard theory of analysis on fractals applies. We refer to tbaagraphs [2, 5] for detailed
proofs of all results we use from this theory. Recall t8&% c R? is the attractor of an
iterated function system consisting of three mBgs) = (x+a;i)/2, where the pointgg, q;
andq; are the vertices of an equilateral triangle. This meansStat U;Fi(S G, where
the setd~(S G are usually referred to as 1-cells. For a lengtivordw = w; . . . wy, with
lettersw; € {0, 1, 2} we defineFy = Fy, o - - - o Fy, and callF(S G anm-cell. The points
g, i =0,1,2 are the boundary & G, the set of boundary points V&, and we usé&/;, to
denote points of the forr,(q) wherew is a word of lengthm. TheseV,, are vertices of
the usual graph approximation 8{Gat scalam, in which verticesx andy are joined by an
edge (writterx ~n, y) if they belong to a commom-cell. ClearlyV, = UynVy, is dense in
SG
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The Laplaciam on S Gis a renormalized limit of graph Laplaciang, on them-scale
graphs:

w

Au(x) = 5 nlmww 5T Amu(Xx) 1.1
AmU(X) = Z(u(y) —u(X)) forxeVm\ Vo (1.2)
Y~mX

and we sayu € dom()) if the right side of [1.ll) converges uniformly dn \ Vp to a
continuous function. The function is extendeda&by continuity and density o¥.. At a
boundary point; € Vo there is an associated normal derivative defined (gjith= q;) by

dnu(q) = Mm(g)m(ZU(qi) — U(F"(G1+1)) — U(F(0s2))).

A harmonic functiorh is one for whichAh = 0, and for any assignment of values on
Vo there is a unigue harmonic function with these boundaryeslu~or this reason we
identify the harmonic functions with the space of functiond/y. The harmonic functions
are also graph harmonic, so it is elementary to compute theesafh on V; from those
onVy, and recursively to obtain the values\dg for anym. It will be useful to formalize
this by defining the harmonic extension matridgswhich map the values df on V, to
those orFi(Vp), by

ho Fi(qo) h(do)
ho Fi(a1) | = Al|h(a1)
ho Fi(a) h(a)

and more generallgh o Fy(do), h o Fu(du), ho Fu(@2))" = Au(h(do), h(cu). h(az))", where
Ay = Ay, Aw,_, - - Aw,. We usually write this in the compact form

thWv0 = AWhlvo :

The matrices are

/(5 00 (221 (212
Po=z[2 2 1, A=Z|0 5 0. A=z|1 2 2.
2 1 2 1.2 2 00 5

The structure of eigenfunctions of the Laplacian is sintitethat of the harmonic func-
tions. Specifically, it is true 0% Gthat if m is suficiently large then the restriction of
a functionu satisfying—Au = Au from SGto V, gives an eigenfunction of the graph
Laplacian—-Amu = AU, with

An(5 = Am) = Ama (1.3)
3 H m
A= > MMS Am. (1.4)
Note that[(1.B) implies thaty, is one of%(S + V25— 41,1), but the positive root is only
permitted to occur for finitely many values wfin order that the limit in[(1}4) exists. This

spectral decimatiomproperty was first recognized by Fukashima and Shima [1} ftat
true on all fractals, but on those where it is valid, it givestba method for computing the
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spectrum and a recursion for the eigenfunctians [3]. Letafind

. (6-De-b 0 0
Po) = | (4=  (4-0) 2 (1.5)
C=DE=D{  (4-2) 2 (4-2)
L (G- @ 2
MO-Eaeg| 0 6 y 22 ; 2) . 0 ) (1.6)
L (4D 2 (4- 1)
Po) = | 2 (4-0)  (4-1) (1.7)
T E-0R-| 0 (-H2-1

provideda # 2,5. The essence of the spectral decimation metho& Grmay then be
summarized in the following theorem, which we have takemfi®ections 3.2 and 3.3
of [5].

Theorem 1.1 (Spectral Decimation Method)f (A + A)u = 0 then there is a sequence
{Am}m=m, satisfying{l.3)and (1.4), and such thaim, # 2,5, 6 for m > my, with the property
that(Am+/lm)u|V = Oforallm > my. The values of u ony/for m > my can be constructed
recursively using the matrices frof@.3), (1.8), and (T.4) as follows. If w= w;w,. .. Wn,
then

ey v = A (Arm) A (A1) - 'Awnbﬂ“”b*l)“'m...wm (Vo) * (1.8)

and we call this the spectral decimation relation.
If A is not a Dirichlet eigenvalue then we may assumge -0, at which point the
condition(Ap, + Amo)ulv = 0 is taken to be vacuous. The corresponding eigenspace is

3-dimensional and parametrized by the values of u gn V

If 1is Dirichlet several possibilities occur. We indicate thdial configurations, all of
which may then be continued by the spectral decimation ftaam& spanning set for the
configurations when gn= 1 are shown in Figuré€]l. The one on the left has= 2 while
those on the right havé; = 5. If my > 2 thenAy, = 50r Ay, = 6, and in the latter case
Am+1 = 3. Those withi,,, = 5 are formed from scaled and rotated copies of the functions
on the rightin Figuré L, arranged so that their normal dettivas cancel. A basis of chains
for my = 2 is shown in FiguréR; those for general m are naturally inditkg the loops in
Vi, plus two strands connecting points aof. Mn the casely,, = 6 the eigenfunctions are
indexed by points in M-1 \ Vo; a basis is obtained by scaling and rotating two copies of
the function on the left in Figulg 3 and gluing them at the eftopoint, as shown on the
right in Figure[3 for the case gn= 2 and a pointin V.

0 1 00 1 00 1 0
Ficure 1. Dirichlet eigenfunctions witimg = 1.
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0 10 0 7\00 1 0 01 0

o -1 0 0 0O 1 O -1 0O O O -1 o
Ficure 2. A basis of chains fomy = 2 andiy, = 5

2 -1 0 o -1 2 - 0
Ficure 3. Eigenfunction construction in the caég = 6.

2. TANGENTS TO EIGENFUNCTIONS

In [6], Teplyaev introduced the notion of a harmonic gratleamd harmonic tangent for
functions on the Sierpinski Gasket. He also proved thattfans in the domain of the
Laplacian have harmonic gradients at all points in a setlbfifeasure, and that functions
with Holder continuous Laplacian have harmonic gradiexttall points. Eigenfunctions
of the Laplacian fall into the latter category because oftk#-known fact that continuity
of A2uimplies Holder continuity ofu ([2], Lemma 2.2.5).

Defintion 2.1([€], Section 3) Letw = wyw» . .. be an infinite word, andf], = Wiws . . . Wi
be the lengtim truncation ofw. If uis a function onS Gwe let Hjy,,u be the harmonic
function onS Gwhich coincides withu on Fy;,,(Vo), so

_ a1 _ a1 -1
Hiwao U = A[W]mulF[wlm(Vo) = A A""mul':[wm%) ) 2.1)

Define the harmonic tangemj,u of u atwto be limy... Hyw,, U, if the limit exists. It should
be remarked that there can be two wowlandw’ such that~,,(SQ = F (S Q. We will
nonetheless treat the tangemsandT,, separately, as they are rarely equal.

The harmonic gradient is defined in the same way, but usingplaee of harmonic
functions with average zero and the projection of the actibthe matricesA to this
subspace. It is evident thatiifis continuous then the gradient exists whenever the tangent
exists, and conversely. See [4] for details.

If we consider the interval [ ] rather than the Sierpinski Gasket then it is clear that the
harmonic tangent af, is the vectoL(0), L(1))T characterizing the unique linear function
L(x) having the propertiek(xo) = f(Xo) andL’(Xp) = f’(Xp). For an eigenvalug € R
which is not equal tor?k? for anyk € N, it may readily be verified that the harmonic
tangentis given by

M(x0) (;8) (2.2)
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where
1 a+b a-b
Mxo) = sin VA (a— b a+ b) (@-3)
and
a=sin((1-x) Va), b= Vixycos((1- xo) V1). (2.4)

We cannot obtain as explicit a description of the harmomigéat on SG; however, we
produce formulae that permit its computation at any point.of The key observation is
that whenu is an eigenfunction, the computation of the gradient hasticpdarly elegant
structure. Recall from Theore[m 1.1 that the values oh Fpy;, (Vo) may be computed
using the spectral decimation method, meaning that sgaftom a scalean, they can be
obtained as iM{118). Combining this with (P.1) we see that

— h -1 -1
T = i Ak A A () AV

-1 = YA -1 -1
= (AL 'ANnb)(rL'an Ay A A () - A (A1) ulel...w"b v (25
in which we know the limit exists by Theorem 3 0f [6]. A speaake occurs wheR, (S G

is a point inV,, because in this case, all but finitely many letters in thedvoare equal to

a single lettei. By takingmy to be stficiently large we see that it is useful to understand
the limit

lim AT A () -+ A (A1)

and it is evident from the symmetry of the matridggsandA; (1) that it sufices to deal with
the case = 0.

Theorem 2.2. Lete = (0,1,1)", 8= (0,1, -1)", ym = (4,4 — Am, 4 — An)". If neither of
the value2 or 5 occur in the sequend@m}m-m,, then

| 21
lim AGK Ao(dmy) - Ao(dmys1) B = 5ot

lim AG* - Ao(Amy+k) +++ Ao(dmy+1) Ym, = (4,4, 4)"

_ 42 o L
JTJQ Aak - Ao(Amgk) - Ao(Amp+1) @ = l_[(l B ”; J)a
=2

Proof. Observe that andg are eigenvectors &% (1), with eigenvalues (6 1)(2—1)"1(5—
)t and (5- 1)1 respectively, provided # 2,5. AsAy = Ag(0) is a special case, we
compute immediately that

k
lim AG¥- Ao(Amy:) - - Ao(Amye1)B = lim 5[ (5 — Amy1)'B.
j=1

However induction o (1]3) implies thak, = Amy+k H'j‘zl(S — Am) and therefore

24

lim AGK- Ao(Amy:) - - Ao(dmy+1)B = liM 5 A sicdre B =
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The corresponding computation fercan be simplified by observing frofi(1.3) that{6
Am) = (3= Am:1)(2 — Amy1), Whereupon

lim AG - Ao(myi) - Ao(Amys1)er

(6 /1mo+l')
—k'ﬂl 1_[(5 Ao )2 = Amorp)

2 — Aok K
= m (7= )8 Jo T 1= amer)
fim (5 ]‘[5 e H(:s )
k+1

2 21 Aroe
- (2—/lm0+1)(3- 5%,1%)111(1_ 3 )

where we used the previously computed limit for the middé&dg and the fact that,, =
O(5™™) asm — oo from (T.3).
Forym the situation is a little dferent. Observe that

42— Ami1)(5— Ame1)
Ao( 1) = (2= A1) HE = Amet) {44~ dmi1) + (4= An)(6 — i)
4(4- Ani1) + (4= An)(6 — Ame)

however we can perform the following simplification from3J}t.
4(4= Ami1) + (4= Am)(6 = Ams1) = 4(4= Ame1) + (4 = 5dmes + A7,1)(6 = Ami1)
= 44~ Ams) + (4~ Ams2)(L — Ai1)(6 — Ame1)
= (4= Am1)(10— 7Ame1 + A2, ,)
= (4 - Am1)(5— A1) (2 = Amr1).

Inserting this into the previous computation shows #gfm,1)ym = ym+1 provideday, #
2,5, and thereforé\g(Amy+k) - - - Ao(Amy+1)¥Ym, = Yme+k- 10 proceed we must appl%k to
Ymo+k, Which is most easily done by writing it in terms of eigenvestasym, .k = (4,4,4)" -
Amgk. The resultis

klﬂl A Ao(Amysk) - - Ao(Amy 1) Yimy = kl'_rEO A6k((4a 4,4)" - /lmo+k6¥)

. 5.k
= Jim ((4,4,4) - (2) Amx)
= (4,497
because, = O(5™™) asm — co. O

Theorem 2.3. Suppose w is a word of the form=w[w],,000- - -, that(A + A)u = 0, and
that my is chosen large enough that the spectral decimation forrhalds withi, # 2,5, 6
when m> my. If k = maxky, mg} then

ToU = (A;/i .. A@i) Mo, K) A (k) - - - Au ., (A1) u|Fw1...wm0 Vo) (2.6)
where

1 0 0
(4= )Ar (D) A2 ()+1) /1(2Tk(/l) 1)

Mo(4,K) = |1 = =& 35K, 35
1- (4~ lk)/lTk(/l) A2r(1)-1) /l(ZTk(/l)Jrl)
35K 35K, 35K,

2.7)
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and

1 = Ak
() = ) ]];[(1— 3').

Proof. From [2.5) we have
Tt = (At AG)(lim A Ao(dm) -+ Aol Ul
_ ( AL AL&)( rmo Ag‘””‘) Ao(Am) - - Ao( /lk+1)) A () A s (A1) u|FW1MWnb Vo

becausev; = 0 for j > k and spectral decimation applies for mg. The result is therefore
equivalent to

Mo = lim A - Ag(Am) -+ Ao(Aks1)
which follows from Theorern Z212. O

Remark 2.4. The functionr,(1) may appear to depend on the sequéngkg but in fact this
sequence is uniquely determinedbyindeed, there is an entire analytic functi¥(g) with
the property that; = ¥(571.1). To see this, ley(2) = z2(5-2) andym(2) = zp"m(%S‘mz). The
sequence&m(2) consists of entire functions withm(0) = 0 andy;,(0) = % S0 is normal
with limit W(2), a power series for which may be computed recursively.ttiés clear that
¥(5712) = limyn P(35™ ) Ay) = liMmym-j(Am) = 1;. Moreover, we may define

~ 1 PR CRR))
T = (2-¥(511) 1}1(1 3 )

at which pointry(1) = Y(57%1). In the same way that there are special functions assdciate
to differential equations in Euclidean analysis, we suggestidtinctions¥(1) andY (1)
should be considered to be special functions in analysif@®terpinski Gasket. In terms
of these functions[{2.7) has the form

(2.8)

1 0 0
Aa-wE)rery  a2retn+1)  a(2rEry-1)
Mo(4,K) = |1~ 3 gmEry IHUE D EEATCE
1 4w p)rE y  a2rEk)-1)  a(2rEF)+1)
- 35KP(5KQ) 35KP(5K1) 35KP(5K1)

As a particular consequence we may compute the normal dieggaf the eigenfunc-
tions at points oy, because they are the same as the normal derivatives ofrieria
functions. We expect this observation to have applicatioriee construction of a resol-
vent for the Laplacian.

Corollary 2.5. If (A + 2)u = 0 and the spectral decimation formula holds with # 2,5, 6
for m> 0, then the normal derivative of u ap ¢
227(2)

3nu(do) = ((4 = Aou(co) ~ 2u(a) ~ 2u(6)) =7

Excluding the values 2,5 and 6 from the sequefizg in Theorem$ 2J2 and 2.3 is
necessary because they occur precisely in the Dirichlet, cabere the boundary data
vanishes and cannot be used to determine the tangent. NdeethTheorem 2.3 may be
applied to find tangents to Dirichlet eigenfunctions in a@irfashion. The reason is that
the description of the Dirichlet eigenfunctions given inebneni LIl ensures that we need
only compute the harmonic tangents of the functions in Efliand the left of Figuriel 3.
All harmonic tangents to Dirichlet eigenfunctions are tlodtained from these by scaling
and taking suitable linear combinations.
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For the basic element used to construct the 6-series (Hjune can directly apply
TheoreniZB with; = 6 andd, = 3. For example, if the top vertex in Figurke 3dsand
w=0--- we have

0
Twu = g 1
-1

To calculate the harmonic tangents of the basic elementeoPikeries (on the left in
Figure[1) we apply Theorein 2.3 to the function shown at lefFigure[4, starting the
spectral decimation at each of the valugs= 517‘/1_7 For the 5-series there are two basic
elements (shown at right in Figuré 1) and we proceed by caiog harmonic tangents
for the initial configurations shown in the center and on fhbtrof Figure[4, starting with
Ay = 517\/5 The harmonic tangents of all 2 and 5-series eigenfunctlogrs coincide with
scaled and rotated copies of these pieces and their negjatissembled in the obvious
manner.

0 1 0 1 0 0
Ficure 4. Computing harmonic tangents of 2 and 5-series eigenfuns:t
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