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Abstract

A fascinating and deep question about nature is what one would see if one could
probe space and time at smaller and smaller distances. Already the 19th-century
founders of modern geometry contemplated the possibility that a piece of empty
space that looks completely smooth and structureless to the naked eye might
have an intricate microstructure at a much smaller scale. Our vastly increased
understanding of the physical world acquired during the 20th century has made
this a certainty. The laws of quantum theory tell us that looking at spacetime
at ever smaller scales requires ever larger energies, and, according to Einstein’s
theory of general relativity, this will alter spacetime itself: it will acquire structure
in the form of curvature. What we still lack is a definitive theory of quantum
gravity to give us a detailed and quantitative description of the highly curved
and quantum-fluctuating geometry of spacetime at this so-called Planck scale. –
This article outlines a particular approach to constructing such a theory, that of
Causal Dynamical Triangulations, and its achievements so far in deriving from
first principles why spacetime is what it is, from the tiniest realms of the quantum
to the large-scale structure of the universe.
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Searching for the quanta of spacetime

Armed with last century’s insights into the nature of both quantum theory and
general relativity, physicists believe that probing the structure of space and time
at distances far below those currently accessible by our most powerful accelerators
would reveal a rich geometric fabric, where spacetime itself never stands still but
instead quantum-fluctuates wildly. One of the biggest challenges of theoretical
physics today is to identify these fundamental “atoms” or excitations of spacetime
geometry and understand how their interaction gives rise to the macroscopic
spacetime we see around us and which serves as a backdrop for all known physical
phenomena.

Two pillars of contemporary physics support the expectation that as we re-
solve the fabric of spacetime with an imaginary microscope at ever smaller scales,
spacetime will turn from an immutable stage into the actor itself. First, due to
Heisenberg’s uncertainty relations, probing spacetime at very short distances is
necessarily accompanied by large quantum fluctuations in energy and momentum
- the shorter the distance, the larger the energy-momentum uncertainty. Second,
according to Einstein’s theory of general relativity, the presence of these energy
fluctuations, like that of any form of energy, will deform the geometry of the
spacetime in which it resides, imparting curvature which is detectable through
the bending of light rays and particle trajectories. Taking these two things to-
gether leads to the prediction that the quantum structure of space and time at
the so-called Planck scale must be highly curved and dynamical.

A long held ambition of theoretical physicists is to find a consistent descrip-
tion of this dynamical microstructure within a theory of quantum gravity, which
unifies quantum theory and general relativity, and to determine its ramifications
for high-energy physics and cosmology. Given the extraordinary smallness of the
Planck length, how can we achieve progress in describing a physical situation
that cannot be directly probed by experiment in the foreseeable future? The
way this is usually done is by first postulating additional dynamical principles
or fundamental symmetries at small distances, which are not accessible to direct
experimental verification, second, verifying that these do not conflict with stan-
dard quantum physics or general relativity as one goes to larger scales, and third,
predicting new physical phenomena that can (at least in principle) be tested,
or confirmed indirectly by astrophysical observations. Examples of fundamental
building principles are that the universe is made up of tiny vibrating strings,
or that spacetime at the Planck scale is not a continuum, but consists of tiny
discrete grains.

Research into quantum gravity falls broadly into two categories [1, 2]: non-
perturbative approaches to quantum gravity, whose primary aim is to quantize
the gravitational degrees of freedom per se, introducing little or no additional
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structure such as supersymmetry or extra dimensions, and string-theoretic ap-
proaches, where the quantization of gravity appears almost as a by-product of
a unified higher-dimensional and supersymmetric “theory of everything”, whose
fundamental objects are strings and (mem)branes [3, 4].

The research program that will be described in this article deals with the
investigation of causal nonperturbative quantum gravity and belongs in the first
category. The approach takes its name from the main technical tool it employs to
try and construct a theory of quantum gravity, namely, Causal Dynamical Trian-
gulations, or CDT for short.1 What makes this approach particularly interesting
is the fact that it has recently produced a number of tangible results which mark
it as a serious contender for the still elusive theory of quantum gravity [6, 7, 8, 9].
Firstly, there is evidence that the theory has a good classical limit. This means
that it reproduces Einstein’s classical theory at sufficiently large scales: when
one “zooms out” the imaginary microscope from the scale at which the quantum
fluctuations take place, one eventually rediscovers the smooth four-dimensional
spacetime of general relativity. Secondly, we have first indications of what the
quantum structure of spacetime may be at the Planck scale.

We will explain in the following why these results are indeed remarkable and
how they were obtained, in a manner hopefully accessible to those outside the
field. The emphasis will be on describing the (very few) fundamental building
principles that go into the construction of the theory, on explaining the main
results and their physical significance, and on giving an idea of where we are
headed. Before doing this, we will in the next section set out by sketching some
of the problems facing research in quantum gravity, in order to provide the reader
with a better idea of how the results described later appear in a larger context.

Why quantum gravity is special

Quantum gravity is quite unlike any other fundamental quantum interaction in
that it describes the dynamics of an entity that in most physical situations is
considered as fixed and given, namely, that of spacetime itself. Recall that the
degrees of freedom of a spacetime in classical general relativity can be described
by the spacetime metric gµν(x), a local field variable which determines the values
of distance and angle measurements in spacetime, or, equivalently, how spacetime
is bent and curved locally.2 What spacetime is classically is determined by solving
the Einstein equations for gµν(x), subject to boundary conditions and a particular
matter content of the universe or a piece thereof. In the same manner, in order

1Previous reviews of CDT, describing the general theory and covering earlier results in lower
dimensions can be found in [5].

2When using the term (quantum) spacetime, we will in the following always mean the ab-
stract spacetime (a differential manifold in the classical case) together with its metric properties.
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to determine what spacetime is from a quantum-theoretical point of view, one
would like to formulate a quantum analogue of Einstein’s equations, from which
“quantum spacetime” should then emerge as a solution.

This should be contrasted with usual quantum field theory, which describes
the dynamics of elementary particles and their interactions on a fixed spacetime
background, usually that of the flat, four-dimensional Minkowski space of special
relativity. Since at short distances3 the gravitational forces are so much weaker
than the electromagnetic ones, say, it is usually an excellent approximation to
treat the gravitational degrees of freedom as “frozen in” and non-dynamical. The
trivial geometric structure of the Minkowski metric forms merely part of the im-
mutable background structure of how quantum field theories are formulated. On
the other hand, the physical situations that quantum gravity aims to explain
are not in general describable in terms of linear fluctuations of the metric field
around Minkowski space or some other fixed background metric. These include
the quantitative description of “empty” spacetime at very short distances of the
order of the Planck scale, 10−35 m, and of the extreme and ultradense state our
universe presumably was in when it was very young. From a technical point of
view this implies that in quantum gravity one has to modify standard quanti-
zation techniques which rely (sometimes implicitly) on the presence of a fixed
metric background structure. This is often phrased by saying that gravity must
ultimately be quantized in a way that is both background-independent (i.e. does
not distinguish any particular background metric at the outset) and nonpertur-
bative (i.e. does not simply describe the dynamics of linear perturbations around
some fixed background spacetime).

Decades of quantum gravity research, including numerous trials and errors,
have convinced many of the necessity of background-independence and a non-
perturbative quantization approach [10], and the last twenty years or so have
seen intense efforts to develop alternative ways of quantizing applicable to the
case of a dynamical spacetime geometry. Because of the complicated mathemat-
ical structures involved, this turns out to be very difficult. Singularly unhelpful
in this endeavour has been the absence of experimental or observational data
to guide the search for the correct theory of quantum gravity. This happens be-
cause the extreme scales that are necessarily involved in physical situations where
quantum-gravitational effects are important are not accessible directly with cur-
rent technology. A possible strategy to address this state of affairs is to take a
rather conservative approach to theory-building, for example, to avoid going out
on a limb by postulating the existence of new physical quantities and symme-
tries for which there is as yet no evidence. As we will see, the approach of CDT
is fairly minimalist in that it takes a set of well-known physical principles and

3Short, but still far away from the Planck scale defined below.
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tools (quantum-mechanical superposition, causality, triangulation of geometry,
elements of the theory of critical phenomena) and merely adapts them to the
situation of a dynamical geometry.

How far then have we got in our quest for a theory of quantum gravity? Maybe
the best answer to this question is that it is hard to tell, as long as we do not
know the final answer with some certainty. This assessment must in all honesty
also include the possibility that we are still very far from the correct theory.
There has been a lot of research since the late 1980s, both in nonperturbative
quantum gravity as such and under the heading of string theory, at the time
when the incorporation of gravitation into our understanding of the quantum
world emerged as a final theoretical frontier of fundamental physics. Progress has
undoubtedly been made, at the very least in terms of developing technical tools
to describe quantum geometry nonperturbatively (see, for example, [11, 12, 13]).
However, in order to cut a long story short, there is still not a single theory
of quantum gravity that is both reasonably complete and internally consistent
mathematically. By reasonably complete we mean that it should provide answers
to some of quantum gravity’s central questions, for instance, “Why is spacetime
the way it is?”, “What are the fundamental excitations of quantum geometry?”,
“What are the quantum properties of black holes?” etc., even if they are not
immediately verifiable experimentally. Our entire discussion therefore must be
understood against a background where we do not have a plethora of “possible”
theories available (and just look for clues for how to pick the right one), but
where we are still looking for the first instance of a quantum gravity theory that
is sufficiently complete to make at least some predictions about the quantum
behaviour of spacetime.

The dynamical principle underlying CDT

The most important theoretical tool of the CDT method to construct a quantum
theory of gravity is Feynman’s principle of superposing quantum amplitudes [14],
the famous path integral, applied to spacetime geometries. Its basic idea, familiar
from quantum mechanics, is to obtain a solution to the quantum dynamics of a
physical system by taking a superposition of “all possible” configurations of the
system, where each configuration contributes a complex weight exp(iS) to the
path integral, which depends on the classical action S =

∫
dtL(t) of the configu-

ration, where L denotes the system’s Lagrangian. For the case of a nonrelativistic
particle moving in a potential, the configurations are literally paths in space, i.e.
continuous trajectories x(τ) describing the particle’s position as a function of
time τ , which runs through an interval τ ∈ [0, t]. Superposing (that is, adding
or integrating up) the associated quantum amplitudes exp iSpart[x(τ)] as in eq.
(1) below, one obtains a solution to the Schrödinger equation of the particle.
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Figure 1: A typical, piecewise straight path x(τ) contributing to the regularized Feyn-
man path integral for a non-relativistic particle moving between two points xi and
xf .

It is important to realize that the individual paths x(τ) appearing in the path
integral are not themselves physical trajectories the particle could move on, and
even less solutions to the particle’s classical equations of motion. Instead, they
are so-called “virtual” paths, that is, a bunch of curves one can draw between
fixed initial and final points xi and xf (Fig. 1). The magic of the path integral

G(xi,xf , t) :=
∑∫

paths:xi→xf

eiSpart[x(τ)] (1)

is that the true quantum physics of the particle is encoded precisely in the super-
position of all these virtual paths4. In order to extract these physical properties,
one has to evaluate suitable quantum operators Ô on the ensemble of paths con-
tributing to (1). For example, one may be interested in computing expectation
values for the position or the energy of the particle, together with their quantum
fluctuations. Of course, the path integral or “propagator” (1) also allows us to
retrieve the classical behaviour of the particle in a particular limit (in this case,
when its mass becomes big), but it contains more information, describing the full
quantum dynamics of the system.

Analogously, a path integral for gravity is a superposition of all virtual “paths”
our universe (or a part thereof) can follow as time unfolds. These paths are simply

4In using the notation Σ
∫

in (1), we want to indicate that the path integral may be a sum or a
genuine integral (or possibly a combination of both), depending on whether the configurations
contributing to it are labelled by discrete or continuous parameters. In CDT we will meet an
example of the former.

6



the different configurations for the metric field variables gµν(x) mentioned earlier.5

It is important to realize that a single path is now no longer an assignment of just
three numbers (the coordinates xi of the particle) to every moment τ in time, but
rather the assignment to every τ of a whole array of numbers (the space-space
components gij(x) ≡ gij(x, τ) of the metric tensor gµν(x)) for each spatial point
x. This is simply a consequence of gravity being a field theory with infinitely
many degrees of freedom. The path integral for gravity can thus be written as

G(gi, gf , t) :=
∑∫

spacetimes: gi→gf

eiSgrav [gµν(x,τ)], (2)

where Sgrav now denotes the classical gravitational action associated with a space-
time metric gµν with initial and final boundary condition gi and gf , separated by a
time distance t. Like in the particle case, the individual spacetime configurations
interpolating between the initial and final spatial geometries have nothing a priori
to do with classical spacetimes, and are much more general objects. Again, one
would expect to be able to retrieve the full quantum dynamics of spacetime from
the path integral (2), which is a superposition of all possible ways in which an
empty spacetime can be curved6. In other words, the collective behaviour of the
virtual spacetimes contributing to the gravitational propagator (2) should tell us
what quantum spacetime is. To extract this geometric information, we will again
have to evaluate suitable quantum operators Ô on the ensemble of geometries
contributing to (2). Suffice it to say that making the gravitational path integral
well-defined and extracting the desired physical information is very much more
difficult than in the case of the quantum particle.

The way in which CDT proceeds is by giving a precise prescription of how the
path integral (2) should be computed, and in particular how the class of virtual
paths should be chosen. In addition, it provides a set of technical tools to extract
concrete physical information about the quantum geometry thus created by the
principle of quantum superposition.

There are a number of ways in which the path integral of CDT differs from
that of previous approaches. In the first instance, it is genuinely nonperturbative,
in that the contributing geometries can have very large curvature fluctuations
at very small scales and thus be arbitrarily far away from any classical space-
time. Our summation is “democratic” in that no particular spacetime geometry
is distinguished at the outset. In fact, path integral histories which have any
geometric resemblance to a classical spacetime are so rare that their contribu-

5We are considering here only the gravitational degrees of freedom, that is, a path integral
for “pure gravity”, and thus a “theory for empty space”. Matter fields can in principle be
included without problems.

6These are also sometimes called “spacetime histories”.

7



tion to the path integral is effectively negligible.7 Secondly, as we will see in the
following, the causal structure of the geometries contributing to the path sum
plays an important role in the method of causal dynamical triangulations, and is
a key new element in comparison with previous, so-called Euclidean path-integral
approaches to quantum gravity.

Representing spacetime geometry in CDT

What we need to do next in order to make sense of the expression (2) for the
nonperturbative quantum-gravitational propagator is to define the precise class
of spacetime geometries (labelled above by gµν) over which the sum or integral is
to be taken. As elsewhere in quantum field theory, one is immediately confronted
with the fact that unless one chooses a careful regularization for the path integral,
it will be wildly divergent and simply not exist in any meaningful mathematical
sense (and thus be useless for extracting physical information). “Regularizing”
means making the path integral finite by introducing certain cutoff parameters
for the contributing configurations, which at a later stage will be removed in a
controlled manner.

Before defining a suitable class of geometries in the next section, we will first
explain the nature of the regularized spacetimes used by CDT, which are called
“piecewise flat geometries”. Recall that the dynamical degrees of freedom of a
geometry are the ways in which it is locally curved. Piecewise flat geometries
are simply spaces that are flat (the same as straight or uncurved, that is, struc-
tureless from a geometric point of view) everywhere apart from small subspaces
where curvature is said to be concentrated. This in a way discretizes curvature
and vastly reduces the different number of ways spacetime can be curved. The
type of geometry we will use is a triangulated space, also sometimes called a
Regge geometry, after the physicist who first introduced it into (classical) general
relativity [16]. It can be thought of as a space glued together from elementary
building blocks which are (higher-dimensional generalizations of) triangles, so-
called “simplices”. The geometric structure of each simplex is trivial, since it is
by itself flat by definition and therefore carries no curvature. Local curvature only
appears along lower-dimensional interfaces when one starts gluing the simplices
together.

This can be visualized most easily in the two-dimensional case. Consider a set
of identical equilateral two-dimensional triangles cut out from a piece of cardboard

7This is completely analogous to the particle case, where it can be shown rigorously that
classical paths “form a set of measure zero” with respect to the Wiener measure of the path
integral [15]. Maybe surprisingly, the paths which contribute non-trivially are nowhere differ-
entiable, and thus “consist only of corners”. One expects a similarly nonclassical behaviour for
the dominant configurations of the gravitational path integral.
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Figure 2: Example of positive and negative deficit angles δ located at a vertex of
a two-dimensional triangulation. The triangulations have been cut open in order to
flatten them into the two-dimensional Euclidean x-y-plane. To reconstruct the original
geometry around the central vertex (which has been placed at the plane’s origin), one
has to identify the triangle edges as indicated by the arrows. In case (a), the angles
meeting at the vertex add up to less than 2π, resulting in a positively curved space
upon regluing. In case (b) the combined angle exceeds 2π, corresponding to a negatively
curved space.

which is perfectly straight and unbendable (and hence flat). To obtain a larger
surface, start gluing these triangles together by identifying their one-dimensional
sides or edges pairwise. Points where several edges meet are also called vertices.
One can obtain a piece of flat space by arranging the triangles in a regular pattern
so that exactly six triangles and edges meet at each vertex. However, there are
many more ways to create curved spaces by the same gluing procedure. Namely,
whenever the number of triangles meeting at a vertex is smaller or larger than six,
this vertex will carry a positive or negative curvature.8 By “curvature” we mean
the intrinsic curvature of the two-dimensional surface, i.e. the curvature that can
be detected from within the surface – for example, by studying the trajectories
of particles or light rays –, and is independent of any higher-dimensional space
in which it may be imbedded. This mirrors a property of the physical theory of
general relativity in four dimensions, which likewise depends only on the intrinsic
geometry of spacetime. The set-up in higher dimensions is identical, with the
two-dimensional triangles (or “two-simplices”) substituted by the corresponding
flat higher-dimensional simplices (three-simplices (or tetrahedra) in dimension 3,
four-simplices in dimension 4, etc.). Generally speaking, the fundamental building
blocks in dimension d are glued together pairwise along their (d−1)-dimensional
faces, and their intrinsic curvature is concentrated on the (d−2)-dimensional

8Equivalently, one speaks of the vertex having a positive or negative deficit angle, simply
because the sum of the angles of the triangles contributing at the vertex is smaller or bigger
than 2π, whereas in the flat case it is exactly 2π, see Fig. 2 for illustration.
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intersections of these faces.
The so-called Regge calculus [17] was originally designed to approximate

smooth classical spacetimes, or, more precisely, solutions to the Einstein equa-
tions, by these piecewise flat, triangulated spaces. There are two reasons for
why this is a very economical way of describing a spacetime. Firstly, only a finite
amount of data is necessary to completely characterize a finite piece of spacetime,
namely, the geodesic invariant lengths of all the one-dimensional edges of all the
simplices involved, and the way in which the d-dimensional simplices are glued
together.9 Secondly, because no coordinate system need ever be introduced on
the simplices, this formulation does not share the usual coordinate redundance
of Einstein gravity described in terms of the field variables gµν(x). (The latter
overcount the degrees of freedom, because gµν ’s which are related by coordinate
transformations correspond to one and the same physical geometry.)

The use of Regge geometries in the quantum theory is not new, and CDT
builds on previous attempts of both “Quantum Regge Calculus” [18] and “Dy-
namical Triangulations” [19] to define a theory of quantum gravity from a non-
perturbative Euclidean path integral10. To avoid misunderstandings, it should be
emphasized that the use of triangulated spacetimes differs in classical and quan-
tum applications. The objective in the former is to approximate a single, smooth
spacetime (which may or may not be known exactly by some other method) as
well as possible. This can be achieved by choosing a sequence of triangulations,
where in each step of the sequence the triangulation is chosen finer than in the
previous step (i.e. the typical edge length is decreased) and therefore can converge
to the smooth manifold in a pointwise sense. In the two-dimensional example, it
is quite clear that such an approximation can be very good when the edge lengths
become much smaller than the scale at which the smooth spacetime is curved.

By contrast, the objective of the quantum theory, and that of CDT in par-
ticular, is to approximate the integral (2) as well as possible, or, more precisely,
to define it since there is currently no alternative, independent way of doing the
computation. This is a completely different task, since the integral does not rep-
resent a single classical geometry, but a quantum superposition, where each single
contributing spacetime is a highly nonclassical object, as we pointed out earlier.
There is no accurate mathematical statement to guide this construction, but one
would expect that the path integral should provide an “ergodic sampling” of the

9This can be kept track of by attaching labels to all simplices and their faces, say, and then
pairing off the faces which are glued together.

10The essential difference between the two approaches is that in Quantum Regge Calculus one
fixes a triangulation or “gluing”, so that the path integral takes the form of a (multiple) integral
over the lengths of the edges of that triangulation, whereas in Dynamical Triangulations one
fixes all edge lengths to a common value a, in which case the path integral takes the form of a
discrete sum over all inequivalent ways to glue the (then identical-looking) simplicial building
blocks together.
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space of geometries. This may seem like a very vague characterization, but one is
in practice very much constrained by the requirement of making the regularized
path integral mathematically well-defined and obtaining a sensible classical limit.

The short-distance cutoff a is an important part of our regularization of the
spacetime geometries in the gravitational propagator. We will take the limit
a → 0 as part of the search for a so-called continuum limit of the path integral
over the regularized geometries. This has to be done in order to obtain a final
theory which does not depend on many of the arbitrary details which have gone
into constructing the regularized model, which itself constitutes only an inter-
mediate step in the construction of the theory. Using a finite “lattice spacing”
a and taking a → 0 (while renormalizing the coupling constants of the theory
as a function of a) is a method borrowed from the theory of critical phenom-
ena and virtually ensures that the end result does not depend on a variety of
regularization details. This latter property of “universality” is only a necessary
condition and does by no means guarantee that this construction leads to a vi-
able theory of quantum gravity, as opposed to describing the dynamics of certain
one-dimensional polymers, say, as we will explain further in the next section.11

The ensemble of virtual spacetime geometries in CDT

Now that we have introduced the regularized triangulated geometries the question
still remains as to exactly what ensemble of such objects should be included in
the sum over geometries in (2). Here is where CDT differs in a crucial way from
previous approaches, and where the notion of “causality” comes into play. We
mentioned above that precursors of CDT’s nonperturbative path integral are “Eu-
clidean” in nature. What this means is that the integration is not performed over
so-called Lorentzian spacetimes (which have one time- and three space-directions)
but over Euclidean spaces (which have four spatial directions, and thus no notion
of time, light rays or causality). Classically, Euclidean “spacetimes” are bizarre
and unphysical entities, in which moving back and forth in time is just as easy
as moving back and forth in space. Their use in the (mainly perturbative) gravi-
tational path integral was made popular in the late 1970s by the influential work
of S. Hawking and collaborators on black holes and quantum cosmology in the
context of Euclidean quantum gravity [20]. The reason for using them instead of

11One may feel tempted to postulate that the cutoff a is a fundamental shortest length scale
pertaining to the existing physical world, and thus do away with any continuum limits. Apart
from having to justify such an ad-hoc assumption, one would then have to face the fact that the
quantum processes at this scale, which such a “theory” may describe, will by default depend on
a large number of a priori arbitrary regularization parameters labelling all possible choices of
fundamental building blocks and gluing rules, and thus run the danger of having no predictive
value at all.
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Lorentzian spacetimes of the correct physical signature12 is mainly technical: in
the Euclidean case, the weights exp(iSgrav) are no longer complex but real num-
bers, which simplifies a discussion of the convergence properties of the path inte-
gral, and also makes Monte-Carlo simulations possible.13 The potential catch is
that in gravity, unlike in other quantum field theories on a flat background, there
is no obvious relation between a nonperturbative path integral for Lorentzian and
one for Euclidean geometries. In fact, causal dynamically triangulated gravity in
dimensions two [21], three [22] and four [23, 24, 6, 7, 8, 9, 25] has for the first time
provided concrete evidence that the two path integrals are genuinely inequiva-
lent and possess completely different properties. The remainder of this section
explains in more detail how the path integral for either Euclidean or Lorentzian
gravity in terms of triangulated geometries is set up and evaluated, and at the
same time retraces some of the history that led to the introduction of CDT.

With the ingredients that were defined in the previous section, it would seem
straightforward to write down a regularized version of the gravitational propaga-
tor as

Greg(Ti,Tf , t) :=
∑

triangulations T:Ti→Tf

eiSreg[T ], (3)

where T denotes a triangulated spacetime, glued from four-simplices, and with
two spatial triangulated boundary geometries Ti and Tf (glued from three-simpli-
ces), between which it interpolates. The gravitational action for a piecewise flat
spacetime T schematically takes the form

Sreg(T ) = −1/GN Curvature(T ) + λ Volume(T ), (4)

and there is a definite prescription for how to compute the curvature and volume
of a given triangulation T in terms of the lengths of its edges and its connectivity
(that is, the way the four-simplices are glued together). The two coupling con-
stants of the theory appearing in (4) are Newton’s constant GN , governing the
strength of gravitational interactions, and the cosmological constant λ, another
constant of nature, which may be responsible for the “dark energy” pervading
our universe [26].

As mentioned in footnote 10, all simplices used in DT are equilateral14, and
the path integral assumes the form of a discrete sum over inequivalent ways in

12The signature refers to the signs of the four eigenvalues of the symmetric matrix gµν(x); it
is (+,+,+,+) in the Euclidean case and (-,+,+,+) in the Lorentzian case.

13In order to simplify notation, we will always use the notation exp(iS) to denote Boltzmann
weights, with the implicit understanding that S is a real action when we talk about Lorentzian
signature (and the weight thus a complex phase factor), and a purely imaginary one in a
Euclidean context (and exp(iS) therefore a real quantity).

14To be precise, this is true for the Euclidean version of dynamical triangulations (DT); CDT
operates with two different edge lengths, one for all edges that have a spatial orientation, and
one for edges with a time-like orientation [24].
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which the simplicial building blocks can be glued together. The only thing that
remains then to be specified in (3) is whether any gluing of the building blocks is
to be allowed, or whether further restrictions need to be imposed. One condition
turns out to be essential for making the path integral construction well-defined.
Call N (N4) the number of distinct gluings of N4 four-simplices, for a particular
set of gluing rules. Clearly, this number will grow with N4, but the important
question is whether it will grow exponentially as a function of N4 or faster, namely,
“super-exponentially”, for example, like exp(cNν

4 ), with c > 0 and ν > 1. In the
latter case, and noting that N4(T ) is proportional to Volume(T), there is no
way in which the exponential weights exp iSreg[T ] could ever counterbalance the
growth of the number of contributing geometries (the growth of the so-called
“entropy” of the system). The path integral would then be too divergent to lead
to a fundamental theory of gravity.

These considerations preclude the inclusion in the path integral (3) of a so-
called “sum over topologies”.15 Therefore, the topology of the spacetimes con-
tributing to the nonperturbative path integral has to be fixed. It is typically
chosen to be a four-dimensional sphere or torus. This state of affairs is somewhat
ironic, because the possibility of including a sum over topologies has often been
praised as an advantage of the path integral formulation over canonical quan-
tization methods, which employ a 3+1 split of spacetime into space and time.
As we have argued, this is only true at a formal level, that is, as long as one
does not perform concrete computations (and therefore has to worry about the
convergence or otherwise of an expression like (3)). At least from a Euclidean
point of view, there are now no further natural restrictions one may impose on
the geometries, and it is from this starting point that the original approach of
Dynamical Triangulations proceeded [19, 27], in order to study the properties of
the theory (hopefully) defined by the continuum limit of (3).

This may be a convenient moment to make some non-technical remarks on
how (C)DT evaluates the path integral and extracts physical information from
it, such as the expectation values of certain geometric observables. A direct an-
alytical evaluation of (3) – although available in lower-dimensional models – is
formidably difficult. However, unlike in a variety of other approaches to quan-
tum gravity, DT possesses a set of powerful and well-developed numerical tools,
whose value can hardly be overstated. They have been adapted from statistical
mechanics and the theory of critical phenomena to the case where the individual

15The topology of a spacetime describes the way in which it hangs together. For example, the
topology of a two-dimensional compact and closed surface is completely characterized by the
number of its “holes” or “handles”. It could have the form of a surface of a ball (no holes), of
a surface of a torus or bicycle inner tube (one hole), of a surface of a double-torus or two-hole
doughnut (two holes), and so on. In four dimensions, the labelling of different topologies is
much more involved.
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configurations are curved geometries, rather than spin or field configurations on
a fixed background space or lattice. The ensemble of spacetimes underlying the
path integral is simulated by Monte Carlo methods [28], generating a random
walk in the space of all configurations according to a probability distribution de-
fined by (3).16 The limitations of the computer imply that this procedure can
only be implemented on a (possibly large but) finite space of geometric config-
urations.17 This is usually taken into account by performing the simulations on
the ensemble of triangulations of a fixed discrete volume N4. By repeating the
numerical measurements for a variety of different N4’s, one then tries to extrap-
olate the results in a systematic way to the physically relevant limit N4 → ∞.
This well-known technique is known as “finite-size scaling”.

Now, what kind of “quantum geometry” does one expect to see with the help
of these tools? If all goes well, the quantum superposition (3) of geometries
should be able to reproduce a classical spacetime at large scales L, that is, in the
classical limit. However, at small scales l, with a ≪ l ≪ L, one expects quantum
fluctuations to dominate, with a resulting highly nonclassical behaviour of the ge-
ometry. To cut a long story short, this was unfortunately not what was found for
the Euclidean dynamically triangulated path integral studied in the 1990s. This
was not immediately realized, but emerged gradually as more numerical simula-
tions were performed [29]. It turned out that the quantum geometry generated
by Euclidean DT could be in either one of two “phases”. In the first one the
geometry was completely crumpled, and in the other totally polymerized, that
is, degenerated into thin branching threads18. These structures persist also at
large scales, and as a result the DT path integral appears to have no meaningful
classical limit, and therefore does not satisfy a necessary criterion for a theory of
quantum gravity. (One can only wonder how long it may have taken to realize
this, had one not been in a state to perform extensive simulations of the model.)

The starting point of CDT was the hypothesis that this failure may have to
do with the unphysical Euclidean nature of the construction, and that one may
be able to rectify the situation by encoding the causal structure of Lorentzian
spacetimes explicitly in the choices of building blocks and gluing rules. Several
years passed since this initial conjecture, in which CDT’s causal quantization
program was implemented and its viability tested in lower dimensions [21, 22].
Namely, superpositions like (3) can be defined also by considering spacetimes

16For the Euclidean path integral, one can directly use the real weights exp iSreg[T ]. For the
Lorentzian case of CDT, in order to obtain a probability distribution from (3), one first has
to apply a so-called “Wick rotation” which converts the complex to real weights [24] (see also
footnote 13).

17The computer power involved in obtaining the results reported here amounted to a few
PCs and work stations.

18See the next section for a geometric characterization of these phases.
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glued from two- or three-dimensional building blocks. This gives rise to simplified
toy models which share some, but by no means all properties of the true CDT path
integral. On the plus side, they can be tackled both analytically and numerically,
and compared with other quantization approaches to Einstein gravity in two and
three spacetime dimensions. These extensive investigations showed unequivocally
that the causal, Lorentzian path integral in all cases gave different results from
the corresponding Euclidean path integral. Encouraged by this and a number
of further interesting and new results pertaining to lower-dimensional quantum
gravity, the investigation moved on to the four-dimensional case in 2004.

Causality implies four-dimensionality!

We will now describe the first piece of evidence which showed that CDT can
reproduce at least some aspects of classical geometry correctly. This concerns
a point where previous related quantization attempts have failed, namely, to
generate a geometric object that can be said to be four-dimensional on sufficiently
large scales.

It may come as a surprise that a superposition of locally four-dimensional
geometries can give anything that is not again four-dimensional. After all, we
have obtained our geometric building blocks by cutting out small pieces from a
four-dimensional flat space. However, as is illustrated by Euclidean dynamically
triangulated models, it is perfectly possible that the dimension comes out not as
four, and this is indeed what seems to happen generically. The crumpled and
polymeric phases of the Euclidean model mentioned in the previous section are
characterized by a so-called Hausdorff dimension which takes the values infinity
and two respectively.19

How can one obtain spaces with such strange dimensionalities? Roughly
speaking, the Hausdorff dimension is obtained by comparing the typical linear
size r of a convex subspace of a given space (e.g. its diameter) with its volume
V (r). If the leading behaviour is V (r) ∼ rdH , the space is said to have the
Hausdorff dimension dH . To obtain an effectively infinite-dimensional space from
gluing N4 four-dimensional simplices with edge length a, one may consider a se-
quence of triangulations whose volume goes to infinity, N4 → ∞, where the gluing
for each fixed N4 is chosen such that every single building block shares a given
vertex. That is, no matter how large N4 gets, all building blocks of the triangu-
lated space crowd around a single point. This is a procedure which is compatible
with the gluing rules, but gives rise to a space whose dimensionality diverges,
simply because its linear size always stays at the cutoff length a. Conversely,

19Interestingly, one observes the same behaviour when one starts from three- instead of four-
dimensional building blocks. This result is believed to hold generically in Euclidean DT models,
as long as the dimensionality of the elementary building blocks is at least three.
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one can get an effectively one-dimensional space by gluing the four-dimensional
building blocks into a long and thin tube. That is, as N4 → ∞ and a → 0, one
keeps three out of the four directions at a size of the order of the cutoff a, and
only grows the geometry along the fourth direction.

This argument shows that there are spaces with “exotic” dimensionality which
can be obtained as limiting cases of regular simplicial manifolds. Of course, the
relevant question for the gravitational path integral is whether geometries of
this nature indeed dominate the path integral in the continuum limit. This is
a genuinely dynamical question which cannot be decided a priori. It depends
on the relative weight of “energy” and “entropy”, that is to say, the Boltzmann
weight of a given geometry (which in turn is a function of the values of the bare
coupling constants) and the number of geometries with a given, fixed Boltzmann
weight. Thus it may happen that an exotic geometry (for example, one of the
highly crumpled objects above) has a very large Boltzmann weight and is therefore
“energetically favoured”, but that there are relatively speaking far fewer of such
objects in the ensemble than there are of the more “normal” geometries, such
that the contribution of the former will in the end play no role in the path
integral in the continuum limit. As we have seen, this is not what happens
in Euclidean dynamically triangulated models for quantum gravity whose state
sums, depending on the values of the coupling constants, are dominated by exotic
geometries which are either maximally crumpled (dH = ∞) or of the form of so-
called branched polymers (with dH = 2).

The finding that “dimensionality” is turned into a dynamical quantity is a
consequence of the fact that the nonperturbative gravitational path integral con-
tains highly nonclassical geometries which are curved (and even highly curved)
at the cutoff scale a. It can and indeed does happen that geometries with such
an unruly short-scale behaviour dominate the path integral as a → 0. As already
remarked earlier, this is exactly what one would expect in analogy with the path
integral for the particle, which in the continuum limit is dominated by totally
nonclassical paths with “infinitely many corners”. It is important to emphasize
that the short-scale picture of geometry that arises in CDT is completely different
from that of the classical theory. If one looks at a piece of classical spacetime –
no matter how curved – with an ever finer resolution, it will always eventually
start looking like a piece of flat spacetime, namely, when the observed scale be-
comes much smaller than the characteristic scale at which the space is curved.
By contrast, a typical “quantum spacetime” generated by our nonperturbative
path integral construction will never resemble a flat space, no matter how fine we
choose the resolution of our virtual magnifying glass.

Having understood that quantum geometry will necessarily look very nonclas-
sical at short scales, we presumably are still left with many possibilities for the
precise microstructure that is generated by various prescriptions for setting up
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the gravitational path integral. Can we formulate criteria for recognizing when a
particular prescription stands a chance of leading to the correct theory of quan-
tum gravity? Fortunately, the answer is yes, and the criteria in question have to
do with reproducing features of classical geometry at sufficiently large scales. As
alluded to above, the simplest such test is whether the quantum geometry has the
correct dimension four at large distances. A path integral which does not pass
this test simply does not qualify as a candidate for a theory of quantum gravity.

The art is then to come up with a path integral which allows for large short-
scale fluctuations in curvature, but in such a way that the resulting large-scale
geometry nevertheless does not degenerate completely, so that a sensible classical
limit may exist. The method of causal dynamical triangulations has for the first
time in the history of the nonperturbative gravitational path integral given us an
explicit example of such a geometry. What has been found to be crucial in its
derivation are certain causal rules one imposes on the triangular building blocks,
which make explicit reference to the Lorentzian structure of the individual geome-
tries contributing to the path integral. The new and intriguing physical insight
that can therefore be deduced from this result is that causality at sub-Planckian
scales may be responsible for the fact that our universe is four-dimensional [6, 9].
A related lesson that has been made explicit by the dynamical triangulations
approach in general is the fact that once geometric excitations are “let loose”
in a nonperturbative formulation of quantum gravity, just about anything can
happen. Not even the dimensionality of (what we thought of as) the spacetime
emerging from the quantum superposition has to come out right. At the same
time one could therefore also worry that other nonperturbative quantum grav-
ity approaches may suffer related pathologies, which have only gone undetected
because one has not been able to determine expectation values like that of the
Hausdorff dimension 〈dH〉 explicitly.

The reader may by now be curious about the precise nature of the causality
conditions present in the CDT approach. They are simply that each spacetime
appearing in the sum over geometries should have a specific form. Namely, it
should be a geometric object which can be obtained by evolving a purely spatial
geometry in time, in such a way that its spatial topology (the way in which
space hangs together) is unchanged as a function of time. An example of a
forbidden spacetime is one where an initially connected space splits into two or
several components, or the converse process where several components of a space
reunite into a single one [30]. Spacetimes with so-called wormholes also fall into
this category and will therefore not be included in the sum over geometries. So,
what is wrong with these geometries? Why do they violate causality? Let us
start by explaining why these geometries are pathological from a classical point
of view. Imagine a three-dimensional space that undergoes a branching process
as time progresses (Fig. 3). Initially the space consists of a single piece (or
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Figure 3: A “trouser” spacetime as example of a spacetime with topology change. Two-
dimensional rendering of a space (here depicted as a one-dimensional circle) splitting
into two components as time τ progresses. The smooth assignment of light cones must
break down at the marked branching point, because the light cone “does not know
where to turn”.

component), which simply means that any point in the space can be reached
from any other point along a continuous path. At some moment in time, the
space splits into two components which then remain cut off from each other.
Classically this represents a highly singular process, with nothing to suggest such
processes actually occur in nature.20 From a spacetime point of view, something
in these processes goes wrong with the light cone structure. The assignment
of light cones to spacetime points cannot be smooth, since there must be at
least one point in spacetime (precisely the branching point) where it cannot be
decided whether a light ray arriving from the past should be continued to the
future in one or the other of the two spatial components. Since the light cones
define the causal structure of spacetime, this is an example of a geometry where
causality is violated. The classical Einstein equations simply cannot describe
such topology-changing spacetimes. Two more things should be noted: firstly,
the absence of branching points (and their time inverses, the joining points) from a
Lorentzian geometry is invariant under diffeomorphisms because different notions
of time always share the same overall direction of their “time flow”.21 In order
to introduce branching points and their associated “baby universes” (those parts
of the universe that branch out from the “mother universe”, never to return),
one would need to reverse the time flow in entire open regions of spacetime,

20If this were the case, we would see whole chunks of space (together with their contents)
suddenly disappear.

21We are not considering the possibility of a complete reversion of the time flow, which
exchanges past and future globally.

18



which cannot be done by an allowed coordinate transformation. Secondly, in the
Euclidean theory, which has no distinguished (class of) time direction(s), one
simply cannot talk about the absence or presence of analogous branching points
in a meaningful (i.e. coordinate-invariant) manner.

Returning to our discussion of the quantum theory, the premise of CDT is to
use the Lorentzian structure of its contributing geometries explicitly and exclude
all spacetimes with topology changes and therefore acausal behaviour.22 Although
classical considerations of causality have motivated a similar implementation of
causality in CDT, it should be emphasized that such constraints on the path in-
tegral histories can never be derived conclusively from the classical theory. After
all, the individual path integral geometries are never going to be smooth classical
objects (let alone solutions to the equations of motion), nor even close to classical
geometries. There is hence no obvious reason to forbid any particular quantum
fluctuations of the geometry, including those that include topology changes. In
principle, a quantum superposition of acausal spacetimes could lead to a quan-
tum spacetime where causality by some mechanism is restored dynamically, at
least macroscopically. However, although this is a theoretical possibility, it is
not what one has observed in the Euclidean version of DT which does not have
such causality restrictions, and which goes wrong already in trying to reconstruct
a four-dimensional space. By the same token, the fact that individual path in-
tegral geometries in CDT are causal is also not by itself sufficient to guarantee
that the quantum geometry it generates has again the same property. Whether
this is indeed the case is not yet known, and requires a more detailed knowledge
about the local geometric structure than is currently available. For example, one
would like to ascertain that at a sufficiently coarse-grained level the quantum
geometry possesses a well-defined light cone structure by defining and measuring
suitable quantum observables. – However, there are already a number of im-
portant facts known about the large- and small-scale structure of the quantum
spacetime emerging in CDT from first principles, which form the subject of the
following section.

What is the quantum spacetime generated by CDT?

We have emphasized in the last section the importance of the emergence of classi-
cal geometry as a test for potential quantum gravity theories. The dimensionality
of spacetime is only one of many quantum observables one may try to evaluate
in order to determine the properties of the ground state geometry generated by

22It is rather straightforward to implement the causality conditions on the triangulated ge-
ometries of CDT. Each spacetime is built from layers of fixed duration (one “length step” in
proper time), and one implements gluing rules for the simplices which ensure that no change
of spatial topology can occur during the step [24].

19



CDT at various length scales. It is the coarsest such variable, because the di-
mensionality of a spacetime – at least in classical differential geometry – precedes
that of specifying a metric structure.

Talking about observables, one must keep in mind that an innocent-looking
question like “what is the value of the metric tensor gµν at point x?” is among the
most difficult to answer in a nonperturbative approach like ours. Firstly, although
CDT histories come with a notion of proper time, they do not otherwise carry
any natural coordinate system. Even if we introduced coordinate systems on the
individual triangulated spacetimes, there is no way to mark “the same point”
simultaneously in all of them. This is a consequence of the fact that individual
points do not have any physical significance in empty space; in the absence of
matter there is simply nothing we could “mark” the point x with. We are thus
forced to phrase any question about local curvature properties, say, in terms
of quantities that are meaningful in the context of a diffeomorphism-invariant
theory, for example, n-point correlation functions where the location of each of
the n points has been averaged over spacetime.23

The correlation function that has been studied up to now in CDT measures
the correlation between the volumes Vspace(τ) of spatial slices (slices of constant
time τ) some fixed proper-time distance ∆τ apart, that is, a suitably normalized
version of the expectation value

〈Vspace(0)Vspace(∆τ)〉 =
t∑

τ=0

〈Vspace(τ)Vspace(τ + ∆τ)〉, (5)

where the ensemble average is taken over simplicial spacetimes with time ex-
tension t and with fixed four-volume [6, 7, 9]. One piece of evidence for the
four-dimensionality of spacetime at large distances is the fact that in order to
map the functions 〈Vspace(0)Vspace(∆τ)〉 on top of each other for different values
of the spacetime volume N4, the time distance ∆τ has to be rescaled by the power
N

1/DH

4 , where the “cosmological Hausdorff dimension” is DH =4 within measur-
ing accuracy [6, 9]. This means that what we would like to call a continuum
“time” really scales with the correct fraction of the total spacetime volume. Such
a “canonical scaling” is what one would have expected näıvely, but is absolutely
not ensured a priori in the presence of large geometric quantum fluctuations, even
though the individual building blocks at the cutoff scale are four-dimensional.24

Before looking at another striking result on dimensionality to have come out
of CDT, let us review what else we know about the large-scale geometry of the
quantum spacetime dynamically generated by CDT. This concerns a result which

23Two-point functions of this type have been measured previously in Euclidean DT [31].
24Further, independent evidence that the volumes Vspace(τ) of the spatial slices also scale

canonically as N4 is increased, Vspace ∼ N
3/DH

4 , with DH =4, can be found in [9].
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enables us to make contact with (quantum) cosmology. Recall the remarkable fact
that almost every aspect of today’s standard model of cosmology, describing the
large-scale structure of our universe, is based on a radical truncation of (the
geometric sector of) Einstein’s theory to a single global degree of freedom, the
so-called scale factor a(τ). It describes the linear size (or “scale”) of the universe
as a function of time τ .25 This truncation is justified if the universe is homo-
geneous and isotropic at the largest scales, which means that it looks the same
everywhere and in all spatial directions, something that is usually assumed to be
true. An entirely different question is whether one can extract information about
the quantum behaviour of the universe (for example, very close to the big bang
where quantum effects should come into play) by quantizing the classically trun-
cated system of just a single geometric variable a(τ). One may wonder whether
in this way one is not missing important physics contained in the quantum fluc-
tuations of all the local gravitational degrees of freedom which the cosmological
description ignores.

Having in hand an explicit construction of quantum geometry à la CDT where
no such truncation is present, one can ask what predictions it makes for the dy-
namics of the scale factor, and compare those to standard quantum cosmology.
The answer obtained is intriguing: it is indeed possible to extract an effective ac-
tion for the scale factor from CDT by integrating out all other degrees of freedom
in the full quantum theory. The resulting action takes the same functional form
as the standard action of a “minisuperspace” cosmology for a closed universe, up
to an overall sign [7]. The collective effect of the local gravitational excitations
seems to result in the same kind of contribution as that coming from the scale
factor itself, but with the opposite sign. One way to understand this from an
analogous continuum point of view may be in terms of so-called Faddeev-Popov
determinants, which contribute to the effective action as a result of gauge-fixing
[32]. The potentially far-reaching consequences of this result for quantum cos-
mology are currently being explored. What has already been established is that
the computer-generated quantum geometry can in the semiclassical approxima-
tion be understood as a so-called “bounce”, a particular type of solution to the
Euclidean equation of motion (see Fig. 4). On the basis of this, the infamous
“wave function of the universe” Ψ0(a) [33, 34] has been computed in CDT as a
function of the scale factor a [7].

However, what is also clear from the computer simulations is that the semi-
classical approximation is no longer an adequate description of the observed be-
haviour of the scale factor when the latter becomes small. This is of course to
be expected and is an indicator for new quantum-gravitational effects appearing

25As far as we can tell, our present universe not only expands, but expands at an ever
increasing rate, that is, both ȧ(τ) > 0 and ä(τ) > 0. A “big bang” or “big crunch” corresponds
classically to a singular point where a=0.
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Figure 4: The overall shape of the extended quantum universe generated by CDT is

determined by a bounce solution of the Euclidean effective action for the scale factor

a(τ). The figure is a Monte Carlo snapshot of a typical universe of N4 = 91.100 four-

simplices and illustrates the behaviour of a(τ) (the circumference of the rotational

body) as a function of the proper time τ (vertical axis).

at short distances. Having gathered some nontrivial evidence that CDT’s quan-
tum geometry reproduces well-known aspects of classical general relativity on
sufficiently large scales, the main focus of research has to be on what the actual
quantum modifications of this structure are. This is the place where new quantum
physics will appear, and our effort will go into describing it in both a qualitative
and quantitative manner.

CDT has already given us first insights into what the microstructure of quan-
tum spacetime may be. The evidence comes from yet another way of probing the
effective dimensionality of spacetime. The idea is to define a diffusion process
(equivalently, a random walk) on the triangulated geometries in the path integral
over spacetimes, and to deduce geometric information of the underlying quantum
spacetime from the behaviour of the diffusion as a function of the diffusion time
σ inherent to the process. The beauty of this procedure is its wide applicabil-
ity, since diffusion processes cannot just be defined on smooth manifolds, but on
much more general spaces, such as our triangulations and even on fractal struc-
tures [35]. The quantity we are interested in is the so-called “spectral dimension”,
which is really the effective dimension of the carrier space “seen” by the diffusion
process. It can be extracted from the return probability P (σ) which measures the
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time σ, as measured in CDT for a quantum universe of N4 =181.000 building blocks.

Extrapolating from this data, one obtains the estimates DS(σ = ∞) = 4.02 ± 0.1 in

the limit of large distances and DS(σ=0) = 1.80 ± 0.25 for the short-distance spectral

dimension [8, 9]. The two outer curves represent error bars.

probability of a random walk to have returned to its origin after diffusion time
σ (or σ evolution steps if the diffusion is implemented discretely). For diffusion
on a flat d-dimensional manifold, we have the exact relation P (σ) = 1/(4πσ)d/2.
For general spaces we define the spectral dimension DS(σ) as the logarithmic
derivative26

DS(σ) := −2
d log P (σ)

d log σ
. (6)

Note that in general this dimension will depend on σ: small values of σ probe
the small-distance properties of the underlying space, and large values its large-
distance geometry.27 The spectral dimension extracted for the quantum geometry
of CDT is a twofold average over the starting point of the diffusion process (which
is initially peaked at a given four-simplex) and over all geometries contributing
to the path integral [8, 9]. The result of the measurement is quite striking and
plotted in Fig. 5. What one observes is indeed a scale-dependence of the space-
time dimension! At large distances it approaches the value four asymptotically, in
agreement with the dimension obtained previously from scaling arguments, and

26The complete expression for the return probability has correction terms because of the
finite size of the computer-generated geometries which we are suppressing for simplicity. A
more detailed discussion can be found in [9].

27As usual in a random walk, the linear distance probed will be of the order of
√

σ.
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in agreement with our classical expectation. However, as we probe the geometry
at ever shorter distances (and before we enter the region where the simulations
become unreliable due to discretization effects), this dimension decreases con-
tinuously to an extrapolated value of two within measuring accuracy. Such a
scale-dependence has never before been observed in statistical models of quan-
tum gravity and is a clear indication that spacetime behaves highly nonclassically
at short distances close to the Planck length. Further investigations of a num-
ber of critical exponents and dimensions associated with the geometric structure
of spatial slices and “sandwiches” (of time extension ∆τ = 1) [9] suggest the
presence of a fractal microstructure of quantum spacetime, whose details are the
subject of ongoing research.

In an independent development, a similar smooth running from four to two
of the spectral dimension has been derived within a renormalization group ap-
proach to quantum gravity in the continuum [36], which posits (and provides
some evidence for) the existence of a nontrivial fixed point in the ultraviolet (i.e.
short-distance) regime of quantum gravity [37]. Although this coincidence by no
means proves that either formulation is correct, it is nevertheless remarkable that
the same unexpected result has been obtained in two very different approaches
to quantum gravity. If the result can indeed be shown to be part and parcel
of a viable quantum gravity theory, its implications for how we view spacetime
and how we compute quantum processes of the other fundamental interactions on
spacetime may be profound. For example, it could provide a natural ultraviolet
cutoff for scattering amplitudes in high-energy physics.

Conclusions and outlook

This article has offered an overview of some of the fundamental issues addressed
by quantum gravity, and has described a particular attempt to arrive at a con-
sistent quantum theory of gravity, through the use of causal dynamical trian-
gulations (CDT). As we hope to have illustrated, this approach has yielded a
number of concrete results concerning the emergence of classical geometry from a
Feynman-type superposition of spacetimes, provided appropriate care was taken
to eliminate spacetimes with acausal features from the nonperturbative grav-
itational path integral. Although the derivation of the four-dimensionality of
spacetime “from scratch” is an unprecedented result, more features of the clas-
sical theory still need to be established, for example, the presence of attractive
gravitational forces as expressed by Newton’s law. Assuming that this can be
accomplished, the really interesting and new physics lies of course beyond the
classical approximation. Here the challenge will be to extract more detailed in-
formation about the short-scale structure of quantum spacetime and, if possible,
to uncover concrete physical consequences that may in principle be detectable.
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As we have seen, CDT offers already some tantalizing glimpses of what spacetime
may look like at or near the Planck scale.

It is unlikely that the construction we have presented here will satisfy every-
one’s prejudices of how a quantum theory of gravity should be constructed, be it
through invoking this or that kind of fundamental discrete structure at the Planck
scale or according to this or that favourite symmetry principle. This need not
necessarily be a reason for concern: if we can find one way to Rome, we will be
able to find many others. That is to say, we believe (in the spirit of “universality”)
that there is at most one theory which describes the nontrivial quantum dynamics
of intrinsic spacetime geometry, and that in order to construct it, we should just
get a few “basic things” right, among them presumably some genuinely nonper-
turbative features (like the inclusion of locally highly curved geometries which
are “very far away” from any classical spacetimes), and possibly a principle of
“microcausality”, like that implemented in CDT to ensure the emergence of an
extended, four-dimensional spacetime.

What remains to be shown is that a single such theory with the correct prop-
erties exists. Because of the minimalist input we have used in our construction
(no new symmetries, no new dynamical fields or other extended objects, no ad-
ditional spacetime dimensions, and thus no associated new free parameters) we
are unlikely to run into the converse, “M-theoretic” problem of having vast num-
bers of possible vacua [38] and therefore possible theories of quantum gravity,
with a continuum of different physical predictions. The paradigm of spacetime
beginning to emerge from CDT is that of a scale-invariant, fractal and effectively
lower-dimensional structure at the Planck scale, which only at a larger scale ac-
quires well-known features of geometry which accord with our classical intuition.
The deeper reasons for how and why this comes about remain to be understood.
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