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FOREWORD
by Robert A. Feff'erman, University of Chicago

Surely, Antoni Zygmund's Trigonometric Series has been, and continues to be, one
of the most influential books in the history of mathematical analysis. Therefore, the
current printing, which ensures the future availability of this work to the mathe-
matical public is an event of major importance. Its tremendous longevity is a testi-
mony to its depth and clarity. Generations of mathematicians from Hardy and
Littlewood to recent classes of graduate students specializing in analysis have
viewed Trigonometric Series with enormous admiration and have profited greatly
from reading it. In light of the importance of Antoni Zygmund as a mathematician
and of the impact of Trigonometric Series, it is only fitting that a brief discussion of
his life and mathematics accompany the present volume, and this is what I have
attempted to give here.' I can only hope that it provides at least a small glimpse
into the story of this masterpiece and of the man who produced it.

Antoni Zygmund was born on December 26, 1900 in Warsaw, Poland. His par-
ents had received relatively little education, and were of modest moans, so his back-
ground was far,less privileged than that of the vast majority of his colleagues.
Zygmund attended school through the middle of high school in Warsaw. When
World War "I broke out, his family was evacuated to Poltava in the Ukraine, where
he continued his studies. When the war ended in 1918, his family returned to
Warsaw, where he completed pre-collegiate work, and entered Warsaw University.
Zygmund's main interest throughout his childhood was astronomy, but at Warsaw
University at that time there were not sufficient courses offered in that subject to
make it realistic as a specialization, and so Zygmund turned instead toward anoth-
er of his interests, mathematics.

There were a number of excellent mathematicians and teachers who profoundly
influenced Zygmund during this period. The greatest impact came from Aleksander
Rajchman and Stanislaw Saks. Rajchman was a junior faculty member who was an
expert on Riemann's theory of trigonometric series, and Saks a fellow student who
was a few years his senior. From Rajchman, he learned much of the Riemann theo-
ry, and his doctoral thesis in 1923 was on this subject. Zygmund became an active
collaborator with both Rajchman and Saks, publishing a number of important arti-
cles with each of them. In addition, Saks and Zygmund produced Analytic
Functions, one of the classic texts on complex analysis.

One year prior to his PhD, Zygmund was appointed to an instructorship at the
Warsaw Polytechnical School, and, in 1926, he was appointed Privatdozent at the
University of Warsaw. He'was awarded a Rockefeller fellowship, which he used to
travel to England for the academic year of 1929-30 and visit G.H. Hardy at
Cambridge for the first half of the year, and J.E. Littlewood at Oxford for the sec-
ond half. This experience had a tremendous impact on the young Zygmund. Not
only did he work with two of the greatest analysts of the time, but while in England,
lie also met another young mathematician, R.E.A.C. Paley, a student of

'1 have been fortunate to have a number of excellent references to consult regarding the life of Antoni Zygmund. The
leader interested in additional material may consult the references in the bibliography to thin Foreword.
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Littlewood, with whom he had an extended and very fruitful collaboration. When
he returned to Poland in 1930, Zygmund moved to Wilno where he took a chair in
mathematics at the Stefan llatory University. It was here that Zygmund's talent
and quiet charisma as a teacher of advanced mathematics began to have a very
major impact on the field. In the fall of 1930, Zygmund met a new student at the
University, Jozef Marcinkiewicz. Marcinkiewicz was recognized, even when he was
a student, as being tremendously talented, with the potential to become a serious
mathematician. In the following year, which was only the second at Stefan Batory
for both teacher and student, Zygmund decided to offer a course on trigonometric
series preceded by lectures on Lebesgue integration. Marcinkiewicz attended this
course, and thus began his association with Zygmund. It took just three years for
Marcinkiewicz to obtain his masters degree, with a thesis that contained the highly
non-trivial result that it is possible for a continuous periodic function to have inter-
polating polynomials corresponding to equidistant nodal points diverging almost
everywhere. This result was elaborated to form his PhD thesis in 1935, and in 1937
Marcinkicwicz.became a Dozent in Wilno. In the period from 1935 to 1939, a collab-
oration between Marcinkiewicz and Zygmund developed that was incredibly suc-
cessful. Though of relatively short duration, their work opened a number of new
directions, and in a sense set the stage for the theory of singular integrals which
would be Antoni Zygmund's greatest contribution.

The years in which Zygmund was a young professor in Wilno, though very pro-
ductive mathematically, were not easy ones. This was due in large part to
Zygmund's courageous opposition to the bigotry which was all too common around
him, and which was supported by the higher authorities. An example of this was his
strong dislike of anti-Semitic policies within his university. At one time, for
instance, student organizations, somewhat analogous to modern day fraternities,
were sufficiently influential to mandate that all Jewish students must sit on the left
side of each classroom during lectures. For Zygmund, this was completely unac-
ceptable, and in response, he decided to move his classes from the larger halls to
small mathematics department seminar rooms where there were only long tables in
a central arrangement, and hence no seats at the left or right of the room. Another
illustration of Zygmund's sensitivity to issues of social justice had to do with his
university's requirement that all student associations have faculty members as
their academic sponsors. Zygmund regularly sponsored associations which were not
in favor with the Polish government. These unpopular moves on Zygmund's part
did not go unnoticed, and in the year 1931, as part of the political purges of the uni-
versities by the government, Zygmund was dismissed from his professorship. This
immediately brought extremely strong reaction from some of the most distin-
guished mathematicians in Europe. From Lcbesgue in France, and from Hardy and
Littlewood in England came formal written protests which resulted in Zygmund's
reinstatement as professor. It is therefore an important aspect of Zygmund's life
that, in a very real sense, he was a crusader for human rights well before this was
fashionable.

Among the many remarkable contributions of the Wilno period is the writing of
the first version of this book, published in Warsaw under the title Trigonometrical
Series. This was Zygmund's first book, and it was published as volume V of the
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series Monografie Matematyczne. This is the same series in which the celebrated
book Theorie des Operations Lineaires by S. Banach appears as volume 1. The tre-
mendous success of Trigonometrical Series led to its expansion and revision into a
second edition, published in 1959 by Cambridge University Press, and then to no
fewer than six reprinted versions after that.

The time in Wilno which featured the rapid achievement. of'suecess came to a sud-
den end in September 1939 as World War 2 erupted. At that time, both Zygmund
and Marcinkicwicz were mobilized as reserve officers in the Polish army, and, as a
result of the temporary "friendship" between Germany and Russia, Poland was
partitioned. The Soviets were given control of much of the country, including the
part containing Wilno, and they proceeded to round up and execute many of the
Polish officer corps in the Katyn Forest massacre. Most likely, this is how
Marcinkiewiez perished. Almost by a miracle, Zygmund was able to return to his
family and escape with them to the United States, but his loss was absolutely dev-
astating. His principal collaborators up to that time besides Marcinkicwicz had
been Saks, Rajchman and Paley. Both Saks and Rajchman were murdered by the
Nazis, and Paley had died in a tragic accident in 1933. These losses were not just
mathematical. Zygmund had been extremely close to each of them, and so the war
period must surely have been one of the most difficult of his life.

By 1939, Zygmund had an international reputation, and many friends all over
the mathematical world. It was due to the efforts of some of these friends, such as
Jacob Tamarkin, Jerzy Neyman and Norbert Wiener, that Zygmund was able to
emigrate to the United States in 1940. During the time immediately prior to the
United States entering into the war, there were very few jobs available to mathe-
maticians. Nevertheless, after teaching for a semester at MIT, Zygmund was
offered and accepted a position at Mount Holyoke College in central Massachusetts.
A few years later, other offers followed. In 1945, Zygmund became a professor at
the University of Pennsylvania, and then, in 1947, he was offered a professorship at
the University of Chicago.

The University of Chicago mathematics department, which had had a tradition
of great strength, had experienced a period of decline prior to World War 2. During
the war, the president of the university, Robert Maynard Hutchins, brought the
Manhattan project to the campus, and with it came a number of outstanding scien-
tists, such as Enrico Fermi. Hutchins then decided to make it a priority to strength-
en the mathematics department in order to match the high quality of physical sci-
ence appointments that had been made. To this end, a new chairman, Marshall
Stone, was brought to the university and asked to bring about this improvement.
The result was something phenomenal. In the period just after the war, Stone was
able to assemble one of the best mathematics departments in history. At this time,
the faculty of mathematics included such members as A.A. Albert, S.S. Chern, L.
Graves, P. Halmos, I. Kaplansky, S. MacLane, I. Segal, E. Spanier, M. Stone, A.
Weil and A. Zygmund. Together with this influx of great mathematicians there
came a corresponding influx of brilliant students.

The combination of such a strong mathematician and teacher as Zygmund with
the unusually rich mathematical environment of the University of Chicago pro-
duced a golden period of creativity and of supervision of exceptional students for
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Zygmund that was the crowning achievement of his life's work. In several cases, the
route of outstanding students to Chicago was not totally straightforward, and the
most famous case was that of Alberto P. Calderon. The story of the means by which
Calderon came to Chicago is legendary. The following, taken from the introduction
to the book, Essays in Honor of Alberto P. Calderon [2] tells the story beautifully:

In the years immediately after World War 2, the U.S. Department of State had a very active
visitors program that sent prominent scientists to Latin America. Thus, Adrian Albert,
Marshall Stone, and George Birkhoff visited Buenos Aires, and Gonzalez Dominguez
arranged through them the visit of Zygmund, whose work on Fourier Series he much
admired. At the Institute of Mathematics, Zygmund gave a two-month seminar on topics in
analysis, based on his book. This seminar was attended by Gonzalez Dominguez, Calderon,
Mischa Cotlar, and three other young Argentine mathematicians. Each of the participants
had to discuss a portion of the text. Calderon's assignment was to present the Marcel Riesz
theorem on the continuity of the Hilbert transform in U'. According to Cot.lar's vivid recol-
lection of the event, Calderon's exposition was entirely acceptable to the junior audience, but
not to Zygmuncl, who appeared agitated and grimaced all the time. Finally, he interrupted
Calderon abruptly to ask where had read the material he was presenting, and a bewildered
Calderon answered that he had read it in Zygmund's book. Zygmund vehemently informed
the audience that this was not the proof in his book, and after the lecture took Calderon aside
and quizzed him about the new short and elegant proof. Calderon confessed that he had first
tried to prove the theorem by himself, and then thinking he could not do it, had read the
beginning of the proof in the book; but after the first couple of lines, instead of turning the
page, had figured out how the proof would finish. In fact, he had found himself an elegant
new proof of the Riesz Theorem! Zygmund immediately recognized Calderon's power and
then and there decided to invite him to Chicago to study with him.

This anecdote illustrates one of Calderon's main characteristics ...

The anecdote above also illustrates one ofZygmund's main characteristics: His tre-
mendous desire to work with people of the greatest mathematical ability, and his
absolute devotion to those people. Calderon came to the University of Chicago in
1949 on a Rockefeller fellowship, and only one year later received his PhD there
under Zygmund's supervision. The thesis consisted of three research papers, each of
which was a major work. In particular, among the results of the thesis was one of
the greatest importance, concerning the boundary behavior of harmonic functions
of several variables, which represented a crucial step in carrying out the real vari-
able program of Zygmund which will be described below. The collaboration
between Calderon and Zygmund which followed was certainly one of the greatest in
the history of modern analysis, and created a theory, the so-called
Calderon-Zygmund Theory of Singular Integrals, that not only allowed for the
extension of much of classical Fourier analysis from one to several dimensions, but
played a fundamental role in the development of the theories of partial differential
equations and geometry as well.

More than simply creating a new powerful mathematical theory at Chicago,
Zygmund created a school, the Chicago School of Analysis, which was to have an
enormous impact on the subject in the next five decades, and promises to continue
to do so in the future. After Calderon, there came other students who worked with
Zygmund and who individually made historic contributions to mathematics. In
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1955, Elias M. Stein received his doctorate under''Zygmund, and, as is well known,
by his brilliant research and teaching went on to establish a great school of his own

at Princeton. A bit later, other remarkable students finished their thesis work with
Zygmund, including Paul Cohen and Guido and Mary Weiss. Taking into account
the generations of students whose mathematical ancestry is traceable back to
Zygmund, it is hard to imagine what mathematical analysis would be like without
their collective contribution.

At Chicago, Zygmund had a total of thirty-five students. His collected works
include some 215 articles. Zygmund received many formal honors in his lifetime. He
was a recipient of the Steele Prize of the American Mathematical Society, as well as
the National Medal of Science, the highest award given by the United States
government in recognition of scientific achievement. In addition, he was given
membership of a number of academics, including the National Academy of Sciences
and the American Academy for Arts and Sciences (USA), the Polish Academy of
Sciences, the Argentina Academy of Sciences, Royal Academy of Sciences of Spain,
and the Academy, of Arts and Sciences of Palermo, Italy. Zygmund also held hon-
orary degrees from Washington University, the University of Torun, Poland, the
University of Paris and the University of Uppsala, Sweden.

After a very long and productive life in which he published his last, research arti-
cle at the age of 79, he finally slowed considerably, and, after a long illness, died at
the age of 91. Few mathematicians have provided such a striking and wonderful
counterexample to G.H. Hardy's view on the rapidity of loss of creativity that
mathematicians suffer with age.

Zygmund's life events and his mathematics, particularly that covered in the pres-
ent volume, are heavily intertwined. In what follows, I would like to discuss this
mathematics in the context of the historical perspective considered above.

That historical perspective on Zygmund's career begins with his interaction with
Rajchman. One sees the influence of Rajchman clearly reflected in the beautiful
treatment of Riemann's theory of trigonometric series (which are not necessarily
Fourier series) in Chapter 9. Here the main theorems concern questions of unique-
ness and localization for such series. It is far from trivial that if a trigonometric
series converges to zero everywhere, then the series must be the trivial series whose
terms are each zero. The proof of this result involves formally integrating the series
term by term twice to produce an absolutely convergent series, and then investigat-
ing a certain appropriate notion of generalized second derivatives applied to this
twice integrated series. The'twice integrated series, which was first considered by
Riemann is a key to understanding much of the theory of (non-Fourier) trigonomet-
ric series. Another fundamental result is that of localization: The behavior of a
series at a given point depends only on the values of this function (gotten by twice
term-by-term integrating the seri(s) in an arbitrarily small interval around this
point. The approach Zygmund takes to establish this localization is via the notion
of formal multiplication of trigonometric series, which is due to Rajehman. Of
course, knowing that a trigonometric series that converges to zero everywhere must
be trivial leads to the question of which sets F: have the following property: Any
trigonometric series which converges to zero outside E necessarily is the trivial
series. Such sets are called sets of uniqueness, and the analysis of whether or not a
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given set is a set of uniqueness is highly non-trivial. Because these sets are all of
Lebesgue measure zero, their analysis is particularly delicate involving such issues
as the number theoretic structure of the set. Zygmund made major contributions to
this area as well. The important result that the countable union of closed sets of
uniqueness is a set of uniqueness is, in this volume, attributed to N. Bary, however
the result is also associated with Zygmund (see [3] for the interesting history of
this).

Next, the influences of'Saks and particularly of Marcinkiewicz become apparent
in Trigonometric Series. One of Zygmund's most important contributions was the
realization that operators may behave differently according to the group of dila-
tions under which they are invariant. One of the initial examples of this was discov-
ered by Saks who had shown that the classical Lebcsguc theorem on differentiation
of the integral for intcgrable functions was not valid if instead of balls in n-dimen-
sional space, one considered averaging integrable functions over rectangles with
sides parallel to the axes. It was shown by Zygmund that in that case one did have
the corresponding maximal function, the so-called Strong Maximal Function,
bounded on I/, for all p > 1 (and hence the strong differentiation of the integral for
functions in such LP). In a fundamental article published in 1935, the sharp results
on these maximal operators were given by Jessen, Marcinkiewicz and Zygmund.
The result from this paper-and its consequences for Fouricrseries are reproduced in
Chapter 17. It was Zygmund who fully realized the role of product dilations in the
theory, and who considered other dilations, formulating conjectures some of which
are still unsolved. The corresponding product theory of maximal functions and sin-
gular integrals has been thoroughly understood, and its generalizations to other
dilation groups introduced by Zygmund have played a significant role in applica-
tions, such as to the analysis of weakly pseudo-convex domains in several complex
variables (see, for example, Stein [5]).

Marcinkiewicz's influence appears in several parts of this book, and there can be
no doubt that it played an absolutely fundamental role in the theory of singular
integrals in Euclidean Space that was Zygmund's most important contribution. It
is extremely difficult to imagine the program of singular integrals without the
Marcinkiewicz Interpolation Theorem of Chapter 12, because, as is now well known,
the study of singular integrals proceeds by examining their action on Lr where they
are not bounded, but merely of weak type. Furthermore, the important
Marcinkiewicz Integral, which also plays a crucial role in the analysis of singular
integrals on L', appears in Chapter 4, where it is part of a complete real variables
approach to the LP theory of the Hilbert transform, using F. Riesz's Rising Sun
Lemma (replaced by the Calderon-Zygmund Decomposition in the
Calderon-Zygmund higher-dimensional theory). The presentation of the
Marcinkiewicz integral as applied here to the Hilbert transform gives the reader a
beautiful preview of the Calderon-Zygmund Theory, and as such is a real highlight
of this book. Finally, we should mention that the Marcinkiewicz Multiplier
Theorem is included, in connection with applications of Littlewood-Paley Theory
to Fourier series, and this theorem, like the real variable approach to the Hilbert
transform, certainly has a flavor of more recent developments which name as a con-
sequence of the program of Calderon and Zygmund.
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As mentioned above, just prior to the Wilno period during which Zygmund met
his student Marcinkicwicz, he traveled to England to work with Hardy and
Littlewood, and, at the same time met Paley. It is probably not possible to over-
state the importance of the impact of these two giants of analysis and their brilliant
student on Zygmund. This is very clearly reflected in this volume. In the first place,
the Hardy-Littlewood Maximal Theorem is quite properly given great emphasis,
and introduced quite early in the book (page 29 of Volume 1). Zygmund felt that the
Maximal Theorem was of the greatest import.a.nur, and clearly communicated this
in both his mathematics and his work with students. Although Hardy and
Littlewood invented the idea, it is only fair to give Zygmund and his students such
as Calderon and Stein much credit for realizing its pervasive role in analysis. The
theory of Hardy Spaces is an early manifestation of the impact of maximal func-
tions on singular integrals, a story told in entirety only several decades later with
the work of Stein and Weiss and then of Charles Fefferman and Stein on the subject.
In this book (Chapter 7) one finds the original approach to the subject by use of the
theory of analytic functions of a complex variable. Making use of Blashke products
to reduce the study of Hp functions to the case where the function has no zeros, one
can raise these analytic functions to small positive powers, thereby passing from the
case p < 1 to the case p > 1 and allowing the Hardy-Littlewood Maximal Operator
to control things, since the Maximal Operator is well behaved on the spaces LP,
p > 1. Another very major collection of theorems, comprising the Littlewood-Paley
Theory is emphasized as well, in Chapters 14 and 15. Zygmund felt that this theory
was, to a much greater extent than most of the material in his book, "ahead of its
time" and history has proven him correct. The Littlewood-Paleyy Theory involves
the study of a certain quadratic functional, the Littlewood-Palcy function, asso-
ciated with a given function on the circle, which in turn is defined via the gradient
of the harmonic extension of this function. This associated Littlewood-Paley func-
tion has an LP norm (1 < p < cc) which is comparable in size with theLP norm of the
function, and is therefore extremely useful in a. number of import.a.nt u.pplications.
In Trigonometric Series, one sees this functional applied to prove the Marcinkiewicz
Multiplier Theorem, and to understand the theory of Hardy Spaces. Treated via a
combination of identities for harmonic and analytic functions, this theory was later
seen to be very much related to the theory of martingales from probability theory
and to the Caldcron-ZygmundTheory of singular integrals. In fact one of the most
elegant applications of the latter theory was to recapture a very simple and concep-
tual proof of the Littlewood-Paley Theorem by viewing this as a special case of the
boundedness of singular integrals, if one only considers the case of Hilbert space
valued kernels.

The Littlewood-Paley Theory and the Marcinkiewicz Multiplier Theorem lead
naturally to the scientific collaboration in Zygmund's life that was no doubt one of
the greatest of the twentieth century, namely that with his student, Alberto
Calderon. Although there is not a detailed account of the Caldcron-Zygmund
Theory in higher dimensions in this book, one can see several highlights of the work
of Calderon, and of Calderon-Zygmund. For example, it includes Calderon's cele-
brated thesis result, that for harmonic functions in the upper halfspace, non-tangen-
tial boundedness and non-tangential convergence are almost everywhere equivalent
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(this is actually only presented in the context of harmonic functions in the disk, but
as Zygmund points out the exact same proof extends to functions harmonic in the
unit ball or upper half space in higher dimensions). And, as pointed out above, the
Hilbert transform is analyzed by techniques which arc the one-variable predecessors
of the Caldcron-Zygmund ones, such as the Rising Sun Lemma of F. Riesz rather
than the Caldcron-Zygmund Decomposition. There is no question that anyone who
reads Trigonometric Series will not only gain an understanding of the classical one-
dimensional theory of Fourier Analysis, but will get an excellent understanding of
the background of the more modern methods in several variables, and an insightful
preview of those methods. As far as a view of the development by Zygmund of the
Chicago School of Analysis goes, this text is simply written too early to cover most of
this period. In particular, it is too early to reflect the tremendous influence of Stein
who only started his career shortly before the final major revision. Still, it should be
noted that Zygmund includes in a prominent way the Stein Theorem on interpola-
tion of analytic families of operators, which has passed the test of time as one of the
basic tools of modern harmonic analysis. It is also worth noting that Zygmund men-
tioned on a number of occasions his regret at not having i neludod the Carleson-Hunt
Theorem on almost everywhere convergence of the Fourier series of functions
belonging to LP, p > 1. At one time, he was consideri ng a second major revision which
would have included this result, but for some reason he never produced this revision.
That he must be forgiven this omission is completely clear, since all books must end
somewhere.

In fact, what is surprising about the current volume is not what is missing. What
is surprising is that a single person could write such an extraordinarily comprehen-
sive and masterful presentation of such a vast field. This volume is a text of histor-
ic proportion, having influenced several generations of some of the greatest analysts
of the twentieth century. It holds every promise to do the same in the twenty-first.
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PREFACE

The first edition of this book was written almost twenty-five years ago. Since then
the theory of trigonometric series has undergone considerable change. It has always
been one of the central parts of Analysis, but now we see its notions and methods
appearing, in abstract form, in distant fields like the theory of groups, algebra, theory
of numbers. These abstract extensions are, however, not considered here and the
subject of the second edition of this book is, as before, the classical theory of Fourier
series, which may be described as the meeting ground of the Real and Complex
Variables.

This theory has been a source of new ideas for analysts during the last two
centuries, and is likely to be so in years to come. Many basic notions and results of
the theory of functions have been obtained by mathematicians while working on
trigonometric series. Conceivably these discoveries might have been made in different
contexts, but in fact they came to life in connexion with the theory of trigonometric
series. It was not accidental that the notion of function generally accepted now
was first formulated in the celebrated memoir of Dirichlet (1837) dealing with the
convergence of Fourier series; or that the definition of Riemann's integral in its
general form appeared in Riemann'a Habilitationsschrift devoted to trigonometric
series; or that the theory of sets, one of the most important developments of nine-
teenth-century mathematics, was created by Cantor in his attempts to solve the
problem of the sets of uniqueness for trigonometric series. In more recent times, the
integral of Lebesgue was developed in close connexion with the theoryof Fourier series,
and the theory of generalized functions (distributions) with that of Fourier integrals.

A few words about the main problems of the present-day theory of trigonometric
series. It has been decisively influenced by the methods of Lebesgue integration.
These helped to solve the problem of the representation of functions by their Fourier
series. This problem, stated in terms of summability of Fourier series, is now
essentially a closed chapter (in spite of a large number of papers still written on the
subject). The same holds for the problem of convergence of Fourier series at indi-
vidual points. As regards the convergence or divergence almost everywhere,
however, much still remains to be done. For example the problem of the existence
of a continuous function with an everywhere divergent Fourier series is still open.
One may argue that, owing to old-fashioned habits of thinking, one attaches
too much importance to the notion of convergence as a method of summing Fourier
series, and that, for example, the method of the first arithmetic mean is much
more relevant; but there seems to be little doubt that the methods needed for the
solution of the problem will be of considerable interest and value for the theory of
functions.

Two other major problems of the theory also await their solution. These are the
structure of the seta of uniqueness and the structure of the functions with absolutely
convergent Fourier series; these problems are closely connected. General methods
of solving them are still lacking and in a search for solutions we shall probably have
to go beyond the domain of the theory of functions, in the direction of the theory of
numbers and Diophantine approximation.
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Among the outstanding problems of the theory one may also mention that of the
behaviour of trigonometric series on sets of positive measure, and that of further
developments of complex methods.

Another domain is that of multiple Fourier series. Here we have barely begun.
Routine extensions from the case of a single variable are easy, but significant
results are comparatively few. The field is vast and promising and at present we
probably do not realize the shape of its problems, though the results here may
be even more important for applications than in the case of a single variable.

Thinking of the extent and refinement reached by the theory of trigonometric
series in its long development one sometimes wonders why only relatively few of these
advanced achievements find an application. Part of the explanation is that in many
problems of Analysis we can go far enough with more economical tools. For example,
where in the past, to obtain a rigorous solution of a problem we had to prove the
uniform convergence, or at least convergence almost everywhere, today we use con-
vergence in norm, which effectively bypasses earlier difficulties. Other examples of
a similar nature can be given. More subtle results of the theory, however, if we look
at them in proper perspective, can give far-reaching applications. To give examples:
extensions of methods dealing with conjugate functions of a single variable to the
case of several variables can be an important tool in the theory of partial differential
equations of elliptic type; results about the boundary behaviour of harmonic
functions of two variables can be used to study boundary behaviour of analytic
functions of several complex variables, etc.

We conclude with a remark about the character of the book. The first four chapters
of it may serve as an introduction to the theory (part of the material contained
herein can be omitted in this case; for example, the real-variable proof of the exist-
ence of the conjugate function, rearrangement of functions, linear operations). The
material contained in subsequent chapters can be read, using cross-references, in
practically any order. The `miscellaneous theorems and examples' at the end of
chapters are mostly accompanied by hints and are intended as possible exercises
for the interested reader. Numbers in square brackets stand for items of the
Bibliography at the end of the book. Notes at the end of each volume contain
bibliographic references and additional information about the results of the text.

Practically all the manuscript of the book was read by Professor J. E. Littlewood
and Mr P. Swinnerton-Dyer, and I have greatly profited from their criticism and
suggestions. They, as well as Professor R. P. Boas, Mr T. G. Madsen, and Professors
Guido and Mary Weiss, also helped me in the long and tedious process of proof-
reading. Without this assistance many misprints and actual errors could have re-
mained unnoticed, and I am grateful for this aid. I also appreciate the under-
standing and patience shown me by the Cambridge University Press. Finally I owe
a great debt to my friend Professor R. Salem with whom I have collaborated
over many years. The subject-matter of the book was often a topic of our dis-
cussions and in a considerable number of places any merits of the presentation
are due to him.

A. Z.

C1iICAGO,
AUGUST, 1958
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NOTE ON THE 1968 IMPRESSION

This reprint has given me the opportunity of correcting a number of errors which
slipped through in the preparation of the second edition and of including the more
comprehensive index which several reviewers felt would be useful. I am most
grateful to Drs L. Gordon, S. Lasher and L. Ziomek for preparing the new index.

A. Z.
CHICAGO,
JULY, 1968

NOTE ON THE 1977 IMPRESSION

The present reprinting is identical with that of 1968, except for the correction of
misprints previously overlooked. In particular, we have not attempted to deal with
the remarkable transformation of perspective in the field of almost everywhere con-
vergence of Fourier Series which was brought about by Carleson through the proof
of his celebrated theorem on almost everywhere convergence of the Fourier Series of
L2 functions, a result subsequently extended by Hunt to LP, p > 1, functions. We refer
the reader to the articles: L. Carleson, On convergence and growth of partial sums of
Fourier Series, Acta Mathematica 116 (1966), 135-57, and R. A. Hunt, On the con-
vergence of Fourier Series, Proc. Conference Edwardsville, Ill., 1967, pp. 235-55.

A. Z.
CHICAGO
APRIL. 1977
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CHAPTER I

TRIGONOMETRIC SERIES AND FOURIER SERIES.
AUXILIARY RESULTS

1. Trigonometric series
These. are series of the form

,)ao + E (a, cos vx + b, sin vx).
.-1

Here x is a real variable and the coefficients ao, a1, b1, ... are independent of x. We may
usually suppose, if we wish, that the coefficients are real; when they are complex the
real and imaginary parts of (1.1) can be taken separately. The factor,} in the constant
term of (1.1) will be found to be a convenient convention.

Since the terms of (1.1) are all of period 21r, it is sufficient to study trigonometric
series in an interval of length 29r, for example in (0, 2n) or (- rr, ir).

Consider the power series
,)ao+E(a,-ib,)z, (1.2)

r=1

on the unit circle z = . The series (1 I) is the real part of (l 2). The series

Y (a, sin vx - b cos vx) (1.3)

(with zero constant term), which is the imaginary part of (1.2), is called the series
conjugate to (1.1). If S is the series (1.1), its conjugate will be denoted by S. The con-
jugate of S is, except for the constant term, - S.

A finite trigonometric sum
n

T (x) = ,)ao + E (a, cos vx + b, sin vx)
-1

is called a trigonometric polynomial of order n. If I a I + b I +0, T(x) is said to be
strictly of order n. Every T(x) is the real part of an ordinary (power) polynomial P(z)
of degree n, where z = e",

We shall often use the term 'polynomial' instead of 'trigonometric polynomial'.
The fact that trigonometric series are real parts of power series often suggests a

method of summing them. For example, the series

P(r,x)=#+ErVcosvx, Q(r,x)=Zr''sinvx (0-<r<l)
Y-1 "-1

are respectively the real and imaginary parts of

where z = re'-". This gives
1 1-r2 rsinx

P(r,x) 21-2rcosx+rt' Q(r,x}-I-2rcosx+r'
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Similarly, from the formula

{I

logl 1 =z+}z2+... (0<- r< 1},

we get cos vx _ log 1 _ sin vx =arctan r sin x
(1-4)

v 1-2rcoaz+r2' v 1-rcosx
with arctan 0 = 0.

Let us now consider the series

+ Y_ cos vx, sin vz,

which are obtained by writing 1 for r in P(r, x) and Q(r, x), and let us denote by
and Dn(x) the nth partial sums of these series. Arguing as before, we get

D --
cosvx=sin (n++))x (x)-Esinvx-cos;±x-cos(n+})x

n
0-1 2sIRx n ,I 2sin,)x

A slightly simpler method of proving the formula for is to multiply
by 2 sin ,)x and replace the products 2 sin 4x cos vx by differences of sines. Then all
the terms except the last cancel. Similarly for .,,(x).

These formulae show that D!(x) and are uniformly bounded, indeed are
absolutely less than cosec ,)e, in each interval 0 < e S x < 21r - e.

Many trigonometric expressions have a term 2 sin }z or 2 tan jx in the denominator,
and in this connexion we often use the inequalities

sinu -< u, sin u)2u, tanu->u (0-<u<-}ir).
n

Expressing the cosines and sines in terms of exponential functions, we write the
nth partial sum s (x) of (I.1) in the form

I n
ja0+ {(a,-ib,,)ei x+(a,,+ib,)e-"'x}.

2,e1

If we define a, and b, for negative v by the conditions

a_,=a,,, b-,=-b, (v=0, 1,2,...)

(thus in particular bo = 0), sn is the nth symmetric partial sum, that is to say, the Bum
of the 2n + 1 central terms, of the Laurent series

e,e" (c,=>}(a,-ib,)), (l'5)

where, if the a, and b, are real,
c_,=c, (v=0, 1,2,...). (I.6)

Conversely, any series (1.5) satisfying (1.6) may be written in the form (1.1) with
a, and b, real. The series (1.5) satisfying (1.6) is a cosine series if and only if the c, are
real; it is a sine series if and only if the c, are purely imaginary.

Whenever we speak of convergence or summability (see Chapter III) of a series
(1.5), we are always concerned with the limit, ordinary or generalized, of the symmetric
partial sums.
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It is easily seen that the series conjugate to (1.1) is

-i (1.7)
--m

where the symbol `sign z' is defined as follows:

signO=O, signz=z/IzI (z+0).

Each of the forms (1.1) and (1.5) of trigonometric series has its advantages. Where
we are dealing with (I.1) we suppose, unless the contrary is stated, that the a's and b's
are real. Where we are dealing with (1.5), on the other hand, it is convenient to leave
the c's unrestricted. The result is then that if (1.1) has complex coefficients and is of
the form SI+iS,, where S1 and S2 have real coefficients, then the series conjugate to
(1.1) is 9, + i,9,.

The following notation will also be used:

A0(x) = Ja0, An(x) = an cos nx+ bn sin nx, B,(x) = an sin nx - bn cos nx (n>0),
so that (1.1) and (1-3) are respectively

A,, (x), E B.(x).
n-0 n-1

We shall sometimes write (1.1) in the form
W

E pncos(nx+an), where pn=(an+bn)i> 0.
n-0

If c, = 0 for v < 0, (1.5) will be said to be of power series type. For such series, S is,
except for the constant term, - iS. Obviously, S is the power series co + clz + c2z2 + .. .
on the unit circle I z I = 1.

In view of the periodicity of a trigonometric series it is often convenient to identify
points x congruent mod 21r and to accept all the implications of this convention. Thus,
generally, we shall say that two points are distinct if they are not congruent mod 277;
a point x will be said to be outside a set E if it is outside every set congruent to E mod 2n;
and so on. This convention amounts to considering points x as situated on the
circumference of the unit circle. If on occasion the convention is not followed the
position will be clear from the context.

2. Summation by parts
This is the name given to the formula

n ncc- I

uvVv = L U (1%v - Vv+I) + Unvn, (2.1)
v-1 v-1

where Uk = ul + u2 +... + u. for k = 1, 2, ... , n; it is also called Abel's transformation.
(2.1) can be easily verified; it corresponds to integration by parts in the theory of

integration. The following corollary is very useful.

(2.2) THEOREM. If v1, v2. .... vn are non-negative and non-increasing, then

I u1V1 + usv2 + ... + unun I < vI Max I Uk I . (2.3)
k
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For the absolute value of the right-hand side of (2.1) does not exceed

{(vl - v=)+ (vz-vs) + ... + max I Uk I =vl maX I Uk 1.

The case when {v,,) is non-negative and non-decreasing can be reduced to the
preceding one by reversing the sequence. The left-hand side of (2.3) then does not
exceed

v, ma. I U - Uk_1 I s 2v max I Uk 1.

A sequence v0, v1, ..., v,,, ... is said to be of bounded variation if the series

Iv1-vol+lv2-V I+...+Ivn-vn-1I+...
converges. This implies the convergence of (v1- vo) +... + (v -V,-,)+ ... = 1im (v - vu),
and so every sequence of bounded variation is convergent.

The following result is an immediate consequence of (2.1).

(2.4) THEOREM. If the series uo(x) + u1(x) +... converges uniformly and if the sequence
{v,} is of bounded variation, then the series vo +u,(x) vt + ... converges uniformly.

If the partial sums of up(x) + u,(x) + ... are uniformly bounded, and if the sequence
{v,} is of bounded variation and tends to 0, then the series uo(x) vo+u,(x) v, + ... converges
uniformly.

The series (1.1) converges, and indeed uniformly, if E(I a, I + I b, I) converges. Apart
from this trivial case the convergence of a trigonometric series is a delicate problem.
Some special but none the less important results follow from the theorem just stated.
Applying it to the series

}ao+ Ea,cospx, a,sinvx, (2.5)

and taking into account the properties of D (x) and B (x) we have:

(2.6) THEOREM. If {a,} tends to 0 and is of bounded variation (in particular, if (a,)
tends monotonically to 0) both series (2- 5), and so also the series Fa, e"', converge uniformly
in each interval e < x <_ 277 - e (e > 0).

As regards the neighbourhood of x = 0, the behaviour of the cosine and sine series
(2.5) may be totally different. The latter always converges at x = 0 (and so everywhere),
while the convergence of the former is equivalent to that of a1 +a2 +.... If {a,} is of
bounded variation but does not tend to 0, the uniform convergence in Theorem (2.6)
is replaced by uniform boundedness.

Transforming the variable x we may present (2.6) in different forms. For example,
replacing x by x+n we have:

(2.7) THEOREM. If {a,} is of bounded variation and tends to 0, the series

}a0 + E (-1)'a,cosvx, (- 1) a, sinvx

converge uniformly for I x I _< n - e (e > 0).

By (2.6), the series EP-1 cos vx and Ev-1 sin vx converge for x+0 (the latter indeed
everywhere). Using the classical theorem of Abel which asserts that if Ea, converges
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to s then s as r-* 1-0 (see Chapter III, § 1, below), we deduce from (1.4)
the formulae

°' cos vx 1

logv
12 sin -ix

sin vx
(0<x<2rr). (2.8)

3. Orthogonal series
A system of real- or complex-valued functions ¢o(x), 01(x), p2(z), .... defined in an

interval (a, b), is said to be orthogonal over (a, b) if

pe
f

0 for m + n
J cSm(x)0n(x)dx= (m,n=0,1,2,...). (3.1)

a 1Am>0 for m=n
In particular,

(i) the functions I 0m(x) I2 are all integrable over (a, b);
(ii) no (5m(x) can vanish identically (for that would imply A,,,=0).
If in addition Al t A1= 32 = ... =1, the system is said to be normal. A system ortho-

gonal and normal is called orthonormal. If is orthogonal, {0 (x)/At) is ortho-
normal.

The importance of orthogonal systems is based on the following fact. Suppose that

c0 fo(x) + 0-1 c1(x) + ... + c,O,,(x) +...,

where c0, c1, ... are constants, converges in (a, b) to a function f(x). If we multiply
both sides of the equation f = ca 0, + c1 c'1 +... by 0. and integrate term by term over
(a, b), we have, after (3- 1),

Cn (n=0,1,2,...). (3.2)

The argument is purely formal, although in some cases easily justifiable, e.g. if the
series defining f (x) converges almost everywhere, its partial sums are absolutely
dominated by an integrable function, and each 0. is bounded. It suggests the
following problem. Suppose that a function f (x) is defined in (a, b). We compute the
numbers cn by means of (3.2), and we write

B X) - coNx) + cA(x) + .... (3.3)

We call the numbers cn the Fourier coefficients off, and the series in (3.3) the Fourier
series off, with respect to the system The sign '-'in (3.3) only means that the
c are connected with f by the formulae (3.2), and conveys no implication that the
series is convergent, still less that it converges to f(x). The problem is: in what sense,
and under what conditions, does the series (3.3) `represent' f(x)?

This book is devoted to the study of a special but important orthogonal system,
namely the trigonometric system (see § 4), and the theory of general orthogonal
systems will be studied only in so far as it bears on this system. It may, however, be
observed here that if an orthogonal system {on} is to be at all useful for developing
functions it must be complete, that is to say, whenever a new function 0, is added to it
the new system is no longer orthogonal. For otherwise there would exist a function
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(namely, the function 1;f), not vanishing identically, whose Fourier series with respect
to the system {y5n} would consist entirely of zeros.

If the functions on are real-valued, we may drop the bars in (3.1) and (3.2).
The following system orthonormal over (0, 1), is instructive. Let ¢0(x) be the

function of period 1, equal to + 1 for 0 < x < j and to - I for j < x < 1; and let
N0) =c50(+)) = 0. Let 0.(x)= 00(21x) (n=0,1,2_.).
The function 0n(x) takes alternately the values ± I inside the intervals

(0,2-n-1), (2-n-1, 2.2-n-i), (2.2-n-1, 3.2-n-1),

That {On} is orthogonal follows from the fact that if m > n the integral of 0,n¢n over any
of these intervals is 0. The system is obviously normal. It is not complete, since the
function + r(x) =1 may be added to it (see also Ex. 6 on p. 34). The functions ¢ are
called Rademacher's functions. Clearly,

On(x) = sign sin 2n+'77x.t

For certain problems the following extension of the notion of orthogonality is
useful. Let m(x) be a function non-decreasing over (a, b), and let 00, 01, 0Z, ... be a
system of functions in (a, b) such that

f
a 0 for m 4 n

f 0",(x) "(x) dw(x) _ (m, n = 0, 1, ... ),
a A,,,>0 for m=n}

(3'4)

where the integral is taken in the Stieltjes sense (Stieltjes-Riemann or Stie)tjes-
Lebesgue). The system {(5n} is then called orthogonal over (a, b) with respect to dm(x).
If A,=A,= ... = 1, the system is orthonormal. The Fourier coefficients of any function
f with respect to (0n) are 1

en =
J

f (x) n(x) do)(x), (3'5)bn a
and the series c000 + c1g1 + ... is the Fourier series off. If W(x)=x, this is the same as
the old definition. If o(x) is absolutely continuous, do(x) may be replaced by w'(x)dx
and the functions (x) til{&)'(x)} are orthogonal in the old sense. The case when
w(x) is a step function is important for trigonometric interpolation (see Chapter X).

4. The trigonometric system
The system of functions

eins

is orthogonal over any interval of length 2n since, for any real a,

(4.1)

f
- ( 0 (m+n),

J e""x a-t": dx = {t
277 (m=n).

With respect to (4.1) the Fourier series of any function f(x) defined, say, in the
interval (- n, n) is +

c ei.x (4.2)

t The yaluos 0"(x) are closely related to the dyadic development of x. If 0 <x < 1, x is not a dyadic
rational and has dyadic development d1di...d,,..., where the d are 0 or 1, then

d=d(x)=}(1-#w-1(x)).
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where c,=2n f(t)e-i'*dt. (4.3)

Let us set
a,='f f(t)eosvtdt, b, n Jnnf(t)sinvtdt (v=0,1,...)

JJJ'

(4.4)

(thus bo= 0), so that
-

a,+ib v 0 . 4.5)

Bracketing together in (4.2) the terms with ± v, we write the series in the form

co + (c1 eix + c_1 a-ix) + ... + (cn einz + c_n a-inx) + ... ,

or, taking into consideration (4.5),

,}a,+(a,cosx+b,sinx)+... +(a,, cosnx+bnsinnx)+.... (4.6)

Since the orthonormality of a pair of functions 0, c, implies the orthogonality of
the pair 0, ± 0 it is easily seen that the system

1 eiz+e-ix eiz - e ix einz + e'" einz - e-inx

2' 2 2i 2 ' 2i

or. what is the same thing, the system

4, coax, sin x, cos 2x, sin 2x, .. ,

is orthogonal over any interval of length 27T.

(4.7)

The numbers A (see § 3) for this system are 47r, ir, n, ..., so that, in view of (4.4),
(4.6) is the Fourier series of a function f (x), - 7r c x _< n, with respect to the system (4-7).

If the function f (x) is even, that is, if f ( - x) = f (x), then

a,=2 of(t) cosvldt, b,=0; (4.8)
IT

and if f (x) is odd, that is, if f (- x) = - f (x), then

a,=O, b,=-2of(t)sinvtdt. (4.9)
n

The set of functions (4.7) is called the trigonometric system, and (4-1) the complex
trigonometric system. The numbers a b, will be called the Fourier coefficients (the
adjective trigonometric being understood), and the numbers c, the complex Fourier
coefficients, off. Finally, (4.6) is the Fourier series and (4.2) the complex Fourier series,
off. When no confusion can arise we shall simply speak of the coefficients off and the
series (or development) off.

The Fourier series off in either of the forms (4.2) and (4.6) will be denoted by

SUM
and the series conjugate to S[ f ] by S[ f].

The series (4.2) and (4.6) are merely variants of each other, and in particular the
partial sums of the latter are symmetric partial sums of the former. For real-valued
functions we shall in this book use the forms (4.2) and (4.6) interchangeably. For
complex-valued functions, in principle, only the form (4.2) will be used. However,
for many problems of Fourier series (e.g. the problem of the representation of f by
S[f]) the limitation to real-valued functions is no restriction of generality.
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Since the terms of (4.2) and (4.6) have period 2n, it is convenient to assume (as we
shall always do in what follows) that the functions whose Fourier series we consider
are defined not only in an interval of length 2n but for all values of x, by the condition
of periodicity f (x + 21r) = f (x).

(This may necessitate a change in the value off at one of the end-points of the interval,
if initially the function had distinct values there.) In particular, when we speak of the
Fourier series of a continuous function we shall always mean that the function is
periodic and continuous in (-oo, +oo). Similarly if we assert that a periodic f is in-
tegrable, of bounded variation, etc., we mean that f has these properties over a period.
By periodic functions we shall always mean functions of period 2rr.

If l(r(x) is periodic, the integral of Vr(x) over any interval of length 2n is always the
same. In particular, since f (x) is now defined everywhere and is periodic, the interval
of integration (- n, + rr) in (4.3) and (4.4) may be replaced by any interval of length 21r,
for instance by (0, 27r).

(4.10) THEOREM. If (4.6) or (4.2) converges almost everywhere to f(x), and its partial
sums are absolutely dominated by an integrable function, the series is S[f ); in particular,
the conclusion holds if the series converges uniformly.

That a b, are given by (4.4) follows by the same argument which led to (3.2) and
which is now justified.

A functionfix) defined in an interval of length 2n (and continued periodically) has
a uniquely defined S[f]. With a function f(x) defined in an interval (a, b) of length
less than 2n we can associate various Fourier series, for we may define f(x) arbitrarily
in the remaining part of an interval of length 21r containing (a, b). The case (a, b) = (0, n)
is of particular interest. If we define f (x) in (- n, 0) by the condition f( - x) = f (x), so
that the extended f is even, we get a cosine Fourier series. If the extended f is odd,
we have a sine Fourier series. These two series are respectively called the cosine and
sine Fourier series of the function f(x) defined in (0, n).

By a linear change of variable we may transform the trigonometric system into a
system orthogonal over any given finite interval (a, b). For example, the functions

exp (2ninx/(b - a)) (n = 0, ± 1, ± 2, ...),

form an orthogonal system in (a, b), and with anyf(x) defined in that interval we may
associate the Fourier series

r
7iz, where 2 dt, w=b-a.

By a change of variable the study of such series reduces to the study of ordinary Fourier
series. The case of functions f (z) of period I is particularly important. Here

+W I
f (x) . E c el"i-, where c.= ( f (t) e- 'w dt.

'6_-0 o

The notion of Fourier coefficients a b c, has a parallel notion, that of Fourier
transforms

a(v)=- f(z}cosvxdz, (v}=
Ir 7r

(4.11)
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The function f here is defined over an infinite interval, and in general is not periodic;
v is a continuous variable ranging from -oo to +X. Unless f is a function absolutely
integrable over (- oo, co), in which case the integrals (4.11) converge absolutely and
uniformly for all v, one must specify the sense in which these integrals are taken.
Fourier integrals occur sporadically in the theory of Fourier series, but a more detailed
discussion of them is postponed to a later chapter (see Chapter XVI).

The problems of the theory of Fourier series are closely connected with the notion
of integration. In the formulae (4.4) we tacitly assumed that the products fcos wt,
f sin vt were integrable. Thus we may consider Fourier-Riemann, Fourier-Lebesgue,
Fourier-Denjoy, etc., series, according to the way in which the integrals are defined.
In this book, except when otherwise stated, the integrals are always Lebesgue integrals.
It is assumed that the reader knows the elements of the Lebesgue theory. Proofs of
results of a special character will be given in the text, or the reader will be referred to
standard text-books.

Every integrable function f (x), 0 -< x -< 27r, has its Fourier series. It is even sufficient
for f to be defined almost everywhere in (0, 2n), that is to say, everywhere except in a
set of measure zero. Functions fr(x) and f2(x) which are equal almost everywhere have
the same Fourier series. Following the usage of Lebesgue, we call them equivalent
(in symbols, fl(x) -fa(x) ), and we do not distinguish between equivalent functions.

Throughout this book the following notations will consistently be used:

xcA, x¢A, AcB, BMA.

The first means that x belongs to the set A ; the second that x does not belong to A ;
the third and fourth that A is a subset of B.

The Lebesgue measure of a set (in particular, of an interval) E will be denoted by
E 1. The sets and functions considered will always be measurable, even if this is not

stated explicitly.
By a denumerable set we always mean a set which is either finite or denumerably

infinite.
We list a few Fourier series which are useful in applications. Verifications are left

to the reader.
(i) Let q(x)=}(n-x) for 0<x<2n, 0(0)=0(2n)=0.

Continued periodically c(z) is odd and

O(
- E sinvx-1 Z e--

V

W r v 2,.__m iv
(4.12)

(see also (2.8) above).
The function O(x) can be used to remove discontinuities of other functions. For it

is continuous except at x=0, where it has a jump n. Thus, if f(x) is periodic and at
x=xo has a jump d =f(xo + 0) -f(xo - 0), the difference

0(x) =f(x) - (dl n) 5(x-xo)

is continuous at xo, or may be made so by changing the value off (xo).
(ii) Let s(x) _ + 1 for 0 < x < n and a(x) _ - 1 for - n < x < 0. Then

- sin(2v- 1)x
8(X)' E (4.13)

nr 2v-1
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(iii) Given 0 < h < n, let X(x) =1 in (- h, h), X(x) = 0 at the remaining points of
(- n, 7r). The function X is even and

2h 1 m sin vh h +Z sin vhX( ) I l+ E cosvx = (4-14)x
,,_1 vh n,__m vh

where the value of (sin vh)/vh when v=0 is taken to be 1.
(iv) Let 0 < k S h, k + h < a, and let µ(x) = u4,k(x) be periodic, continuous, even,

equal to I in (0, h - k), 0 in (h + k, nr), linear in (h - k, h + k). Then

2h (1 -1 ain vh) (-)sin vkl h (sin vh)

(-i-)
sin vk

e" .2+ coa=J(4-15)
The with coefficient of u does not exceed a fixed multiple of v-a, so that SLu] converges

absolutely and uniformly. Using Theorem (0.3) below we see that the sign ' -' in
(4.15) can be replaced by the sign of equality.

For k = 0 the series (4.15) go into the series (4.14).
(v) The special case h = k of (4.15) deserves attention. Then

2h 1 sin vh 2 h +m sin vh a
Xh(x)=kh.h(x) rr + i ( vh ) cosvx]=n ( vh ) e"=. (416)

The function A,, (x) is even, decreases linearly from I to 0 over the interval 0 5 x < 2h,
and is zero in (2h, n). It is useful to note that the coefficients of S[A] are non-negative.
Using the remark made above that S[A] converges to A and setting x = 0, we have the
formula +- (sin vh 2 _ nsin

) 4 17W

(
A' ( )

which will be applied later.
The functions u can be expressed in terms of the A's:

fik.k = 2 (k + 1) X}v.+k) -
2 (k -1) X}(h-k) (4'18)

Since both sides here are even functions of x and represent polygonal lines, it is enough
to check the formula for the values of x corresponding to the vertices, that is, for x = 0,
h + k, rr.

A is often called the triangular, or roof, function and u the trapezoidal function.
(vi) Considering the Fourier series of the function a-' x, 0 < x < 2rr, where a is any

real or complex number, but not a real integer, we obtain the development

7r m einz

sin rra n -. n+a
This degenerates to (4.12) when a - 0.

(4.19)

5. Fourier-Stieltjes series
Let F(x) be a function of bounded variation defined in the closed interval 0 < x < 2n.

+'0
Let us consider the series with coefficients given by the formula

e-"idF(t) (v=0, ± 1, ± 2, ...), (5.1)
2rr

0
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the integrals being Riemann-Stieltjes integrals. The numbers c, will be called the
Fourier-Stieltjes coefficients of F, or the Fourier coefficients of dF. We write

dF(x) E cY e;YZ

and call the series here the Fourier-Stieltjes series of F or the Fourier aeries of dF; we
denote it by S[dF]. If F(x) is absolutely continuous, then S[dF] = S[F']. We may also
write S[dF] in the form (4.6) with

l 2n 2n

J
cosvtdF(t), by= f sinvtdF(t).

IT o n o
It is convenient to define F(x) for all x by the condition

F(x + 2n) - F(x) = F(27r) - F(0), (5.2)

and this can be done without changing the values of F for 0 <x _< 2n. In the formulae
for Fourier-Stieltjes coefficients we may then integrate over any interval of length 27r.

If we change F(x) in a denumerable set, and if the new function is still of bounded
variation, the numbers (5.1) remain unchanged. Thus we can assume once for all
that the F we consider have no removable discontinuities.

The function F(x) defined for all x by (5.2) is periodic if and only if F(21r) - F(0)
vanishes, i.e. if co= 0. The difference

0(x) = F(x) - cox
is always periodic. For

A(x + 21r) - 0(x) = F(x + 2n) - F(x) - 2rrco = 0.

A function F(x) of bounded variation satisfying (5.2) may be called a mass distribu-
tion (of positive and negative masses, in general) on the circumference of the unit
circle. If (a,,8) is an arc on this circumference and 0 <,8 - a < 27r, then F(f) - F(a) is,
by definition, the mass situated on the semi-open are a < x <f. The series

Zei"Z=2(}+cosx+cos2x+...)

is the Fourier-Stieltjes series of a mass 2n concentrated at the point x = 0 of the
circumference.

6. Completeness of the trigonometric system
This theorem is a simple corollary of results we shall obtain later, but the following

elementary proof, due to Lebesgue, is of interest in itself.
Let f (x) be an integrable function whose coefficients a0, al, bl, ... all vanish, so that

J

n
f(x)T(z)dx=0 (6.1)

for any trigonometric polynomial T (x). We have to show that f (x) = 0. Let us assume
first that f (x) is continuous and not identically zero. There is then a point xo and two
positive numbers e, 8 such that I f (z) I > e, say f (x) > e, in the interval I = (x0 - d, xo + 6).
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It will be enough to show that there is a sequence T,(x) of trigonometric polynomials
such that

(i)
T (x) tends uniformly to +oo in every interval I' interior to I;

(iii) the T are uniformly bounded outside I.
For then the integral in (6.1), with T = T,,, may be split into two, extended respec-
tively over I and over the rest of ( - n, n). By (i), the first integral exceeds

e I' min
xcI'

and so, by (ii), tends to +oo with n. The second integral is bounded, in view of (iii).
Thus (6.1) is impossible for T =T with n large.

If we set t(x)=1 +cos (x-X0) - coe

then t(x) > 1 in I, t(x) > 1 in I', I t(x) 5 1 outside I. Conditions (i), (ii) and (iii) being
satisfied, the theorem is proved for f continuous.

Suppose now that f is merely integrable, and let F(x) = f
x

fdt. The condition ao = 0

implies that F(x + 2n) - F(x) = 0, so that F(x) is periodic. Let Ao, A1, B1, ... be the
coefficients of F and let us integrate by parts the integrals

f F(x) cos vxdx, r F(x) sin vxdx
J

for v=1, 2, .... Owing to the periodicity of F, the integrated terms vanish, and the
hypothesis a, = b1= as = ... = 0 implies that A, = B, = A, _ ... = 0. Let Ao, A B,, ...
be the coefficients of F(x) - A0. Obviously A,= A' , = B, = ... = 0. Thus F(x) - Ao, being
continuous, vanishes identically and f = 0. This completes the proof. As corollaries
we have:

(6.2) THEOREM. If fi(x) and fi(x) have the same Fourier 8erie8, thenf1 =- fg.

(6.3) THEOREM. If f(x) i8 continuous, and S[f] converges uniformly, its sum ie f(x).

To prove (6.2) we observe that the coefficients off, - fi all vanish, so that f, -f, - 0.
To prove (6.3), let g(x) denote the sum of S[ f ]. Then the coefficients of S[f) am the
Fourier coefficients of g (see (4.10)). Hence S[ f J = S[g], so that f-= g and, f and g being
continuous, f= g. (For a more complete result see Chapter III, p. 89.)

7. Bessel's inequality and Parseval's formula
Let 6o, 0 ... be an orthonormal system of functions over (a, b) and let f (z) be a

function such that I f (x) 12 is integrable over (a, b). We fix an integer n > 0, set

0=7o0o+Y,01+...+Y"O.
and seek the values of the constants ya, y .... ya which make the integral

J= f blf-0J-dx
a

(7.1)

a minimum.
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If we observe that
b b

f I(Dl2dx= f
a a

b rbJfdx(D R)dx
a

where c0, c1, ... are the Fourier coefficients off with respect to {0,,},, we have

=JeIf12dx+jel I2dx-2,W f(dx
a a a n

=f I f I2dx+E I y. 12- 2REc.Yy.
a

Adding and subtracting E I c I2 we get

J= f elf-(PI2dx=Jbl fl2dx-EIC.I2+EIc,-Y.I2 (7'2)
a a r-0 v-0

It follows that J attains its minimum if y,. = c, for v = 0, 1, ..., n. Thus

(7.3) THEOREM. If I f (X) 12 is integrable over (a, b) and if m = ya ¢o + ylol + ... +'Y 0,,,
where ¢o, qS1, ..., form an orthonormal system over (a, b), the integral (7.1) is a minimum
when (D is the n-th partial sum of the Fourier series off with respect to

On account of (7.2) this minimum, necessarily non-negative, is

eI f I2dx- E I '2. (7.4)a v-0
Hence

E I cR 12 Je 1 f l2 dx.
v-0 a

This inequality is called Bessel's inequality. If is infinite we may make n tend to
infinity, when Bessel's inequality becomes

l2dx.
v0 a

Since the system {e"=J(21r)i) is orthonormal over (0, 277), we have

(7'5)

1

r2n

ICvI2<
If,2dx,

where the c, are defined by (4.3). If f is real-valued this gives
1 2'

Jao+ S, (a2+b2) <_ - f2dx.
v=1 IT o

It follows that the Fourier coefficients a, b, c tend to 0 with 1/v, provided that I f I2
is integrable.

In some cases the sign ' - < ' in (7.5) can be replaced by '='. (From the preceding
argument it follows that this is certainly the case if the Fourier series off with respect
to {0,} converges uniformly to f and (a, b) is finite.) The equation we then get is called
Parseval's formula. It will be shown in Chapter II, § 1, that Parseval's formula holds
for the trigonometric system.
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Remark. If the functions 0. form on (a, b) an orthonormal system with respect to
a non-decreasing function e,)(x), Theorem (7.3) remains valid provided we replace the
integral (7 1) by b

fnII- j2 (x)

This remark will be useful in trigonometric interpolation (see Chapter X).

8.t Remarks on series and integrals
Let f(x) and g(x) be two functions defined for x > x0, and let g(x) $ 0 there. The

symbols f(x)=o(g(x)), f(x)=O(g(x))
mean respectively that f (x)lg(x) -> 0 as x -i- + oo, and that f (x)lg(x) is bounded for x
large enough. The same notation is used when z tends to a finite limit or to -co, or
even when x tends to its limit through a discrete sequence of values. In particular, an
expression is o(1) or 0(1) if it tends to 0 or is bounded, respectively.

Two functions f(x) and g(x) defined in the neighbourhood of a point xe (finite or
infinite) are called asymptotically equal if f(x)/g(x) --> 1 as x->xe. We write then

f(x)~g(x) (x->x0)
If the ratios f(x)/g(x) and g(x)/f(x) are both bounded in the neighbourhood of xo, we
say thatf(x) and g(x) are of the same order as x-*xo, and write

f(x)-g(x) (x-xa).
Let u0, ul, u2, ... be a sequence of numbers and let

tn=u0+u1+...+un (n=0, 1,...).
A similar notation will be used with other letters. Let a be finite, and let f(x) be a
function defined in a finite or infinite interval a _< x < b and integrable over every
interval (a, b'), b' < b. We shall write

F(x) = f aaf(t)dt (a_< x<b).

(8'I) THEOREM. Suppose that f(x) and g(x) are defined for a_< x < b and integrable
over each (a, b') (b' < b), that g(x) 3 0, and that G(x) -> + oo as x --> b. Then, if f (x) = o(g(x))
as x - > b, we have F(x) = o(G(x)).

Suppose that I f(x)/g(x) 1 < f e for xe < x < b. For such x,

I F(x)1 f Z If Idt, f z'IIidt+}eG(x).
a o

Since G(x) -* ox,,, the last suns is less than eG(x.) for x close enough to b; and since a is
arbitrary, the result follows.

In this theorem the roles played by a and h can obviously be reversed. If a = 0 and
b +oo, it has the following analogue for sums.

f The remainder of this chapter is nut concerned with trigonometric series. It contains a eopcise
presentation of various points from the theory of the real variable which will be frequently used later.
Many of the results are familiar and we assemble them primarily for easy reference. We do not attempt
to be complete. Some of the theorems, moreover, will be used later in a form more general than that in
which they are proved here, but only when the general proof is essentially the same. (To give a typical
example, the inequalities of Holder and Minkowski will be applied to Stieltjes integrals although we
prove them here only for ordinary Lebesgue integrals.) The material is not for detailed study, but only
for consultation as required.
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(8.2) THEOREM. Let and be two sequences of numbers, the latter positive. If
un = o(vn) and V. -> + oo, then Un = o(V ).

The proof is the same as that of (8.1).

(8.3) THEOREM. Suppose that the series Iv,, converges, that the v'a are positive, and
that UP, = o(v,). Then

UPI + un+1 +... = o(vn + vn+1 +...).
This is obvious.

(8.4) THEOREM. Let f(x) be a positive, finite, and monotone function defined for x 3 0,
and let

F(x)=J0 fdt, F,,=f(0)+f(1)+...+f(n).

Then (i) if f (x) decreases, F(n) - F tends to a finite limit ;

(ii) if f (x) increases, F(n) < F, < F(n) + f (n).

To prove (i) we note that f (k) < F(k) - F(k - 1) < f(k - 1) implies

0 < F(k) - F(k -1) - f(k) < f (k - 1) - f(k) (k= 1, 2, ... ). (8.5)
W

Since E{ f (k - 1) - f (k)} converges, so does the series {F(k) - F(k -1) - f (k)}; and it is

enough to observe that its nth partial sum is
Case (ii) is proved by adding the obvious inequalities

f(k-1)<.F(k)-F(k-1)<f(k) (k=1,2,...,n).

(8.6) THEOREM. Let f(x) be positive, finite and monotone for x -> 0. If either (i) f(x)
decreases and F(x) -> oo, or (ii) f (x) increases and f (x) = o(F(x)), then

Fn ... F(n ).
This follows from (8.4).

(8.7) THEOREM. Let f(x), x 3 0, be positive, monotone decreasing and integrable over
(0, +oo), and let

F*(x)=J fdt, F*n=f(n)+f(n+1)+....

Then F*,.l < F*(n) a F.

If in addition f(x)=o(F*(x)), then F,*, L- F*(n).

It is enough to add the inequalities f(k+ 1) <F*(k)-F*(k+ 1) <f(k) for k=n,
n+ 1, .. .

Examples. From (8.6) and (8.7) it follows that
n na+1 m nl-Q

E ka ^' -+1 , k-ft -
k-I ak-n -,

for a>-1,fi>1.
Taking f(x)= 1/(1 + x), n = m - 1, we obtain from (8.4) that the difference

1+2+3+...+In -logm

(8.8)

tends to a finite limit C (Euler's constant) as m -* oo.
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A more precise formula is sometimes needed, namely,

1 1 /I\1+2+...+m=logm+C+U

[I

(8.9)

To prove this, we observe that, forf(x) = 1/(1 + x), the right-hand side of (8-5) is 1/k(k+ 1). Hence
the mth partial sum of the series with terms F(k) - F(k - 1) -f(k) differs from the sum of the whole
series by less than

1 1 _ 1

(m+1)(m+2)+(m+2)(m+3)+ m+1

and, arguing as in the proof of (8.4) (i), we get (8-9).

9. Inequalities
Let q(u) be a non-negative function defined for u 3 0. We say that a function Ax)

defined in an interval (a, b) belongs to the class L#(a, b), in symbols f e L#(a, b), if
¢(I f (x) 1) is integrable over (a, b). If there is no danger of confusion, the class will be
denoted simply by L. In particular, if f is periodic, f e L4 will mean f E LO(0, 2n). If
¢(u) = u', r > 0, L. will be written L'. More generally, we shall occasionally write O(L)
for L.; thus, for example, I.a(log+ L)fl will denote the class of functions f such that
f Ia (log+ I f I )f is integrable.t

We shall also systematically use the notation

r[f; a, b] = J f(x)
I'dx}iir,

ir[f; a, b] = {b
l fb

n
I f(s) I'dx}'.

If (a, b) is fixed we may simply

write)

T1r[f ] and Rl,[ f]. Unlike 9R 9 is defined only if
(a, b) is finite.

Similarly, given a finite or infinite sequence a = and a finite sequence

b = {b1, bE..... bN},

we write e,[a] = {E I a I'}'/' ,

Instead of L', Y)11, %1, S1 we write L, 811, 2l, G.
Let 40(u), u > 0, and f/r(v), v 0, be two functions, continuous, vanishing at the

origin, strictly increasing, and inverse to each other. Then for a, b 0 we have the
following inequality, due to W. H. Young:

r
ab < (a) + F(b), where c(x) =

I

x bdu, '1''(y) = f
o

rdv. (9.1)
D

This is obvious geometrically, if we interpret the terms as areas. It is easy to see
that we have equality in (9.1) if and only if b = 0(a). The functions ( and 'I'' will be
called complementary functions (in the sense of Young).

On setting 95(u) = ua, VI(v) = v114 (a > 0), r = I + a, r' = 1 + 1/(X, we get the inequality

a' b'ab <-+- (a, b _> 0), (9.2)
r r

where the 'complementary' exponents r, r' both exceed 1 and are connected by the
relation 1/r + 1/r' = 1.

+ By log+ If we mean log If wherever If (; 1, and 0 otherwise.
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This notation will be used systematically, so that, e.g., p' will denote the number
such that 1/p+l/P'=1.

If r = r' = 2, (9.2) reduces to the familiar inequality tab < a2 + bs. Clearly, either
r < 2 < r' or r' < 2 < r. If r -- 1, then r'--),. oo, and conversely. The connexion between
r and r' may also be written rr'=-r-1

Ifg1<((fff)+`F(fgl)
over a < x < b, we see that fg is integrable over (a, b) if f e L,(a, b), g e L,(a, b).

In particular, fg is integrable if f e L', g e L' .
Let us now consider (real or complex) sequences A = {An}, B = {Bn}, AB = {A n Bj

and let us assume that (,[A] = Cam; [B] = 1, r > 1. If we sum the inequalities

A.Bnf fAr f',+LBnf'

forn= 1,2,..., we get G5[AB]<1.
Now let a = {an} and b = {bn} be any two sequences such that S,[a] and 6,,[b] are

positive and finite, and let us set A n = an/C,,,,[a], Bn = bn/CB,,[b] for all n. Then
C,[A] = 6,[B] = 1, so that S[AB] < 1. In other words,

E f anbn f < G`,[a] (Br[b],

and a fortiori f ).nnbn f <',[a] G,[b].

(9.3)

(9.4)

These inequalities are called Holder's inequalities. They are trivially true if 6,[a] = 0
or CS,[b] = 0.

Holder's inequality for integrals is

bffdx T,[f) Vergl, (9.5)

and its proof is similar to that of (9.4), summation being replaced by integration.
If r = r' = 2, (9.4) and (9.5) reduce to the familiar Schwarz inequalities.

The remark concerning the sign of equality in (9.1) shows that we have equality in
(9.2) if and only if a' = b'. Hence if we assume that (,[a] and (,[b] are distinct from
0 the proof of (9.3) shows that the sign of equality holds there if and only if f A. f' = f B. f'
for all n; or, again, if and only if f an I,/f bn f' is independent of n, with the under-
standing that a ratio 0/0 is to be disregarded. If (,[a] = 0, or 6,.[b] = 0, we have auto-
matic equality in (9.3), and at the same time f an N f bn Iris 'independent of n', so that
the rule is in this case also valid. Taking into account that the left-hand sides of (9.3)
and (9.4) are equal if and only if arg (anbn) is constant for all n for which a. bn +10, We
come to the following conclusion:

(9.6) TREOREM. A necessary and sufficient condition for equality in (9.4) is that both
sequences I an f '/ f bn 1' and arg (an bn) be independent of n (disregarding forms 0/O and arg 0) .
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An argument similar in principle shows that
(9.7) THEOREM. The sign of equality holds in (9-5) if and only if (i) the ratio

I f(x) I"/I g(x) I' is constant for almost all x for which it is not 0/0, (ii) arg{f(x)g(x)) is
constant for almost all x for which fg $ 0.

The inequality (9-5) (and similarly (9-4)) may be extended as follows:

(9.8) THEOREM. I f rl, r2, ... , rk are positive numbers such that l /r1 + 1/r,+... + '/k= 1,
and if fi E Lri(a, b) for i = 1, 2, ..., k, then

lf2 ... fkdxI l < 11r,[fiJ Vr[f2] ... 9Rrk[fk]fa f
The proof (by induction) is left to the reader.
A number M is called the essential upper bound (sometimes the least essential upper

bound) of the function f (x) in the interval (a, b) if (i) the set of points for which f (x) > M
is of measure 0, (ii) for every M' < M the set of points for which f (x) > M' is of positive
measure. Similarly we define the essential lower bound. If both bounds are finite, f(x)
is said to be essentially bounded. (An equivalent definition is that f(x) is essentially
bounded if, it is bounded outside a set of measure 0, or, again, that f-g where g is
bounded.)

(9-9) THEOREM. If M is the essential upper bound of I f(z)I in a finite interval (a, b),
then 9R,[f;a,b]-->M as r->+oo,

We may suppose that M > 0. Let 0 < M' < M, and let E be the set of points where
f(x) I > M'. Then IEI>0,

r[f]>-M'I E11r,
so that lim inf 971,[ f ] M'. Hence lim inf 9)'lr[ f J >'M- In particular, the theorem is

HaD
proved if M = + co. This part of the proof holds even if b - a = + co.

Suppose then that M < + oo. Since Dlr[f ] < M(b - a)'/r, we have lim sup 9J2,[ f ] < M,
and this, with the inequality lim inf 1r[f ] > M above, proves the theorem.

If b -a= + co, (9.9) is still true provided we assume that 9)l,[f ] is finite for some
r = ro > 0. (Otherwise the result is false; take, for instance, a = 2, b = + co, f (x) = 1/log x.)
We have to show that lim sup 9R,[ f J < M < + oo. Dividing by M, we may assume that
M = 1. In order to show that lim sup T1,[f ] < 1, we write (a, b) = I + R, where I is a

finite subinterval of (a, b) so large that)R I f 119 dx < 1. Since I f I < 1 almost everywhere,

r r (

J
l f Irdx=JI f lydx+ jl fI R

for r > r0. Hence Jim sup"sO1r[ f J < 1.
Since any sequence ao, al, ... may be treated as a function f (x), where f (x) = an for

n < x < n + 1, we see that G,[a] tends to max I ar, I as r -* oo, provided that (,[a] is finite
for some r>0.

In virtue of (9-9), it is natural to define U& [ f; a, b] as the essential upper bound of
I f(x) I in (a, b). By L°° we may denote the class of essentially bounded functions. The
inequality (9-5) then remains meaningful and true for r = oo, r'= 1.

Let a = {an}, b = be two sequences of numbers, and let a + b = [a. + b.). The
inequality Gyr[a+b] <6,[a]+E5r[b] (r> 1) (9-10)
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is called Minkowski's inequality. To prove it for r > I (it is obvious for r =1), we write

Ian + bn I r E Ian + bn j r-1 I an I+.E I an + bn j r-1 I I bn I,

and apply Holder's inequality, with exponents r' and r, to the sums on the right. We
get S,r[a+b]<CS,'-'[a+b]Cyr[a]+c -'[a +b]Sr[1y],

from which (9.10) follows, provided Sr[a + b] is finite. Hence (9.10) holds when {an}
and are finite, and so also in the general case by passing to the limit.

A similar argument proves Minkowski's inequality for integrals

9Rr1f+91<9R,1fJ+9Rr19l (r>1), (9.11)

which implies that if f and g belong to L'so doesf+g.
Let h(x, y) be a function defined for a < x -< b, c < y < d. An argument similar to that

which leads to (9.10) and (9.11) also gives the inequality

tfa f a h(x, y) dy
C

rdxllh<-
(r>1)

o
(9.12)

which may be considered as a generalized form of Minkowski's inequality since it
contains (9.10) and (9.11) as special cases. For if (c, d) = (0, 2), h(x, y) =f(x) for 0 < y < 1,
h(x, y) = g(x) for 1 < y < 2, (9.12) reduces to (9.11). If (c, d) = (0, 2), (a, b) = (0, + ao),

and if for n < x < n + 1 we set h(x, y) = an or h(x, y) = bn, according as 0 < y < 1 or
1 <y < 2 (n= 0, 1, ...), (9.12) gives (9.10).

The inequality (9.12) can also be written slightly differently. Let

h-(x, y) dy.H(x) = fca

OT

Then Tlr[H(x)]< :[h(x,y)]dy,
C

where 91t; means that integration is with respect to x.
If 0 < r < 1, (9.10) and (9.11) cease to be true, but we have then the substitutes

(S,ja+b]«;[a]+a;[b], 97l;[f+g]<912;[f]+93l [g] (0<r<1). (9.13)

These are corollaries of the inequality (x + y)' < Zr + y', or, what is the same thing,

(t>,0,O<r<1).

To prove the latter we observe that (I + t)r - 1 - t' vanishes for t = 0 and has a negative
derivative for t > 0.

In this connexion we may note in passing the inequality (a consequence of the last
one) IEan I'<F.Ian I' (0<r<1).

(9.14) THEOREM. Given any function F(x), a < x < b, and a number 1 < r < + oo, we have

9Jlr[F;a,b]=sup ` f (9.15)
a a

where the sup is taken over all G with 9J1; [G; a, b] < 1. The result holds if 911,[F] = + ao.
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We may suppose that 931r[F] > 0. Let Io denote the integral on the right. By Holder's
inequality,

11o I _< T1r[F'] 9r[G) _< 2IR,[F ),

a result true even if 931,[F] = +oo. On the other hand, if 931,[F] < +oo, we set

Go(x) = I F(x) I,-'sign F(x)/931'-'[F] for r_>1.

We verify that fl; [Gb] = 1, loo = 911,[F]. This proves (9-15) if 931r[F] is finite.
If ?r[F] = +oo, we have to show that there exist functions G with Tl, [G] _< I and

such that 1o exists and is arbitrarily large. Suppose first that b - a < +oo, and let
F4(x) denote the function equal to F(x) where I F(x) I s n, and to 0 otherwise. Let
G"(x) be derived from F"(x) in the same way as Go was derived from F. If n is large
enough, 9l,[F"] is positive (and unite), so that 9R,-[G7'] = 1 but

bIC = f FG"dx= faF-G-dxb=R,[F"]
"

is arbit rarily large with n.
If (a, b) is infinite, (0, +oo) for instance, we define F"(x) as previously, but only in

the interval 0 < x 5 n, with F"(x) = 0 outside. This ensures the finiteness of U ,[Fn]
for every n, and the rest of the argument is unchanged.

Theorem (9.14) also holds for r = oo. The proof of I Io I Jlr[F] remains unchanged
in this case. On the other hand, if M is the essential upper bound of I F 1, and if
0 < M' < M, the set E of points where I F I e M' is of positive measure. If we choose
a subset E1 of E with 0 < I E, I < cc, then the function G(x), equal to sign F(x)/I El
in E1 and to 0 elsewhere, has the property

b p
931;[0]=f 101dx=1, Ic=IE1IEIFjdz3M',

so that sup IIM.
We conclude with the following theorem:

(9.16) THEOREM. Let f (x) be a non-negative function defined for x > 0, and let r > 1,

s < r - 1. Then if f1(x)x8 is integrable over (0, co) 8o i8 {x-'F(x)}r xr, where F(x) = f fdt.o

Moreover, ( )

f xv dx,
(r-a- )rJ:o

}'(x)xdx. (9-17)fol X I'
We may suppose that f * 0. Holder's inequality

fOJ°
Fre,4t_s/rdt <_ (f0f rtAdt)

(f0t-8;(r-1)
dt)

shows that f is integrable over any finite interval and that F(x) = as x - 0.
The last estimate holds also as x-* oo. For, applying the preceding argument to the
integral defining F(x) - we have

F(x) - F(C) < ex<r-I -'ur

if x > 6 and $ _ 6(e) is large enough. Hence F(x) < 26X(r-l-s)Ir for large x; that is,

F(x) = o(x(r-1- Y') as x oo.
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Now let 0 < a < b < co. Integrating F'xs-'dx by parts and applying Holder's
p

a

a

inequality to
f

b F'-1fx9-r+I dx = fa (fxsh) (F'-lxs-r}l-11r) dx, we obtain

1((

a
\-redx -[Fr ,-r+1Ja+r-B-

l

f.b
x)rxe

dx)V"

Divide both sides by the last factor on the right, which is positive if a and 1/b are
small enough. Since the integrated term tends to 0 as a -> 0, b -> m, we are led to (9.17).

The cases 8 = 0 and s = r - 2 are the most interesting in application.

10. Convex functions
A function c(x) defined in an open or closed interval (a, b) is said to be convex if

for every pair of points P P2 on the curve y = 0(x) the points of the arc P1 P2 are below,
or on, the chord P,P2. For example, x', with r>_ 1, is convex in (0, +m).

Jensen's inequality states that for any system of positive numbers p,, p2..... p,,,
and for any system of points x x2, ..., x in (a, b),

0((p1x1-I-P2x2+.+Pnxn} <PIO(xi)+...+P.O(xn)
10.1\-PI +p2+...+pn I p1+...+pn ( )

For n = 2 this is just the definition of convexity, and for n > 2 it follows by induc-
tion. Zero values of the p's may be allowed provided that Ep, + 0. If - ¢(x) is convex,
O(x) is called concave. Linear functions are the only ones which are both convex and
concave. Concave functions satisfy the inequality opposite to (10.1).

Let P,, P, P9 be three points on the convex curve y = 0(x), in the order indicated.
Since P2 is below or on the chord P1P2, the slope of P1P2 does not exceed that of P1P2.
Hence, if a point P approaches P1 from the right the slope of PP is non-increasing.
Thus the right-hand side derivative D+#(x) exists for every a < x < b and is less than + m.
Similarly, the left-hand side derivative D-95(x) exists for every a < x < b and is greater
than - oo.

If P1, P, P2 are points on the curve, in this order, the slope of P1P does not exceed
that of PP2. Making P, --> P, P2 -> P, we have

-m<D-O(x)<D+O(x)<+m (a<x<b). (10.2)

In particular, ¢(x) is continuous in the interior of (a, 6). The function 0 may, how-
ever, be discontinuous at the end-points a, b (take the example fi(x)= 0 for 0 < x < 1,
0(0)=0(1)=1)

From the proof of the existence of D+O(xo) and D-O(xa), and from (10.2), we see
that every straight line l passing through the point (x0, 0(xo)) and having a slope k
satisfying D-qS(xo) < k < D+O(xa) has at least one point in common with the curve
y = ¢(x), and that the curve is above or on 1. Such a straight line is called a supporting
line for the curve y = ¢(x).

Let x1 < x < x2 be the abscissae of P1, P, P2. The slope of P1 P does not exceed that of
PP2. The former is at least D+c(x1), the latter at most D-¢(x2) <D+0(x2); thus

D+O(x1) < D-O(x2), D+0(x1) <D+O(xs) (x1 <x2). (10'3)
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The second inequality shows that D+c(x) is a non-decreasing function of x. The same
holds for D-O(x). Since D+q(x) is non-decreasing, it is continuous except possibly at
a denumerable set of points. Let x be a point of continuity of D+O and let x1<x.
Then, by (10.3) and (10.2),

D+5(x1) 5 D c(x) D+O(x)

Since D+O(x1) D+c(x) as x1-ax, we see that D-O(x) = D+O(x) and so 0'(x) exists and
is finite. Summing up we have:

(l0.4) THEOREM. A function O(z) convex in an interval (a,b) is continuous for
a< x < b. The one-sided derivatives of 0 exist, are non-decreasing and satisfy (10.2).
The derivative 0'(x) exists except possibly at a denumerable set of points.

We have seen that the continuity of qi is a consequence of convexity. If, however,
we assume that O(x) is continuous, we may modify the definition of convexity slightly.
A continuous function O(x) is convex if and only if, given any arc P1P2 of the curve,
there is a subarc P,P2 lying below or on the chord P1P2. The condition is obviously
necessary. Suppose that it is satisfied, but q(x) is not convex. The curve would then
contain an arc P, P. for which a certain subarc P, Pa would be everywhere above the
chord P, I2. Moving P, to the left, P$ to the right, we may suppose that P,' and Pz are
on the chord P1 P2 and the rest of the arc P, P2 is above that chord. But then no subarc
of P, P2 is below the chord P, P2, contrary to hypothesis.

A convex function has no proper maximumt in the interior of the interval of definition.
For if xo were such a maximum, the arc y = fi(x), I x - xo 8 would, for 6 small enough,
be partly above the chord.

(10.5) THEOREM. A necessary and sufficient condition that a function 0(x), continuous
in (a, b), should be convex is that for no pair of values a, f1 should the sum O(x) +ax+f
have a proper maximum in the interior of (a, b).

A sum of two convex functions being convex, the necessity of the condition is evident.
To prove its sufficiency, suppose that 0(x) is not convex. There is then an arcP1P2
of the curve with all points above or on the chord P1 P2. Let x1, x2 be the abscissae of
P1, P2, and let y = - ax - fl be the equation of the chord. Then O(x) + ax +,B vanishes
at the end-points of (x1, x2) and takes some positive values inside; it has therefore a
proper maximum inside (x1, x2) and so also inside (a, b).

The following generalizations of ordinary first and second derivatives are useful.
Given an F(x) defined in the neighbourhood of xo, let us consider the ratios

F(xo+h)-F(xe-h)
2h '

F(xa + h) + F(x(, - h) - 2F(xo)

The limits (if they exist) of these expressions, ash -> 0, will be called respectively the first
and second symmetric derivatives of F at the point xo, and will be denoted by D1F(xe)
and D2F(xp). The limit superior and the limit inferior of the ratios (10.6) are called the

i We say that ¢(z) has a proper inaximurn at xe if O(x) in a neighbourhood of xp, but 0 is
not constant in any neighbourhood of zs.
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upper and the lower (first or second) symmetric derivatives and will be denoted by
D1F(xo), D1 F(xo), n2 F(xo), D2 F(x(,). The second symmetric derivative is often called
the Schwarz (or Riemann) derivative.

If F'(xo) exists, so does D1 F(xo) and both have the same value. For the first ratio (10.6)
is half the sum of the ratios {F(xo + h) - F(xo)}/h and {F(xo) - F(xa - h)}/h, which tend
to F'(xa).

If F'(xo) exists, so does D2F(xo) and both have the same value. For Cauchy's mean-
value theorem applied to the second ratio (10.6), h being the variable, shows that it
can be written as {F'(xo + k) - F'(x(, - k))/2k for some 0 < k < h, and the last ratio tends
to F"(xo) as k -+ 0.

These proofs actually give slightly more, namely: (i) both D1F(xo) and D1F(xo)
are contained between the least and the greatest of the four Dini numbers of F at xa;
(ii) if F'(x) exists in the neighbourhood of x0, then both D2F(xo) and D2F(xo) are con-
tained between the least and the greatest of the four Dini numbers of F' at xo.

(10.7) THEOREM. A necessary and sufficient condition for a continuous y5(x) to be
convex in the interior of (a, b) is that D2 O(x) > 0 there.

We may suppose that (a, b) is finite. Since

O(x + h) + O(x - h) - 20(x) _ {o(x + h) - 95(x)} - {0(x) - 0(x - h)} > 0

for a convex 0, the necessity of the condition (even in the stronger form D2c> 0)
follows. To prove the sufficiency, let us first assume slightly more, namely, that D2 0 > 0
in (a, b). If 0 were not convex, the function Vr(x) = 0(x) + ax +,6 would, for suitable
a,,8, have a maximum at a point xo inside (a, b), so that tr(xo+h) +tk(xo- h) - 2 r(xo)
would be non-positive for small h. Since this expression equals

O(xo + h) + O(xo - h) - 2q(xo),

it follows that D21(xo) _< 0, contrary to hypothesis.
Returning to the general case, consider the functions 0n(x) = 0(x)+x'/n. We have

D, 2On(x) = D20(x) + 2/n > 0,

so that 95n is convex. The limit of a convergent sequence of convex functions is convex
(applying (10.1) with n = 2); and since On --. 0, 0 is convex.

A necessary and sufficient condition for a function 0 twice differentiable to be
convex is that O"> 0. This follows from (10.7).

Suppose that 0(u) is convex for u > 0, and that uo is a minimum of ¢(u). If 0(u) is not
constant for u > uo, then it must tend to + ao with u at least as rapidly as a fixed positive
multiple of u. For let u1 > uo, c5(u1) # O(uo). Clearly 0(u1) > d(uo). If Po, P1, P are
points of the curve with abscissae uo, u1, u, where u> u1, the slope of P0P is not less
than that of POP1. This proves the assertion.

If 0(u) is non-negative convex and non-decreasing in (0, +oo). but not constant, the
relation f e Lo(a, b), b - a < co, implies f e L(a, b). For then there is a k > 0 such that
0(I f (x) I) > k I f (x) I , if I f (x) I is large enough.
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Jensen's inequality for integrals is

f fbx)p(x)dx f O{f(x)}p(x)dx

fp(x)dx
b

f p(x) dx
a

[I

(10.8)

the hypotheses being that c(u) is convex in an interval a < it <,B, that a -<f(x) <9 in
a < x < b, that p(x) is non-negative and * 0, and that all the integrals in question exist.

Let
Y= fabfpdxla f bpdx, (10.9)

so that a < y -<,8. Suppose first that a < y <,B, and let k be the slope of a supporting line
of 0 through the point (y, 0(y)). Then

qS(u) - O(y) % k(u - y) (a < u < f ).

Replacing here u by f (x), multiplying both sides by p(x), and integrating over a < x < b.
we get

b

rfbcb{f(x)}p(x)dx-cb(Y)f
p(x)dx_> k{ f f(x)p(x)dx-Y f bp(x)dx}=0,a a

by (10.9). This gives (10.8). If y=,8, (10.9) can be written (f - f) pdx = 0, which
a

shows that f (x) =,B at almost all points at which p > 0. But then both sides of (10.8)
reduce to 0(f). Similarly if y=a.

Jensen's inequality for Stieltjes integrals is
01

f f(x)do,(x) f
b b (10.10)

f dw(x) Jdw(z)

where w(x) is non-decreasing but not constant. The proof is similar to the one above.

(10.11) Txao$sts. A necessary and sufficient condition that ¢(x) (a < x < b) should be
convex is that it should be the integral of a non-decreasing function.

If 0(x) is convex, then, as is easily seen, the ratio {¢(x+h)-¢(x)}lh is uniformly
bounded for x,x+h belonging to any interval (a', Y) interior to (a, b). Thus fi(x) is
absolutely continuous, and therefore is the integral of 0'. The latter exists outside
a denumerable set and is non-decreasing on the set where it exists. Completing
0' at the exceptional points so that the new function is still non-decreasing, we see
that 0 is the integral of a non-decreasing function. Conversely, suppose that

0(x)=C+ f: where a<c<b and V'(t) is non-decreasing in (a,b). Let (a',b')
c

be any subinterval of (a, b), and let y=l(x) be the equation of the chord through
(a', 0(a')) and (b', 0(b')). We have to show that O(x) - O(a') < l(x) - l(a') for a' < x < b',
or what is the same thing that

b'

a +" fX1 1 b' JEx-d a %rdt <b'-a
a

_
(x-a')+(b'-x)
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Z
Since the last expression is contained between f

/(x
- a') andJ /(b' - x), of which the

a s
latter is not less than the former (since i,r does not decrease), the proof of (10.11) is
completed.

Let now O(x), x>-O, be an arbitrary function, non-negative, non-decreasing,
vanishing at x = 0 and tending to + ao with x. The curve y = ¢(x) may possess dis-
continuities and stretches of constancy. If at each point xo of discontinuity of 0 we
adjoin to the curve y = O(x) the vertical segment x = x0, O(x0 - 0) < y < O(x0 + 0), we
obtain a continuous curve, and we may define a function rfr(y) inverse to O(x) by
defining /r(ya) (0 < ya < ao) to be any xo such that the point (xa, ya) is on the continuous
curve. The stretches of constancy of 0 then correspond to discontinuities of fir, and
conversely. The function /r(y) is defined uniquely except for the y's which correspond
to the stretches of constancy of 0, but since the set of such stretches is denumerable,
our choice of Vr(y) has no influence upon the integral `F(y) of V1r(y), and it is easy to see
that the inequality (9.1) is valid in this slightly more general case.

From (10.11) it follows that every function IF(x), x 3 0, which is non-negative, convex,
and satisfies the relation 0(0) = 0 and O(x)/x -* ao, may be considered as a Young's
function (see p. 18). More precisely, to every such function corresponds another
function 'la'(x) with similar properties, such that

ab < 4P(a) +`F(b)

for every a > 0, b >_ 0. It is sufficient to take for `F(y) the integral over (0, y) of the
function ?k(x) inverse to ¢(x)=D (x). Since d)(x)(x tends to +co with x, it is easy
to see that O(x) and lr(x) also tend to + oo with x. We have ab = O(a) + `F(b) if and only
if the point (a, b) is on the continuous curve obtained from the function y = 0(x).

A non-negative function fr(u) (a < u < 6) will be called logarithmically convex if

1f(t1 u 1 + t2'us) < lf'(u1) 0`'(u2)

for u1 and u2 in (a, b), t1 and t2 positive and of sum 1. It is immediate that then either
Vf is identically zero, or else 0, is strictly positive and log Vr is convex.

(10.12) TxronEM. For any given function f, and for a > 0,
(i) 21,[f] is a non-decreasing function of a;
(ii) 9)ta[ f ] and 4(a [f ] are logarithmically convex functions of a;

(iii) 9RvQ[f] and W1 jf] are logarithmically convex functions of a.

If we substitute If la for f and 1 for gin (9-5), and divide both sides byb-a, we have
2(,[f] < Xa,[f ] for r> 1. This proves (i). The result is not true for V., as may be seen
from the example a = 0, b = 2, f (x) = 1.

Let now a = a1 t1 + a2t2 with a2, t1 > 0, t1 + t2 = 1, and suppose that f belongs to both
La' and La+. Replacing the integrand I f la in 91ta by I f dI f Ias':, and applying
Holder's inequality with r= 1 / t1, r'= 1 /t2, we find

which expresses the logarithmic convexity of i))ta[ f ]. Dividing both sides by b -a,
we have the result for ?(a. Thus (ii) is proved.
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To prove (iii) we apply Holder's inequality with the exponents r=a/altl> 1,
r'= a/a8 tE. We get

7 1 Y
6If It,/a If I'-'-dG1a9 i [f] = If Ill-dx}a-

(aa 1a

1JbIf Il,a,dx/lal``
(fb I f I/

its' Ua'.a a

Dividing both sides by (b - a)a we have the result for 9va.

11. Convergence in L'
Let fi(x), f$(x), ... be a sequence of functions belonging to Lr(a, b), r > 0. If there is

a function f e L'(a, b) such that 9J2r[ f -f.; a, b] --1- 0 as n -> oo, we say that (fn(x)) con-
verges in L'(a, b) (or, simply, in L') to f(x).

(11.1) THEOREM. A necessary and sufficient condition that a sequence of functions
fn(x) E L'(a, b), r > 0, should converge in Lr to some f (x) is that ' Jlr[ f,,, - should tend to 0
as m, n -* oo.

If r> 1, the necessity of the condition follows from Minkowski's inequality, since, if
T IrU-fm] - 0, ,.[f -fn] --* 0, then

qpT1r[fm-fn] < trU-fm] + fl [f-fn]-
For 0 < r < 1, we use instead the second inequality (9.13).

The proof of sufficiency depends on the following further theorems, themselves
important.

(11.2) FATOU's LEMMA. Let g,,(x), gs(x), ... be non-negative functions, integrable over
(a, b) and satisfying

5
b
gkdx<A<+oo (k=1,2,...). (11.3)

a

If g(x) = lim gk(x) exists almost everywhere, then g is integrable and

a
gdx <A. (11.4)

Let hk(x) = inf {gk(x), gk+l(x),...}. The function hk is measurable and majorized by gk,
and so integrable. Since hk < hk+i and hk -* g, (11-4) follows from (11-3) by Lebesgue's
theorem on the integration of monotone sequences.

(11.5) THEOREM. Let be a sequence of non-negative functions, and write

In = f un dx. If Il + Is + ... < cc), then ul(x) + u2(x) + ... converges almost everywhere in

(a, b) to a finite sum. In particular un(x) - -0 almost everywhere in (a, b).

For if ul + up + ... diverged to + cc in a set of positive measure, Lebesgue's theorem
mentioned above would imply that Il + la +... = oo.

(11.6) THEOREM. If Wlr[f,,, -f,,; a, b] -* 0 as m, n-> oo, we can find a subsequence
{fn,} of {fn} which converges almost everywhere in (a, b).
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Suppose first that r >_ 1. Let et = sup SR,[ f, - f*] for m, n >, i. Since e{ - 0, we have
er, + 6"1 +... < + co if nk increases sufficiently rapidly. By Holder's inequality,

b
p m1fJfn,t-fnrai Idx<_ (11.7)

and so, by (11.5), the series I fn, I + I fn, -fn, I + I fn, -f,., I +... converges almost
everywhere in (a, b). The function f(x) =f,,, + (f,, -f,,) + ... = limf,, thus exists almost
everywhere.

To establish the existence of f (z) for 0 < r < 1, we note that

(Ifr,I+Ifn,-fr,I+...)r_<

when we integrate the right-hand side of this inequality we obtain a finite number,
provided nk increases so fast that err, + err, + ... < co.

In this proof we tacitly assumed that (a, b) was finite, but the argument holds even
if b - a = oo, since (11.7) remains valid if (a, b) is replaced by any of its finite sub-
intervals.

Returning to (I1.1), let {nk} and (e;} be the sequences of Theorem (11.6) and
f=limfrt. We have )l,[fr-fnk,]5e,n for nk> m. By (11.2), D,.[fr-f] 4e,n, and this
completes the proof.

It is important to observe that the function f satisfying is unique.
Suppose that 9R,[ f -f,,] --3,. 0, TZ,[g -f.] -* 0. If r > 1, by Minkowski's inequality,

r[f - g] < r[f -fm] + 11r[9 -fm] -' 0, so that R,[ - g] = 0, f-= g.

If 0 < r < 1, we use instead the inequality r
9N:[f - g) < 9:[f-fm] + 9rr[g -f 1

(11.8) THEOREM. Suppose that f e Lr(a, b), 0 < r < + oo. Then, given any e > 0, there
is a continuous function O(x) such that 9)1,U- ¢] < e.

Suppose first that r _> 1, b - a < + oo . There is a bounded function i(r(x) such that
V,[f -fl < je; for, taking N large enough, we may define fi(x) as equal to f wherever
I f I <N, and equal to 0 elsewhere. If we can find a continuous ¢(x) such that
9)t,[;U - ¢] < 4e, the result will follow by Minkowski's inequality. Let us set Vi (x) = 0
outside (a, b), and let 'V(x) be the indefinite integral of fr(x). The functions

Y'n(x) =n['V(x+ 1/n) - `F(x)]

are continuous and uniformly bounded, and, by Lebesgue's theorem on the differentia-
tion of the indefinite integral, tend to S!r(x) almost everywhere in (a, b). Thus
V,['/r - 1kln] 0, and it is enough to set 0 = Y' n, with n large enough. The modifications
in the case 0 < r < I are obvious.

The above argument holds if b - a = oo, provided that f (z) = 0 for I z I large enough.
The general case can be reduced to this one; for if we modify f by setting it equal to 0
outside a sufficiently large interval, we get a function f, with ¶2,[f-f1J arbitrarily
small.

(11-9) THEOREM. Suppose that a sequence of functions fn(x) converges almost every-
where in a finite interval (a, b) to a limit f (x), and that 9R,[fr; a, b] 4 M < + co for a fixed
r > 0 and all n. Then TZ f -f] - 0 as n -> ac, for 0 < r < r.
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Obviously, V[f] _< M. Let E be a set of points on which {f (x)} converges uniformly
to f (x), and let D = (a, b) - E ; I D I can be arbitrarily small. Clearly

b

Jal fa-f I'dx=JB+f (fD lfn - V dx) I
DI1-sh

by Holder's inequality. By Minkowski's inequality, if r _> 1, the last term is not greater
than (2M)" I D I 1-W, and so is arbitrarily small with I D 1. Hence 9R [fn -f] -* 0. The
proof is similar for 0 < r < 1 except that we use (9.13) instead of Minkowski's inequality.

12. Sets of the first and second categories
Let A be a linear point-set. By a portion of A we shall mean any non-empty inter-

section AI of A with an open interval I.
Let B be a subset of A. B is said to be dense in A if every portion of A contains points

of B. B is said to be non-dense in A if every portion of A contains a portion (subportion
of A) without points in common with B. A set dense in (-co, +oo) will be called
everywhere dense.

Let BcA. If B can be decomposed into a denumerable sum of subsets (not
necessarily disjoint) non-dense in A, B will be said to be of the first category on A.
Otherwise B will be called of the second category on A. When B =A, we say that A is
of the first or second category (as the case may be) on itself.

If A = (- cc, + oo), we shall simply say that B is of the first or second category, as
the case may be.

The following fact is important:

(12.1) THEO1tEH. A closed set A (in particular, an interval) is of the second category
on itself.

For suppose that A = Al + AE + ... , where the A; are non-dense on A. In particular,
there is a portion I1 A of A containing no points of A 1. In that portion we choose a sub-
portion I,A containing no points of A2. In I,A we choose a subportion IsA containing
no points of Ay, and so on. We may suppose that 1,, is strictly interior to I,,, and that
I In I -* 0. The intervals II, 4, ... have a point x in common, and since all of them contain
points of the closed set A, x must belong to A. Since xe I. A, z cannot belong to any
of A1, A8. ..., An. This being true for all n, we obtain a contradiction with the relation
A=AI+AI+....

If B1, By, ... are all of the first category on A, so is BI + BQ + ...; thus a subset B of a
closed set A and the complementary set A - B cannot both be of the first category on A.

An everywhere dense set may be of the first category (for example, any de-
numerable dense set). However, if a set E is both dense in an intervall, and a denumerable
product of open sets, then E is of the second category on I. For the complementary set
I - E is then a denumerable sum of closed sets. These closed sets cannot contain
intervals, since that would contradict the assumption that E is dense in I; so they are
non-dense in I. Hence I - E is of the first category, and E is of the second category, on I.

(12.2) THEOREM. Let f1(x), f=(x), ... be a sequence of functions continuous in a-< x _< b.
If the set E of points x at which the sequence (f (x)} is unbounded is dense in (a, b),
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E is of the second category on (a, b). (More precisely, the complement of E is of the first
category on (a, b).)

It is enough to show that E is a denumerable product of open sets. But if EN is the
set of points at which at least one of the inequalities I f, (x) I > N is satisfied, then E.v
is open, and E = E, E_ ... .

A set A c (0, 1) can be of measure 1 and of the first category, or of measure 0 and of
the second category. Thus though we may think of the second category as `richer' in
points than the first category, the new classification cannot be compared with the
one based on measure.

(12.3) THEOREM. Let fl(x), f2(x), ... be continuous on a closed set E; then
(i) if lim sup +oo at each point of E, then there is a portion P of E and a

A-i,o
number M such that f (x) 5 M for all n and all x E P ;

(ii) if f (x) converges on E to f(x), then for any e> 0 there is a portion P of E and a
number no such that I f(x) - f (x) + 5 e for x E P, n > no. (12.4)

(iii) If E is, in addition, non-denumerable (in particular, if E is perfect), then the
conclusions of (i) and (ii) hold even if the hypotheses fail to be satisfied in a denumerable
subset D of E.

(i) Let E. be the set of x such that <M for all n. Each EM is closed and
E = El + E, +.... By (12- 1), some EM is not non-dense on E and so, being closed, must
contain a portion P of E. This proves (i).

(ii) For every k = 1, 2, ..., let Ek be the set of points x e E such that I fm(x) - fn(x) I < C

for m, n > k. The sets Ek are closed and E = E, + E, +.... As in (i), some E,. contains
a portion P of E. We have I fm(x) - f (x) I < e for x E P and m, n > no ; this implies (12.4).

(iii) We begin with the extension of (i). Let x1, xs, ... be the elements of D, and let
E,, be the set E in the proof of (i) augmented by the points x1, x8, ..., x,,. E,' is closed
and E = E' , + EE +.... Hence a certain E;,,, contains a portion of E. If we take mo so
large that E,, is infinite (observe that E,cE,'c...), E,,,,, will also contain a portion
of E.

The extension of (ii) is proved similarly.

13. Rearrangements of functions. Maximal theorems of Hardy and
Littlewood

In this section, unless otherwise stated, we shall consider only functions f (x), defined
in a fixed finite interval, which are non -negative and almost everywhere finite. We may
suppose that the interval is of the form (0, a).

For any f (x), we shall denote by E(f > y) the set of points x such that f (x) > y. The
measure I E(f > y) I = m(y) of this set will be called the distribution function of f. Two
functions f and g will be called equidistributed if they have the same distribution func-
tions. It is then clear that if f is integrable over (0, a), so is g, and the integrals are equal.
If f and g are equidistributed. so are X(f) and X(g) for any non-negative and non-
decreasing X(u).

(13.1) THEOREM. For any f (x), there exist functions f *(x) and f, (x) (0 < x < a) equi-
distributed with f and respectively non-increasing and non-decreasing.
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The function m(y) = I E(f > y) I is non-increasing and continuous to the right.
Clearly m(y) =a for y negative, and m( + oo) = 0. If m(y) is continuous and strictly
decreasing for y 0, then its inverse function, which we shall denote by f *(z), is
decreasing and equidistributed with f (x).

The definition off' just given holds, suitably modified, in the general case. Let us
consider the curve z = m(y) and a point yo of discontinuity of it. We adjoin to the curve
the whole segment of points (x, yo) with m(yo + 0) < x < m(yo - 0) (noting that the point
x = m(yo) = m(yo + 0) belongs to the initial curve) and we do this for every yo. Every
line x = xo, 0 < xo _< a, intersects the new curve in at least one point, whose ordinate we
denote by f *(xo). The function f'(x) is defined uniquely f o r 0< 1<a, except at those
points which correspond to the stretches of constancy of m(y). Such z are denumerable
and for them we take for f'(x) any value that preserves the monotonicity. Taking
into account the discontinuities and the stretches of constancy of m(y), we may verify
geometrically that, for each yo, the set of points x such that f'(x) > yo is a segment, with

or without end--points, of length m(yp). Thus I E(f' > yo) I = I E(f > yo)
We define f*(z)=f*(a-x); the properties of f, then follow trivially from those

off'.
Suppose that f (x) is integrable over (0, a). For every x, 0 < x is a, we set

O(z)=Of(x)=sFpz1 Ef(t)dt, where 04(;<x. (13.2)

Clearly 0(x) is finite at every point at which the integral off is differentiable. If f is
non-increasing, then

&,(x)=1f-ft*. (13.3)
X U

In particular, this formula applies to the function f *(x) introduced above.

(13.4) THEOREM OF HARDY AND LIrTLswOOD. For any non-decreasing and
non-negative junction X(t), t >_ 0, we have

r rr

JoX{Bf(x))dx<_ J:x0r(x)}dx=J:X{xJof'dt)dx. (13.5)

First of all we observe that for any g(x) > 0 we have

f a g(x) dz -Jo ydm(y)=Jo m(y) dy, (13.6)

where m(y) = I E(g > y) I. For, if g is bounded, the first equation follows from the fact
that the approximating Lebesgue sums for the first integral coincide with the approxi-
mating Riemann-Stioltjes sums for the second. In the general case, for is > 0.

-Joydm(y)=JE0<Y)g(x)dx,

and the result follows by making u -* oo. Finally, the second equality in (13.6) follows
from integration by parts, if we observe that

am>v)
y -->oo (since ym(y) <

JJI

gdx)

Comparing the extreme terms of (13.6) we we that if we have another function
g1(x) ->0 and the corresponding m1(y), then the inequality ml(y) 3 m(y) for all y
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implies that the integral of g, is not leas than that of g. Hence, x(t) being monotone,
the inequality (13.5) will follow if we show that

E(O1>yo)I<IE(8r>yo)I forallyo. (13.7)

We break up the proof of this inequality into three stages.

(13.8) LEMMA. Given a continuous F(x), 0 < x < a, let H denote the set of points x
for which there is a point 6 in 0 <6<x such that F(f) < F(x). The set H consists of a
denumerable system of disjoint intervals (ak, Yk) such that F(ak) < F(fk). AU these intervals
are open except possibly one terminating at a.

Since small changes of x do not impair the inequality F(f) < F(x), the set H is open,
except possibly for the point a. Let (ak, /'k) be any one of the disjoint intervals (open,
except when Nk =a) constituting H. Assuming that Flak) > F(fk), denote by xo the
smallest number in (ak, f'k) such that F(x(,) = }(F(ak) + F(fk)}. Thus no 9 corresponding
to xo can belong to (ak, xo), since the points of this interval satisfy the inequality
F(x) > F(xo). Hence 9 < ak and the inequalities F(g) < F(xo) < flak) imply that ak a H,
which is false. It follows that Flak) <F(fk).

Remark. We actually have F(ak) = F(fk), unless Yk = a. For no ,8, < a belongs to H,
so that flak) > F(&).

i

E I
(13.9) LEMMA. If E is any set in (0, a), thenE

J
fdx < fo f *dx.

Let g(x) be equal tof(x) in E and to 0 elsewhere. Since g <f, we also have g* -<f * and

fo

aIEI IEI
f
JEfdx=

gdx-fJog*dx=
g*dx-<fo

f*dx,

which proves (13.9).
Let E(yo) and E*(yo) denote the sets in (13.7), snd let E1*(yo)=E(8f.>yo), with

equality this time included. Having fixed yo we drop it as an argument and write

E, E*, E". If we set F(x) =f f dt - yox, the set E becomes the set H of Lemma (13.8).
0

We show that rIEl

a
f*dx >yoIE (13.10)

In fact, if (ak, Yk) are the intervals making up E, then

(0=

by (13.8), and summing over all k we get the inequality

f,fdx>yoI E (13.11)

from which (13.10) follows, by (13.9).
Return now to (13.3), with f replaced by f*. Since the right-hand side is a con-

tinuous and non-increasing function, E; I is the greatest number x -<a such that

x-'fox f* dt > yo. Hence, by (13.10), I'' 15 I Ef I ; in full,

I E(8> > yo) < I E(Of. > yo)
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If we replace here yo by yo + e and make e decrease to 0, we get (13.7 ), and the proof of
(13.4) is completed.

In addition to 6f(x), we define the functions

0,(z)=sfp-l - f fdt (x<6_< a),

O f(z) = Max (of(x), 0;(x)) = sup 1
x f fdt (0 < 6 < a). (13.12)

The inequality in (13.5) holds if we replace Of by 0; andf* by f*. Since

0= max(0,0'),
we have x(O)<X(0)+X(©') and

Jox(Qf)dx<f,X(Op) dx+ f oX(o;.)dx=2roX(6f.)dx.

Hence:

(13.13) THnoasas. If feL(O,a) and 0(x)=0f(x) is defined by (13.12), then for a
non-negative and non-decreasing X(u),

f:® 2Jx(x fof*dt)dx. (13.14)

From this we deduce, by specifying x, the following corollaries:

(13.15) THEOREM. (i) If f 4E Lr(0, a), r > 1, then 0(x) E Lr and

°
o Crdx < 2(r

r
1

lr °

/ Of
r(I\ -

(ii) If f E L(O, a), then O(x) E L° for every 0 < a < 1, and

f:er(J:/i.
(iii) If flog+ f E L(0, a), then @(x) E L and

f'a0dxS4foflog+fdx+A,

with A depending on a only.
We have to estimate the right-hand side of (13.14) and we may suppose from the

start that f is non-increasing, so that we may replace f * by f there.
Case (i) then follows from Theorem (9.16), with 8 = 0; it is enough to set f (x) = 0 for

x > a. Case (ii) follows by an application of Holder's inequality. For, with X(u) = u

f.X(X'fOfdt)d-=fOa
x°tx

fo'fdt)' <_ (fo )I1

°(Jo -
fdt)°

-(la('a)'-°IJofdtf x=)°1 a`J'fdt)°

In case (iii), the right-hand side of (13.14), with x(u)=u, is

2 f o Jof(t)dt=2 f of(')logadl.
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Let El and E$ be the sets of points at which, respectively, f < (a/t)l and f 3 (a/t)i.
Clearly the integral of flog (a/t) extended over El does not exceed a finite constant
depending only on a. In E2 we have I < (alt) -<f 2, so that

fz. f log (alt) dt < 2f flogfdt<2 f flog+fdt,

and (iii) follows by collecting the estimates.
The example f(x)= 1/(xlogZx), considered in the interval (0,J), shows that if

the function 0 need not be integrable. In this case O(x) =1 /(x I log x 1).
For applications to Fourier series a slight modification of the function O(x) is

useful. Let f (z) be periodic and integrable, but not necessarily non-negative (or even
real-valued). We set

r p
M(x)=M1(x)= sup 1J' f(x+u) du= sup 1 Js+'If(u) du (13.16)

0<ifl<wt 0 o<II t z

for - tr < x <?. Clearly M1(x) does not exceed the function Ojtl(x) formed for the interval
(- 2rr, 27r), so that

f X{Mt(x)) dx < f_ X{Olt (x)} dx.
J r J

From this and (13-15) we easily get the following analogues of (i), (ii), (iii):

M'(x)dx<4 r IrJ Ap If I'dx (r> 1),

1M,(x)dx<4 a a'
1 If Idx a

f _' N 1-a` _ (0<a<1),} (13.17)

f n M(x)<ef III log+I f I dx+A.
J

The following inequalities, implicitly contained in the preceding proofs, deserve
separate mention. First, for f integrable and non-negative in (0, a),

IE(9t>y)I<y 1fofd:
IE(Ot>y)I<2y-'f0a

fdx. (13.18)

The first of these inequalities is contained in (13.11), and the second follows from
the first by (13.12). Finally, for an f periodic and integrable but not necessarily non-
negative, s

I E{M,(x) > y; 0 < x < 2n) I < 4y-If" I f(x) I dx. (13.19)

Remark. While in parts (ii) and (iii) of (13.15) we must necessarily assume that a is
finite, part (i) holds, for infinite intervals. Suppose, e.g., that fe II(- oo, + co), r > 1,
and consider the analogue of (13.15) (i) for the interval (- a, a) and the function fQ,
which is f restricted to (-a, a). The passage a-++oo leads to

E
Ordx<2(rrl)rf

+frdx.
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MISCELLANEOUS THEOREMS AND EXAMPLES

1. A sequence (u,) is of bounded variation if and only if it is a differenoe of two non-negative
and non-increasing sequences.

2. Of the two series,
(i)

(ii) sinx+sin 2x+... +sinnz+...,
the first diverges for all x, the second for all x 0 mod n.

[(1) For no zo do we have cos nxo -+0. For otherwise,
sin' nxo = 1 - cos' nx1-* 1, sin' nxo = 4(l -cos 2nz0) -+ 4,

a contradiction.
(ii) If sinnxo -+0, then

sin (n + 1) x,- sin (n - I)x0=2sinxo cosnxo-+0.
that is, sinxo=0 by (i).]

3- Using S[I sinx 11, and (8.3), prove isinxl=8 aD sin'nx- E11n_I4n'-1

4. Let c," = 4(a," - ib,") for m> 0, and let c-,,, = ii,". Show that anecessary and sufficient condition
N

for the existence of lim c", e"' as M and N tend to + co independently of each other, is the
- M

simultaneous convergence of both series

Y ,(a," cos mxo + b," sin mzo) and E (a," in mxo - b", cos mx,).
1 I

5. Each of the two systems
(i) 1, coax, cos 2x, , cosnx, ,

(ii) sin x, sin 2x, ... , sin nx, ...
is orthogonal and complete over (0, n).

6. Let {0"} denote Rademacher's system (see § 3) and let

X0(t)=1,
where 2",+2"'+..., n1> n2>..., is the dyadic development of the positive integer N. Show that
the system {XN} is orthonormal over the interval (0, 1).

[The system XN, in a different form, was first considered by Walsh [1]. See also Paley [1], who
gave the above definition, and Kaczmarz [1].

7. Let aN(x) be the sum of the first N terms of the Fourier series Fa,X,(x) of f(x), 0<_ z I.
Prove the formula 1

aj"(xo) = I f(t)Af (I + 0&4) pi(t)) de,
0 k-0

and show that ar(x) -+f(x) almost everywhere as n -+oo. This implies, in particular, that the
system {XN} is complete over (0, 1).

[If xo is not a binary rational, and IM_, is the interval of constancy of 0"_I containing xo, then
all functions o, 1, ,"_1 are constant in I"_l, and the integral above is

z
I"._, -' f f(t) dt. If, therefore, F(z) =

o
f dt is differentiable at x0, we have ar(xo) -+F'(xo).]

8. Orthogonal systems can be defined in spaces of any dimension, intervals of integration being
replaced by any axed measurable set of positive measure. Show that if {O,.,(x)) and {l(r"(y)) are
orthonormal and complete in intervals a 5 x 4 b, c 4 y < d respectively, then the doubly infinite
system {0,"(x) 0r"(y)) is orthonormal and complete in the rectangle

R: a4x5b, c_<y*d.
f if J J f (x, y) ,,(x) rtr"(y) dx dy = Ofor all m, n, the functions f,"(y) = J f (z, y) n(x) dx vanish for

X a
almost all y, and hence f(x, y) vanishes almost everywhere on almost all lines y = cont.]
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CHAPTER II

FOURIER COEFFICIENTS. ELEMENTARY THEOREMS
ON THE CONVERGENCE OF S[f]

1. Formal operations on S[f]
(1.1) THEOREM. Let n be an integer, u a real number and

Then

(i)

+m
f (x) - E c, ei-.

r--m

f (x) ^ E cr e-irr = c r eirz

(1.2)

f(nx)^' ,,eivnr (n*O),

+m +
eins f(x) Z c , e(r+n)x = Z c e:rx

r-n

+0
f(x+u)- E crelrue'

(v)
I nE1 f rx + 2nk)ry E c" ells

(n > 0).nk-p n n _,o
The proofs are simple:

f2w dl=i_,.
(1)

(ii) Suppose first that n> 0. We observe that
In-i

1nk oexp(2rruki/n)=10 (u.=0, ±1, ±2, ...), (1.3)

according as # is or is not a multiple of n. Now
2x I r2nn r2 n-1

1 f (nt) e-ip[dt = - f (t) P-iFd(n dt =
J

I {'(t) e-i/dln I F` e-1n(kplndt,
o n o f,o n k-o )

and this is 21rc, or 0, according as u/n = v is an integer or not. The case n < 0 reduces to
n > 0, since, as we easily see, f(_ x) ,,, Ec e-i'Z

v

z'
(iii) f f(t)einre-i'4dt=2rrc

_n.
0

(iv)
J 0 0

(v) This follows from (iv) and (1.3).

If f (z) - jao + Y_ (a, cos vx + b, sin vx), (1.4)
1
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(iv) can be written

[II

f(x+u)- E {A,(u)cosvx-B,(u)sinvx}.
r_o

(1.5) THEOREM. If f(x) and g(x) are integrable and periodic, so is the function

1 s"
h(x)=2n

o
f(x-t)g(t)dt. (1.6)

If f - Ec, el-x, g - Ed, e'"Z, then h(x) - c, d, eT-. (1.7)

We show first that the integral (1.6) exists for almost all x. We may assume that
f and g are real-valued, and this case may, in turn, be reduced to f, g _> 0. Then

2" 4" 2" 2" 2" 2v

o
dxfo f(x-t)g(t)dt=fo g(t)( fo f(x-t)dx1dl=fo g(t)dtfo .f(x)dx. (1-8)

The operations performed here are justified since f(x-t)g(t) is measurable in the
(x, t) plane (being a product of measurable functions) and since (the integrand being
non-negative) the order of integration is irrelevant. Thus h(x) is integrable and, in
particular, finite almost everywhere. It is clearly periodic.

The function f (x - t) g(t) is integrable over the square 0 <_ x <_ 2ir, 0 _< t < 27r. Thus
for general f and g, i f (x - t) g(t) e-f- I is integrable over the square and the following
argument is also legitimate:

1f h(x)e-t"tdx-2n
-f

2"r2rr f f(x-t)e-r.ocfig(t)e-fi''dt)dx
2rr0

0l o

=1
n

r2 . .g(t)e_{,4J2n
f f('-t)e-s -)dx dt=c,d,,,

0 1 o J

and the proof of (1.5) is completed.
It is useful to observe that (1.7) is obtained by the formal process of multiplying

S[f (x - t)] = Lc, e' e-Sif and S[g(t)] = Ed, ed" termwise and integrating each product
term over 0 5 t < 27r.

The function 1 s"
h(x)=I(f,g)=2n f f(x-t)g(t)dt

0

of (1.6) is often called the convolution, or composition, of the functions f and g.
Obviously I (f, g) =1(g, f ).

For f in (1.4) and g }aa + E(a; cos vx + b,'sin vx), (1.7) can also be written

2"f(z-t)g(t)dt-}a04
+E{(aa;-b,b')cosvx+(a,b;.+a;b,)sinvx). (1.9)

nJo 1

Set g(t) = f (- () in (1.6) and replace t by - t. We obtain the special but interesting case

' J

"f(x+t)f
(t) dt I Gr I'a°= (1.10)

o -0
Suppose that the f and g in (1.6) are in L2. Then E I c, I' and E I d, I2 converge. If

we can show that the integral (1-6), which by Schwarz's inequality exists for
every x, is a continuous function of x, then we can replace the sign '-'in (1.7) by ' _'
(Chapter I, (6-3)). For this purpose we need the case p=2 of the following lemma:
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(1.11) LEMMA. If f is periodic and in LP, 1 <p <oo, the expression

=
I

I f(x+t)-f(x) IPdx
1/P

JJ(t;f)=9)zp[f(x+t)-f(x)]
n

tends to 0 with t.

This is immediate for f continuous. Using Theorem (11.8) of Chapter I and its
notation, we get, applying Minkowski's inequality twice,

Jp(t;f) <J,(t; 0)+JJ(t;f-0)<JP(t; 0)+2'RPU-0]<o(1)+2e.
Hence JP(t; f) < 3e for I t I small enough, and (1.11) follows.

Return to (1.6). If f and g are in L', then

I h(x+u)-h(x) I< f2If(x+u_t)-f(x-t) I (g(t) I dt<J$(u;f)92[g]-* 0
0

as u -- 0, which shows that h is continuous. Hence:

(1.12) ThEOREM. Suppose that f and g are in L' and have coefficients c,, and d respec-
tively. Then

1 $pf(x-t)g(t)dt= c,d,e-2irjo -
for all x, and the series on the right converges absolutely and uniformly. In particular

1 $. +m

2n f(x+t)f(t)dt= I c,I$e
o

2n u f(t)g(t)dt= c,d-,,,

2nJ2w

I f(t)I'dt= Ic,l1.
o -

(1.13)

The last equation is Parseval's formula for the trigonometric system. The name
Parseval's formula is often given to the first two more general relations (1.13).

If f is real-valued and has coefficients a b, we may write the last equation in the form

- f
offf$(t)dt

=1 0+
1

(1.14)

Return to (1 -5), If f and g are integrable, so is h. The following generalization of
this result is of importance.

(1.15) TxEOREM. Let f and g be periodic and in LP and La respectively, where
p>, 1, q> 1, 1/p+1/q> 1. Let IpqI

a,

-1; (116)r

then the function h(x) = I (f, g) defined by (1.6) belongs to II, and

9,[h] < ,1f] 1xa[g],

where 4l,[h] stands for 94,[h; 0, 2n], and similarly for [f], [g].

Since I I(f, g) I < I (I f 1 ,1g1 ), we may suppose that f _> 0, g >_ 0. Let h, /e, v be positive
numbers satisfying 1/A+ 1/u+ 1/v=1. Writing

Ax - t) g(t) =f P/AgQJA . Po1P-VA). 9cWq-1/.U
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and applying Holder's inequality with the exponents A, ft, v (Chapter I, (9-8)), we see
th[.....Jt h(x) does not exceed

fp(x - t) g't(t) dt fP/(l iN--11A)(2 - t) dt 1;Q-]!x)(t) dt
o" J

'[
..f o* ]1!Y[i_fn

o" 1fv.

We use this with A=r, lfp- 1/A=1/p, l l/q /- 1/a=1/v, (1-17)

so that h, u, v are positive numbers and satisfy 1 /A + 1/u+ I /v = I by (1.16). The last
two factors in the product are just 91p/p[f] and ¶lQ/"[g]. Hence

fo'dxf."fn(x-t) gQ(t)tit

0

The expression in curly brackets is 21[ f n] 21[gQ] = 91p[ f ] 91Q [g], and the right-hand
side is therefore nc]lN+ur)21y [f ] q [9] _ 91p[.f ] 1Xq[g],

by (1.17 ). This completes the proof.
The theorem holds when 1/p+ 1/q = 1. Moreover, by an argument similar to that

preceding Theorem (1.12), h(x) is then continuous.

Let fl, fk, ... , fk be periodic integrable functions having respectively Fourier coefficients
We define the convolution h(x), or ((f1, f ... , fk), of fl, ...,fk by the induction

formula
I(fi.f,.... ,fk) = 1(1(f ...,Ik-J,fk)

Then h(x) is a periodic integrable function, and obviously

h(x)=I(f,,ft....,fk)-VucA (1.18)

It follows that the operation of convolution is commutative and associative. Commutativity
is anyway an immediate consequence of the definition of convolution, while associativity can also
be derived directly from the formula

h(x)=(2ir)-k I ... te)f1(t1)...f,(tt)dt,... dts.
0 JO

(1.19) THEOREM. Let f, f ..., Jk be periodic and of the classes L'", L^..... L'k respectively.
Suppose that r, _> I for all j and that the number

1= 1 + +...+1 -Ik-I) (1.20)r r, r rk

is positive. Then the convolution h(x) = 1(f1, ..., fk) is of class L. If the right-hand side of (1.20) is
zero, then h is continuous. Moreover

W[h]y W,[fll... Il, [I!}
This follows by induction from (1.15).

Let F(x) be a function satisfying the condition

(1'21)

F(x+27r)-F(x)=cont. (-oo<x<+oo),
and of bounded variation in (0, 2n). Let G(x) be a similar function and write

(1-22)

H(x)=- I s"F(x-t)dG(t), (1.23)
0

the convolution of F and dG. The integral here is taken in the Riemann-Stieltjes sense,
and so exists for every x such that F(x - t), qua function of t, and G(t) have no dis-
continuity in common. In other words, it exists for every x which does not belong to
the denumerable set D of numbers 4, + yt, where (6,,) and {t)l<} are the discontinuities
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of F(t) and G(t) respectively. Let E be the set complementary to D. The function
H satisfies on E a condition analogous to (1.22). If {(ai, bi)} is a finite system of non-
overlapping intervals with end-points in E, then

EIH(bi)-H(ai)I_<
r'-

(1.24)

which shows that H is of bounded variation over any finite portion of E. It is therefore
a difference of two functions monotone on E, and so can be extended to all x, e.g. by
the condition

H(x)=limH(x') (xED, x'EE, x'--)- x+0). (1.25)

Such an extension does not increase the variation of monotone functions, nor, there-
fore, the total variation of H. Let VF denote the total variation of F over (0, 2n).
Since, as we see from (1.24), the total variation of H over (0, 27r) E does not exceed
VF.VG/27r, it follows that

VX < VFVo/2rr. (1-26)

Summarizing, the integral (1.23) exists for all x outside a certain denumerable
set D and can, by (1.25), be extended to all x as a function satisfying a condition
similar to (1.22), of bounded variation over (0, 21r), and also satisfying (1.26). Clearly
if F and G are monotone so is H. We may add that if we used the Lebesgue-Stieltjes
integral, H(x) could be defined by (1.23) for all x, and would have the same properties
as the H(x) above.

Let e,a and cn be the Fourier coefficients of dF and dG. We shall show that

dH(x) - Ecn c» ei7z. (1.27)

For let xo < x1 < ... < xk = xo + 2n be points of E. The nth Fourier coefficient of dH is
the limit of the sum

f f
2rr ! a ixjn [H(z5) - H(x5_i)) = 4n25

J ox J xl..,` i
e-i"(zj-)dF(u) e-inrdG(t)

as p = max (x5 - x5_1) - 0. Suppose p so small that the oscillation of a-in" over every
interval of length -<p is less than e. Then on replacing e-i"(zi-t) in the last integral by
e-in" we introduce an error at most

k

I J.4."
2 :-t

I

dF(u) 1r dG(t) I =
f2

r f
=k I dF(u)

I4rr2 } dG(t) 4-2VFVo.r-,-t 1 49 o ( x. r

2w xt-t 2w 2w

But
J J

e-in"dF*(u) e-intdq(t)= e-"dF(u)Ir0
..-t o JO

This completes the proof. As we see from (1.27), by interchanging the roles of F and
0 in (1.23) we modify H only by an additive constant, j a result which can also be
obtained directly from (1.23) by integration by parts.

If F (or 0) is continuous, the integral (1.23) exists for all x, and since
pew

2nI H(x+h)-H(x) I Smax I F(z+h-t)-F(x-t) I dG(t)
o

H(x) is also continuous.
t See the last remark on p. 41.
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A special case of H(x) is the function
2"F*(x)=21n

0
F(x+t)dF(t). (1.28)

F*(- x) is the convolution of F(- t) and d. (t). By (1.27) (if dflx)-Ec.Onx, then
dF(- x) - - EC-n e'), dF*(x) - E I C, I2 eti"Z (1.29)

We shall show that the absence of a jump of F*(x) at x=0 is equivalent to the
continuity of F at every point. More precisely:

(1.30) THEOREM. Let x1, x2, ... be all the discontinuities of F in the interval 0 5 x < 277.
and let df = F(x1 + 0) - F(xj - 0). Then

F*(+0)-F*(-0)=(2n)-'EI dll2.
For let Sk(x) be a step function having jumps dl, d2..... dk at the points x1, x2, ..., xk,

continuous elsewhere, and satisfying a condition analogous to (1.22). The difference
Fk(x) = F(x) - Sk(x) is continuous at xl, x2, ..., xk, and has jumps dk 4-2, at the
points Xk+l, Xk f2, .... The function F*(x) equals

1 1
f2"

0
Fk(x+1)dF(t)+2nJ0 8k(x+t)dF(t)=H1(x)+H2(x).

For ±8c E, 2nI Hi(+8)-Hl(-8)I -< VFsupI Fk(t+8)-Fk(t-8)

r

i

2n[H2(+8) - H2(- 8)] =J " [Sk(t + 8) - Sk(t - 8)] d1 (t). (1.31)
0

The first inequality shows that by taking k large enough (i.e. by removing the `heavier'
discontinuities from F) we can make 111(+ 0) - Hl(- 0) arbitrarily small. For 6 small
enough, Sk(t + 6) - Sk(t -- 8) is d, in the 8 neighbourhood of x,, j = 1, 2, ... , k, and is
zero elsewhere. This shows that the integral in (1.31) tends to I d, 12 + ... + I dk 1 2 as
8 --* 0. From these facts (1.30) follows.

2. Differentiation and integration of S [f]
Suppose that a periodic function f(x) is an integral, i.e. is absolutely continuous.

Integration by parts gives
1 2" 2" cIcy= J fe-i'-dx=. .- f f' e-ir=dx=- (v$0),In o `lniv,J o iv

so that c;,=ivc,., the c;, being the coefficients of f'. Since f is periodic, co=0. Thus, if
S'[f J denotes the result of differentiating S[ f ] term by term, we have S'[ f ] = S[ f'], or

f' vc,ei''== 'x- a, sinvx).
v=-ap Iz]

From this follows the general result:

(2.1) THEOREM. If f(x) is a k-th integral (k= 1, 2, ...), then S(k)[f]=S[fikT

The following result shows what happens when f has discontinuities, for simplicity
a finite number of them:
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(2.2) THEOREM. Suppose that f(x) has discontinuities of the first kind (jumps) at the
points x, < x2 < ... < xk < xk+i = x1 + 2,r, and that f (x) is absolutely continuous in each
of the intervals (x,, xi+,), if completed by continuity at the end-points z;, z;+,. Let

W

d; = U(x; + 0) -f (xi - 0)]1n, D(x) _ + E cos 'z.

Then S'[f]-S[f']=d,D(x-x,)+d2D(x-zE)+...+dkD(x-xk). (2.3)

The series D(x) diverges everywhere (see p. 34, Ex. 2), but is summable by various
methods to 0 if x+0 (see Chapter III, §§ 1, 2). The statement (2.3) is, of course, to
be interpreted formally: corresponding coefficients of the series on the two sides are
equal.

We may suppose that f (x;) =11[ fix; + 0) + f (xi - 0)] for all i. Let ¢(x) be the function
defined in Chapter I, (4.12). Then S'[0] = D(x) - J. The function

(P(x)=d,O(x-x,)+...+do(x-xk)

has the same points of discontinuity, and the same jumps, as f. The difference g =f - 0
is therefore continuous, indeed absolutely continuous. Moreover,

V(x) = -4(d,+...+dk)=C,

say, except at the points x;, so that g'=f'- C almost everywhere. Now

S'[f]=S'[g+ I]=S'(g]+S'[D]=S1g']+S'[4']
=S[f']-C +ZdjD(z-x;)-J)=SU']+). d;D(x-x;).

i i

This completes the proof of (2.3).
Let F(x), 0 s x < 2n, be a function of bounded variation, and let c, be the Fourier

coefficients of dF. The difference F(x) - cox is periodic (Chapter I, § 5), and its
Fourier coefficient C", v'l 0, is

En 1 2R 1 cr (F-cox)e-r":dx =- e-i"Sd(F-cox)= e-;"cdF=_

2lrJo 2niv n 2nsv o iv

Let us agree to write F(x)-csx+Co+ Ei "eo'Z

c
instead of F(x)-coz-C0+ >. -"ei"=,

where the dash signifies that the term P=O is omitted in summation. Then S[dF]
is obtained by formal differentiation of the first of these series, and we have:

(2.4) THEOREM. With the convention just stated, the class of Fourier-Stieltjes series
coincides with the cla88 of formally differentiated Fourier series of functions of bounded
variation.

If S[dF] vanishes identically, S[F] consists of a constant term C. Thus F(x) = C, and
F is equal to C at every point of continuity, that is, outside a certain denumerable
set. Hence, if two functions F, and F, with regular discontinuities have the same Fourier-
Stieltjes coeficients, then Fi(x)-F,(x)=C.
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Let f be periodic and F the indefinite integral off. Since F(x + 2n) - F(x) is equal to
the integral off over (z, x + 2n) or, what is the same thing, over (0, 27T), a necessary and
sufficient condition for the periodicity of F is that the constant term co of S[f ] is zero.
Suppose this condition satisfied. Then by (2.1) S[f] = S'[F], so that S[F] is obtained by
formal integration of S[f ]. In other words,

F(x)-C+ E -'ei'==C+ Z (a,sinvx-b,cosvx)/v,
,--m iv ,-1

where C is the constant of integration.
If co * 0, we apply the result to the function f - co, whose integral F - co x is periodic.

Hence we have:

(2.5) THaOREM. If f - Ec,, ei-, and F is the indefinite integral off, then

F(x)-cox=C+ F,' c,ei'=/iv=C+ E (a,sinvx-b,cosvx)/v.
P--M V-1

Example. Let Bo(x), B1(x), B,(x), ... be the periodic functions defined by the
conditions

(i) Bo(x)
(ii) Bk(x) = Bk_1(x) for k = 1, 2, ... ;

(iii) the integral of B. over (0, 27r) is zero for k= 1, 2, ....
Using Chapter I, (4.12), one verifies by induction that

+m eivx
Bk(x)= i' (k=1, 2,...),

,_-W (iv)
(2'6)

where the dash indicates that the term v = 0 is omitted in summation. Inside (0, 2n),
Bk(x) is a polynomial of degree k (Bernoulli's polynomial, except for a numerical
factor). According as k is even or odd,

Bk(x) - 2( - 1)ik cos vx
Bk(x) - 2(- Di(k-1) sin vx

Vk ,-1
l

Suppose that fit; a kth integral (k- 1, 2,...). Replacing in (1-5)f by fir, g by Bk,
we have the useful formula

f(x)-co=f<k)(x_t)B5(t)dt2u
3. Modulus of continuity. Smooth functions

Let f(x) be defined in a closed interval 1, and let

w(8)=w(8;f)=SUPIf(xs)-f(xl)I for z1E1,xseI, I x5-x1

The function w(8) is called the modulus of continuity of f. If I is finite, then f is con-
tinuous in I if and only if w(8) --> 0 with 8. If for some a > 0 we have w(8) -< C80, with C
independent of 8, we shall say that f satisfies a Lipschitz condition of order a in (a, b).
We shall also say that f belongs to the class A,; in symbols,

fEA..
Only the case 0<a-< 1 is interesting: if a> 1, then w(8)/8 tends to zero with 8, f'(x)
exists and is zero everywhere, and f is a constant.
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The function f belongs to A, if and only if f is the integral of a bounded function.
It is sometimes convenient to consider the classes A. defined for 0 e a < 1 by the

condition w(8) =o(8a), so that if 1 is finite Ao is the class of continuous functions. By
A, we mean the class of functions having a continuous derivative.

A function F(x) is said to be smooth at the point x, if
{F(xo+h)+F(x0-h)-2F(xo)}/h=o(1) as h--*0. (3.1)

This relation may also be written

{F(xo + h) - F(xo)}/h - {F(xo) - F(xo - h)}/h = o(1). (3.2)

It follows immediately that if F'(xo) exists and is finite then F is smooth at xo. The
converse is obviously false, but (as we see from (3.2)) if F is smooth at xo and if a
one-sided derivative of F at xo exists, the derivative on the other side also exists and
both are equal. The curve y=F(x) has then no angular points, and this is the reason
for the terminology.

If F is smooth at every point of an interval 1, we say that F is smooth in 1. (If 1 is
closed, this presupposes that F is defined in a larger interval containing I.) If F is
continuous and satisfies (3.1) uniformly in xo e 1 we shall say that F is uniformly smooth.
and also that F belongs to the class A*. The class A* is defined by the condition that F
is continuous and that the left-hand side of (3.1) is 0(1) uniformly in xo.

If FE A then FEA*; similarly, if FEA then FeA,,. Thus A* and A* are respec-
tively generalizations of A, and A,. They are sometimes important for trigonometric
series as being more natural than A, and A,. On the other hand, basic properties of
A, and A, do not hold for A* and A*. Thus there exist functions FEA* which are no-
where differentiable and functions FE A* differentiable in a set of measure zero only
(p. 48). However, we do have:

(3.3) THEOREM. If F(x) is real-valued, continuous and smooth in an interval I, the
set E of points where F'(x) exists and is finite is of the power of the continuum in every
subinterval I' of 1.

We may suppose that F= 1. Let L(x) = mx + n be the linear function coinciding
with F(x) at the end-points a, b of 1. Then G(x) = F(x) - L(x) is continuous and smooth.
and vanishes for x= a, b. If xo is a point inside I where G attains its maximum or
minimum, the two terms on the left in

{G(xo + h) - G(xo)}/h + {G(xa - h) - G(xo)}/h --> 0

are of the same sign for h + small. Thus the right- and left-hand derivatives of G at
the point xo exist and are zero, so that G'(xo) = 0, F'(xo) = m = {F(b) - F(a))/(b - a).

Hence E is dense in 1. Let now a < c < b. The above proof shows that there is a point
x, inside (a, c) such that F'(x,) exists and equals the slope of the chord through (a, F(a))
and (c, F(c)). Hence, if the slopes corresponding to two different c's are different.
the corresponding points x, must also be different. But unless F(x) is a linear function.
in which case (3.3) is obvious, the set of the different slopes, and so also of the points
x is of the power of the continuum.

It is well known that a function f(x) may be non-measurable and yet satisfy the
condition f(x + h) + f (x - h) - 2f (x) = 0



44 Fourier coefficient. [ii

for all x and h. This is the reason why in the definition of classes A, and A, we
assumed the continuity of f. It turns out that the functions of ,I, and A, have
`a considerable degree of continuity'.

(3.4) THEOREM. Let f(x) be defined in a finite interval (a, b). If feA then
w(8; f) = 0(8 log l)

and in particular feA, for every a < 1. If f e A then w(8; f) = o(8 log 8).

It is enough to prove the part concerning A,. Let M = max I f(x) 1. The hypothesis
feA, implies I f(x+T)-2f(x+jr)+f(x)I <Ar,
for x E (a, b) and r small enough, 0 < r < y. Let us fix x and set f (x + r) -f(x) = g(r ).
The left-hand side of the inequality above is I g(r) - 2g(4r) I. Replacing here r succes-
sively by r/2, 7/22, ... we get

19(7) - 29(r/2) j < Ar, 129(r/ 2) -- 229(7/22) I < Ar, .. ,

12"-19(7/2"-1) - 2"9(r/2") I < Ar,
where n will be defined in a moment. By termwise addition,

19(7) - 2"g(r/2n) I < Ant. (3.5)

Suppose now that h tends to 0 through positive values. Let 0 < h < 4y and let n
be a positive integer such that 2"h is in the interval (}y, y). The inequality 2"h < y
implies that n = 0(log h). From (3.5), with r = 2"h, we get

2M Any 2Mh 2Mh
Ig(h)I< + 2" = 2-h +Anh< iy-+0(hlogh)=0(hlogh),

or f (x + h) -f(x) = 0(h log h), which proves the theorem. t
A function f(x) defined on a set E will be said to have property D if, given any two

points a, ft in E, the function f takes on the product set (a, 8) E all values between f(a)
and f(,6). Property D may be considered as a (rather weak) substitute for continuity.
A classical result of Darboux asserts that any exact derivative has property D in an
interval where it exists.

(3.6) THEOREM. Under the hypothesis of (3.3), F'(x) has property D on E.
For let a<f, acE, feE, F'(a)=A, F'(f)=B.

Let C be any number between A and B, say A <C < B. We have to show the existence
in (a, f) of a point y such that F(y) = C. By subtracting Cx from F, we may suppose
that C = 0. Then A < 0 < B. Consider the function G(x) = {F(x + h) - F(x)}/h, where
h <,8-a is fixed, positive, and so.small that

G(a)<0, G(,8-h)={F(f)-F(f-h)}/h>0. (3.7)

Since 0(x) is continuous, there is a point x0 inside (a, fl - h) such that G(xo) = 0, that is,
F(xo+h) = F(xo). If y is a point inside (x0, x0 + h) at which F attains its maximum or
minimum, then F(y) = 0 = C. Since (x0, x0 + h) c (a, fl), the theorem follows.

Remark. The argument even shows that if A < C < B, and
lim inf {F(a + h) - F(a)}/h < A, lim sup {F(f) - F(f - h)}/h 3 B,

A-0 h--.0

then there is a point y between a and ft such that F(y) = C.
t The same proof shows that iff(x+h)+f(x-h)-2f(z)=O(h'),0<a<1,thenfeA.(seealeoRemark (d)

on p. 120).
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Let us now confine our attention to periodic functions. Given an f E LP, p > 1, the
expression 2' 'iv

OiP(S)=wP(8;f)= sup 1
J

I
f(x+h)-f(x) I Pdx)

0<h<d 2n 0

will be called the integral modules of continuity (in LP) of f. Theorem (1.1 1) implies
that wP(8) --> 0 with S, for every f E LP. Obviously «p(8) is a non-decreasing function of
8 and p. If f is continuous, then &)P(8) -> w(8) as p -> oo. Unlike w(8), a (8) is not affected
by a change off in a set of measure 0.

If (.o,(6)=0^, we write f e APR ; and if wP(8) = o(8R), then f E AP. Here again the case
a> l is of no interest: if w,,(S) = o(S), then f = coast. Since wp(S) , o 1(d), it is enough to
take p = 1. Let

F(x) = f fdt, 0<z2-x,<2n, 8>0.
0

Then I6-1 Kff(x +8)-f(x))dx
=

6-1J =.+ef(u)du-6-1J f(u)du
z z

The l eft-hand side here is not greater than 21r 8-1wl(8) = o(1), as 8--> 0. The right-hand
side tends to I F'(xs) - F'(x,) 1, provided that F'(x,), F'(x2) exist. Hence F'(x) is
constant outside a set of measure 0, which means that f-= coast.

We may also consider the class A of periodic functions F E LP, p ? 1, such that

PF(x + h) + F(x - h) - 2F(x) I P dx - 0(h).fo R I

Replacing 0(h) by o(h) we define the class A ; and for p =oo and F continuous we get
the classes A. and A; respectively.

4. Order of magnitude of Fourier coefficients
The Fourier coefficients c, of a function f satisfy the inequalities

w(n/lVl), (n/IPI) (v*0), (4.1)

where w and wl denote the rnoduli of continuity off (see § 3). For, replacing x by z + n/v
in the integral defining c, and taking the mean value of the new and old integrals, we
find that 21rc, is

Lfr }
Jof( x)e

.dz=_ fo fx+e =-f(x+yl)e "dx.
(X+7 dx, (4 2)

J

Hence I c, 4rrfs f (z) -f

and the right-hand side here exceeds neither

}w(\\rr/

I v 1) nor }wl(n/ I V J). If f E LP, p 3 1,
(4.2) implies

I c, }wp(rr/I v I) (4.3)
(see Chapter I, (10.12)(i)).

From the second inequality (4.1), and the fact that u1(8) -'-0 with d, we obtain the
following important theorem:

(4.4) THEOREM OF RIEMANN-LEBESGUE. The Fourier coefficients c, of an integrable
f tend to 0 as l p -> oo.

The same result holds of course for the coefficients a b,, since c, = }(a, - ib,) for v > 0.
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A slightly different proof of (4.4) runs as follows. We set f = fl +f2, where f, is
2rr

bounded and f I f2 I dx < e. Correspondingly c, = c;, +c;,. Here f, E L2, so that c;, -; 0

(a consequence of E c I2 < oo). Since
1 2w

I f2 i dx < e/2n,
2> U

I c I is less than a for I v I large enough. This concludes the proof. The reader will
notice that it proves (4.4) for the general uniformly bounded orthonormal system.

The following corollary of (4.4) is useful:

(4.5) THEOREM. Let E be a measurable set in (0, 2n), and letSi, 62, ... be any sequence
of real numbers. Then

f. C082(nx+fn)dx- 1IEI (n-)- oc).

For the integrand here is } + j cos 2nx cos 26n - } sin 2nx sin 26n, and the integrals of
cos 2nx and sin 2nx over E tend to 0 since they are the Fourier coefficients (with a
factor n) of the characteristic function of the set E.

The following is a slightly more general form of (4.4):

(4.6) THEOREM. Let f E L(a, b), where (a, b) is finite or infinite, and let A be a real variable.
Let a <_ a' < b'-< b. The integral

( b'
YA=YA(f)=YA(f; a', b')= J f(x)e-.Axdx

a

tends to 0 as A-> ± oo, and the convergence is uniform in a' and b'.

Suppose first that b - a < oo. If f = C the result is obvious, since then I yA I 2 I C I / I A

Hence the result holds if f is a step-function (that is, if (a, b) can be broken up into a
finite number of subintervals in each of which f is constant). Since a continuous f may
be uniformly approximated by step-functions, (4.6) is valid for continuous functions.
Applying Theorem (11.8) of Chapter I with r = 1 and writing f as 0 + (f - 0), we find that

IYAWI -< I YAWI+IYA(f-0)I-< IYA(4)I+e<2e
for I A I large enough.

If b - a = oc, for example if (a, b) _ (- oo, + oc), we write f = f1 + f2, where f1=f in
the interval (- N, + N) and f1= 0 elsewhere. If N is large enough, then

fb

I f2 I dx < e, I YA (f) I -<I YA (f 1) I + I Yd (J 2) I -<o(1) + e,
a

and the result follows.

(4.7) THEOREM. (i) IffEAa, 0<a<_ 1, or if onlyfEAQ, vI a);
(ii) If feA or if only fEA;, then c, =0(v-1).
Case (i) follows from (4.1) and (4.3). Here '0' cannot be replaced by 'o' (see below),

except in the extreme case a= 1, f E A, . In this latter case f is an integral, 5'[f] is still
a Fourier series, and vc -> 0.
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To prove (ii) we replace x by x ± a/v in the integrals defining c,.. Then

2nc,=
o

.f(x)e-112dx= - flx±1 e-io:dx
0 1

_ -4
u

8n{c.{_o'If(x+)+fx

For f c Ag, we have c. = o(1 /v).
A good illustration of (4.7) is the Weieratraas function

f(x) =.fa(x) = E 6-111 cos b"x,
1

(4'8)

where b > 1 is an integer and a is a positive number. The series here converges absolutely
and uniformly. The results which follow hold also for Zb-"° sin b"x.

(4.9) THEOREM. If 0 < a < 1, then f, e A,. The function f1 belongs to A. but not to A1.
Let O<a<l, h>0. Then

f (x + h) -f(x) = - I b-"a sin b"(x + jh) 2 sin }b"h
N ,c

=-Z - E =P+Q,
1 N+1

where N = N(h) is the largest integer satisfying bNh S 1, so that bN+1h > 1. Now
N

{ P { Eb-"a.l.b"h=0(h.(bN)1-a) =O(h. ha-1)= O(h°),
1

W
{ Q { C Z b-"a .1.2 = O(b-<N+1)) = O(h°).

N+1

Hence P + Q = 0(hl) uniformly in x, and f e A,.
In order to show that f1 eA,, we write

fl(x+h)+f1(x-h)-2f1(x)_ -Eb-" cosb"x(2sin fb"h)'
N ._-E-E=R+T,
I N+1

with the same N as before. Then
N

{ R { h2 b" = h'O(b') = h2O(h-1) = 0(h),

{T { b-"_< b-N=O(h),
N+1

so that R + T = O(h) and fu c A.. That f1 Al follows from the fact that otherwise
S'[f1] would be a Fourier series and the coefficients of S'[f1] would tend to zero, which
is not the case.

Minor changes in the preceding argument give the following result:

(4.10) THEOREM. Let e,,-+O and
S

g(x)=g,(x) a"b-"a cosh"x. (4.11)

Then gaeA.for0<a<1,acedg1A,.
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Weierstrass showed that for a small enough the function fa(z) is nowhere differ-
entiable. The extension to a 5 I was first proved by Hardy. (For a> 1, f'(x) clearly
exists and is continuous, since 5'[f) then converges absolutely and uniformly.)

f1 is an example of a function of class A, which is nowhere differentiable. On
account of (4.10) and (3.3), gl(x) is differentiable in a set of the power of the con-
tinuum in every interval. As we shall see in Chapter V, p. 206, if f . = oo (for example
if then g1 is differentiable in a set of measure zero only. Thus, smooth
functions may be non-differentiable almost everywhere.

If we write (4.8) in the form Eak cos kx then ak = 0(k-a), and for k = b" this is the
exact estimate. This shows that the results of (4.7) (i) cannot be improved.

(4.12) THEOREM. Let F(x) be a function of bounded variation over 0 _< x <_ 27r, and
let C, and c, be the coefficients of F and dF respectively. If V is the total variation of F over
(0, 27r), then

CCI <nJv1 (v+0), c.I_2 (4'13)

The second inequality follows from the formula

2n1 C' I=
rs.

dF(x)V.
o0

e-irx dF(x)

Integrating by parts, we see that

F(2rr) - F(0) 27Tc
2nC = e- i- F(x) dx = +

o - iv iv

for v+0, and the last sum is absolutely 5 2 V/I v1.
Thus the coefficients of a function of bounded variation are O(1/v). The example

of the series Ev-1 sin vx (see Chapter I, (4.12)) shows that we cannot replace '0' by `o'
here. The function in this example is, however, discontinuous; examples of continuous
functions of bounded variation with coefficients not o(1/v) are much less obvious and
will be given later (see, for example, Chapter V, §§ 3 and 7).

Consider the Fourier sine series Eb,,sinvx of a function f(x) defined in (0, 7r). For
the existence of the coefficients

2
b, = f sin vxdx,

>r o

it is not necessary to suppose that f is integrable over (0, n); it is enough to assume
the integrability of f sin x, for then f sin vx is also integrable. In this case we shall call
our series a generalized Fourier sine series. For example, we have, in this sense,

j cot }x -sin x + sin 2x + ... + sin nx + ..., (4.14)

a relation suggested by making r -+ 1 in the formula for Er' sin vx (see Chapter I, § 1).
We have only to verify that the numbers

2 fwfl _ } cot }x
in

vxdx
>r o

satisfy the relations .81= 1, 8, - f,+1= 0 for v = 1, 2, ..., so that 81= fls = ... =I.
This example shows that the generalized Fourier sine coefficients need not tend to 0.
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They are, however, o(v). For by+1- br_1 is the with cosine coefficient of the integrable
function 2f(x) sin x, and so tends to 0. Hence if, for example, v is odd,

bY=bl+(ba-b,)+...+(bY-by-s)=o(v);

and the same argument holds for v even.
The following result both generalizes and illuminates the Riemann-Lebesgue

theorem.

(4.15) THEOREM. Let a(x) be integrable, 8(x) bounded, both periodic. Then

In f sYa(x)f(nx)dx I a(x)dx I 8(x)dx as n-->oo. (4.16)
1)

1

0 0 0

Observe that if, for every e > 0, we have a = a1 + a, with )l[al] < e and with the
relation (4.16) holding for aE and each bounded f, then (4.16) is true. Now (4.16) is
certainly true if a is the characteristic function of an interval and so, more generally,
a step function. If a is integrable, we set a = a1 +a" where as is a step function and
`7Jl[a1] small.

The Riemann-Lebesgue theorem is the special cases f=efiz. As the above proof
shows, (4.16) holds if we replace fi(nx) by f(nx+9 ), where B are arbitrary numbers.
In this, moreover, n may tend to infinity by continuous values.

5. Formulae for partial sums of S[f] and 9(f]
Given an integrable and periodic f, let

a,=nf* f(t)cosvtdt, (5.1)

so that ,)a0+ E (a.cosvx+b, sinvx), E (a,sinvx-b,cosvz)

are S[f] and S[f] respectively. The partial sums of S[f] will be denoted by f ], or
by S (x); those of S[f] by f ], 9,,(x; f ), or ,S (x). Using (5.1),
we have f f(t) f f(t)D*(E-x)dt,

9n(x)= -n f xf(t) ( sinv(t-x)}dt= -nf f(t)b (t-x)dt,- P-1

where D, (v) _ + cos vv = sin (n + }) v/2 sin 4v,
Yal

sin vv={cos4v-cos(n+})v)/2 sinjv
Y-1

(cf. Chapter I, § 1). The polynomials D,,(v) and are called Dirichlet'8 kernel and
Dirichlet's conjugate kernel respectively. The formulae for S,, and 15 may also be written

ff(x+ u) D,,(u) du, S,,(x)= - I
7T - IT

Sometimes there is a slight advantage in taking the last term in S,, or ign with a
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factor 1. The new expressions will be called the modified partial seems, and will be
denoted by S* and 'n respectively. Thus

n-1
Sn(x) = }a0 + E (a. cos vx + b,, sin vx) + }(an cos nx + bn sin nx) = }(Sn(z) + Sn_1(x)),

.al

and rSn is defined similarly. If we set

Dn*(v) = DD(v) - cos nv = sin nv/2 tan 4v,

Bn(v) = f5n(v) - 4 sin nv = (I - cos nv)/2 tan }v, }
(52)

and proceed as before, we get

Sn(x)= J" f(x+t)D*(t)dt, Rn*(x)= n Jj(x+t)D*(t)dt. (5.3)
77 -,

By (4.4), Sn -Sn tends uniformly to 0; S*n and Sn are equivalent with regard to con-
vergence, and Sn is slightly the simpler. Similarly for s,,, rSn. We call D* the modified
Dirichlet kernel, D* the modified conjugate Dirichlet kernel.

With a fixed f and a fixed point x we set

fi(t)= 0=(t)= c=(t;f)=4{f(x+t)+f(x-t)-2f(x)},
fi(t) = fi(t) _=(t; f) = 4(f(x+t) -f(x-t)},

and we shall adhere throughout the book to this notation.
The polynomial

is even, and integrating it term by term we see that

fx D*(t)dt=n.

Hence S*(x)-f(x)=7Y f* f(x+t)Dn(t)di-f((x Jn*Dn(t)dt
77

2 2

n
fo 0z (t) D* (t) dt = Jot

J_(1)
itt sin ntdt. (5.4)

D*(u) being odd, we similarly get

g'(x)=-n 2 2f0 -77Jo2tan,}t(1-cosnt)dt. (5.5)

For future reference we also state the following formulae:

Jn f(x+t) DD(t)dt=IT
1f,'ff(x

+ t) +f(x-t)]Dn(t)dt,

b'n(x)-f(x)=nf00s(t)Dn(t)d, 1t)tdtr (5-6)

2 2 cosit-cos(n+})t
n(x)= -7T f0 >rfOY's(t).. 2sinit dt.

Our main task in this chapter will be to show that, subject to suitable conditions
on fat the point x, SS(x; f), or, what amounts to the same thing, Sn(x; f), tends to f (x)
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as n -> eo. The summation problem for the conjugate series S[f] leads us to consider the
expression

_ l " GZ(t) __ _ I "f(x+t) _f(x-t)f 2
nit

o f tan l dt
0 o

15-7)

where the integral is meant as the limit (if it exists) of

7r,r. 2 tan itdl (5-8)

for c -> + 0. The value of the expression (5- 7), wherever it exists, will be denoted by
f (x), and the functionf(x) will be said to be conjugate to f (x). The expression (5-8) will
be denoted by f (x; e). We show later (see Chapter IV, § 3 and Chapter VII, § 1) that for
any integrable f the function f exists almost everywhere; but the proof of this is far
from simple.

The expression (5-7) can also be written

I n f (x_+t)
dt or

7T, _, 2 tan it
1 f (t)

-irf 2tan4(t-x)d'
where the integrals are taken in the `principal value' sense, that is are the limits, for
e--+0, of integrals taken over the complements of intervals of length 2e around the
point of non-integrability of the integrand (t = 0 in the first case and t = x in the second).

From (5-5) we get formally

,SSn(x) -f (x) =
nf0-

2 tan it
cos ntdt. (5-9)

There is an analogy between this integral and the last integral in (5.4), though the
latter always converges, even absolutely, whereas in (5.9) bothf(x) and the right-hand
side may not exist at some points. We shall see later that to a theorem on the con-
vergence (or summability) of S[f] there usually corresponds an analogous theorem
for S[f ].

We record some inequalities useful in `convergence theory':

(0<t<n;n=1, 2,...). (5.10)

For , Dn 5 l4 + 1 +.., + } = n; and the second estimate follows from (5.2), since
2 tan it 3 t. The first inequality (5.10) is preferable for t not too large in comparison
with I In, for example for 0 b t S iron, the second for larger t's. Similarly

D*(t) I< n, I P *(t) 12/t. (5 11)

Analogous inequalities hold for D. and D,,.
With the notation of § I of Chapter I we have easily

J[f(xo+t)+f(xo-1)]-EA,(xo)cosnt,

J[f(xo+t)-f(xo-t)], -EB,(xo)sinnt.

Thus S[f] at x = xo is the same as the Fourier series at t = 0 of the even function
J[f(xo+t)+f(xo-t)]; S[f] at x=xo is the series conjugate to the Fourier series at t=0
of the odd function lt[f(xo+t)-f(xo-I)].
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6. The Dini test and the principle of localization
(6.1) THEOREM. If the fir8t of the integral8

(t) I (6-2)
g

tant

it dt' j o 2 tan it dt

i8 finite, then S[f ] converges at the point x to sum f (x). If the second integral is finite,
then J (x) exists and 9[f) at x converge8 to f (x).

The formulae (5.4) and (5.9) display the fundamental fact that, formally at least,
8 .*(x) -f(x) and S"n(x) -I(x) are the sine and cosine coefficients of certain functions.
In each of the cases the function concerned is, by hypothesis, integrable, and in the
second case f(x) exists. Thus, by (4.4), we have respectively

,-5n(x) -.f(x) -+ 0, S.*(x) -pJ (x) - 0.

The first part of (6.1) is called the Dini test for the convergence of S[f]. The second
part is due to Pringsheim. Since 2 tan it t as t --). 0, the finiteness of the integrals
(6.2) is equivalent to that of

i:'° I dt, f:1(t)1&.

Both integrals are finite if, for example,

f(x+t)-f(x)=O(I tVa) (a>0)

as t 0, and in particular if f'(x) exists and is finite. The first integral converges even
if f is discontinuous at x, provided that fi=(t) tends to 0 sufficiently rapidly. The second
integral diverges if f (x ± 0) exist and are different, and we shall see later that S[f]
always diverges at such points.

(6.3) THEOREM. If f (x) vanishes in an interval 1, then S[f] and §[f] converge uniformly
in every interval I' interior to I, and the sum of S(f) there is 0.

If the word 'uniformly' is omitted, (6.3) is a corollary of (6.1). For if xcI', both
,0y(t) and s(t) vanish for small I t I and the integrals (6.2) converge. To prove the general
result, we need the following lemma:

(6.4) LEMMA. Let f be integrable, g bounded, and both periodic. Then the Fourier
coefficients of the function x(t)=f(x+t)g(t) tend to 0 uniformly in the parameter x.

By the second inequality in (4.1) it is enough to show that w1(8; x) -* 0 uniformly
in x. Now

f x(t+h)-x(t) I dt f I f(x+t+h)-f(x+t) I I g(t+h) I dt

+f* I f(x+t) I I g(t+h)-g(t) I dt=P+Q,

say. Suppose that I g I< M, I h J. Then

P-< Mw1(8;f)--3-- 0.
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In order to show that Q 0, we set f =f, + f2, where f, is bounded, say I f, I g B, and

flf2ldt<e/4M. Then

I9(t+h)-g(1)Idt+ f If2(x+t)II9(t+h)-g(t)Idt_< Bw,(d; 9)+ e,

and so is less than e for 6 small enough. This proves (6.4).
Returning to (6.3), let xel'. Then f(x+t)=0 for ItI<71, say. Let A(t) be the

periodic function equal to 0 for I t I < il and to 1 elsewhere. Using (5.3) and (5.2), we
write

Sn(x)
n

J f(x+t)2tan tsinntdt=IT f(x+t)g(t)sinrttdt.i -1
(6.5)

Here g(t) = al(t)/2 tan it is bounded. By (6.4), $n(x) tends uniformly to 0 for xe F.
Similarly .4n(x) tends uniformly to f(x) in I'; for the difference c' (x)-J(x) is repre-

sented by (6.5) with sin nt replaced by cos nt.
The result may be stated differently. Let us call two series uo +u, + ... and

vo + v, +... (convergent or not) equiconvergent if the difference (uo - vo) + (u, - v,) +...
converges to 0. If this difference converges, but not necessarily to 0, the two series
will be called equiconvergent in the wider sense. It is clear what 'uniform equicon-
vergence' means. The theorem that follows is a consequence of (6.3) when we set
f =fl -f2

(6'6) THEOREM. If two function f, and f2 are equal in an interval 1, then S[f,] and
S[f2] are uniformly equiconvergent in any interval I' interior to I; S[f,] and S[f] are
uniformly equiconvergent in I' in the wider sense.

Considering for simplicity convergence at a single point, we see that the convergence
of S[f] and S'[f ], and the sum of S[f] (but not that of §[f]) at a paint x, depend only on the
behaviour off in an arbitrarily small neighbourhood of x.

Theorems (6.3) and (6.6) express the Riemann-Lebesgue localization principle.

(6.7) THEOREM. (i) Let f(x) be integrable, p(x) bounded, both periodic. If at a point
xo the Dini numbers of p are bounded, the series S[pf ] and p(xo) S[f] are equiconvergent
for x = xo. The series S[pf ] and p(xo) S[f ] are equiconvergent at xo in the wider sense.

(ii) If p(x) E A,, the equiconvergence of S[pf] and p(xo) S[ f ], and that (in the wider sense)
of S[pf ] and p(xo) S[ f ], is uniform in xo.

If p(xo) = 1, case (i) may be interpreted as follows: 'slight' modifications off in the
neighbourhood of xo which leave f(xo) unaltered have no influence either upon the
convergence of S[f ] and S[f] at xo, or on the sum of S[f] at that point (though they
can influence the sum of 91f ]).

To prove (i), we observe that

Sn(xa;Pf)-P(xo)8n(x0;f)= *f(xo+t)9(t)sinntdt,

where g(t) =9z.(t) = [P(xo+t) -P(xo)]l2 tan it

is a bounded function. Hence the integral on the right, being the Fourier coefficient
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of an integrable function, tends to 0 with 1/n. For Rn(x0; pf) - p(xo),:(xo; f) we have
the value

-If' p(xo+t)-p(xo) f(xo+t)(1-cosnt)dt
n _ 2 tan it

_ -nj *nf(xo+t)g(t)dt+n J .f(xo+t)g(t)cosntdt,

and the last integral tends to 0. This proves (i).
Let us set X(t) =X.(t) = f(x+t)g=(t).

The above argument and (4.1) will give (ii), if we can prove that w1(8; X) -* 0 uniformly
in x as 8--> 0. Arguing as in the proof of (6-4), and observing that I g=(t) I < M, say, we

have only to show that the integral
f"

I gs(t + h) - g=(t) I dt tends to 0 with h, uniformly

in x. We break up the interval of integration into two parts: the interval I t I < e/8M, and
the remainder of (- n, ir). The first integral does not exceed 2M. 2e/8M = ,}e. Outside
the first interval the function g=(t) is continuous in t, uniformly in x, so that the second
integral tends to 0 with h, uniformly in x. The whole is thus less than e for small I h
and this completes the proof. For the conjugate series we argue similarly.

Theorem (6.7) includes (6-3). For let p(x) denote the continuous function which is
equal to 0 in I', is equal to 1 outside I, and is linear elsewhere. For we have
p(xo) S[f] = 0, and since S[pf ] = S[f ], (6-7) implies that S[f ] and S[f ] converge uniformly
in I', the sum of S[f] being 0 there.

The analogue of (6.1) for uniform convergence is as follows.

(6-8) THEOREM. Suppose that f is continuous in a closed interval I = (a, b) and let
0(8) be its modulus of continuity there. If o(8)/8 is integrable near 8 = 0, and if the integrals

f* I f(a) -f(a - t) I
dt

f * I f (b + t) -f(b)
dt

o t o t

are, finite, then both S[f] and S[f] converge uniformly in 1, to f and f respectively.

For let g(t) be the sum of the numbers

w(t), I f(a)-f(a-t)I, I f(b+t)-f(b)I for 0<t<h=b-a.
The function g(t)lt is integrable. Write

S (x)-Ax)= I
!J +J

=P+Q, (6'9)n irtco
say, where 0 < a 5h, and consider first the term P. Let x E I. If x + t is in I, then
I f (x + t) -f(x) I < -(I t 1). If x + t is not in 1, say x + t > b, then

I f(x+t)-f(x) I f(b) -f(x) I + I f(t + x) -f(b) o(t)+ f(t + x) -f(b) I.

and since I Dn(t)! t I-1 it is easy to see that

PI < IQ6(t)dt<e,
J0 t

provided v is small enough. Since Q is the Fourier coefficient of the function
(f(x+t)-f(x)}g(t), where g(t) is 0 in (-Q, o) and }cot it outside, we see from (6.4)
that Q--. 0 uniformly in I. Hence Sn(x) -+ f (x) uniformly in I.
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With the hypotheses of (6.8), the integral defining f(x) converges absolutely and
uniformly in 1, since

2tan it

In particular, f(x) is continuous in I. An argument similar to that above shows
that (x) -I(x) 0 uniformly in I.

(6.10) THEOREM. If/eL, pEA the integrals

f'P(t)f(t) cotj(t-x)dt, fP(r)f(t)foot(t_x)dt, (6.11)
F.

taken in the `principal value' sense, are uniformly equiconvergent in the wider sense.

This is immediate, since [p(t) -p(x)] i cot i(t - x) is bounded in x, t.

7. Some more formulae for partial sums
Let e be a fixed positive number less than ir. It is sometimes convenient to use the

formulae
f(z+t)si nntd1+o(1),S(x)=-

7r I

-f(x)=nJo 4(t)
sin ntdt+o(1). (7.1)

In the former the o(1) term tends to 0 uniformly in x; in the latter it tends to o for every z
and uniformly in every interval where f is bounded.

To prove the first formula we note that the difference between the integral on the
right and the integral defining SA(x) (= S (x) + o(1)) is the sine coefficient of the
function f (x + t) g(t), where g(t) is the function equal to 1 It - } cot it = O(1) for i t 1<e
and to - i cot it at the remaining points of ( - a, 7r). Similarly, the difference between
the second integral and the one defining S*(x) -f(x) is the sine coefficient of

{f(x+t)-f(x)) g(t),

and the second formula (7.1) follows.
We note also the formula

r
-nJ

where R (x) tends uniformly to a continuous function of x.
It is instructive to compare this and the first formula (7.1) with the exact formulae

-f+00
1

f(x+t)sinartdt = F,'f1Y(z), (7'2)
-CO t YGY

- 1 J+m 1 - Cos totf(x+t) -------dt= E'B,(x), (7.3)n -,, t <&
T

where w is positive but not necessarily an integer, the integrals are defined as lim f- ,
T-+- T

and the dash indicates that if w is an integer then the last term of the Bum is taken
with a factor J.
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We take the first formula only, the proof of the second being analogous. The

familiar equation 1 F'Osintdt- 1
n t

(see (8.4) below) shows that

+1 sin tdt=signA (-oo<A< +ao). (7.4)
n _M t

Hence, if f (x) = e"'=, the left-hand side of (7.2) is

sin wt +m sin (w + v) t sin (w - v) t
n-i ec"Z hm

_ T
ewe

t
dt = (2n)-i ew=

t
-+ --t --- dt,

and the last integral is 2n, n, 0 according as i v I < w, I P I - w, I v I > w. This proves the
formula if f is a trigonometric polynomial. Hence we may assume that c" = 0 for

We now use a result which will be established in Chapter IV, p. 160, and which asserts
that a Fourier series can be integrated termwise over any finite interval after having
been multiplied by any function of bounded variation. Thus if S[f ] = Ec" e'"- we have

1 j'T ainwt 1 ('Trsin(v+w)t-sin(v-w)tf(x+t)
t

dt=Ec,e"x- J !L t t
dt. (7-5)

-T 0

Integrating by parts twice we get

sin t cos u sin u sin t cos uf4 -t -dt= u+ u-- -2 u 3 dt= u +Oiu (u>0).

Since I P I > w and f o = f -
fT

, the sum in (7.5) is

1 w=rcoaT(v-w)-cosT(v+w) ( 1

rr "e L T(v-w) T(v+w) +O`Tav=J

7,Ec eu'zrco8Tvv-w)cooTvv+w)+O(
V L \\ /JJ

=2 s T wEc,evssinvT+o(1)

as T -+ oo (observe that E I c, I v-s < oo). If F denotes the integral off, F is bounded and
periodic, and the penultimate term is (irT)-1 sin T w[F(x + T) - F(x - T) ] = o(1).
Hence (7.5) tends to 0 as Tao and this completes the proof of (7-2).

The integral (7-4) converges uniformly in A outside an arbitrarily small neighbour-
hood of A= 0. From the preceding proof it follows that the integrals (7-2) and (7.3)
converge uniformly over the set obtained by removing from any finite interval
I w I _< fl arbitrarily small neighbourhoods of the points 0, ± 1, ± 2, .... (The neigh-
bourhoods must be removed, since the right-hand sides of the formulae are, in general,
discontinuous at the points v.)

We have also the formula

f(x)J+°°f(x+t)d - lim! lim (f +fl)f(x+t))dl, (7.6)
7r -ao t n T-.+m -T
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valid at every point at which f(x) exists. (The internal limit always exists.) For if we
subtract from f a constant, which changes nothing in (7.6), we may assume that the
integral of f over a period is zero, and then the application of the second mean-value
theorem gives the existence of each of the integrals

nf;f(xl t)dt_1 f f(x-t-,-) dt (7.7)
separately. Their sum is

f, f(x+t)I4eot_1dt,_ f"f(x+t)Ut+2k'] dt
77

where the dash ' indicates the omission of k = 0 in the summation. This is

-
-

+f t dt+(1)(f'. fas
e -+ + 0, and (7.6) easily follows.

8. The Dirichlet-Jordan test
This name is usually given to the following theorem (see also (8.14) below).

(8.1) THEOREM. Suppose that f (x) is of bounded variation over (0, 2n). Then
(i) at every point x0, S[f ] converges to the value }[ f (xo + 0) +/(x0 - D)] ; in particular,

S[f] converges to f (x) at every point of continuity off;
(ii) if further f is continuous at every point of a closed interval 1, then S[f] converges

uniformly in I.
We prove first the following lemma, only part of which is needed here:

(8.2) LEMMA. The integrals

2 E 2 E 2

L-r-
are

in nt
_ f D(t)dt JD(t)dtall

uniformly bounded in n and 6. The difference between any two of these integrals
tends to 0 with 1/n, uniformly in 6.

Let us denote these integrals respectively by f (t: ), y (9). Plainly, ,8,,- a.
is uniformly bounded and tends uniformly to 0 as n -+ co. Furthermore,

y,, -,Bn= f
E

(t -') cot s} sin ntdt = wt(t) sin ntdt,
o 111 0

where ww(t) is 1/t - } cot it in (0, 6) and 0 in (6, n). Since the total variation of wC(t)
over (0, n) is uniformly bounded, the last integral is uniformly bounded and tends
uniformly to 0 (see (4.13)). It is thus enough to show the boundedness of

2 *Esinu
G(na;),

where G(v) =
f ti sin udu; (8.3)

u
and this will follow if we show that 0(v) tends to a limit as v -+ + co. Since the integrand
tends to 0 it is enough to prove the existence of lim G(nn). But a (n) =1 and
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a (n) - y (n) -r 0 together imply G(nn) - J ?T, which proves (8.2). We have obtained
incidentally the well-known formula

f °° sit t dt = }n (8'4)
0

Return now to (8.1), and apply the last remark of § 5. Replacing f (z) by

4[f(x0+x)+f(x0-x)l
we may assume that xo = 0 and that f (x) is even. We have to show that S.(0) -+f (+ 0).

Suppose first that f(x) is non-negative and non-decreasing in (0, n). Let C be a
number greater than I f (6) I for all n and 6. We write

Sn(0)-f(+0)=-p[f(t)-f(+0)}D,(t)dt= rr

/
A+B, (8.5)nlfo+fv

1l

say, where y is so chosen that I f (j) -f(+ 0) I < e/4C. Since f (t) -f(+ 0) is non-negative
and non-decreasing the second mean-value theorem gives

IAI= {f(y)-f(+0)}U"" Dn(t)dt (4G,2C=}e (0<,'<rl).

For fixed y, B is a sine coefficient of the function w,(t) equal to 0 in (0, y) and to
{f(t)-f(+0)}1cot it in (y,rr). Thus, by (4.13),

B-+0, IA+Bl<e for n>no,

In the general case f is, in (0, n), the difference f1- fz of two non-negative and non-
decreasing functions (the positive and negative variations of f ). If we define fl and f=
in (- n, 0) by the condition of evenness, the formula f = fl -ft becomes valid in (- n, n)
and the general result follows from the special case just proved.

Case (ii) follows from the argument just used if we note that the continuity of f in 1
implies the continuity of the positive and negative variations of f in that interval,
and that all the estimates obtained above hold uniformly for xoel.

In Chapter III, § 3, we give a different proof of (8.1) that does not require the
theorem on the continuity of the positive and negative variations.

A sequence of functions s,(x) defined in the neighbourhood of x=x0 and converging
for x = x0 (but not necessarily for z+ x0) is said to converge uniformly at x0 to limit s,
if to every e > 0 there is a l = d(e) and a p = p(e) such that

8n(X)-81<6 for +x-x0! <8 and n>p.

An equivalent definition is that 8,(x,) ->s for each sequence

(8.6) THEOREM. If f is of bounded variation, S[f] converges uniformly at every point
of continuity of f.

It is enough to consider the case when x0 = 0 and f is even and non-decreasing in
(0, n). A proof similar to that of (8.1)(i) shows that if n is large enough and x small
enough and, e.g., positive then 8,,(x) is arbitrarily close to f(+ 0) =f(0). We omit the
details since a simpler proof will be given in Chapter III, § 3.
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(8.7) THEOREM. Let a b, be the coefficients off, and let F(x) be the indefinite integral
of f. Then W

F(x) = faox+ C + E (a, sin vx - b,cos vx)/v, (8.8)

the aeries on the right being uniformly convergent.

For the proof it is enough to observe that the right-hand side without the term
}aox is S[F- jaox] (see (2.5)), and that F(x) - iaox is a continuous function of
bounded variation.

It follows from (8.8) that

°° a, vx18

11f f(x)dx=[4aox)a+
sin vx - b cos If

E [ -J
a v_I Y a

for every a, f. Thus, if S[f ] is integrated term by term over any interval (a, f), the resulting
a

aeries converges to f fdx.
a

Putting x= 0 in (8.8) we see that the aeries Eb,/v converges for any f. This may be false
for Ea,/v (see Chapter V, (1.11)).

The following result is an analogue of (8.1) (i) for [f

(8.9) THEOREM. If f(x) is of bounded variation, a necessary and aufcient condition
for the convergence of 3[f ] at x is the existence of the integral,

I(x)= -
2 f " Y r(t) dt= lim - 2J' fi=(t) dt = Jim f(x; h), (8'10)n o 2 tan it A-.+o n A 2 tan it /

which represents then the sum of S'[ f ].

We first show that:

(8.11) LEMMA. If f is of bounded variation, ,S`n(x) -fix; >r/n) tends to 0 at every point
of continuity off and is bounded at every point of discontinuity.

Let fi(t) = }[ f (xo+ t) - f (xo - t )]. Since . U] ] at xo is the same thing as 3[3k] at
t = 0 we may suppose that xo = 0 and that f (x) is odd. Hence Or=0(t) =f(t). Let us also
temporarily assume that f(x) is non-negative and non-decreasing in (0, n). Then

w

Sn(0)-f(0;7r/n)=-
fov/nf(t)Sn(t)dt+-'

f./A2 n)itco,ntdt=A+B. (8.12)

Suppose first that f is continuous at t = 0, i.e. that f (t) -* 0 with t. Since (.t) n,

2n "/*

AI o
f(t)dt_< 2f(rr/n)=o(1)

7r f
Given e> 0. we choosey such that f(y) <e, and write

B
21J./,.+J'1=B'+B",

say. Applying the second mean-value theorem twice, we get

B'I=`.oot(ir/2n) ff f casntdtl<V "e 2,
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so that I B' I <e. Since B" is a Fourier coefficient, it tends to 0. Thus (8.12) tends to 0.
We prove similarly that when f( i- 0) 1 0, (8.12) is bounded.

When f is no longer assumed to be non-negative and non-decreasing in (0, n), we
decompose it into its positive and negative variations. These are continuous at t = 0
when f is, so that (8.11) is proved.

Now let 7T/(n + 1) < h < n/n. In the general case of an f of bounded variation we have

('w(n
f\0>n)-f(O;h) <2J

dt 2(nQ 1)rn_ lsuplf(t)I=o(1)1)n n vi(n+1) 2 tan it n n n+
as n -- oo, and this, together with (8.11), proves (8.9).

If f has a jump at a point x, then obviously f(x; n/n) -+ ± co. Thus §[f] diverges at
x to f oo. This is also contained in the following more precise result, in which only the
integrability off is assumed.

(8.13) THEOREM. If f(xo±0) exist, and if f(xo+0)-f(xo-0)=1, then

gn(xo)/log n -* - l/n.

We may suppose that xp = 0 and that f is odd. It is easy to verify the result for the
function O(x) defined in Chapter I, (4.12), using the fact that the partial sums of the
harmonic series are asymptotically equal to log n. Subtracting (l/n)O(x) from f we
obtain an odd function g continuous and vanishing at the origin, and it is enough to
prove that Sn(O; g) = o(log n). For this purpose we write (cf. (5.11))

Ign(0;9)<n2 2f0l9(t)I lDn(t)Idt=
foro+2fw

n
<27T fffo/n19(t)Idt+_Jf/nI gtt)I dt-O(1)+o(logn)=o(logn)

(cf. Chapter I, (8.1)).
A corollary of (8.13) is that, if the Fourier coefcients an, bn off are o(1/n), f cannot have

discontinuities of the first kind. For the hypothesis implies that

( 1 1)

In particular, if the Fourier coefcient8 of a function f of bounded variation are
o (I /n), the function f has only removable discontinuities. For f (x + 0) = f (x - 0) for every
x, and by changing the values off at the at most denumerable set of points where f is
discontinuous, we can make f everywhere continuous.

(8.14) THEOREM. Suppose that f is integrable and periodic, and of bounded variation
in an interval 1. Then S[f] converges to J[ f (x+ 0) + f (x - 0)] at every point x interior to 1.
If, in addition, f i8 continuous in I, the convergence. is uniform in any interval interior to I.
A necessary and sufficient condition for the convergence of S[ f J at an x interior to I is the
existence of the integral f(x), which represents then the sum of S[ f ].

For we can modify f by making it equal to 0 outside I. The new function is of
bounded variation, and it is enough to combine (8.1) and (8.9) with (6.6).
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9. Gibbs's phenomenon
We now study the partial sums sn(x) of the special series

ainvx J(77-x- )-c(z) (0<x<2n) (9.1)=
Y=S v

in the neighbourhood of x = 0. The series cannot converge uniformly there since q(x)
is discontinuous at x=0. Supposing that x> 0, and using (8- 2), we see that

8n(x)+
ix=J

0 DD(t) dt

sin
tdt+o(1),t

uniformly in 0 < x < n. Hence the sn(x) are uniformly bounded, and

Rz sin t-t (9-2)

where I R,,(x) I < e if x < e, n > no(e).
Consider the integral (8.3). The integrals of (sint)(t over the intervals (kn, (k+ 1)n)

decrease in absolute value and are of alternating sign when k = 0, 1, 2, .... This shows
that the curve y = G(x) has a wave-like shape with maxima M1 > M3 > Ma > ... at
n, 37r, 5ir, ... and minima m2 < m4 < ms < ... at 2ir, 41r, .... Substituting x = n/n in (9.2),
we get sn(7r/n) -* 0(u) > G(oo) = in.

Thus, though sn(x) tends to c(x) at every fixed x, 0 < x < 21r, the curves y = sn(x), which
pass through the point (0, 0), condense to the interval 0 <y < G(n) of the y-axis (cf. also
(9.4), below), the ratio of whose length to that of the interval 0 < y < 0(+ 0) = irr is

2 0'sint
IT t

dt = 1-179....

Similarly, to the left of x = 0 the curves y = condense to the interval - G(n) < y < 0.
This behaviour is called Gibbs'8 phenomenon, and its generalized form may be described
as follows. Suppose that a sequence { fn(z)} converges for xo < x < xo+ h, say, to limit
f (x) and that f (xe + 0) exists. Suppose that, when n -+ co and x -+ xo independently, we
have limsupfn(z)>f(xo+0) or liminffn(z)<f(xo+0);

then we say that {fn(x)} shows Gibbs's phenomenon in the right-hand neighbourhood
of x = xo. Similarly for the left-hand neighbourhood. If f (x) =1im fn(x) is defined and
continuous at xo, the absence of the phenomenon at the point xo is equivalent to the
uniform convergence of {fn(x)} at xo.

(9.3) THEOREM. If f i8 of bounded variationt and has no removable discontinuities,
S[f] Mows Gibbs's phenomenon at every point of discontinuity off and only there.

We may suppose that f has only regular discontinuities, i.e.

for each x. f(x)=i{f(x+0)+f(x-0))

Suppose that f(g+0)-f(6-0)=l+0. The function

0(x) =.f (x) - I O(x - 6)
77

t It is enough to assume that the coefficients off are 0(1/a); we Theorem (3-8) of Chapter III.
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is continuous at 6. Hence S[A] converges uniformly at 6 (see (8.6)). The behaviour of
Sn(x; f) near x is then effectively dominated by that of Sn[ln-1O(x-f.,)] so that S[f]
will show Gibbs's phenomenon at x=6. If f is continuous at f, S[f] converges uni-
formly at 6 and the phenomenon is absent.

(9.4) THEOREM. The partial sums s(x) of the serses (9.1 ) are8trictlypositsvefor 0< z < iT.

The theorem is true for n = 1. Suppose that it is established for n - I and that
sn(x) has a non-positive minimum at a point x0, 0 < zo < n. Since

sin 4xo=0,

we infer that sin (n + 1) xo = sin 4xo and so also that I cos (n + }) xo I = coa 4xo. Hence

sinnxo=sin(n+4)xocosjx0-cos(n+})xosin4zo>0.

It follows that sn(xo) - sn_1(xo) _> 0 and so 8n_1(x0) < sn(xo) < 0, contrary to hypothesis.

10. The Dini-Lipschitz test

We know that Sn(z) -f(x) is formally a Fourier sine coefficient (see We may
therefore apply to it the device which led to the estimate (4.2) for Fourier coefficients.
We fix z and take ¢(t) = Oz(t), X(t) = 0(t) 4 cot 4t,

Then n[Sn(z)-f(x)J=''JoX(t)sinntdt=r-2J X(t + 71) sin ntdt

=
JJJI,

AX(t+71)sinntdt

r
{X(t)-X(t+rt))sinntdt+ J

A

X(t)sinntdt
o

+ X(t)sinntdt- f X(t+71)sinntdt.
o w

Denote the last four integrals by 1, I:, 13, I4 respectively. Since I sin nt j cot it I < n,
we have

1191+1141<nfolcb(t)Idt+nf A,, I0(t+1)1dt<2nfo'I0(t)Idt.

Forn>_ 2and te(n-rt,n),
I X(t) sin nt 1 < I fi(t) I < ,{I f(x+t) I + I f(x- t) I + 21 f(x) 1),

and since the indefinite integral is a continuous function we have '2 = o(I ), and
uniformly in every interval where f is bounded. Finally, II1 I does not exceed

f" 0(t) I I 1- 1 dt+ 10(t)-0(t+n) I dt.
e I2tanjt 2tan}(t+y) 2tanit

The difference inside curly brackets here is } sin JI/sin it sin }(t + r/) < nsrjf 4t2_
Collecting results and observing that 2 tan it 3 tin (0, n) we have

(10.1) THEOREM. Let y = 7T/n. For every x, I Sn(x) -f(x) I is majorized by

n
f'Io(t)-O(t+'t)Idt+rt f"It(P)Idt+2y-1o'10(t)Idt+o(1), (10.2)

R r
the o(1) being uniform in every interval where f is bounded.
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As a corollary we obtain the following:

(10.3) THEOREM OF Dixi-LirscHriz. If f is continuous and its modulus of con-
tinuity &j(8) satisfies the condition w(8) log 8 --> 0 with 8, then S[f] converges uniformly.

For since

t I
}I f(x I <w(r), (10.4)

the first term in (10.2) does not exceed w(rl)logn=o(1). Similarly, since 0(t)-+0
uniformly in x, the remaining terms in (10.2) tend uniformly to 0 (Chapter I, (8.1)).

(10.5) THEOREM. If the modulus of continuity off in an interval I is o(Ilog81-1),
then S[f] converges uniformly in every interval interior to I.

For the continuous function coinciding with f on .1 and, say, linear outside I satisfies
the hypothesis of (10.3), and it is enough to apply (6.6).

We shall see in Chapter VIII, §2, that the condition

f(xo±t)_f(xo)=o(Il gtI) (t-0. +0) (10.6)

does not ensure the convergence of S[f] at xo, so that (10.5) is primarily a result about
uniform convergence. However:

(10.7) THEOREM. S(f) converges at x, to sum f (xo) provided the condition (10.6) is
satisfied and the coefficients off are O(n-e) for some 8 > 0.

Without loss of generality we may suppose that xo = 0, f is even, f (O) = 0. It is also
convenient to have ao = 0, which may be achieved by subtracting }ao(1 - cos x) from
S[ f ]. Finally, suppose that I an I v n-a (0 < 8 < 1) for n = 1, 2, .... We set r = }8 and write

nt
an}tom-JO +1n +Jw-

P+Q+R.

Here P-+ 0 as n -+oo, since f is continuous at t = 0 and I Dn I n. If

e(t)=supIf(u)1oguI for 0<u<_t,

then Q -< e(n-) J
, t log 0 /t) = e(n r) log l /r = o(1),

and it only remains to prove that R-+ 0. To this end we shall take for granted a result
which will be established later (Chapter IV, Theorem (8.18)), namely that Fourier
series can be integrated term by term after multiplication by any function of bounded
variation. Then 2 sin nt cos vt

n 2 tan it dt.

We replace the products sin nt cos vt by differences of sines and apply the second mean-
value theorem to the factor j cot it. We find that for v * n the factor of a, does not
exceed 4n'/ir I v - n' I in absolute value. The factor of an is bounded. Hones

4 ao v-enr n-1
R I o ( i ) E' -o(1)+ E + o(1)+R1+B2,

try-1 I v-n I .-1 ,-n+1
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say, where the dash indicates the omission of the term v=n. Now

n n'tlnl n -1 1

4R1<in, v-
tln

1n-v-0(n-1')+0(n-i8logn)=o(1),
-1 j+

IT

R2 < n'-d Z --1- + n' Y_
v a

= 0(n-f" log n) + O(n-}a) = o(1),
4 ,'-n+1 1'-n 2n+1 Ev

so that R-> 0, and this completes the proof.
A similar argument shows that, under the hypotheses of (10.7),

9,(x6) - f(xo; ir/n) -* 0.

The proof of the following theorem is very similar to that of (10.3).

(10.8) THEOREM. If fEAa, 0<a<1, then SS(x; f ) -f(x) = 0(n-a log n), uniformly
in x.

For now fi(t)=O(ta), (t+y)-¢(t)=O(ya) (cf. (10.4)). The first term in (10.2) is
O(n log n); the second is 0(n-a) or O(n-1 log n), according as a < 1 or a = 1; the third
is 0(n-a). A glance back at the source of the fourth term shows that it is 0(21) = 0(n-1).

It can be shown by examples that the factor log n in (10.8) cannot, in general, be
omitted (see p. 315, Example 10). Suppose, however, that there is a constant C such
that the function f(x) +C,x is monotone for all x. (The function f itself, being periodic,
cannot be monotone, unless it is constant.) Such functions f will be called of monotonic
type. We have now:

(10.9) THEOREM. I f f is of monotonic type and of class An, 0 < a < 1, then

Sn(x, f) -. (x) = O(n-"), ,n(x, f) -f(x) = 0(n-a), (10.10)
uniformly in x.

Suppose that g(x) =f(x) + Cx is increasing. The difference Sn(x) -f(x) is given by the
integral of n-1{ f (x + t) - f (x)}'Dn(t) extended over (- n, n). We can replacef by gin this,
since the integral of tD,(t) over (- n, n) is zero. It is enough to show that the integral
over (0, n) is 0(n-a), the proof for the remaining integral being similar. Let

2k-1 < n < 2k. Our integral is
i k2-

+
,

5-U-')P+ k
Q1.

s =E1Ew

Since g(x+t)-g(x)=0(ta) and D,=O(n), it follows that P=0(n2-t1+1)k)=0(n-1).

Also g(x + t) - g(x) is non-negative and increasing. Applying the second mean-value
theorem twice, we get for Qi the value

in (n+4)t4wz "- " s
EO(2 ia dt=0(2 ia)O(2i)sin(n+4)tdt=0(2i(`-a)n'),

1 1
2 sin 4t t

from which it follows that
k k

E Qi = E 0(n-1) 210-1) = 0(n-1 2kt1-a)) = 0(n-4).
1 1

Hence P + EQi = O(n-a), and the first estimate (10.10) follows. The proof of the second
is similar.
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11. Lebesgue's test

(11.1) Tasoannr. If f is integrable, then, for almost all x,
A

oI
f(x±t)-f(x)1 dt=o(h) as h--o.+0. (11.2)

This theorem is due to Lebesgue. It generalizes the familiar fact (to which it reduces
if the sign of absolute value on the left of (11.2) is dropped) that the derivative of the
indefinite integral off (x) exists and equals f (x) for almost all x. The set of x for which we
have (11.2) is sometimes called the Lebeague set off.

We shall prove the following slightly more general result.

(11-3) Txaonaaa. Suppose that f e L' (r >_ 1). Then, for almost all x,

fol f(x±t)-f(x)I'dt-o(h) as h-±+0. (11-4)

Let a be any rational number. The function I f (x) - a 1' is integrable and so

h-'I f(x±t)-aV'dt`'If(x)-ai'
for almost all x. Let E. be the set of the x for which this does not hold. Since I Ea I = 0,
the sum E of all the E. is of measure 0. We shall prove (11.4) for x not in E. Suppose
that xo is not in E and e > 0 is given, and let /f be rational and such that I f (xo) -,61 < }e.
In the inequality

1I f"1
1

f(xo±t)-flI'dti.v+lhJoI t6-f(xo)I'dt1ih

the first term on the right tends by hypothesis to I f (xo) - f 1 < se. The second term is
I ft -f(xo) 1. Thus the right-hand side is < e for h small enough, and (11.3) follows.

We shall systematically use the notation
rA fA

(D(h) = gDT.(h) 10 ,(t) I dt, 'V(h) ='Y=,(h) 0, ,(t) I dt.

It follows from (11.1) that (DZ(h)=o(h), `V (h)=o(h)
for almost all x.

The following test for the convergence of 5[f] is due to Lebesgue:

(11.5) THEOREM. S[f] converges to f (x) at every point x at which

((h)=o(h) 5," c(t)-o(t+)+0 as 9/=rr/n-+0,

and the convergence is uniform over any closed interval of continuity off where the second
condition (11.6) is satisfied uniformly.

We apply (10.1). The first term in (10-2) is o(1) by hypothesis. The third term there
is 2y-14)(271) = o(1). Integration by parts gives for the second term the value

[O(t)t-=],- +2J f (D(t)t-3dto(1),
r r

since fi(t)=o(t) (see Chapter I, (8.1)). This completes the proof.
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Using the analogue of (10.1) for conjugate series we find, by a similar argument, that
the conditions

Y'z(h)=o(h) r 1W I "i(t)-Olt+r/) I dt-a0 (11.7)
t

together imply the relation b',*,(x) - f(x; n/n) -. 0.

If we also observe that, for n/(n+ 1) i h 5 nln, the first condition (11.7) gives
2 '!" I fi(t) If(x;h)-f(x;n/(n+1))I -J dt-<2n-2(n+1)1l'(n/n)=o(1) (11.8)
>r *un+i) t

as n - oo, we deduce that under the conditions (11.7 ), [ f ] converges at the point x if and
only if f (x) exists.

The conditions (11.7) are certainly satisfied if f satisfies the Dini-Lipschitz condition
in an interval containing x.

In Chapter VIII, § 4, we shall see that there exist integrable functions f such that
Sn(x; f) is unbounded at every x. We now show, in the opposite direction, that Sn(x)
and 9,(x) are o(log n) at almost all x. More precisely,

(11.9) THEOREM. If $z0(h)=o(h), then S8(xo; f) = o(Iog n) ; if `V,,(h) = o(h), then
'gn(x0;f)=o(logn).

By (5.4) and (5.10), I S.*n(x0) -f(x0) I does not exceed
1M w

n
o

The sum of the first two terms on the right is (D(n)ln = 0(1) = o(log n). Since fi(t) = o(t),
the remaining integral is o(log n). Thus Sn(xo) = o (log n).

Similarly (cf. (5.5) and (5.11)),

181n (xo) I nJo /n
I

/r(t) I dt + 2J3
!n

It t) I dt = o(log n).

By (11.9), SA(x) and gn(x) are o(Iogn) at every point of continuity of f. Moreover,
if f is continuous in an interval I, then Sn(x) and ,g (x) are o(log n) uniformly in every
interval interior to I. The proofs are slightly simpler than those of (11.9), no integration
by parts being necessary.

The most important tests for the convergence of Fourier series are those of Dini,
Dini-Lipschitz and Dirichlet-Jordan, each of which is based on a different idea.
Lebesgue's test may be shown to include the other three, but in practice it is less con-
venient to use because the second condition (11.6) corresponds to no simple property
of the function f. The following application of Lebesgue's test is, however, of interest.

(11.10) THEoREM. Suppose that f f- Ajln, p > 1. Then S[f] converges to f (x) at each
point x of the Lebesgue set of f ; and the convergence is uniform over any closed arc of
continuity off. At each point of the Lebesgue set where f (x) exists, 9[f) converges to f (x).

It is enough to prove the part about S[ f ]. This will follow if we show that the second
condition (11.6) is satisfied everywhere and uniformly in x. By Holder's inequality,
with p' = p/(p - 1),

J,
I0(t)-0(t+79_Idt,{J

I

#(t)-O(t+,I)IP dt}Up

J", =o(nLy)a(n-"")=0(1),

uniformly in x. I

J
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12. Lebesgue constants
This name is given to the numbers

If'. 1D
L.=-

.(t)jdt-2 fo

l

sin(n+})Idt.
2sinitn

It is clear that if I f I <_ 1 then

67

18 (x; f) 14!
1. I f(x+t)

jjD4(t) jdt _<L,.

for all x; and for f(t) = sign D (t), we actually have S (0; f) = L. While the function
sign is discontinuous at a finite number of points, given any e> 0 we can, by
smoothing this function slightly at the points of discontinuity, obtain a continuous f
such that &(0; f) > L, - e. Thus, for each n, L is

(i) the maximum of Sn(x; f) J for all x and f satisfying I f I < 1;
(ii) the upper boundt of I 8,(x; f) I for all x and all continuous f satisfying I f < 1.
We shall prove that L = 4rr-s log n + 0(1) ^- 4rr-2 log n as n -> oo. (12.1)

Since D,, - Dn I ( } and the function 1 It - } cot it is bounded for I t J rr,

L,+=2 r0
I
Dn(t)I dt+0(1)=

J 0

2*-1 (k+1)wI, IsinntI 2 /n -1
1

dt+O(1)=- f' dt+O(1).
nk-o k+./% t 'Jo k-1F+

The sum in curly brackets lies between

na-1(1+}+...+1/(n-1)) and nir
and so is equal to ?T-1n[logn+O(1)1. Since the integral of sinnt over (0, it/n) is 2/n,
we obtain (12.1).

We may add that, since I D,,(t) I is uniformly bounded in any interval e <_ t <_ in, 0 < e < n,
the formula (12.1) implies that

- f.2 dt=4=logn+O(1)_4logn (12-2)
0

for any fixed a (0 < e < ir).
The formulae

, 2 J
l &(t) j dt ^ log n, 2 fo

1Sn(t) d,.= 2log n
o

(12-3)

are also useful. They are equivalent, since I L. - Dn I < } and D ,*.(t) > 0 in (0, n). The
left-hand member of the second formula represents - Sn*(0; f) where /(1) = sign t
(- it < t < in). Since f has jump 2 at t = 0, (8.13) gives - Sn(0; f) 2ir-l log n and (12-3)

follows.
The first integral (12.3) is an analogue of the Lebesgue constant Ln, and is the

maximum of 19,,(0; f) for all functions f with I f I < 1. This maximum is attained for
f(t)_sign (t).

t By upper bound we always mean the least upper bound. Similarly, for the lower bound.
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13. Poisson's summation formula
The notion of the Fourier transform

[II

+m
Y(u) = 2

1

n
g(x) a-i- dx (13.1)

of a function g(x) defined in (- oo, + oo) (see Chapter I, § 4) is useful in the theory of
Fourier series in connexion with the following simple fact.

Suppose first that g(x) is absolutely integrable over ( - oo, + oo). The series

g(x + 2kn) (13.2)k---
is then absolutely convergent at almost all x in (0, 2rr), as is seen from the inequality

J I g(x
+ 2kir) I dx =J + g(x) dx < oo

k--w 0 ao

(cf. Chapter I, (11.5)). Let G0(x) be the nth symmetric partial sum, and G(x) = lim G0(x)
the sum, of (13.2). The function G(x) exists for almost all x and is periodic. Since the
GG(x) are majorized by an integrable function, the Fourier coefficient c of G is

r2R 2(n+l) R
Iim 1-J Jim 1

J g(x)e-r"zdx =Y(v) (13.3)
n-+w 2rr 0 n-.oo 27r - 2n.

Thus, with our hypothesis, the Fourier coefficient c, of the sum G(z) of (13.2) is equal to
the Fourier transform y(v) of g(x).

If, moreover, it happens that Ec, ei- = S[G] converges at x = 0, and to a value which
is the sum of (13.2) at x = 0, we are led to the equation

+ +m 1 +m
g(2kir) _ g(x) a-i111 dx. (13.4)km ,- 2n f- .

This is called the Poisson summation formula, and it has many applications. The sum
on the right is defined as the limit of the symmetric partial sums.

Suppose, for example, that g(x) is not only absolutely integrable over (- oo, +oo)
but also of bounded variation, and that 2g(x) = q(x + 0) +g(x - 0) for all x. We shall
prove (13.4) under these hypotheses.

Let Vk be the total variation of g over the interval Ik = (2kir, 2(k+ 1)7T), k = 0, ± 1, ....
Since the series (13-2) converges absolutely at some point xo in Io, the inequalities
I g(x + 2k7r) - g(xp+ 2k1r) I 5 vk, for x e Io, and Yvk < oo, prove that (13.2) converges
absolutely and uniformly in to to a sum G(x), obviously of bounded variation and
such that 2G(x) = G(x + 0) + G(x - 0). Formula (13.4) is then a consequence of
Theorem (& 1).

The equation c, = y(v), slightly modified, remains valid in cases when g(x) is not
absolutely integrable over ( - oo, + oo). Suppose, namely, that g(x) is integrable over
every finite interval and that

2k+2)R
(l) f I g(x) I dx-,0 as k-->±oo;

2kw
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(ii) the function g* defined by the formula

1 2(k+1).-J g(t)dt for 2krr_<x<2(k+1)ir (k=0, ±1, ±2, ...),
4k.

is absolutely integrable over (- co, + oo).
Conditions (i) and (ii) are certainly satisfied if, for example, g(x) tends to 0 mono-

tonically in the neighbourhoods of + oo and of - oo. We prove now the following
theorem :

(13.3) THEOREM. Under conditions (i) and (ii) the integral (13- 1), defined as lim

exists for u = ± 1, ± 2, ..., and the Fourier coefficients c,* of the function

G*(x) = lim { E g(x+2kn)--- J g(,) d,)
(13.6)

a-.+w k_-a J 9x_

satisfy the equations co = 0, c* = y(v) for v = ± 1, ± 2, ... .

The function G*(x) can be written in the form Eg*(x + 2kn); thus, by the case already
dealt with, it is integrable over (0, 2n), and c* is given by (13.3), with G* for on and
g* for g. Since the integral of e-'lX over a period is zero for v= ± 1, ± 2, ..., we have,
by (i),

f
Yc*= hm 1 g(x)e-rdx =y(v) (v= t 1, t 2, ...).--- 2n

The integral of g*(x) over any interval (2krr, 2(k + 1) ir), k = 0, ± 1, ... , is evidently 0.

Hence J G*(x) dx = 0 and co* = 0.
0

The following application of Theorem (13-5) will be useful in fractional integration
(Chapter XII, § 8) :

(13.7) THEOREM. Let 0 < a < 1, and let `l''a(x) be the periodic function defined for
0 < x < 21r by the formula

r at
a-'+(x+2n)a-1+ n.)'F li t (13.8).a(x)= m x ...

l +ao e-krriei¢n.
Th Z' 13.9en I

v
Ia ( )

where the dash ' indicates that the term v = 0 is omitted from the Summation.

The function `I'a(x) is the G*(x) corresponding to a g(x) equal to 2nxa-'f r(a) for
x> 0 and to 0 elsewhere. The coefficients of T. are

m

co = 0,
c* r(a) o

to-t a-ilrdt for v $ 0.

We now observe thatt

e-1"i° r(a) =J to-' a-'' dt for 0< a < 1. (13.10)
0

t This formula is easily obtainable from the classical definition r(a)=
U

xa-' a-° dx by applying

Cauchy's theorem to the integral of the function za-' taken along the boundary of the domain limited
by the area 0 i arg z < irr of the circles jz I = c and I z I = R, and by the rectilinear segments (e, R)
and (is, iR) of the real and imaginary axes; if 0 < a < 1, the integrals taken along the circular arcs tend
to 0 as e-.0 and R-.co, and (1310) follows.
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Substituting t = vu, we see that c, = v-° exp (- pnia) for v > 0, and since c*-, = c*, we
get (13.9).

By (2-6) of Chapter I, the series in (13.9) converges uniformly outside any neigh-
bourhood of x = 0. If we omit the term 2,a-1 in (13-8), the limit will exist uniformly in
05 x < 2n (this will be the function G* corresponding to a g(x) equal to 2nxa-1/P(a)
for x> 2n and to zero elsewhere). Hence, with an error uniformly 0(1), the periodic
function tl'a(x) is 0 for - n <- x < 0 and is 2trxa-1/ P(a) for 0 < x < IT.

By considering the Fourier series of 'Ya(x) ±'f'a(-x), and using the relation
r(a) P(1 - a) = ir/sin na, we get the useful formulae

Cos `=P(1-a)sin}na.xa-1+0(1) ^_P(1-a)sinpna.xa-1

v_1

I.-(0<x<-if
E amVX=P(1-a)coopna.xa-1+0(1)^--P(1-a)coopna.xa-1

Poisson's summation formula may be written in a slightly different and more
symmetric form. Let a > 0 and let g(z) = h(ax/2n). Then, by (13-4),

h(ak) = E
I

I

+m
h(y) e-'"-/a dy.

k--m v=-m a -m
(13-12)

If, as is often convenient, we modify the definition (13.1) of the Fourier transform by
replacing the factor 1/27T there by 1/(2n)i, and accordingly set

(2n)f +m h(y) a 'wdy, (13-13)X(u) =
,J

the terms on the right of (13-12) can be written (2n)} a-'X(2nv/a) and Poisson's formula
becomes +m +m

Va E h(ak) = tilb E X(bk), (13.14)k--- k--m
where a, b are any two positive numbers satisfying the condition ab = 2n, and X(u)
is the Fourier transform (13.13) of h.

MISCELLANEOUS THEOREMS AND EXAMPLES

1. Given any sequence of positive numbers e tending to 0, there is always a oontinuous func-
tion f (z) whose Fourier coefficients satisfy the inequality la. 1 + 1 b 1 e for infinitely many n.
(Lebeegue[1], Hardy[l].)

[Take, for example, f (x) = e,y cos n1 z + e, , cos n, x + ... , where (ns) increases so rapidly that
F+e-, < ao.]

2. Suppose that f e As and f e An, p, 1, p, 3 1. Show that f e A; if the point with Cartesian
oo-ordinates (a, 1/p) is on the segment joining (a1, I /p,), (a,, lip,). Hardy and Littlewood [5]. )

[Use Chapter I, (10.12) (iii).]

3. Using the equation

(a ainnx-b coenx)/n=-1 f(t)
sin n(x - t)

dt,
A n

0"

t n

prove (8.7) and the formula f' f(t)}(n-t)dt.
1 >t e

4. The number Cs=1+2-''+3-"+... (k= 1, 2....) is a rational multiple of s".
[Integrate the series sin x+ I sin 2z+... an odd number of times and set z= 0.)
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5. If f(x) is periodic and has k continuous derivatives, the Fourier coefficients off satisfy the
inequality

l e" f ink (n> 0).

If f(k) is of bounded variation, then
1 c" J V/Rnk+" (n> O),

where V is the total variation off(k) over 0_< x 2n.

6. Suppose that f(x), 0 <_ x _< 2A, has k continuous derivatives in the closed interval (0, 2n), but
is not necessarily continuous when continued periodically. Show that the Fourier coefficient
c. off is a 1 A+00)-+-+...+-- as n- ±x.

n n' nk

1 fz+A
7. Letf(x)--Ec.e'"t,h>0,fk(z)=-J f(t)dt. Show that

2h z_ A
s

MX) ^ co t Ec"
in nh

(nh ) e
The dash indicates that the term n = 0 is omitted in summation. The sign '-'can also be replaced
by 1= .

[If F(z) is the integral off, then f,,(x) = [F(x+h) -F(x-h)J/2h. Apply (8-7).]

8. Let 0 a < 1. The system is orthogonal and complete over any interval
of length 21r.

Each of the systems coa (n + }) x and sin (n + }) x, n = 0, 1, 2, ..., is orthogonal and complete
over (0, fr).

The joint system cos(n+})x, sin (n+1)x is orthogonal and complete over any interval of
length 2n.

2 +m 4 cos n+ xShow that >}(n-x)=n (in +1)' or (2n+1}'

the series being absolutely and uniformly convergent.

9. Let f(x) be defined for 0<x42». No matter how well behaved the function f(x), S[fJ
cannot converge uniformly if f(+0)+f(2or-0). Suppose, however, that a is such that
g(x) =f(x) e -'a= takes the same values at the end-points 0 and 2r. (Such an a always exists, though
it need not be real, provided f( + 0) * 0 and fl 2v - 0) * 0.) If S[g] converges uniformly to g(x),
we get the uniformly convergent representation

f (X) = c. e5".a1, with c" =
1

*n
tof(x) e-K"+a>: dx.E

The series here is a Fourier series if a is real ; if f(+ 0) = - f(2n - 0), we have a = } (compare
Ex. 8).

10. If a is not a real integer, then

E sin(n+a)x=n, += cos(n+a)x
=mrcotnan+a n-a

for 0<x< 2n.
[See Chapter I, (4-19).]

11. Let f (x) be periodic, non-negative and not identically 0. Prove that the Fourier coefficients
off satisfy the inequalities

la., <ao, 1 b., j <ao, c., <ao (m * 0). (Carathbodory [I].)

12. Let g(x) be periodic, odd, non-negative in (0, n) and not identically 0. The Fourier coeffi-
cients b_ of g satisfy the inequality

Jb,.I<mb1 (m=2,3,...). (Rogosinski[l],Dieudonnb(lJ.)

[Prove, by induction, that I sin "a =e m I sing 1, m= 1, 2,,...]
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13. Let 0 <a< 1. The (non-integrable) function z-o-1, 0 < x <>r, has generalized sine coefficients
b ^- Ono, where C * 0 is independent of n.

Ax-'sinxdx]

14. Show that

2sinx
1

The second formula is, formally, a limiting case of the first when r -i 1.

15. Let f(z), 0<x<n, (not necessarily integrable) be such that g(x) =f(x) sin x is of bounded
variation. Then lim byt+1 - g(+0)-g(n-0), lim by=g(0)-g(n-0). Hence if, and only
if, g(+0)=g(n-0)=0.

Observe that = 2 sin nx _ 2 2' sin nx
(

b
A fo g(x) sin x n ro g(}.) 2 sin }x

dx.

If n= 2k+ 1, the last integral is 2S5(0; g(}z)).

16. Let (*)
be the Fourier series of any integrable f(x), 0 < x < 2n, with respect to the orthogonal system
ettn+ai: 0<a<1. (Thus Show that all the series (*) are uniformly equiconvergent in
every interval (c,2n-e). cannot, in general, hold in the whole interval
(0, 2n) (if, for instance, a = }, the sum S(x) of the series (*) satisfies the condition S(x + 27r) = - S(x) ).

17. Let f (x) be periodic and integrable, and consider the functions

Ji(t)=f(zo+t)+f(xo-t)-2f(xo) =f(xo+t)+f(xo-t)-2f(xo)
4 tan it ' AM 4 sin it

which are periodic and odd. Show that the generalized sine coefficients of f,(t) are S:(xo; f) -f(xo),
and that the coefficients of f,(t) with respect to the system sin (n + 4) t are S (xo) -f(xo).

18. Let f (x) be periodic and integrable, and suppose that the even functions

f(xo+t)-f(xo-t) f(xo+t)-f(xo-t)
fa(t) 4tan}t 4sinit

are integrable over (0. n). (This amounts to the integrability of I f(xo+t)-f(xo-t) 1t-'.) Show
that the cosine coefficients of fa(t) and the coefficients of f4(t) with respect to the system cos (n + {) t
are respectively S:(xo)-f(xo) and S.(xo)-f(xo)

19. If f (x) is the characteristic function of the interval (-h, h), 0 < h_< a, then

j(x) =
1 Isin }(x + h)

IF
log

sin }(z - h)
rb

(Observe that } cot }tdt = log I sin }b/sin }a I for any subinterval (a, b) of (- 2tr, 2n).]
a

20. Let g(z) = 0 for x h, and g(x) _ } cot }z elsewhere in (- 77, n), 0 <h < rr. Show that

h)
9(x)=211- )- J(x

7T if
}(x

)\

n

In particular, i } cot }x log I
sin }(x + h) dx = IT - h

IT sin}(z-h)

the integrand on the left being non-negative. (M. Riesz [1].)

k''cos'x' k l+r' (0<r<1),
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21. Considering S[cos ax) at the points x= 0, n show that

n =1+2aE ('1);= lim (-1)t
sin air a k=tat-k= N-4--k -N.a+k

IT 1 aD 1 N
=-+2a lim

tail IT a k-1 a'-k' N-++mk--Na+k
22. 1f f(xo +t) +f (xo - t) increases monotonically to +co as t-+0, 0 < t < t,, then S[f) diverges

to +oo at the point xo.
[Let (f(xo+t)+f(xo-t)J/t=X(1). Then

f
wIn ('win

o
X(t)sinntdt+o(1)>_ nS*.(xo)3 [X(1)-X(t+n/n)Jsinntdt+o(1)

1 w/nf
X(t)sin ntdt + 0(1).]

0

23. Using for the Lebesgue constants (see § 12) the formula

L. _ F sign sin (n + J) xL + F, cos kx] dx,
n 0 2 k-1

and integrating termwise, prove that
1 2 1 irk

2n+1+n ktan2n+1. (Fejer(SJ.)
k-1

24. Using S[j sin x j] (see p. 34, Example 3) and the formula

(sinkx)t/sinx=ainx+sin3x+...+sin(2k-1)x

1 1 1

16
1+3+6+ +2k(2n+1)-1

prove 4kt- 1k-1

This equation shows, in particular, that (L") is strictly increasing. (Szegd [1].)

25. Show that the conclusions of (8.7) (i) remain valid if the hypotheses we replaced by the
following ones: (i) f(x) is bounded; (ii) p(x) is integrable and satisfies

JwwjP(xo+t)-P(xo)jjtj-1d1<co. (W.H.Young(11J.)

28. Consider the periodic functions f,(x) defined by the formulae

f,(x)=jxI" (l<i<oo),
.fi(x)= log j x j,

for j x j rr, p'= p/(p - 1). Show that (i) J,(x) belongs to A 14 p < oo, but not to A q> p;
(ii)f,(x) does not belong to A.

27. Let 0 ts a < 1, - co <fl < + co. The modulus of continuity of
W

Jfi(x)= Eb-"°n-Bcosb"x (6=2,3,...)
n=1

is O(d" log-A 118) if a > 0, and is O(1og--lf-1) 1/8) if a = 0, f> 1.
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CHAPTER III

SUMMABILITY OF FOURIER SERIES

1. Summabllity of numerical series
We consider a doubly infinite matrix

/ a0, a., ... ao

M=
a, all ... a1

an0 and ... a.,

of numbers. With every sequence we associate the sequence {an} given by

an=an080+an1s1+...+an,8,+... (n=O,1,2,...), (1.1)
provided the series on the right converges for all n. If tends to a limit a we shall say
that the sequence (s}, or the series whose partial sums are s,,, is summable M to limit
(sum) 8. The a are also called the linear means (determined by the matrix M) of the
{s,}. Matrices M such that an, = 0 for n < v are called triangular.

Let us suppose that the numbers

N, =lan0l+laniI+...,
exist (and are finite) for all n. The matrix will be called regular if the following con-
ditions are satisfied:

(i) lim an,=0 for v=0, 1,...;
n-.+m

(ii) the N are bounded;
(iii) lim A 1.

n--
The finiteness of N. implies the existence of A,,. It also implies the convergence of

the series (1.1) for every bounded (in particular, convergent) sequence {a.}.

(1.2) THEOREM. If M is a regular matrix, and if a, tends to a finite limit s, then a -> a.

For let s, = 8 + e e, -> 0. Correspondingly, a = o ;, + o'n, where

an = 8A,,, an = e0an0 -- ei and + ... .

Here o-;, -+ a by condition (iii). Let N be the upper bound of the N,,, and let I e, I < V12N
for v > v0, where rl is any given positive number. Then

I<)_< (Ie.I IanOI+...+Iev.IIan.,1)+(Ia.,,.+,I+Ia.,,.,.,I+...)rl/2N.
The first sum on the right tends to 0 as n-+oo (condition (i)), and so is less than }rd
for n > no. The remainder does not exceed Nq/2N = }n. Hence I o;, I < 71 for n > no,
a;,-+0, c-n -+s, as desired.

We note that if 8 = 0 condition (iii) is not needed in the above argument.
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Condition (ii) by itself shows that the boundedness of {8,} implies that of {o-n}; for
if I s, I < A for all v, then + o -n ` < AN.

It is interesting to observe that conditions (i), (ii), (iii) are also necessary, if {o-n} is
to tend to s for every {s,} - a. For consider the sequence a,= I for all v, and the sequence
s = 0 for all v *,C, 8l, = 1. In the first case a =1, in the second 8 = 0. Since an =A. in
the first case and an = an,, in the second, the necessity of conditions (i) and (iii) is evident.
The necessity of (ii) is less simple and will not be discussed here (see Chapter I V, p. 168).

Condition (ii) is a consequence of (iii) if the numbers an, are non-negative. Such
matrices M are called positive.

(1.3) THEOREM. If M is a positive regular matrix, then

lim inf s < lim info-, < lim sup an < lim sup 8, (1.4)

for any sequence {s,} for which the an are defined.
In particular, if M is positive Theorem (1.2) holds for s = + eo and s = - oo.
Let Jim inf 8, = 8, lim sup s = 8. To prove the last inequality in (1 -4), we may suppose

that a < +co. Let a be any number greater than a. Then 8, <a for v> Yp and, by (i),

o-n <o(l)+a(an,.+1+an.,.+2+...)=o(1)+a(An+o(1)).

Hence, by (iii), lim sup a, and so lim sup on < e. The first inequality (1.4) is proved
similarly.

If M is not positive, (1.4) need not be true. However, we have:

(1.5) THEOREM. Let M be a regular matrix, and let C = Jim sup Nt. For any {s,} for
which s and a are finite, the numbers a = Jim inf cr., v = I'M sup vn are both contained in the
interval whose end-points are (8+a) ± C. (s-8).

In other words, a- and Q lie in the interval concentric with (8, a) and C times as large
Let us set s, = a ; , + s ; . , where s ; , _ }(s + e) for all P. Then lim sup s, I _ +)(e - s ). Corre-

spondingly o_ + o;,, where

,)(8+a). lim sup jo-n <C. j(8 - s).

This completes the proof.

(1.6) THEOREM. Let po, p1, p2' .. and q0, qv q2, ... be two sequences and let

Pn=pa+p1+...+p,,, Qn=q0+q,+...+qn, qn>Oforalln, Qn-.oo.

Under these conditions, if then Pn/Q,-+s.
Set s, = p,,/q,,, an = Pn/Qn. Then

o,r.=(go8o+.g181+. +gn8n)/Qn

The a's here are linear means of the s's, and we may verify that the matrix M is a
positive regular matrix. It is therefore enough to apply (1.3).

In particular, taking q, =1 for all v, we obtain the classical result of Cauchy: if
8,-+ 8, then 8.

Given a sequence 80, 81, 82, ... we define, for every k = 0, 1, ..., the sequence Sa, Sl .
Ss,... by the oonditions

S°=s,,, Sn=Sa-'+Sl-1+...+Sn_1 (k=1,2,.. ;n=0,1,...).
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Similarly, for k = 0, 1, 2,... we define the sequence of numbers Ao, A*, A9, ... by the
conditions

An =1, An=Ao-1+Ai-1+...+An-1 (k=1,2,...; n=0,1,...).

We say that the sequence 8o, el, s=, ... (or the series whose partial sums are Fn) is
summable by the k-th arithmetic mean of Cesdro, or, briefly, summable (C, k), to limit
(sum) 8, if lim SnlAn=s.

now

Summability (C, 0) is ordinary convergence. Summability (C, k) of a sequence
implies summability (C, k + 1) to the same limit (take p" = Sn, qk = An in (1.6)). To
find the numerical values of the An we use the following proposition: If

A,,=ao+a1+...+an
for all n, and if I 1, then -m

F, an xn=(1-x)EAnx", (1.7)n-0 n-0

provided either aeries converges. For if EAnxn converges and if we multiply out the
right-hand side and collect similar terms, we obtain the series on the left. Conversely,
if I x I < l and Ea,, xn converges, then

(1-x)-'Eanxn=fix' anx"=EAnxn,
0 0 0 0

by Cauchy's rule of multiplication of power series, and EAnxn converges.
In particular,

EAnxn=(1-x)-1EAn-lxn=(1-x)-aEAn-2xn=...=(1-x)-(k+l)
x-0 n-0 n-0

E Sn xn = (1- X)-1 E Sn-1 xn = (1- X)-2 E Sn-' xn = ... = (1 - x)-k E Sn xn.
n-0 n-0 n-0 n-0

This permits us to restate our definition as follows: A sequence so, sl, ... (or a series
uo + u1 + u2 +... with partial sums so, 91, s=, ...) is summable (C, a) to limit (sum) e, if

on=SR/An->s as n->oc, (1'8)

Sn and An being given by the formulae

E Anx" x)-a-1,
n-0

xn.
A-0 n-0 n-0

M
We may then also write (C, a) lim an = 8, or (C, a) F, u" = 8, as the case may be.

0

(1.9)

If {o-,} is bounded, we say that {sn} is bounded (C, a).
In these new definitions a need no longer be a non-negative integer. The only restric-

tion is that a + - 1, - 2, - 3,... (otherwise, as may be seen from the first formula (1.9),
An is zero for large enough n). It turns out, however, that only the case a > - 1 is of
interest. The numbers Sn and o will be called respectively the Cesdro sums and Ceadro
means of order a of the sequence {s,} (series Eu,). The A* are called the Cesdro numbers
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of order a. It is useful to remember that in the case of a series u° + u1 + us + ... we have
_S;1- un

From the definitions of An andSn it follows that
A /

(i) An+,e+1 A, An-., (ii) sn+a+ = E S (1 10)

for all a and ,B. In particular, replacing a by a - 1,,8 by 0,
n

1811,An= E A:-1, Sn= -1 (1 11)_0
P-0

Hence An-An_1=An-1, Sn-Sn_1=Sn 1. (1 12)

From (1.10) (ii) we get the fundamental formula

(1.13)

n AB-1 `l$
which shows that on = E

n n

The first formula in (1.9) implies, first,

(a+1)(a+2)... (a+n)- n+a naAn= - n!
-(

n
^ P(a+ 1) (a+ - 1, -2, ...), (1'15)

W

so that EIA;I<+co for a<-1, (1.16)
.-0

and secondly

(1.17) THEOREM. An is Positive for a > -1, increasing (as a function of n) for a > 0
and decreasing for - 1 < a < 0; and A°, =1 for all n. If a < - 1, An is of constant sign for
n large enough.

The P in (1.15) is Euler's gamma function, and in fact the formula itself is just
Gauss's definition of that function. Later (in Chapter V, § 2) we shall need a slightly
more precise formula, namely a //

A r(a+l){1+0fn)}. (1.18)

To prove it we note that log (1 +u)=u+0(u2) for small I u 1, and hence

log An= log(1+a) = a i +i0{12 (1 19)

by formula (8.9) of Chapter I and the fact that the remainders of a series with terms
0(1/v2) are 0(1/n). Comparing the last formula with (1.15) we see that our constant is
log( l/I'(a+1)), and (1.18) follows from (1.19).

It is useful to note that if a is a positive integer, then

An_ln+a\-/n+al =(n+l)(n+2)... (n+a)
n a a. (1-20)

(1.21) THEOREM. If a series is summable (C, a), a > - 1, to sum s, it is also 8ummable
(C, a + h) to s, for every h > 0.
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(1.22) THEOREM. If a series us + u1 + ... is 8ummable (C, a), a> - 1, to a finite sum
then un=o(no).

Let o- be the Ceshro means of the series. Then

n-r r r
rm0

Hence the o -V-4 are linear means of the o-n, and using (1.10) and (1.15) we verify that
conditions (i), (ii) and (iii) of regularity are satisfied for a> - 1, h> 0. This proves
(1.21). Moreover, since the matrix here is positive, the limits of indetermination of the
sequence {o n+h} are contained between those of {a n}.

To prove (1.22) we write

( 1un/An=\ Anaresr)/A,,=\±Anr2Aro
/Anre0 a-0

Suppose that a- -> 0 (by subtracting a constant from uo, we may assume that
uo + ul +... is sum mable (C, a) to 0). We have to show that the coefficients of the o
here satisfy conditions (i) and (ii) (condition (iii) is superfluous since of - 0). Condition
(i) follows from (1.15), since a > - 1. To prove (ii) suppose first that a >_ 0. Then, since
An'-> A,> 0, we have

n n m

Nn EIA,a-8I<oo
v-0 r-o r-o

(cf. (1.16)). If - 1 < a < 0, then Ao a-a = 1 , A,' $ < 0 for v > 0, and using (1.11) we
verify that Nn = 2 for all n. This proves (1.22).

(1.23) THEOREM. Under the hypotheses of (1.22), if y< a then S,Y, = o(no).

For y= - 1, this is Theorem (1.22). (1.23) follows from the preceding argument
applied to the formula

(
n

SA = E An_r 1A,arl/An0

For y - 1, - 2, ... the conclusion may be written ant=o(na-Y).
Consider a series uo + ul + .... Its partial sums will be denoted by an, its first arith-

metic means by orn. Thus

Qn-so+sn+ .i.+8n=
E (1- )ur. (1-24)n+1- v-0

It is often useful to consider the difference

-u1+2u'+...+nun-sA - (1 2b)onn n- n+l
If On -> 0, and if the series is summable. (C, 1), it is also convergent. In particular, a series
uo + u1 +... summable (C, 1) and having terms u = d(1 /v) is convergentt. If u,, = 0(1/v)
and if the series is bounded (C, 1), the partial sums of the series are bounded. Less
obvious is the following:

(1.26) THEOREM OF HARDY. If ue+ul+... is 8ummable (C, 1) and if u,=0(1jv),
the series is convergent.

t Another useful corollary of (1.25) is: if Eu converges then ul+Suy+...+nu,=o(n).
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We shall return to this presently. Meanwhile we observe that the condition A. -)- 0
may be satisfied in cases other than u, = o(I /v). We note two such cases:

(a) Fv I u,, 2 = M is finite;
(b) u, -+ 0, u, = 0 if v does not belong to a sequence n1 < n2 < ng < ... of integers

satisfying nk+l1nk > q, where q is fixed and greater than 1.
Suppose (a) is satisfied. By Schwarz's inequality,

Anl<n+I
.=1 .-1 Y=1 1

so that lim sup An Mi. But lira sup I An I is not affected if we replace each of
u0, u1, up, ..., uk by zeros. Taking k large enough we may make M arbitrarily small;
thus lim An = 0.

We may replace (a) by (a') Iv'' U, I p}1 <m

where p > 0. The conclusion and proof hold, if in the latter we use Holder's inequality
instead of Schwarz's.

In case (b), let I un, = e, and let nk < n < nk}1. Then

``k,,
k k

An (nk + 1) -1 G n,C. < (n,11 nk) C. < Cgv-k,
v-1 v-1 r-l

and the sum on the right is a linear mean of (e,}. Conditions (i) and (ii) of regularity
are satisfied, so that e, 0 implies A. 0.

A series 2:u, will be said to possess a gap (p, q) if c; = 0 for p < v <q. Case (b) may he
generalized as follows.

(1.27) THEOREM. If a series Eu,, with partial sums s,,. has infinitely many gaps
(mk, mk) such that mk/mk > q > 1, and is summable (C, 1) to sum s, then 8n,, s (and so
also s,nk -> s).

We may suppose that s = 0. Since so + s1 + .. + s = (n + 1) 6n, we have

(Mk - mk) smk = smk + amt+1 + ... + 8m'' -1

=mk6mk1-mkQm,-1=o('mk)+O(rnk)=O(mk)=O(mk-mk), (1.28)

whence s,n, = n(1) and (1.27) fol lows.
If we assume nothing about the summability of Z'u, and set

s*=supls,nrl, 6*=supI6nl,
k n

the identity (YYLk - mk) s,,, m'k 6mk-1 - mk 6mk--1 gives

mk.i-mk q+1
, -8 - 6smk6*

mk-711k q-1
and so s*<Ao6*, (1.29)

where Aa depends on q only.
Let 1: be a positive integer. Consider the expression

8n+8n+1-}-...+8n+k-1 (n+k)6n+k-1-n6,, 1=( nl n ( )
6n.k= k - k 1+k 6n+k-l-kOn_1. 1.30
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We verify that
n+k-1 v-rt

(1.31)

(If k= 1, we interpret the sum E on the right as 0.) If k tends to oo with n in such
a way that n/k is bounded, then k defines a method of summability which is at least
as strong a s the (C, 1 ) method: i f o - n - . 8, then k -* 8. This follows from (1.30) if we
set =e+e e,-+0.

The peculiarity of the method is that is obtained from 8, by adding to it
a linear combination, with coefficients positive and less than 1, of the terms
un+1. un+i, ' un+k-1 (cf. (1.31)); it is useful in certain applications. The case

O'n.n = 2o,2n-1 - o"n-1

is particularly simple. We may call the the delayed first arithmetic means. We
observe that 9n,1=8n+

Returning to (1.26), suppose that u, I < A/v for P= 1, 2,.... By the remark
just made, n+k-1I n+k-1 1 k-1

Io'a,k-3n1_ E lu,.J A E -<A-.
v=nt1 n+1 V n

Let e be any positive number, and let k = [ne] + Lt t The last expression is then
A[ne]/n 5 Ae. Since n/k < n/ne =1 /c is bounded, vn, k -+ 8, so that lim sup f 8n - 81 <_ Ae.
This gives, a being arbitrary, lira sn = 8.

The series u0+u1+ ... is said to be summable by Abel's method (sometimes called
Poisson's), or 8ummable A, to sum 8, if the series ue + u1 x + uax° +... is convergent
for Jx < 1 and if

Iim Eu,x'=s, (1.32)
z-+1-o v-0

where x tends to 1 along the real axis. By (1.7), summability A of a sequence {s,}
may be defined as the existence of

lim (1-x)e,x".
x-*1-0 v-0

(1.33) THEOREM. If the series u0 + u1 + ... i8 summable (C, a), a > - 1, to sum 8
(finite or not), it is also 8ummable A to 8.

For let f (x) = uo + u1 x + u2 x2 + ... , and let be any sequence of points on the real
axis tending to 1 from the left. By (1.9),

f(xn)=(1 -xn)o+12Sxvn=(1 xn)a+1 E or Aaxy
V-0 r-.0

The expression on the right is a linear mean of the sequence {o°}, and corresponds to
the matrix M with an, = A'( 1- xn)1}12 "n. This matrix is positive and satisfies con-
ditions (i) and (iii). Hencef(xn)-+8, and (1.33) is proved.

The argument also shows that the limits of indetermination by the method A (i.e.
lim inf f (x) and lim sup f (x)) are contained between those by the method (C, a).

X-1 r-1
(1.34) THEOREM. If up+u1+... i8 summable (C,a), a> - 1, to a finite sum 8, then

(1.32) holds as x tends to 1 along any path L lying between two chords of the unit circle
which pass through x =1.

t By [z] we denote the integral part of z.
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Such paths L will hereafter be spoken of as non-tangential. In the neighbourhood of
the point 1 they are characterized by an inequality

l1-xI/(1-Ixl)<const. (1.35)

For the proof of (1.34) we observe that, if {xn} is any sequence of points tending to 1
along L, then f(xn) is as before a linear mean of the or generated by a matrix 31
satisfying conditions (i) and (iii). M is no longer positive, but

E I a,, = 2:Av I 1 -'xn la+l l X. IY= I' -xn la+l/(1 - I xn l)a+1
V-0 '-0

is bounded, by (1.35). This proves (1.34).

(1.36) THEOREM Of TAUBER. Let 8n and f(x) denote the partial sums and the Abel

means of a 8erie8 Eun with terms o(1 /n). Then, if N= IT1 x1, we have

f(x)-8N- O as x--1-0. (1.37)

In particular, the Series i8 Abel 8ummable if and only if it converges.
The relation (1.37) still holds if the condition un = o(1 /n) is replaced by

u1 + 2u$ +... + nun = o(n).

Suppose first that r7n = nun -+ 0. The left-hand side in (1.37) is

N m
un(xn - 1) +F,, unxn =P + Q,

1 N+1

say. Observing that N < 1/(1 - x) < N + 1 and 1 - xn < n(1 - z), we have
N N

IPl<(1-z)I7/nI<N-1EI'7nI >o

/
1 1

CxnIQI I1nllxn< E< .(N+ 1)1maXllln 1
N+1 n n>N N+1 (N+ 1)(1 -x) n>,v

Hence P + Q 0, and (1.37) follows.
Let now v0 = 0, vn = u1 + 2u= + ... + nun for n > 0, and suppose that vn = o(n). Sum-

mation by parts gives
,n ,uk-uo+ yk-Uk_1uQ

%Y=1

yk + vn
0 k_1 k k(k+1) n+1

Since vn = o(n), the series E uk and u0 + E vk/k(k + 1) are equioonvergent. If, therefore,
0

to and g(x) are the partial sums and the Abel means of the second series, we have
8N - tN - 0, &) - g(x) 0. But the terms of the second series are o(1 /n), so that, by
the case already dealt with we have g(x) - tN ---> 0. This and the preceding two relations
imply (1-37).

The following theorem partly generalizes (1.36).

(1.38) THEOREM OF LrrrLEwoon. A series E un 8ummable A and with terms 0(1/n)
0

converges.
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We may suppose that u, < l /n for n > 0 and that f (x) = Fru,, z" -s 0 as x -+ 1. If we
substitute here xk for x (k = 1, 2, ...), we see that for every power polynomial P(x)
without constant term we have

U. P(x'") 10

as x-s1.
Suppose that given any two numbers 0 < 6' < 4 < 1 and a positive 8 we can find a

P(x) such that
(i) 0<P(x)<1 in (0,1),

(ii) P(x) < 8x in (0, f'),

(iii) 1 -P(x) <8(1 -x) in

We show that we can then prove the convergence of Eu, Given any 0 < x < 1, let
N = N(x) be the greatest non-negative integer satisfying x^';a 6, and let N'= N'(x) be
the least positive integer satisfying xN' < 6'. Both N and N' are non-decreasing func-
tions of z taking successively all values 1, 2, 3, ... as x-+ 1. Clearly N < N' and

log (1/y)

For a P satisfying (i), (ii), (iii) we have,
m N N' m

ZunP(x^)-aN=Eun(P(xn)-l)+ E E unP(xn)
0 1 N+1 N'+1

- A(x) + B(z) + C(x),

say, and N

xn 8C(x) _<a E -- <
N'+1 n N'(1 - x)

B(x)< E
I<N'-

N+1 n N

Take any e > 0. From the asymptotic expressions for N and N' we see that if f'
and 6 are sufficiently close to each other and both away from 0 and 1 (we may take f'
and 6 symmetrically with respect to }), we have Jim sup I B(x) I <e. Having fixed f'
and 6, and observing that N(1 - z) and N'(1 - x) tend to finite non-zero limits, we
obtain lim sup I A (z) I < e, lim sup I C(x) I < e, if 8 is small enough. Since Eu P(xn) - 0,
we get lim sup 18N I < 3e, that is 8N -+ 0.

It remains to construct the required P, and it is enough to assume that 6'= } -11,
_i+v. Write

Jr0Rk(z) = {4x(1 -x)}k, P(x) =J l (1) dt/f0
1 Pk(t) dt,

where k is a positive integer. Clearly P satisfies (i). Since Rk(x) < (1- 4113)k in (0, 1)
but outside (}-71, }+71), and

f:Rkf:1:(1- dtN
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we find that
Rk(t) dl _< 8z1P(z)1< x Max Rk(x)/fo

04:41-9

for 0 < x < ,J - y and k large enough. This is (ii), and (iii) is proved similarly.
Return for a moment to (1.2). If the sequence v" in (1.1) is of bounded variation,

we say that {s"} (or the series whose partial sums are a") is absolutely summable M.
Only absolute summability A, however, is of interest for trigonometric series. The
parameter n in this case is a continuous variable and the definition must be modified
in an obvious way: a series Eu" is absolutely summable A if the function f(r) = Eu"r"
is of bounded variation over 0 < r < 1. Every absolutely convergent series with, say,
real terms is a difference of two convergent series with non-negative terms, and,
correspondingly, f(r) is a difference of two non-decreasing bounded functions. Hence
every absolutely convergent series is absolutely summable A.

Parallel to the theory of divergent series, one can construct a theory of divergent
integrals. We shall only consider the analogue of the method (C, 1). Suppose we have
a function A(u) defined for it _> 0 and integrable over every finite interval 0 < u < uo.
We say that the function A(u) tends to limit 8, as u-*oo, by the method of the first arith-
metic mean, if u

u-1 A(v)dv- s as it-*+oo.
0

(1-39)

We shall then write (C, 1) lim A(u) = a. It is easily seen that if A(u) tends to s as u -> oo,

then we also have (1.39).
Consider an integral

u-..

Jo
a(v) dv, (1.40)

where a(v) is integrable over every finite interval 0 <v v, We shall say that (1.40)

is summable (C, 1) to 8 if the partial integrals A (u) =
r
I o a(v) dv satisfy (1.39), and we

shall write d
(C, 1)I a(v)dv=a.

Jo

The latter relation is satisfied if (1.40) converges to 8, that is, if A(u) -' a as u -o- + oo.
As an example one easily verifies that

Jo
e°dv

is summable (C, 1) to sum ix-' or +oo, according as x+ 0 or x = 0.
Consider a series as + al + .... Generalizing the notion of the partial sum

A" =a,+... +a", we shall introduce that of sum function A(u), defined by the formula

A(u)=a " (u->O)-
11<U

Thus A(u) is a step function such that A(u)=A" for n<u<n+1. At u=n, A(u) has
jump a".

(1.41) ThEoREM. A necessary and sufficient condition for ao + a, +... to be aummable
(C, 1) to finite sum a is that (C, 1) lim A (u) = a.

u-+m
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For suppose that n S u < n + 1. Then, denoting by sn the partial sums of the series,

fu so+...+sn_l+(u-n)s n u-nA(t)dt
u u u

an-1+
u

8n. (1.42)

If 4Yn -+8, then sn =o(n), and so the right-hand side of (1.42) tends to 8. The converse
follows by substituting u = n in (1.42).

The definition of summability (C, 1) of a0+a1+... in terms of the sum function
A(u) is often useful. Expressing the second member of (1.42) in terms of the a's, we get

/

u
A(t)dt= Y_ a,,{1-u), (1.43)

0u

r<u `

a formula analogous to (1.24). (1.43) may be called the integral (C, 1) mean of Ean.
Remark. In the foregoing discussion of summability we confined ourselves to

series of constants. Analogous results hold for series of functions and various modes
of convergence or summability, bounded, uniform, etc. For example, if a series
Eu,,(t) is uniformly 8ummable (C, a), a > - 1, on a Bet E of points t, it is also uniformly
eummable (C, f ), /1 > a, and uniformly summable A, on E. We shall use such results in
the sequel without stating them explicitly. Changes of argument that the extensions
call for can easily be supplied by the reader.

2. General remarks about the summability of S[f J and §[f ]
Given a sequence 80, 81, ..., consider the linear means

on=a,1080+an181+... +ank8k+... (2.1)

generated by a matrix M satisfying conditions (i), (ii) and (iii) of regularity (see § 1).
If the 8k are the partial sums of a series Euk, and we write 8k = u0 + u1 + ... + uk in (2. 1 )

we get -a u +a u +-..+a u +..., (2.2n - n0 0 nl 1 nk k )

where ank = ank + an. k+1 + .... On the right here we have linear means of the series Euk.
The passage from (2.1) to (2.2) can be justified under very general conditions (itis

trivially true if the matrix M is row-finite). We shall not do so here since in all the
cases which interest us either the justification is immediate or, as happens for instance
in the case of Abel summability, the form (2.2) is simpler and more natural than (2-1).
We shall take (2.2) as a fresh starting-point and apply the idea to Fourier series.

We recall that the case when the parameter n is a continuous variable may be
reduced to the standard case by considering discrete sequences of the parameter,
and in what follows we shall not dwell on this point.

In all cases which interest us the a,,k satisfy the condition

Z I ank I < 00 (2.3)
k

for all n, and we assume this once for all for the sake of simplicity. It is automatically
satisfied if the matrix is row-finite.

A very important role is played by the linear means of the two basic series

I+cost+cos2t+..., (2.4)

0 +sin t+sin 2t+.... (2.5)
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These means will be denoted by Kn(t) and Kn(t):

KK(t) = 4ano + E ank cos kt, (2.6)
k-1

Kn(t) _ i ank sin kt. (2.7)
k-1

They are both continuous and are even and odd functions respectively of t. If the
linear forms are given in the form (2.1) then, clearly,

Kn(t) =kE anklDk(t) = 2 sin Jt Zanksin (k+ J) t, (2.8)

Kn(t)=kLioank.k(t)=An.JcotJt-2sin}tkZo nkCOs(k+ )t, (2.9)

where Dk and '3k denote the Dirichlet and the conjugate Dirichlet kernel and
An=ano+an1+....

It is customary to call linear means of (2.4) kernels corresponding to method M.
Linear means of (2.5) are called conjugate kernels.

Let ak, bk be the Fourier coefficients of an f. The linear means for S[fJ and S'[f] are
W

o(x) =an(x; f)= Jaoano+ E (akcoskx+bksinkx)ank, (2.10)
k-1
W

&n(x)=&n(x; f)= X (ak sinkx - bkcoskx)ank. (2.11)
k-1

Under the hypothesis (2.3) we have

o,n(x)=_ _ff-'f'f(x+t)Kn(t)A (2.12)

&n(x)= - f(x+t)Rf(t)dt. (2.13)

For the left-hand side of (2.12) is

a°o2rr
f f(t)dt+klankn f AAf(t)cosk(t-x)dt=n f'f(t)[JCCno+ilankcosk(t-x)]dt

=-- f xnJ(t)Kn(t-x)dt=_ 'f' f(x+t)K.(t)dt,

the interchange of the order of integration and summation being justified by (2.3);
and similarly we prove (2.13).

We shall always assume that
ano=1 for n=0,1,.... (2.14)

(Observe that in any case a,, -± 1, if the linear means (2.2) of the series I + 0 + 0 + ... ,
converging to 1 are also to tend to 1.) We shall call (2.14) condition (A). It can also
be written

(A) 1J .K (t)dt-1.rr _

If it is satisfied, then -f(x) =
u

0Z(t) Kn(t) dt, (2 15)
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since the left-hand side is
( f+t)KK(t)dl--' f,,f(x) K (t)d1= J'w{f(x+t)-f(x))Kn(t)d1,

77 - - 7T

and the last integral equals the right-hand side of (2.15) since K (t) is even.
If K satisfies conditions (A) and (B) K > 0

for all n, we shall call K,, a positive kernel. If we have merely

(B') 1 JIK(t)Idt<C,it

with C independent of n, we shall call the kernel K quasi-positive. Every positive
kernel is quasi-positive, as we see from condition (A).

The following theorem is an immediate corollary of (2.12):

(2.16) THEOREM. If K is a positive kernel, then for any f satisfying

m<f<M
we have m < f) < M. (2.17)

If K is quasi-positive, I f I < M implies

I
(2.18)

with the same C as in condition (B').

We now introduce a condition (c) in addition to (A) and (B), or (B'), so far considered.
Let µ (8)=max I K (t) j (0<8<n); (2.19)

14(<r
we shall say that the kernels K,, satisfy condition (c), if

(C) u,,(8) --*. 0 for each fixed 8 (0 < 4 <_ n).

Condition (c) implies that (2.4) is uniformly summable M to zero outside an arbi-
trarily small neighbourhood oft = 0.

If condition (c) is satisfied, then the decomposition (see (2.12))
e

Jf f (2.20)
7T -8

in which the last term is numerically majorized by

#.(8)- esiis.I f(t)Idt,

shows that the behaviour of at the point x depends solely on the values off in
an arbitrarily small neighbourhood (x - 8, x + 8). We know, of course, that this result
holds also for the Dirichlet kernel, which does not satisfy condition (c), but in the new

case the last integral in (2.20) is uniformly small for all functions f such thatf ' f (t) I dt

is bounded.

(2.21) THEOREM. Suppose that the kernel K. satisfies conditions (A), (B)--or merely
(B')- and (c). For any integrable f, if the numbers f (x0 ± 0) exist and are finite, then we
have r(x) -+}{f(x0+0)+.f(xo-0)). (2.22)
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In partiaukw, if f it coagnumaet zo, we have

o- (zo)-.f(xo) (2.23)
If f is continuous at every point of a closed interval I = (a, 6), the relation (2.23) holds

uniformly in xoe I. In particular, if f is everywhere continuous we have (2.23) uniformly
in xo.

Suppose first that K is positive. By changing if necessary the value of f(zo) we
may suppose that f (xo) = }[ f (xo + 0) + f (xo - 0)], so that

I d=o(t) I < f e f o r 0 g t'< 8= 8(e).

By (2.15), I a (xo; f) - f(xxo) I f.does nott exceed

8 8

n
jaj0(t)jKn(t)dt=\l<e ffloldt

say. Here
by condition (A), and

by condition (c), so that

(2-24)

< e
IT

2 !8) j
n oKn(t)dt+ oI¢(t)Idt=P+Q,

P=}e
Q -* 0

P+Q<e for n>no,

(2'25)
(2.26)

(2.27)

which proves the first part of (2.21).
If f is continuous at every point of I (which is understood to mean that f is also con-

tinuous to the left at x = a and to the right at z =,6), we can find a 8 independent of xo
such that (2.24) holds for all xo a I. As before we have (2.25). The integral in Q does not
exceed

fow
(I.f(xo+t) I + I f(xo - t) I +2I f(xo) I)dt = j*V If(t) I dt+21r1 f(xo) I,

(2.26) holds uniformly in 1, and (2.27) holds for all xoe1.
Only minor modifications are needed in the preceding argument if the kernel K.

is quasi-positive. In the inequality for I o- - f I we have to replace K by I K,
which gives, with the previous notation,

P5Ice, Q-.0,
and the conclusion follows as before.

(2.28) THEOREM. Suppose that a positive kernel K. satisfies condition (e), and
that m _<f (x) < M for x e I = (a, b). Then for any c > 0 and 0 < 8 < }(b - a) there is an
no such that m-e<u'r(x)<M+e for xeI8=(a+d,b-d),n>no. (2.29)

It is enough to prove the second inequality. In view of the remark concerning the
decomposition (2.20), we have

f

where the o(1) is u n i f o r m in x. Suppose that x e Is. Then x + t e 1 for I t I < 8, the integral
last written does not exceed

r
M

Ira
f'RK,,(t)dt=M,

It ?r

and the result follows.
J J
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Given a function f (x), let M(a, b) and m(a, b) be the upper and lower bounds off in
the interval a < x < b. For every x we set

M(x) = lim M(x-h,x+h), m(x)= lim m(x-h, x+h).

These limits exist, since the expressions under the limits h --). + 0 are monotone func-
tions of h. We shall call M(x) and m(x) the maximum and minimum off at the point x.

(2.30) THEOREM. If a positive kernel K,, 8atiefie8 condition (e), then for any sequence
(xn} -+ xo we have

m(x0) < lim inf an(xn) < km sup v x < M(XI)n(n)
In particular, {on(x)} converges uniformly at every point of continuity off.

For if his small enough the values off in the interval (xo - h, x0t- h) will be contained
between m(xo) - e and M(xo)+e, and so for n large enough Qn(xn) is, by (2.28), con-
tained between m(xo) - 2e and M(xo) + 2e.

A special case of (2.30) may be stated separately : if f (x) tends to + oo as x -* xo (that
is, if M(xo)=m(xe)= +oo) then vn(x0)->+cc.

As regards the convergence of {&n(x)}, there are no results as simple as (2.21). Let
us suppose that An =1 in (2.9). (This holds for all important methods of summability;
in any case, A. -+ 1, by condition (iii) of regularity.) Then the difference

Hn(t) = Kn(t) - i cot it

has some resemblance to K,(t) (see (2.8)), which suggests that to results about Qn(x)
there correspond results about

iln{f(z+t)-f(x-t)}}cot}tdt =an(x)-f(x; 1/n).on(x)
IT

Without aiming unduly at generality we Shall find that this is actually so for the
methods which are of fundamental importance for Fourier series, namely those of
Ceshro and Abel.

3. Summability of S[f] and [f] by the method of the first arithmetic mean
The kernel corresponding to the (C, 1) method for (2.4) is

n n

Kn(t)- 1
D,(t)=

1 sin(v+ )t (3.1)
n+l,_0 n+l,_o 2sin}t

Multiplying the numerator and denominator of the right-hand side by 2 sin jt and
replacing the products of sines in the numerator by differences of cosines we easily find

K (t)= 1 11 cos(n+l)t 2 sinJ(n+l)t s (3.2)
K. n+1 (2sin}t)2 n+1 2sin}t

Thus the (C, 1) kernel i8 positive.
We shall from now on always use the symbol K,,(t) for the (C, 1) kernel (and later

n for the corresponding conjugate kernel). K. is also called the Fejt r kernel. K. has
the properties: (

Kn(t) dt = l ; (s) K,,(t) 0;(A) n J _*

(c) µn(8) 0 for each 0<8-<7r,
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where ,un(8) = max KK(t).
8t14

Condition (A) follows from the corresponding property of the D,, (see and
(c) from the inequality

#.(8) < 1/2(n+ 1)sin=}8.

Hence, with the terminology of the previous section, the kernel K,(t) is positive and
satisfies condition (e). In the following theorem, which is a consequence of (2.16)
and (2.21),

on(x)=Orn(x;f)=n(ri+2

1),f
f(x+t)(sin2sin}t1)t}

dt (3.3)

denotes the (C, 1) mean of S[ f ], a notation we adhere to from now on.

(3.4) T$EoREM of FEJ>;x. At every point xo at which the limits f (xo ± 0) exist (and, if
both are infinite, are of the same sign) we have

on(xo) --> }{f(xo+0)+f(xo- 0)}.

In particular, on(xo)-+f(xo) at every point of continuity off. The convergence of the on
is uniform over every closed interval of points of continuity. In particular, on(x) converges
uniformly to f (x) if f is everywhere continuous.

If m -<f(z) _< M for all x, then

m<o,n(x)<M (n=0,1,...). (3.5)

Since K,,(t) is zero only at a finite number of points, we easily see that, if f * constant,
(3.5) can be replaced by the stronger inequality

m < on(x) < M. (If f - C, then on(x) = C for all x and n.)

The theorem of Fejer has a number of important applications, some of which we
now give.

If S[f] converges at a point xo of continuity off, then its sum must necessarily be f (xo).
More generally, if S[f] converges at a point xo of simple discontinuity off then its sum
is s= 4{f(xo+0)+f(xo-0)).

For at xo the series is certainly summable (C, 1) to s and so, if it converges, its sum
must be 8.

A similar argument shows that if at xo the function f is continuous or has a simple
discontinuity, the number }{ f (xo + 0) + f (xo - 0)) is contained between the limits of in-
determination, of {S (xo; f )).

If S'[ f ] is a Fourier series, S[f] = S[g], then f + ig cannot have a simple discontinuity
at any point. For if, for example, f (xo ± 0) exist, are finite and different, and if, say,
f (xo+ 0) - f (xo - 0) > 0, then, by Chapter II, (8.13), 4n(xo; f) -. - oo, and so also
&n(x0; f) = g) - - co, which is impossible since g is bounded near xo. In par-
ticular, if both f and g are of bounded variation, they are continuous.

The trigonometric system is complete (Chapter I, § 6). For if all coefficients of a con-
tinuous function f are zero, the on(x; f) vanish identically, and so does f (x) = lim on(x; f ).
For f discontinuous, we apply the same argument as in Chapter 1, § 6, or use theo-
rem (3.9) below.
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(3.6) THEOREM OF WEIER8TE,ASS. If f is periodic and continuous, then for every
e > 0 there is a trigonometric polynomial T (x) such that I f (x) - T (x) I < e for all x.

We may take T(x) = f), with n sufficiently large.

(3.7) THEOREM. If f(x) is bounded and has Fourier coefficients 0(1/n) (in particular,
tiff is of bounded variation) the partial sums of S[f] are uniformly bounded.

For the o- are uniformly bounded and the assumption about the coefficients implies
(see (1.25)) that the s - Qn are uniformly bounded.

If we use Theorem (1.26) and the fact that the coefficients of a function of bounded
variation are 0(1/n) (cf. also the Remark at the end of § 1), the Dirichlet-Jordan
theorem (8.1) of Chapter II becomes a corollary of Fejer's.

Theorem (8.6) of Chapter II may he generalized as follows:

(3.8) THEOREM. Suppose that the Fourier coefficients off are 0(1/n) and that xo is
a point of continuity off. Then S[f ] converges uniformly at x0.

This is a consequence of the general fact that, if a series Eu (x) is uniformly sum-
mable (C, 1) at x0 to sum f (xo) (that S[f ] is uniformly summable (C, 1) at every point of
continuity off follows from Theorem (2.30)), and if the are uniformly 0(1/n),
then the series converges uniformly at x0. For with the notation of the proof of Theorem
(1.26) we have

I
k(x) - 8.(--)l < Ac for all x. Since converges uniformly at

xo to limit f (xo), the same holds for or,, k(x), after (1.30), and we have I 0_"' k(x) -f(x0) I < e
for' x - xa l < 8 and n > no. For such n and x we have l 8.(x) - f (xp) I < (A + 1) a and (3.8)
is established.

(3.9) THEOREM or LenEsouE. S[f] is summable (C, 1) to f (x) at every point x where
1> (h) = o(h) (in particular, almost everywhere).

We note that

`4 z (0<t<rr; A an absolute cont.), (3.10)(n+1)t

the first inequality following from (3.1) and the estimate l D, v + } < n + 1, and the
second from (3.2). The first inequality (3.10) is suitable for t not too large in com-
parison with 1/n, the second for the remaining t. Applying this to the formula

on(x)-f(x)=- nc=(t)K,(t)dl (3.11)

(cf. (2.15)), we see that l -f(x) l is majorized by

2
K(t)de<2(nn 1) f'/- l0x(t)ldi+2n Jt/*(nn+(1)t=dt=P+Q. (3.12)

Clearly, P < (n + 1) I(1/n) 2nD(1/n) --*. 0, (3.13)

and integrating by parts we find that Q does not exceed

2A [O(t)t_=)u.+ 4A f. 0(t)dt\ 2A fi(n)+1f* o11) dt-o(1) (314)n(n+1) n(n+1) 11, t' na(n+1) n 11 \t=

Thus P + Q = o(1) and the theorem is proved.
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As an application we obtain a new Fro-of of Parseval's formula for the trigonometric
system (Chapter II, § 1). For let f e L'. Then

1 J Io (x;f)Itdx= E (1- EI

o --*f almost everywhere, Fatou's lemma (Chapter I, (11.2)) gives

2nt If I' dx < E 10,11.rm
This combined with the opposite inequality of Bessel gives Parseval's formula.

The following theorem completes (3.4):

(3.15) Tasoa&M. If f E Aa, 0 < a < 1, then -f(x) = O(n-a) uniformly in z.
111 A* (in particular, if feA,), then log n).

For in the majorant (3.12) for I as -f I we have f(t) = O(ta), which immediately gives
P = O(n-a) or P = 0(n-1), and Q = O(n-a) or Q = 0(n-1 log n), according as f eAa or f e A*.

A slight generalization of the first part of (3.15) will be needed later.

(3.16) Tnaoa$M. Let w*(t) be a non-negative and increasing function defined in a
right-hand neighbourhood of t = 0. Suppose that w*(t) t-a is decreasing for some a,
0 < a < 1. Let w(t) be the modulus of continuity for a periodic f. Then, if w(t) = O(w*(t))
as t + 0, we have a -f= O(w*(1/n)). Similarly, w(t) = o((o*(t)) impliea

Consider, for example, the `o' case. Without loss of generality we may suppose that
w*(t) is defined and satisfies the required conditions in (0, ir). For if the initial interval
of definition is (0, e), with 0 < e < 7r, it is enough to set w*(t) = w*(e) for e <t < ir. As in

(3.12), we consider the terms P and Q. Clearly,

}nP<(n+

A ' w(t) _ A f (w (t)l
dt

of}nQ<n+ll f1l. It n+i tatl-a}.

A w*(1/n) _t A e*(1/n) _a1

4
* 1

<n+l+l (1/n)a o( )`Ji,
_

n+1
-)-)(1/n)a o(n (n

which completes the proof.
We turn to the (C, 1) summability of §V]. To avoid repetition we state once for all

that in taking arithmetic (or any linear) means of a trigonometric series we shall
always take into account the constant term with which the series begins, even if that
term (as in §[f] or S'[f]) happens to be zero (of. (2.5)).

The conjugate Fejer kernel is
1 _ Y 1 cot It- 1 cos(v+})t

n+lr_o 2sin}t
1 in(n+1)t=}cot}l-n+1 (2 sin it)'

by an argument similar to the one used to prove (3.2). The inequality

sin (n+ 1)t4 (n+ I)sint

3.17( )
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applied to (n+1)sint-sin(n+1)t
(n+1) (2 sin ft)2

gives K(t)>O for O < t < rr, n = 1, 2, ..., (3.18)

so that Rn(t) sign t _> 0 in (- n, n).
The (C, 1) means of 9[f] are given by the formula

on(x) = &n(x; f) = -
J

* 1f (x + t) Kn(t) dt = - 2 JO V x(t) Ka(t) dt. (3.19)

It is clear that if f is integrable and [f] = S[11, then Qn(x; f) = vn(x; 1).

(3.20) THEOREM. At every point at which `F1(h) =o(h) (in particular, almost every-
where) we have vn(x)-f(x; 1/n)-+0. (3.21)

For let R,(t) = f cot it - Hn(t). The inequalities

Kn(t)I _< in, I I ,(nAl)`2 (0<t< >r) (3.22)

are immediate (see (3.17')). By (3.19) and (3.17), 1 On(x) _AX; 1/n) I does not exceed
21 In (t)Kn(t)dl

- J * ? (t)Hn(t)dtl
1 /n I

J0i (t)1 dt+;j(n4+1)J1/nl
dt P*+Q*,

and an argument similar to (3.13) and (3.14) gives P*+Q*=o(1). This proves the
theorem.

Suppose that 1 /(n + 1) _< h _< I /n. Since J (x; h) - f (x; I /n) -+ 0 at every point at which
`F=(h) =o(h) (see Chapter II, (11.8)), we conclude that at such points the summability
(C, 1) of '[f ] is equivalent to the exi8tence of f(x). It will be shown later (see Chapter IV,
§3, and Chapter VII, § 1) that f(x) exists almost everywhere for any integrable f.
Assuming this we can state the following;

(3.23) THEOREM. S[f] is 8ummable (C, 1) to 8um f(x) almost everywhere.

It is of interest to consider the integral (C, 1) means of S[f ] and 9U] (see p. 83).
Returning to the formulae (7.2) and (7.3) of Chapter II, we find that, except when m is
an integer, the right-hand sides there are the sum functions for SL f] and S[ f ]. The left-
hand sides are uniformly bounded for m confined to an arbitrary finite interval, and
converge uniformly except in the neighbourhood of integral values of m. Hence if we
integrate the equations with respect tom, we can interchange the order of integrations
on the left, obtaining the formulae

J_:- A(x)= tmf(x+t)2sinz}mtdt (324)
m IT

1 m
n _mf(x+t){1

sin
t) "U, (3.25)E (1-_v)B,(x)=-

+

4.
f

t WO

analogous to (3.3) and (3.19). The left-hand sides here are continuous functions of m
and the first integral converges absolutely.
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4. Convergence factors

In Chapter VIII we shall see that a Fourier series may diverge almost everywhere.
We may therefore ask about convergence factors of the Fourier series, that is to say
sequences {AY} such that, for each Fourier series I;(a,, cos vx + b,, sin vx), the series

')a0k0+ .-1
converges almost everywhere.

A sequence of numbers A0, A1, .., is said to /be convex if Mk, 3 0 for all v, where

"'Y - Y+I r A2AY - AAY - iY+1'

Geometrically, this amounts to saying that the polygonal line with vertices at the
points (v, A,) is convex. We shall show that if {A,,} is convex and bounded, then it is
non-increasing. By hypothesis, A,1 is non-increasing. It cannot be negative for any
value of v, for then it would be less than a negative constant for all subsequent values
of v, which would imply that A, -> + oc, contrary to hypothesis. Thus .A,, = An - An+1 > 0
for all n, so that > -, A > _ c0n _ n+1

In the equation Ao - A = AA0 + AA, + ...

the terms on the right are non-increasing, and so, by the classical theorem of Abel,
nAAn-* 0. Taking this into account and summing the series I . AA, + 1. AA1 +... by parts
we get:

(4.1) THEOREM. If {An} is convex and bounded, then is non-increasing, nAd --).. 0,
and the series

converges to sum A0 - lim A,,.

E (n + 1) Astn
n-0

(4.2)

It is geometrically obvious that if a function A(x) is convex, the sequence {.1,,} = {.I(n)}
is convex.

In particular, if we take An =1 /Iog n for n=2,3,... and choose A0, Al suitably,
(An) will be convex.

(4.3) THEOREM. Let an and an be the partial sums and the (C, 1) mean. of a series
u0 + u1 +.... If ?n converges, and if sn = o(1un ), where {l/u,,} is convex and tends to 0,
then uou I+ ul,uj I+_ converges.

For applying summation by parts twice to the nth partial sum of the last series
we find that it is equal to

nEs

-+nan_1A1 +8n 1 -)'E (k+1)okA'1 .
k-0 /kk 1Un-1 Un k-0 #k

Take an=logn for n> 2. From (4.3), (3.9), (3.23) and Theorem (11.9) of Chapter
II, we deduce:

(4.4) THEOREM. If ak, bk are the Fourier coefficients of a function, both aeries

°D a,, coo kx + bk sin kx `° ak sin kx - bk coo kx
k9 log k ' k-S log k

converge almost everywhere.

(4.5)
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The result obviously holds if log k here is replaced by ka, a > 0.
The first series (4.5) converges at every point where as(h)=o(h), in particular at

every point of continuity of f. If f is continuous in (a, b), the aeries is uniformly con-
vergent in every (a + e, b - e), c > 0.

5. Summabil}ty (C, a)

(5.1) THEOREM Or M. RTEsz. The theorems (3.4) of Fejer (except for the last Sentence)
and (3.9) of Lebe8gue hold if eummability (C, 1) is replaced by (C, a), a> 0.

Let Kn(t) denote the (C, a) kernel and o-n(x) = an(x; f) the (C, a) means of S[f j. Then

Kn(t)= An= (()/An, (5'2)
V-0

on(x)= -*f(x+t)Kn(t)dl, (5'3)

an(x)-f(x)=- oO:(t)Kn(t)dt, (5'4)

the last equation being a consequence of the validity of condition (A) (p. 85) for Kn(t).
It is enough to consider the case 0 < a < 1. We shall show that then

Kn(t) I < n + 1 < 2n, I Kn(t) I ` Aan-at-(a+1) (5.5)

for n =1, 2, ..., 0 < t < n, with A. depending on a only.
These inequalities are analogous to (3.10) and reduce to the latter for a = 1. Once

(5.5) is established, the proof of the extended (3.9) goes as before. Similarly, to extend
(3.4) it is enough to show that the kernel Kn(t) is quasi-positive and satisfies condi-
tion (c) (p. 86). Both these facts are corollaries of (5.5): for

1/* t

fow I Kn(t) I dt < 2nj dt + Aa n-a t-a-1 dt < 2 + Aj/a,
0 J 1/*

and max I Kn(t) I <Aan-ad ca+u 1 0.
asrc+

It remains to prove (5.5). The first part follows from (5.2) and the estimate

I D,,I v+j<n+l.
For the second we have, from (5.2),

1 " ei(n+})r n
Kn(t) = J 1 e'c°+})r = 5 F, A; -1

2Ansin,)t 0 2An-sin }t,,-o

e1(L+})1 1

(1- a-u)-a - E A' e_"] t (5.6)
{2An sin }t

r
v-n+1

Since Ay -1 decreases monotonically to 0, the last series converges for 0 < t < n
and the modulus of its sum is < 2An+i 11- a-a I-1 (see Chapter I, (2.2)). So, since

J. I< I z I, I Kn(t) I is majorized by

(2 sin 4t)-a-1
I + 2A0.1 +11 (2 sin it)-Y < Aa{n-at-a-1 +n-'t ') (5.7)l Aan Aa

an
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for 0<tSn. If nt3 1, then
nt= _ (nt)1-a natatl > natatl ,

the right-hand side of (5.7) does not exceed 2Aa -ate-1, and the second part of (5.5)
follows. For 0 < t < 1/n the second part of (5.5) is a consequence of the first. This
completes the proof of (5.1).

Let vn(x) = o n(x; f) be the (C, a) means of [f J. The theorem which follows is an
extension of (3.20) and (3.23) to summability (C, a).

(5.8) THEOREM. Let 0 < a < 1. At every point x at which `Y=(h) = o(h) we have

on(x)-f(x; 1/n)--). 0.

In particular, 9U] ] is almost everywhere summable (C, a) to sum f (x).

The proof is analogous to that of (3.20). Let Kn(t) be the conjugate (C, a) kernel.
Then 2 p, _

dn(x) _ n f*
0 r (t)Kn(t) r (5'9)

Kn(t) = (5-10)

la
EAn-;c08(Y+ )t=+cotit-H,a,(t), (5.11)

An,_o 2 sin it
say. We show that (for 0 < a < 1)

M Kn(t) J _<n, I Hn(t) J _<Aan-at-(a+u (n-1 _<t 5 n). (5.12)

The first inequality here follows from (5.10) and the estimate JB, S v _< n. For the
second inequality we note that for Hn(t) we have a formula analogous to (5.8) with .>f
replaced by R, and the previous argument is still appcable.

To prove (5.8) we write (5.9) in the form

11*on(x)-f(x; 1/n) = - 2-J ifix(t)K;(t)dt+ 2- x(t)Hn(t)dt, (5.13)
'r o n l n.

so that, as in the proof of (3.20),

en(x)-f(x; 1/n)I <nnf0'dt+nn°J11n to+,,dt-.0,

and the theorem follows.

For later applications we shall need a refinement of (5- 6), namely, if - I <a < 1 we
have 1 sin[(n+}+}a)t-}na] 20a

Kn(t)=A (2 sin}t)a+1 +n(2sin}t)9n

Applying repeated summation by parts to the last series in (5.6) we obtain more
and more accurate approximations for Kn(t). For example,

1
ei(n+})t 1 e-i(n+1)t ao a-uP+l>

1Kn(t) = {An(2
sin 4t) 1(1- -*')a A%+i 1- a a71

1 sin[(n+f+}a)t-}na] a 1 28a(1 -a)
An (2 sinit),+1 n+l(2sinJt)2+(n+1)(n+2)(2sin}t)e (515)

Similar formulae hold for Kn(t). We may add that the estimates (5.5) and (5.12)
hold also for - 1 < a 5 0.
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6. Abel summability
Let a,, b" be the Fourier coefficients of f. The Abel (or, simply, the A) means of

S[f] and [f] are the functions

f(r, x) = 4a0+ Z (a, cos vx+b,sin vx) r'
1 r (O_< r<1), (6.1)"-

f(r,x)= (a, sinvx-b,cosvx)r"I

and we wish to investigate their limits as r -- 1. Since a", b, -> 0, the series converge
absolutely and uniformly for 0 S r < 1- 8, 8 > 0. Thus f (r, x) and 1(r, x) (a notation
which we shall use systematically) are continuous functions of the point ret' for r < 1.

The Abel means of the even series } + E cos vt and the odd series I sin Pt are
1 1-r'P(r, t)=}+Er"cosvt=1-2r cost+r'' (6.2)

Q(r,t)= Y, r'sinvt= taint (6.3)
"_1 1-2r cost+r'

(see Chapter I, § 1). They are called the Poisson kernel and the Poisson conjugate
kernel respectively. The standard formulae (2.12) and (2.13) (where now the con-
tinuous variable r plays the former n) will rnow be

f(r,z)= n I *f(x+t)P(r,1)dt= (6.4)

f(r,x)= - 5' f(x+t)Q(r,t)dt= -n fw f(t)Q(r,t-x)dt. (6.5)
7T _

The right-hand sides here ar`d usually called the Poisson integral and the conjugate
Poisson integral of f. Thus the expressions 'Abel mean of S[f]' and `Poisson integral
off' are synonymous.

The denominator A(r, t) = 1 - 2r cos t + r' (0r< 1)

of P and Q is positive for all t. It follows that

P(r, t) > 0 for all t,
(6.6)

Q(r,t)>0 forO<t<n.
Hence P is a positive kernel. For fixed r, its maximum and minimum are attained at
t = 0 and t = IT respectively. Thus

21+r<P(r,t)<21±r. (6.7)

It is sometimes convenient to use the inequality

P(r,t)_< Ae8t_ (8=1-r,ItJsrr), (6'8)

in which A is an absolute constant. For 0 _< r < } it is immediate, since both P(r, t)
(see (6.7)) and 8/(82+t2) are then contained between two positive constants. For
4<r<1, _1 (1+r)(1-r.) 8 8

P(r, t)
2 (1 - r)2 + 4rsin' it < 82 + 4. }(n- 1t)' < 1'< 8'+t"
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and (6.8) holds again. In particular, (6.7) and (6.8) imply

P(r,t)<a, P(r,t)-<A8 (0<t n, O<r<1),

inequalities similar to those satisfied by Fejer's kernel (see (3.10)) if we replace 4 by
1/(n + 1).

The kernel P(r,t) is positive, satisfies condition (A), (p. 85), i.e.

1

n
-1 (610)

(as is seen by termwise integration of the series in (6.2)), and also condition (c) (as is
seen from the second inequality (6.9)). Thus all the assumptions which led us to
Theorem (3.4) from (2.21) are valid, and we have the following result:

(6.11) THEOREM. Theorem (3.4) of Fejdr holds if we replace the (C, 1) means of S[f]
by the Abel means.

Of course, this result, like some of the results established below, is also a consequence
of the theorem of Fejer and of the fact that summability (C, 1) implies aummability
A for any series. But a direct study of aummability A of Fourier series is of interest for
two reasons. First, summability A of S[f] may hold under weaker conditions for f
than summability (C, 1); secondly, summability A of S[f] has special features which
are absent in (C, 1). For example, we may consider not only the radial bat also
the non-tangential, and even unrestricted, limit of f(r, x) as (r, x) tends to a point on
the unit circle.

The functions f (r, x) and f (r, x) of (6.1) are the real and imaginary parts of the function

O(z)= + E (a,-ib,)zr, z=retz,
r-1

regular for I z < 1. Thus f (r, x) and f(r, x) are harmonic, that is as functions of Cartesian
co-ordinates , y they satisfy Laplace's equation

u{{+urp=0.

Each real-valued function harmonic in the interior of a circle is the real part of a regular
functiont. Hence, if u(r, x) is harmonic in the circle 0 < r < R, we have

m

u(r,x)=}ae+) (a,cosvx+b,sinvx)r? (0<r<R).
P-1

Let f (x) be a continuous and periodic function and let (r, x) be the polar co-ordinates
of a point. Theorem (6-11) asserts that the Poisson integral f (r, x) of f (X) tends uni-
formly to f (x) as r-+ 1. In other words, Poisson's integral gives, for the case of a circle,
a solution (or indeed, as is shown in the theory of harmonic functions, the unique
solution) of the following problem of Dirichlet. Given

(i) a plane region D limited by a simple closed curve C,
(ii) a function f(p) defined and continuous for peC,

find a function F(p) harmonic in D, continuous in D+C, and coinciding with f(p)
on C. As we shall see below, in the case of the unit circle the Poisson integral solves
a more general Dirichlet problem in which f(p) is an arbitrary integrable function.

t see, e.g., Littlewood, Lectures on the theory of fundions, p. 84.
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(6.12) THzowcm. Ifm<f(x)<Mforallx,then

m<f(r,x)<M (0<r<1, 0<x<27r).
In particular, f (r, z) 3 0 if f 3 0.

If m -<f(X) < M for x e (a, b), then for every e, r/ > 0 there is a number ro such that

m-e<f(r,x)<M+e for ro<r<l,xe(a+r/,b-r/).
This is a special case of (2-16) and (2-28).
Since P(r, x) is strictly positive for r < 1, it follows that if m <f(x) At in (0, 2n) and

f * const., then we have the sharper estimate

m<f(r,x)<M (0<r<1).
Let m(xo) and M(xo) be the minimum and maximum off at xo (see p. 88).

(6.13) THzoasM. If L is any path leading from the interior of the unit circle to the
point (1, xo), then the limits of indetermination of f (r, x) as the point (r, x) approaches
(1, xo) along L are contained between m(xo) and M(xo).

For if (re, is any sequence of points, with r, < 1, approaching (1, xo), then (see

(2-30))

A special case of (6.13) asserts that, if f is continuous at xo, then f(r, x) tends to f(xo)
along L.

Suppose that f has at xo a discontinuity of the first kind and that

Let

f(xu)=}{f(xo+0)+f(xo-0)).

d =,f (xo + 0) -f(xo - 0)

be the jump of f at zo. Without loss of generality we may suppose that xo=0. The
function

aD sin Yxv
has jump rr at z= 0 (see p. 9). It follows that

g(x) =.f (x) - d ql(x)

is continuous at z = 0, and g(0) =/(O). Moreover,

f(r,x)=g(r,x)+dO(r,x)=g(r,x)+darctan 1 r tinex (6.14)
7T 77 -

(Chapter I, § 1). Along any path L leading to (1, 0) from the interior of the unit circle
we have lim g(r, x) = g(0) =f(O) so that the behaviour off (r, x) along L depends on that
of the last term in (6-14).

The arotan in (6.14) is the angle, numerically < in and reckoned clockwise, which
the segment joining (r, x) to (1, 0) makes with the negatively directed real axis. Hence :

(6.15) Tasonau. Suppose that f (x) has at xo a discontinuity of the first kind and that
f(z0) = }(f (xo + 0) + f (xo - 0)}. Let L be any path approaching the point A (1, xo) from inside
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the unit circle and making at A an angle 0, - 47T e 0 s in, reckoned clockwise, with the
radius at A directed inwards. Then lim f (r, x) along L exists and equals

d
f(x0)+R0, where d =f(xo + 0) -f(xo - 0). (6.16)

If L does not have a tangent at A, f (r, z) oscillates finitely as (r, x) -* (1,x0) along L.

If L is tangent to the unit circle at A, then 0 = in or 0 = - in, and correspondingly
(6.16) reduces to f (xo + 0) or f (xo - 0).

Let X(x) be the characteristic function of an interval (a,#). The Poisson integral

l pa
X(r,x)=- P(r,t-z)dt (6.17)

of X has a simple and useful interpretation.
Let C be the unit circumference with centre 0, z and points inside and on C respec-

tively. The point ' at which the ray z intersects C will be called opposite to , with
respect to z. Ifs is an are of C, the are a' consisting of the points opposite to those of s
will be called opposite to s (with respect to z).

(6.18) THEOREM. With the notation of (6.17), 2nX(r,x) is the length of the are
s'= (e" air) opposite to 8 = (e1 , era) with respect to z = r et=.

Let 8, 8' also denote the lengths of 8, 8'. The angle y which 8 subtends at z is }(8 + 8').
Clearly it is also

r r
.05 =9P f a 1-

dd J

Thus 4(s + s') = }s + rrX(r, x),

from which the theorem follows.
The level curves of X(r, x), being the curves on which y is constant, are those area

of the circles through e'°, efa which are inside C.

7. Abel summability (cont.)
From Theorem (3-9) we deduce that S[f] is summable A at every point x for which

mz(h) = o(h), in particular almost everywhere. This result will be superseded by a
somewhat stronger one (see (7.9) below). We shall first prove results about summability
A of formally differentiated Fourier series.

As in Chapter I, p. 22, if

lim
F(x0+h)-F(xo h)h)=D1F(zo)

(7.1)
a+o 2h

exists it is called the first symmetric derivative of F at zo. In the general case the upper
and lower limits, as h-+0, of the ratio in (7.1), are called the upper and lower first
symmetric derivatives. We shall denote them by D1F(xo) and D1F(xo) respectively.
If F'(xo) exists so does D1 F(xo), and their values are equal.

(7.2) FATOV's THEOREM. Suppose that

F(x)' }A0 + X (A, oos vx + b, sin vx)
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and that D1 F(xo) exists, finite or infinite. Then S'[F] is summable A at xe to sum Dl F(xo),
that is,

v(B,,coevxo-A, sinvxe)r'
-1 (7.3)

tends to DI F(xa) as r -> 1.
More generally, the limits of indetermination of (7.3) as r--)-1 are contained between

D1F(ze) and D1F(z0).
It is enough to prove the second part. If F(r, x) is the Poisson integral of F, then

(7.3) is {aF(r,x)/ax}Z_.,,.. From

F(r, x) = 1 F(t) P(r, t - x) dt
77 -s

we get
T (8F x = __.- r*F(t)P'(r,t-xo)dt=I f g(t)K(r,t)dt,l (

(7-4)

where the dash denotes differentiation with respect to t,

g(t) = {F(xo + t) - F(xo - t)}12 sin t,

K(r, t) = - r-1P'(r, t) sin t = (1- r2) sin' 9/As(r,

We note that K(r, t) has the properties (A), (B), (c) of kernels. Property (B) is im-
mediate; so is (c), even for P'(r,t). In order to show that

1 f *,K(r,t)dt=1, (7.5)
7T -

we take F(x) = sin x, xo = 0. Then F(r, x) = r sin x, g(t) = 1 and a comparison of the
extreme terms in (7.4) gives (7.5).

Since the maximum and minimum of g(t) at t=0 are D1F(xo) and D1F(xo), (7.2)
would follow from (2.30) (with x. = xo for all n) if we knew that g(t) was integrable. The
latter is not necessarily true (except when, for example, D1F(xo) and D1F(xo) are both
finite), but this does not affect the proof, as we see from the following argument. Let
0 < d < 77. Since P'(r, t) satisfies condition (c), the right-hand side in (7.4) is

1 rre

J g(t) K(r, t) dt + o(1).

The integral here is contained between the upper and lower bounds of g(t) in (- 8,8)
ra

times 1 J Kdt. But the latter integral tends to 1 as r -> 1. Hence the limits of indeter-
>r -e

mination of (7.3), as r-> 1, are contained between the upper and lower bounds of g(t)
in (- 8,46). Taking d arbitrarily small we may replace these bounds by D1 F(xo) and
D1F(xo), and (7.2) is established.

(7.6) TxxoRxM. If F'(xo) exists and is finite, then

aF(r, x)/ax -* F' (z0)

as (r, x) approaches (1, xo) non-tangentially.

We may suppose that xo = 0, F(0) = 0. Let us also temporarily suppose that F'(0) = 0.
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Given any e > O, let o- be such that I F(u) I e I u I for j u I From (7.4) and using
the property (c) of P'(r, t) we have

8F(rx,x)_ -n f F(x+t)P'(r,t)dt= F(x+t)P'(r,t)dt+o(1)=A+o(1). (7.7)
a ?T

Suppose that I x l-<o-. Then I F(x+t) I <e l x+t I in A and

I AI -<-r I (Ixi+ltl)IP'Idt
l

< -f0(Ixl+t)P'dt<
ff

(IxIP(r,0)+JoPdty<n{ +
7T ff 1-r (7'8)

The expression in curly brackets remains bounded in a non-tangential approach.
Hence, taking e arbitrarily small, we see that (7.7) tends to 0, under the hypothesis
F'(0)=0.

In the general cane, we write

F(x) = (F(x) - F'(0) sin x} + F'(0) sinx.

The derivative of the expression in curly brackets at x = 0 is zero, and for the functiod
F'(0) sin x, whose Poisson integral is F'(0) r sin x, the theorem is obvious.

(7.9) TxaoxsM. Let F(x) be the indefinite integral of an integrable and periodic f. Then
(i) S[f) is 8ummable A to sum D1F(x0) at every point x0 at which D1F(x0) exists,

finite or infinite ;
(ii) at every point at which F'(x0)=f(x0) exists and is finite (in particular almost

everywhere) the Poisson integral f (r, x) off tends to f (x0) as (r, x) (1, x0) non-tangentially.

For supposing, as we may, that the constant term of S[ f) is zero, we have S[ n ] = S' [F),
f (r, x) = aF(r, x)/3x, and the theorem follows from (7.2) and (7.6). Part (i) here is not
a consequence of (3.9), since the condition (Dz(h)=o(h) is more stringent than the
existence of the symmetric derivative.

It is sometimes important to know the behaviour of the Poisson integral for a tan-
gential approach. The following result, in which for simplicity we take x0=0, will be
useful later and indicates the type of estimate one can expect.

(7.10) Th$oREM. Suppose that

1 A

fof(t)dt 5M for Ihl,n. (7.11)

Then, with 8 = 1- r and denoting by K an absolute constant,

I.f(r, x) I < KM(1 +a1), (7.12)

I II
f (r, u) du I < KM I x I. (7.13)

Suppose that the constant term of S[f] is zero. Then F(x) = J f dt is periodic. For
0

f(r,x)=8F(r,x)J8x we have (7-7) with o- =nr and no term o(1). (7.8) with a=M then
shows that we have (7.12) with K =1.
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In the general case we put f = fl + fa, where

fa=2n fdt

is a constant. Clearly I fa I < M, and f1= f - fa satisfies (7.11) with 2M instead of M ;
also the constant term of S[f,] is zero. It follows that f (r, x) = fl(r, x) +fa(r, x) satisfies
(7.12) with K = 3.

For (7.13) we first suppose as before that F(x) =fof.* is periodic. From the
equation preceding (7.4) we obtain

I J(r,u)du=F(r,x)-F(r,0)=-' f'1F(t){P(r,t-x)-P(r,t))dt,

so that the left-hand side of (7.13) does not exceed

M I I t I I

P(r, t - x) - P(r, t) I dt = MI(r, x),
7T f-'

say, and it is enough to show that

I(r,x)<KIxI (Ixl<n). (7.14)

The cases x > 0 and x < 0 in (7.13) are equivalent and we may suppose that 0 < x < it,
or even 0 < x < in, since otherwise (7.14) is obvious.
Now

Clearly, Il < x (P(r, t) + P(r, t -x)) dt = 2ax,

1a=1 (t + x) P(r, t) dt - tP(r,t)dt

<x f P(r,t)dt+ !(t+x)P(r,t)dt
z 0

<xJJ P(r,t)dt+2xJo P(r,t)dt=lnx.

The same argument gives I,<inx. Since the integrand in I, is uniformly bounded
we see that I4(x)=O(x). Collecting results we obtain (7.14). For general f, we apply
the same decomposition f = fl +fa as above.

The series
v(A,, cos vx + B sin vx)

,,-1

is both the conjugate of S'[F] and the formal derivative of §[F]. We shall denote it by
'[F]. Obviously,

v(A, cos vx + B, sin vx) r' = aP(r, x)/ax.
.-1

(7.15) THBoa;SM. If F is periodic and integrable the difference

aP(rr,x)(If* ,F(z+t)+F(x-t)-2F(x)&)
t 4 sins it

nI(r,x)=I + f + f _Z +J +2
x = .+Z - I

(7.16)
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tends to 0 with 1 -r at every x at which F is smooth, i.e. at which

F(x+t)+F(x- t) - 2F(x) = o(t). (7.17)

The formula (6.5), with F for f, gives

aP( x)= -n f F(t) _Q(r,t-x)dt=. fo {F(x+t)+F(x-t)-2F(x)}Q'(r,t)dt,

since Q' is even and the integral of Q' over (- 7r, ?r) is 0. We note that

r t) _r[(1+r2)cost -2r] 1 l - 1

Q ( (1 -2r cost+r2)' ' Q ( ) 2(1 -cost}' (7 18)
Q'(r,t) I r+2r2+3r3+... =r/(1-r)2.

Let 4(t)=F(x+t)+F(x-t)-2F(x), 8=1-r.
By (7.17), 6(t) =o(t). We split the integral last written into two, denoted by A, B with
ranges respectively 0 f<o t < 8, 8 S t <, n. Then (see (7.18))

A I <- 16(t) I dt=8-2Joo(t)dt=o(1),

B= 1 Ie (t)Q'(l,t)dt+ 1 Ja*6(t)[Q'(r,t)-Q'(l,t)]dt=B1+Bn n

say. Here B, equals the expression in parentheses in (7.16), and (7.15) will be proved
if we show that B2 -- 0. Collecting separately the terms with cost and Dose t in the
numerator we find

Q'(r,t)-Q'(1,t)=(1-r)2[(1+r)2-2rcost -2rcos't]=82[0(r,1)+2rsins t]
2(1- cos t) A2(r, t) 2(1- cos t) A2(r, t)

Since 0 > 4r sin' it, the last expression is O(82t-4). Hence

Be I -<
IT

f'ff,(t) 0(82t -4) dt 82Ja o(t-3) dt = 0(1),

which completes the proof of Theorem (7.15).
Thus, under the hypothesis (7.17) (in particular, if F'(x) exists and is finite) the

summability A of S'[F] at x is equivalent to the existence of the integral

F*(x)= ITJF(x+t)
4s(n' t)-2F(x)dt= lim {-1 1 L (7.19)

o a-+o allll

We show below (Chapter IV, § 3) that if F'(x) exists at every point of a set E then the
integral (7.19) exists almost everywhere in E; we infer that the series S'[F] is then
summable A almost everywhere in E.

(7.20) THEOREM. If f i8 integrable and F the indefinite integral off, then

( 1J(r,x)-\-- " [f(x+t)-f(x-1)]+cot}tdt)-*0 (r-->1) (7.21)
IT 1

at every point where F is smooth, in particular where f is continuous. If f is everywhere
continuous, the convergence i8 uniform.
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This is a strengthening of (3.20), since the condition of smoothness, which can be
h

written
J

:lin(t) dt = o(h), is less stringent than Tr(h) = o(h).
0

Suppose that the constant term of S( f ] is 0. Then F is periodic andf(r, x) = aP(r, x)/ax.
Integration by parts gives

J a 4 1n2t dt = f(a) j cot jS+J a ntt A (7.22)

where f(t) = F(z + t) + F(x - t) - 2F(x). The integrated term is o(1) by hypothesis and
(7.20) follows from (7.15).

Theorem (7.20) shows that under the smoothness condition (7.17) S[f] is summable
A at x if and only if f(x) exists. We show now that the mere existence of f(x) implies
(7.17) and consequently (by (7.20)) the summability A of S[f] at x.

Since the ratio t/tan it and its reciprocal are both bounded and monotone near t = 0,
an application of the second mean-value theorem shows that the existence of f(x) is

equivalent to the existence of the integral f *t-'(t)dt. The relation 6(t)-o(t) will
0

follow if we apply to the latter integral the following lemma, with a= P and
h(u) = u-'tlr(u):

(7.23) LEMMA. Suppose that h(u), 0 < u e a, is integrable over each interval (e, a),

e> 0, and that the (improper) integral) ahdu= lim fhdu exists. Then, if a> 0,
o t-.+o .

t
h(u)u°du=o(ta) (t-.0). (7.24)

Let H(u) = I h(v) dv. For t > e integration by parts gives

u°h(u) du = [uaH(u)]t, - aJ u°-'H(u) du.

If we make a -* 0 and observe that H(u) = o(1), (7.24) follows.

Let E(t) =J 6(u) du. A minor modification in the proof of (7.15) (integration by
0

parts so as to have fi(t) instead of 4(t)) showsr that (7.16) tends to 0 if (7.17) is

replaced by 7(t)=o(t2). If (7.19) exists, so does ),t-26(t) dt. By (7.23), with a=2, we
0

then have Wi(t)=o(t=). Hence the existence of the integral (7.19) implies summability
A of §[F) at x.

Let ¢(z) be the power series whose real and imaginary parts on I z = 1 are
S[f ] and §[f] respectively. If this power series is summable (C, 1) at a point eiXo, then
S(z) tends to a limit as z approaches ex- non-tangentially (cf. (1.34)). Thus, considering
the imaginary part of 0(z) and applying (3.9) and (3.23), we get:

(7.25) T$EoaEM. If f E L, then for almost all z the harmonic function f(r, x) .tends to
a limit as (r, x) approaches (1, x0) non-tangentially.
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The fact that S[f] is almost everywhere summable A to f can be complemented as
follows:

(7.26) THEOREM. Given any set E in (0, 21r) of measure zero, there is a periodic and
integrable f (x) >, 0 such that for every xo e E we have f (r, x) -* + oo as r e1z approaches eiz
from the interior of the unit circle.

For let Gn bean open set containing E and such that 1q.1 < I /n4 Let f (x) = ns in
Gn, 0 elsewhere. Let f(x) = :f (x). Obviously, f 3 0, fn < f for every n and

*fdx E f0

fe L. If xo e E, then xo a G and so, for re-+e',

lim inff(r, x) -> lim inf fn(r, x) = nz,
so that limf(r,x)= +oo.

A similar argument shows that S[f] is summable (C, 1) to +oo at every point of E.

8. Summability of S[dF] and S[dF]
Let F(x), 0 < x < 2n, be a function of bounded variation. From (7.6) we see that at,

every point where F'(x) exists and is finite, S[dF] is summable A tosum F'(x). Similarly
Theorem (7.15) implies that at every such point summability A of S[dF] is equivalent,
to the existence of the integral (7.19).

(8.1) THEOREM. Let ori(x) and o--,(x) be the a-th Cesdro means of S[dFJ and S[dF].
If O<a-<I, then

on(x)-->F'(x), (8.2)

n { _
1 fiin F(x+t)+F(x-t))=2F(x) i

al (X) n (2sin}t)
dt 0 (83)

for almost all x.

We shall only sketch the proof, which is similar to those of (5.1) and (5.8). First we
prove the following analogue of Theorem (i l 1) of Chapter II :

(8.4) THEOREM. Let F(x) be of bounded variation,

Fi(t) = F(x+ t) - F(x-t) - 2tF'(z),

G1(t) F(x + i) + F(x - t) - 2F(z),

and let (D=(h.), `V (h) be the total variations of the functions Ft (t), G2(t) over the interval
0 < t < h. Then 4),,(h)=o(h), 'V1(h)=o(h)
for almost all x.

Let y be any number, and let V ,,(t) be the total variation of the function F(t) - yt.
For almost all x, we have V;(x) = F'(x) - y 1, that is,

h-' fo,d,{F(x±t)-y(+i)}(-+jF'(x)-yj as h-++0,

where the suffix t indicates that the variation is taken with respect to the variable t.
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Considering rational values of y and arguing as in the proof of Theorem (11.1) in
Chapter II, we prove that

rA

I

J 0
d{F(x ± t) - (± t) F'(x)} o(h),

and hence Io I d,F,(t) I =o(h), fo I d,O (t) I =o(h),

for almost all z.
It is now easy to prove (8.2) for all x with (=(h)=o(h). For

on(x)= t f Kn(x-t)dF(t)=-I55 Kn(t)dr{F(x+t)-F(x-t)),

on(x)-F'(x)=if

f J
+i (! =A+B,

n o n o IT t/n

say. Here A -< 2n 1) (l /n) = o(1). Integration by parts, in view of (5.5), gives

BeOa-ln-a[dz(t)t-a-1]un+ 0(1+a)n-'n-°I Z(t)t-`-2dt=0(1),
JJIM

and this yields (8.2). To obtain (8.3) we note that

fi(x)= -nJo K.(t)di[F(x+t)+F(z-t)]= -n I f (t)dG (t),

n(x)_
1 'w d,Gz(t)1 = - 1f/nKn(t)dfG

(t)+ 1 f * H,(t)dG.(t)n J !n 2 tan it 'n o n lIn

(cf. (5.13)). The two terms on the right are o(1), since '1'(h)=o(h). Integration by
parts gives

fdt° _
- :(t) " =0(I)

i!n 2 tan it (2
G(sint)

it)a - [2 tan it]1!n ($'5)

for all x at which F is smooth, and this proves (8.3).
Arguing as in the proofs of Theorem (11.9), Chapter II, we find that the the partial

sums of S[dF] and S[dF] are o(log n) almost everywhere.
Taking for granted (again) that the integral (7.19) exists almost everywhere (see

Chapter VII, (1.6)) we see that SS[dF] is 8ummable (C, a), a > 0, at almost all points. This
implies, in turn, that Theorems (4.4) and (7.25) are valid for Fourier-Stieltjes series.

9. Fourier series at simple discontinuities
Given a numerical sequence 8o, s s=, ..., consider the numbers

1

log(n+1) (n=1,2,...). (9.1)

We can verify that the matrix transforming {sn} into satisfies the conditions of
regularity (§ 1). The method of summability defined by (9.1) is called the logarithmic
mean.
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Let Substituting (9.1),weget

Tn
(_,_,+n--' o-, +n+ l

1-vpi- ---+ -'Tn//log(n+1). (9.2)\-i v n

The matrix transforming {o n} into (Tn) again satisfies the conditions of regularity, so
that the logarithmic mean is at least as strong as (C, 1). If un = (- 1)n, then Tn -*. 0
though lim on does not exist; thus the method of the logarithmic mean is actually
stronger than (C, 1).

Theorem (8.13) of Chapter II can be restated as follows: at every point x where f has
a jump d, the terms v(b cos vx - a sin vx)

of S'[ f ] are summable by the logarithmic mean to d/n. Thus the terms of the differ-
entiated Fourier series determine the jumps of the function.

It can be shown by examples (see p. 314, Example 3) that in general we cannot
here replace the logarithmic mean by (C, 1). This, however, can be done if the function
is of bounded variation. In this case we assume, slightly more generally, that F(x) is not
necessarily periodic but satisfies the condition

F(x + 27r) - F(x) = const. (- co < x < + co),

and is of bounded variation in (0, 2n).

(9.3) THEOREM. Let dF(x) - 2:c e1 . Then

in i+xa--*n-' Fx +0 Fx 0- cue [ ( o )- (o- )]
If vx+B,sin vx),

then S[dF] = S'[F] and (9.4) can be written
n

(9.4)

I v(B,cosvxp-A,, sinvxp) ir-'[F(xp+0)-F(xp-0)J. (9.5)1
nr-1

In the proof of (9.4) we may suppose that xp = 0. We verify (9.4) (or (9.5)) for the
function J(n - x) = sin x + } sin 2x + ... (0<x< 2n).

Subtracting a multiple of it from F we may suppose that F is continuous at x = 0,
and we have to show that

I

A Dn(t)dF(t)=-
it,

r + =A+B
r- n -* IT

is o(n). We choose i so small that the total variation of F over (- i, i) is _< e. Then

A I s rr-'(n+})f' I dF(t) I <2na-'e<en,

BI 7/-1 maxIDn(t)f IdF(t)I=0(1)=o(n).,'
Hence A+B=o(n) and (9.3) follows.

We apply Theorem (9.3) to the function F* associated with F by means of the for-
mula (1.28) of Chapter 11. Using the results (1.29) and (1.30) of Chapter II, we obtain:
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(9-6) THEOREM. Let dF(x) - Ec, ew-, and let dl, ds, ... be all the jumps of F(x) in
0<x<2n. Then

lim 2n+I IC,12=(2n)-BY- IdJI',n co r.-»
and F is everywhere continuous if and only if

I +n :R _
2n+1 Ele.l 0.

In particular, F is continuous if c,-+0.

The condition Rn-+ 0 is equivalent to
nR 2n+I EIc.I-+0.

(9-7)

(9.8)

(9.9)

For R < R;, max I ck 1, and so (9.9) implies (9-8). The converse follows from Schwarz's
inequality: Q }

R,
=(2n+1)-' EIcj.I<(2n+1)-'I`I') (2n+1)}=Rf.

_n _n

Return to the hypothesis f e L. For applications it is of interest to investigate the
Abel summability of the sequence {v(b, cos vx- a, sin vx)}, that is, the existence of
the limit of

(1-r)X v(b,coavx-a, sinvx)r"=(1-r)f(r,x) (9.10)r

as r -+ 1. Instead of d(x°) = lim [ f (x° + t) - f (x° - t)] we may consider the generalized

jump
f-+o

1 " = F(x°+h)+F(x°-h)-2F(x°)
a-o h

where F is the integral of f. Thus 8(x°) = 0 is the same thing as the smoothness of F
at x°. The existence of d(x°) implies that of 8(x°) and both numbers are equal.

(9.11) THEOREM. If 8(x°) exists and is finite then (1- r) f=(r, x), with x = x°, tends to
8(x°)/rr as r-* 1.

We may assume that a° = 0, so that F is periodic and f,(r, x) = Fu(r, x). We may also
take xo = 0. If f - EP-'sin vx, then (9.11) is obviously valid and so we may confine our-
selves to the case 8(x°) = 0. Since

'[2r(1 + sins t) - (I + r$) cost]P"(r,t)=(1-r) r (1-2r coat+r2)3 (9.12)

is even in t, and since P' dt = P' (r, n) - P' (r, 0) = 0, we have
0

az

axr x) nJ R.F(t)az2P(r,t-x)dt='f' {F(x+t)+F(z-t)-2F(x)}P"(r,t)dt.2

(9.13)
It is enough to show that the expression

K(r, t) = (1 - r) tP'(r, t)

has the properties (B') and (c) of kernels (see § 2). (Property (A) is not needed because
8(x°) = 0.)
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Property (c) follows from (9.12). The latter formula also shows that P'(r, t) changes
sign in (0, rr) once only, namely, for t = r = r(r) satisfying

cog r _ 2r
l+singr 1+r2'

so that r -*0 as r - 1. Furthermore,

(1-r)2 1-cost+sinnr 3
2

1+r2 l+sin'r 2r
so that rz43(1-r). (9.14)

For (u') we have to show that

I tI P,(r't)I
dticr

The left-hand side here is

( -fo+ f.)tP'dt=-2rP'(r,r)+2P(r,r)-P(r,0)-P(r,11)<-2rP'(r,r)+2P(r,r).

Since P(r,r)_< 1/(l -.r), it is enough to obtain a similar estimate for -rP'(r, r), which
is easy by means of (9.14). This completes the proof of (9.11).

It is to be observed that, in the argument beginning with (9.13), we did not make use
of the fact that F was an integral. Thus the reasoning shows that for any integrable
F which is smooth at x we have

FF(r, x) = o{(1- r)-'). (9.15)

With the obvious extension to uniformity we can state the following result:

(9.16) T1ssORBM. If Fe A we have (9.15), uniformly in z. If Fe A the conclusion
holds with '0' instead of 'o'.

10. Fourier sine series
If f (x) is odd, its Poisson integral may be written

f(r,x)= f"f(t) [P(r, t) - P(r, x + t)] dt. (10.1)

Since P(r, u) is even and decreases in 0 < u < n, the difference in square brackets is
positive for 0 < x < rr. Thus, if f (t) is non-negative and f (t) * 0 in (0, n), f (r, x) is strictly
positive for 0 < x < rr. (Of course, f (r, 0) = f (r, rr) = 0.) If m _<f (t) 5 M, and f (t) * cont.
for 0 _< t _< n, then (10.1) implies

J[P(r,x_t)_P(r,x+t)]dt[P(r,x-t)-P(r,x+t)]dt<f(r,z)<Jo

for 0 < x < rr. These inequalities may be rewritten

mu(r, x) < f (r, x) < Mu(r, x),

where 1u(r, x) (positive for 0 < x < n) is the Poisson integral of the function

µ(t)=signs (111 <rr).

This results holds if summability A is replaced by summability (C, 3) :
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(10.2) THEOREM. If f (x) * 0 is odd and non-negative in (0, n), then the third arithmetic
means of S[f] are strictly positive for 0 < x < n. More generally, if f (x) * cont. and
m <-f(x) S M in (0, n), then

mo n(x; #) < f) < Mot(x;1u) (0 < x < rr; n = 1, 1, ... ).

For the proof it is enough (arguing as in the case of Poisson's kernel) to show that
the kernel K,(t) is strictly decreasing in (0, n), or, K,',(t) being a polynomial, that
(Kn(i)}' <0 there. The expression (KR(t)}' is the Cesiiro mean 8n(t)/An of the series
4 + cost + cos 2t +... differentiated term by term. Then (1.9) gives the identity

r"=(1-r)-4P'(r,t)=-rl 1-r$ E4rsint (103)
ft-0

L2(1-II

-r$'
where d (r, t) = 1 - 2r cos t + r2.

Using (1.9) again we see that the expression in square brackets is the power series

K0(t)+ 2K1(t) r + 3K2(t) r2+...,

where is Fejer's kernel and is non-negative. Since r/(1 - r=) = r + r3 +... also has
non-negative coefficients, we see that ,S,(t) _< 0 in (0, rr), and (10.2) follows.

11. Gibbs's phenomenon for the method (C, a)
This phenomenon was defined in §9 of Chapter II. Let M(xs) and m(xo) be the

maximum and minimum of f at xo (see § 2). Since for every the limits of in-
determination of are contained between m(xo) and M(xo) (see (2.30)), the
(C, 1) mean of S[f] does not show the phenomenon. It is easy to see that if the pheno-
menon for (C, a) is not shown for a = a1 then it is not shown for any a > a1. For if

for I x - xo l _<rj, n > no, then
m(xo) -e' on,(x) _ M(xo)+E

m(xo) - 2e _< e .(x) _< M(xo) + 2e

for I x - xo, < rt, n > n1(see (1.5) ). It is therefore enough to consider the range 0 < a < 1.

(I I.1) THEOREM. There is an absolute constant ao, 0 < ao < 1, with the following
property : if f (z) has a simple discontinuity at a point t', the means o*.(x; f) show Gibbs's
phenomenon at 6 for a < ao but not for a _> ao.

Since S[f] is uniformly summable (C, a) at every point of continuity, it is enough
(as in Chapter II, § 9) to prove (11.1) for the function

f(x)-sin x+4sir.2x+...

at = 0. Observing that S'[f ] = cos x + cos 2x + ... , we find

o.(x)= - ix+ K,°,(t)dt,
0

an(x) = i(n - x) - J K.(t) dt.
(11.2)
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Let us first take a = 1. The first formula then gives

o.(x) }x
2 ('=sins J(n + 1) t 2

IF2

I - 1=-+n+IJo
tz

dt+n
+ l srn' }(n+1)tsinJt)z

tY

fis*+1>z sin u Y
- z+ FO du+R, (x), (11 3)

where O(1 Jn)

uniformllly

in x. Observing that 4(rr - x) for 0 < x < 2n.
we deduce the formula

°° sin u s
\ u

(This is an analogue of (8.4) in Chapter II and can be deduced from it by integration
by parts.) From (11.3) and (11.4) we get

sin u 2 a0
'-1'u)

2
on(x)= J(n - x) - JU-) <inr- (

f,(- 4 I
for n _> 1. Hence

(i) given any l > 0, there is a 8 = 6(l) > 0 and an no = no(l) such that

o (x) < J7T - 8 for 0 < x < 1/n, n > na.

We shall now use the approximate formulae (5.15) for K '(t). Integrating the right-
hand side there over (z, ir), applying the second mean-value theorem to the first
integral and using the second formula (11.2), we get for on (x) the value

20 B
nl x)a+1

+n:' (11.5)J(n - x) - n + l+ 1
# cot }x+nAn(2

si

where 10, 1 and B ( is less than an absolute constant. Since A I 3 Cna for it _> 1 and
0<a < 1, we see that, for nx large enough, of the three last terms in (I1.5) the first
is the largest in absolute value. Therefore

(ii) if J < a < 1, there is an 11 such that I on(x) }n for 11/n <x < n, n 3 n1.
We shall now show that
(iii) if 1- a is amall enough then I an(z) I < }rr for 0 < x < 11/n.
This, in conjunction with (ii), will prcve that if a is close enough to 1 the o;,(x) do

not show Gibbs's phenomenon. First of all we verify the inequality

AVIA>_Ak!An for -1 <a<l, 0<k<n.
From it we deduce that I on(x) - on(z) is less than

An_, An_, 8m Vz < ^ 'An_Y An_ A+1 An+11
vFl\ An/! V xvL,ll An An

l/-x( An An
(11.6)

For fl= 1 the last term is less than }nx(1- a), and so, using (i), it is enough to take a
such that J(1-a)11<8(l1)

In order to show that for a positive and small enough the phenomenon does occur,
we consider the difference on - on = on - 8,,, which, by (11 8), is r.umerieally less than
nxa/(a + 1) < nxa. Since 8,(n/n) tends to a limit greater than (;IT (Chapter II, § 9), it
follows that lim info-,(n/n) > in, and so the phenomenon does occur, ' for a small
enough.
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We have therefore shown the existence of ao, 0 < ao < 1, such that for a < ao we have
the phenomenon, while for a > ao we do not. If we show that the set G of a for which
the phenomenon occurs is open, it cannot occur for a = a0, and the proof of (11.1) will
be complete.

Let 0 < a'< aa. As in (ii) we see that there is an l' such that

jon(x) <jn for a'<a<1, l'/n<z<n,n_>n'.
From the majorant (11-6) for I as - o n I we deduce that o.(x) is a uniformly continuous
function of a in the range 0 < a < 1, 0 < x < l'/n, n =1, 2,.... If the Gibbs's phenomenon
occurs for a value a > a', that is, if there is an xn -> 0 such that vx(x.) > }rr + e for all
n large enough, then, first, 0<x,_<1'/n, and secondly, if 6-a is small enough,
on(xn) _> in + 5e. This shows that G is open and completes the proof of (11.1).

12. Theorems of Rogosinski
Let A(t) be a function with A(0) = 1. Any series ua + u1 +... may be considered as

the series
u.A(vt) (12'1)

.-0

at the point t = 0. Let an(t) be the nth partial sum of (12-i), and s the nth partial sum
of Eu,. We shall investigate the behaviour of s (t) as n -o- oo and simultaneously t -* 0.

(12.2) Tnaosssl. Suppose that an = O(1 /n). (i) If A(t) is continuous at I= 0 and is
of bounded variation over every finite interval, then an->a implies an(an)->a. (ii) If
A'(t) exists and is bounded over every finite internal, then the aummability (C, 1) of
u0 +u1+... to sum a implies 8n(an)-(8n-8)A(nan)- s. (12.3)

(i) Summation by parts gives

n-1
an(an) = Es,[A(van)- A((v + 1) an)] + a,A(na ) (12'4)-0

This is a linear transformation of {s,} which satisfies the conditions of regularity, and
(i) follows.

(ii) Let on be the (C, 1) means of ua + u1 + .... Summation by parts gives

an (an) - an A(-.)+ on A(-.)
U-2

= E (v+ 1)o,[A(van)-2A((v+1)an)+A((v+2)an)]+nan-1[A((n-1)a,)-A(nan)J
.-o

(12'5)

and the right-hand side is a linear transformation of {o,}. The example uo =1,
u1= u= _ ... = 0 gives 8,=8,= ... = 1, o'o = 01= ... = 1 and shows that the sum of the
coefficients of the o, on the right is 1. This proves condition (iii) of regularity.

We now observe that for any fixed x,

A(x + u) - A(x) = uA'(x + Bu),

A(x + u) + A(x - u) - 2A(x) _ }u'A'(x + 01 u),
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where 6 and 0, are between 0 and 1. Let I nan 5 h for all n, and denote by M the
common bound of A(t) 1, 1 X(t) and Id'(t) in the interval (-h, h); then we find that
the sum of the moduli of the coefficients of the on the right in (12.5) is at most

n-s

0

This proves condition (ii) of regularity. Condition (i) follows from the continuity of
A at (=O. Hence the left-hand side of (12.5) tends to s and (12.3) follows.

We note that if an = a/n, where a is a zero of h(t), then (12.3) simplifies.
We also observe that if the terms of u0 + u1 +... depend on a parameter, and if the

hypotheses concerning this series are satisfied uniformly, the conclusions also hold
uniformly.

Suppose now that A(t) satisfies the same conditions as before, except for the con-
dition A(O) = 1. The case A(0) + 0 reduces to ,I(0) = I by considering A(t)/.I(0). If, how-
ever, A(0)=0, condition (iii) of regularity is no longer satisfied and the matrices
generating the transformations (12.4) and (12.5) will have sums 0 in each row.

The result for this case is:

(12.6) THEORzK. If A(0) = 0, and if the other conditions of (12.2) are satisfied, we have

sn(an)-- 0,

respectively, according as u0 + u1 + ... is convergent or summable (C, 1) to sum 8.

The most important special cases are h(t) = cost and A(t) =sing. The reason for this
is that, if S,(x) denotes the partial sum of any series

la0 + E (a, coo vx + b, sin vz),
'-1

then E (a,cosvx+b,sinvu)coovan
.-1

4[Sn(x+a,,)-Sn(x-a.)] = - E (a, sin vu- boos vu) sin wa,,
.-1

are 8n((Zn) with A(t) = cost, sin t. Thus from the first formula we get:

(12'7)

(12'8)

(12.9) Tnxonnu. Let an =110(1 /n), and let Sn(x) be the partial sums of (12.7). Then

H[Sn(x + an) + Sn(x - an)] -+ s

at every point where S,.(x) --1-- 8; and

11Sn(x+an)+S,(x-an)]-(SS(x)-8)cosnan (12.10)

tends to sat every point where (12.7) is summable (C, 1) to a. In particular, if (12.7) is
S[ f ], (12.10) tends to f (z) at every point of continuity off, and the convergence is uniform
over any closed interval of continuity.

If an = }pn/n, where p is any fixed odd integer, (12.10) becomes

}[S,(x + }pn/n) + Sn(x - jprr/n)], (12.11)

and this expression gives a method of aummability of trigonometric series not weaker than
the method (C, 1).
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If an = J pn/n + 0(n-2), the last term in (12.10) is o(1), since Sn(x) = o(n) wherever
(12.7) is summable (C, 1). In particular, what was said about (12.11) also applies to

2[Sn(x+2n+1)+Snlx-2n+1)] (p=1,3,5,...). (12.12)

(12.13) THEOREM. Let (12.7) be S[f] and let t; be a point of continuity off. Then, for
any sequence hn -4 0, the expression

tendsto f (?;). rn(6)=J[Sn(6+hn+in/n)+Sn(9+hn-}n/n)] (12.14)

For (12.5), with A(t) = cos t, an = ir/2n shows that lira sup I sn(are) A lim sup I o-,
where A is an absolute constant. Similarly

lim sup I rn(S) I < A 1im sup I °.(f + hn; f) I .
w-w, nor

We may suppose that f 0. Taking into account that a,(6 + h n ; f) --* 0 (see (2.30)),
we have rn(g) -* 0.

In Chapter VIII we shall see that Sn(x ; f) may diverge at a point t of continuity off.
Theorem (12.13) indicates the existence of a certain symmetry in the behaviour of
the curves y=SS(x) near 6: The mean of the value8 of Sn(x) at the end-points of any
interval of length n/n differs little from f (i), if the distance of it8 midpoint from 9 i8 small.

These are applications of A(t) = cost. Now let A(t) = sin t. From the second formula
(12.8), and from (12.6), we get

(12.15) THEOREM. Let an=0(1/n), and let Sn(x) and s9n(x) be the partial sums of
(12.7) and of the conjugate series. Then

Sn(x+an)-Sn(x-an)'0
at every point x where the conjugate 8erie8 converges. At every point where it is 8ummable
(C, 1) to s, we have 1q

Hence, if q is any fixed integer,

Sn(x +qn/n) - Sn(x - qn/n) -, 0

at every point where {ign(x)} is summable (C, 1), and in particular almost everywhere
if (12.7) is an S[f].

(12.16) THEOREM. Let SS(x) be the partial sums of e ei- and let an = 0(1/n). Then

Sn(x+an)-*8 if Sn(x)->8; and
Sn(x +an) - (Sn(x) - 8) eina -18

if {Sn(x)} is summable (C, 1) to 8.

Apply (12.2), with A(t) = eo, to Sn(x + an) _ E e, eivz. ei....
0

(12'''7)

13. Approximation to functions by trigonometric polynomials
Given a periodic and continuous function f (x), the deviation d(f, T) of a trigono-

metric polynomial T(x) from f is defined by the formula

8(f, T) = max I f(x) - T(x) 1.
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The lower bound of the numbers 8(f, T) for all polynomials

T (x) _ 4ao + (a cos px + b sin vx)

of given order n will be denoted by E,Lf ] and called the best approximation off of order
n. By (3.6), En[J) tends (monotonically) to 0 as n--co.

(13.1) THEOREM. Given f and n, En[ f ] is `attained'; that is to say there i8 a polynomial
T *(x) = T *(x; f, n) of order n such that d(f, T*) = En[ f ].

For let T', T8, ..., be a sequence of polynomials of order n such that

d(f,Tk)<EnU]+1/k (k=1,2,...). (13.2)

In particular, the Tk are uniformly bounded. Thus if a:,..., bn are the coefficients of Tk,
these numbers are all bounded. By the theorem of Bolzano-Weierstrass, there is a sub-
sequence of the points (at_., bk,) of (2n + 1) -dimensional space which tends to a limit,
(a:_., bn). The corresponding Tk(x) then tend uniformly to a polynomial T *(x) of
order n. From (13.2) we get 8(f,T*)<En[J], and since the opposite inequality is
obvious (13.1) follows.

Let us write f(x) = T*(x) + R(x),

so that I R(x) I 5 En = En[f ]. Let sk(x) and rk(x) denote the partial sums, and ok(x)
and pk(x) the (C, 1) means, of S[ f ] and S[R] respectively. For k s n we have sk = T* + rk,
so that n+h-1 n+h-1

h-1 Y, sk=T*+h-1 E rk, (13.3)
n n

T 1h (13.4)1+h) " -
Since I pk E. for all k, the right-hand side

of

(13.4) differs from T* by not more
than (1 + 2n/h) En, and so from f by not more than 2(1 + n/h) E. The left-hand side
of (13.4) is a delayed arithmetic mean of S[f] (see p. 80). For h=n we got:

(13.5) THEOREM. Let o-.(x) =on(x; f ). Then the difference between f and

r,(x) = 2o'4n-1(x) - o-n-1(x)
never exceeds 4En[J].

We know that in(X) is obtained by adding to .4n(x; f) a simple linear combination
of the next n -1 terms of S[ f ]. In this way we obtain a polynomial whose approxima-
tion to f is almost as good as the best approximation En. (One must not forget, how-
ever, that rn is of order 2n- 1.)

(13.6) THEOREM. Let f (x) be periodic and k times differentiable. If I P )(z) I _< M, then

Ef[f]<AkMn-k (n=1,2,...). (13.7)

If f(k) is continuous and has modulus of continuity mo(d), then

E'n[f]_< Bk-(2n)n-k (n=1,2,...). (13.8)

The constants Ak and Bk here depend on k only.
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Let rm = 20 ai_1- o,m_1 Using the formula (3.24) with &)=2m and with w = m,
we get

2 +m h t

where

m
(tz )dt,Irm

h(t) = sin't - sin' it = }(oos t - oos 2t),

and, by (11.4), T,,,(x)-f(x)=n
o

mIf
(x+-)+f(x-m)-2f(x) Fs)dt.

We introduce the functions 11

(13.9)

(13.10)

I4(t) = h(t)/t', H;(t) fHj_,(u)du

and temporarily take for granted that
(i) the integral defining H{(t) is absolutely convergent for i= 1, 2,...;

(ii) Ha(0)=Hs(0)=H7(0)_...=0.
Then, integrating by parts as many times as the existence of derivatives off permits,

we find for r. -f the values

f
nio

fr(x+m)+f(x-
-2f(x))Ho(t)d nm$o

ff/(x+m)-f,(x-m)}Hl(1)dt

rim'
f., (f.(_ +MI ) +f (x- )) Hs(t)di

2

nm',l0
4f.(z+m)-f.(x-m))Ha(1)dt

Hence I r,,,(x)-f(x) <Ckm-*M with Ck= 4Jo i H,,(t) I dt.

so that Ebi_1.4 Ckm-kM. The same inequality holds for Es,,, and it follows
for any n (whether even or odd) that

E. _< Ck(n)-k M,
which is (13.7) with Ak = 2kCk.

We now prove (i). It is enough to show that each H;(t) is 0(t-') near t=oo. (Since
Ho(1) is bounded, this will also imply that each Hi(t) is bounded for 0 S t < oo.) The fact
is obvious for Ho(t). Let now hi(t) denote that ith integral of h(t) which is periodic
and has no constant term; hi(t) is either

± (cost - 2-i oos 2t) or ± }(sin t - 2-{sin 2t).

Integration by parts gives

H1(t)=-ht=l)=l)-2!h )-...-p!J+i)+(p+l)!Ji J+)du. (13.11)

Here p is any positive integer. Since hp(u) I < 1, the last term is numerically not
greater than p! t--(P+'). Hence H1(t)=0(t-'). If we integrate (13.11) over (l, +oo),
integrating the terms on the right by parts, we find that H=(t) is a sum of a linear com-
bination of h2(t) t-', ha(t) t-', ... and a remainder O(t). Similarly, H3(t) is a sum of
a linear combination of ha(t) t-', h,(t) t-', ... and a remainder O(l(-')), and so on.
This proves (i).
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To prove (ii), we apply (13.9) to the functions f (t) = I and f (t) = cost. Correspond-
ingly, rm(x) =1 and rm (x) = cos x, m 31. This gives, at x = 0,

f0Ho(t)1
n fo

cos m Ho(t) dt = l.n

Integrating the second integral by parts twice and using the first identity, we get

LcosH2t=0.m

In this, cos (t/m) -> I uniformly over any finite interval as m -* oo, so that) 00 H2dt = 0.
o

Similarly we prove that ro H4dt = 0, and so on. This gives (ii).
J

The second part of (13.6) is obtainable from the first by a simple device. Given any
periodic and integrable f (z), whose integral is F(x), and a number 8 > 0, let

F( (1312)

The function f8(x), which is also periodic, is called the moving average off(x). If f has
k continuous derivatives, f8 has k + I such derivatives. For f absolutely oontinuous,
we have (f8)' _ (f')e. Though we shall not need the fact here, we observe that the
modulus of continuity of f8 never exceeds that off, Clearly,

Ife(x)-f(x) I <w(8,f). (13.13)

Returning to the second part of (13.6) we write

f(x) =fa(x) +g(x)

Then f8(x) has k + 1 derivatives, and, by (13.12) and (13.13),

fk+u(z) I =(flk'(x+8)- fk)(x-8) I <(28)-1
w(28;f))_< 4-1w(8;f(k)),

Hence, by (13.7),
I g(k)(x) I = 11Yk'(x)-0'(x) I -<&O; f(')).

Ej ].E,[f8]+E,,(g]=Ak+in-k f(k))+Akn-kw(8;f(k)),

and setting here 8 = 2n/n, we get (13.8) with Bk = Ak + Ak+l/2nr.

(13.14) THEOREM. If f has a eontinuou8 k-th derivative (k = 0, 1, ... ), and if pk) E A
0<a< 1, then E}=O(n). (13.15)

This inequality, with a =I, holds if fk) merely belongs to A,,.

It is only the last statement that requires a proof. Suppose that

I f(k)(x+t)+fk>(x-t)-2f(k)(x) I <Mt,

where M is independent of z and t. Let f3d(x) be the moving average of f8, and let
f (x) = f38(x) + g(x). Thus fed has k + 2 derivatives and

I f I = I.f$k+u(x+ 8) 8) I = I f k)(z + 28) +f)(x -28) - 2f (k)(x) I < M
28 481 28
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It follows from (13.12) that

faa(x)=482JJf(x+u +v)dudv =4SQ f Yaf(x+t) (28-'t j)dt

1 sa
(f(x+t)+f(x-t)} (28-t)dt,

and since the operation 8 commutes with differentiation,

I =
4ai

Fe

(f(k)(x+t) +f(k)(x-t) - 2fk)(z)) (28-t) dt

The last integrand is numerically not greater than Mt(28 - t) < M82, so that
(g(k)(x) -<,)M8. Hence, by (13.7 ).

EnU] < En[fa8] + En(g] < A k+an-k-2(28)-1 M + 4Ak n-kM8.

On setting 8 = 27r/n here, we get

EfU]<BMn-k-', B=Ak+s/4n+irAk.

Our next aim is the converse of (13.14).

(13.16) LEMMA. Let T (x) be a polynomial of order n, and M = max I T(z) 1. Then

T'(x) I < 2nM, I T'(x) I s 2nM. (13.17)

This lemma is purely utilitarian; in Chapter X, § 3, we shall show that the factors 2
on the right are superfluous. We write

T(x)=-fs*T(t)Dn(x-t)dt, T'(x)=- J T(z+t)Dn(t)dt.
0

Since T is a polynomial of order n, in the last integral we can add to

D;(t)=

any polynomial Q all of whose terms have rank greater than n. If we choose
w-1

Q= - E ksin(2n-k)t
I

and take together the terms k sin kt and k sin (2n - k) t we get

T'(x) = 2n T (x + t) sin nt Kn_I(t) dt,
n F-W

4s
(13-18)

T' . 2n-1

J MKn_1(t)dt=2nM,
n 0

as desired. For the second part we take the formula

T'(x)=- fY'T(x+t)Dn(t)dt=- foAT(x+t)kcooktdt,
Jo J

1f-1
and add to the expression in curly brackets the polynomial k oos (2n - k) t, obtaining

T'(z)= 2n 2n s' T(x+t) cosntK,_I(t)dt, IT'+-<2nM. (13.19)
n 0
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(13.20) TH$oRzm. Suppose that f satisfies (13.15) for some k=0, 1, 2, .... and
0 < a _< 1. Then f has k continuous derivatives. Ifa < 1, then f(k) E A.. If a = 1 then f (k)
belongs to A# (though not necessarily to A1) and w(8; f(k))=O(8log8).

Suppose that E*[f) < Mn-<k+a>, n = 1, 2,.... Let T. be a polynomial of best approxi-
mation of order n for f. Then f (x) = lim T,*(x) or

*

f(x)=T2+(T4-T2)+...+(TV-T,*-,)+..., (13.21)

the series converging uniformly. Since u* = T,* - T,,,_, is a polynomial of order 2*
with absolute value not greater than

I T2. -f I + I f - T,,,-, I s 2Er-iU) = 0(2-*ck+a)),

the first inequality (13.17) applied j times shows that uT =0(2-*(k-1+a)). Hence the
series (13.21) differentiated termwise j times, j 5 k, converges absolutely and uni-
formly. In particular, f(k) exists and is continuous.

We set f - T, = g. It is enough to show that the conclusions of (13.20) are satisfied
by g. Let 0 < h < }, and let N be the positive integer satisfying 2-N < h < 24°-1>. Since
g=u,+u,+..., where u*=T,*-T,*-,, we have

N ao

g(k)(x+h)-g(k)(x)=E{urn>(x+h)-uk>(x)}+ =P+Q. (13.22)
9 N+1

The polynomial u* is of order 2*, and u,, = O(2-n(k+a)). Hence, by the mean-value
theorem and the first inequality (13.17),

N N
P I h E max I u(k,+1)(x) h E (2. 2*)k+1 0(2-,.(k+a))

9 9

N
0(2*0--a))=hO(2Na-a))=hO(ha-1)=0(ha),

9

provided 0 < a < 1. Next, and this is true for 0 < a z 1, we have

w a,

Q' < E 2 1 max u*k>(x) I < M 2(2.2^)k

W

= E 0(2-*a)=0(2-Na)=0(ha).
N+1

Hence f') a Aa for 0 < a < 1.
If a = 1, we still have Q = O(h), and the estimate above for P becomes

P = O(hN) = O(h log h).

Hence P + Q = O(h log h) and w(8; g<k)) = 0(8 log 8).
It remains to prove that g<k>EA, for a = 1. With the same relation between h and N

we write g(k)(x+h)+g(k>(x-h)-2g(k)(x)=E{urk>(x+h)+u1A>(x-h)-2u )(x)}

N ro

E+ E =P1+Q1. (13.23)
2 N+1

The terms ofQ1 are numerically not greater than 4 max u( k>(x) 1, no-that automatically
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we get the same estimate as for Q, namely Q1= O(h). By the mean-value theorem,
and arguing as for P,

N N
P1

I

S
hl

max u**+') I = h' E 0(2") = 0(h22N) = O(h).

Hence PI+Q1=0(h) and g0l)EAs.
Remarks. (a) From (13.6) and (13.20) we see that a necessary and sufficient condition

that E"U] = O(n-(k+a)), where k is a non-negative integer and 0 < a _< 1, is that f should
have a continuous k-th derivative belonging to A. if a < 1, and to A. if a = 1.

In particular, a necessary and sufficient condition for fEA 0 <a< 1, is
E,,U] = 0(n-), and for f E A , is E" = 0(n-1).

(b) Since the class Al is a proper subset of A, (Chapter II, (4.9)), we cannot replace
A* by Al in (13.20). Taking for instance k = 0, we can also verify this by a simple

W

example. Letf(x) _ E 2-'" cos 2-z, 2"<n < 2N+1. Then

If(x)-S"(x;f)I=I 12-"cos2"'z
I

\NY12`"'=2--N<2/n.

In particular, E"[ f ] < 2/n, so that, by (13.20), fEA, (a fact which we have verified
directly in Chapter II, p. 47). However, f is not in A1, since S'[f ] is not a Fourier series.
Thus there is no simple characterization of the class Al in terms of the order of best
approximation.

(c) If fEA,, then E"[f]=0(1/n) and so e(8; f)=0(dlogd) by (13.20). It follows
that every fEA, has modulus of continuity 0(8 log 8), and, in particular, belongs to
A 0 < a < 1. This result is not new (see Chapter If, (3.4)).

(d) The proof of (3.15) shows that, if

f(x+t)+f(x-t)-2f(z)=0(t=) (t>0) (13.24)

for 0 < at < 1, then o,,[ f ] -f = 0(n-°). In particular E"[f] = 0(n-a), so that fEA that
is, f (x + t) -f(x) = 0(to ). Since the latter condition implies (13.24), we we that A
0 < a < 1, can be defined as the class of continuous functions satisfying (13-24).t It is
only for a = I that condition (13.24) yields a new class, A*, larger than A1.

(e) For every continuous f,

If(x)-S.(x;f)I (L,.+1)E"[f], (13.25)
where L" is the Lebeague constant (Chapter II, § 12). For let T" be a polynomial of best
approximation of order n for f, and let f = T. +g. Then

f-S"U]1=ITn-S"[T"]+9-S"(sll°I9-S"[9]I 9I+IS"[9]I
<maxIgI+L"maxIgl=(L"+1)E"[f]

In particular, since L" = O(log n),

f(z)-S"(x; f)=O(n-t-alogn) (k=0, 1,...;0<aS 1), (13.26)

provided f has k derivatives, and /) E A. for a < 1, f a) E A, for a = 1.
The inequality (13.25) shows that the approximation off by S,,[ f ] is at most

4+ 1 =O(log n) times worse than the best approximation. For k=0, (13.26) gives
t This oan also be shown directly by the method which gave Theorem (3.6) of Chapter U.



at] Approximation to functions by trigonometric Polynomials 121

Theorem (10.8) of Chapter II. If w(8; f) = o(I log 8 1 -I), we have E. = o(1 /log n) by
(13.6), and (13.25) shows that S[f] converges uniformly to f. This is Theorem (10.3)
of Chapter II.

(13.27) THEOREM. Under the hypothesis of (13.20), f satisfies the same conclusions
as f.

Denote the series (13.21) again by u, + u,+.... We shall show that

for n> 1). (13.28)

Let L. be the constant introduced in Chapter II, (12.3). Since L,=0(Iogn),

max I fi,,(x) I S 4,, max I un(x) 0(n) 0(2-*k+a)) = 0(n2-na),
z

which shows that the series Eii. converges uniformly to a function f*(x). If f,
are the partial sums of the series u, + uE +..., the partial sums in (13.28) are f,.
Since f, --*f and f, _*f, both uniformly, each Fourier coefficient off. tends to the
corresponding coefficient of f, and the coefficients of f, tend to those off *. Hence
f * =J, and (13.28) follows.

The series (13.28) differentiated termwise j times, j <_ k, also converges uniformly.
For

max I u;nx I _< (2.211)1. max I un(x) I = 0(n2-n(k-;+a)) = O(n2-"").

It remains to show that f(*) satisfies the same conclusions asf(k) in (13.20). Suppose
first that k > 1. Then, as in (13.22),

01)(x+h) -g+k)(x) = E{u`( Nx+h) -U4,(x));

and from this point on the proof remains exactly the same as before, since in terms of
max I u, I we have the same estimates for the derivatives of ii, as we had for the
derivatives of u,. (We use the second inequality (13.17) instead of the first.) Similarly
for the analogue of (13.23).

Suppose now that k = 0 and that a < 1. Since subtracting a constant from f does not
affect E,[ f J we may suppose that the constant term of S[f] is 0, so that the integral
F of f is periodic. By (13.6), E,[F]=0(n-1-a), and, by the case just disposed of, P
has a derivative, obviously f, belonging to A,. The argument holds when k = 0, a = 1.

On taking k = 0 in (13.14) and (13.27 ), we obtain the following result:

(13.29) THEOREM. If f belongs to Aa, 0 < a < 1, so does f; if f belongs to A* so does f.

It must be added that if f e A,, the function f need not belong to A,, since the func-
tion conjugate to a bounded function need not be bounded.

Theorem (13.29) can also be proved directly; we shall confine our attention to the
first part, slightly generalizing it.

(13.30) THEOREM. If the modulus of continuity off is w(h), that off does not exceed

A I )^t-lw(t)dt+hi dtfu-=w(u)du (h4}n), (13.31)

where A is an absolute constant.
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We may suppose that w(t)/t is integrable near 0, so that the integral defining f is
absolutely convergent, since otherwise there is nothing to prove. Now the identity

(13.31) follows by integration by parts. (We note that' u-'w(u) du = o(t-1) as t --> 0.)
t

For the proof of (13.30) we consider the formulae

f(x)= - 1 f(x+t}-f(i)de, f(x+h)= _ i f(x+t)-f(x+h)dt.
Ir 2 tan it n _. 2 tan }(t - h)

The first is obvious since cot it is odd, and the second follows from the first on replacing
x by x+h and t by t-h. The integrands are respectively majorized by wfl t 1) f t -1
and w(I t - h 1) t - h -1. Thus if we cut out the interval (- 2h, 2h) from the interval

rA
of integration (- ir, rr) and write I(h)=_J t-lw(t) dt, we commit errors at mostn o
21(2h) _< 41(h) in the first integral and at most I(h) + 1(3h) _< 41(h) in the second. It
follows that with an error not greater than 8I(h) we have

-t r.f(x+h)-f(x)= --1 . + I J[(x+t)-f(x)J[}cot#(t-h)-loot }t]dt

+ V(x+h)-f(x)]I W
-M

}(t-4)dt.

The first term on the right is absolutely less than

1 -'A+ w(I t1)am}h dt= ' 0(ht-')w(t)dt=0 h 't-'w(t)dt .
2I1\j- f yr) jsin}(t-h)sin}t -rte ( A )

A simple integration shows that the coefficient of f (x + h) -f(x) in the remaining term
is 0(1), so that the total contribution from it is O{w(k)}. Since

w(h) w(h) 2h f 't-2dt 4 2h f 't-'w(t) dt,
k A

we see, collecting results, that I fix + h) -I(x) I does not exceed the first expression
(13.31), and since the latter increases with h, the inequality for w(h; f) follows.

We know that the approximation off by S[f] is only O(log n) times worse than the
best approximation E.[ f J off. The approximation of f by v. = 20-,n_1- is of the
same order as En[f]. It is curious that the vn themselves give only mediocre approxi-
mations, though they converge uniformly to every continuous f.

(13.32) TasoREM. inx,then f=-cont.

For if ck are the complex coefficients off, then

2x

(2n)-1f (f(x)-vn(x)}e-ikxdx=lkjckl(n+1) (Iki<-n),
0

and the relation f - r = o(1 /n) implies that the left-hand side here is o(1 /n), which
means that cA = 0 for k + 0, that is, f =- co.
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Thus if f $ const., the (C, 1) means of S[J] never give approximation with error
o(1 /n). A similar argument shows that the Abel means f (r, x) of S[ f) never give approxi-
mation with error o(1- r), unless f - cont. Generally, let us consider a matrix (with
finite or infinite rows)

Yoo Yoi Yom. ... ...

Yio Yii ... ... YL ' ...

.......................................
Yno ^/n1 ... ... Ynm,

(13-33)

If f . YAk(x), and if fn = E Ak(x) is to approach f with an error o, p or 0(p.),

where p.--). 0, then in each column of (13-33) must be o(pn) or O(pn), as the case
maybe. If fn is either SS(x; f) or rn(x; f ), then y,, k =1 fork fixed and n large enough,
so that the condition is satisfied. This condition is only necessary, not sufficient, but
it explains the fact that for trigonometric series with coefficients rapidly tending to
0 ordinary partial sums may give a better approximation than stronger methods of
summability.

Let 0 < a < 1. By (3-15) and (13.20), we have o n[f ] -f = O(n-) if and only if f E A..
We shall now prove the following theorem.

(13.34) Taxoimm. A necessary and sufficient condition for f ] -f = 0(n-1) is that
fcA1. ,

Necessity. The hypothesis f ] -f = 0(11n) indicated that f exists and is continuous.
It will be convenient to write for o'n(x; f ). Let f =T, +g,,. Then

on[J J-f={o [7,]-Tn}+ {on[9n]-9w}=0(1/n)

The hypothesis gn = 0(1/n) leads to o-n[gn] = 0(1/n), and so the same estimate holds
for T. - o'n[T,]. From the general formula (F25) we deduce that

Tn-o,.[T,]=1 n1(n+1),

and since the left-hand side is 0(1 /n), it follows that T' (x) = 0(1). Hence the T,,(x)
satisfy condition Al uniformly in n, and so J= lim T. is in A,.

Sufficiency. Interchanging the roles of f and f it is enough to show that if f e A1,
then vn[f ] - f = 0(1/n). From (3.17) we see that irn(x) -I(x) equals

n(n+1)Jo
(z+t)-f{z-t)}

(2 sin+-it),tdt-Joy+J

say. Assuming that I f (x + t) -f(x) I MI t 1, we have

PI ir-1(n+1)-i f 2Mt(n+1)t(2tfdt=0(1/n).-k
77

By the second mean-value theorem,

J W2 -
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Denote the integral on the left by R (t). Sinoe f exists almost everywhere and
f I < M, integration by parts gives

Q=n-1(n+l)-1([-Rn(t)(f(x+t)-f(x-t))]an+J' [f (x+t)+f'(x- t)]Rn(t)dt}.

Q n-'(n+ I)-1(! Rn(1/n) I .2Mn-1 + r 2M. An-It-sdt) = 0(n-1).
J 1In

Hence P+Q=O(1/n), dn-f=0(1/n).

(13.35) THEOREM. If S[f] is of power series type, then f - on[ f J = O(1 /n) if and only
iffEA1.

For in this case f = - i(f - ce).

MISCELLANEOUS THEOREMS AND EXAMPLES

1. Let a simple, closed, convex curve L be given by the equations x = #(t), y = ib(t), 0 & t 21r.
Show that if 0.(9) and are the (C, 1) means of S[o] and S[*], then the curves x y = yfi (t)
are in the interior of L. (Fejdr (5].)

[If A, B, C are constants and Af(t)+Blb(t)+C is non-negative, but not identically zero, then
A0 (t) + Bfr (t) + C > 0. Here, as in Example 2 below, the result is immediately extensible to any
non-negative kernel, in particular to Poisson's.]

2. Let 0(t) and }lr(t) be periodic functions, 0.(9) and &r (t) the (C, 1) means of S[0] and S[*],
and L, L. the lengths of the curves x= fi(t), y = f(t) and x =0 . ( $ ) , y= *(t), 0 49< 21r, respec-
tively. Show that L. < L for all n. (Compare P61ye and Szeg6, Aufgaben and Lehradtze, 1, p. 56,
Problem 89.)

[Lot 0=t0<ti<...<4=2w. Lot A, ¢=0(er)- A,#(t)=#(tr+t)-g(t,-1+ 1), and similarly
for Then

I A, 0.ooea+A,Vt sin a sa-1 J w I A,0(t)coea+A,%k(t)sin aI K,,(t)dt
0

for all a and j. We integrate this with respectt to a over 0 G a 4 2x, interchange the order of integra-

tion on the right, and use the equation J * a cos a + b sin a da = 4(a' + b')1. Summation with
0

respect to j gives

E{(A!0.)'+(A,Or.)2}+4 7r-1J J RLKn(t)dt=L,

so that L. L.]

3. Let f(x) be periodic, integrable and equal to 0 for x1 <x <xe +h. Let r be any circle tangent
internally to the unit circle r, at the point e';. Show that f(r,x) tends to 0 as re' approaches
e'4 through that part A of the ouspidal region between r and r, for which x> xe. What localization
theorem does this give? (Hardy and Rogosinaki, Fourier series, p. 66.)

[Let x,, = 0. For r e'= tending to e'a through A we have

/(r,x)=r+ 1J P(r,x-t)f(t)dt+o(1).
A

If r e" belongs to A, so does r for t < 0. It is now enough to observe that

P(r,u)=}9((1+re1*)/(l-re"')}

is bounded for z = r e' situated between r and r, (the function C= *(I+ z)/(1 - z) maps this domain

into a vertical strip of the C plane), and that I f I dt is small with h.]
A
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4. The nth partial sum of 4+rcoez+r'cos2x+... is non-negative for 0<r.<4, though not
necessarily for r> 4. (Fejtr [6].)

(The partial sum is 1-r'- 2r"+1[oos(n+1)z-rcosnx]
2(1-2roosz+r)

The sum 4 + r cos x is negative for x = rr if r> 4.]

5- Let f,(r, z) be the nth partial sum of the series f (r, x) in (6.1). Show that if m < f(x) <M for
all z, then m S f"(r, x) f M for r< 4, but not necessarily for r> J. (FejBr [6].)

[A corollary of Example 4.1

6. For any N =1, 2,... there is a number rN with the following property. Under the hypotheses
of Example 5, we have m e; f,(r, x) < M for 0:4 r 4 rN, n2 N. Moreover, rN <rN+r, rN -r 1 as N -e co.
(Schur and Szegd [1]. See Example 4.)

7. The (C, 1) means a,(x) of the series En-'sinnx are positive and less than 4(n-x) in the
interval 0 < x < a.

[See Chapter II, (9-4). Also

a,(x)= -4x+ f K,(t)dt< -4x+f0eK,dt=4(n-x).]
0

8. If u,+u1 +u, + ... is summable (C, a), or A, to sum e, so is 0 + u,+ul + ... , while u, +u,+ .

is summable to a - u,.

9. For any series u,+u, + ... with partial sums s let

4
be the modified partial sums. Let awe = e:a/A; be the (C, a) means of the sequence (s ). Show that

1+r M

0 ( )" 0

10. Let a:,(x; J) be the (C, a) means of S*. (xJ). Show that under the hypotheses of (10.2).

(x;µ) (04X470-

(For the termwise differentiated series 4 + coe t + cos 24 + we have

0D 1 l+r 1-ra 1 1-rarsint- 2rain9,
0 2(1-r),AI(r, 9) 2

so that S''(t) < 0 for 0 < L< n.]

11. The (C, 3) means in (10-2) cannot be replaced by (C, 2) means. (Fejdr [4].)
[(K.' (t))' is positive if sin (n + 1) t = 0, cos (n + 1) t = - 1, cos it < 4.]

12. If F'(x,) = lim [F(x, + h) - F(x, - h)]/2h exists and is finite, then at the point x. S'[F] is
h-0

eummable by the logarithmic mean to sum F'(x,).

13. Let f (z) = c, + cl z + c, z' + ... be regular for z I < 1, continuous for I z I < 1. Let a, b, a, f be
numbers, real or complex, satisfying a +/4 = 1, a e +f 0a = 0. Show that then ae,(z e"+") +fe,(z ek")
converges uniformly to f(z) for j z j S 1. Here e,(z) = c,+crz + + c,z". (R.ogosinslri and
Szeg6 [ 1) -)

[The argument closely resembles that of § 12.]

14. Let S.*(x) be the modified partial sums of S (f]. At every point x at which m,(t) = o(t), a neces-
sary and sufficient condition for the convergence of the series E(S: -f )/k is the convergence

of the integral'() dt. (See Hardy and Littlewood [7].)
jo2-sin 4t

[Let u,(x)=sinx+2-rsin2x+...+n-rsinnx, r,(x)=4(7r-z)-u,(x).
Plainly j u.(x) j -C nx, and applying summation by parts we get r,(x) = 0(1 /nx). Let T,(x) be the
nth partial sum of the given series. Then
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2 f (t) 2 ftr. 2 fT,(x)= J u,(t)dt=- J +- JI =A+13.n o 2 tan it n

01

n 1/n

Here A -+ 0, and on account of the inequality for r

2 ' t(t) n-t
n 1/n tan it 2

15. Suppose that F,,(h) is the integral of #,(t) over 0 414 hand that 0.,(h) has its usual meaning.
Neither of the conditions

taken separately implies the summability (C, 1) of S[J] at x. Show that if both of them are satisfied,
then $J] is summable (C, 1) at x to sum J(x). (Hardy and Littlewood [8j.)

This generalization of Theorem (3.9) is typical and many other results can be generalized
similarly.

[The proof is similar to that of (3.9) except that now we split the integral (3.11) into integrals
extended over intervals (0, k/n), (k/n, n), where k is large but fixed. By (ii) and the second estimate
(3-10), the second integral is small with 1/k. The Fejbr kernel has a bounded number of maxima
and minima in (0, k/n) and so, by the second mean-value theorem and (i), the first integral tends
to 0.]

16. Letf be periodic and k times continuously differentiable, and let T,.(x) be a polynomial of
best approximation of order n to J. Then T5(x) tends uniformly to J<b(x). (E. Stein (1).)

[If r,(x) = r,(x; f) is the delayed (C, 1) mean of S[J], than

Tw*.I(x) -J"'(x) = [T.(x) - r.(x; J)Ya+ [r,(x; r10) -.1«'(x)]

The second term on the right tends uniformly to 0. The preceding term is, by (18.16),

0(n`) max T.(x) - r,(r; J) I.

and it is enough to observe that T. -f and r, -f are both o(n-t) ]
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CHAPTER IV

CLASSES OF FUNCTIONS AND FOURIER SERIES

1. The class L'
Let 01(x), q5,(x), ... be a system orthonormal in (a, b). If c1, c,, ... are the Fourier

coefficients of anf E L', with respect to the series E 1 c,1' converges. The converse
is one of the most important results of the Lebesgue theory of integration.

(1.1) T xoasu op RrESZ AND Fiscu n. Let ¢l, ... be an orthonormal act of
Junctions in (a, b) and let c1, cE, ... be any sequence of numbers such that E 1 c,1' converges.
Then there is a function f c L'(a, b) such that the Fourier coefficient off with respect to
0, is c, for all v, and moreover

f I f I'=dx E I 1',

f If-ar1'dx--o,

(1.2)

(1.3)

where a is the n-th partial sum of the series c1 01 + c, 0, +

The equation f.b "+k

I'-*El1CrI

implies that V,[8. - 8.] -* 0 as m, n oo. By Theorem (11.1) of Chapter I, there is a
function f e L' such that 9)t,[f - 0. If n >j,

l=f bf bf
a a a

By Schwarz's inequality, the last integral does not exceed $12,[x -f] = o(1) in abso-
lute value, and making n -* oo we we that the Fourier coefficient off with respect
to ¢z. Since s is now the nth partial sum of the Fourier series off, the left-hand side of
(1.3) is f

a

(Chapter I, (7.4)), and (1.2) follows on making n-aoo.
In Chapter 1, § 3, we defined complete orthonormal systems. A system {0,) ortho-

normal in (a, b) is said to be closed if for each f 4E L'(a, b) we have the Parseval formula

j I f 12 dx = I 1' (01 = (1.4)
a r.l a

In the domain of functions of the class L' the notions of `closed' and `complete'
systems are equivalent. Every closed system is obviously complete. To prove the
converse, let c1, c,, ... be the Fourier coefficients of an f e L'(a, b) with respect to
{0,). Since E I c, Is converges, there is, by (1.1), a g e L' with Fourier coefficients c,
and such that q)Z§[g] = I c1 1' + I c, I'+ .... Since f and g have the same Fourier coeffi-
cients and {o,} is complete, we have f = g and (1.4) follows.
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If the system {0,) in (1.1) is complete, the function f there is uniquely determined.
Suppose now that {0,} is not complete and let (V',,) be one of its completions, so that the

system Y'2, ..., or, >(rs, ... is orthonormal and complete in (a, b). Let do = f of jTrndx

From the Parseval formula,
fe
f If12c=EIc,{2+EI dnI

and from (1.2) we get d1= d2 = ... = 0. Thus, if is not complete, the function f of the
Riesz-Fi8cher theorem is uniquely determined by the condition that its Fourier coefficient8
with respect to the 0, are c, and with respect to any system completing {0,} are zero.

(1.5) THEOREM. A system {0,) orthonormal in (a, b) is complete if and only if for any
f e L2(a, b) and any e > 0 there is a linear combination S = y, q1 + ... + y, On with constant
coefficients such that T12 U - S] < e.

For the completeness is equivalent to (1.4), and this in turn is equivalent to
Z2[ f - 8n] -> 0, where sn is the partial sum of the Fourier series c, 15, + c2 02 + ... of f.

Hence if {0,} is complete we can find an S = en such that T12[ f - S] < e. Conversely,
if RR2[ f - S] < e for some S = y151 + ... + yn 0. then R 2[ f - sn] <- 9R2[f - S] < e (Chapter I,
(7.3)), so that TR2[f-8n]0.

The trigonometric system is complete (Chapter I, § 6). It is thus closed, and we get
one more proof of Parseval's formula for this system (see also § 1 of Chapter II and
§ 3 of Chapter III).

Let a,, b, be the trigonometric Fourier coefficients of an f E L2. By (1.1),

S[f ] = E(a, sin vx - b, cos vx) (1'6)

is the Fourier series of a function of class L2. Thus 3[f] is summable (C, 1) almost
everywhere and, by Theorem (3.20) of Chapter III, the conjugate function f(x) exists
and is equal to the (C, 1) sum of (1.6) almost everywhere. Hence {f]=S[f] and, by
Parseval's formula,

1 2. 1 2.

1Tf = +-
n

fo 12dz. (1.7)

Though the problem of the convergence almost everywhere of Fourier series will be
discussed only in a later chapter (see Chapter XIII), a special result may be mentioned
here.

(1.8) THEOREM. The series

}a0 + (an cos nx + bn sin nx) = E
n-1 0

converges almost everywhere if E (an + b') loge n is finite.

(1.9)

For the condition implies that 7-An(x) log n is a Fourier series, and it is enough to
apply Theorem (4.4) of Chapter III.

We shall prove in Chapter XIII, § 1, that the finiteness of E(a' + b') log n is sufficient
for the convergence almost everywhere of (1.9); but the proof of that is much less
simple. Whether the hypothesis E(a' + b') < oo is sufficient remains an open question.
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2. A theorem of Marcinkiewicz
The fact that every integrable function is almost everywhere the derivative of its

indefinite integral is fundamental in questions about the representation of functions
by their Fourier series. But certain problems require more than even the strengthened
forms (11.1) and (11.3) of Chapter II, and we need to go more deeply into the structure
of functions and point sets. The following result is particularly useful:

(2.1) THEOREM OF MARCINRIEWICZ. Let P be a closed 8et in a finite interval (a, b)
and let X(t) = Xp(t) be the distance of the point t from P. Then

(i) for every A > 0 the integral

IA(x)=1A(x,P)=$al
t

(2'2)

is finite at almost all points of P; more generally, if f is an integrable function in (a, b).
the integral b

Ja(x)=JA(X,fP)=Jai-zl.l+idi (2'3)

converges absolutely at almost all points of P and
b

JA(x) I dx < 2,I-1 I f (x) I dx. (2.4)
P a

(ii) If all intervals contiguous to P are of length less than 1, the integrals

Io(x) =
b flog

t

'J1}',dt .4(x)
f(t) (logl/ (t)}-1dt (2.5)

J. I I a It-XJ
converge absolutely at almost all points of P and

a

JP
I Io(x) I dx < A f I .f (x) I dx, (2'6)

a

where A is a positive constant independent off.

(i) It is enough to consider Jx. We may suppose that f 3 0. Then 0<J,A(x) <oo, and
if we prove (2.4) the finiteness of JA(x) at almost all points of P will follow. Observe
that the function X(t) vanishes on P and its graph over any interval d contiguous to
P is an isosceles triangle of height } I d I ; also X(t) is linear to the right and left of P.

Integration in (2.3) may be confined to the set Q = (a, b) - P. We have

f pJk(x)dx-JQf(t)XI(t)(JPI (2'7)

the interchange of the order of integration being justified by the positiveness of the
integrand. To estimate the inner integral, fix a point t interior to an interval (a,,8)
contiguous to P and suppose, say, that t is closer to at than to 8. Then

1 I t

-dxl;k+I <2f u-x-1 du = 2,I-1(t - a)-x = 2.I-'X-z(t), (2.8)r a

an estimate which still holds if t is to the right or left of P. Substituting this in (2.7)
we obtain (2.4).
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(ii) We consider Je and suppose that f > 0. If A = 0, 1 = b - a, the left-hand side of
(2-8) does not exceed

t
2 u-1du=2logi-2log(t-a)=21ogl+21og1/X(')<Alog1/X(t),ta

and this, combined with .

fpJo(x)dx= Qf(t)(logl/X(W-1jP
d

1tz ) dt,

immediately gives (2.8).
A modification of the function X(t) is sometimes useful. Denote by X*(t) (=X ,(t))

the function equal to 0 in P, equal to I d I if t is in an interval d contiguous to P, and
equal, say, to 0 to the left and right of P.

(2.9) THEOREM. With the hypotheses of Theorem (2.1) the integrals

Jx (x) = f a IT--_--x*a(+i dt J'(x) =lf(t) (log 1/X'(t)}-' dt
r

converge at almost all points of P.

It is enough to consider JA*, the proof for JO* being similar. We may suppose that
f _> 0. Since X(t) ii for t between the extreme points of P, the convergence of J,
is a stronger result than the convergence of JA. We can, however, deduce the former
from the latter. Given any e > 0, let Q, denote the union of the intervals making up Q,
each expanded concentrically in the ratio I +e (in this process some of the expanded
intervals may become overlapping). Let P, be the closed set complementary to Q,
with respect to (a, b). Since Q. Q, I Q, - Q I <_ (b - a) e-* 0 with e, we have

PcP,I P-P,1->0.
We easily see that Xp(t) a 2e-1Xr,(t)

Since JA(x,f, P,) is finite almost everywhere in P, the same holds for J&, f, P). Making
e approach 0 we we that Jr (x, f, P) is finite almost everywhere in P.

Remarks. (a) In the case of sets P having period 2n it is sometimes more convenient to use the
integral

J' x - r f(t)X'(t) f(x+s)X'(x+t)dt
10

I2sini41x+1
(2)

instead of JA(x), and to make a corresponding modification of J, . Theorem (2.1) changes little;
the factor 2/A in (2.4) must be replaced by another factor depending on A:

f,I JJ(x)I dx4AAJfIf(x)I dx. (2.11)

The proof remains the same.
(b) Though we shall not use the fact hem, it is of interest to observe that an analogue of (2.1)

holds in Euclidean space of any number of dimensions. Suppose, for instance, that P is a closed
set contained in a finite circle K and that X(t) is the distance of the point t in the plane from P.
If f is integrable over K. then the two integrals

J s I
t(t) XAx+).do (A> 0), C gf(t) Aog 1/X(t))-'da.

It-XII
where It - z I denotes the distance between t and x and da is an element of area, converge absolutely
almost everywhere in P. When the dimension of the space increases by 1, so do the exponents in
the denominators of the integrals considered.
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(c) The convergence of the integral lx* (z) has a simple geometric interpretation. Let dl. d ...
be the intervals contiguous to a bounded closed and non-dense set P. For any z e P, denote by
d,(x) the distance of x from thus 4,(x)=min(Ix-a,1,1z-b,I). Almost every point
z c P is a point of density of P, and at a point of density I d, = o(d,(x)) as d, approaches x. The
finiteness of 1a (x) almost everywhere in P may be interpreted as follows: he series

E(I d, I/dd(x))A+i (2-12)

converges for every A > 0 and almost all x c P.
For let x be a point of density of P, and 17 > 0 so small that I d, I < d,(x) for all the d, situated

entirely in (x-I,x+,I). Let dy,d,'.... be all the d's situated, say, in (x,z+17). We may suppose
that x+r/ is not interior to any d'. Let 8,(x) be the distance of x from d,. Then

rr +r _Lldrla Id,I A'
J: It

X-`Axlx(1)+

and the convergence of E{I d, I /8,(x))A+' is equivalent to that of the integral. Similarly for
(x -71, z). Since the series (2.12) and the integral 1a extended over the d's outside (x-71, z+r/)
are finite in any case, the assertion follows. Similar interpretations can be given for 1, (x) and J, *(z).

(d) If in (2-3) and (2-6) we replacef(t)di by dF(t), where F is of bounded variation, the resulting
integrals converge almost everywhere in P. More interesting for applications, however, is the
following result in which, for simplicity, we consider integrals of the type (2-10).

Suppose that µ(t) is a positive measure on the circumference of the unit circle such that

rt0
JI dµ -C A I t 1 (2.13)

for all t. Then, if A > 0. the integral

J
><=f(x+t)Xx(x+t)

(2 j f(t)Xz(t) 12 sin; t-x)IA+i

converges almost everywhere in P. The proof remains unchanged if we note (using integration by

parts) that (2-13) implies I t I-A-' dµ(t) = 0(8-A).
dGItIGx

3. Existence of the conjugate function
(3.1) Txzosral<. I f f e L, then

1f(x)=--1ro'[f(x+t)-f(x-t)} cot}tdt=-- limo (3.2)
27 c--

exists for almost all z.
JJ

This result was already stated and used in Chapter III, § 3, and we shall give two
proofs of it, one now and the other in Chapter VII, § 1. The latter proof is much the
shorter of the two, but it uses the theory of analytic functions. On the other hand,
what we prove here is more general, and is not so easily accessible by complex
methods.

(3-3) TnEoazM. Suppose that F c L is periodic and has a finite derivative at every point
of a set E of positive measure. Then the integral

rIF(x+t)+F(x-t)-2F(x) _ 1

fff
I'''(xl

= nl o (2 }t)' n -o (3 4)

exists at almost all points of E.
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To see that (3.1) follows from (3.3) we may suppose that ao= 0, which does not affect
. fThe indefinite integral F off is then periodic, and

*F(x+t)+F(x-t)-2F(x) _F(x+e)+F(x-e)-2F(x) wf(x+t)-f(x-t)
(2 sin }t)s 2 tan }e +f 2 tau }t dt.

(3.5)
At every point x where F is differentiable the integrated term tends to zero with e,
and the existence of F*(x) is equivalent to that of f(x). Moreover, F*(x) = f(x).

We turn now to (3.3). The special case F = f fdx, f e Ls, was given in § 1. It follows

that F*(x) exists almost everywhere if F is the integral of a function in L2, and in
particular if

We write p(x,h)=(F(x+h)-F(x)]/h

and denote by Ek the set of x e E such that I p(x, h) + < k for I A I < 1/k. Hence

E1CE,c...CEkC...cE, IEkI-sIEJ.

Fix k, say k = M, and consider any closed subset P of Em. We shall prove that F*(x)
exists almost everywhere in P. Since I E-P I may be arbitrarily small, (3.3) will
follow.

By hypothesis,
jF(x+h)-F(x)j<Mjhj for xcP, Jh'<1/M. (3.6)

Let 0(x) be the function coinciding with F on P and linear in the closed intervals
d1, d ... contiguous to P. We prove that G(x) e Ax, and for this it is enough to prove

I O(x+h)-O(x) <A h j for h< 1/M, (3.7)

with A independent of x, h. Suppose, for example, that h > 0. We consider first two
special cases: (i) both x and x + h belong to P; (ii) the interior of (x, x+h) contains no
points of P. In case (i), (3.7), with A =M, follows from In case (ii), (x, x+h) is
contained in an interval d contiguous to P, and O is linear there. Thus, if I d I < 1/M,
(3.7),with A = M, again follows from (3.6). Since there are onlya finite number (if any)
of d's with I d I > 1fM, (3.7) is always true in case (ii), provided A is large enough.

If neither (i) nor (ii) holds, (x, x+h) contains points of P in its interior. Let x+h1
and x + h h1 < h, be the extreme points of P in (x, x + h). The absolute increment of
O over (x, x+h) does not exceed the sum of the increments over the intervals (x, x+h1),
(x + h1, x + h,), (x + h,, x + h), and each of the latter is at most A times the length of
the corresponding interval, in virtue of cases (i) and (ii). This leads again to (3.7).
Hence O E A1.

We set H(x) = F(x) - O(x), so that

F(x) = 0(x) + H(x).

From and (3.7) we see that H(x) satisfies an inequality analogous to (3.6), with
M'= M +A for M. Since, however, H(x) vanishes in P, this implies that, except in
a finite number of intervals exterior to P,

I H(x) 4 < M'X(x), (3.9)
where X(x) is the distance of x from P.
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The functions G and H being periodic, (3.3) will follow if we show that the integrals
G*(x) and H*(x) exist almost everywhere in P. This has already been proved for G*,
sinceGeA1. Consider H*(x). If xe P, then H(x)=O and (3.9) gives

f
11M J H(x+t)+H(x-t)-2H(z) Jdt M r/M ,y(x+t)

o (2 sin t)2 r1M(2-sin 4f)2
dt.

The integral on the right is finite almost everywhere in P. (See (2.10) and (2.11) with
A = 1, f = 1; we could also use the finiteness of the I. in (2.2).) The same therefore holds
for the integral on the left, and the finiteness is not affected if on the left we replace
the interval of integration (0, 1/M) by (0, n). Hence the integral H*(x) converges, even
absolutely, almost everywhere in P, which completes the proof of (3.3).

In this proof we tacitly assumed that the sets E,, were measurable (to ensure the existence
of closed subsets P). To prove the measurability it is enough to show that for any fixed a the
function

F(x+t)-F(x)I
P(x)=P(x;a)= sup t

o<Itl<a
is lower semi-continuous, that is that lim inf p(x);~p(xa). The inequality is immediate if we

z-.x.
interpret [F(x+t)-F(x)J/t as the slope of a chord. For if, e.g., F is continuous at za and if x,
Ix, - xaI < a, is such that the absolute value of the slope of the chord joining the point P.(xo,
Flxo)) to P1 (z,, F(xl)) exceeds p(xa)-e, then the absolute value of the slope of the chord PP,
exceeds p(xa)-2e, provided the abscissa x of P is close enough to xa, and the inequality
follows. If F is discontinuous at xa both sides of the inequality are +oo.

Immediate consequences of (3.1) are Theorems (5-8) and (3.23) of Chapter III,
initially stated without proof. From (3.3) and from Theorem (7.15) of Chapter III
we also deduce

(3.10) THEOREM. If F(x), periodic and integrable, i8 differentiable in a set E of posi-
tive measure, the series S'[F) is summable A to sum (3.4) almost everywhere in E.

The existence off (z) is not trivial even iff(x) is continuous. The existence of the f is due not to
the smallness off (x + t) -f(x - t) for small 19 I but to the interference of positive and negative
values; in fact, as we will show, there exist continuous functions f such that the integral

f(x+t)-f(x-t)I (3,11)
o t

diverges at every z. It will slightly simplify the notation if we consider functions of period 1 and
replace the upper limit of integration rr in (3.11) by 1. We first need the following lemma:

(3.12) LEMMA. Let g(x) be a function o f period I such that I g(x) I S 1, I g'(x)1 <_ 1 , and that for no
value of x does the difference g(x + u) - g(x - u) vanish identically in u. t Then

(1 I9(n+nt)-9(nx-nt)Idt3Clogn, rll9(+ +nt)-g(nx-nt)Idi C,logn
rln t o t

for n = 2, 3, ..., C and Cr being positive Constants independent of n.
Let nx = y, nt = u. Since g is periodic, the first integral is

n-1 1 \\ ('1

f I g(y+u)-9(y-u) I E - du3
\

-I J 9(y+u)-9(y-u) I du.
eI

v=1 u+v ,,

n2 -1

o

The first factor on the right exceeds a multiple of log n, and the second, as a periodic, continuous
and nowhere vanishing function of y, is bounded below by a positive number. This gives the first
part of the lemrz a. Similarly we obtain the second part, observing that

Cl

e
I g(y + u) - g(y - u) I u-1du<00.

t For g(x), O<x< 1, we may take, for example, the polygonal line with vertioee (0, 0), (3, 3), (1, 0).
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We now set m

f (x) = E a.O(3.Z), (3.13)
n-1

where the numbers a > 0 and the integers 0 < A, < As < ... will be determined in a moment. Then

If(z+t)f(x-t) I alt)ar
J

1
I alt

1JA. t 1/A. t

- (E1+ E l a 11
I y('t,x+A,t)-p(A,x-Ant) I&

t.-1 w-r+1 1JA.

E a,logA,-21ogA, E a,, (3.14)P-1
M-1

since Ig(A,x+A,9)-g(Ax-.t,8)It2. If we take a,=1/n!. the right-hand side of
(3.14) divided by vI tends to Clog 2> 0, and this shows that (3.11) diverges everywhere.

It is interesting to observe that the integrals

("Px+t)-f(x)dt and +f(x
dt. (3.15)

Jo o

though apparently similar to (3.2). can diverge everywhere for a continuous f. The proof is
analogous to that given above, but slightly less simple.

The theorem which follows will find an application jn Chapter XII. Its proof is
similar to that of (3.1) but the details are somewhat more elaborate.

(3.16) TEmoau. If f e L, y > 0, then the measure of the ad E,, = E4,(f) where I f(x) I > y
satsafiea

I Rs I
*J J o I f I

dx, (3.17)

where d is an absolute constant.

We may suppose that f 0. For if,f = f, +f,, then E1,(f) c E,,(f1) +

E'r(f)IcIEd,)I+IE,Us)I (3.18)

Hence if f, and f, are the positive and negative parts off, and if the theorem holds for
f1 and f it holds for f.

We may also suppose that fdX= 2
ro

(3.19)

The function F(x)- r fdt is non-decreasing in (-co, +co), and
Jo

f(,)° - (3.20)
>t o (2 sin }t)

almost everywhere.
Fix y and denote by Q the set of x for which F(D - F(x) >

(3-21)f-x y

for some f in the interior of (z, x + 21r). Q is open (possibly empty) and periodic. The
complement P of Q is closed. If P and Q are not empty, Q is the union of a family
{(at, bi)} of disjoint open intervals such that

F(bt)
- F(at) = y (3.22)bt - at

This fact is proved in the same way as Lemma (18.8) of Chapter I and the Remark
to it
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Write now F = 0 + H, where G coincides with F on P and is linear in each interval
(a;, b;); hence H =0 on P. If Q is empty, we write F= G, H = 0, and disregard H in the
argument which follows.

The function G(z) i8 in AI. More precisely,

G(x+h) -G(x)0< h <y for 0<h< 2n.

The first inequality is obvious since 0, like F, is non-decreasing. The second inequality
is immediate if both x and x + h are either in P or in the same interval contiguous to P;
the general case follows from these two by the argument used on p. 132.

Hence G is the indefinite integral of a (periodic) function g = G'. We have 0 < g(x) < y
for almost all x, and g(z) =f(x) almost everywhere in P (since G = F in P). Clearly
H is the indefinite integral of h = H', and

f=g+h,
Since H = 0 in P, the integral of h over each interval (a;, b;) is H(bi) - H(a,) = 0, and

2ff

fafdx=J"gdx (i=1,2,...),
J
2*fdx=fo gdx. (3.23)

a a o 0

Since I E,,(f) I < I E5(g) I + I E (h) I it is enough to show that each of the two terms
on the right is majorized by A

ofdx=A.
Y II

For g we have 2.
Eu(9) I < -2f0 9`sdx < y-y

o

.
g2dx

2.
Y-- 0gdz = y-1 f fdx,

0

by (323).
It remains to estimate E,(h) I. First, summing from (3.22) over all (a;, bi) in a period,

we get F(27T)-F(0)-1 2* 1

jQj=E(b;-ai)<
y Yfo f(x)dx-y. (3.24)

Next, let x*(x) be the function equal to b; -a1 in each (a,, bi), and to 0 in P. We
show that H(x) <yx*(z). (3.25)

This is obvious for x in P, since both sides are 0. If ai < x < bi, then

0<F(x)-F(a;)<y(x-a;),

and the equations H(a;) = 0, H = F -- G imply

11(z) =
which gives (3.25).

Write IX) =
I

*
x*(t) dt- t* X*(x+t) dt.

( ilJ_,{2sin+(x-t)}2 7r _*(2sinjt)2

In view of (3.25), if we apply (3-20) to h we obtain

' h(x) < yI (x) for x e P. (3.26)



136 Classes of functions and Fourier series [iv

Let Q* be the set obtained by expanding each (a1, b1) concentrically three times, and
let P* be the complement of Q*. We have

(327)f.1(1BlQI
where B is an absolute constant; this is a result analogous to (2.11) and the proof is
essentially the same.

It is now easy to estimate I E,,(h) I. The intersection of E,,(h) with Q* has measure
not greater than I Q* I -< 3 I Q I. In P, and a fortiori in P*, we have (3.26), and so, if
I fi(x) I > y, then I(x) > 1. But, by (3.27), the subset of P* where I(x) > 1 has measure
not greater than B I Q I. Hence, collecting results and using (3.24), we find

,3IQI+BIQIs(B+3)y--1.

This completes the proof of (3.16).

4. Classes of functions and (C, 1) means of Fourier series
We know that the necessary and sufficient condition for the numbers c, (v = 0, ± 1,

± 2, ...) to be the Fourier coefficients of a function L2 is that the sum E I c, I2 be finite.
It is natural to ask whether anything so simple can be proved for the classes L* with
r+- 2. The answer is no, and it is this fact which makes the Parseval formula and the
Riesz-Fischer theorem such exceptionally powerful tools of investigation. We shall
now consider criteria of a different kind involving the CesA.ro or Abel means of the
series considered.

One point must be made clear. What matters in the proofs that follow is that the
(C, 1) kernel, and Abel's kernel, satisfy conditions (A), (B), (c) stated in § 2 of Chapter III
(and in particular are positive), and also that S[f] is summable by these methods. The
arguments are therefore applicable without change to any other kernel with these
properties. Logically the (C, 1) method is simpler than Abel's, but the latter is often
more significant, especially in applications to harmonic and analytic functions.

We pursue the following course: in §§ 4 and 5 the results will be proved for the (C, 1)
means, and in § 6 the analogues for Abel means will be stated without proof.

Besides the classes L., Lr introduced in § 9 of Chapter 1, we shall consider other
classes of functions. We shall denote by B, C, A and V the classes of periodic functions
which are respectively bounded, continuous, absolutely continuous, and of bounded
variation. If

c, eivz (4.1)

is the Fourier series of a function of a definite class, we say that the series itself
belongs to that class. By S we denote the class of Fourier-Stieltjes series. The
(C, 1) means of (4.1) will be denoted by v (x).

(4.2) THEOREM. (i) A necessary and sufficient condition for E c,ei.x to belong to class C
is the uniform convergence of

(ii) A necessary and sufficient condition for Fc,e°'r to belong to class B is the uniform
boundedness of the r,,(x).
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The necessity of the condition in (i) is Fejer's theorem (Chapter III, (3.4)). Toprove
the sufficiency, we note that, for n 3 I k I,

4w

(1-n+I11Ck=2n O (z)e-ikxdx.
fo

As n -+ oo the left-hand side tends to c, and the right-hand side to the kth Fourier
coefficient of the continuous function f (x) = lim o-n(x).

The necessity of the condition in (ii) is contained in Theorem (2.30) of Chapter III:
if K is the essential upper bound of I f I then i on(x) I K. Conversely, if I Y. K,
then, for large n,

I lKai2 I ,IQnlsdx=k Ikl)E,

where v is any fixed positive integer not exceeding n. Making n - co we get

Ic_,I1+...+c,IS+...+Ic,12<K2,

and this is true for every Y. Hence E I ck 3 converges, and, by the Riesz-Fischer theorem,
(4.1) is an S[f] with f e L2. Therefore a n(x) -* f (x) almost everywhere, and the inequalities
I o- (x) I yc K imply that I f (x) I <_ K almost everywhere.

(4.3) THEOREM. The aeries belongs to claw S if and only if l R[on] = 0(1).

We first suppose that E c is an S[dF]. Then

1 fs.
Kn(t-x)dF(t),

0

fKjtvn(x) -x} I dF(t)
a

where dF(t) I stands for dV(t), V(t) denoting the total variation of F over (0, t). Let
V=V(2ir). The right-hand side of the last inequality is a trigonometric polynomial in
x whose constant term is V/2ir. Integration over 0 < x _< 2n therefore gives

Jlfon] _< F" I dF(t) I = V, (4'5)
0

and one part of (4.3) is established. For the other we need the following classical result,
which we take for granted here:

(4.6) THEOREM op HEu Y. Let {F,,(x)} be a sequence of functions uniformly bounded
and of uniformly bounded variation in an interval (a, b). Then there is a subsequence

converging at every point of (a, b) to a function F(x) of bounded variation.

The hypothesis of uniform boundedness may be replaced by the boundedness of
{F,,} at a single point x, since the former is implied by the latter together with the
uniformly bounded variation.

Returning to Theorem (4.3), suppose that W [o-,j < V for all n and let

F"(x) = f
o aw(t)

dt.
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The functions ,,(x) are of uniformly bounded variation in (0, 27T) and vanish at x= 0.
Hence there is a siubsequence (F",(x)), uniformly bounded and everywhere convergent
to a function F(x) of bounded variation (total variation S V) in (0, 2n). If I kI n,,
integrating by parts and making j -* oo we get

s.

(1 nl +1}ck 2nfo o e-ikxdx=- F' .(2ir)+2n fo ii' a-ikxdx
1

ck = 2n F(27r) + 2 fw F e-ikx 2n a-ikx dF(x),
0

since F(0) = 0. Hence (4.1) is S[dF] and the proof of (4.3) is complete. The result can
be stated in the following equivalent form.

(4.7) THEOREM. A necessary and sufficient condition for Ec,e"'x to belong to ela88 V
is that 9R[o;,] = O(1), that is, that the o-, be of uniformly bounded variation.

The following result completes (4.3):

(4.8) THEOREM. A necessary and sufficient condition for I c,, ei- to bean S[dF] with F
non-decreasing is that o-" 3 0 for all n.

The necessity follows from (4.4) since K"(u) 3 0. Conversely, if o-"(x) _> 0, the F"(x)
in the proof of (4-3) are non-decreasing and so is F(x) = lim F,y(x).

(4.9) THEOREM. A necessary and sufficient condition for Ec,ei"x to be an S[dF] with
F non-decreasing is that "

0 (4-10)
A. v-O

for all n >, 0 and for all (complex) 6o, , . . . , 9,,.

If c,, = (2n)-u I * e-"'x dF, with F non-decreasing, then
Jo

2rr c
_o

=x I E e-iir-0

i, Y-o
0 ,1dF>, 0.

0

Conversely, if we take 6, = ei°x for all v, and denote by the (C, 1) means of the series
Ec, a"-, the left-hand side of (4.10) becomes

(n + 1) co + n(cu e'x + c_u a-i=) + ... + (c" elnx + e_% a-1"2) = (n + 1) o-n(x),

and it is enough to apply (4-8).
Let u+ and u- denote respectively max (u, 0) and max (- u, 0), so that

u+=i(I uI +u), u-=1(I uI _u). (4.11)

Since the integral of o- over (0, 2ir) is constant (being 2nco), the first equation shows

that the conditions
9[a"]-O(1), Tz[-Y,+,]=O(1)

are equivalent.

(4-12) THEOREM. Suppose that Ece"'x is an S[dF] and that

F(x) = }[F(x + 0) +F(x -- 0)] (4.13)
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for all z. Let V, P, N denote respectively the total, positive and negative variations of F
over an interval a < z < fl. Then

8I o-n, fo-dx_.P.BJo.;dz_*N.r(4-14).. a

Since S[dF]=S'[F] (Chapter II, (2.4)), (4-13) implies that

Jaandx- F(,6)-F(a) (4-15)

(Chapter III, (3-4)). It is enough to prove the first formula (4-14), since the other
two relations in (4.14) follow from this, combined with (4-15), (4.11) and

2P = V + (F(f) - F(a)), 2N = V - (F(f) - F(a)).

Jo,,Tha t liminfl[o; a, ft]V is clear. For by (4.15) the functions F,(z)=d t
a

converge to F(x) - F(a) on (a,,6) and $Tl[on; a, fl] is the total variation of F. over (a, f).
The total variation V of the limit cannot exceed the limit inferior of the total variations
of the F,,. It remains therefore to show that lim sup 9Jl[o,,; a,,O] < V. If (a,,8) coin-
cides with (0, 21r), this follows from (4-5), and (4-12) is established in this particular
case. If ft - a < 277, suppose that the inequality we want to prove is false. If V' is the
total variation of F over the closed interval (f, a + 2n) we therefore have

f jo,,dx-+V+V', limsup
a

This implies that lim inf 9[0,,; f, a + 21r] < V', contrary to the opposite inequality
which we have already proved (with a, ft for f, a + 2n). This proves (4-12).

We know that o-,,,(x; dF)-+F'(x) for almost all x (Chapter III, (8.1)), and we shall
sometimes write o(z) (= lim instead of F'(z).

Let P(x) be the positive variation of F(x) over (a, z) and let

P(x) = Pa(z) + P,(x)

be the decomposition of P into its absolutely continuous and singular parts. Both
Pa(z) and P,(x) are non-negative and non-decreasing for z> a. Moreover, as is well
known, we have almost everywhere

P.(x) = 0, P;(x) = P'(x) = (F'(x))+ s o+(x).
By (4-12), < ft

f ondx-a{Pa(f)-P0(a))+{P.(f)-P.(a)}= f o-+dx+P,(,8) (4-16)
a

A necessary and sufficient condition for P(x) to be absolutely continuous over (a,'6)
is that P,(fi) = 0, or

°o+ dx-+ f o-+dx. (4.17)
a

Similarly, a necessary aid sufficient condition for the negative variation N(z) of F
to be absolutely continuous in (a, f) is

fro,dx_f. o-dx. (4.18)
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If both P(x) and N(x) are absolutely continuous over (a, 6), adding (4.17) and (4.18)
we get (

J
a I IIn I dx _J.I ? I dx, (4.19)

a

and conversely this relation implies both (4.17) and (4.18). (For then, from (4.16)
and from a similar formula for a -n, we see that P,(f) = N,(f) = 0.) Thus (4.19) is both
necessary and sufficient for F(x) to be absolutely continuous over (a,,6). Hence:

(4.20) THEOREM. Let Ec,e{°= be an S[dF], where F Satisfies (4.13). The conditions
(4.19), (4.17) and (4.18) are necessary and sufficient for the function F, its positive varia-
tion, and its negative variation, respectively, to be absolutely continuous over (a"6).

Let Fk(x), 0 < x < 2n, be a sequence of uniformly bounded functions. If Fk(x) tends
almost everywhere to a limit F(x), then Cn->C as k->oo, where Cn and C denote the
nth coefficients of Fk and F respectively. The converse is obviously false. If, for
instance, 1, I=, ... is any sequence of intervals whose length tends to zero, such that
every point in (0, 2n) belongs to infinitely many Ik, then the sequence of the character-
istic functions Fk(x) of the Ik diverges at every x, though I Ck. I _< I Ik 1/21r -+ 0, as k-. e0
(uniformly in n). The converse is, however, true if the functions Fk are monotone.

(4.21) THEOREM OF CARATH];ODORY. Let{Fk(x)), 0 < x < 2n, be a 8equeneeof uniformly
bounded and non-decreasing functions, and let CA.: be the (complex) Fourier coefficients
of Fk. If liraCn=C exists for every n, then the numbers C,, are the Fourier coefficients of

a bounded non-decreasing function F(x), 0 < x < 27T, and Fk(x) -. F(z) at every point z at
which F is continuous.

By (4.6) there is a subsequence of {Fk} converging to a non-decreasing F(x), 0 < x < 27r.
Obviously the Fourier coefficients of F are the C,,, and we have only to show that
Fk(g) - F(6) for any point 6 of continuity of F interior to (0, 2n). Suppose that
Fk(f) does not tend to F(g). We can then find a subsequence {F,,} such that lim
exists and differs from F(g), e.g. is greater than F(f). We can select a subsequence
{Fk;(x)} of {Fk,(x)} such that limFk'(x)=G(x) exists everywhere. The Fourier coeffi-
cients of G(x) are again C,,, so that F(x) = G(x). On the other hand,

G(e) = lim Fkj(6) = lim Fk,(9) > F(f ),

and since G(x) is non-decreasing and F(x) is continuous at x = r;, we have G(x) > F(x)
in some interval to the right of 6, so that G(x) * F(x). This contradiction shows that
Fk(); F(l;).

We shall now extend (4.21) to Fourier-Stieltjes series. Except when otherwise
stated, every non-decreasing function 0 considered below will be defined for all x
and will satisfy the condition

(D (x + 27r) - 4(x) = 0(21r) - 4D(0).

(4.22) THEOREM. Let F1(x), Fs(x), ... be a sequence of non-decreasing functions and
let c* be the Fourier coefficients of dFk. Then

(i) If limcn=c exists for every n, there is a non-decreasing function F(x) such that
kw
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the Fourier coefficients of dF are c,,. Moreover, there are constants Bk8uch that (Fk(x) - Bk)
converges to F(x) at every point of continuity of F.

(ii) Conversely, if for a sequence of constants Bk the Sequence {Fk(x) - Bk} converges
to a (non-decreasing) function F(x) at every point of continuity of F, then, denoting by cn
the Fourier coefficients of dF, we have cn -* cn for all n.

(i) Let Bk be the constant term of S[Fk]. The Fk - Bk being uniformly bounded,
there is a subsequence {Fk,(x) - Bk,) converging to a limit F(x) everywhere in 0 5 x < 2n.
Let Cn be the Fourier coefficients of Fk - Bk. Then Cok = 0 for all k, and for n + 0 in-
tegration by parts gives

l 2s

CnJ0 (F, - Bk)a-insdx=(cn - co)tin. (4.23)

Hence lim Ck,= C exists for every n. By Theorem (4.21), Fk(x) - Bk converges to
F(x) at every point of continuity of F interior to (0, 2n). Hence if in (4.23) we make
k -+ co, we get C _ (cn - co)/in for n + 0. On the other hand, if yn are the Fourier coeffi-
cients of dF, integration by parts gives

' 1 0RC.=2n Fe-i,'Xdx=(Yn-Yo)/in,

so that cn - co =Yn - Yo for n + 0. Moreover,

2ny0 = F(2n) - F(0) = lim {FA,(21r) - Fk;(0)) = lim 21rc, i = 2rrco,

so that yo = co. Hence cn = yn for all n.
Let us now continue F(x) outside (0, 2n) by the condition

F(x + 21T) - F(x) = F(27r) - F(0).
This, together with

Fk(x+ 2ir) - Fk(x) = 2rrco, F(x + 21r) - F(x) = 2irc0, co -co,

implies that Fk(x) - Bk converges to F(x) at every point of continuity of F distinct
from 0 (mod 27r). This in turn implies convergence also at the points congruent to 0
(mod 2n), if F is continuous there.

(ii) Let us write Fk instead of Fk - Bk, which does not change the Fourier-Stieltjes
coefficients. Let Cn, C. be the Fourier coefficients of Fk, F considered in (0, 2n). Ob-
viously, Cn->Cn. If F is continuous at x, then

27rca = Fk(x + 21r) - Fk(x) -> F(x + 2rr) - F(x) = 2nco,

and so co -> co. For n + 0,
(en - co )!tin = Cn -> C. = (cn - co)/in,

which gives ck

We can apply Theorem (4.22) to the problem of the distribution mod 1 of sequences

X1, X2, .... xk, ... (4-24)

of real numbers. We wind the real axis around the circle 1' of length 1, and consider
(4.24) as points on r, not distinguishing points congruent mod 1. Given any semi-open
arc a < x -<fi on r, 0 -</1- a _< 1, we denote by vk(a, fl) the number of points among
xi, x ..., xk which fall in that are. We shall say that a function F(x) is a distribution
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function of (4.24), if F(x) is non-decreasing over (-oc, +oo) and satisfies the condition
F(x+ 1) - F(x)=1, and if vk(a,f)/k-+F(f)-F(a)
for any arc (a,,8) whose end-points are points of continuity of F. If (4.24) has a dis-
tribution function, the latter is determined except for an arbitrary additive constant.
If F(x) =x+C, we say that (4.24) is equidistributed mod 1, or simply equidistributed.

(4.25) THxoREM. A necessary and sufficient condition for (4.24) to have a distribution
function is that the limits

lim k {e-2ninx1 + e-2ninx. +... + e-2vinxk) = cn (4.26)
k-+w

exist for n=0, ± 1, ± 2, .... If these limits do exist, they are the Fourier-Stieltjes coeffi-
cients with respect to the interval (0, 1) of the distribution function of (4-24).

Sufficiency. Let Fk(x) be the non-decreasing function defined by the conditions
Fk(x) = vk(0, x)/k for 0 < x _< 1 and Fk(x+ 1) - Fk(x) for all x. In particular,
Fk(0) = 0, Fk(1) = 1. Fk(x) is a step function having jumps at the points x1, ..., xk and
the point congruent to them mod 1; the expression under the limit sign in (4.26) is

1

cn = fo e-aninx dFk. If cn --> c for all n, (4.22) implies that the cn are the Fourier-Stieltjes
J

coefficients of a non-decreasing F satisfying F(x + 1) - F(x) = 1. (Since co =1 for
all k, we also have co = 1.) Moreover, there are constants Bk such that Fk(x) - Bk -. F(x)
at the points of continuity of F. It follows that for any arc (a, 6) at whose end-points
F is continuous,

vk(a,i)l k = Fk(f) - Fk(a) - F(fl) - F(a).
Necessity. Suppose (4.24) has a distribution function F. Let a be any point of

continuity of F and let Fk be the functions defined above. If x is any point of con-
tinuity of F situated in (a, a + 1), the expression Fk(x) - Fk(a) = vk(a, x)/k tends to
a limit. Since Fk(x + 1) - Fk(x) = 1, it must tend to a limit for every point of continuity
of F. By (4.22), the Fourier-Stieltjes coefficients of Fk(x) - Fk(a) must tend to

r1
limits as k -+ co. This proves (4.26), since the ratio there is

J
e-'*i"x dFk(x).

0

(4.27) TaxoaEM. A necessary and sufficient condition for (4-24) to be equidistributed
i8 that the limits (4.26) exist for n = ± 1, ± 2, ... and are all equal to 0.

This can be seen at once if we note that the Fourier-Stieltjes series of x + C consists
of the constant term 1 only and that the limit c0 in (4.26) always exists and equals 1.

A corollary of (4.27) is that for any irrational x the sequence x, 2x, 3x, ..., kx, ... is
equidistributed. For if x8 = sx, and if n + 0, the absolute value of the expression under
the limit sign in (4.26) is

k
k-1 E e-2nianx 1 5 2k-1 I 1- a-,ninx I -1= o(1).

8-1

Similarly we prove the fact (which will be used in Chapter VIII, § 4) that if x is
irrational, the sequence x, 3x, 5x, 7x, ... is equidistributed.

(4.28) Tsxoazm. Let m1, erg,... be any sequence of distinct positive integers, and let a1, a,,.. _
be any sequence of real numbers. Then for almost all x the sequence m.(x - a,) 4 equidistributed.
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It is enough to prove that for almost all x we have

1 k
0(1) (k -. oo; n = ± 1, ± 2,...),

k,_1

and this will follow (cf. footnote on p. 78) if we show that all the series
m efnh". w(:-ail

(n=t1,±2,...)
e-1 8

converge almost everywhere. The latter, in turn, is a corollary of the following lemma.

(4-29) LEMMA.. Let d71(x), a(x), ... be a eystem orthonormal and uniformly bounded in (a,b).
Then the aeries

.(x)
(4-30)

s-1 8

converges almost everywhere in (a, b).

Let eN be the partial sums of (4-30), and letf(z) be the function such that 931,(f-ON] -; 0 (§ 1).
For N = k' we have

b

a

1 1 1if-eNI'= E ;<-_ i-N+1 e N k
Thus the series E

J o lf- e5.l' dx converges, which implies that ao-.f almost everywhere

(Chapter I, (11-5)). For general N we find a k such that k' 4 N < (k + 1)'. Then 8N is obtained by
augmenting at. by less than (k + 1)'-k'=O(k) terms, each of which is O(1/k'). Thus the contribu-
tion of the additional terms is 0(k) 0(11k') = o(1), and 8N f almost everywhere.

5. Classes of functions and (C, 1) means of Fourier series (cont.)
Let a be a family of fur, F(x), a _< x -<,8, having the following property: for

every e > 0 there is a 8 > 0 such that

I E[F(bk)-F(ak)) I <e (5.1)

for every F E a and every finite system S of non-overlapping subintervals (ak, bk) of
(a, f) satisfying E(bk - ak) < 8. We shall then say that the functions FE a are uniformly
absolutely continuous in (a, 98). Clearly, the limit of an everywhere convergent sequence
of functions from a is absolutely continuous.

Lot ¢(u) be non-negative and non-decreasing for u>_ 0, and such that 0(u)/u-->oo
with u. Let f be a family of functions f (x) defined on (0, 27T) and such that

z.

Jo
¢(If(x)I)dx_< C,

where C is independent of f. The integrals F of the f e f are then uniformly absolutely
coftinuou8.

We have to show that the sums in (5- 1), which are f f dx, are uniformly small with
s

S I. Given any M> 0, let uo be such that 0(u)/u>_ M for u>_ uo. We set I f I =fl+f2,
where f1 = I f I if I f I < uo and f1= 0 otherwise. Thus the values of f, are either 0 or
else at least uo. Now

fS
fdx Jafidx + J f,dx _< uol SI +M-1J 0(fs)dx u, j SI + CM-1.

The last sum is small if we first take .M large, but fixed, and then 18 1 small.
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(5.2) THEOREM. A necessary and sufficient condition for

4tao + Z (a. cos vx + b sin vz) = E (5.3)
1 0

to belong to L is that the functions

f0(t)F (x) = di (n = 1, 2, (54)

should be uniformly absolutely continuous in (0, 21r).

If the F. are uniformly absolutely continuous, then a fortiori they are of uniformly
bounded variation, 9)2[0 ] = O(1), and E A, (x) is an S[dF]. Since F is the limit of an
everywhere convergent subsequence of F,,, F is absolutely continuous, and S[dF] = S[ f ],
,where f = P.j where

suppose that E is an S[ f ]. Suppose for simplicity that ao = 0. The
functions F. in (5.4) are then, except for an additive constant depending on n, the
(C, 1) means of the Fourier series of the integral F off. Thus

E[F.(bk)-F.(ak)] I

f E[F(bk+t)-F(ak+t)]Kn(t)dt _<max E[F(bk+t)-F(ak+tI -* t i )] I

which is small with S. This proves (5.2).
Obviously, EA,,(x) belongs to class A if and only if the o,, are uniformly absolutely

continuous.

(5.5) THEOREM. (i) A necessary and sufficient condition for EA,,(x) to belong to L is
that as m,n-*co.

(ii) If EA (x) is S[f], then

Suppose that EA (x) is S[f]. Integrating the inequality

I f(x+t)-f(x) I K,,(t)dl (5'6)lan(X)-f(X)I-<'f'
over 0 5 z -< 27T, we find

9[on-1],-j v(t)K,,(t)dt, where 71(t)= J I f(x+t)-f(x) I dx.
7T -1 o

Since i7(t) is continuous and vanishes at t=0 (Chapter I, (11.8)), and since the right
hand side of the last inequality is the (C, I) mean of S[rl] at t = 0, we find that
fl[o -f] -> 0. This proves (ii) and also the necessity of the condition in (i), since

t[O'm - ] 9)2[0,,, - f] + 9R [O'n -./] a as m, n - co.

Conversely, if 91[o-,,, - 0 there is an f e L such that $12[0 - f ] -* 0 (Chapter I,
(11.1)). Forn>Ikj,

2n(1--I-kh-)ck= Jx
fe-cuedt+ (v,,-f)e-'dt.

\\ n+l/ w f
Making n -* co and observing that the absolute value of the last term does not exceed
91R[0 -f], we see that ck is the kth coefficient of f. This proves (6.5).
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(5.7) THEOREM. Let ¢(u), u > 0, be convex, non-negative, non-decreasing, and 8UCh that
0(u)/u -> co with u. A necessary and sufficient condition for E An(x) to belong to L. is that

Jo (l an(x)I
)dx_< C, (5.8)

where C is finite and independent of n.
To prove the necessity of the condition, we consider

an(x) 15nJo,Kn(x-t)1 f(t) I dt (5.9)

By Jensen's inequality, taking into account that the integral of the function
p(t)=Kn(x-t) over (0, 21r) is n, we find

#(Ian(x)I)-< -
0

Kn(x-t)¢([f(t)1)dt. (5.10)

If we integrate this with respect to x and invert the order of integration on the right
we get

o 0(Ian[)dx 0(If1)dt,

which proves the necessity of the condition.
As regards the sufficiency, Jensen's inequality

0( 1 " C
2A Ian Idx) _

1

2'
j"O(I an1)dx2-

(5.11)

implies that TI[a"] = 0(1), so that E An(x) is an S[dF]. Moreover, the functions (5.4)
are uniformly absolutely continuous. Hence F is absolutely continuous, and EA,,(x)
is S[f], f = F. Since o-.(x) -> f (x) almost everywhere, (6.8) implies that D [q(I f 1)] < C,
that is, f e L#.

In particular, a necessary and 8ufflcient condition for (5.3) to belong to L', r > 1, is
R,[an] = 0(1). As (4.3) shows, the result fails for r = 1.

(5.12) THEOREM. Suppose that O(u), u > 0, is convex, non-negative and non-decreasing.
I f f e L,, then

In particular, if f e L', r > 1, then )l,[an] -* tJlr[f ].

After (5.11), it is enough to show that lim inf J "0(I on I) dx> f o"0([ f I) dx. Let E

be any set of points at which the an are uniformly bounded. Since an -*f almost every -

where, we have f EO([ an I )dx-f E0([ f [)dx and hence

liminf0(1a.1)dx>_f 0(I f I)dx.
E

2w

The right-hand side here can be made arbitrarily close to J O([ f f) dx, since I E I can
0

be made arbitrarily close to 27r. This completes the proof of (5.12).
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Suppose that a convex and non-negative function O(u), u 3 0, has 0(0) = 0 and is
non-decreasing. Supposing that Y, A, (x) belongs to L#, we may ask whether

f 0(I
I)dx-.0. (5.13)

0

Applying Jensen's inequality to (5.6) we see that (5.13) holds provided the function

71(t) =J* O(I f(x+t) -f(x) I }dx is integrable and tends to 0 with t. This is not always

true if ¢(u) increases too rapidly with u, but we can save the situation by adding a
harmless factor to the argument of 0 in (5.13): If f E L#, then

1*(t) = f off I f(x+t)-f(x) I}dx
is integrable and tends to 0 with t.

In fact, let f = g + h; where g is bounded and J* (I h I) dx < c. ByJensen's inequality,

foOffIf(x+t)-f(x)I}dx<2
fY. '{f

I g(x+t)-g(x)I}dx+2 JonO{JIh(x+t)-h(x)I}dx,

where the last term does not exceed 1 h(x+t) I) dx+ 1 JZ*0(I h(x) I) dx < ,]e, and
4 0 4 0

the preceding term is bounded and tends to 0 with t. (Our hypothesis about 0 implies
that in every interval 0 < u < a we have ¢(u) < Mu, where M= 0(a)/a.) Hence the total
is less than e for I t I small, which proves the assertion. We thus obtain the following:

(5.14) Tszo$EM. Suppose that 0(u), u _> 0, is convex, non-negative, non-decreasing
and that 0(0)=0. I f Y , (x) is an S[f] with fEL,,, then

f0*0(f If - o,.I) dx->0.

In particular, if f e L', r 3 1, then 33 r[ f - on] -+ 0.

(5.15) Tuao$EM. Suppose that E is an S[dF] with F(x) = }(F(x + 0) + F(x - 0)}
for all x.

(i) Either of the following two conditions is both necessary and sufficient for F to be
absolutely continuous over a closed interval (a, fl):

(a) the functions F (x) = f. dt are uniformly absolutely continuous over (a,,6);
a

(b) 33l[o'm-o-,,; a,Q]-s0.
(ii) If the functions o- (t) in (a) and (b) are replaced by v,+, (t), we obtain necessary and

sufficient conditions ((a'), (b'), say) for the positive variation of F to be absolutely con-
tinuous in (a,f).

It is easy to see that (b) implies (a), so that for (i) it is enough to prove the sufficiency
of (a) and the necessity of (b). The former is immediate, since then the function F in
the proof of (4.3) is absolutely continuous in (a, ft).

Suppose then, that E A,, (x) is an S[dF] and that F is absolutely continuous in a < x <_,8.
If we show that A't[am - o-,; a',,6'] -+ 0 for any interval (a',,B') interior to (a, f ), the
necessity of (b) will follow. For, by (4.12), V[o-,; a, a'] and ff , 81 tend to the



IV] Classes of functions and (C, 1) means of Fourier series 147

total variations of F over (a, a') and and so are small with a' - a, 8 -'8'. The
same follows for the integrals of I am- on I over (a, a') and (#',,8).

Let f (x) = F'(x). To show that 9R[Qm - o-,,; a', f'] --* 0, it is enough to prove that
9R[Qm-f; a', fl']-0. We observe that

(
0-m(x)=i

f2AKm(x-t)dF(t)1
r o IT q 'r 0

say. For xE (a',,6') and t E (,Q, a + 2n) the integrand of wm tends uniformly to 0, so that
9)l[wm; 0. Since vm = Qm(x; f *), where f * =f in (a, ft), f * = 0 elsewhere, we
have Tl[vm - f * ; 0, 27r] - 0, and so also S Jl [vm -f; a', 6'] -N-0. Hence

91t[vm-f; a',,8'] StR[Vm-f; + 91W.; a"'8'] -- 0,

and (i) is proved.
Analogously, for (ii) we must show the sufficiency of (a') and necessity of (b'). If

the functions F*n(x) = Jot dt are uniformly absolutely continuous in (a, f ), their limit,
a

which represents the positive variation of F over (a, z) (cf. (4.12)), is absolutely
continuous there.

To prove the necessity of condition (b'), we begin with the case (a, fl) = (0, 2n).
Let V (x), P(x) and N(x) be the total, positive and negative variations of F over (0, x).
Then o- [dN] ->0. (5.17)where vn= nQ [dP] > 0, vn= - nn- n- n

The relations P' + N' = V'= I F' j, P'- N' = F' (known to be true almost everywhere),
show that P' = F'+, N' = F'- almost everywhere.

The inequalities Vn < o ,, v;, 3 0 show that 0 -< Q,+, <, a,,. If we define 0n(x) by

o(x) = 8n(x) on(x)

at the points where rr;, * 0, and 0,,(x) =1 elsewhere, then 0 -< ©n(x) < 1 for all x and n.
We observe that, almost everywhere, an -+ F' (Chapter III, (8.1)), and so also G-n -+ F'+.
The same fact applied to c [dP] gives o-,, -> P'= F'+. Hence On(x) tends to 1 at almost
all points where p(x) = P'(x) + 0.

Using now (for the first time) the hypothesis that P(x) is absolutely continuous,
we show that SDl[v - p; 0, 27r] -> 0. In fact,

0

f.101+ -PId =I o,nen-p
I
f dx!5 ' Io,-pIBndx+foWl Bn-1Ipdx.

The first integral on the right is majorized by 9n[o;, -p] -> 0. The last integral on the
right also tends to 0, since the integrand I Bn(x) - 1 I p(x) is majorized by p(x) E L and
tends to 0 almost everywhere. Thus

9R[r -p] s0,
and the necessity of condition (b') is proved when (a, fl) = (0, 2n).

To remove this restriction, we proceed as in case (b). It is enough to show that
-p; a', f'] -+ 0 for any (a',,8') interior to (a, fi). Assume for simplicity that (a, ft)

is included in (0, 27r), and return to (5.18). The vm there is om(x; dF*), where F*
equals F(x) in (a,,8), F(a) in (0, a) and F(f) in (,8,2n). The positive variation P* of F*
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is absolutely continuous, so that, if p* =P*', TI[vn+, -p; a', f'] _< D?[v+ -p*; 0, 2n] -+ 0.
Since w,,, tends uniformly to 0 over (a',,8') we get Jl[o,+, -p; a', fl'] -+ 0.

Condition (b) is satisfied if there is a non-negative non-decreasing convex function
q(u), u _> 0, such that q5(u)/u -+co with u, and if 9R[O(l o'n 1); a, fl] = 0(1). Similarly
condition (b') is satisfied if 9)l[¢(o',+,) ; a, 6]=0(1).

Many results of this and the preceding section hold, though some inequalities become lees precise,
for the kernel (C, a), 0 < a < 1. Let

L =dam= 1 Ki(t) dt, d=supA,. (a>O).
n s

The proofs of the following results for 0 < a < 1 are essentially the same as for a = 1.

(5.18) THEOREM. L e t 0 be the same as in (5.7). I f R[O(I c o, I)]=0(l), then (5.3) belongs to L5.
If (5.3) is an S[ f ], f c Lm, then Tl[O(I a-. I /A) ] = 0(1).

I f , in addition, 0(0) = 0, then 9R[¢(I f - o°, I /4l )] 0 ae n * oo.

(5.19) TREoa.EM. A necessary and sufficient condition for (5.3) to belong to S is aR[o;,]=0(1).
A necessary and sufficient condition for (5.3) to belong to L is l(o', - o-.* -* 0 as m, n -. co.

If we replace the an by the partial sums an in the theorems of this and the preceding
section, the conditions we obtain remain sufficient, though no longer necessary.
The proofs of sufficiency remain the same, except at one point; we cannot use the fact
that sn(x; f) -),-f (x) almost everywhere, for this is false (see Chapter VIII, § 3). But for
this purpose it is enough to know that there is a subsequence {sn,(x; f )) converging
to f (x) almost everywhere, and we shall see in Chapter VII, § 6, that this is true.

Another observation on the sufficiency conditions in the theorems of this and the
preceding section is also useful. In showing that a certain behaviour of the (or sn)
implies that the series belongs to a definite class, it is not really necessary to consider
all positive integers n; it is enough to suppose that the condition is satisfied for some
sequence {nk} tending to +co. Thus, if {o'nr(x)} or {sn,.(x)} converges uniformly, the
series belongs to class C (see (4.2)); if 9R[ent]=0(1), it is an S[dF] (see (4.3)); if the
8nr(x) are non-negative, the series is an S[dF] with F non-decreasing (see (4.8)), etc.

This makes it possible to state in a slightly different form some of the theorems
proved above. For example, a necessary and sufficient condition for F.An(x) to belong to
class C is that the orn(x) are uniformly continuous. The necessity follows from the
inequality (5.9), which, applied to f (x + h) - f (x), yields

tv(a; trn) <,,,(8; J )A

Conversely, if the o-n(x) are uniformly continuous there is, by Arzelh.'s well-known
theorem, a subsequence {o'nt(x)) converging uniformly to a continuous function f(x),
and so EAn(x) is an S[f], fEC.

(5.20) THEOREM. If R[snr] = 0(1) for a sequence of partial sums of E A,(x) (in par-
ticular, if the Fnr are non-negative), the aeries is an S[dl] with F continuous.

We know already that E An(x) is an S[dF], and so need only prove the continuity of
F. Suppose that F(xo + 0) - F(xe - 0) = d + 0 for some xo, and suppose for simplicity
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that x0=C) and that 2F(0) = F(+ 0) + F(- 0). Let ¢(x) - Ev-1 sin vx (see Chapter I,
(4.12)). We may write

F(x) = {F(x) - (d/n) b(x)} + (din) ¢(x) = F,(x) +F2(x),

say, where F1 is continuous at x = 0. Correspondingly

S[dF] = S[dF,] + S[dF,], s =81+82n.

Since 0(0)=0(2n), we have S[dF2] =S'[F,] and the nth partial sum of S[dF2] is
(d/11) [Dn(x) - }]. Thus whatever the value of e > 0, ]'ll[sn; - e, e] C log n, where C is
a positive constant (Chapter II, (12.2)). If we can show that for e small enough and
n > no we have EQ[s,1,; c, e] < JO log n, it will follow that 97l[sn; -e, e], and so also
97t[sn], tends to oc, contrary to hypothesis.

Let I = (- e, e), 1'= (- 2c, 2c). If x e I, then

I 8
(X)I=j1 f Dn(x-t)dF,(t) <1 f I Dn(x-t)11 dF,(t) I + 0(l),71 _ 11 I

Dn(u) being uniformly bounded for e < I u n. Integrating this over I and writing
Ln for Lebesgue's constant, we have

frI sn(x)I
dF(t)If, I D (x-i)I dx<Lnf I dF,(t)

Since Ln = O(log n), and the variation of F, over I is small with e, owing to the con-
tinuity of F, at 0, we have 9n[sn; - e, e] < kC log n for a small enough and n > n0. This
proves Theorem (5.20).

6. Classes of functions and Abel means of Fourier series
W

Let f(p,x)=iao+ Y,(ancosnx+bnsinnx)pn (0<p<I) (6.1)
n-1

be the harmonic function associated with the series

1a0+ (a,, cosnx+bnsinnx) An(x)
n-1 n-0

(6.2)

The analogues for Abel means of the results obtained in the preceding two sections
may be stated as follows. (As was explained in § 4, we omit the proofs.)

(6.3) THEOREM. A necessary and sufficient condition for EAn(x) to belong to class
C or, what is the same thing, for

f(P,x)=
1 2n PS f(t)dt (0<p<1) (6.4)

with f(t) continuous, is that f(p,x) should converge uniformly as p - 1. A necessary and
sufficient condition for EAn(x) to belong to class B is that f(p, x) should be bounded
for 0 < p < 1.

(6.5) THEOREM. A necessary and sufficient condition for E An(x) to belong to class S,
or, what is the same thing, for

f(p, x)=21rf 0A1-2pcos(x9 t)+p2dF(t) (0<p<1), (66)
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where F(t) is of bounded variation, is that the integral

J

m

I f (p, x) I dx = 9RU(P, x)]

[rv

(6.7)

should be bounded as p -+ 1. The latter condition is equivalent to 97t[f +(p, x)] = O(1). If we
have (6.6), then

Jaxlf(P,x) I dx<fo I dF(x) I.

(6.8) THEOREM. A necessary and sufficient condition for f(p, x) to be representable by
(6.6), with F(t) non-decreasing, is that f (p, x) 3 O for 0 <p < 1.

(6.9) THEOREM. If f(p,x) is given by (6- 6), and if

F(x) = +{F(x + 0) + F(x - 0)), (6.10)

then
J

If(P,x)I dx--3,. V, f f+(p,x)dx- P, f f-(p,x)dx-*N,
a a a

where V, P, N are the total, positive and negative variations of F over (a,,8).

This result leads to the following:

(6.11) THEOREM. Let F(p, x) be the Poisson integral of a periodic F of bounded varia-
tion satisfying (6-10). Then the total (positive, negative) variation of F(p,x) over an arc
a < x < fl tends to the total (positive, negative) variation of F(x) over a < x <,B as p -+ 1.

(6.12) THEOREM. Each of the following conditions is both necessary and sufficient for
1; A,(x) to belong to L (that is, for (6.4) to hold with an f e L) :

(i) ff(pu)du is a uniformly absolutely continuous function of x for 0 < p< 1;

(11) fo
I f(P,x)-&', x) I dx- 0 as p, p'-, 1.

(6-13) THEOREM. Let c(u) be non-negative, convex, and non-decreasing for u ? 0, and
let ¢(u)/u-.oo with u. A necessary and sufficient condition for E to belong to Lm is

fc5(If(px)J)dx=0(1) (04p<1). (6.14)

(6.15) THEOREM. If E A,1(x) is an 5[ f ], f e LL, where q(u) is convex non-negative
and non-decreasing for u ? 0, then

f(If(px) I)dx-fo O(I I I )dx (p-1).

If in addition ¢(0) = 0, then

f(IfP.x_f(xn)dx_0 (p-+1).

(6.16)

(6.17) THEOREM. A necessary and sufficient condition for E A (x) to belong to Lr, r > 1, is

f2wlf(p,x)Irdx=O(1) (p-*l).
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If is an S[f] with r> 1, then

1o If(p,x)-f(x)I'dx (p-*1).

(6.18) THEOREM. If E A,(x) is an S[dF] with Fsatisfying (6.10), each of the conditions
(i), (ii) below is both necessary and sufficient for F to be absolutely continuous in (a,,8):

(i) The functions I f(p, u) du are uniformly absolutely continuous in (a,,8);
a

(ii) p,p'--* 1.
If f (p, x) is replaced by f +(p, x), we obtain necessary and sufficient conditions for the

absolute continuity in (a, f) of the positive variation of F.

(6.19) THEOREM. Let EA,,(x) be an S[dF], let F satisfy (6.10), and let

Of the two conditions
f(x)=limf(p,x)=F'(x).

J'Jf(' x) I dx_.f'If(x) dx, ff+(pz)dx_.f'f+(x)dx.

the first is necessary and sufficient for F to be absolutely continuous in (a, fl), the second
for the positive variation of F to be absolutely continuous there.

The analogue of (5.11) for Abel means is

I
(If(p,x)1)dx<Jo*0(If(x)I)dx. (6-20)

Let 0 ,<p < p' < 1, so that p = p'R, with 0<R<1. From (6.1) we see that f (p, x) is
the Poisson integral off(p', x), and (6.20) implies that

fo*0(If(p,x)I)dx-<I c(If(p',x)I)dx (6.21)

Thus

(6.22) THEOREM. If #(u) is non-negative, non-decreasing, and convex for is 3 0, and
s.

f (p, x) is harmonic for p < 1, the integral fo 0 (I f (p, x) I) dx is anon-decreasing function of p.

The case ¢(u) =u', r _> 1, is particularly important.
If f (p, x) is given by (6.6), then writing F = FI - F2, where Fl, F, are non-decreasing,

we represent f (p, x) as a difference of two non-negative harmonic functions, If f (p, x)
is non-negative, the integral (6.7) is bounded (being in fact n'ao). The same holds if

f (p, x) is a difference of two non-negative harmonic functions. Thus

(6.23) THEOREM. A necessary and sufficient condition for a harmonic function
f (p, x), 0 < p < 1, to be representable in the form (6- 6), with F of bounded variation, is that
f (p, x) should be a difference of two non-negative harmonic functions.

Let z = p e{x. The Poisson kernel P(p, x) is the real part of

}+z+z'+... =}(1 +z)/(1-z).
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Thus, the harmonic function (6.6) is the real part of the function
u2.

4(z)=2n to e+zdF(t) (z=peix) (6.24)

regular in I z I < 1. The imaginary part of (D(z) is

Pp,x)=2;(a,,sinvx-b,cosvx)p"=1 R
Psin(x-t) dF(t), (625)f 1-2pcos(x-t)+p

the harmonic function conjugate tof(p, x) and vanishing at the origin. Hence

(6.26) TxxoBEM. A function CD(z), with J%(0) = 0, regular for I z I < 1, has a non-
negative real part there if and only if t(z) is given by the formula (6.24) with F(t) non-
decreasing and bounded.

The boundedness of the integral (6.7) does not imply the boundedness of the in-
tegral with f(p, x), as we see by the example

f (P, x) = P(P, x), f(P, x) = Q(P, x)

(That S1t[Q(p, x)] * O(1) may be verified either directly, or by observing that
sin x + sin 2x + ... is not an S[dF].) However:

(6.27) T zoREm. Suppose that the integral (6.7) does not exceed C for 0, p < 1. Then
the integral of p-1 I J (p, x) I (and a fortiori that of I f(p, x) I) along any diameter of the
unit circle does not exceed C.

The result is quite elementary, and in order not to use the representation (6.6),
whose proof is rather deep, let us suppose first that f (p, x) is continuous for p 5 1.
Then f (p, x) is the Poisson integral off (x) =f( 1, x), and

R

f(P,x)= --1 Rf(t+x)Q(p,t)dt,

R

fop-1(If(P,x)I +If(P,x+n)I)dP,- If(t+x)I

x {f eP-(Q(P, t) I + I Q(P, t +n) I) dp}dt .

In estimating the term in curly brackets we may suppose that 0 < t < n. Then Q(p, t) > 0,
Q(p, t + n) < 0, the term in question is

lim I

R
p-1[Q(p,t)-Q(p,t+n}]dp=lim I Ip"-l sinvtl dp

0 R-+1 J 0 L 1 1 J
= lim2Y, R21-1

sin (2v-1)t-}n
ft-+l .-1 2v- 1

(see Chapter I, (4.13)), and the whole expression on the right is

I 7Tff(t+x)dt=ff(t)Iuc.
In the general case we fix R, 0 < R < 1, and apply the result obtained to the function

fi(P, x) -f(PR, x)
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harmonic and continuous for p 5 1. Since 9Jl[fl(p, x); 0, 2n] -< C, the integral

j1P-'(l fi(p,x)I +If1(P,x+rr)I)dp= f p-1(I!(P,x)I+If(P,x+rr)1)dp
0 o

does not exceed JC. The proof is completed by letting B tend to 1.
Let U(p, x) be any function harmonic for p < I and let V(p, x) be the conjugate

function. The harmonic function v(p, x) = V=(p, x) vanishes at the origin (observe that
V is of the form E A,(x) p") and is the conjugate of u(p, x) = U=(p, x). Suppose Usatisfies

T1[U,(p, x); 0, 21r] <C for 0 <p < I.

Then, by (6.27) and the Cauchy-Riemann equations,

JJP_1vIdP=5IP1vzIdpjHupIdPW.

the integration being along any diameter D of the unit circle. The last integral is the
total variation of U over D. Thus (8.27) may be re-stated as follows:

(6.28) THEOREM. Let U(p, x) be harmonic for p < 1. If the total variation of U over
any circle p =Po < 1 does not exceed C, the total variation of U over any diameter of the
unit circle does not exceed }C.

Consider the Poisson integral f(p,x) of an f in LP, p 3 1 (Cf. Chapter III, (6.4)), and
suppose that 1

f'Jf(p,x)J-dx<M' (0-,p<l). (6.29)

We shall deduce from this an estimate for 21,.[f (p, x)] for r > p. Let us apply to (6.4)
Theorem (1.15) of Chapter I I. If q is defined by l /r = l /p + 1 /q -1 (so that q> 1),
then

81r[f(P, x)] -< AP[I] QIQ[2P(P, t)]. (6.30)

In order to estimate %,[P(p, t)] we use the inequalities (6.9) of Chapter III, where
we may suppose that A > 1, and find

ff213[P(P't)]
27T

0d-adt+ 2
Ao8o

91Q[P(P, t)] -< AS-ud. (6.31)

Hence, observing that 1/q' =1/p -1/r, we get

(6.32) THEOREM. If (6.29) holds for some p 3 1, then

QI.[f(P, x)] <- BM(1- p)'n-uP

for r > p, B denoting an absolute constant.

Subtracting from f a suitable polynomial, we may make M as small as we please.
Thus,

(6.33) THEOREM. If E A. (x) is in LP, p 3 1, then

9[r[f(P,x)]=o{(1 -p)'h-un) as p,1.
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The following result generalizes (6-32):

(6.34) ThEoREM. If [ f (p, x)] < M(1 - p)-fl for some p >_ 1, ft > 0, then

'f(P,x)]<MB,q(l-p)-6+1b-'1v for r>p,
with Bd depending on ft only.

Let 0 <p < 1, P1=Pf, g(x) =f(P1, x).

Since p1 > p, f(p, x) is the Poisson integral of g(x): f(p, x) =g(p1, x). By hypothesis,

y[g]= y[f(P',x)]5M(1-P1)-a,
and by (6-32) applied to g,

'Xr[f(p, x)] = 9r[g(P1, x)] <
BM(1-P')-fi (1-P1)u.-up

= BM(1-Pl)-0+u'-u9
Since (1-p1)/(1-p) is contained between } and 1, (6.34) follows with Bp=2a+'B.

The ' O' in the conclusion is not replaceable by `o' here, as it is in (8.32); see Example 6
at the end of the chapter.

The theorem which follows is an analogue of (6.32) for trigonometric polynomials.
It suggests that to estimates of harmonic functions f (p, x) there should correspond
estimates for polynomials of order n - 1/(1-p).

(6.35) TasonEM. If T is a polynomial of order n, then

4l,[T] < Bnup=h/ 9[T] (6.36)

for r > p 3 1, with B an absolute constant.
The Fej6r kernel K,(t) satisfies an inequality

4IQ[K*] _< An1W (6.37)

analogous to (6.31), since, as we have already observed (p. 97), the estimates for
KK(t) and P(p, t) are similar if we identify n and 1 /(1- p). If the ak are the (C, 1) means
of T, we have the inequalities (compare (6-30))

`tt.[ak] _< %[T] 9[Q[2Kk] A4lp[T] k'/Q". (6.38)

For the delayed means rn = 2aM-1- an-1 (p. 80) we have therefore

QX,[7n] < A%[T] {2(2n)lw +nW} < SA91 [T] n'I',

and it is enough to observe that 7n=T.

7. Majorants for the Abel and Cesiro means of S[f]
These means have simple estimates in terms of the non-negative function

t
M(x) = Mi(x) = sup fo I f (x +u) du

introduced in Chapter 1, § 13. The proofs will be based on the following lemma:

(7.1) LEMMA. Let x(t, p), - n <_ t 5 n, be a non-negative function depending on a
parameter p and satisfying the conditions

(i) 5xt& _< K, (ii) ftxt)" I dt < K1, (7-2)
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where K and KI are independent of p. If we Bet

h(x,p)J_Wf(x +1) X('p) dc, (7.3)

then sup I h(x, p) I <AM(x),
P

(7.4)

where A depends only on K and K,.
a

For, fixing x, let F(t) = f f (x + u) du. Then integrating in (7.3) by parts and using

the inequality I F(t) < j t I M(x), we get

hx Mx a
f (,p) < () tv(t,p) I dt+[nX(n,p)+nX(-rr,p)])

W

The expression in square brackets does not exceed K + Kl, as we see by writing (7.2) (i)
in the form

-J I at <K

and applying (7-2) (ii). Summing up,

I h(x, p) I < (2K1 + K) M(x),
and (7.4) is established.

It is useful to observe that if t aXj at is of constant sign and if X( ± 7r, p) are bounded
functions ofp, then (7.2) (ii) is a consequence of (7.2) (i). This follows at once if we drop
the absolute value sign in (7.2) (ii) and integrate by parts.

Combining (7.4) with the inequalities (13.17) of Chapter 1, we get the following:

(7.5) T home. Under the hypotheses of (7' 1), the function

N(x) = sup I h(x, p)
P

8ati8fie8 the inequalltie8

IfI'dx
A !! I

fN(x)dx<AW(fIfIdx)dz (0<a< 1), (7.6)

f N(x)dz<A f !* If I log+If I dz+A,

where the constants depend only on the indice8 8hown explicitly, and on K and K!.

It is useful to note that A, remains bounded as
We note some special functions X. The Poisson kernel P(p, t) is one; the first in-

equality (7.2) is familiar, and the second follows from it since tdPfdt 4 0 and

P(p,±n)=0(1).
The Fejbr kernel K (t) satisfies the first inequality but not the second. The same

holds for the kernel K'(t), 0 < 8 < 1, which, in addition, is not of constant sign if 8 < 1.
The kernel Kn(t) can, however, be majorized by a function satisfying (7.2), namely,

Kn(t) I < (1 +'n I)t 1),+, for n 3 1, 1 t 1 < n, (7.7)
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where c(8) depends on 8 only (0 < 8 < 1). For let H,(t) be the expression on the right.
It exceeds at least one of 2-0-1 c(8) n and c(8)/28+1 n81118+1. Hence, by Chapter III, (5.5),
it exceeds I K.4(t) I, provided thatc(8) is large enough. It is easy to we that H,.(t) satisfies
the first inequality (7-2), from which the second follows since I tH,,(t) I <(l +d)H (t).

Thus:

(7-8) THEox$M. The inequalities (7.6) hold if N(x) is one of the functions

supIf(P,x)l,
p<1 n>1

The constants here depend again only on the indices shown explicitly and, in the second
case, also on 8.$

Let C = pets. For any 0 < o < 1, let i2, denote the open domain bounded by the two
tangents from C =1 to the circle I C I =a-, and by the more distant are of the circle
between the points of contact. By S2,(x) we mean the domain Q, rotated around the
origin by an angle x. If f(p, 8) is the Poisson integral off, we set

N(x) = N,j(x) = sup I f(p, 8) I. (7-9)
{ a tlo(z)

Clearly, N is an increasing function of

(7.10) THEo$sM. The function N(x) in (7-9) satisfies the inequalities (7.6), where
the constants will also depend on o-.

Fix x, and let C = pets, p = p eue-). For C e a,(x) we have

f(p'0)= J,f(x + I) x(' p) dl, where X(t,p)=I P(p,t+x-0).

The expression X(t, p) here depends on the variable t and on the parameter p which is
a point of 52,. That (7-2) (i) holds is obvious. The left-hand side of (7.2) (ii), with
9=x-0, P'=dP/dt, is

1f* tP'(p, t + f) dt < . f' }n I sin it P'(p, t +) dt

= * Isin }(t-g)P'(p,t)Id<+5,1 tP'(P,t)Idl+il9l f l
P'(P,t)Idt.

The penultimate integral is, as we know, bounded. The last term is

-I9Ijo&P(P,c)dt<lIp=l1-pI

Considering separately the cases p > o and p < o we we that the last expression
does not exceed a constant depending on u only. This proves (7-2) (ii) and so also the
theorem.

The most important special case of (7.10) is o = 0, when S2, degenerates into a radius
of the unit circle and (7.10) reduces to (7.8).

Results of this section can be extended to Fourier-Stieltjes series, and the generali-
zations do not require new ideas. For simplicity we confine our attention to
Theorem (7.8).

t The conclusion holds actually for P %;P It is enough, for example, to replace n by n + 1 on the
right of (7.7) and the inequality will hold for n> 0. The point in clearly without importance.

t The result holds for 8> 1. This follows from the fact, easy to verify (see Chapter III, (1.10)(u))
that N(x)=Ni(x) is a non-increasing function of it for Q> -1.
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(7.11) T noaeu. Let o and f(r,x) be the (C, 1) and Abel means of an S[dF], and
let N(x) be one of the functions of Theorem (7.8). Then

9V

r

l [N]<Ca o dF(x) (0<a<1), (7.12)

and fo*1f(r,x)-F'(x)j°dx-)-0 (O<a<1) (7.13)

Let 0 < R < 1, NR(x) = max jf (r, x) 1. By (7.8) and the last inequalityin theorem (6.6),
r<R

r
IRa[NR(x)] <_ C.

1 we obtain (7.12) for Abel means. By considering the (C, 1) means
off (R, x) and making R -- 1 we prove (7.12) in the remaining case.

The relations (7.13) follow from the fact that I on(x) - F'(z) la and I fir, z) - F'(x) la
tend to 0 almost everywhere (see Chapter III, (7.2) and § 8) and are majorized by
integrable functions.

8. Parseval's formula
Let f(x) and g(x) be periodic and of class L'. If their coefficients are respectively

c, and c,, we have the Parseval formula (Chapter II, (1.13))

1 f wfgdx = E c,c ,> (8.1)TV ,__
or, what is the same thing,

1

fgdz= E c,c,. (&2)2n o

Both series on the right here converge absolutely. If f and g are real-valued, and if
f - ;]ao + E(a, cos vx + b, sin vx), g - jao + E(a, cos vx + b; sin vx), we have

1

a.fgdx=
}aoao+ E (a,a:+b,b,) (8'3),_i

The above formulae hold in other cases besides the one in which f e L', g e L'. Two
classes K and Kl of functions will be called complementary, if (8.1) holds for every
f E K, g E K, in the sense that the series on the right is summable by some method of
summation. It will appear that the Fourier series of functions belonging to comple-
mentary classes have in many cases the same or analogous properties; and the Parseval
formula (8.1), in which f and g enter symmetrically, is the means for discovering these
related properties. The formula is obvious (by termwise integration) if f is a trigono-
metric polynomial and g any integrable function.

Let .. ., u_1, µo,,ul, ... be a two-way infinite sequence of numbers. Suppose that along
with c, c, the numbers c,µ c,/,u_, are also Fourier coefficients, say of functions f', g,,
and that Parseval's formula for f' and gs is valid. Then (8.1) gives

fo

29 2

fgdx= (8'4)

The number µ_, is necessarily distinct from 0 if c,* 0, but if c,= 0 the value ascribed to
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c;/u_, has no influence upon the result, and for the sake of simplicity we may take it
equal to 0 even if u_, = 0.

Suppose, forexample, that co = 0, and that µ = iv foreach v. Then f * =f' and g* 0,
where 0 is the indefinite integral of g, and is in our case a periodic function. Thus

ffudx= - J *f'Gdz, (8'5)

a formula which, of course, may also be obtained by integration by parts. (Less trivial
is the analogue of (8.5) for fractional derivatives and integrals; see Chapter XII, §8.)
If p, = - i sign v, then f * -f, g* = g, and, formally,

1 *

27r c
fgdz=co co+

1 'fgdx.
(8.6)

(8.7) THEOREM. The following are pairs of complementary classes: (i) L' and If
(r > 1) ; (ii) B and L. (iii) Lm and Lam, if 0 and `Pare complementary functions in the sense
of Young; (iv) C and S. In all these cases the series in (8.1) are 8ummable (C, 1).

Part (iv) here is to be understood in the sense that if c, are the ooeflicients of an
S[f], and e;, the coefficients of an S[dG], we have (8-2) with fg replaced by fd(.
Part (ii) is a limiting case (r=oo) of (i).

Let oA(z) be the (C, 1) means of S[f], r,, the (symmetric) (C, 1) means of the series
in (8- 1), and A,, the difference between the integral in (8.1) and v, . Then

and, by Holder's inequality,

1 o
An=2rr (f-c,.)gdx, (8.8)

2n I A. (4

Hence An-)- Oas n-,co(of. (5-14)), and (i) follows. The argument holds for r = I (using
(5-5)), which proves (ii). To prove (iii ),which generalizes (i), we apply Young's inequality
(Chapter I, (9.1)) to 16:

2nIA.1/16-< WOU If-Tn }]+V[TO IgI}]'

By virtue of (5.14), we get lim sup I A. I -< 8rr19''k[`Y{} I g )]. Let g=g'+g', where
g' is a trigonometric polynomial and D'l[`Y{} jg' (}] <e. (By (5.14) we may take
g'= g) with m sufficiently large.) Substituting g' and g' for g in (8.8) we find
expressions A,, and An such that An = A,, + An. Since g' is only a polynomial, A;, - 0.
On the other hand,

lim sup I A,, I < 8n-1$t[`Y(} I g' )] < 8n-le.

Thus urn sup I A. I < 8n-le, so that A. -+ 0.
In (iv), g(x) is replaced by dO(x) in (8.1) and f is continuous. Then 21r I A. I does not

exceed max I f(x) - o,,(x) I multiplied by the total variation of 0 over (0, 21r). Thus
k -, 0.

Let g(x) be the characteristic function of a set E and f (x) an integrable function.
Parseval's formulae (8.1) and (8.3) can then be writtenfJf 4ao E + (a, cos vx + b,sin vx) dx.

._-.o E ._1 S
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Hence

(8-9) TnEoasx. If S[f] is integrated termwise over any measurable set E, the resulting

aeries is summable (C, 1) to sum f fdx.
s

Applying (8.1) to the functions f (x - t) and g(t) of the variable t, we find that in each
of the cases listed in (8-7) we

ff(,
have

1 *-t)g(t)dt= c,c;ei-, (8.10)
2n P-0

wh ere the series on the right is uniformly summable (C, 1). Moreover:

(8.11) Taaosnx. Given any pair of integrable functions f, g, the formula (8.10) holds,
in the (C,1) sense, almost everywhere in x.

The proof follows from the fact that the left-hand side h(x) of (8.10) is an integrable
function, and that the series on the right is S[h] (Chapter II, (1-5)).

Let us substitute g(z) a-4- for g(x) in (8- 1), and let c f, be the coefficients of g(x) e't"=.
Since c_, = cx_ we find 1 +_ l fge-1-dx= z crew-r (8.12)
Thus: 2n o .-

(8.13) Tasoaax. The Fourier series of the product of the functions f e Le, g c L r
(q) and `V being complementary functions in the sense of Young) is obtained by the formal
multiplication of S[f] and S[g] by Laurent's rule. The series (8-12) defining the co-
ef ciente of fg are summable (C, 1) . The result holds if f e B, g E L.

It is obvious that each of the inequalities E I c, I < oo, E f c,' I < oo implies the absolute
convergence of the series in (8-12). If both inequalities hold, S[ fg J converges absolutely.

Let f (x) be continuous and G(x) of bounded variation. If c c, are the coefficients
of S[f], S[dG], we have the following analogue of (8-12):

1 +m-i- fdG= c(8.14)
2n o ,__m

In the results above we may replace summability (C, 1) by (C, a), a > 0. The problem
of replacing sumniability (C, a) by ordinary convergence is more delicate. Going over
the proofs of parts (i) and (ii) of (8.7), we see that we may replace summability (C, 1)
there by convergence provided T2,[ f - a = f). In Chapter VII, § 6,
we shall see that this in fact happens if f e U, r > 1 (though not for r= 1; see Chapter
V, (1.12)). Thus, at least in (8.7) (i), the Parseval series converges. In particular, if
f e L', g E L" r > 1, we have convergence in (8-12). The proof of the following theorem
is much easier:

(8.15) THEOREM. If f is integrable and g of bounded variation, the series in (8-1)
converges.

Let d be the difference between the integral and the nth partial sum of the series
in (8.1). Then

I3,.I=E2 f; [g(x)-S,.(x;g)]f(x)dx _fT7r
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Since the Sn[g] are uniformly bounded and tend to g outside a denumerable set,
the last integrand is majorized by an integrable function and tends to 0 almost
everywhere. Thus Sn -* 0.

From (8.15) we obtain:

(8.16) THaoREM. If f is integrable and periodic, (a,f) is a finite interval, and g(x)
any function of bounded variation in (a, f), not necessarily periodic, then

f "fgdx = E c.f g et''; dx. (8.17)
a ,__m a

Thus Fourier series can be integrated term by term after multiplication by any
function of bounded variation. If fl-a=2n this is nothing but (8- 1), and the case
f - a < 2n may be included by setting g(x) = 0 in 8 < x < a + 2n; in the general case we
break up (a, f) into a finite number of intervals of length not exceeding 2n.

The last result can be extended to the case of an infinite interval. Without loss of
generality we may take (a, f) = ( - oo, +oo). We have in fact

(8.18) THaowcm. The formula

f fgdx c,, f
'

g(x) e2 dx (8.19)

holds, and the series on the right converges for any integrable and periodic f, provided that
g(x) is (i) integrable, and (ii) of bounded variation, over (- oo, + oo).

Let O(x) _ g(x + 2k7r). If the series converges at some point, it converges uniformly

and its sum is of bounded variation over (0, 2n) (Chapter II, § 13). On the other
hand, since

E f s, I g(x + 2kn) I dx = f + I g(x) I dx < oo,
k--- 0

the series defining 0(x) certainly has points of convergence.
Let c, be the Fourier coefficients of O(x). We may replace g by 0 in (8.1). Since a

uniformly convergent series can be integrated term by term over (0, 2n) after
multiplication by any integrable function, and since f is periodic, it follows from the
definition of 0 that

fo, fadx =f+
fgdx, f.

ff 0(x) a-r,..z dx = f +. g(x) a-1-dx,
o

and Parseval's formula for f and 0 takes the form (8.19).
The hypothesis that g is integrable over (-oo, +oo) is of course essential for the

validity of (8.19). However, if co=0, condition (i) in may be replaced by the
condition (i') g(z) - 0 a s I x I -+oo.

For let g" (x) = g(2k7r) for 2kir < x < 2(k + 1) rr, k = 0, ± 1, ..., and let vk be the total
variation of g(x) over 2k7r < x < 2(k + 1) rr. The function g*(x) is of bounded variation
over (-co, +oo). Since y(x)=g(x)-g'(x) does not exceed vk in absolute value for
2kn < x < 2(k + 1) ir, y(x) is both integrable and of bounded variation over (- oo, +oo).
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Apply (8.19) to f and y. Since the integral of f over a period is zero and g(x) -> 0 as
x oo, it is easy to verify that

f9dx, fyedz=fge_wzx
for v = ± 1, ± 2, ..., and the formula (8.19) for f and y reduces to that for f and g.

Equations (8.1) and (8.10) can be extended to the case of several factors. Consider
a finite set of functions f, f1, f .. , with Fourier coefficients c,,, c;,, c;, .. , respectively.
Multiplying formally S[f S[ f,], S[ f,], ..., and integrating the result over (0, 2nr), we get

1 s*

2rr o
ffifs ... dt

a+e+ ..._o
A crc,, ... , (8.20)

a formula which in the case of two functions reduces to (8.1). The argument is valid if
the series E I c',1, E I e,' 1, ... all converge. (Nothing is assumed about E I c,i I.) For let
F=f1f,.... Then where y"=Ec',c;... fore+v+...=n.
The series for y, converges absolutely, and E I y" I < oo. The left-hand side of (8.20)
is thus 1 *

fFdt= : c,,y"=
2n o A+n-o x+r+v+...-o

and the series here are absolutely convergent. In particular, (8.20) holds if all the
functions f, f1, f ... , except possibly one, are trigonometric polynomials.

Restricting ourselves to three functions we also have the following result:

(8.21) THEOREM. Let x(t) - Ex,, e", y(t) _ Ey etiv0, h(t) - Eh,, a"', and let x e L', Y E L',
he B. Then 1 2*

2n I
x(t)y(t)h(t)dt= x,y,h,,, (8.22)

o N+.-o
L M
E z x,,y"h-A-,.provided the sum on the right is treated as urn

L, M-.'c x--L p--M

Denote the last sum by SL M, and let XL(t) and YM(t) denote the partial sums of
S[x] and S[y]. The integral in (8.22) with x, y replaced by XL, Y" becomes 8L,M Let
H = sup I h(t) 1. Then

fXJhdt_fXLY;,hdH{fIX-XLIYI&+fXLUY-YMIdt)
I 5H( R,[x-XL]9) [y1 +92[XL)TZ:[y-YM])-+0

as L, M --). oo. This proves (8.21).
If y(t) = x(t) - Me-. el"', (8

f

22) gives

1

2n nx I x(t)1 1 h(t) dt A E xAxf hr a, (8'23)
r- m

a formula with applications in the theory of quadratic forms.

(8.24) THEOREM. With the notation of (8.21), suppose that x(t) E L', y(t) E L2, A(t) E L;
then 1

*o*x(u)y(v)h(-u-v)dudv= E4n' o w--m

where the series on the right converges absolutely.
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For the proof, we apply (8.1) to the product of x(u) and yl(u) - 2n ry(v)h(- u - v) dv.

The latter function belongs to L= and has coefficients y_-n h _ (Chapter II, (1 15), (1-5)).

9. Linear operations
We are now going to prove a number of results on linear operations which will later

find application to trigonometric series.
We consider a set E of arbitrary elements x, y, z, .... It is often convenient to call

E a space, and its elements x, y, z, ... points. E will be called a metric apace if to every
pair of points x, y of E corresponds a non-negative number d(x, y), called the distance
between the points x and y, satisfying the following conditions:

(i) d(x, y) =d(y, x);
(ii) d(x, z) 5 d(x, y) + d(y, z) (triangle inequality);

(iii) d(x, y) = 0 if and only if x = y.
We say that a sequence {xn) of points of E tends to limit x, x E E, and write lim x,= x,

orzn->x, if d(x,xn)->0as n-+co.
Once distance has been introduced, there are various associated notions familiar

from the theory of Euclidean spaces. First, by the sphere with centre xe and radius p
we mean the set of points x c E such that d(x, xe) 5 p; this sphere will be denoted by
S(xe, p). This notion enables us, in turn, to introduce various kinds of point sets, such
as open, closed, non-dense, dense, everywhere dense, the definitions being the same as
in Euclidean spaces. Furthermore, we may consider sets of the first category, i.e. de-
numerable sums of non-dense Mete, and sets of the second category, i.e. sets which are
not of the first category (cf. Chapter 1, § 12).

A metric space E is said to be complete, if for any sequence of points xn such that
d(xm, xn) - * 0 as m, n -* oo there is a point x such that d(x,n, x) --* 0. The inequality
d(x, x') 5 d(x, xm) +d(xm, x') shows that such a point x must be unique. It is a very
important fact that a complete metric space E is of the second category, i.e. is not a sum of
a sequence of sets non-dense in E. The proof of this in the general case is essentially
the same as in the case (discussed in Chapter I, § 12) when E is a one-dimensional
Euclidean space.

E is called separable if there is a denumerable set dense in E.
A space E, not necessarily metric, will be called linear if the following conditions

are satisfied:
(i) there is a commutative and associative operation called addition, denoted by +

and applicable to any two points x, y of E; whenever x and y belong to E, so does x + y;
(ii) there is a unique element o (the null element) such that x +o =x for every x 4E E;

(iii) there is an operation called multiplication, applicable to every x E E and every
scalart a, and denoted by'.'. Instead of a. x we often write ax. Multiplication is as-
sumed to have the properties

1.x=x, 9.x=o, a.xEE if xeE,
and further to be distributive in a and in x, and associative in a. The latter means
that fl.(a.x)_fa.x.

The formula x - y = x + (-1) y defines subtraction of elements of E.
t The only fields of scalars we use are the complex numbers or the real numbers.
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Suppose that to every element x of a linear space E corresponds a unique non-
negative number 11 x 11 called the norm of x satisfying the conditions

11x+y11 <-11x0+11y8, 11cxx11=1a1llxll,

11x11=0 if and only ifz=o.
If the distance between any two points x, y of our linear space E is defined by the

formula d(z, y) =11 x - y 1,

this distance satisfies conditions (i), (ii), (iii) imposed above, and E becomes a noismed
linear space. A complete normed linear space is usually called a Banach apace.

We shall now give a few examples of spaces- In each case the points of E will be
either numbers or functions, and addition and multiplication have their usual inter-
pretation. No confusion will arise if the null point o is denoted by 0.

(a) Let E be the set of all complex (or only all real) numbers. If 11 x 11=1 x 1, we have
a Banach space.

(b) Let E be the set C of all continuous functions x(t) defined in a fixed interval
(a, b), and let 11 x sup 1 x(t)1 for t E (a, b). Then E is a Banach space. The relation
x - z means that converges uniformly to x(t).

(c) Let E be the set of all complex-valued functions x(t) defined and essentially
bounded in (a, b), and let 11 z 11 be the essential upper bound of 1 x(t)1 in (a, b) (of. Chapter
1, §9). E is again a Banach space, and x.-+x means that x.(1) converges to x(t)
uniformly outside a set of measure 0.

(d) Let p 1, and let E be the set of all complex-valued functions x(t) a L3'(a, b).
Let 11zd=Iz11,=J,[x;a,b]
The space is linear, normed and complete (cf. Chapter I (9.11), (11.1)). For p = 00, we
obtain case (c).

(e) Let 1 _< p < co, and let E be the set of all sequences x = {xk} of complex numbers
such that Zlzklp<ao. Let Iz11=11x11,=(ZIxk1p)up-
The space is linear, normed, and (as is easily seen) complete. It is often denoted by D'.

(f) Let E be the set of all bounded sequences z = {zk} of complex numbers. If we
set 11 z j1 = sup 1 xk 1, we get a Banach apace. It is the limiting case p = oo of l'.

k

(g) Let E be the set of all convergent sequences z = (xk) of complex numbers, and
once again let 11 x 11= sup I zk 1. The set E (a subset of the preceding E) is a normed linear
space. It is also complete. For suppose that x'^ = {xr, xs"', ... } e E for m = 1, 2, ... , and
that 11 x'° - x" 11-> 0 as m, n --> co. This is equivalent to saying that 1 xk - xk 1-> 0 as
m, n --> co, uniformly ink. This implies the existence of an x = (zk} such that 14' - xk y 0
as m i co, uniformly in k. We shall show that (i) (xk} is convergent, (ii) 11 x- - x 0.

To prove (i) observe that

-ztl.I xk-Xll -<1 xk-x4l+l xk-v"l+1x'

The first and third terms on the right are less than a for m large enough, uniformly in
k and 1. Having fixed such a large m, we make the second term less than a by taking
k and l large. Hence 1 xk - x, 1 < 3e for k, l large, and so {xk } is convergent. Assertion
(ii) follows from the fact, established above, that 1 xk - xk 1-> 0 as rm -r co, uniformly
in k.
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(h) Let p> 1, and let H. be the class of all functions x(t) of period 2,r, of class Lv,
with S[x] of power series type. If II x Ttv[x; 0, 21r], the space becomes a Banach
space.

(1) Let X be the set of all characteristic functions in (a, b), that is, of functions x(t)
taking almost everywhere in (a, b) the values 0 and 1 only. The set X is not a linear
space, since 2x need not be a characteristic function if x is one. However, if for x e X,
y e X we set d(x, y) = f't[x - y; a, b], X becomes a complete metric space.

Let us consider in addition to the space E another space U. If to every x E E corre-
sponds a uniquely determined point u = u(x) in U, we say that u(x) is a functional
operation (or transformation) defined in E. If the spaces E and U are linear, and if for
any numbers A, and A, we have

u(A,x, +.1,x,) = A, u(x,) + A, u(z,),

the operation u(x) is called linear. If both E and U are metric, and if whenever
xn -- x we have u(xn) -> u(x), we say that u is continuous at the point x. If a linear
operation is continuous at some point, it is continuous at any other point, i.e. is
continuous everywhere.

(9.1) THEOREM. A necessary and sufficient condition for a linear operation u(x)
to be continuous in E is the existence of a finite number M such that

IIu(x)II_< MIIxII foreveryxeE. (9.2)

The sufficiency of the condition is obvious. To prove its necessity, suppose that the
ratio II u(x) II / II z II is unbounded. Then there is a sequence of points xn, xn * 0, such
that II u(xn) II > n 11 xn II. Multiplying x by a suitable constant we may assume that
II xn II = 1/n. Thus x -* 0, while the preceding inequality gives II u(x,) II > 1, contra-
dicting the continuity of u at x = 0.

The norms on the two sides of (9.2) may have different meanings, since the spaces
E and U may be different.

A linear operation which is continuous is usually called bounded.
If U is the space of all complex, or all real, numbers and U u(x) II = u(x) 1, the

linear operation u is called a functional.
The smallest number M satisfying (9.2) for all z E E will be called the norm of the

operation and often denoted by M . t

(9.3) THEOREM. Let E be a nonmed linear space and L a linear subspace of E dense
in E. Let u = u(z) be a linear operation defined for x E L, taking values from a Banach
space U and satisfying an inequality

l u(x) II _<M II x ll (xe L). (9.4)

Then u(x) can be uniquely extended as a linear operation to the whole of E without
increasing the M in (9-4).

For let x# be a point of E, {xn} a sequence of points from L such that II x - X. II --* 0,

t One often denotes the norm of the operation u(z) by II u p. This terminology and notation-very
natural in a systematic study of the subject-arise from the fact that the not of all linear operations
u (z) defined on E may be considered as anew space, to whose points u we assigned norms II u II. Of course,
11 u 11 and 11 u(z) 11 mean different things.
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and u = u(xn ) , n= 1 , 2, .... We have I I x,n - xn II + 0 and so, by (9.4), II u,n - nn I I -).0.
The completeness of U implies the existence of a u* = lim un and we set u, = u(x* ).

The number u* is independent of the choice of {xn}->x*. For if we take another
sequence {x;,} -> x* and set u; = lim the joint sequence {x;,} = x1, X"' x2, xy, ...
will also converge to x* and the number u;, = Jim u(z;) will be equal to both u* and u;.
Hence u* = u' .

The validity of (9.4) at the point xn, together with the relations II X. 11 II x* II,
11 un II -> II u* II (consequences of zn -> x un - U*), implies its validity at x*. Similarly,
the validity of u(az + fly) = au(x) + flu(y)

at the points x, y of L is preserved in E. This shows that the extended operation satisfies
(9.4) and is additive. The inequality (9-4) implies the continuity of u and there is at
most one continuous extension of u(x) from a set dense in E.

The following theorem is basic for the theory of linear operations:

(9.5) THEOREM OF BANAOH-STEINHAUS. Let {un(x)} be a sequence of bounded linear
opera.tone defined in a Banach space E, and let Mn,, be the norm of the operation un.
If sup II Un(x) II is finite for every point x belonging to a set F of the second category
in E (in particular if it is finite for every zeE), then the sequence IL is bounded. In
other words, there is a constant M such that

IIun(x)II<MIIxII for xcEandn=l,2,....
The proof is based on two lemmas.

(9.6) LEnmIA. Let {un(x)} be a sequence of bounded linear operations defined in a normed
linear apace E. If F is the set of points x at which sup II un(x) II < oo, then F = F1 +F,+...,
where the sets F. are closed and the sequence (II un(x) II } is uniformly bounded on each of them.

For let Fmn be the set of points x such that II un,(x) II c n. The operations u,n being
continuous, the sets F,nn are closed. So are the products Fn = F1, Fan F"'... . We note
that II u,n(x) II 6 n for x e Fn, m = 1, 2, ..., and that F = F1 + F2 + ... .

(9-7) LEMMA. If the set F in Lemma (9-6) is of the second category, then there is a
sphere S(xo, p), p > 0, and a number K such that II un,(x) II 5 K for x e S(xo, p) and m = 1,

For since F = F1 + F2 + ... and F is of the second category, at least one of the sets
F1, Fs, ... , say F., is not non-dense. Thus there is a sphere S(xo, p) in which Fg is dense.
Since FK is closed, FK contains S(xo, p) and consequently II u,,(x) II < K for x e S(xo, p)
and m=1,2,....

Returning to the proof of (9- 5), let S(xo, p) be the sphere of (9.7). Every xe S(0, p)
can be written in the form (xo + x) - xo = x1- x0, say, where x1 a S(xo, p). Hence
Ii un(x) II II un(x1) I + II un(xo) II < 2K for n 1, 2,.... It follows that

II II II un(x) II -< M II X II for all x and n.
The theorem may also be stated as follows: If the sequence {II un(x) II} is unbounded

at some point, the set of points x at which the sequence is bounded is of the first category in E.
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We shall apply (9.5) to the functionals

u(x) = Jbx(t) y(t) dt, (9.8)
a

where the function x = x(t) is the variable point of a Banach space E, and y = y(t) is a
fixed function such that the product x(t) y(t) is integrable over (a, b) for any xE E. For
x(t) E L' we define 11 x 11 as 9R,[x; a, b].

(9.9) LEMMA. (i) If the integral (9.8) exists for every bounded, or even only for every
bounded and continuous function x(t), then y e L(a, b).

(ii) Conversely, if (9.8) exists for every then the function y is essentially
bounded.

(iii) If (9.8) exists for every x E L'(a, b), r > 1, then y E lr(a, b), with r'= r/(r - 1).

Part (i) is trivial (take x(t) = 1). For (ii), let yn(t) be the function y(t) truncated by n
(that is, equal to y(t) wherever the latter function is absolutely not greater than n,
and equal to 0 elsewhere). The existence of (9.8) implies that of

b

un(x) = x(t) yn(t) dt (n=1,2,...) (9.10)
a

for every x c L(a, b). These formulae define a sequence of functionals in L(a, b), and
we easily find that .3 is the essential upper bound of I yn(t) 1. The existence of (9.8)
implies that un(x) converges for each xc L(a, b). Thus, by (9.5), M,, = 0(1), that is, y(t)
is essentially bounded. For (iii), let yn and un(x) have the same meaning as before. Then
un(x) is a functional in L'(a, b) with norm M,, =9R,[yn; a, b] (cf. Chapter I, (9.14)).
Thus, by (9.5), 9R,,[yn] = O(1), that is, 911,.[y] < oo.

(9.11) THEOREM. (i) If the sequence

un(x) = f
a

dt (9.12)

is bounded for every bounded, or even only merely for every bounded and continuous,
function x(t), t E (a, b), then 9R[yn; a, b] =O(1).

(ii) If un(x) is bounded for every x e L(a, b), then the essential upper bounds of the I yn
are bounded.

(iii) If un(x) is bounded for every xE L'(a,b), I <r<oo, then 9R,.[yn; a, b]=O(1).

For (i), we observe that by (9.9) (i) each of the functions yn is integrable, so that
un (x) is a functional in the space B or the space C. Taking x =sign yn, we see that the
norm M.,, in B equals 1R[yn], and an application of (9.5) gives 9R[yn] =O(1). The same
proof holds in the case of x E C, provided we can show that M,,, = 9R[yn] also in this
case. The latter is, however, obvious, since the function sign yn(t) is almost everywhere
the limit of a convergent sequence of functions continuous and not exceeding I in
absolute value.

In case (ii) we proceed similarly: each of the functions yn is essentially bounded
(cf. (9.9) (ii)), and M., is the essential upper bound of I yn 1.

Finally, in case (iii) each yn belongs to I/ (a, b), un is a functional in L', and
(Chapter I, (9.14)).
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(9.13) THEOREM. (i) Suppose that yn(t) c L(a, b) for n = 1, 2, ... and that the sequence

(9.12) converges for every bounded x(t). Then the functions Yn(t) =1 yn(u) du are uniformly
a

absolutely continuous.
(ii) The conclusion holds if (9.12) converges for those x(t) which are characteristic

functions of measurable sets.
It is enough to prove (ii), and the proof will be similar to that of (9.5).

We show that f
z

yn dt is small with l E 1, uniformly inn. Let X be the set of all charac-

teristic functions x(t) in (a, b), and consider the integral (9.12), which we denote by
In(x). By hypothesis, II(x) converges for every x E X. We have to show that I II(z) I < e
for all n, if 11 x II = 9R[x; a, b] < 8 = 8(e).

Let I,,(x) = I ,(x) - I,(x) and let X, be the set of points x e X such that I I,,(x) I < ic
for all t, v 3 n. Then X = EX,,. The sets X. are closed, and since X, being a complete
metric space, is not of the first category, one of the Xn, say, X.., contains a sphere
S(xo, 8'). We now observe that X, though not a linear space, has a property which
may be used instead of linearity: if x is any point of S(0, 8'), we can find two points
x, and x2 in S(xo, 8') such that x = xl - x,. It is enough to set

x1(t) = x(t) + xu(t) [ 1 - x(t)], x2(t) = xc(t) [ 1- x(t)].

Clearly I I,,,,(x) I = 11w,(x1) - I,,.,.(x2) I < it for 11 z 11 <8', u > no, v n0.

It follows that I 1',(x) - Ine(x) I = I Ih n.(x) I < je for 11 x II < 8', µ no. Since Ins (z) is
small with 11 x II , there is a 8' > 0 such that I I,,(x) I < e for g x II < 8' and it 3 na. Finally,
since I1(z), I&)__ In. _1(x) are small with II x 11, there is a 8 such that 14(x) I <e for
x11 <8andalln.
We shall occasionally need the following analogue of (9.9) for series:

(9.14) THEOREM. Let a1 +a2+ ... be a fixed series. Then

(i) if Eakbk (9.15)

converges for every bounded {bk}, or even for every {bk} tending to 0, we have E I ak I < oo;
(ii) if (9.15) converges for every convergent Ebk, the sequence {ak} is of bounded varia-

tion;
(iii) if (9.15) converges for every {bk) a jr, 1 < r < oo, we have {ak} E 1".

(i) If Y. I ak = co, then (9.15) diverges for the bounded sequence bn = sign an, or
even for the convergent sequence bn = en sign an, where {en} is a positive sequence
tending to 0 sufficiently slowly.

(ii) It is not difficult to see that the hypotheses of (ii) imply that an= 0(l)- Let
Ebx be any series convergent to 0 and let tk = b1 + b* + ... + bk. Using summation by

m
parts we can write the convergent series (9.15) in the form Z tk(ak - ak+1). The latter

1

series converges for every sequence {tk} tending to 0. Hence, by (i), E I ak - ak+1 I < 00
(see also Chapter I, (2-4)).

(iii) For a fixed n, the sum 8, = akbk is a linear functional in the space l'of sequences

{bk}, and has norm N. = (I a, I' + + I an 1")W. By (9.5), the hypothesis that sn = O(1)
for every {bk} a l' implies N. = 0(1), that is, {an} E 1".
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Consider a doubly infinite matrix 41= {a } ..,._o , . defining a method of summation of
sequences (Chapter III, § 1). For every sequence x = (x5) of numbers we set

y.=a.oxs+a.,x,+...+a.rxi+.... (9.16)

Suppose x5-.e; then y -8, provided 41 satisfies the three conditions (i), (ii), (iii) of regularity.
We have already proved that conditions (i) and (iii) are also necessary, and we are now going to
prove the necessity of (ii).

We slightly generalize the notion of summability 91 by assuming that the series (9-16) converge
only for n sufficiently large, say for n >, no, where no depends on (xk). We shall show that, if for
every convergent sequence (xl,) the series (9.16) converge for all n sufficiently large, and if
(we do not require the existence of lim y., still less the relation lim y,, = lim x5), then the numbers

N.=Ia..I+la.1I+...+la.,I+...
are finite and bounded for n sufficiently large. (If the matrix 41 is row-finite, the finiteness of all the
N. is obvious.)

Let E be the set of all convergent sequences x = {xr}. It is a Banach space (see example (g) on
p. 163). Write E = E1 + E,+... + E,,, + ... ,where E,,, is the set of all the convergent sequences X such
that the series (9-16) converge for all n 3 m. (If 91 is row-finite, then E1= Eo =... = E.) Since E
is not of the first category, some E,,,, is not of the first category. For every x = {x5} a E.., the
series (9-16) converge if n 3 mo. This means that

y..I=a.oxe+a.1x1+... +a.ixt
tends to a limit as j -, oo, for fixed n mo. Here y.., is a linear functional in E. By (9.6), the norms
of that is, the numbers I l + I a.l i +... + I a j 1, are bounded as j - oo, which means that
the numbers N are finite for n > mo. It remains to show that the N. are bounded. The finiteness
of N. implies that the y,,, n no, in (9.16) are linear functionala in E, and, by hypothesis, y = 0 (1)
for each xcE. It is therefore enough to apply (9-5) once more.

We conclude this section by considering an application of Fourier series to a class
of linear transformations of the space 1' of sequences x = {xn) two-way infinite and with+ -1 a

x II = (E I xn I")' < oo. Series E will be understood here to mean E + E.

Z
0

Let amn be a two-way infinite matrix of numbers, with m, n ranging from - co to
+oo. With every xel$ we associate the point y={ym}, where

ym=.arenxn (m=0, ± 1, ... ).

By (9-14), y is defined for every x E 12 if and only if I amn I' < w for each m. In in-
n

vestigating whether or not y e 12, we shall confine our attention to a special case, namely
that of amn = am-n, where a = {an} is a two-way infinite sequence. This case is easily
treated by means of Fourier series. Thus let

ym=vam-nxn (m=0, ± 1, ...). (9-17)
n

If Fake{"5 is the Fourier series of a function a(t), we shall call a(t) the characteristic of
the transformation (9.17).

(9.18) THEOREM. (i) A necessary and sufficient condition that they defined by (9.17)
should satisfy y e 12 for every x E 11 is that the transformation should have a characteristic
which is an essentially bounded function. If M is the essential upper bound of I a(t) 1, then
II y II _< M II x II and M is the norm of the transformation.

(ii) Suppose that the transformation (9.17) has a characteristic a(t) EL2. A necessary
and sufficient condition that for every yell there is an xe1! satisfying (9.17) is that 1/a(t)
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should be essentially bounded. If l fa(t) is bounded, then the solution x is unique and is
given by the formula

xn°2:an-mym (n=0, ± 1, ...), (9.19)
fn

where ak are the Fourier coefficients of IJa(t).
We know that the condition II a II < oo is both necessary and sufficient for the trans-

formation (9.17) to be defined for all Z C12. If x(t) - Exk ei', a(t) - Eak eikt, then
1 2.

y,n=2n f and, by Parseval's formula,

Iiy112°2n
o

Ia(t)x(t)I2dt. (9.20)

If II y II is to be finite for every then a(t) must be essentially bounded (see (9.9)).
Assuming this, let M be the essential upper bound of I a(t) I. By (9.20), II y II _< M j( x II,
and M cannot be replaced by any smaller number, that is, M is the norm of the trans-
formation (9.17). This proves (i).

Passing to (ii), let y(l) - Eyk ei L2 be given. If (9.17) has a solution x = {xk} such
that x(t)-Fxkeid L', then

y(t) = a(t) x(t). (9'21)

Since y(t) a L2 is arbitrary, a(t) $ 0 almost everywhere, and there is at most one x = {xk}
satisfying (9.17). If x(t) = y(t) a -1(t) is to belong to L2 for every y(t) L', then 1/a(t)
must be essentially bounded. If the latter condition is satisfied, the point x = {xk}
defined by the formula y(t)a-1(t).Yxkeikt is the (unique) solution of (9.17) and is
given by (9.19). This proves (ii).

Linear transformations in 12 which preserve the norm and have inverses are called
unitary. As is seen from (9.21), the transformation (9.17) is unitary if and only if
a(t) I = 1 almost everywhere. In this case, l/a(t) =a(t), and (9.19) may be written

xn = Z am-nym (9.22)

Consider a product (i.e. a successive application) of two transformations of type
(9.17), having respectively characteristics a(t) and b(t). As is seen from (9.21), this
product is of the same type, with characteristic a(t) b(t).

If the characteristic a(t) depends on a parameter a in accordance with the formula

e1O),

where g(t) is a measurable function, then the transformations (9.17), which we shall
call T., form a group with the property

If a is real and ¢(t) purely imaginary, the transformations are unitary.
eint

Examples. (a) Suppose that a(t) = E' n = i(1r - t) in (0, 2n) (see Chapter I, (4.12)).

Then (9.17) may be written
xnym= , m_n

x
(9.23)

This transformation, which has norm 1r, may be considered as a discrete analogue of
the conjugate function. There exist y e 12 such that (9.17) has no solution x 1'.
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(b) If aa(t)=e'1(°4), (9.17) reduces to
sin ira xA

Y.
_

n ' a+m-n
if a is non-integral, and to Y. = - 1 xm+a

for a integral. We have here a group of unitary transformations.

10. Classes Lm
As before, let L,(a, b) denote the class of all functions f such that m(J f 1) is integrable

over (a, b). The class Lr, corresponding to (D(u) = ur, is the most important special case,
but occasionally quite natural problems lead to other classes. For example, the class
L log+ L of functions f such that f log+ J f I is integrable, is of importance in several
problems. This leads us to the question whether a class L, can be so modified as to give
a normed linear space.

First of all we have to define a norm x 11m, and if the definition is to be
useful, the finiteness of JI x 11 and the integrability of (V(I x(t) I) should be to a reasonable
extent equivalent. The idea (modelled on the case (D(u)=ur) of setting

IlxII =(I'-1[Jb4)(Ix1)dt],
a

where 0_1 is the function inverse to N, must be discarded. First of all, the condition
i1 ax 11 = I a 11 x 11 would not, in general, be satisfied. Further, if C(u) increases too
rapidly the integrability of 4)(I x 1) need not imply that of (b(2 I x ). For these reasons
we must proceed differently, and it turns out that a simple solution is possible if
simultaneously with 4) we consider another function `F such that the pair m, `Y is
complementary in the sense of Young (Chapter I, §9). We have shown on p. 25
that for any function 4)(u), u _> 0, which is non-negative, convex, vanishing at the
origin and such that 4)(u)/u -* oo with u, we can find such a `F. In the rest of this section
we suppose that 0 has all the properties just stated.

Consider the functions x(t), a < t < b, such that the product x(t) y(t) is integrable
over (a, b) for every y(t) E L,(a, b), and set

xii = (10.1)

the sup being with respect to all y with

Py=Jb11(1y1)d151.

a

The class of such x will be denoted by L. It is not obvious that 11 x 11 must be finite.
We prove this a little later; in the meanwhile, to avoid difficulty, we denote by Lm the
class of functions x(t), a < t < b, such that the norm 11 x 11, just defined is finite. Using
Young's inequality, we we that L, c 14. It is immediate that 14 is a normed linear
space. Classes 14 are often called Orlicz spaces.

We shall prove that Lm is a complete apace. Suppose that 11 x,, - x, 0 form, n -> oo,
so that 1I x,,, - x 11 < e for m, n > v = v(e). It follows that

l

b

f(X1._z)Ydte. (10.2)
a
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and so also Jix
b

,,,-x,, I I y I dt -<e, (10.3)

if p <_ 1, and m, n > v. Let a be such that (b - a)'V (a) = 1. Taking y(t) = a sign (x,,, -
we get from (10.2) that 9l[xm - x ; a, b] 5 c/a. Since c is arbitrary, there is a sequence
{xm, (t )) converging almost everywhere to a function x(t) (Chapter I, (11.1)), and (10.3)
shows that U[(x - y; a, b] 5 e if pv _< 1. Thus I' x - x 11 a for n > v, and the com-
pleteness of the space Lm follows.

We have tacitly assumed here that b - a < co, but the result holds if b - a = oc. In
fact, proceeding as before, we show that 9)2[xm- x,,; a', b'} 0 for any interval (a', b')
satisfying a < a'< Y< b. Thence we infer the existence of a subsequence of {xm(t)} con-
verging almost everywhere in (a, b), and the rest of the proof is unchanged. In what
follows, to shorten the exposition, we shall assume that b -a< oo. The results, how-
ever, are also valid for b - a = ac, as simple modifications of the proofs show.

We have already observed that if x E Lm, then x E Lm. More generally, if there is
a number 0 > 0 such that Ox E Lm, then x E L*m. Conversely, we show that, if x E Lm,
then there is a conetant 0 > 0 such that Ox E Le. More precisely,

(10.4) THEOREM. IfxEL*m, 11x1,*0,then

We begin by showing that
f

b

ID(I x{111 x11)dt<1. (10.5)
a

J
bxydt

I a

11x11, if py-< 1;

1 5 I z 11 py, if py > 1.
(10.6)

The first inequality is obvious. Suppose now that 1 and replace y by y/pv in the
integral on the left. Since '1'' is convex and `Y(0) =0, `l''(I y 1 /p,,) S `1'(I y I )/p,,, so that.

b

`1''(I yIlpr)dt 51,
b

pv II,axdtl II x

which is the second inequality (10.6). It follows that the integral in (10.6) does not
exceed 11 z 11 p;,, where pv = max (pv 1).

We shall now prove (10.5) for x bounded. Let 0=0'. For the special case
y = 0(1 x I III x 11) that of equality in Young's inequality (pp. 16, 25), we have

p'r
fb x

Jalxydt

We may suppose that the integral preceding p is not 0. From this it follows, first,
that (for the special y) p; > p,,, and so pv = 1, and then that

f(IxI/IIxll)dtb ,1.

In the general case, let x (t) be equal to x(t) wherever I x(t) I < n and equal to 0
elsewhere. Then (10.5) holds if the integrand on the left is b(I x 1/1i x,, 11), n being so
large that 11 x 11 * 0, hence also for 4D (I x 1111 x 11), and finally, making n -* oo, for

0(Ix1111x11).
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(10.7) THEOREM. (i) If the integral (9.8) exists for every x e L*m(a, b), then y e 14.(a, b).
(ii) If the sequence (9.12) i8 bounded for every x e Lm, then II y,, IIv= 0(1).

(iii) If the sequence (9.12) i8 bounded for every xEL. then there is a constant 0>0
such that R['Y(O I y" 1)] = 0(1).

b
(i) Let y" be the function y truncated by n, and let us consider the integral xy"dt.

a
Since each y", as a bounded function, belongs to L. and since

I U. (X) I < 11 X 110 PL.,

u. (x) is a functional in Lm. By hypothesis, {u"(x)} converges for every xe Lm, so that
there is a constant M such that 11 u"(x) II < M II x 11, for n =1, 2,.... Now take any z
such that lR['(I x 1)] < 1. Such an x belongs to 14 and has norm 11 x 11, < 2. But

b

since the inequality I f xy"dt < 2M is valid for every x with )Q[((I x 1)] < 1 we have
a

Ily"11,<2Mforn=1,2,..., and so also

11yII,<2M.

(ii) By virtue of (i), each y" belongs to 14. It follows from the inequality

Al

where A = A. is a positive constant so small that Ay" a Lq, that u"(x) is a functional in

Lm. Thus, by (9.5), 1 u"(x) I < M 11 x i1e, for n =1, 2,.... In particular, I

1. Thus

IIy"U,<2M for n=1,2,....
(iii) Suppose that z e Lm. Then x/11 x IIa a L,, and the sequence {u"(x)/JI z IIm) is

bounded for every z e Lm. By (ii), 11' y" IIr < N, say, for n =1, 2, ..., so that
b

5'1'(eIYnI)d*1 for 9=1/N.
a

This completes the proof of (10.7).
We can now dispose of the superfluous restriction in the definition of Lm, and show

that if f zydt exists for every y with 9[4'(1 y I )] < 1, then the norm 11 z 11 defined by
a

(10.1) is finite. Let x"(t) be the function x truncated by n. By hypothesis, the
b

sequence of integrals v,,(y) = f x"ydt converges for every y e Lm, for then

Jb1r(lyI/IIy11)dt1.
a

It follows, as in (i), that 11 z" llm = 0(1), that is, 11 x 11. < oo.
It is useful to note that (10.7) holds if we consider the class I4(E), where E is an

arbitrary set.
We have already observed that a necessary and sufficient condition that x(t) a 14

is the existence of a constant 9 > 0 such that Ox e Le. It follows that if there is a constant
C such that (2u) <CO(u) (10.8)

for u large enough, and if b - a < co, the classes Le and 14 are identical.
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A simple calculation shows that if '(u) = u', r > 1, then 11 x 11, = r 'w r11' ,[x],
so that, apart from a numerical constant factor, we have the same norm as in Example
(d) on p. 163.

We may define the norm of x in a somewhat different way. We fix a'(u) (0 < u < oo)
convex, non-decreasing, and satisfying 4)(0)=0 and (D(u)/u oo as u-soo. Let T(v)
be complementary to 1(u) in the sense of Young, and let c _ 0', y ='Y'. It will be
convenient to normalize (D by the condition

c1(1)+'Y(1)=1. (10.9)

This can be done, for example, by replacing 0(u) by c(ku), k being such that the area
of the rectangle with opposite vertices at (0, 0) and (k, 0(k)) is I (this area is a con-
tinuous function of k, and increases from 0 to oo with k); the new 1(u) is then the old
k-11D(ku).

Consider the class of all functions x(t), a < t < b, such that 1D(19 I x 1) is integrable over
(a, b) for some 0 > 0 (the normalization does not affect the class). We then haverb(1010)

a

for all large enough positive A. Let A0 be the lower bound of all A's satisfying (10.10);
AO is non-negative, and is 0 if and only if x =_ 0. We call Ao the norm of x, and denote it
by Nx or Ne x. Nx is non-negative, is 0 if and only if x = 0, and N(ax) =1 a I Nx for
every scalar a. We also have

N(x + y) _< Nx + Ny. (10.11)

For if A > Nx, u > Ny, then from (10.10) and the analogous inequality for I y I /,a we
obtain, using Jensen's inequality,

< 4)(1)+ (D(1)=0(1).

This implies that N(x + y) <A +,u, and making A -- Nx, k ->. Ny we deduce (10.11).
Thus Nx has all the properties of a norm.

If b(u) =uv/p, where 1 <p < oo, then'l''(v) = vv'lp', (10.9) holds, and we immediately
see that Nx = II x l1 n

The class of all functions x(t) such that Ox is in L0(a, b) for some 0 > 0 is, as we know,
the class Lm for which we have already defined a norm 11 x 11,. Write (D(1) = P. Since
0 < v < 1 we deduce from (10.5) that

fab

dt,P=0(1),

so that Nx < u x 11 /v. On the other hand, if A > Nx then for all y with SR[`Y(I y 1)] we
have

J:dt JflyldtA[f0(AI)d+fa
a \
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since, by (10.9), 1(1) < 1. Taking the upper bound of the first integral with respect to
all y, and making A-).Nx, we see that II x IIm <2Nx. Thus

1t(l)Nx'IIxIIm,2Nx. (10.12)

These inequalities show that the norms II x II, and Nx are equivalent, in the sense
that their ratio is contained between two positive absolute constants. They show that,
since Lm is complete with respect to the norm I x IIm, it is also complete (and so is a
Banach space) with respect to the norm Nmx.

We apply the foregoing to homogenizing certain inequalities.
Suppose we have an operation y = Tx transforming functions x(s) E L,(a, b) into

functions y(t) a L , (a1, b1), and such that

a4A(I x1)ds+B, (10.13)a, N1(I y1)dt-<Afa

where b and m1 are Young's functions, and A and B are constants independent of x.
The operation T need not be linear; we assume only that it is positively homogeneous,
by which we mean that, for each scalar a, if Tx is defined so is T(ax), and

IT(ax)I=IaIITxI.

(10.14) THEOREM. Under the hypotheses just stated, Tx is defined for all xE L*(a, b),
and we have

II Y IIm, <- C'I X IIm, (10.15)

or, equivalently, No, y < CN,, x, (10 16)

where the C's are constants independent of x.

The advantage of (10.15) and (10.16) over (10.13) is the homogeneity of the
relations.

That Tx is defined in L4(a, b) follows from the positive homogeneity of T and the
fact that x e Lm implies x/!I x 11, E Lm (see (10.5)). Write A = Nmx, A1= N,, y. From
(10.13) applied to x/II x IIm we see that 4>1(y/II x IIm) is integrable, so that y E Lml(a1, b1)
and A1= N, y is finite. We have to show that AI S CA.

If A = 0, then x =_ 0 and (by the positive homogeneity of T) y= 0, A1= 0, so that
(10.16) holds. We may therefore suppose that A > 0. We may also suppose that AI > A,
for if AI < A we have (10.16) with C = 1.

Let A < A'< Ai < AI. Applying (10.13) to x/A' we obtain

fa 1(IT
1

dt-A
fb (D

1XI(-A )ds+B-<A4)(1)+B=C1,

say, and since (D1 is convex/and D1(0)

=1\0,

E.,
( l01\((

A I /
l

Ail) dt Al f 1(J

J) &
which, combined with the preceding inequalities, gives Ai '( CA', and so also (10.16),
with C = C1/cP1(1). This completes the proof of (10.14).

Remark. The argument holds in the extreme case when D(u) = u or D1(u) = it.
As an illustration consider functions x(8) integrable over a finite interval (a, b) and

the operation O = Tx defined by 1+
0(t)=skp- 1 I x(a) I do.
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Though not linear, the operation is positively homogeneous and satisfies (10.13) with
(al, b1) = (a, b), ((u) = u log+ u, D1(u)=u (Chapter I, (13.15) (iii)). It therefore also
satisfies (10.15) and (10.16). A similar remark applies to the operation Tf=f (see
Chapter VII, (2.9)).

The theorem which follows generalizes Holder's inequality.

(10.17) THEOB M. If x(t) a LZ(a, b), y(t) a 14 (a, b), where 1 and IF are c4nnplemen-
tary in the sense of Young, then xy is integrable over (a, b) and

fXYUkN,X.NvY. (1018)

This is immediate if either N, x or N, , y is 0. If neither is 0, then for A > N. x, ,a > N,r y
we have

IEA,a a A

<fabo(IAX
')

+far

lik FT(1)=1, (1019)

and making A-+N,x, u-+N, y we obtain (10.18).
We now consider cases of equality in (10.18) and we may suppose A0 = N,(x) and

,au = N,,y are both positive, for otherwise we always have equality. Recalling the
definition of A0, we observe that if (10.10) holds for all A > A0 then, by Fatou's lemma,
it holds for A= A0. Examples show that we can have strict inequality in (10.10) even
if A =.I0, and we are interested in cases when

f (10.20)

If the integral (10.10) is finite for some A < A0, then it is a continuous and strictly
decreasing function of A near A0, and (10.20) holds. Hence, for example, (10.20) holds
if 0(2u) e CO(u) for all u; or if the inequality holds for u large enough and (a, b) is finite.

Suppose now that we have (10.20), and that the integral of 'Y( 1 I y 1) over (a, b)
is also 1. If we substitute A0, ,ao for A,,u in (10.19), the extreme terms are equal and,
considering the cases of equality in Young's inequality fy < ((C) +'Y(y), we come to
the following conclusion: if A, * 0"", * 0, we have equality in (10.18) if and only if

(i) arg (xy) is constant almost everywhere in the set where xy * 0;
(ii) the point (x(t) A 1, y(t) u 1) is almost always on the continuous curve obtained

from y = 0(g) by adjoining vertical segments at the points of discontinuity of 0.
b

The arguments of this section apply to Stieltjes integrals 0(1 x(t) 1)dp(t), where
a

µ(t) is non-decreasing, and in particular to sums ED(ai). We may define norms 11 a 11,
and N. a for sequences a = {a{), we have Holder's inequality I Eai bi I < Nm a. N,i,b, an
analogue of (10.14), etc.

11. Conversion factors for classes of Fourier series
Consider two trigonometric series

c, et"x, (11.1)

. (11.2)
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and the associated series 2; c,, A,, efrx. (11.3)

By {.I,} we shall now understand the two-way infinite sequence ..., a_l, Ao, A,_..
Given two classes P and Q of trigonometric series we shall say that is of type
(P, Q) if whenever (11.1) belongs to P, (11.3) belongs to Q.

(11.4) THEOREM. A necessary and sufficient condition for {A.} to be of any one of the
types (B, B), (C, C), (L, L), (S, S) is that EA, ei.x be a Fourier-Stieltjes series.

Let (11.1) be an S[f ], and let o-n(x), tn(x), an(x) denote the (C, 1) means of the series
(11.1), (11.2) and (11.3) respectively. Then

n

n(x) . En ( l I l)c.'1.ei-x=2n
l..(t)f(x-t)dt. (11.5)

Let x= 0. If {A,,} is of type (C, C) or (B, B), the sequence (o(0)} is bounded for every
fEC, and by (9.11) we have l2[tn(t)]=O(1), whence (11.2) belongs to S. Conversely,
if (11.2) is an S[dL], we have

2R

on(x) 2nJo on(x-t)dL(t), (11.6)

so that the uniform boundedness of {o-.(x)) implies that of {o*.(x)}. Similarly, if
v,,,(x) - tends uniformly to 0 as m, n -> oo, so does This completes
the proof of (11.4) for the types (B, B) and (C, Q.

If {,In} is of type (S, S), it transforms; in particular, the series E e'e S into the series

(11.2), and the latter must therefore belong to S. Conversely, if (11.2) is an S[dL],
(11.6) gives

I o (x) I s 2- a l on(x-t) I I dL(t) I (11.7)

Integrating this over (0, 27r) and inverting the order of integration on the right, we get
VZ[o *] _< (v/2n) R2[o n], where v is the total variation of L(t) over (0, 2ir). Hence (11.3)
belongs to S if (11.1) does.

It remains only to consider the case (L, L). Since

R

Io (x)- (x)I`2>r o

9R[orin- a*.] (v/2n') l [o - fin],

the sufficiency of the condition is obvious (am (5.5)). To prove the necessity, let us
consider for each n a system I,,= (as", f ), ... of non-overlapping intervals.
It follows from (11.5) that

fwf(t){f'.1.(x-t)dz)dt.
2rr

(11.8)

Suppose that (11.2) does not belong to S, so that the indefiniteintegrals of the functions
are not of uniformly bounded variation. We can then find a sequence 1, I ...

such that the coefficient off (t) in (11.8) is not bounded for t = 0. Since it is continuous
in t (for each n), its essential upper bound is unbounded; thus by (9.11) there is an
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f e L such that the right-hand side of (11.8) is unbounded, and afortiori X2[0';] + 0(1).
Hence (11.3) does not belong to S, and {A..} is not of type (L, L).

Let P denote the class of trigonometric series conjugate to those belonging to P.

(11.9) THEOREM. A necessary and sufficient condition that should be of any one
of the types ($, B), (0, C), (L, L), (9, s) is that the series conjugate to EA eul x should belong
to S.

This follows from (11.4). For let e, = - i sign P. Saying that (A") is of type (b, B)
means that whenever Ec, et"= belongs to B, so does Ee,A,c, ef-. A necessary and suffi-
cient condition for this is, by (11.4), that EeA,e. eS. Similarly for the remaining
types.

(11.10) THEOREM. (i) A necessary and 8ufcient condition that {.t"} should be of
either of the types (B, C), (S, L) is that Eh" ei"= should belong to L.

(ii) The types ($, C) and (9, L) are characterized by the fact that the series conjugate
to EA e(- belongs to L.

It is enough to prove (i), the proof of (ii) being then analogous to that of (11.9).
+m

Considering the series E e<o: a S, we see the necessity of the condition for type (S, L).

The sufficiency follows from the sufficiency for (L, L) in (11.4) on interchanging the
roles of c, and A, so that (11.3) belongs to L.

Let now f be any element from B. If (A,1) is of type (B, C), we see, on taking x = 0
in (11.5) and using (9.13) (i), that the indefinite integrals of the l"(z) must be uniformly
absolutely continuous. Thus Eel, e{"= a L. Conversely, if the latter condition is satisfied
(11.5) implies that

27r I u*, x - o" x 5 3l[11 su
Thus (a,.* (x)) converges uniformly and (11.3) belongs to C.

Let X(u), u _> 0, be a function non-negative, non-decreasing, convex and such that
X(u)/u-)- co with u.

(11.11) THEoREM. If (11.1) is an S[f] such that X(I f I) is integrable, and if (11.2)
is an S[dL], then (11.3) is an S[g] such that X(2n I g I/v) is integrable, v denoting the total
variation of L over (0, 2n).

Jensen's inequality applied to (11.6) gives

X{2'71 on(x) I/v}S v-' J 'A o"(x-t) I) I dL(t) I-

It is now sufficient to integrate this inequality over 0 S x _< 21r, invert the order of
integration on the right, and apply (5.7). In particular, if (11.2) belongs to S, {A"} i8
of type (I/, L') for every r > 1.

The condition imposed here on (11.2) is sufficient only. That it is not necessary is
seen by the example X(u) = u', since by the Parseval formula and the Riesz-Fischer
theorem is of type (L', L') if and only if X" = 0(1).

Let now m, `F and 01, 'F be two pairs of Young's complementary functions.

(11.12) THEOREM. The types (Lm, L4,) and (L4,,14) are identical.
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(11.13) THEOREM. A necessary and sufficient condition that Ec,.ei- should belong
to 14 is that for every g E L. with Fourier coefficients c', the series

(11.14)

should be bounded (C, 1) (or, what is here equivalent, summable (C, 1)).

If f E L**, g E 14, there exist positive constants A, p such that .If E L,, 4ug E L,p, and the
necessity in (11.13) follows from (8.7). For the sufficiency, let and rn denote the
(C, 1) means of Ec,e"'Z and (11.14) respectively. Then

"
to = 2n fg -1) dt.

Since is assumed bounded for every g E L4, it follows that Ec,et- belongs to
14 (see (10.7)). This proves (11.13).

To prove (11.12), we now note that, by (11.13), if {Ar} is of type (14,14,) then for
every f E 14 with Fourier coefficients c, and every g E 14, with coefficients c, the

series Z .1, c c;, is finite (C, 1). By (11.13) this also means that Lk,c e' a 14, so that

is of type (14,, L4).
As corollaries we get
(1) if D and `Y are complementary functions, the types (L:, 14) and (14, L4) are

identical;
(ii) if r> 1, 8> 1, the types (L', Ls) and (L", L'") are identical; in particular,

(L',If)=(LT,I!').

Suppose that (11.2) is S[dL) and (1 I.1) and (11.3) are respectively S[f] and S[g),
with f continuous. The formula

"
g(x)=2n

u
f(x-t)dL(t)

leads immediately to the following inequality for the moduli of continuity off and g:

u
IdL (11.15)

(11.16) THEOREM. Suppose that Ed e" 12 belongs to S. Then is of type (Aa, Aa),
0<a-< 1, and of types (A*,A*) and (a*, As).

The assertion concerning the type (A1, A.) follows from (11.15), and the remainder
from the similar inequality

m=xIg(x+h)+g(x-h)-2g(x)ISmZxI f(x+h)+f(x-h)-2f(x)I'f'IdL I.

The results obtained above may be stated in terms of `real Fourier series'. If
c,=,)(a,-ib,), c_,=c (11.1) becomes

}aa + E (a, cos vx + b, sin vx).
Y-1
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If the A, are real and A,= A,,, (11.2) and (11.3) become

2 }ale+ Z
1

A,cosvx)
1

4ae A. + (a, cos vx + b, sin vx) A
r_t

respectively. In translating the former results we have merely to substitute the
new names (1117), (11.18), (11.19) for the old (11.1), (11.2), (11.3).

The following illustration is useful.
Let A0, A1, A2, ... be an arbitrary positive sequence tending to 0 and convex from

some place on. For example, we may take
1 1 1an=na (x>0), AT=logn, An=loglogn,

for n large enough. In Chapter V, § 1, we show that series EA, cos vx belong to L. It
follows that such sequences are of types (B, C) and (S, L).

It will also be shown (Chapter V, § 1) that the series 2Eµ, sin vx conjugate to (11.18)
belongs to L, if ... are positive and monotonically decreasing and Eµ,/v < oo.
Thus, in particular, the sequences

1 1

i1 l (]og n)1+s' µ* = log n (log log n)i+.'

are both of type ($, C) and (S, L), provided e > 0. For e = 0 this is no longer true.

MISCELLANEOUS THEOREMS AND EXAMPLES

1. Let cl1(x), ¢1(x), ... be a system orthonormal over (0, 2n). Then the system (27r) -k, kx),
,(x), ... is also orthonormal there. If the first system is complete so is the second.

[Use theformula J *ffdz=-J "JgdrforfeL',geL1.]
D 0

2. Let 01, 02, ... be an orthonormal system of uniformly bounded functions in (a, b). Let
ek be the partial sums of the series all+a10k+...

f
r

and suppose that the functions Sk(x)= ak(t)dt are. uniformly absolutely continuous in (a,b),
a

which is certainly the case if all the I sk are majorized by an integrable function. Then the series
is a Fourier series.

[By (4.6), a subsequence S.,(x) converges to an absolutely continuous function F(x) fdt.

We show that for any bounded g bfay

ga.,dt- f gfdt.
a

This is obvious for any step function g, and any bounded g can be uniformly approximated by

such stop functions except in sets of arbitrarily small measure. For g= ,. we get a,,

J(p f(x+t) +f(x-t)-21(x)x ± t) -AX) r'3. The integrals
t e J t de0'

0

can diverge for all x, even if f is continuous (§ 3). Show that if f e L, and if one of the integrals exists
for x e E, the other two exist almost everywhere in E.

[The integral swf(x+t)

=

f(x-=)dt
exists almost everywhere.]

0
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i
4. I£ f-.' {a,+ Z (aoosnx+b,sinnx), then for almost all x we have the formula

t
a coavx+b.ainnx- If"

x+t log dt,
r=I n n _ f( ) 2s;nifI

the series on the left being convergent almost everywhere.

5. Letf(x) be continuous and periodic. (a) A necessary and sufficient condition for j(x) to be
continuous is that

j(x; h) _ - I i/rk(i) cot }tdt
A

converges uniformly as h -++ 0. (b) If f e L, then a necessary and sufficient condition for j e L is
that j(x; h) tends to a limit in L. (For (a) see Zamansky (3].)

[For (a) use uniformity in the relation (3.21) of Chapter III.]

6. Lot P(r, x) be the Poisson kernel and q 3 I be fixed. Then

(J' P'(r, x) dx)
- (I - r) -'W,

o I

which shows that, unlike (6.32), we cannot replace '0' by 'o' in the conclusion of (6.34).

7. If the integral modulus of continuity (a1(d; f) is o((log 1/8)-1], then 9R[f-S [f]] +0. This is
an integral analogue of the Dini-Lipechitz test (Chapter II, § 10).

8. A necessary and sufficient condition for a periodic f to belong to the class Ai is that f should
coincide almost everywhere with a function of bounded variation. (Hardy and Littlewood [9i].)

[Necessity: If f) then 311(a& +h)-o,(x)]<_ 911f(x+h)-f(x)]4i Ch, 9R[o']_< C and
we apply (4.7). Sufficiency: If f is non-decreasing over 0 < x < 2,r, 9R[ f(x+h) - f(x)] is

fdx+O(h)=O(h)-]
fR_A[f(x+h)-f(x))dx+J

O(l)dx=(f2 . J)
0 Y+-M -A 0

9. A necessary and sufficient condition for a periodic f to be in A;, p> I, is that f should be
equivalent to the integral of s, function of L". (Hardy and Littlewood [91].)

[ Necessity: Arguing as in Example 8 we get 9R,[o,] _< C and apply Sufficiency:

w(f x+A
9R,;[f(x+h) -f(x)] <

o l I
I f (t) I P,*)

/
dx_< hD

o
I f'(t) I adt.]

10. A trigonometric series with (C, 1) means o, is a Fourier series if and only if there is a function
3 0, non-negative, non-decreasing, satisfying the condition m(u)/u -. oo with u, and such

that J
0

[If f is in L, so is G(I f I) with a suitable I' satisfying the above conditions. For any such m there
is also a convex m1 < (D satisfying the conditions.]

11. Let 'D(u), u3 0, be convex and non-negative, and suppose that (D(u) f u - - oo as u -. oo.
A necessary and sufficient condition for a trigonometric series to be an S(dF], with F having an

absolutely continuous positive variation P(x) such that )'(x) a Lm, is that I x )(f +(r e'9)) dx = 0(1)
0

as r -. I (see (6.13)). Similarly for o,. The case '0(u) = u/ is the most interesting one.

12. Given a periodic f 4E Ls, 1-<p < oo, consider the set U = U, of all functions 0 which are
finite linear combinations, with constant coefficients, of functions f(x + A), where co <A < + oo.
Show that a necessary and sufficient condition for U to be dense in L is that no Fourier coefficient
off should vanish. (This is an elementary analogue of a deeper theorem of Wiener [3], concerning
Fourier transforms.)

(Necessity: If elk. is absent in S(f) it is absent in S[O], and so

=1
0
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for all 0. Sufficiency: It is enough to show that if all terms in S[J} are non-zero, then for any integer
k and any e> 0 there is a 0 such that 9l,[0 - elk*] <e. We may suppose that k = 0 and that the
constant term of S[f] is 1. Let f, = ap-,[ f ] with n so large that 9R,[ f -f,] <c. By Chapter II, (I.1),

n
n-1 f,(x+2nj/n)=1, so that

9R,[n-' Ef(x+2nj/n) - I] <c.
i

The argument (suggested by R. Salem) holds for p = co if L is replaced by C.]

13. Let g = Tf be a linear operation, defined for real-valued f, with g real-valued and such that

(i) I1 MIIfII'
For every complex-valued f =fl + if, c I.' let us set T[f] = T[f, ] + iT[f.]. Then (1) still holds.

[Let g,=Tf,,. Integrating the inequality

g,cosa+g,sina<M'u f, coca+f,ainallr
over 0 <a < 2n, interchanging the order of integration and observing that

we get

`2a

ff I acosa+bsina I'da=(as+b=)1'C
0

II (gl+g,)i II'<MII (f;+f;)1l..]
14. Let 1 <p < oo, n = 0, 1, .... Let L,' (the generalized Lebesgue constant) be defined as

sup 9,[S.) for all f with 9R,[ f ] < 1, where S. = S.[ f 1. Show that I,U = L. P'.
7
15. Let L+ denote the class of S[ f ] with f integrable and non-negative. We define B+, C+

correspondingly, and we denote by S+ the class of S[dF] with F non-decreasing. Then (A.) is of
any one of the types (B+, B+), (C+, C+), (L+, L+), (S+, S+) if and only if EA,, ai"cS+; and (A,) is of
type (B+, C+) or of type (S+, L+) if and only if EA, e'"l a L-.

16. Let a (x) and f (r, x) be the (C, 1) and Abel means of a trigonometric series T. Each of the
conditions

Ii a,, ,,=O(1) IIf(r.x)IIm=O(1)

(the norms being understood in the sense of 110) is both necessary and sufficient for T to belong
to L.

17. If f c Lm and if (D satisfies the condition

(i) T(2u)/O(u)=O(1) as u-oo,
then IIf-C.6-'o, IIa.Ne-')f Vm-

Similarly for the Abel mean f (r, x).

18. Condition (i) of Example 17 is both necessary and sufficient for the space 14 to be separable.
(Orlicz [2].) [Sufficiency follows from Example 17.]

19. Given a matrix {a,,,,,}, m,n= 0, 1, ..., consider the linear means

of any sequence (a,). Show that a necessary and sufficient condition that any convergent
be transformed into a-convergent {o,,,} (not necessarily with the same limit) is that

(i) lima,,,, exist for each n;
m

(ii) E I a,,,, I <C, with C independent of m;
n

(iii) >;a_. tend to a limit as m -+oo.
n

If these conditions are satisfied and if the limits in (i) and (iii) are a and A respectively, then
E I a,, C and for any {a,} -.a we have

aTM .Ae+ao(eo-a)+al(a,-8)+.... (Schur[1].)

[The proof is similar to the arguments on pp. 74-5 and 168.]
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CHAPTER V

SPECIAL TRIGONOMETRIC SERIES

In this chapter we study some special trigonometric series which not only are inter-
esting in themselves but also illustrate the general theory.

1. Series with coefficients tending monotonically to zero
In Chapter I, § 2, we proved that if {a,,) is monotonically decreasing to zero, both

the series

4ao + E a,, cos vx, (1.1)
v-l

F, a, sin vx,
,-1

(1.2)

converge uniformly outside an arbitrarily small neighbourhood of x= 0. If a, _> 0 for
all v then obviously a necessary and sufficient condition for the uniform convergence
everywhere of (1.1) is the convergence of Ea,,. For (1.2), the situation is less obvious.

(1.3) THEOREM. Suppose that a, _> a,+1 and a, -* 0. Then a necessary and 8uftcient
condition for the uniform convergence of (1.2) is va,-*0.

If (1.2) converges uniformly and if x = n/2n, then

n n
Z a, sin vx >_sin }n . an F, 1 _>sin #ir . an }n,

f;n1+1 fin1+1

so that nan -+ 0 as n -> oo. This proves the necessity.
Conversely, let va, ->. 0, so that ek = sup Pa, --> 0. Let 0 < x < nr, and let N = N. be

v>k
the integer satisfying

n/(N + 1) < x < n/N.

We split the remainder Rm(x) = am sin mx +... of (1.2) into two parts, Rm = R,' + Jr,,
where R;n consists of the terms with indices v < m + N, and R ,, of those with v > m + N.
Then m+N-1 m+N-I

I R;n(x) I = E a,sinvxI<x Pa,<xNem<nem. (1 4)
m I m

Summing by parts and using the inequality I D,(x) I < n/x (Chapter II, § 5), we find

nmI= Y (a,-a,+1).bv(x) - am+NUm+N-1(x)
m+N

< 2'm+NfiIx < 2(N+ 1)am+N < 2e,.

Hence I Rm I < 6em, ahd the uniform convergence of (1.2) follows.
Remarks. (a) The above proof of sufficiency could be simplified if we knew that

{va,} decreased monotonically to 0. For then we could write (1.2) in the form
Eva,(v-1 sin vx); and since the partial sums of the series EP-1 sin vx are uniformly
bounded it would be enough to apply Theorem (2.4) of Chapter I.
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(b) If a, > a,+, -.0, the condition va, = 0(1) is both necessary and sufficient for the
uniform boundedness of the partial sums of (1.2); the proof is an obvious adaptation
of that just given. As the example EP-1 sin vx shows, this condition does not imply
uniform convergence.

(c) Under the hypotheses a" > av+1, a, -. 0, the condition va, --. 0 is both necessary and
sufficient for Ea. sin vz to be the Fourier series of a continuous function. It is enough to
prove that the condition is necessary. Suppose then that the (C, 1) means o- (x) of
2:a, sin vx converge uniformly. In particular o- (n/2n) -+ 0. Since sin u >-(2/rr)u in
(0, irr), we have

la"\ 1

Keeping m = [in] terms on the left, we obtain successively

1 m 1 m
E va,-+0, -am v->- 0, mam-- 0.n-1 n ,..1

There is a corresponding modification of (b).

(1.5) TH EoREM. If a, -. 0 and the sequence a., a1, ... is convex, the series (1.1) converges,
save possibly at x = 0, to a non-negative and integrable sum f (x), and is the Fourier series of f.

Summing twice by parts we have
w-s

8n(X) = E (1.6)
.-o

where s is the partial sum of (I.1) and D and K. are Dirichlet's and Fejer's kernels.
If x * 0, the last two terms tend to 0 as n -* oo. Thus s (x) tends to the limit

f (x) = E (v + 1) A'a, K,(x),
-o

which is non-negative, {a,} being convex. Also

(1.7)

f f(x)dx= (v+1)A%,K,(x)dx=trZ(v+1)A'a,<+co
.-o

J*
.-o

(see Chapter III, § 4) so that f is integrable.
In proving that (I.1) is S[ f ], we may suppose that ao = 0. Since a1, a ... mono-

tonically decreases to 0 an application of (1.3) (see also Remark (a) above) shows
that the series Ev-1a,.sinvx obtained by termwise integration of (1.1) converges
uniformly to a continuous function F(x), and so is S[F]. Since F'(x) exists and is
continuous for x * 0, and since F(x) is continuous everywhere, F is a primitive of
F'=f. If we first integrate over the interval (e, n) and then make a -. 0 we get, since
F(0) = F(n) = 0, ra,. 2

J
* F(x) sin vxdx = 2f" f (x) cos vzdx,
0 o

a, fo f(x) cos vxdx (v>0).
n

This is also true for v - 0, since, F being periodic,) f dt = 0 = nao. So (1.1) is S[ f ].

In this proof that (1.1) is a Fourier series we actually used only the hypothesis
that {a,} decreases monotonically to 0. Hence we have:
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(1.8) THzoRn e. If a,-i0, Aa,_> 0, the sum f(x) of (1.1) is continuous for xr0, has
a Riemann integral (in general improper) and is the Fourier-Riemann series off.

If (a,) is also convex, then, as we have just seen, f is non-negative and F is a Lebesgue
integral off. The mere fact that (a,} is monotone, however, does not ensure the
L-integrability off; we have, in fact,

(1.9) THEOREM. There is a series (1.1) with coefficients monotonically decreasing to 0
and sum f (x) not integrable L.

Suppose we have a sequence 0 = Al < A, < ... such that ak is constant for A,, < k < n+1
n= 1, 2, .... Summation by parts gives

f(x) = EAa,.D,(x)= (1.10)
Y' O *-I

We now observe that

o J 3Cllogn.

These both follow from Chapter II, (12.1); for since Dn(x) = O(n), the difference between
the two integrals is 0(1). From (1 I0), observing that I Dn (x) < 2/x for 0 < x 5 n, we get

lf ldx 3 Clam log'Im - C Z an log A - 21og (nA,n) X a,,.
11.1., n-1 n-m+1

Taking an=l/n!, An=2(")'

and arguing as on p. 134, we find that the last integral is unbounded as m -* oo.
Given an arbitrary sequence of positive numbers en -. 0, we can easily construct,

e.g. geometrically, a convex sequence {an} such that an >1 e" and a -+ 0. Thus there exist
Fourier series wia coefficients a tending to 0 arbitrarily slowly (see also Ex. I on p. 70).

If an, b are the Fourier coefficients of an integrable function, the series Ebn/n
converges (Chapter II, § 8). The example of the Fourier series

shows that may be divergent.

cos nx
n_9 logn

Let sn and o-, be the partial sums and the (C, 1) means of (1.1). With the hypotheses
of (1 -5), RZ[f-vn)-+ 0 (cf. Chapter IV, (5.5)).

(1.12) THEOREM. With the hypotheses of (1.5), 91)l[f - sn] tends to 0 if and only if
a,. = o((log n)-1).

For, subtracting (1.7) from (1.6), we see that f (x) - sn (z) is contained between

a.I I ± Z (v+ 1)A2a,K,(x)+Aan_1Kn_1(x)n}.

If we integrate this over (- n, n) (the terms in the curly brackets are non-negative)
we find that

Jl[f-sn]=7ranLn+0(1),
where L. is the Lebesgue constant (Chapter II, § 12). Since L. is exactly of order
log n, (1.12) follows.
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If a, s log n -. oo, e.g. if a = (log n)-f for n> 1, then flR[ f - oo, and so also
co. The series (1.11), which is important for some problems, is a limiting case,

since here 9R[ f - 8,,] is bounded and even tends to a limit, but the limit is not zero.
(Also R[an] tends to a finite limit.)

We now pass to the series Ea, sin vx with a1 > a, > ... -.0. Summation by parts
shows that for its partial sum t,,(x) we have

t (x)nElf (1.13)

say, as n -. oo. If we substitute L} for D., we get a function g*(x), 0 < x < n, differing
from g(x) by the continuous function JEta, sin vx. The series defining g* has non-
negative terms, and since the integral of D:(x) over (0, n) is exactly of order log n
(Chapter II, (12.3)), we conclude that g*, and so also g, is integrable over (0, 7r) if
and only if EDa, log v converges. If we assume this convergence, and observe that

EDa,logv-.0,

we see that 919 - 0. In particular, Ea, sin vx is S[g]. Thus:

(1.14) THEOREM. Suppose that a1 > a, > ... -. 0. The sum g(x) of La, sin vx is then
integrable if and only if EAa, log v < oo. If this condition is satisfied, then Ea, sin vx is
S[g], and a)Z[g - tn] -. 0.

Under the hypotheses of (1.14), g* is non-negative in (0, n), so that gis there bounded
below. If the sequence a1, a,,... is also convex, then g(x) is positive in (O, ir), unless
a,=a,= ... = 0. To prove this we apply summation by parts to the series Els Aa and
use the fact that k,> 0 in (0, n) (Chapter III, (3.18)).

(1.15) THEOREM. If we assume only that a, -.0 and &a., > 0, then La, sin vx is a
generalized Fourier sine series (Chapter II, § 4).

For a simple calculation shows that then

2g(x) sin x = a1 + a= cos x + E (a,+1- a,_1) cos vx.
v-2

The series on the right converges uniformly, and so is S[2gsinx]. Writing the Fourier
formulae for the coefficients a1, a=, a, - a..... , we get by addition the formula

a,=2J g(x)sinvxdx (v=1,2,...).
if

0

The integrand here is continuous, since g sin x is continuous.
Let h be the partial sums of the harmonic series I + } + } + ..., so that h = log n.

Let an -* 0, La > 0. From the formula

-=> (1 16)
,,-1 v .-1

it follows that if Ev-la, is finite, so is EDa, log v. Conversely, the finiteness of the latter

series implies that an log n < Aa, log v = 0(1), so that, by (1.16), Ev-la, is finite. Thus,00
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if al > a$ ->... -)- 0, the conditions EP-'a, < oo and EAa log v < oo are equivalent. Hence in
(1.14) we can replace the convergence of EAan log n by that of En-'an.

That the latter series is convergent if (1.2) is a Fourier series, no matter what the
an, we know already. This implies in particular that the series

sin nx
n_2 log n '

conjugate to the Fourier series (1.11), is not a Fourier series.

(1.17)

2. The order of magnitude of functions represented by series with monotone
coefficients

We begin by giving one more proof of the formulae

n-flsinnx xa-'I'(1-f)eos,)1rf
"-I

established in Chapter II, § 13.
By Chapter III, (1 -9),

(x-- +0, 0<f<1), (2.1)

EAn'rne" =(1-retz)Q-' (0<r<I). (22)
n-0

Since the An -f are positive and decreasing to 0, EAn 0 et' converges for x $ 0; and
making r-> 1 we deduce from (2.2) that

Y, A*fle"'x=(2sin }x)f-'exp{+i(rr-x)(1-fl)} (0<x<27r). (2.3)n_0

Using the formula (1.18) of Chapter III (with a= - fi), and the relation 2 sin }x^_ x,
we deduce (2 1) from (2.3) by separating the real and the imaginary parts there.

Remark. The argument shows that the second formula (2.1) holds for 0 <,6 < 2.
We shall use the formulae (2.1) to obtain some more general ones. In dealing with

series (1.1) it is often convenient to assume that an=a(n), where a(u) is a function
defined for all real u > 0. Usually, indeed, an is given as a(n).

A positive b(u) defined for u > u0 will be called a slowly varying function if, for any
1 > 0, b(u) u-' is an increasing, and b(u) u-° a decreasing, function ofu for u large enough.
If b(u) is slowly varying, then

b(ku) ^ b(u) as u-- co, (2.4)

for every fixed k > 0, and even uniformly in every interval q e k 1111, 0 < 11 < 1.

For if, for example, 1 k 11'11, then

b(ku)J(ku)° b(u)1u°, b(ku) k°b(u)<11 °b(u)

for large u. Similarly, b(ku) > ° b(u). Making 8 arbitrarily small, we prove (2.4) for
[ , k 1111. The case 115 k I is proved similarly.

If /j, / 2, ... are real, each of the functions

logftix, loglogy+x, (2-5)

and so also any product of any finite number of them, is slowly varying.

En-ficosnx^xfi-'I'(1 -,B) sin jnfl
nil



v] Order of magnitude of functions 187

(2.6) THEOREM. Let a = n-flbn, where 0 <,8 < 1 and b(u), with b(n) = bn, is a slowly
varying function. Let

fa(x) = E n-abn cos nx, ga(x) = E n-abn sin nx. (2.7)
n-1 n-1

Then, for xa+0,
fi(x) = xf-lb(x-') I'(1 -f) sin }7T,6, g,8(x) xQ-'b(x-') I'(1- f) cos }rrt. (2.8)

It is enough to prove the formula for g's, the proof fort, being the same. Set

B =1'(1 -,8) cos inf.
We note that, for all M, N > 0,

E n-Q < CfM'-f, n-fl sin nx I < CN-<x-' (0 < x < rr), (2.9)
n<M n>N

where C is an absolute constant and Ca depends on ft only. The first inequality follows
from rM Ml_Q

n-d < I t-fdt = ---n<M 0

and the second from Chapter 1, (2.2).
Let 0 < to < 0 < + oo. Then

n-asinnx= + + =S1+S,+S (2.10)
n<Y/x Y/z<n<n/z n>n;z

with a corresponding decomposition T1+TE+T, of the series Ebnn-fl sin nx. By (2.9).

,S' I < Caw'-drfl-1, I S, I < Cf2-fxa-'. (2.11)

We fix an e > 0. By virtue of (2.1) we have

(B - e) xa-' S S= <- (B + e) z#-', (2.12)

provided w and 1/0 are small enough (but fixed) and x is near enough to 0.
We fix 8 > 0 such that 8 <,6 and ft + 8 < 1. Since udb(u) tends monotonically to + cc

for large u, we have u°b(u) >- vdb(v) for u large and all v < u. Hence, if z is small,

Ti E b,, n'n-v-+ b(w/x) (w/x)e E n-a-e
<Y/x n<Y/z

b(w/x) (w/x)' Ca+a(w/x)'-fl-+ = Ca+e w1-Ox0-'b(w/x).

Since the last product is less than exa-'b(1/x), provided w is small
enough and x is near 0.

By (2.11) with 6-8 for /B and Chapter I, (2.1),

I Ts I = I E bnn-sn-p+e sin nx I-< 2b(f2/x) (f2/x)-4 C(f2/x)-,4+8x-' = 2CQ-'*X'8-'b(S2/x),
n>n/z

and so Ts I < eb(1 /x) xa-'
for f2 large enough and x near 0.

On the other hand,
O/z

T2=b(1/x) E n-asinnx+ E {b(n)-b(1/x))n-<sinnx=Ta+Tp.
Y/x Y/2

Here T, = b(1 /x) S8 and so, by (2.12), is contained between (B ± e) x,8-1b(1 1x). By (2 4),

I Ti I does not exceed
n /z

max I b(n)-b(1/x) I E n-a=ofb(l/x)}O(f2/x)'-R=o{x/-'b(1/x)}.
Y/:<n <n/z /z
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Collecting results we see that gp = T1 + T. + T', + T; is contained between

(B ± 3e)x#-'b(1/x)

for x small, and so gp(z)_Bz4-'b(1/x) as z-++0,
which completes the proof of (2.6).

Remark. The second formula (2.8) holds for 0<,8< 2. In particular

g1(x) = En-'bn sin nx ^_ }nb(1/x) (x --*+O). (2.13)

It is enough to indicate modifications of the preceding proof. We easily verify that
the second inequality (2.9) holds for any 6> 0; hence the inequality (2.11) for, and
the estimate for Ts hold for,8 > 0. On the other hand, if 8 < 2 we have

1 `g1 S E n-p. nx = x nl-B < Cp a
n<&/z n<u/x

and instead of the previous inequality for T1 we have T1 J<Cp+ew$-pxp-'b(c/z).
Using the fact that the second equation (2.1) holds for 0 < 6 < 2, we see that the esti-
mates for Ss and T= remain unchanged, and the proof concludes as before.

If b(u) is slowly varying, then b(u)/u is ultimately decreasing and so the series

En-'bn and the integral u-'b(u) du are simultaneously finite or infinite. Write

B(u) = f1 ut-'b(t) dt, R(u) =
5u

t-'b(t) dt,
l

(2-14)

B*(u) = Z n-'b(n), R*(u) = I n-'bn.
n<u nor

Then, as u -> oc,
(i) b(u)=o{B(u)), B(u)n-B*(u), if B(u)+O(1);

(ii) b(u) = o{R(u)}, R(u) R*(u), if B(u) = O(1).

For let k > 1. For large u

B(u) > f-11Ct lb(t)dt^-b(u)

Taking k large we obtain 6(u) =o(B(u)), whether B(u) is bounded or not. Similarly,
b(u) = o{R(u)}. Since B(u) - B*(u) tends to a finite limit, we have B(u) - B*(u) if
either side is unbounded. Let now u -oco and let N be an integer satisfyingN < u < N + 1.
Then R(N+1)<R*(N+1)=R*(u)<R(N), R(N+1)<R(u)<R(N).

Since R(N + 1) R(N) (b(u) being a slowly varying function), the second formula
(ii) follows.

(2.15) THaox$M. According as Ebn/n diverges or converges,

fl(x) = En-'bn coo nx z B(1 /z),
(x->+0). (2.16)

f,(0) -f1(x) R(1 /x),

Considering the first formula (2.16), we write

B*(lfx)-f1(x)= Y, E bnn-'cosnx=U1+U=.
n<1/z n>1/z

or
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Then (writing ban-1 as bnn-'n-1+4 and arguing as for Ta in Theorem (2.6), but with
£1=1) we have

Us =O{b(1/x)}=o{B(1/x)}=o{B*(1/z)}.

Since ban-I(1 - oos nz) < }nba x', the familiar argument shows that

U, = O(b(1/x)) = o{B*(1 /z)).

Hence f, (x) ^_- B*(1 /x) 2-, B(1/x).

If f,(0) = oo, then f,(0) - f,(z) is

E bnn-1- Z ban-IIoosnx=Y+R*(1/x)+V.
*<1/z n>I!z n>llz

Here again both V, and V, are O{b(1/z)}=o{R*(1/x)), so that

f,(0) -fl(x) ^-- R*(1/x) !-- R(1/z).

We pass now to the limiting case ft = 0 of (2.6).

(2.17) TnsoBEM. If b(u) decreases to 0 and if -ub'(u) is slowly varying, then, for
x->+0, fo(z)^_ -4nx-'b'(1/x),

(2.15)
9o(z) ^- x-lb(1 /x).

The hypotheses here are satisfied if, for instance, b(u) is for large u one of the
functions (2.5), and so also if it is a product of a finite number of them. In particular,

c°° cos nx
n`2 log n = '1r-__'10g-' (1 /z).

sin nx
log n

_x-11og I(1/x).
a_y

(x->+0). (2.19)

Since x-l log-' (1/x) is not integrable, the second formula shows that E(sinnx)/loge
is not a Fourier series, a fact we already know (see p. 186).

We begin with fo, and set

c(u)=u[b(u)-b(u+ 1)), ca=c(n)=ntbn.

We have c(u) ub'(u + 0), 0 < 0 < 1, and so c(u) - ub'(u), since - ub'(u) is slowly
varying. Clearly,

E bn cos nx = E Oba{Dn(z) - }} = (2 tan }x)-I E n-I cn sin nx + 0(l). (2.20)
1 I l

If the numbers cn satisfy the conditions for the bn in the proof of (2.13), that formula
and (2.20) give f0(x) _ nx-1c x-1 +00) irx-'b' x-1 2.21
since x-1c(x-1) oo.

On analysing the proof of (2.15) we aft that it is sufficient that (ultimately)
(i) cnln = ibn should decrease;

(ii) cn n" = nl+dtbn should increase for some 0 < d < 1;
(iii) c(ku) ^- c(u) uniformly in every interval I-< k -<I /ij.
Since c(u) = - ub'(u), and since - ub'(u) is slowly varying, condition (iii) holds.
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Since -ub'(u) is slowly varying, -b'(u) is decreasing. Therefore b(u) is convex, and
cn/n = Abn is decreasing (condition (i)). Finally,

b(n)-b(n+1) _ b'(n+O) In+1+t91+a(0<B<1),
b(n+1)-b(n+2)

by Cauchy's mean-value theorem and by the fact that - ul+4b'(u) increases. Since the
last ratio is less than {(n+ 1)/n}'+', we see that n1}4Abn increases if n is replaced by
n+ 1, and (ii) follows.

The proof for go is similar. Since

9o(x)=(2tan }x)-'En-'cn(1-oosnx)+0(1),

we apply the second formula (2.16) with cn for bn, so that the term R(1/x) is

fu_1c(u)du=J{b(tt)_b(u+1)}du

b (u)du^-b(z-1).r'
Hence 9o(x)^_-x-'b(x-').

Theorems of this section have analogues in which the roles of the function f and of
its coefficients are reversed. In these we assume that f (x), 0 < x _< n, is sufficiently
' well-behaved' in every interval (c, n), e > 0, but tends to oo in a specific way as x -+ 0,
and we inquire about the behaviour of the cosine and sine coefficients an, bn of f.
The two results that follow are analogues of (2.1) and of (2.6).

(2.22) THEOREM. Let 0 <,8 < 1. For the coefficients of the function

f(x)=x-e (0<x_< rr)

we have bran . n0-1 r(1 -,8) sin }nf ,
(2'23)

nbn .., n0-'r(1 - fl) we iirf

(2.24) THEOREM. Let 0 <f < 1, and let b(x) be a function of bounded variation in
every interval (e, ir), slowly varying as z + 0. Then for the coefficients of x-ab(x), 0 < x S IT,

we have the relations Pnan ^- na-'b(1/n) r(1 -,8) sin }77f,
(2.25)

4irbn=na-'b(1/n) r(1-,B)coo }irf.

For the an in (2.22) we have
*

an = 27r-1 Jt-, cos nt dt = 2ir 4nf-11 * t-f cos t dt.
0 0

A similar formula holds for bn, and the integrals on the right tend, for n-oo, to the
real and imaginary parts respectively of the integral

Jmt-aeod1=r(1-ft)exp(erri(1-f))
0

(see Chapter II, (13.10)), whence (2.23) follows.
We omit the details of the proof of (2.24), which does not differ essentially from that

of (2.6) (we split the interval (0, n) into (0, of/n), ((c/n, i1/n) and (0/n, ir)). The hypothesis
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on b(x) means that for every 8> 0 the functions xdb(x) and x-4b(x) are respectively
increasing and decreasing in some right-hand neighbourhood of x = 0. That b(x) is
of bounded variation in every interval (e, rr) guarantees that the contribution to a°,
b of the integrals extended over (e, n) are 0(1/n) and so are small in comparison with
the right-hand sides in (2.25).

It may be added that since periodic odd functions are usually discontinuous at the
points ± rr, their Fourier coefficients cannot tend rapidly to 0; and thus we can
often not obtain simple formulae for the Fourier coefficients but only for the Fourier
transforms, i.e. for the integrals off cos mx and off sin mx extended over the interval
0 e x < oo (fin general not being periodic).

For some problems it is of importance not only to estimate the sum of the series but
also to find a common majorant for the partial sums (or the remainders) of it. For the
series considered in this section such estimates are implicitly contained in the proofs
given above. We shall be satisfied here with the following inequalities, in which
0<f<1 and 0<x-<n:

N
Zn-flcosnx <CIxs-1, (2-26)
n-1

N
Y,n-.Osinnx <C,xe-1 (2.27)
n-1

N
z n_1 cos nx S log (I /x) + C (2.28)
n-1

Consider, for example, (2.27). If N< 1/x, the sum here is identical with the sum S1
in (2.10) corresponding to an w _< 1, and so the inequality follows from the estimate

(2.11) for S. If N > 11z, the sum in (2-27) differs from Y. by the sum S in (2.10) corre-
1

sponding to an 12 > 1, so that (2.27) follows from the second formula (2-8) and second
inequality (2-I1). A similar proof holds for (2.26). Finally, (2.28) follows by com-
bining an analogous argument with the proof of (2.16) for bn = 1.

Since D (x) is bounded below on (0, n), uniformly in n, summation by parts shows
that, for each given a > 0, the partial sums of En-° sin nx are uniformly bounded
below on (0, n). For In- cos nx the situation is different.

(2.29) THEOREM. There is an ao, 0 < ao < 1, such that for each a > ao the partial euma
8n of En-a cos nx are uniformly bounded below, and for each a < ao they are not ; ao is the
(unique) root of the equation

f'cosudu=0 (0<a<1).
o u°

Summation by parts shows that if the 8, are uniformly bounded below for some a.
the same holds for any larger a. It is therefore enough to consider the case 0 < a < 1;
we may also suppose that 0 < x _< rr.

First we reduce the problem to one for integrals; we show that

* cos ux du-2u - 2 sin }x cos C (2-30)
o u° x .-1
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where C. depends on a only. For
f

coo uxdu =
2 sin }x

cos vx,
,y-+i x

Y+ 1
cos ux

n

E_+

i coo vxf ducosuxl adu+Ya v" x r-1 va

[v

and since, by the mean-value theorem, u-a - V-a = O(v-a-1) here, the first sum on the
right is 0(1) uniformly inn and x, and (2.30) follows:

It is therefore enough to consider the a, 0 < a < 1, for which

n cos ur a cos u

u ua
du = xa I

u
Ua du (v - nx)

is bounded below. The expression is bounded below if and only if the last integral,
qua function of v, has a non-negative minimum in (0, oo). This minimum is attained
for a =17r and is "cosu

du.m(a) = U.
o u

Since m(0) < 0, m(1) = + oo, it is enough to show that m(a) increases with a, 0 < a < 1.

Now m'(a)= i logo udu> JQ+log I cosu du
U U"

and since u-a cos u decreases in 0 <ru < In, the) last integral exceeds

cool{
fologudu-J`or

logudu)>cosll- f1and

the theorem follows.
111

Theorem (2.24) can be used to obtain asymptotic expressions for the coefficients of certain
Taylor series.

(2.31) THEoasx. Let F(z)=(1_Z)a+1(loglaz) = EAw8z*, (2.32)
n-e

where a_8 are real numbers and a> 2.t Then
na

1)(logn)Q
if (2.33)

A^s (-1) if a=-1,-2,.... (2.34)
The Al .-O are generalizations of the Ces&ro numbers Aw, and (2.33) generalizes Chapter III, (1 lo).

We first consider (2.33). For the function F(z)=F5,p(z) we have F;_i p=aFa p_i, so
that nA° '.9=aA° } (2.35)-1 w-1 '

We deduce from this that if (2.33) is valid for some a, it holds for a- 1. Hence if (2.33) is proved
for - I <a < 0, it holds for all negative non-integral a. On the other hand, suppose we have (2.33)
for some a > - 1. Since Fa+1,Q = (1- z)-1 F..,, we have (see Chapter III, (1-7))

1 >. va(logv).+O(1)
v-e r(a+1)v-2

1 na+l na+1
r(a+I)a+1(log n =I,(a+2)(logn).,

t Ifa_> 2,log(a/(1-z))has no zero forI z <1.
It is not difficult to see that if a> - I and 0(u) is slowly varying, then

n °+1

v-1
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and (2-33) holds with a+ 1 for a. It follows that if we prove (2-33) for - I <a <0, we have it for
all non-integral a.

We now need Theorem (2-24). First we observe that if 0 _< n < i7'_< ir, then under the hypotheses

of (2-24) we have x-fb(x) cosnxdx= 0(n#-1b(1/n)), uniformly inn and n'; this is implicit in the

proof of the theorem.
It follows from this that if A(x) is of bounded variation in (0, n), then under the hypotheses of

(2.24) the Fourier coefficients of x-fb(x).I(x) are given by (2-25) with factor d(+0) inserted on the
right. It is enough to prove this for A monotone. In computing the coefficients it is enough to
integrate over an arbitrarily small interval (0, e) since the contribution of the remainder of (0, 77)
is 0(1/n). Writing l(x) =A(+ 0) + {A(x) -A(+ 0)} and applying to the integral containing
d(x) -A(+ 0) the second mean-value theorem and the remark of the preceding paragraph, we
arrive at the conclusion.

We can now prove (2.33) for - 1 < a< 0. Since near x = 0 we have F(re") = 0(1 x 1-a-1 logfl(l/ Ix 1))
uniformly in r, 0 <r< 1, it follows that I F(r e'9) I is majorized over (0, ir) by an integrable function
of x. Hence L:,,6 ell, = S[F(e")] and EA* a cos nx = S(SiIF(e")]. Now

5?F(e'')=(2 emiz)a+r(logs2sin}x+&(n"x)I)
ow 0, (2.36)

where (D=}(n-x)(a+1)+farctan }(n-x)
log } (a cosec }x))

Since the factor {... };fin (2-36) is slowly varying, cos 0 and {z/(2 sin }x))a+1 are of bounded variation
and tend respectively to cos }rr(a + 1) = - sin {na and 1 as x -. 0, we find from the previous
remark and the first formula (2.26) that

Awf^
2-- sin lira coe}rrai(-a)nalog-In,
n

which is (2.33) in view of the equation r(z) P(1 - z) = n/sinirz.
Thus the theorem is proved for all non-integral a. If we now prove (2-33) for a=0, we prove

the theorem also for a = 1, 2, ... and, using (2.35), for a= - 1, - 2, .... It remains therefore to
show that A,°,- = (log n)f.

This can be deduced from (2-33) with, say, a= -J. For F.,f= F_i,,F_1., implies that
n

Ao'5= E A,-i,6A-it
V-0

Let 0 be a small positive number, say 0 < 0 < }, and let n' = [nB). We split the last sum into two,
P. and Q,,, extended respectively over v _< n 'and v > n'. Observing that A,-* is positive, decreasing
and A.-i Cv-i for v> 0, and also that the A,-).,* are all positive from some place on, we have

1P.J<A.+A,EjA;i.aj=A._.,{ EA,i.f+0(1))
V-0 (V10

=A; *,,,{AL 0+O(1)}, (2.37)

and find that I P. 14 }e(log n)f if 0 is small enough (but fixed) and n large enough.
Since A; i(log v)f, we have

n

Q.= A-+-0A.f,=(logn)f A,-IA.-i,.
V-r1+1 VIA+1

Now the last sum is

E_. JA. IA.*.=1- EA-{A;!,
\\V"e P-O// V-e

(see Chapter III, (1.10) (i)), and so, arguing as in (2.37), is arbitrarily close to 1 if B is sufficiently
small. Collecting results we see that A2.0=P.+Q. is contained between (1±c)logo" for n
sufficiently large, so that A°-0 logf n. This completes the proof of (2-31).
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A similar argument can be applied (though the details are a little awkward) to obtain the
asymptotic values of the coefficients of

1 i acF(z)(1_z)z+i{log1a

where a and the ftr are real, the a1 positive and so large that F is regular for I z I < 1.

3. A class of Fourier-Stieltjes series
We begin by constructing a class of perfect non-dense sets. Let OA be a segment

of length l whose end-points have abscissae x and l+x. Let a(l), a(2), ..., a(d) be d
numbers such that 0 < a(l) < a(2) < ... < a(d) < 1.

We consider d closed intervals with end-points la(j) + x and la(j) + l>) + x, where 7l is
a positive number so small that the intervals have no points in common and are all
contained in OA. These intervals will be called `white'. The complementary intervals
with respect to the closed interval OA will be called `black' intervals, and are
removed. The dissection of OA thus obtained will be said to be of the type

[d; a(1), ..., a(d); 711.

Starting with the interval (0, 27r) we perform a dissection of the type

[dl; al(l), ..., al(d1); 711],

and remove the black intervals. On each white interval remaining we perform a
dissection of the type [d,; a,(1), ..., a,(d,); 7!,], and remove the black intervals-and
so on. After p operations we have dl d, ... dp white intervals, each of length 2mg1 , ... ijn
When p -r oo we obtain a closed set P of measure

2n lim d1 ... d511 ... 71p.

(The limit exists, since 71, < 1/d9 for each p.) In subsequent applications we will have
d 3 2 for each p. The set P will then be perfect and non-dense.

The abscissae of the left-hand ends of the white intervals of rank p, i.e. after the
pth step in construction, are, as induction shows, given by the formula

x = 27r[a1(e1) +711 as(69)+71171/a!(6S) +... +1119... ijD-lap(eD)], (3.1)

where 9k takes the values 1, 2, ..., dk. The abscissae of the points of P are given by the
same series continued to infinity.

The structure of the set P displays a certain homogeneity. Consider a neighbour-
hood of a point of P. This neighbourhood contains a white interval I of a certain
rank p. If I,= I, I,__ , Ik are all the white intervals of rank p, then the sets Il P,
I, P, ..., Ik P are congruent and contained in intervals without points in common, and
their union is P.

We now construct a non-decreasing function F(x) constant in the intervals con-
tiguous to P and increasing at every point of P. For each k let 1k(1),1k(2), ... ,Ak(dk)
be dk positive numbers of sum 1. We denote by Ak the largest of the 1k(j). Let F,(x)
be a continuous non-decreasing function defined by the conditions:

(a) Fy(0)=0, Fn(21r)=1;
(b) F,(x) increases linearly by A1(91)13(0,) ... A,(65) in each of the white intervals

with left-hand ends given by (3.1);
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(c) Fp(x) is constant in every black interval of the pth stage of dissection.
We see at once, by considering I FP+1- F, 1, that if the series

Z(a1#2 ... #P)

converges, which we shall always suppose, then FP tends uniformly, as p --* oo, to a
function F(x) having the properties stated above and satisfying F(0) = 0, F(2n) = 1.

The particular function F obtained by taking Ak(j) = 1Jdk we will call the Lebesgue
function constructed on the set.

We shall compute the Fourier-Stieltjes coefficient
1 2'c

= 2n
Je-dF(x).

0

Using the formula (3.1) for the abscissae of the left-hand ends of the white intervals,
we find that c is the limit, for p -+ oo, of the sum

(2n)-' Y'A1(01) A2(02) ... A(O) exp { - 2nin[ai(0,)+n, a2(0,) + ... +711. - ?jP-1aP(Bp)])

extended over all possible combinations of B's, 6k taking the values 1, 2, ..., dk.
Writing

Qk(O) =Ak(1) e.a1<1»+11k(2) ei-1<2>0+... +Ak(dk)e"#,

P
we can write the precedingsum in the form (2n)-' FT Qk(2nnrll ... 74-1) (with t)1... it k_1 = l

for k = 1). Hence, passing to the limit,

Cn = R Qk(2nn'hi ... ilk-1) (3.2)
In k=1

We shall now consider a few examples.
(1) Sets of the Cantor type. These are obtained by successive dissections of the type

[2; 0, 1 -?k; 6k],

where 0 < bk < J. The points of the set are of the form

x=2n[e1(l-61)+e26i(l-?;2)+...+epgi...6P-1(1-fP)+...],
where ep is 0 or 1.

The polynomial Qk('/') corresponding to the Lehesgue function is

Qk(¢) = (1 + eu1-f1>4) = eui-9.>}4 cos >)(l - Sk) 0,

and hence the Fourier-Stieltjes coefficient of the Lebesgue function F is
m L r r r

c _ 11

-t
exp { - nni(1 - Sk) 61 ... bk 1) COs "61 ... Sk-10 - Sk)

2n k=1

" r
n cos nn6,... Sk-1(l

6k)-

rr2n k-1

If we write 61 Sk... _i(1 - Sk) = rk, then

m m

Erk=1, rp> Erk.
1 P+1

(3.3)

(3.4)c (2n)-' j-j eos rrnrk.Also x = 2n ek rk,
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A still more special case is obtained if all the 6k are the same number f , 0 < j <
The set is then said to be of Cantor type with constant ratio of dissection, and

z=27r(I-9)E6kgk-1, (3.5)
1 k-1

The classical Cantor case is g = }, when

z = 4ir E tk 3-k, cr = (-1)" (2rr)'1 11 cos
k-1

the c again corresponding to the Lebesgue function.
Suppose that 6 =1 /q, q = 3, 4, 5, .... For n = q'°, (3.5) gives

m m
c5., _ (- 1)Q"' (2n)-111 cos 7r(q -1) q--k = - (2n)-l 11 cos n(q -1) q-k.

k-1 k-1

The latter expression is independent of m and different from zero. Hence

(3.6) THzoBaal. If =1 /q, q = 3, 4, ..., the Fourier-Stsel.tjes coefficients of the L.ebeegue
function F(z) do not tend to zero.

Thus the periodic function F(x) - z/2n is of bounded variation and continuous, and
yet its Fourier coefficients are not o(l/n) (compare Chapter II, p. 48).

(2) Symmetrioot perfect vela of order d. These are obtained, d being an integer not lees than 1,
by successive dissections of the type

[d + 1 ; 0, (1- Ch) d-1, 2(1- Ch) d-', .... 1- Ch; Ckl,

where 0 < CA: < 1/(d + 1). The Cantor set corresponds to d = 1. The points ak(j ), 5=1,2.....d+1.
are in arithmetic progression, the first point being 0 and the last 1-4k The points of the set are

r= 2nd-'[e,(I -J1)+etf1(1 -Ck)+... +e.b1 ... I,-10 -6s)+...],
where e, takes the values 0, 1, ... , d. On setting yk = (1 - bk)/d, we can write the polynomial Qk
corresponding to the Lebesgue function as

1 , m ar b r d -1 ;.r Bin {(d+ 1) jyko)(d+11- (1+eYk +e Y: +...+e'Yk )=(d+1) a Yk
sin }yk

Hence
sin((d+ 1)rrnd-'C1 ... G-10 -G))

k-1 (d+ I) sin {nnd 'f, ... k-1(1 - k)}

The set being always a symmetrical perfect set, let d = 2g be even, and let us construct a function
such that for each k the number Ak(j) is the coefficient A(j) of zr-' in the expansion of

(g+ 1)-+(1 +z+z'+...
Then A(1) + A(2) + ... + A(2g + 1) = 1, as required; and, with yk = (1- fk)/2g,

l+erY16+...+ell" k')'= rr sin{(g+1)4yko} '
ia+

g+l Ls Ykb(g+l)ain(1ye )

'Bin ((g+1) {l...fk-1(fk)I
a

2i7c. 1)
k 1 (g+

(3) Consider asymmetrical perfect set of
ordeer

d, and let A5(j) be equal for all k to the coefficient
A(j) of zJ-' in the expansion of 2-d(1+z)e. Then

Qk(Y')=[I(I+erYkd)]' (yk=(1-fk)d-1),
W

2nc. _ (-1)* 11 [cos lrnd-1f1 ... Ik-1(1- f k)le.
k-1
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We shall now consider the modulus of continuity of the function F, confining our
attention to the case where dp = d, np =17 and fck = Max [dk(1), Ak(2), ... , .lk(d)] = p are
all constant. We shall show that then F satisfies a Lipackitz condition of order

logy l/I logn J.
Let x and x' > x be two points of P. If x and x' are end-points of the same interval

contiguous to P, then

F(x') - F(x) = 0.

If not, let p be the order of the dissection when for the first time appear at least
two black intervals in (x, x'). Thug there is at least one white interval of rank p
included in (x, x'), and so x' - x >_ 2-W

On the other hand, at the dissection of order p -1 there is at most one black interval
f') in (x, x'). It follows that

F(x') - F(z) = F(x') - F(,6') + F(f) - F(x) < 2#i-1.

Thus F(x') - F(x) < A(z' - x)n(*r ui log r

A being independent of x.
The extension to the case in which x, or x', or both, are outside P is immediate, since

we apply the preceding inequality to the interval (xl, x;), where xl and x; are the first
and last points of P in (x, x').

Example. The Lebeague function constructed on a symmetrical perfect set of order
d and of constant ratio of dissection f, belongs to A. with a - log (d + 1)/J log f 1.

4. The series En-;-aefon log Heinz

at efnx
The power series ei"1%n (4.1)

n-1 ni+a

which was first studied by Hardy and Littlewood, possesses many interesting pro-
perties. We suppose that a is real and c positive.

(4.2) THEOREM. If 0 < a < 1, the aeries (4.1) converges uniformly in the interval
O < x < 2n to a function g5a(x) a Aa.

The theorem is a consequence of certain lemmas, due to van der Corput, of consider-
able interest in themselves.

Given a real-valued function f (u) and numbers a <b, we set
F(u) = es if(U)

b

I (F; a, b) = f F(u) du, S(F; a, b) _ F(n),
a<ncb

D(F; a, b) = I(F; a, b) - S(F)- a, b).

(4.3) LEMMA. (i) If f(u), a < u < b, has a monotone derivative f'(u), and if there is
a positive A such that f' _>A or f' < - A in (a, b), then I I(F; a, b) I < 1/.i.

(ii) Iff'(u)>p>0orf"(u)< -p<0, then I I(F;a,b)I <4p4.
rb

(i) Since I(F; a, b) = (2lri)-1 f dF(u)/f'(u), the second mean-value theorem, applied
Ia

to the real and imaginary parts of the last integral, shows that I 2/nl < 1/A.
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(ii) We may suppose that f'>_ p. (Otherwise replace f by -f and I by I.) Then f'
is increasing. Suppose for the moment that f' is of constant sign in (a, b), say f' > 0.
If a < y < b, then f' 3 (y - a) p in (y, b). Therefore

II(F; a, b) I _< I I(F; a, y) I + I I(F; y, b) (y - a) + 1 / (y - a) p,

and, choosing y so as to make the last sum a minimum, we find that I I(F; a, b) I S 2p- i.
In the general case (a, b) is a sum of two intervals in each of which f' is of constant sign,
and (ii) follows by adding the inequalities for these two intervals.

(44) LEMMA. If f'(u) is monotone and I f' I e } in (a, b), then

I D(F; a, b) I S A,
where A is an absolute constant.

ra
Suppose first that a and bare not integers. The sum S is then

J
F(u) do'(u), where

a
i/r(u) is a function constant in the intervals n < u < n + 1 and having jumps 1 at the
points n. If we take i/r(u) _ [u] + 4 for u non-integral ([u] being the integral part of u)
and lr(n)=n, then

r
D(F; a,b)_ +aF(u)dx(u), where X(u)=u-[u]-} (u+0, ± 1, ...).

a

The function X has period 1, and integration by parts gives

D(F; a, b)= -I(F'X; a, b)+R, I R I ,1.

The partial sums of S[X] = - ) (sin 21rnu)/irn are uniformly bounded. Multiplying
S[X] by F' and integrating over (a, b) we find that D - R is equal to the sum of the
expressions f r

1
D f (u) d esri(nw+nu) _ (6 f (u) d esnc{1e>-1 (4'5)2nin (Jaf'(u)+n Jaf'(u)n

for n =1, 2, .... The ratios f'/(f' ± n) being monotone, the second mean-value theorem
shows that (4.5) numerically does not exceed 2/7m(n - }), and so the series with terms
(4.5) converges absolutely and uniformly. This completes the proof if a and b are not
integers. If a or b is an integer, it is enough to observe that D(F; a, b) differs from
limD(F; a+e; b - e) by 1 at most.
`-.o

Remark. The condition I f' I _< } can be replaced by I f' I < 1-e, with e> 0, if we
simultaneously replace A by A,

(4.6) LEMMA. If f'(u) _> p > 0 or f'(u) _< - p < 0, then

I S(F; a, b) I < [I f'(b) -f'(a) I + 2] (4p-i+ A).

We may suppose that f' 3 p. Let an be the point (if any) where f (ap) = p -1, and let

F,(u) = e:lrtcl(>,>-p+,),

for p = 0, ± 1, ± 2, .... Then f'(u) -p I < i in (ap, ay+,). Let a a.+i, ..., a.+s be the
points a, if any such exist, belonging to the interval a <_ u _< b. From (4.3) and (4.4)
it follows that

S(F; an, a,+,) = S(F,; ap, a,,. ) = I (F,; a,, ap+,) - D(FV; as,, a,+i?
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does not exceed 4p-i + A in absolute value. The same holds for S(F; a, a,) and
S(F; a,+a, b). Since S(F; a, b) is the sum of these expressions for the intervals (a, a,),
(a,, ai+1), ... , (a,+,, b), whose number is a + 2 =f -f '(a,) + 2, the lemma follows.

To complete the proof of (4.2) we need the following result:

(4.7) THEOREM. The partial sums 8N(x) of the aerie8 Fieicnlasneinx are O(N1), uni-
formly in X.

The function f (u) _ (2n)-' (cu log u + ux) has an increasing derivative. If v 0 is
an integer and a = 21, b = 21+' a simple application of Lemma (4.6) shows that
I S(F; a, b) l < C211, with C depending on c only. The same holds if 21 = a < b < 21+'.
If 2" < N S 2"+', then

I SN(x) I ,1 + I S(F; 1, 2) 1 + I S(F; 2,4)1 +... + I S(F; 2n, N)
51+C(1+21+...+21n)_< C121n_< C1N1,

with C1 depending on c only, and (4.7) is established.
Return to (4.2). Summation by parts gives for the Nth partial sum of (4.1-) the value

N-1
8,(x)iv-t-2 +8N(x)N-1-a. (4.8)

v=1

Since \v-1-a=0(v-1-a), we conclude from (4.8) and from the estimate 8,(x)=O(v1)
that the partial sums of (4.1) are

(i) uniformly convergent if a > 0;
(ii) uniformly 0(log N) if a = 0;
(iii) uniformly O(N-a) if a < 0.
Let 0 < a < 1. Making N -> oo in we obtain

N ao

0a(x+h)-¢a(x)= E{s,.(x+h)-8,(x)}Av-i-a= E + E =P+Q,
v-1 v-1 v-N+1

say. Let 0< h<- 1, N = (1/h). The terms of Q are 0(v1) Av-1-a =O(v-'-a) so that

Q = O(N-a) = OW).
On the other hand, since 8;,(x)-apart from a numerical factor-is the partial sum of
(4.1) with a = - J, we have s;,(x) = 0(v1), by case (iii) above. Therefore, applying the
mean-value theorem to the real and imaginary parts of we get

N N
P I < 0(hvi) At,-1- = 0(h) V P- =0(hN'-a) = 0(ha).

v=1 1

Since P and Q are 0(ha), so is 0a(x + h) - 0. (x); and thus 0. E Aa.
Theorem (4.2) ceases to be true when a = 0. It may be shown that in this case (4.1)

is nowhere summable A and so certainly is not a Fourier series. (Another interesting
consequence is that the function eicn la n

- zn,na

which is regular for I z I < 1, cannot be continued across I z = 1 for any a.) However,
we have

(4.9) THEOREM. If 8> 1 and c is positive, the series
co e;cn Iog n

, ,n1(log n)a
(4.10)

converges uniformly for 0 < x _< 27r.
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We replace &-i- by Ov-I log-ft v = O(v-f log-f v), N-I by N-I log-ft N in (4.8),
and observe that a series with terms O(v-1log-f v) converges.

(4.11) THEOREM. There is a continuous function f (x) such that, if an, bn are the Fourier
coefficients off, the series I(I an 12-6 + I b, 12--C) diverges for every e > 0.

For if f(x) is either the real or imaginary part of the function (4.10), with 8> 1,
and if pn = (an + bn)I, then pn = n- I log-ft n, Ep?,-" diverges, and this is equivalent to
the divergence of E ( I an I z- + I bn 1 2 - )

.

5. The series 1P-fi e"° eivz

We shall now discuss the series

v-dew e' (5'1)
P-1

Here, once for all, 0 < a < 1, - n 5 x S n.

(5.2) THEOREM. (i) If 6> 1- }a(> 1), the series (5.1) converges uniformly to a con-
tinuous sum i/r..fi(x).

(ii) If, in addition, fa+f < 2, then ,.a(x) a AI:+,8-1

For fixed x and for u > 0, the function f (u) = (2n)-1(ua + ux) has a decreasing
derivative

f'(u) = (2n)-1(aua-1 +x). (5.3)

Hence, no being any positive integer, (4.3) (ii) gives

i. -<4(27r)4{a( I _ a)}-I nl-Ia = Aa n'-Ia (n >-no). (5'4)eznif(u)du

Since f'(u) -+ x/27r as u -)- oo, we have I f'(u) I for u no and np large enough. By
Lemma (4.4), and the Remark following it, I D(F; no, n) 15 A. Combining this with
(5.4), we get

J"I
ew=eY_ I< +I 1<no+O(nl-Ia)+AO(&-Ia),

1 ' n,+1

Let sn(x) be the sum on the left. Then, summing by parts, we get for the Nth partial
sum of (5.1), N-1

E 8,,(x) An-ft + 8N(x) N-d, (5'5)
n-1

The terms of the sum here are O(nl-Ia).O(n-f-1) = 0(n-Ia-a), and 8NN-a = O(N1-I4-f )
It follows that, under the hypotheses of (i), (5.5) tends uniformly to a limit as

We also observe that if ja +,8 = 1 then (5.5) is uniformly 0(log N), and if }a +,8 < 1
it is uniformly O(N'-i -d).

To prove (ii), we make N->oc in (5.5). We have

'f a, fi(x) _ an (x)

N m
E =P+Q,

1 1 N+1
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say, where 0 < h < 1 and N = [ 1 /h]. The terms of Q are O(n'-}a) . O(n-fl-') = O(n-fa-Q).
Henoet

Applying the mean-value theorem to the real and imaginary parts of an, and using the
remark just made (for 8= -1), we find that the terms of P are O(hns--ia).O(n-a-').
Hence

It follows that >[ia.,e e A}a+,e_1.

(5.6) THEOREM. Let f> 0. Then
(i) the aeries E converges uniformly for e x I < n, e > 0, and, in

particular, converges for x + 0;
(ii) if Ja+f< 1, the suma,f(x) of the aeries is

'-a)), O(log l/x), 0(1) for x-++0, according as a+fi< 1, = 1, > 1,

and is Oox for x-->-0;
(iii) if Ja+f=1, then

r/ra a(x)=0(1) for x-o-+0, *.,, (x)=O(log Jx J) for x-*-0;
(iv) if 8> }a, (5.1) is

(i) For e < I x I < n and it > no = no(e), f' (u) I has a positive lower bound. By
Lemma (4-3) (i), the left-hand side of (5.4) is uniformly bounded. Using Lemma (4.4)
and the Remark to it, we see that the partial sums sa(x) of E e"+-) are uniformly
bounded fore e I x I < n. An application of partial summation completes the proof of (i).

(ii) By C we shall here denote a positive constant independent of x and n. First,
let 0 < x < n. We shall show that

l < C/x (0 < x < 7r). (5.7)

In virtue of (4-4) and (i), it is enough to prove that, for x small enough, these in-

equalities are satisfied by the integrals I4(x) =
J

n e{"° a dv. The new inequalities follow

immediately, if we observe (see (5-3)) thatf'(u) exceeds both Cua-' and Cx, and apply
(4.3).

For fixed x, the first inequality (5.7) is more advantageous if n is small, the second
if n is large. For n -x1Ka-1), the right-hand sides in (5-7) are of the same order. Hence,
setting M = [xlna-')], we have

M eo

0,,,e(x) = E sn(x) An--P + E = A + B.
n-1 1 M+1

The terms of A are O(n'-a).O(n-f-l), and the terms of B are O(x-'An-a). It follows
that, if a +,8 < 1, then

0.,,(x) = O(M1 -B) + O(x-'M-a) =

Similarly we get the other estimates in (ii) for x-* +0.
The case - rr < x < 0 is slightly less simple, since then f'(u) is not of constant sign. The

single zero of f' is
uo ='so(x) = 0 x I /a)-1/(1-a)

t The interval (z, x+ A) may be partly outside (-n, n), but since it is interior to (- 271, 2n) it is
easy to see that the conclusion holds.
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It tends to co as x -* - 0, and we need only consider small x. Clearly f f' I _> C x I for
u > 2u0. Set N = [2uo] and split the series (5.1) into two parts, E1 and E8, corresponding
to n 5 N and n > N. Since in any case sn(x) =O(nl-ia) uniformly in x, we have, by (5.5),

E1=O((2uo)1-}a-d) = 0(1 x
1-1-}a-^a-a)).

If we can get the same estimate for Eg, the proof of (ii) in the case z < 0 will be complete.
Now, summing by parts,

Es= E {sn(x)-sN(x)}On-fi.
N+1

Using the fact that f' > C I x I for u > N + 1 and applying Lemmas (4.4) and (4.3) (i),
we obtain sn(x) - sN(x) = 0(x-') for n > N, which leads to

EQ = O(x-1N-9) = 0(1 x I 0(1 x I

(iii) The proof is contained in that of (ii).
(iv) It follows from (i), (ii) and (iii) that the function lJra,,,(x) is always integrable

L over (0, n). The estimates for x - 0 involve a much larger order of magnitude, since
the exponent (1 - ,)a -,8)1(1 -a) can be arbitrarily large if 1- a and fi are sufficiently
small. However, ;lra is L-integrable over (- n, 0) if ,6 > ja.

On the other hand, it is easy to see that (5.1) is a Fourier-Riemann series if merely
0 < a < 1, 8 > 0. For, when it is integrated termwise with respect to x, it converges
absolutely and uniformly to a continuous function `Y(x), such that `Y'(x) = Vra.a(x) for
x $ 0 (see (i )). Thus 'V(x)is the Riemann integral of 1/ra.6(x), and (5.1) a Fourier-Riemann
series of a.d Hence, for /f > ,)a, we have a Fourier-Lebesgue series.

The special case f6=s)a in (5.6) (ii) leads to the estimate 0(1/x) for x->-0. For a
later application we shall need the following result:

(5.8) THEOREM. If 0 < a < 1 and y is real, the junction

Xa,,,(x) = E n-}a(log n)-r ein- ei'
s

is of the form
0(X-4l-a)log-r 1) and

`\ x
o(,-' log-, I1l I for x->+0 and x->-0,

\\ x

respectively. Moreover, if y > 1, Xa.Y is integrable and (5.9) is S[Xx.,.].

The proof is essentially the same as that of parts (ii) and (iv) of (5.6).

(5.9)

6. Lacunary series
Lacunary trigonometric series are series in which the terms that differ from zero

are `very sparse'. Such series may be written in the form

(a, cos nkx + bk sin nkx) = E Anr (x), (6.1)
k-1 k-1

supposing for simplicity that the constant term also vanishes. We define a laounary
series more specifically as one for which the nk satisfy for all k an inequality

nk+1/nk > q > 1,
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that is, for which they increase at least as rapidly as a geometric progression with ratio
greater than 1.

Given a lacunary series (6.1), consider the sum

V (ax+bj)=Ep,F
k-1 k-1

(6.2)

(6.3) THEOREM. If Epk is finite, the series EA,, (x) converges almost everywhere.

Let am(x) and o- (x) denote the partial sums and the arithmetic means of EA., (x)
with the vacant terms replaced by 0's. The sequence om(x) converges almost every -
where and (6-3) follows from the fact that am(x) - om(x) 0 for every x (Chapter III,
(1.27)).

The converse of (6-3) is also true and lies deeper. If EAn, (x) converges in a set of points
of positive measure, then Epk is finite. We shall prove an even more general theorem.
Let T* be any linear method of summation satisfying the first and third conditions
of regularity (Chapter III, § 1); the second need not be satisfied. All linear methods of
summation used in analysis are T* methods.

(6.4) THEOREM. If EA., (x) is summable T* in a set E of positive measure, then Epk
converges.

We need the following lemma:

(6.5) LEMMA. Suppose we are given a set iff c (0, 2n) of positive measure, and numbers
A > 1, q > 1. Then there exists an integer ho = ho(d°, A, q) such that for any trigonometric
polynomial P(x) = Z (at cos n, x + b1 sin rn5 x) with of+,/n1 > q > 1 and n, > ho we have

A-I IlII JE(a;+b;)<1 Ps(x)dx_<AI eI JE(al+b!). (6.6)r
The inequalities hold also if P(x) is an infinite series with E(as+b!) <oo.

Write the polynomial P in the complex form Ec, ei' -, with n_, _ - n,. Then

We have JP2(x)

rE I ,,12 E(aa+bs)

d x =J (Ec,,et"x)(Se,e-t,',2)dx
r r

=I.9 IEIc,IS+ Ec,c, f ean n,)xdx. (6.7)
p+Y fe

Let ym denote the complex coefficients of the characteristic function of d. The
last integral is then 2nyn,-n4. By Schwarz's inequality, the modulus of the last sum
does not exceed

r2,r(E I cpc, Iz)} (!r I yarns Ii)i= 27r(E I cY I2) ( I Yn tty IQ)} (6.8)
{,Y l.hV Y

We assert that there exists a number A = 0(q) such that no integer N can be repre-
sented more than A times in the form n, - n,, with p + P.

It is enough to assume that 0 <,u < v and consider the two cases:
(i) N =n,+n,,,
(ii) N=n,-n,,.
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In case (i) we have }N < n, < N, and since the n, increase at least as rapidly as q',
the number of n, satisfying this inequality does not exceed y + 1, where qV = 2. In
case (ii), since n. < n,/q, we have n, - n,iq < N, that is n, < Nqf (q - 1). On the other
hand, n, > N. Since the number of the n, between N and Nq/(q- 1) is bounded (the
bound depending on q), the existence of O(q) follows.

Thus the last factor on the right of (6.8) does not exceed {2A(I YA 1' + I YA+11' +...))1,
where h is the least integer representable in the form n, - n with 1 <,u < Y. But

n,-nil >n,-n,_1?n,(1-q-')?n1(l -q-').

This shows that h is large with n1.
The y's depend only on f, and E I y, 1' = I of 1 (2n)-' < 1. Hence if n1 is large enough,

n1 ha(d, A, q), we can make the right-hand side of (6.8) less than

(1-A-')of I<(A-1)14f 1,

and we obtain (6.6) in virtue of (6.7).
If P is an infinite series with E (al + b!) finite, we first apply (6.6) to the partial sums

P1 of P. Then making t -> oo and observing that

f,P7dz 4 P2 dx,
we get the required result.

Passing to the proof of (6.4), we denote by 8,,,, the elements of the matrix T*
considered. The hypothesis is that for every xcE each of the series Z

m = 0, 1, 2, ..., converges to a sum rm(x), which tends to a finite limit as m -+ ao. We
begin with the case when the matrix is row-finite. If we set fl +,8.,r+1 + ... = R.,,,
then

rm(x) =kE R..,., (6'9)

where ak cos nkX + bk sin nkx. The sum here has only a finite number of terms
different from zero. Since rm(x) converges in E, we can find a subset I of E with
I e I > 0 and a number M such that I rm(x) I <M for all xEi' and all m. (For
E = E1 + E, +..., where EP is the set of points x e E such that 1 r (x) I < P for all m.
At least one set En, say Ea is of positive measure and may be taken for f.)

We now apply (6.5) with h = 2. The set a and the numbers q, A determine an integer
ho such that (6.6) holds for n1 > ha. The latter condition may be assumed satisfied
here, since we may always reject a finite number of terms from EAnk (x) without in-
fluencing its summability T (although this can affect the value of the constant M).
Thus

Let now K > 0

1.9 1E(a[+bf)R'm.,<_< 73m(x)dx<M'I6I'

be any

E(ajr + b;r) Rm*1 < 4M1.

fixed integer. Since lim k=1, 2, ..., the last
inequality gives K

E
K
E (aJ+bjr)<4M',

k-1 k-1

and the convergence of (6.2) follows.
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We can remove the restriction on {f.} to be row-finite, as follows. Let r,* (x) be an
expression analogous to rm(x) (cf. (6.9)), except that the upper limit of summation is
not +oo but a number N = N(m). We take N so large that the following conditions
are satisfied:

(a) I rm(x) - I < 1/m for xe E - Em, I Em I < I E 12-m-1.

(b) lim(fmo+Nm1+...+16.N)=1.

If E* = El + Es + ... , then I E* I < I E 1, and in the set E - E*, which is of positive
measure, the linear means rn*,(z) tend to a finite limit. But condition (b) ensures that
the r*n(x) are T* means corresponding to a matrix with only a finite number of terms
different from zero in each row. Thus the general case is reduced to the special one
already dealt with.

Remarks. (a) If the Epk is infinite, (6-4) implies that EA,, (x) is non-summable
almost everywhere by any method of summation. Considering, in particular, the
method (C, 1) we get: If Epk diverges, EA., (x) is not a Fourier series.

(b) If Epk is infinite, then not only does the sequence of the partial sums of EA ,, (x)
diverge almost everywhere, but so does every subsequence of this sequence. For
selecting such a subsequence amounts to an application of a linear method of summa-
tion, in whose matrix each row consists entirely of zeros except for a single element 1.

(c) The proof of (6.4) holds if we assume that (z) is merely bounded T* at every
point of E, I E I > 0. For some problems it is desirable to have a similar result for
one-sided boundedness.

(6.10) THEOREM. Suppose that EPk diverges, and let r,n(x) be the T * means of EAn1. (x).
Then the set of points x at which

rm }

r*(z)=o{ E (P=ak+bk) (6'11)
k-1

is of measure zero.

Here r,**(x) = max {0, r,n(x)}. The sum in curly brackets, which we shall denote by
r2, tends to +ao with m, since R.,., -* 1 for fixed k. Hence (6.10) implies that if the
T* means of EAnk(x) are bounded above (or below) at every point of a set of positive measure,
the series Epk converges.

Suppose that we have (6.11) for every x E E, I E I > 0, and that Epk diverges. Given
any e > 0, there is a set 4' E with I cl I > } I E I such that rm(x)/ 1',n _< e in e, for m > m0.
By dropping the few first terms of EAn, (x), we may, without changing6, suppose n1 as
large as we please. Let an, Nn be the Fourier coefficients of the characteristic function
of the set 4'. Then

fe I rm(x)I dxf {Irm(x)-e1'ml+erm}dx {2eI'm-r,n{x)}dx

ro

=2dmIoff I-it E(ankak+fnkbk)Rmnk52e1'mIeI+nrm(E(ank+ t)}}.
k-1

The right-hand side here is less than er n(2 I (f I +n) if n1 is large enough. This shows
that

If 1r,nidx o(I',n).
(6'12)
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By (6.5), the left-hand side of
l}

fT2mdX (fi T'n dx)4( T'mdx1`
s J

(an immediate consequence of Holder's inequality) exceeds some fixed multiple of
rm for nl large enough. By Theorem (8.20), which will be proved below, the integral

fr4dx (<- Uli[Tm]) does not exceed a fixed multiple of I I exceeds some

fixed multiple of r,,,. This contradicts (6.12) and proves Theorem (6.10).
In this argument we tacitly assumed that the rm were finite. This follows from the

hypothesis that the series defining Tm(x) converges in a set of positive measure.
Consider the two lacunary series

Eb-"' cos b"x = f,(x), Eb-''en cos Px = g,(x)

(already discussed in Chapter II, § 4), where a is positive, b is an integer not less than
2, and en -+ 0. From (6.4) we deduce that, if 0 < a _< 1, then the continuous function
ff(x) is differentiable at most in a set of measure zero. For

fe(x+h)-Ja1x-h)= 'zll-a) n 8mb'h
2h

-Eb sinb xr
bnh

.
At every point of differentiability off. the left-hand side tends to ff(x) as h - 0, which
means that S'[ f,] = - Ebn(i-,) sin b"x is summable by a linear method of summation
to a finite limit. Hence, if f, existed in a set of positive measure, we should have
Ebz,O-a) < oo, which is false.

This result asserts less than the classical resultof Weierstrass-Hardy (seep. 48) that fe
is nowhere differentiable if 0 < a e 1. The proof of the latter result, however, uses the
special structure of the coefficients and exponents in S[ f ], while the proof given above
is valid for general lacunary series for which no such results are possible (see Example
17, p. 230). For example, the above proof shows that gl(x) is almost nowhere differen-
tiable if let = oo. On the other hand, we know that g,(x) is smooth and so certainly
differentiable in a set of points having the power of the continuum (Chapter II, § 3).

Theorem (6.4) shows that if a lacunary series `behaves well' on a set E of positive
measure, then it 'behaves well' in (0, 277). We shall now give another example of
this principle.

(6.13) THEOREM. (i) Suppose that EA.,. (x) converges on a set E, I E I > 0, to a function
f (x) which coincides on E with another function g(x) defined over an interval I = (a,,8) 3 K
and analytic on I. Then the series

E (ak cos nk x + bk sin nk x) p° k

converges in some circle I z I < 1 +c (z = p e'=, e > 0).
(ii) If (x) converges to zero on a set E of positive measure, then the series vanishes

identicallyt.

The hypothesis concerning g means that in the neighbourhood of every point
X E (a,#), g is represented by a power series.

t The result holds if the series contains a constant term.
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(6.14) LEMssA. If His any measurable set in (0, 2n), then we can find a sequence of
numbers hm > 0 such that for almost all x e H and form > m0(x) the points x ± hm are in H.

Let X(x) be the characteristic function of H. Then

I(t)
=fI

X(x+t)-X(x)I dx-->0
D

as t -* 0. By Theorem (11.6) of Chapter I there is a sequence km -* 0 such that
X(x+k,,,)-X(x)-+0 almost everywhere, and so also almost everywhere in E. Since
X only takes the values 0 and 1, we have X(x + km) = X(x) for almost all x e E and
m > m0(x). Moreover, {km} may be asubsequenceof anysequence tending to 0. Therefore,

repeating the argument with the integral J(km) =
J

oW J X(x - km) - X(x) J dx we obtain

an {hm) with the required properties.
We apply this to H = E in (6.13) (i). For almost all x E E and sufficiently large m,

g(x+h.)-g(x-hm) f(x+hm)-f(x-hm) sinnkhm
-- - -

2h
- - --

. 2h
11 - - _

- Enk(bk cos nkx - ak sin nkx) n hm m k m

As m - oo, the left-hand side here tends to g'(x). It follows that the series

Enk(bk cos nkx - ak sin nkx)

is summable by a linear method of summation almost everywhere in E. Let S, S', S', ...
denote respectively the series EA., (x) and the series obtained from it by successive
termwise differentiation. By (6.4), En;}i(a;r+b;) converges. Hence there is a subset
E,cE, J El I = J E 1, such that S' converges in El to sum g'(x). Similarly, repeating the
argument, there is a set E,cE J E$ J = J E, J, such that 8' converges in E' to sum g'(x),
and so on.

All the SO) converge in the set E* = EE,E2 .... Clearly J E* J = i E J. We apply
Lemma (6.5) with A = 2, to P = SX0, d= E*. We may suppose n1 so large that (6.6) holds.
Thus, with yk = al + b,2, 4 f (6.15)

We may further suppose that the interval (a, f) is closed. The classical inequality of
Cauchy for the coefficients of power series then gives

Jg0)(x)J<Mv!8'' (a<x<f,v=1,2,...)

with suitable M and 8. Applying this to (6.15), and keeping only one term on the left,
we get

y* n1v (2HO 8-P)2 < 2Mv''6

v v/nk

y jt k (2M)'n``
(VIP)

If we set v = [Onk] = integral part of we obtain

lim sup yi/nk < 2-Is < 1,

and part (i) of (6.13) is established.
As a corollary of this we have the following classical theorem.
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(6'15) THEOREM OF HADAMARD. If a power series

ECk z'+1, nk+1/nk > q > 1,

converges for I z < 1 and is analytically continuable across an arc of I z I = 1, then the
radius of convergence of (6.17) exceeds 1.

For Eck einAx is, by hypothesis, Abel summable to a function g(x) analytic on an
arc (a, fl) and is also, by (6-4) and (6-3), convergent almost everywhere in (a,/1).

In case (ii), g = 0. The rejection of the first few terms of (6- 1), so as to make n1 large
enough and (6-6) applicable, amounts to making g a polynomial of order m < n1.
Clearly I g(') I is majorized by Mm", where M is now the sum of the moduli of the
coefficients of g; and (6.15) leads successively to

Eyknk < 4Mamz', y 1 nl < 2Mm".

The last inequality is impossible, for v large enough, unless y1= 0. Similarly
Y2= Y3= ... = 0, and case (ii) is established.

Remark. It follows from (6-13) (ii) that if two lacunary series S1 and S, have the same
exponents (or, what amounts to the same thing, if the joint sequence of the exponents
in S1 and S, is still lacunary), and if they converge to the same sum on a set of positive
measure, then S1= S. The result holds for any two lacunary series, but the proof is then
more difficult.

7. Rlesz products
Consider the infinite product

fj(1+a,,cosn'x),
r-1

where the positive integers n" satisfy a condition

n"+1/n" > q > 1

and - 1 < a" < 1, a. + 0 for all P. Let

N'k=nk+nk_1+...+n1, I'k=nk+1-nk-...-n1 (k=1, 2, ... ).

Then /ck<nk(l+q"1+q-2+...)=nkgl(q-1),
/Lk>nk+1(1-q-1-q-2-...)>nkq(q-2)/(q-1).

Thus fik >,Uk if q - 2 > 1, that is, if q > 3, which we assume henceforth.

(7'1)

The kth partial product of (7.1) is a non-negative trigonometric polynomial

A& k
pk(x) = 1 + Y, Cos vx = II (1 + at cos nix), (7-2)

p-1 ti-1

where y" = 0 if v is not of the form ni. ± ni.. ± ... , with k > i' > i" > .... The difference

Pk-1 - Pk = Pk ak+1 CC8 nk+1 x

is a polynomial whose lowest term is of rank fik > fck. Hence the passage from pk to
Pk+1 consists in adding to (7-2) a group of terms whose ranks all exceed uk. Making
k --goo, we obtain from (7-2) an infinite series

1+
.-1

(7-3)
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in which y. = 0 if v * n, ± ni. ± n;.. ± ..., i > 1' > .... We shall say that (7-3) represents
the product (7-1). The partial sums 8,(z) of (7.3) have the property sPt(x) = P&)-> 0.
It follows from Theorem (5-20) of Chapter IV that (7.3) is the Fourier-Stieltjes series
of a non-decreasing continuous function F(x). This function is obtained by integrating
(7.3) termwise. In particular

7
r

F(x) - F(0) = lim
J

pk(t) dt. (7.4)
k-' 0

Thus

(7.5) THEOREM. The series (7-3) representing the product (7.1), with nk+I/nk>3,
- 1 <ay < + 1, is the Fourier-Stieltjes series of a non-decreasing continuous function F
defined by (7.4).

The series (7-3) is formally obtained by multiplying out (7.1) and replacing the pro-
ducts of cosines by linear combinations of cosines. No two terms thus obtained are of the
same rank, since every integer N can be represented in the form nt ± n;. ± ni.. ± ... , with
i > i'> i" > .... at most once. (Such sums, being greater than must be positive.)
For suppose we have another representation N = nk ± nk. ± .... k > k'> .... with k * i,
say k < i. Then n1= ant_1 + bn;_Q + cni_9 + ... , where a, b, c, ... take only the values
0, ± I and ± 2. The right-hand side of this equation is less than

2n1_1(1+3-1+3-2+...)=3n1_1,

and so cannot be equal to ni. Hence k = i, and we have ni. ± ni.. ± ... = nk, ± nk.. + ... .
This gives i'= k', and so on.

In particular, ay. If ay does not tend to 0 (e.g. if ay = 1, ny = 31) we obtain, with
F. Riesz, a new example (historically the first) of a continuous function of bounded
variation whose Fourier coefficients are not o(1/n).

The products (7-i) are called Riesz products.

(7.6) THEOREM. If - 1 < ay < 1, n,. 1/ny > q > 3, and Ea. = co, then the function F
of (7-4) has a derivative 0 almost everywhere.

By Chapter III, (8- 1), the series (7.3) is almost everywhere summable (C, 1) to sum
F'(x). The series has infinitely many gaps and since

ttk/I4.k>_nk+1(1-q-'-q-q-...)Ink(' +q-1+q-E+...)>q-2> 1,

Chapter III, (1.27) shows that the partial products pk(x) converge to F'(x) almost
everywhere. The inequality I + u <e's gives

k \\
).0<pk(x)<exp(>a,eosnyxIII

ynI

Since Ear = oo, the partial sums of Eay cos nyx take arbitrarily large negative values
at almost all points (see (6.10)). Thus lim infpk(x) =0, that is, F'(x) = 0 almost every-
where. Incidentally we have proved that the product (7.1) converges to 0 almost every-
where.

Remark. Using Theorem (6.3) we easily prove that if in (7-6) we assume that
Ea',<oo, then (7-1) converges almost everywhere to finite values different from 0.

(7.7) THEOREM. If ay__.). 0, Eat=oo, and nv+1/ny>q>3, then both the series (7-3)
representing (7.1) and its conjugate series converge almost everywhere, the former to zero.
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The partial sums s, (x) of (7.3) converge almost everywhere. The same holds for
the partial sums a, (x) of the conjugate series since the latter is summable (C, 1)
almost everywhere and has the same gaps as (7.3). If tn=8n+ian are the partial sums

of 1 + yr e'rx, then M(x) = sup I t, (x) I is finite almost everywhere.
k

Take any point x at which tOk converges, so that M = M(x) is finite, fix k and let
A be so large that

Pk-'
Yrerrs -< A (I -<y -<,uk-1), (7'8k-1)

Pi

Yr
er: -<A-2M (µ,_1<u ,zz;i=1, (7'9k-1)

The number A prima facie depends on k, but we give an inductive proof that the
inequalities are true for all k and an A independent of k.

rr-,
We have 8Pk = 1 + Yr cos vx (1 + ak cos nk x)

r-1
1 Pk--,81,k+akCosnkx+IIak yr[cos(nk-v)x+cos(nk+v)x]. (7.10)

P-1

Since nk ± v > 0, the passage from s,k to tak consists of replacing cosines by exponentials.
We shall now estimate to for P'k-1 < A< Ak-

Consider separately the cases

(a) 1k-1<A<nk, (b) nk-< A-< fk

In case (a), as we see from (7.10),
k

1
-,

A = A t 2 k E y,erink-r)z,or tt -lPk_ Pk_ 1

+
a r_nk-A

according as A < nk - Fk-1 or A > nk - Rk-1. In the latter case, the last term on the right
pk-,

is absolutely 5 I ak I E Yrei- ,) I ak A, by (7-8k-1). In case (b),
nk-A

11

ft-,

tnk = tnk-1 + ak ernLZ, to = tPk - Yv eunktr)z for A > nk,
A-nktl

and the last term is again absolutely 5 } ak I A. Hence

ItA-tPk_,I-< IIakI(A+2) or ItA - t$kI f IakiA (7'11)

for ,uk_1 < A S nk or nk < A -< µk respectively (the additional I ak I on the right of the first
inequality being actually needed for A = nk only). In particular,

I to I <M+f I akI (A+2), M+}A+ 1

for all A in the range (FCk-1 + 1, Fk).
Suppose now that A is so large that

2M+(}A+ 1) <A-2M.
Then, if Fjk. 1 <FL -Pk,

INk

Yvei"r
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< , u we have

I

P&

SIE +i i5A-2M+2M=A.
µ µ µy+1

Thus (7.9k_j) and (7.8k_1) imply (7 9k) and (7.8k)1 which shows that these hold for all k.
In particular, the tA(x) are bounded, even if a, does not tend to 0. If a - 0 then, by
(7.11), to converges almost everywhere. Since sv, converges to 0 almost everywhere,
so does st. This completes the proof of (7-7).

(7.12) THEOREM. Let n,+1/n. _> 3 for all v, and let Eal, < eo. Then (a) the (complex-
valued) series

1 + E S, cos vx (7.13)
1

representing the product 11 (1 + ia,, cos n. x) (7.14)
1

is the Fourier series of a bounded function; (b) if ni+1/n,, ? q > 3, the series (7.13) and its
conjugate converge almost everywhere.

Here the 8, are obtained from the ia, in the same way as the y, were obtained from the
a,,. The 8. are either real or purely imaginary. Obviously

k k

I1 (1 +ia,cosn,x)1 < fl (1 +a?)}< IT (1 +ae)}<ao
-1 1 1

and so there is a subsequence of the partial sums of (7.13) which is uniformly bounded.
This proves (a). (See Chapter IV, p. 148).

If t denotes the partial sums of I + E d ei'=, the proof of (b) is a repetition of that of

Theorem (7.7) with minor modifications caused by the terms of (7-13) being imaginary.
For clearly the partial sums of order pk of both (7-13) and its conjugate Z8, sin vx
converge almost everywhere. Hence t,,l converges almost everywhere, and the proof
analogous to that of (7-7) shows that t,1 converges almost everywhere. It is now
enough to observe that at each x where both tA(x) and tA( - x) converge, we have the
convergence of Ed,,cosvx and Y,8, sin vx.

Remarks. (a) Theorems (7-6), (7-7) and (7.12) remain valid if in (7.1) and (7-14)
a, cos n, x is replaced by a . cos n,,x + f, sin n, x = p,, cos (n,,x + with obvious con-
ditions on the p,,. The proofs remain the same.

(b) The indices of the non-zero terms of (7-3) and (7-13) are confined to the intervals
(u _l,pk) Since the latter interval contains nk, and since

klp-15nk(1 +q-1+...)/nk(1 -q--1-...)=ql(q-2),pk
we see that no matter how small e. is, e> 0, the indices of the non-zero terms of these
series will lie in the intervals (nk(1 -e), nk(1 + e)), provided q is large enough, q> qo(e).
We shall use this remark later (Chapter VI, § 6).

(c) Theorems (7-6), (7-7) and (7.12) (b) remain valid for n,+1/n, _> 3.
For (7.6) this is proved by splitting (7.1) into two subproducts, corresponding

respectively to even or odd v. At least one subproduct satisfies the hypotheses of (7.6),
with q = 9. Hence in virtue of the remark to Theorem (7.6) pk(x) converges to 0
almost everywhere. Using the fact (to be proved in Chapter X III, (5.13)) that if a series
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EAk (x) is summable (C, I) almost everywhere to sum o (x) and if a sequence
of its partial sums converges almost everywhere to limit s (x), then s (x) = v (x)

almost everywhere, we see that F'(x) = 0 almost everywhere.
The extensions of (7.7) and (7.12) (b) are based on a theorem (see Chapter XIII,

p. 176, Remark (i)) that if a sequence of the partial sums of an S[f ] or S[dF] converges
almost everywhere, so does the same sequence of the partial sums of the conjugate
series. In our case, 6,,,(x) converges almost everywhere, and so the same holds for
s,,(x). From this point on, the proofs remain unchanged.

8. Rademacher series and their applications
Several properties of lacunary trigonometric series are shared by Rademacher aeries

F.. cA(t), (8.1)
P-0

the functions ¢ being those defined in Chapter I, § 3. This is not entirely surprising in
view of the definition

0,(t) = sign sin 2"+lrt.

Rademacher series have a close connexion with the calculus of probabilities and are
typical of a very large class of series arising there. We shall need only simple properties
of (8.1) which can be proved directly.

We suppose that the c in (8.1) may be complex numbers.

(8.2) THnoazM. The series (8.1) converges almost everywhere if ): I e,,12 < oo. If
I C, I2 = oo, then, whatever the method T* of summation, (8.1) i8 almost everywhere

n n-summable T*.

The proof of the second part of (8.2) follows the same line as that of (6.4), and may
be left to the reader. We need only observe that the system of functions

0J,k(t) =O5(t)Y (0 -<j < k < oo),

is orthonormal over (0, 1). (Similarly we can prove an analogue of (6.10).)
If ?.' I c 12 * oo, the series (8- 1), with partial sums is the Fourier series of a func-

tion f E L2. Moreover (see Chapter IV, (1.1))

f 'I f-R,, 2dt-)0, f 1If-8.1dt -, 0, e (sn-1)&-!O,
0 0 a

where 0 -< a < b S 1. The third relation, which holds uniformly in a and b, is a con-
sequence of the second, and the second follows from the first by an application of
Schwarz's inequality.

Let F(t) be the indefinite integral of f(t), and let E, I E 1, be the set of points
where F'(t) exists and is finite. We have just proved that the integral of s,, over any
interval I tends to the integral of f over I. Therefore the integral of over I
tends to the integral off - 8k ,, as n -> co. Let I be of the form (l2-k, (l + 1) 2-k),1= 0, 1,
... , 2k - 1. Since the integral of af(t) over I is zero for j 3 k, the integral of 8 - Rk-1
over I is zero. It follows that for the intervals I just mentioned the integral off over I
equals the integral of 8k_1 over I.
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Let now to + p/2Q, toe E, toe Ik = (l2-k, (1 + 1) 2-k). Since 8k_1 is constant over Ik,

8k_1(to)=
I- f 8k_1(t)dt II I

as k-*oo,
k

which completes the proof of (8.2).
The analogue of Lemma (6.5) will be needed later and so we state it separately.

(8.3) LEMMA. Given any set d'c(0, 1) and any number h> 1, there is an integer
N

ho = ho(4', A) such that for any finite sum P(t) = Z ek 00),

r
M

A-'l
eIEICk

I2< I P(t) j2dt< A I e I F I Ck
12.

The result holds for N = oo provided E I ck I2 < oo.

The proof is similar to that of Lemma (6.5) and we leave it to the reader.

(8.4) THEOREM. If E I C I2 <ao, the sum f(t) of (8.1) belongs to Lr for all r> 0. More
precisely,

f I 1!r

Ar(E I c, I2)f < J
0

I f I rds) < B,(Y I c,,12)1 (r > 0), (8.5)

where A B, are positive and finite, and depend only on r. Moreover B, < 20, where 2k
is the least even integer not less than r.

We suppose first that the c, are real and that r = 2k is an even integer. Then
1 1

0822k(t)dt=EAa,a....sicm.Ch,...q", f ...0-,dt, (8.6)

where A,,,, Qi = (a1 + a2 + ... + a5)!/al ! a2! ... a1!, and a1, a2, ..., of are any positive
integers whose sum is 2k. The indices m1, m2, ..., mt vary between 0 and n. It is
easily verified that the integrals on the right vanish unless a, a2, ..., a, are all even,
in which case the integrals are equal to 1. Observing that

EAF q+...+Cn)k(fl1 4 8Y2+...+fi=k)
we obtain the second inequality (8.5) with f = 8n, r= 2k, and B,'k equal to the upper
bound of the ratio A2.,...251/A,81...,, Since almost everywhere, the in-
equality for f follows.

If we observe that A2a, 25, (k+ 1) (k+ 2) ... 2k

we see that
Afl,...di n(Yi+1)...2fi

Bj<(k+l)(k+2)...2k/2k<kk, B2k<kt.

The second inequality (8.5), being true for r = 2, 4, ..., must hold for any r > 0,
since 971,[f; 0, 11 is a non-decreasing function of r (Chapter I, (10.12) (i)). Clearly
B, < ki, where 2k is the least even integer not less than r.

The first inequality (8.5) is immediate for r 3 2, for then

9r[f] > 92U1=(c=y,
say. If 0 < r < 2 < 4, let t1 and t2 be positive and such that t1 + t2 =1, 2 = rt1+ 4t2. The
function 97? [f] being logarithmically convex in a (Chapter I, (10.12) (ii)),

y2 = $R2[.f ] < 011 ,T?4 - < 9)2, '{f] (2fy)'i',

which gives 971,[ f ] 3 y2-0-Yr.
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If c,=c;,+ic,and f=f'+if' are complex, then
1TlrU ] < Vr[f'] + 9JJ'] _< (ECv2)l} _< 2B,.(Z I C, 12)1,

and the second inequality (8.5) follows with B, doubled. Also if, for example,
Q:c;,2)1 _> (Ec;,2)1, then

1Qr[f] 11Ar(E I C, 12)1,

which gives the first inequality (8.5) with half the previous A,.
The estimate B < 2k1 enables us to strengthen the second inequality (8.5).

(8.7) THEOREM. If E I C, I2 < oo, exp {,u[ f (t) 12) is integrable for every u > 0.

For
fexp(P

I k IIfI2)dt=k

ok!joIfIEkdi< ok!(4#y2)k (8'8)

Since kk/k! < Ykn/n! = ek, the series on the right converges if 4eu.y2 < 1, that is if y is
small enough. It follows that for every u > 0 the function exp (,u I f- sn 12) is integrable
if only n is large enough. Since I f I2 < 2[I f- sn 12 + 18n 12], and sn(t) is bounded, the
integrability of exp (µ I f I2) follows.

Theorems on Rademacher series enable us to prove some results about the series

± a0 + E ± (an cos nz + bn sin nx), (8.9)
n-I

which we obtain from the standard series

4ao+ Z (ancosnx+bnsinnx)=Y, An(x) (8.10)
n-I 0

by changing the signs of the terms of the latter in an arbitrary way. Neglecting
the sequences ± 1 containing only a finite number of + I or of - 1, we may write (8.9)
in the form

An(x) 0n(t), (8'11)
R-0

where the 0. are the Rademacher functions and the parameter t, t*p/2a, runs
through the interval (0, 1). If the values oft for which the series (8.11) has some pro-
perty P form a set of measure 1, we shall say that almost all the series (8.9) possess
the property P.

(8.12) THEOREM. If ao

1a.- + E (an + b2) (8-13)
n-I

is finite, then almost all series (8-9) converge almost everywhere in the interval 0-<x-< 2n.
If (8.13) is infinite, then, whatever method T* of summability we consider, almost all
series (8-9) are almost everywhere non-mmmable T*.

Let Si(x) denote the series (8.11), and if the latter converges let SI(x) also denote its
sum. Let E be the set of points (x, 1) of the rectangle 0 < x < 2n, 0 < t < I where the
series converges. If (8-13) is finite then, by (8.2), the intersection of E with every line
z = x0 is of measure 1. Since E is measurable, its plane measure is 2n, and therefore the
intersection of E with almost every line t = to is of measure 2n. This is just the first
part of (8.12). The second part follows by the same argument provided we can show
that the divergence of (8.13) implies the divergence of A; (x) + A2,(x) +... for almost all x.
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To establish this, suppose that A1(x) + As,(x) +... converges in a set H, I H I > 0.
Then there is a subset H' of H, I H' I > 0, and a constant M such that in H' the sum of
our series does not exceed M. Let A (z) = p, cos (nx + 9,s), p, > 0. Integrating the
series over H' we get

EPn MIH'I.
n-1 X'

Since the coefficient of p l tends to ,) I Y J > 0 (see Chapter II, (4.5)), the convergence
of Ep, follows, contrary to hypothesis. Thus (8.12) is proved. As a corollary, taking
for example T' = (C, 1), we get

(8.14) THEOREM. If (8.13) diverges, almost all the series (8.9) are not Fourier series.

The theorem of Riesz-Fischer asserts that if (8.13) is finite, (8.10) is a Fourier series.
We now see that the Riesz-Fischer theorem is in a way the best possible, since:

(8-15) THEOREx. No condition on the moduli of the numbers a,,, b which permits
(8.13) to diverge can possibly be a sufficient condition for (8.10) to be a Fourier series.

(8.16) THEOREM. If (8.13) is finite, then for almost all t the sum SS(z) of (8.9) belongs
to every II, r > 0. More generally, for any p., exp {µ8!(x)} is integrable over 0 _< x _< 2n
for almost all t.

Let y' denote the sum of (8.13), and let ,u be so small that the right-hand side of
(8.8) converges. If K = K(µ, y) is the sum of the latter series, we have as in (8.7)

I
exp {4wS (x)} dt < K.

Integrate this over 0 <, x 2n and interchange the order of integration; then

f1&f'exp(s7(x))sr 2nK. (817)

The inner integral here is finite for almost all t. To remove the assumption that u is
small we argue as in the proof of (8.7).

We shall now consider lacunary series

E(akoosnkx+bksinnkx) (nk+i/nk3q> 1) (8.18)

and the sums y'=E(aj+bj). (8.19)

(8-20) TanoRax. Suppose that nk+i/ns q > 1 for all k and that (8.19) is finite, so
that (8.18) is an S[f]. Then

A..a{E(aj+b;7)}i<{2v f.I
f 'dx}'eB,.a{E(aI+b7)}i (8.21)

for every r> 0, where A,,a and B,,a depend on r
and

q only. If y 4 1, then also

f'exP/spdxC(8.22)
prate µ 4#0(q), with C an absolute constant.

It is enough to prove (8-22), sine then the second inequality (8-21) follows. The
first inequality (8-21) follows from the second by the oonvexity argument used in
the proof of (&4).
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We first suppose that q 3 3, and consider the series
m

Si(x)= Z; (a,cosn,x+b,sinn,x)
v-1

Then (8.17) is valid, provided j is small enough, with K an absolute constant. It
follows that there is a to4p/2Q such that

To exp (uSf.(x)} dx _< 2n-K. (8.23)

Consider the Riesz product (§ 7)
k

pk(x) = II (1 + cos n,x) =1 + Ey, cos vx.
V-1

We have yn,=¢,,,(to) for v=1, 2, ..., k, and
k 21F

S,(x+u)pk(u)du.

The function X(v) = exp (uv$) is increasing and convex for v 3 0. The function (2n)-1 Pk(x)
is non-negative, and its integral over (0, 2n) is 1. Jensen's inequality therefore gives

X(i I Bnk(x,f) I) 5 x( -502 I S10(x+u) I Pk(u)du) < I)Pk(u)du,
rYs

J 0
X(3I8nk(x,f

by (8.23). So, making k-ioo,

F*0
exp (}Ezf 2) dx 5 2nrK. (8.24)

This is just (8.22) except that u is replaced by }/c. The right-hand side here, 21rK, is
an absolute constant, since y _< 1 and fk is small enough.

For general q> 1 we decompose (8.18) into Q lacunary series for each of which
q> 3. (For Q we may take the least integer y such that qv 3 3). Correspondingly,
f = fr +f, +... + fp. CBs

*

By Jensen's inequality, and by (8.22) in the case q _> 3,

J exp{1a(f/Q)°}dx< Q kEl exp{1ufl}dx<C,

since the y's corresponding to the fk are not greater than 1. This proves (8.22) in the
general case.

The device used in the proof of (8.7) shows that, under the hypotheses of (8.20),
the left-hand side of (8.22) is finite for every 1z > 0.

In what follows f + = max (f, 0}, f - = max { - f, 0).

(8.25) THEOREM. Suppose that y'=E(ak+bk)<oo and write f(x) =EAnk(x).
Then both f + and f -, and so also I f 1, are not 1e88 than y,IQ in sets of points of measure not
less than 2naq, where A. and a,, are positive numbers depending on q only.

The proof is based on the following lemma, useful also in other problems:

(8-26) LEMMA. Suppose that g(x) 3 0 is defined in a set E, I E I > 0, and that

(i)
4-1

Egdx,,A>0, (ii)
_' f g°dx<B.JEJ
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Then for any 0 < 8 < 1 the subset E, of E in which g(x) > 3A is of measure not less than
19 I (1- 8)2 (A 2/B).

The integral of g over the set E - Ee, in which g < 3A, is less than 3A I E 1. Hence the
integral of g over Ee exceeds (I - 3) A I E by (i). On the other hand,

JBe
g=dx)}E,I}<(BIEI)fIE,II,

by (ii). Hence AIEI -3)<(BIE()}IE,Ii,
that is, E8 I > I E I (A=/B) (I - 3)1.

Return to (8.25). It is enough to prove the result for f+. Since the integral off over
(0, 2n) is 0,

-If+d,= - I ff jfId,?}A,,Qy477
"

'r

0

(see (8.21)). Since 2
I

(f+)'dx
< 2n ( f2dx=}y',

J0

an application of (8.26) with 8=4 shows that f+ exceeds }yAj,,=yA, in a set of
measure not less than 2n JAI, Q = 2rrµq.

The following analogue of (8.25) for Rademacher functions will be needed later:

(8.27) THEOREM. Let f (x) = Ec" 0 < x < 1, where the c, are real and y2 = E cn < oo.
There exist two positive absolute constants e, rl such that both f+ and f- (and so also I f 1)
are not less than yy in sets of measure not less than e.

This is a consequence of Lemma (8.26) and of the inequalities Jl,U]<B,y,
R1U] > Aiy (see (8.5)).

(8.28) THEOREM. Let f (r, x) = E (ak cos nkx + bk sin nk z) r"t be the function associated
with (8.18), harmonic for r < 1. If E(al+bk) = oo, and if w(u) is any function defined for
u > 0 and monotonically tending to + oo with u, then

Jo

w(I f(r,x) I)dx-,+oo as r -,1.

This follows from (8.25), since the integrand is not less than w{Ag[E(ajr+bj) r'"i]I}
in a set of measure not less than 2nµ,.

(8.29) THEOREM. Let ft(r, x) be the harmonic function E A"(x)c"(t)r". If E(aj +bk) = oo,

and if w(u) is as in (8.28), then for almost all t the integral F0 *w fl ft(r, x) I }dx is unbounded

asr-->1.
It is enough to show the existence of sequences (rk) -,1 and {Mk} -, + oo with the

following properties : for almost all t we have

I .ft(rk, x) I > Mk (8.30)
f o r infinitely many k and for x e X = X,,, with I X I > v > 0, where or is an absolute
constant. For then our integral exceeds o'w(Mk) for r = rk and infinitely many k.

Applying (8.27) to ft(r,x) we see that for every r< I the set E=E,. of those points
of the rectangle 0 < x < 21r, 0 < t < I at which

I ft(r, x) I > r/{EA1(x) r1"}} (8.31)
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has an intersection of measure not less thane with every line x =cont. Hence I E I >- 27re.
For 8 < 1, let H. denote the set of the numbers to such that the intersection of E with
the line t = t, is of measure not greater than 2rr8. Then

2n6I HgI+2n(1-I H8I)>- I EI>- 27re,

which gives I Hd I <(I -e)/(1 -8). For 8=e' we get I He I c 1/(1 +e). Hence the set of
the numbers to such that the intersection of E with the line t = to is of measure greater than
2ne2 has measure > e/(I + e) > if (supposing, as we may, that e < 1).

Clearly we must show that V{EAn(x)r2n}f becomes large, as r 1, outside a set of
x of small measure. More precisely, we will show that there exist sequences rk 1,

Mk -> oo such that
,7(Y-A' (z) r,2kn)i > Mk (8-32)

outside a set of measure at most rre'.
Suppose we have already proved the last statement. What we have then shown is

the following: there exist sequences rk * 1 and Mk --> oo, and a sequence of sets Tk,
Tk I > je, such that for each tin Tk,

1 Brk, X) I % Mk

for all x in a set X,.k of measure at least rre2.

Let To = lim sup Tk.

Clearly I To }e, and the assertion containing (8.30) is true in T. with Mk = M. Since
the replacement oft by t + p2`Q affects only a finite number of terms of f,(r, x), (8.30)
is valid in the union of all translations of To by p2-d. provided we set, e.g. Mk = }Mk.
This union is of measure I and the theorem follows.

We now prove the assertion containing (8.32). We set A(x)=pncos(nx+xn) and
distinguish two cases: (i) (ii)

In case (i) there is a sequence n1 < n2 < ... such that p"t --3-- oo. Let rk = 1 - 1 /nk.
We have EA' (x)rTMk)f>, IAwk(x) i k rk -> 17P-1 l cos (n k x+xRk) 1 a-1{
for any k. The set of points where I cos (jx + zi) I >- 8 does not hold is of measure less
than ne' provided 6 is small enough (the limitation imposed on 8 is independent of j).
Taking Mk =1)8 a-' p,., (8.32) follows for case (i).

Let us now pass to case (ii). We may assume that p" < 1 for all n. Given any M > 0,
we shall show that the measure of the set B = B, of points x for which

EAn(x) r'" 5 M

tends to 0 as r --> 1. Set h(r) = Epn r'n and integrate the last inequality over B. We get

4 I B I Ep'rs" + }nEpnr2n(a n cos 2z= - flan sin 2x n) < M I B 1, (8.33)

where a!, /1, are the Fourier coefficients of the characteristic function of B. Schwarz's
inequality shows that the second term on the left numerically does not exceed

4ir{(E(a.+t8 ,))4 (EPt.O")f <- }n(I B I n-1)f hi(r)

by Bessel's inequality, since p" -< 1, r < 1. If for a sequence of is tending to I we had
BI greater than a positive constant, then, since he(r)=o{h(r)}, (8.33) would give

} I B I h(r) < M I B I for such is and 1- r small enough, which is false.
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This shows that I B, 1-+ 0 as r-+ 1. Then taking, for example, Mk'= k we find an
rk < I such that

{EA'(x)rf^}f>Mk

outside a set of x of measure not exceeding ne'. Hence I ff(r, x) Mk for t in a set
Tk of measure not less than je and for x in a set %Gk of measure not less than ne', the
same conclusion (with a different Mk) which we reached in the case (i). This completes
the proof of (8.29).

The series E + A (x) will be called randomly continuous if almost all of them are
Fourier series of continuous functions.

Let E(al+b,'r) be finite. Then for almost all t the sum S(z) of (8.9) belongs to every
L'. It is natural to ask whether the E ± Ak(x) are randomly continuous. That this is
not so follows from the fact (see Chapter VI, (6.1)) that if a laounary series is the
Fourier series of a bounded function, then the sum of the moduli of the terms of the
series is finite. Thus for no sequence of signs is

+ sin 10x+ 2-'sin 10'x + ... +n-1 sin 10'z + ...

the Fourier series ofa bounded (still less of a continuous) function. We have, however
the following theorem:

(8.34) THEOREM. Let s*j(x) denote the partial sums of the aeries (8.9).
(i) Ify'=E(ak+bk)<oo,thenforalmoatalltwehaves,u(x)=o{(logn)f),uniformlyinx.
(ii) If E(ak+bk)(log k)'+'<oo for some e>0, then almost all series (8.9) converge

uniformly and so are Fourier series of continuous functions.

As the laounary series E ± (n log n)-'sin 10"x
shows, (ii) is false for e = 0.

(i) Consider the inequality (8.17). As its proof shows, it holds for arbitrarily large u,
provided y is small enough. It then also holds for the partial sums (for which y
is decreased): r

r dl
J0exp

(fca,' t(x)) dx -< 2iK, (8.35)
0

with K independent of n. Fix t and let h1;,(t) be the maximum of I 1. Let x0 be
a point at which this maximum is attained. Since the derivative of a,,,, does not exceed
2nM (t) (Chapter III, (13-17)), s,,,, cannot change by more than }M (t) over any interval
of length 1/4n. In particular, I a,,,t exceeds }M (t) forx0-< x-< x0+ 1/4n, and

f
z.+ r/4+. 1

exp {pa,',, r(x)) dx
4n

exp {}µM ;(t)).

The integral on the left is increased if it is taken the whole interval (0, 2n). By (8.35),
we have 1

fo
exp dt 8Knn.

r

Hence exp {}ac(M ,(t) - a log n)) dt 4 8Kirn' - }
0

for any a > 0. Take au =12. Then the right-hand sides, being O(n-'), form a convergent
series. By Chapter I, (11.5), the series E exp (JtM,', - 3 log x) converges almost every-
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where, and so M*(t) _< 12µ-l log n, for almost all t and large enough a. Since by dropping
the first few terms we can make y arbitrarily small, and sop arbitrarily large, we have

for almost all t, and (i) follows.
MM(t) = o{(log n)}i

(n) Let
S,..e(x)== nEAk(x)0k(t)(logk)i+}e.

i

By (i), S,,.1(x) =o{(log n)i} for almost all t, uniformly in x. We fix such a t and suppose
for simplicity that a1= b1= 0. Then summation by parts gives

811,t(x) =11E Sk,,(x) 0
(to

k i + Sn,t(x) - n ;+#s = E o{(logk)i} O{ 1 6} + o(1).8 ) (log ) s k(log k)!+i

The terms of the last series being o{k-1(log k)-1-ic}, 8. t(x) converges uniformly as n -* oo.
We may ask if the random continuity of the series E ± An(x) implies that almost all

the series converge uniformly. This is an open problem, but we can prove the following
result:

(8.36) THEOREM. Let (nk) be any lacunary sequence of indices (nk+1/nk > q > 1).
If I ± An(x) is randomly continuous, the sequence {8110 t(x)} converges uniformly in x for
almost all t.

Let t0 be any fixed number, not a diadic fraction. We first note that almost all the
series

m(t0) pm(t) f1m(x)

are of the class C (i.e. are Fourier series of continuous functions). For let Ec(0, 1),
E 1, be such that F.Am(x) cm(t) is in C for t E E. For each t e Ewe define t' by

0m(t')000)=00) (m=0,
This transformation merely interchanges diadic intervals of the same rank. Since
any open set can be covered by non-overlapping diadic intervals, it follows that the
transformation preserves the measure of any open set, and so also (passing to the
complements) of any closed set and, finally, of any measurable set. In particular, the
set of the t' is also of measure 1.

We now split the series LA,n(x) 0m(t) into blocks Pk =
n +1A,n(x)

0f11(t). By the remark
%A+1

just made, the two series
Po+P1+P2+P3+..., PO-P1+P2-P3+...

are in C for almost all t (there is a t0 such that takes the necessary sequence
of values ± 1). Hence the series Po+PQ+Pt+... and P1+P,+Ps+... are in C for
almost every t. But both series have gaps and Theoreth (1.27) of Chapter III shows
that {8110 t(x)) converges uniformly in x for almost all t.

We now prove a theorem of a slightly different character.

(8.37) THEOREM. If the power series £a" z" has radius of converience 1, then almost all the function

z=re;o
0

are not eontinuabk across I z I =1.
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Suppose that for every t in a set E of positive outer measure there is an aro (a, fl) on l z l = 1
and two positive numbers d, M such that in the domain

A:1-2d4r41+28, a-4404fi+4
fe(z) is regular and numerically not greater than M. The numbers a,,6, M, 8 depend on t, but taking
them rational we can select a subset of E-call it E again-also of positive outer measure such
that they are independent oft a E.

Let A' denote the domain I - 8 4 r 4 I, a 4 B 4,8, and let e > 0 be so small that every circle with
centre z c A' and radius a is contained in A. By Cauchy's theorem,

If;')(z)14MPY4CnpD for
EP

Let df, E be the set of all t for which these inequalities are satisfied. Clearly, ! is measurable
(even measurable B) and l e I > 0. But, for l z (< 1,

with b,=a"n(n-1)...(n-p+1)r" Des"-sic
0

and so, applying (8.3) with A = 2 and supposing p large enough, we get

E 1 b" Is < 2C2'p"D,
In particular (making r _i 1)

a"n(n- 1) ... (n-p+ 1) <21CDp,.

Set p = [?In] + 1, where 0 < ry < 1. For n large enough,

l a" l (n(l - +l)) "r 4 C2"+(2m ?)"w+1.

and so, lim sup I a. 1/* 4 (2C')1/(1 - r/))' < 1,

for y fixed and sufficiently small. Hence the radius of convergence of Eaz" is greater than 1,
contrary to hypothesis, and this contradiction proves the theorem.

Random insertion of the signs ± 1 into a trigonometric series has a close connexion with the
random insertion of the factors 0, 1, that is, with the random suppression of terms. It is enough to
replace the 4"(t) in (8.11) by

0,(1)=1(1+O"(t)). (8.38)

The functions 0: (t) take the values 0, 1, each in sets of measure 1.
In the two theorems that follow, T is any linear method of summation which satisfies con-

ditions (i), (ii), (iii) of regularity (Ch. 111, §1), and TO is any linear method which satisfies
conditions (i) and (iii).

(8.39) Tmcoa M. (i) If Ec,, is aummable by a method T, and if E l c" l' < eo, then

(04t<1) (8.40)
is aummable T almost everywhere.

(ii) Conversely, if (8.40) is aummable in a set E of positive measure by a method TO, then Ec" is
aummable TO and E c" l' < eo.

Case (i) is immediate since, by (8.2), Ec"o"(t) is convergent, and so also summable T, almost
everywhere, and the same holds for (8.40). In case (ii), if E in the set of all points where Ec"9' is
summable TO, the measure of E must be 1. For the replacement oft by t +p/2a changes only a finite
number of terms in (8.40), and so E is invariant under translations by p/2a. This means that the
average density of E in each of the intervals

I., = (p/2', (p+ 1)/2')

is the same, and so equal to l E 1. Since I E l > 0, the density theorem for measurable sets asserts
that the relative density of E in some of the intervals I,,, must be arbitrarily close to 1. Hence
I E l = 1. Let E' be the refiexion of E in the point t =1. Since I E' l = 1, there isa t,e EE'. Adding
the series (8.40) for t = is and t = 1- ts, and observing that 0.(l - 2,) = - 0"(t,) for all n, we obtain
the summability TO of Ec". This shows that Ec"95"(t) is summable TO in E, and the finiteness of
E l c" l' follows from (8.2).



222 Special trigonometric series [v

(8.41) THEOREM. Suppose that Pal + b;) = oo. Then for every method of summation T*, and for
almost all t, the series E(a nx) 00.(t) = 0w(t) (8.42)

is summable T for almost no x. In particular, almost no series (8.42) is a Fourier seriee.
If the first conclusion were false, there would exist a set X, I X I > 0, such that for each xo e X

the series LA.(xo) 0*.(t) is summable T' for all tin a set of positive measure. That, by (8.39) (ii),
would imply that EA$.(xo)<oo, and so also E(al, +boy)<oo, contrary to hypothesis.

In the case E(at+b;) <oo, there seems to be less analogy between the series (8.11) and (8.42).
Thus, by (8.34), almost all series Eo (t)n-'sinnx are Fourier series of continuous functions,
whereas, because of the function En-1 sin nx, almost all series Eo,(t) n-1 sin nx are Fourier series
of discontinuous functions.

9. Series with `small' gaps
This name will be given to the series

E(akoosnkO+bksinnkO),

where the indices n1 < n, < ... satisfy an inequality

nk+l-nk>q>O for k=1,2,...,
that is, increase at least as rapidly as an arithmetic progression with differenee q.
Only the case q > 1 need be considered. Every lacunary series (see § 6) is a member
of this class (at least after the rejection of the first few terms), but not conversely.

Theorems about lacunary series proved in § 6 show that if they `behave well' on a
set E of positive measure, they `behave well' in (0, 2n). It will now be shown that if
E is a large enough interval, somewhat similar conclusions hold for series with `small'
gaps. It will be convenient to write the series in the complex form.

(9.1) THEOxaM. Let N

P(O)= E Ck etnte (n-k = - nk) (9.2)

be a finite sum with

k--N
nk+i - nk > q > 0 (k = 0, I ... ), (9.3)

and let I be any interval of length greater than 2n1q, so that

Then

III=2rr(1+8)/q (8>0).

E ek Jt< At 11 I fr P(O) I' dO, (9.4)

IckI<A,II+ fif P(O)IdO, (9'5)

where A, depends only on 8.
The results hold for infinite sums if the series (9.2) converges uniformly.

The inequality (9.4) somewhat resembles the first inequality (6.6), and there is
also a resemblance between the proofs. The proof of (9.4) consists in showing that, for

a suitable function X, the integral f P 1 'XdO majorizes a fixed multiple of T. ( ck Is.
r

In the lacunary case we had X = 1 on I. The sparsity of terms in a lacunary series made
it possible to base the proof only on the most obvious properties of the coefficients
yk of the function X (completed by 0 outside 1), namely, on E I yk Is < oo. In the present
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case we need, as we shall see below, at least 11 Yk I < oo, a condition which does not
hold for a discontinuous characteristic function and which therefore requires a
different choice of X.

Though we are not interested in the generalization for its own sake, the proof of
(9-1) runs more smoothly if we do not require the nk to be integers. The simultaneous
transformations 9 -> cb, nk -+ nk/c change neither P nor the right-hand sides of (9.4)
and (9-5). Since we may also assume that I is symmetric with respect to 0 = 0 (if 0o
is the midpoint of I, transformation to 0 - 0, does not alter the I c 1), it is enough to
take I=(-n,n), q=1+8.

Let X be any real-valued function vanishing outside I and y(u) its Fourier transform
(p. 8). Then

2f " x(x) I P(x)j2dx= 2n-R

Y(O)1IckI'- EWckI'+Ic,I2)1y(nl-nk)I
k+I

= E I kk 1 2 {Y(o) - E' I - nk)1),
k I

(9.6)

where the dash indicates that 1 + k in the summation. If X is bounded, say not greater
than M, and the expression in curly brackets exceeds a positive number r' depending
on 8 only, a comparison of the extreme terms of (9.6) gives

fff

ek1' _' 2n -RI

which is (9.4) with the simplifications adopted.
To show that this hypothetical situation can be realized, let

X(x) = 2 r cos +x f o r I x I < n, X(x)=O elsewhere. (9.7)

Then

andsincelnk-ntl>Ik-1Iq,- (n-n)I<2;-

4 Q W

t Y i
k 1 4(k-1)2g2-1 `q2t i 412-1

- 4 1 1 _
)

4 y(O)

q4t=1 21-1 21+1 q2 (1+8)4' (9.8)

This gives (9-4) with A8= 27r(l +8)2/48(2+8) <A (1 +8-').
To prove (9-5), let I cJ I be the largest of the I ck 1. Then

I

r+.
2nJx(x)P(x)e-t^rxdxj=l EckY(ns-nk)I

of 1 Y(0)
A ;

I ck I i Y(n, - nk)rI - I c, I \4
(1+8),),

using (9-8). Since the left-hand side here does not exceed
f

* I P dx, (9-5) follows,

with the same Ad as before.
The inequality opposite to (9.4) is also true. It is easier and is valid under more

general conditions.

4 cos nu
Y(u) = 1 - 4u2
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(9.9) THEOREM. Let P and {nk} be the same as in (9.1) and let J be any interval of
length 2ny/q, where g > 0. Then

IP(x)Izdx_< B, C , (9.10)J J J
We may suppose that q = 1. The inequality (9.10) follows from Parseval's formula

if the nk are integers and, say, I J < 2n. For the left-hand side is then not greater than

277 1 2*

I./ 2n
a IPI2dx=n-'EIckI2.

To prove (9.10) in the general case, we note that in the last term of (9.6) we have
E' <y(0). Hence,

1 f
n " xIPI2dx<EIckI2{y(0)+E'}S2y(0)EIckI2,2

2_If IPl2dx<8EIckI2.

This estimate holds for the integral of I PI2 over any interval of length n and leads to
(9.10) if y= 1, and so also if q < I (with B,, = I-'B1).

If g > 1, we split J into a finite number of intervals Jk of lengths contained between
n and 21r and observe that the left-hand side of (9.10) does not exceed the largest of

the ratios I Jk I-1J I P I2 dx. Thus (9.9) is established, with B, < A() + ry-').
Jk

The following generalization of (6.16) follows easily from (9.1).

(9.11) THEOREM. If the radius of convergence R of the power series

Eckz"k=f(z), nk,1-n&-co. (9.12)

is 1, the Junction f is not continuable across z I= 1.

For suppose that a closed are I on I z I = 1 is one of regularity for f. There are then constants
C, d such that (compare a similar argument on p. 221)

If191(z)I<CDp!<Cop° for p=1,2,...,Be1,I-8<r<I.
We reject the first few terms of the series (9.12), possibly altering the value of C, so as to make

applicable to P(B)=f(Y)(re's). Making r-. 1 we get

I 1 I

f(P)(re'°) I d64ACDpn.ck I nk(nk- 1) ... (nk-P+ 1) £A limsup
1

For p = [nke) + 1 and k large enough we therefore have

Ickl{nk(1-e)) <(2Cnkc)"k`,

2-- 1E
limsup I Ck 111n< --/ < 1,1-e

provided a is small enough. This gives R> 1, and the contradiction proves (9.11).
The proof actually gives more than is explicitly stated, namely, if

liminf(nk+1-nk)%y,

then every are of length greater than 2771y, and so also every arc of length 21r/y, on I z I contains at
least one singular point off.
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10. A power series of Salem
We return to Theorem (8.34). It holds of course for power series. Following Salem

we complete it as follows:

(10.1) THEOREM. Let rl, r2, ... be a sequence of positive numbers tending monotonic-
ally to 0, such that ) rn converges and that {1/r,,} is concave. Then there is a sequence of
numbers en, I en I = 1, such that Eenrn ei'ax converges uniformly. f

Examples of sequences {rn} satisfying the hypothesis are

n-f(logn)A n-4(Iogn)-f(loglogn)-1 .. ,

etc., fore > 0 and n large enough. The factors en are not ± 1 and we know nothing about
the set of admissible {en}, except for the obvious fact that it is of the power of the
continuum.

We may suppose that rn=r(n), where r(u) is monotonically decreasing and differ-

entiable,and i/r(u)isconcave. Theconvergence of Id is equivalent to that of I r2(u)du.
1W

The proof of (10.1) is based on certain extensions of the lemmas of van der Corput
proved in § 4 to the expressions

I(F: a, b) = f r(u) F(u) du. S(F; a, b) = Z r(n) F(n),
a a<nCb

where r(u) is a positive decreasing function and F(u) = exp 21ri f (u). Some of these
extensions are immediate consequences of the case r= 1, others are less so.

We take for the variable of integration the primitive R=R(u) of r(u). It is an in-

creasing function of u, so that u = u(R) and 1= f e2ni/dR, with

fR=f'(u)/r(u), fRR=f"(u)/r2(u)-f'(u)r'(u)/r2(u)

Here r'-< 0. Hence fRR > f"(u)/r2(u), if only f(u) > 0. Applying Lemma (4.3), we get
the following result:

(10.2) LEMMA. If f"(u)> 0 and f'(u)> 0, then

I I(F; a, b) I S 4 max (r(u)l{f"(u)}i).

The case f" < 0, f' > 0 is slightly less simple, and we shall have to introduce the
additional hypothesis that r';f" is monotone.

(10.3) LEMMA. 1f f" < 0, f' 0, and r'/f" is monotone, then

11I<_4maxlf,Ii+maxfl

bJ [r(u)-r(b)]F(u)du+r(b)Ja F(u)du=P+Q. (10.4)Write I=
a

t For r,, monotonically decreasing to 0 and (1 convex, the theorem is an immediate consequence of
(8.34). For then IJr exceeds a fixed positive multiple of ,., the hypotheses of (834) are
satisfied and we can take for almost any sequence of ± 1.
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Then I Q I 5 4r(b) max (1/1 f'(u) 11) 5 4 max {r(u)/I f'(u) I1},

P_ 1 fb r(u) - r(b) f'(u)-f'(b)des .,( )
2_,n af'(u)-f'(b) f'(u)

The factor (f'(u)-f'(b))/f'(u) is decreasing and contained between 0 and 1. The
derivative of the preceding factor can be written

flu) r'(u) r(u) - r(b) _ _f'(u) r -r'(u) r'(v)
(u < v < b),

/'(u)-f'(b) u) f'(u)-f'(b) f'(u)-f'(b)U"(u) I
and so is of constant sign. Hence, applying the second mean-value theorem to the
two monotone factors, we obtain

P J 2 max r(u) - r(b) maxf
,(u)

-f (b) max r .1,
77 f(u)-f(b) f'(u) f'

and collecting results we get (10.4).
Changing f into -f (which does not affect I 11), we may replace the hypotheses of

(10.3) by f' > 0, f' S 0. If f " > 0, but nothing is assumed about the sign of f', we split
(a, b) into subintervals in which the sign of f' is constant, and deduce from (10.2) and
(10.3):

(10.5) LEMMA. If f'(u) is of constant sign and r'/f' is monotone, then

I I(F; a, b) I _< 8 max (r/I f' Il)+max I r'/f' 1.

Remark. The term max ( r'/f' I is necessary here. Take, for instance,

r=f', I = (21ri)-I (eII Ab)-e2.if(I)

and supposing that f (u) increases indefinitely with u, take f (b) =f(a) + J. Then ( I I = 1 /n.
But choosing, for example, f= log log u, we see that max (r/ f' 1) in (a, b) tends to 0
as a-3, co.

(10.6) LEMMA. If f'(u) is monotone and f I _< 3, then

I(F; a, b) - S(F; a, b) I 5 A max r(u).

Here A is an absolute constant. For r(u) = 1 this is (4.4). The general case is reduced
to this by applying the second mean-value theorem to the equation

rb
I - S =

J
r(u) F(u) dX(u),

a
with X defined as in § 4.

(10.7) LEMMA. Suppose that f'(u) is of constant sign, and r'/f' and r/I f' I 1 are

monotone. Then
f" (8rjf'ji+jr'j +AnIf'l)du,ISI _< 16max(r/lf'l1)+2maxIr'/f" +2Amaxr+

a
(10.8)

where A is the constant in (10.6).

The proof is similar to that of (4.6). By hypothesis, f is monotone, say increasing.
Let ak be defined by the condition f'(ak) =k- {, f o r k integral, a n d let a ., , a., , ... , a, f.
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be the points a, if such exist, in the interval a < u < b. We consider the values a, a,
a,+ , a,+,, b of u, to which correspond the values

f'(a), r - }, r +f, .. , r+s-}, f'(b)
of v = f'(u). In the interval (at, ak+1) we have I f' - k I < J. Let

Sk = r(n) e2'"f(n)= Z r(n) e2ri{1(n)-knl

k<n4ah.,

Since (f - uk)' = f' - k, (f - uk)' = f', we get from (10.5) and (10.6)

1 Sk I <8max (r/I f' 1i)+max I r'/f I + A maxr, (10.9)

where the max are taken over ak < u < ak+1. (10.9) holds also for the incomplete
intervals (a, a,) and b).

Let now O(u) be any positive monotone function in (a, b), say decreasing, and
consider the sum

v(a,b)=E max
atG U -r ai+,

which takes into account also the intervals (a, a,) and (a,+,, b). If we introduce the
new variable v = f'(u), 0(u) becomes a decreasing function (V(v), and v is

O[f'(a)]+ l(r-J)+...+4)(r+8-+)<'D[f'(al]+O(r-})+ I(v)dv
*-fre)

< 2(D[ f'(a)] +J cD(v) dv
r(a)

=20(a)+J b0(u)f'(u)du.
a

Since 0(u) is positive. and monotone,
b

o-<2maxo+ f Of'du.
Ja

This and the inequalities (10.9) give (10.8) (of course, we can omit the term I r' l on the
right and increase the value of A by 1).

We now pass to the proof of Theorem (10.1). We consider the series

r(n) e2-'W(n)+"z), (10.10)

where g'(u) = r2(u)I I
mr2(t)

dt, g(u) = f
ti

log (I r'dt)-1 dv (u> 1),
u 1 .n

and apply to it the estimate (l0.8) with f(u)=g(u)+ux. Since f'(u)=g'(u), the
estimate will be valid uniformly in x. We shall show that S is small for a large and b >a.

r(u) { f'(u)}-i = r2di is decreasing and tends to 0. AlsoTNow
I

Ir (lf"-Ir'Ir' r2dt
. v

decreases monotonically to 0, since r' I r-2 = (I /r)' is positive and decreases, 1 /r

being concave. Thus the first three terms on the right in (10.8) are small for large a.
Finally, 1/r being concave,

- 1;7J u
rsdt

=
f.

1- 1 1 r' I dt > 1 r, (u) I J x l r
l

I r,('u)
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s dt and the integral does not exceedHence rf' = r3 ii: r

pp

8Jar(f')1du+(A+1)r l du<8 r$('-d'`- +(A+1)r(a)
JJ

(E rtdta

= 16(f'r'(u)du///l1+(A+1)r(a),
Va

which is small for large a. Hence (10.10) converges uniformly, and (10.1) follows, with

MISCELLANEOUS THEOREMS AND EXAMPLES

1. If a.= and is a positive decreasing sequence, the partial sums t of the series
Ea sin nx are positive for 0 <x < n.

[Sum by parts and use Chapter II, (9.4).]

2. If E(ak cos kx+b5 sin kz) = Ak(x) is a Fourier series, the series EA 5(x)/log k converges in the
metric L. So does EBk(x)/(log k) 1+4 for e> 0, though not for e= 0.

[Consider the series E coo nx/log n and E sin nx/(log n)1+a.]

3. Suppose that is positive, convex and monotonically decreasing. Then the modified
partial sums t'. =1(t of Ea sin nx are positive for 0 <z < n. This need not be true for the t,,.

[Sum by parts twice and use the fact that R. > 0, 1)' > 0 inside (0, rr). For the negative assertion,
consider Er-sin mx, n= 2, r> }.]

4. Let RR(x) =
1 + (sin nh) k

oos nx,
2 ,.1 nh

where k = 1, 2, ... and h is a constant such that 0 < kh -< n. Show that RA, vanishes in (kh, n) and is
a polynomial of degree k-1 in each of the intervals ((k-2)h,kh),((k-4)h,(k-2)h)..... (For
k=1,2, seep. 10.)

[Consider the function Bk(x) from p. 42 and the kth difference
(kBk(x+kh)-
\1

Bk(x+(k-2)h)+...±Bk(x-kh).

The result can also be obtained by repeated application of Theorem of Chapter II to R1(z).]

5. Let h1, h,, ..., h., ... be positive numbers with Eh, < oo. Let

1 sin nh.R(x)=2+ Ea.cosnz, where ri
a-1 nh.

The function R(x) has derivatives of all orders and is not constant. If d=hl-(ha+ha+...) is
positive, R(x) is constant in (0, d). If h = h1 + ha +... < n, then R(x) = 0 in (h, ir). Cf. Mandelbrojt [2].

[Observe that a1$ 0, a = 0(n-k) for each fixed k.]

6. If a decreases monotonically to 0 and if La sin nx a L, then Ea cosnx a L.
ao.]

7. If is positive, convex, and tends to 0, then the sums of both the series Ea cos nx and
have continuous derivatives in the interior of (0, 27Y).

[The series Ea. e'"' differentiated termwise is uniformly summable (C, I) in every closed
interval interior to (0, 277).]

8. Let a be the cosine coefficients of a function f(x) such that f(x) log 1/I x I is integrable over
(- n, n). Then the series converges and

n-1 0

In particular, this holds for functions f such that flog+ (f I is integrable. (Hardy and Little-
wood (12]. )
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[Multiply both aides of the first formula (2.8) of Chapter I by f(x) and integrate over (- n, 9r).
The argument is justified because the partial sums of E(eosnx)/n are uniformly O(log 1/jx )
near x=0 (see (2.28)).]

9. Let a, >a, , ... -+0, a1 > 0, and let t.(x) be the partial sums of Ea,sin vx, g(x) = lim t (x). Then

(i) 1im g(x)/x = Eva,

(even if the series on the right diverges). In particular g(x) is strictly positive in some interval

(ii) There is an interval 0<r.<8 in which all the t, are strictly positive. Hartman and
Wintner [ 1 ].

[(i) Using (1.13) we have

(*)
2 sin }x

Since the terms of the last series are non-negative and the cofactor of Aa, is asymptotically equal
to i(v + i)' x sa x -+0, we obtain lim g(x)/x = - ja1 + }E(v + })' Aa,, and summation by parts shows
that this expression is Eva,.]

10. Ifs, a,>_...-.0,a,>0,g(x)-Ea,sinvx,0<y<2,thonz-Vg(x)aL(0,n)ifandonlyifEvV--1a,
converges. (Boas [11u], lteywood [2]; for generalizations see AljanLi6, Bojanid and Tomi6[1].)

[Consider the formula(*) in Example 9. The integral of x Y[1-cos(v+{)x](2sinkx)-' over
(0, rr) being exactly of the order vY (the proof is the same as that of Chapter II, (12.1)), x-Yg(r)
is in L(O,rr) if and only if EvYAa,<co, or, what is the same, EvY-1a, <co.]

11. Let b(u) be a slowly varying function. Then, with the notation (2.7), and assuming I< y < 2,
we have the formulae

fy(x) -fy(0) 2-xY-1b(x-1) I'(1- y) sin }7ry,

gy(x) ^-xY-1b(x-1) P(1- y) cos ivy,

analogous to (2.8) (see also the remark on p. 188).
[Set y = f+ 1 and integrate the relations (2-8) near x = 0. By repeating this procedure we obtain

analogous relations for k < y < k + 1, k = 2, 3, .... ]

12. If b(u) is slowly varying then, with the same notation as above,

fa(x) -f,(0) = - }rrxb(l /x),

ga(z)e-'xB(1/x), ga(x)-zf1(0)-xR(1/x),
W

the last two relations being respectively valid according as diverges or converges.
[Integrate (2.13) and (2.16). In the proof of (i) we need the fact-easily obtainable by differen-

tiation-that if b(u) is slowly varying so are B(u) and R(u), for divergent and convergent
respectively. A similar argument gives formulae fort,, and gt if k = 3, 4, ....]

13. For a= 1, the sum 0a(x) of (4.1) belongs to A,. (It has been already pointed out that it
does not belong to A,.) For }a+f= 2 the sum 1(rap(x) of (6.1) belongs to A,.

exp [2rrsn(log n)-t]
14. If y> 0, 6> }(1 +y), the series E --z" converges uniformly on I z = 1.

ni(log n)l
(Ingham [2]J

[The prooffollowsthesame line asin§4. We have Ev-1exp2ni(v(logv)Y+ivx)]<A(logn)lr"Y).]
2

A periodic and integrable function f(z) is said to be of bounded deviation (Hademard) if for
('b

each fixed interval (a. b) we have J fe-4"sdz=O(1/n). In particular, the Fourier coefficients of
aF.

such functions are O(1 fin). Every function of bounded variation is of bounded deviation. Examples
of functions of bounded deviation but not of bounded variation have been given by Alexita [2],
Bray (see Mandelbrojt [1]) and Hille [3].
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15. The function xsin (1 /x) (I x 15 n) is of bounded deviation. (Bray; see Mandelbrojt [ 1).)
[It is enough to show that the integral of xexp (nx± 1/x) over any subinterval of (0, n) is uni-

formly O(1 /n). The substitution x' = u reduces the problem to the function exp (nut ± u- 1) and any
subinterval (c, d) of (0,11'). We may suppose that c> C/n. since the integral over a subinterval of
(0, C/n) is 0(1/n ). For a suitable C the derivative of nut ± u-t in (C/n, n') is monotone and greater
than Ctn. Apply (4.3)(i).]

16. Show that if in the lacunary series E(akcosnkx+bksin nkx) we have I ak I+ I bk I = O(1/nk),
then the sum f(x)of the series is of bounded deviation. It need not be of bounded variation, as the
example of the functionf(x) = E2-k cos 2kx, differentiable almost nowhere, shows. (Hille [3].)

17. Suppose that for the lacunary series E(akcoenkx+bksinnkx)=f(x) the sum Eflasj +lb"I)
is finite but En,,(at+b'k) infinite. Thenf(x) is differentiable almost nowhere. [Compare p. 206.)

18. Suppose that E(I a + I b, )/n converges but E(a! +b!) diverges. (Take, for example,
a, = n b = 0.) Then almost all continuous functions

E±n-'(a,coonx+b,sinnx)
are differentiable almost nowhere.

19. The conclusion in Example 7 is false if {a,} is merely monotonically decreasing to zero.
The sums of the series La, cosnx and Ea, sin nx may be then differentiable almost nowhere.

(Summation by parts gives
Ea,cosnx=(2siny)-'EAa,sin(2n+1)y,

with y =,jx. Consider the case when the last series is lacunary and apply Example 17.]

20. If nk,, /nk > 3 and Eat' < co, then the Riesz product 17 (1 + ak cos nk x) = I + Ey, cosnx is the
Fourier series of a function f such that exp (A(log If 1)') is integrable for every A> 0. In particular,
f e L o for everyp> 0.

21. Consider the product 1I(1 +ak cos nkx), where nk+t/nk > q > 2,ldkl-<I. It is then no
longer true that pk is a partial sum of pk+1, but the rank of the lowest term in pk+t -pk
tends to infinity with k. In particular, pt tends termwise to a trigonometric series. If jak14 1, the
latter is the Fourier-Stieltjes series of a continuous, non-decreasing function. (Wiener and
Wintner [ I ]. )

22. Let K. denote Fejbr's kernel. The Nth partial product of the Riesz product fl 0+ cos 2"x)
0

is 2Ktw_t(x) and so tends termwiso to 1+2cosx+2cos2x+..., the Fourier-Stieltjes series of a
discontinuous function. (Wiener and Wintner(1).)

23. Suppose that nk+i/nk>q>2, Iakj<,l, dF=f1(1+akoosnkx).
Show that Fe Aa, where a= I -log 2/log q.

24. Let - I <ak< 1, Eas, =oo. Show that for almost all sequences of signs ± 1 the product
ll (1 ± ak cos kx) diverges to 0 almost everywhere in x.

25. Suppose that - 1 4 ak -< + 1, Eat = oo, nk+1/n, > 3. Show that the trigonometric series
representing 17(1+iackcosnkx) diverges almost everywhere (of. (7.12)).

26. Let M be any (not necessarily linear) method of summation of series uo+u, +.. . which
has the following properties: (a) if Eu, converges to sum s, it is also summable M to s; (b) if Eu,
and Ev, are summable M to sums a and t respectively, then E(au, + be,) is summable M to sum
as + b! ; (c) if uo + ut + uk + is summable M to s, the series ut + uk +... is summable M to e - uk.
Show that the series (s) coax+coe2x+...+oos2"x+...

cannot be summable M on a measurable set EC (0, 2n), I E > 0, to a finite measurable sum.
(Kolmogorov (4].)

[Suppose (s) is summable M on E, I E > 0, to a measurable sum f (x). Since summability of (s)
at x implies summability at 2kx, we have E = 2n. In particular. f(z) is bounded on a set H C E,
of measure arbitrarily close to 2n. Let X(z) be the characteristic function of H, and let HN be the
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set whose characteristic function is X(2r'x). By Chapter II, (4.15), I HHN I -+ I H I2/2n, and so, for
suitable H, and for N large enough, I HHN I is arbitrarily close to 2n. For z e HHN we have

f(x) = cos x+ ... + cos 2N-'x +J(2Nx),

and we arrive at a contradiction sinceJ(x) andf(2Nx) are bounded on HHN, while, by (8.25), the
sum coax +... +cos2^'-'x is large with N on a substantial subset of (0, 2n), and so also at some
points of HHN.]

27. Let EC(0,2n), AEI>0,nk+i/na>q>1,
y'=E(a'+b')<xe, J=E(aicosn,x+bksinn5x).

Show that there are two positive constants A. and µ depending on q only, such that

J+>A.y. J >A,y
in subsets of E of measure not lees than µ, I E I, provided ny is large enough.

[The proof is analogous to that of (8.25). We show first that

f Ef'dx<- A,y' I E I,

provided nl is large enough. This, together with the first inequality (8.8) (valid with P replaced

by J), gives f E l .
E

I . Since
E

f, f+dz+ fEJ-d;r=fF I J I d-, f, f+- fEJ-dx=F"fXdx,

where X is the characteristic function of E, and since the last integral is small in comparison with

y if n, is large enough, we see thatf J+dx > }B,y I E I. Combining this with
E

fE (J+)'dx< fEJ'dx IEly,
(see (8.6)) and applying (8.28), we obtain the conclusion fort+.]
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CHAPTER VT

THE ABSOLUTE CONVERGENCE OF
TRIGONOMETRIC SERIES

1. General series
The absolute convergence of the complex trigonometric series Eck elk (in particular,

of a power series in eix) at a single point xo implies the convergence of E I ck 1, and so the
absolute (and uniform) convergence of Eck etk-- for all x. For the series

aa0+ E (akcoskx+bksinkx)= Ak(x)
k=1 k=0

the situation is less simple. The convergence of

E(IakI+Ibk1) (1.2)
k-'1

naturally implies the absolute (and uniform) convergence of (1.1) for all x; on the other
hand, (1.1) may converge absolutely at an infinite set of points without (1.2) con-
verging. An example is given by

E sin n! x,

whose terns vanish from some point onwards for every x commensurable with n.

(1.3) THEOREM OF DENJOY-LuSIN. If (1.1) converges absolutely for x belonging to
a set A of positive measure, (1.2) converges.

Suppose for simplicity that as = 0, and let the kth term of (1.1) be pk sin (kx -+- xk),
with pk = (ak + bk)i > 0. The function

a(x)= PkI sin(kx+xk) (1.4)
ks1

is finite at every xE A. Hence there is a set EcA, I E >0, such that a(x) is bounded
on E, a(x) < M say. Since the partial sums of (1.4) are uniformly bounded on E, the
series may be termwise integrated over E:

EPkJ sin(kx+xk)I fE (15)
E

To prove the convergence of p1+p2+..., which is equivalent to that of (1.2), it is
enough to show that the coefficients of pk in (1.5) all exceed an e > 0. This is immediate,
if we observe that by replacing the integrand by sire (kx+xk) we do not increase the
integral and that the new integral tends to E (Chapter II, (4.5)).

(1.6) THEOREM. Suppose that I a1 I > I az , ... .
(i) If Ea eosnx converges absolutely at a point x0, then E I a. I < oc.

(ii) The same holds for the series Ea.,, sin nx, if x0 * 0(mod n).

In (i) we may suppose that 0 < x0 < n. The hypothesis implies that E I a I co82 nxo
is finite. Since 2 coat nxo = 1 + cos nyo, with yo = 2xo, and since the partial sums of
E I an I cos nyo are bounded, the result follows. Part (ii) is proved similarly.
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(1.7) THEOREM. Let pn = (an + bn )I If p1 > Ps e , and if EAn(x) converges absolutely
at two points x', x' with I x' - x' I < n, then Epn < oo.

Write (1.1) in the form Epn sin (nx + xn), and let t = x'- x. Since

nt I sin (nx' + x,,) ; (1 8)

thus the series Epn I sin nt I converges, and (1.7) follows from (1.6) (ii).
It is obvious that (1.6) and (1.7) hold if we suppose only that flan 1) and respec-

tively are of bounded variation.
The set A in Theorem (1.3) is of positive measure. This, while sufficient to ensure

the convergence of (1.2), is not necessary. The problem of characterizing those sets
A for which the absolute convergence of (1.1) in A implies the finiteness of (1.2) is
still unsolved. The results that follow, however, throw some light on the situation.

Suppose that p, +p, +... = oo for (1.1) and let A be the set of points at which a(x)
is finite. The complementary set is a product of a sequence of open sets (see the proof
of Theorem (12.2) of Chapter I). Hence A is the sum of a sequence of closed sets. None
of these closed sets contains an interval, for otherwise we should have I A I > 0, and
p, +p, +... < oo. It follows that all of them are non-dense, and A is of the first category.
Thus:

(1.9) THEOREM. If EA,(x) converges absolutely in a act of the second category (even
one of measure 0), the series (1.2) converges.

The set A of points where EAn(x) converges absolutely has curious properties. Let
A be the set of points of absolute convergence of the series EBn(x) conjugate to EAn(x)
and let C and C respectively be the sets of points where EA (x) and EB,(x) converge,
not necessarily absolutely. It will be convenient to place all these sets on the circum-
ference of the unit circle.

(1.10) THEOREM. Every point of A is a point of symmetry of the sets A, A, C, C.
We have An(x+h)+A,,(x-h)=2A(x)cosnh,

Bn(x + h) - Bn(x - h) = 2An(x) sin nh.

The first formula implies that if' E I I < oo and if h) converges, or con-
verges absolutely, so does EA,(x - h). This proves the symmetry property for A and C.
The second formula gives the proof for A, C.

By (I.3), the set A (and similarly A) has measure either 0 or 2n.

(1.11) THEOREM. If A i8 infinite, then C, and similarly C, has measure either 0 or 2n.

By (1.10), if x e A, and x + h e A, then all the points x + h, x + 2h, x + 3h, ... belong
to A. Since A is infinite, h may be arbitrarily small, so that A is everywhere dense.
Suppose that C and its complement C' are both of positive measure, and let c, c' be
points of density for C and C' respectively. There is an e > 0 such that if any interval
I of length _< 2e contains c, then IC I > }, 11, and if any interval J of length 4 2e
contains c', then I JC' I > } J `. Let I = (c - e, c + e), and take an z, belonging to A
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and distant lees than je from the midpoint of the are (c, e'). Reflexion in xo takes C
into itself and I into an interval J, I J I = 2e, containing c'. The inequalities

IJCI>flJI, IJC'I>,)lJl
being incompatible, we have a contradiction. The argument for C is identical.

There exist trigonometric series absolutely convergent in a perfect set but not
everywhere (see Example 1 at the end of the chapter). On the other hand, we shall
prove the existence of perfect sets P of measure zero which as regards the absolute
convergence of trigonometric series resemble the sets of positive measure: if (1.1) is
absolutely convergent in P, (1.2) is finite.

A point set S will be called a basis, if every real x can be represented in the form
a1 x1 + azxz +... + a,,,x,,,, where al, a,,... are integers, x1, x9, ... belong to 8, and m
depends on x. We may also write x=e1

where ej = ± 1 and the xf are not necessarily different.

(I' 12) THEOREM. If S i8 a bast8, and if EA (x) i8 absolutely convergent in 8, then
E p is finite.

We shall reduce the general case to that of a purely sine series, which is immediate.
In fact the inequality

Isinn(e1x1+epx2+...+ ,,x,,,)sinnx1 +...+sinnx.I (ei=±1), (1.13)

which it is easy to prove by induction, shows that if E b sin nx I converges in S, it
converges everywhere, and so E I b I < ao. In the general case, we need the following
lemma:

(1.14) LEMMA. Let S be a basis, and let S = S. be the set S translated by u. There is
then a set T of the second category such that for every yeT we have

y=alxi +aexe +...+a»,xm,

with ce integral and xJ a S* for all j.

By hypothesis, for every x we have

x=a1(xi -u)+as(Xg -u)+...,
that is,

x+ku=alx'+...+amx,,
where k = k(x) is an integer. Let E. be the set of x for which k(x) = n. At least one of
the En, say is of the second category, and we may take for T the set translated
by nau. We say that S is a basis for T. (Incidentally it is not difficult to deduce that
S' is a basis (cf. Example 2 at the end of the chapter), but we do not need this.)

Passing to the prQof of (1.12), let v be any point of S, and let x=y+v. Then

A (x) = A (v) cos ny - sin ny.

By hypothesis E I A (v) I< co, and therefore EB (v) sin ny converges absolutely in
a set S obtained from S by a translation - v. By (1.14). S is a basis for a set T of
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the second category. The argument which we applied to sine series shows that
sin ny is absolutely convergent in T, and so for all y (see (1.9)). The same holds

for the series _v cos ny - sin nyj = EA (x). Thus (1.2) is finite.
The above proof may be modified slightly, by basing it on Theorem (1.3) instead of

(1.9). It is enough to observe that (1.14) and its proof remain valid if we replace there
the words `second category' by 'positive outer measure'. Since the set of points y for
which E I B,(v) sin ny I converges is measurable, it is of positive measure, and therefore
is the whole interval (0, 2n).

To give an example of (1.12), we shall show that Cantor's ternary set C constructed
on (0, 1) (or on any other interval) is a basis. More precisely, we shall show that
the set of all sums x + y, with z E C, y E C, fills the whole interval (0, 2).

Consider the set K of all points (x, y) of the plane such that x e C, y e C. The set K
may be also obtained as follows. Divide the square 0 < z < 1, 0 < y < 1, which we call
Q0, into nine equal parts, and let Q1 be the sum of the four closed corner squares.
Repeat the procedure for each of these corner squares, denoting the sum of the new
corner squares by Q2, and so on. Plainly, K = QOQ1Q2 .... The projection of any Qs on
the diagonal y = x of QO fills up that diagonal. In other words, any straight line Lh
with equation x + y = h, 0 < h < 2, meets every QJ at one point at least. Since the Qf are
closed and form a decreasing sequence, it follows that KLh + 0, and this is just what we
wanted to prove. Similarly we can show that the set of all dilj'erenees z - y (x a C, y e C)
fills the interval (- 1, 1).

2. Sets N
In what follows we shall repeatedly use the following classical result of Dirichlet:

(2.1) LEMMA. Let al, a2. .... ak be any k real numbers, and let Q be any positive integer.
Then we can f i n d an integer q with I < q < Qk and integers pr,. . . ,p2, pk such that

ai qr
<Qq<41+uk (j=1,2,..., k). (2.2)

Let <x) = x - [x] be the fractional part of x. Consider the k-dimensional half-closed

unit cube I defined by the inequalities 0 <xf < I for j = 1, ..., k, and divide 1 into Q'1
congruent half-closed sub-cubes by drawing hyperplanes parallel to the faces of I at
distances 1/Q. Of the Qk+ 1 points with co-ordinates

<na1), <na2), .. . <nak) (n=0, 1, ... , Qk),

at least two, say those corresponding ton = q1 and n = q2 > q1, are in the same sub-cube
of I. Hence I <q2 ai) - <q1 af> < 1 /Q for all j, or, setting [q1 aJJ = pf, [q2 a!] = pi,

(q2 - q1) a, - (pi - pi) I < I /Q,

which is the first inequality (2.2) with q = q2 - q1 > 1, pJ = pt -Pi.
Remarks. (a) The fractions p5lq may not all be irreducible.
(b) The first inequality (2.2) shows that given any c > 0 we can find an integer q > 0

such that all the products qa1, qa2, ..., qak differ from integers by less than e. It is
enough to take Q _> l/c.
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(c) For any system a aY, ... , ak there exist fractions p,/q with q arbitrarily large,
satisfying I a1-Ptl4 j<4_1-1w (2.3)

For we may take, successively, Q = 1, 2, .... If the corresponding q's are bounded, or
even have a bounded subsequence only, we may suppose that q is the same for infinitely
many Q's. Making a further selection, we may suppose (since the fractions pJ/q are
bounded) that the pf also stay constant. For Q --> oc, the first inequality (2.2) then gives
ai = pf/q. Thus the q in (2.2) can be arbitrarily large, unless-all the as are rational. In
the latter case, however, we even have aJ - p}lq = 0 for infinitely many q's.

In the preceding section we investigated properties of sets E such that whenever the
series EAk(x) converges absolutely in E it converges everywhere. We now prove a
number of results about those sets which do not have this property.

A set E will be called of type N if there is a series EAk(x) which converges absolutely
in E but not everywhere (and so has Epk = oo). If the series in question is a sine series, we
shall call E of type N,. Every set of type N, is also of type N. The converse will be
proved below.

(2.4) LEMMA. Every denumerable set is of type N.

Let E consist of the numbers na, naa, .... By Remark (b), for each k there exists
an integer q=nk such that

I sinnnkaj I<1/kz for j=1,2,...,k.
We may suppose that nk+1 > nk. Then the terms of the series E I sin nkx I are less than
1 /k2 for z = nab and k>-j, and the series converges in E, though not everywhere.

(2.5) THEOREM. Every set E of type N is also of type N,.

The proof is in two parts.

(2.6) LEMMA. Let E be of type N, and let xa be a fixed point of E. Let Ero denote the set
E translated by - x0, that is, the set of all points x - xp with x e E. Then ET0 is of type N,.

For using the inequality (1.8) with x' = x, x" =xo, we see that if the series

EpnBin(nx+xn), with

converges absolutely in E, so does the series Ep sin n(z - x0); that is, Ep,, sin nx con -
verges absolutely in Ez0.

(2.7) LEMMA. If a set E is of type N,, the set Eo obtained by the addition to E of any
point xa outside E is also of type N,.

For suppose that Epn I sin nx I converges for x e E and that Epn = oo. Let wn be
numbers not less than 1, monotonically increasing to +oo, and such that

Z'pn/wn = 00, Epn/GJn < 00.

n
(We may take, for example, wn = pk for n large.) By (2- 1), with k = 1, there exist

for each n integers qn > 0 and p, such that
nx,

I

I< (011 < q8 ,1, qn - Pn -
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Hence
l 7-- <

2

2

n,
I sin nquxo I <

2n
ff

t
n

gnnxe - pnn I <
i

- ,
Epn sinngnxol <E2-;°<00.

Wn Wn
For X E E we have

E P-- I ain nqn z E Pn gn I sin nx EPn I sin nx I< co.
(On (0n

Thus E(pn/Wn)sinngnx converges absolutely for x=zs and for xEE, though E(pn/wn)
diverges.

The integers nqn are not necessarily increasing, but obviously only a finite number of
them can be equal to any given integer. Hence, rearranging E(pn/Wn) sin ngnx, we
obtain a trigonometric sine series converging absolutely in E. but not everywhere.

Return to (2.5) and let xo E E. By (2.6), there is a series Epn I sin nx I with Epn = oo
converging in R... By (2.7) there is a series Ern I sin nx I with Ern = no converging in
E.. and at xs. Thus

Ern I sin n(x - ze) I < oo (z E E); F.rn I sin nxs I < oo;

and so Ern sin nx I < oo for z E E,
which proves (2.5).

Theorem (2.5) gives a new proof of (1.12), since the latter, as we observed, is im-
mediate for sine series.

The properties N and N, being equivalent, it follows from (2.7) that property N
is not affected if we add to the set one point, and so if we add any finite number of
points.

More generally

(2.8) THEOREM. If E is of type N and D is denumerable, then E + D is of type N.

We know that E is of type N,. Let the points of D be x1, x ..., and let Et be the set E
augmented by the points xl, xt, ..., xt.

As the proof of (2.7) shows, given any series Er, ! sin nx j convergent in E, with Er, = oo, we can
construct a series Erg l sin nz i convergent in Et. Moreover,

Zr. ( sin nx (< Er, ( sin nx ( for all x.

More than this is true; for a moment's consideration shows that, given any N ' 1, we can find an
N>N such that N N

sin nx F,, Sin na'.
1 1

Multiplying Er, l sin nx l by a sufficiently small number, we may also suppose that the sum of
the series at the points x xt, ... , xt is less than a given e> 0.

Consider now a series Ep, sin nx with Ep' = oo and

Ep' jsinnx! <oo for xeE,. (2.9)
Take N, so large that N, N

Ep,>l. Ep lsinnxl,<} for x=x1.
1 1

Starting with the remainder E p;, sin nx, we construct a series Ep: l sin nx I convergent in E_.
N,+1

with Ep;, = oo. Let N,> N, be such that
N, N,

p,E >1, 1P,(sinnxl<2t for
N,+1 N,+1
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and N, -_ N, such that N. N,
L p. I sin nx j5 E P;, I sin nx I.

N.+1 N.+1

W
Generally, having defined Nk. , and 9A,-,;;- N5_,, we consider E p, sin nx and construct a series

Nk-.+ 1

E p_ lsin nx, with E& = co. We take numbers N, > N1 and N, 3 N, such that
Ni_.+ 1

Nk Nk 1

E >1, pwk) sinnxJyc2k for (2.10)
Nk-'+1.

Nk N,
E p;,kl I sin nx + E p I sin nx I for all x, (2.11)

Nk_1+1 Nk-1+1
and so on.

The series Nk
Ep,,sinnx= E E pklsinnx,

k-1 n-N,-.+1
where N. = 0, N1 = N1, is the required series. For

Nk
E p(*)Isinnx

k-I n. Nk-,+1
converges in E, as may be seen from (2.11) and (2.9). It converges in D by virtue of the second
inequality (2.10). Finally, the first inequality (2.10) shows that Ep.=oo.

The following theorem shows that we cannot replace D in (2.8) by an arbitrary set
of type N :

(2.12) THEOREM. There exist two nets A and B of type N such that A + B is not of
type N.

Every z, 0 s z e 27r, may be written in the form

2n Z ek2-k (ek = 0, 1).
k-1

Let k1= 1 < k, < ... < kr, < ... be given, and let

The expansions

kprrl
07, = 27r ek2-k (ek = 0, 1).

Al+As+A5+..., 02+A,+A,+...
represent two perfect and non-dense sets A and B in (0, 27r). Since all points in (0, 27r)
can be written in the form x + y, with x E A, y e B, it follows that A + B is not of type
N. But for a suitable choice of the k5, both A and B will be of type N.
For

2ktY(A1 + A, + ... + D2p-1) = 0 (mod 27T),

2k1P (A2p+1 + A2y+2 + ...) < 47r(2-(k,p '-k20+ ...) < S7r 2-(k,p.l-kkd.

Take, for example, kr, = p2, and consider the series E f sin 2k:ax 1. The preceding
inequalities immediately show that it converges in A. Thus A is of type N. Likewise
B is of type N.

It is obvious that any translation of a set of type N is of type N. We have the
following deeper result, in which E. denotes the set of points xA with x e E.

(2.13) THEOREM. If E t8 of type N, so i8 E, for every A.

The case A = 0 is trivial. We are considering E as a periodic set of period 27r. Hence
E. has period 27r (.1 (, and the set E,, reduced mod 27r is, in general, `richer' in points
than a portion of EA situated in an interval of length 21r.
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Since E is of type N there is a series EpA I sin (nx/A) I converging in EA, with EpA = oo.
Let (on) be, as in the proof of (2.7), an increasing sequence of numbers satisfying
EPn wn 1 = oo, EPnon s < oo. By means of (2.1), we choose integers qn, p such that

n I-
gn-< wA,

A A

Then , sin pnx I < sin
2x

Un

n
singAAx

21 xI I n
< +qn sin-x`,

WA A
i

nFnfsinpnx <2 x I W;+pn sin -
A

x
n n

Hence the series EpA wn 1 sin pnx f converges in Ea, and since EpA o,n 1= co, E,A is of
type N (only a finite number of the pn can take a given value).

We shall now obtain a necessary condition for a set Ec(0, 27r) to be of type N.
Let F(x), 0 < x -< 27T, represent a mass distribution of total mass 1, concentrated on E;
that is,

F.
(2.14)

If E is closed, F is a non-decreasing function constant in the intervals contiguous to E.
By hypothesis, there is a series Ep. I sin nx I convergent in E, with Epn = oo. In

particular, Epn sin2 nx < oo in E, and so also

N N
Pnsin' nxPn-*0 (xEE).

The ratio here does not exceed 1. Multiplying it by dF and integrating over (0, 2n).
we get N

F"
N

EPn sins nxdF E p,, 0.
I o t

Hence lim inf sins nxdF = 0,
A-.m o

or

Thus

Jim sup J cos 2nxdF =1. (2.15)
A--o= o

(2.16) THEOREM. If E is of type N, then for any positive mass distribution dF
aaiisfying (2.14) we have (2.15).

This means that not only do the Fourier-Stieltjes coefficients of dF not tend to zero,
but their upper limit is as large as possible. The fact that for any distribution of mass I
over E we have (2.15), might be interpreted as indicating the `smallness' of E (see
also Example 10, p. 251).

Remarks. (a) It seems not to be known whether the condition (2.16), which is fulfilled for all
functions of the type described above, is quffcient for E to be of type N. It is almost immediate,
however, that if (2.16) is satisfied for a given F, then there is a subset E' of E of type N such that

J
dF=O.IE-r
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w

For (2' 15) implies the existence of a sequence {ns) such that sin'nsxdF,4 2-'. Hence
0

*( m

so that E sin nsx I < oo for x E E' C E, where E'

issss1ss

such that the variation of F over E - E' is zero.
(6) We shall apply (2-16) to symmetrical perfect sets of the Cantor type (Chapter V, § 3). We

know that the points of such a set P are:

x=21r(e1rl+e,rs+...) (e,=0, U. (2.17)

where r1 + r1 + . . = 1 and r, > rf 41 + r,,, + ..., or alternatively, putting in evidence the successive
ratios of dissection, rk = 61 G-1 (I - 9k).

Let F be the Lebesgue function for P. Then (Chapter V, (3-4))

J cos 2nx dF = R coe 2nnrk.
0 k-1

If P is of type N, we have the necessary condition

lim sup n cos' 2anrk = 1,
a-.m k-1

or lim sup R (1-sin* 2nnrs) = 1.
n-.= k-1

The latter condition is equivalent to

(2-18)

W

lim inf E sins 2nnrk = 0. (2-19)
wpm k-1

That (2.18) implies (2.19) follows from the inequality 1 +xC el and the fact that the product in
(2.18) does not exceed 1. The converse is a consequence of the inequality

I-(el+...+eN),

valid for e, 1 and easily verifiable by induction.
We now show that, if the sequence rs (which is decreasing) is such that rk/rt41= 0(1), then P is

not of type N.
Suppose that rk/rk+1 M, and take any a, 0 < a < I/M. Then, if n is large enough, there is at

least one rk in the interval (a/4n, 1/4n), and for this rs

sin' 2nnrs > sin' 12nn 4n) = sin' }sa,

which makes (2-19) impossible.
In particular, if fk;z 8 > 0 for all k, P is not of type N.

m
(c) The condition lim inf E jsin 2nnrk 0, very similar to (2.19), is sufficient for P to be of

,r+ao k-1
type N. For let (n,) be such that

sin 2nnn,rk I <>)
k-1

with D1, < oo. The relation (2.17) implies

sin n,x si E I sin 21rn,rs I S 9,

and gives E I sin n, x I < co, for x e P.
k-1

3. The absolute convergence of Fourier series

(3.1) T uoBEM of S. BERNBTnrN. If f A., a>}, then S[f] converges absolutely.
For a = } this is not necessarily true.
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Suppose that EA,(x) is S[f]. Then

f(x+h)-f(x-h)- -2 B,,(x)sinnh,
s n-1

1 J [f(x+h)-f(x-h)]sdz=47, pnsin' nh.
A 0 n-1

241

(3'2)

If cu(8) is the modulus of continuity of f, the left-hand side of (3.2) does not exceed
2u2(2h). On setting h=n/2"+1y v= 1, 2, ..., we obtain

nn n
E P ain2 2,+1 < JA'Y'

w=1 ,

2' m
Pnsin=2v

nn}
n-2 1+1 1

(3.3)

since in the preceding sum the oo-factors of thepn all exceed J. By Schwarz's inequality,

Y P. ( 1t)-2K)1 (2,) > (3.1)2''t 1 2'-'+'P.),(' '+ l

0
2V

and finally, E Pn _ E E Pn S E 21'w(2,) . (3'5)
n-2 V_IM-2 '+1 v_1

If w(a) 5 CBs, a > }, the last series converges and the first part of (3.1) is established.
The proof of the second part is contained in that of (3.10).

Remark. The above proof gives slightly more than is actually stated in (3.1). For
5[f ] to converge absolutely it is enough that 121lw(n 2-) converges. This condition is
readily seen to be equivalent to the convergence of the series En-1u(n/n), or of the
integral

r1

dJ.
0

(3.6) THBORRM. If f (x) is of bounded variation and of the class A,, for some a > 0,
S[f] converges absolutely.

The second condition imposed on f is not superfluous, as the example

f(x) N E sin nx
_2 n log n (3'7)

shows. Here f (x) is of hounded variation, indeed absolutely continuous (Chapter V,
(1.5)), but S[f] is not absolutely convergent.

Let w(a) be the modulus of continuity of f, and V the total variation off over
(0, 2n). Obviously

El
+N)-f(x+(k N--)j -(N) Y,I f(x+N)-f(x+(k NI+ )n/I-< m(N)V.
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We integrate this over (0, 27T) and observe that all the integrals on the left are equal.
This gives successively, with N = 2',

2N f' [f(z + ) -f (x - 2rrVw(n/N),
o

nn
Pn sin' 2N }N ' Vc, N

n

2'

E pl. < J2-''Vw(n 2-''),
11 -s'-1+1

2'
p. <_ jViwf(n2-'),

EP.V1 Eul(n'2-').
n-2 r-1

If w(8) s C8", a > 0, the series on the right converges and (3.6) follows. The con-
vergence of Fw i(n 2-1) is equivalent to that of En-10(77/n), or of

('1

0
8-'w&(8) d8.

(3.8) THEOREM. If f is absolutely continuous and if f' E I)', p > 1, then S[f] converges
absolutely.

This follows from (3.6); for if f' E U', p > 1, then f E A15 , since, if 0 < h _< 27T,

z+h =tk 1/p 2. 1/p

If(x+h)-f(x)I<f: I f'(t)Idt,(J= If'IVdt) VIP' <_ ( 0 If Ipdt) h'ip'.

For p = 2 (and so p > 2), (3.8) is immediate. For if an, bn are the coefficients of f',
those of f are - bn/n, an/n, and the inequalities

I an I n-' S k (an + n-'), I bn I n-' < }(bn + n-2),

coupled with Bessel's inequality E(an+bn) <oo, imply the absolute convergence of
S[JJ. (The argument can be extended to general p > 1 if instead of Bessel's inequality
we use its extension for I <p e 2, the Hausdorff-Young theorem (2.3) of Chapter XII.)

(3.9) THEOREM. The conclusion of (3-8) remains valid if instead of the integrability
of I f'IDweassume that of I f' 1g f'I

The proof is postponed to Chapter VII, p. 287, where the result will be obtained as a
corollary of the following theorem:

If S[f] and [ f ] are both Fourier series of functions of bounded variation, S[f] converges
absolutely.

Here we only observe that the integrability of I f' I (log+ I f' I ) '> e > 0, would not
be enough. For if f is given by (3- 7), then S[f] converges absolutely only for x = 0
and x = n. But f'(x) -'1 /x log' x as x -> + 0 (Chapter V, (2-19)), so that I f' I (log+ I f' I )'-
is integrable for every 0 < e < 1.



vu The absolute convergence of Fourier series 243

The problem of absolute convergence of Fourier series may be generalized as follows.
Given a series EA,,(x), we ask about the values of the exponent ft which make

E(IanVV+Ib.I,)
convergent. Theorem (3.1) is a special case of the following result:

(3.10) THEOREM. If f E A., O< a< 1, then E(I an 1,8+ I bn If )converges fort > 2/(2a+ 1),
but not necessarily for ft = 2/(2a + 1).

The proof of the first part is like that of the first part of (3.1). Let y = 2/(2a + 1).
Since 0 < y < 2, we may suppose further that 0 <,6 < 2. By HoIder's inequality and (3- 3),
we have 21 2 116 2' 1 10

E pn < Y_ pn r
2"-'+1 2''-'+1

m m

E pn 2,0-Y) &.0(7r 2`"),
n-Y v-1

and the last series converges if o j(8) S C8 since 1- fl (j + a) < 0. This gives the finiteness
of Epn, and so also of E(I an 1,8 + I b8 IV).t

The second parts of (3.1) and of (3.10) are corollaries of the results obtained in
Chapter V, § 4. It was proved there that the real and imaginary parts of the series

ein )og n
ei- (0<a<1)n_I nl+a

belong to Am, and it is easy to see that, for both, Epn(r.2+1) = oo. The series

ein)ogn

(3.11)

a l (n logn
--)I einx (3.12)

..

belongs to Al (Chapter V, (4.9)), but Epnf =oo.

(3.13) THEOREM. If f is of bounded variation, and if f c A8, 0 < a S 1, then
E(I an IB+ I bn Ia) converges/or ft> 2/(a+ 2), though not necessarily for /1 = 2/(a+ 2).

The proof of the convergence for 6> 2/(2 + a) is analogous to the proofs of
Theorems (3.6) and (3.10), and is left to the reader.

In proving that E(I an I-6 + I bn IQ) can diverge for ft= 2/(2+a), we may suppose that
0 < a < 1, since the case a = I is taken care of by (3.12). We start from the series

E n)-r etn° ei"z (0<a<1).
S-2

It was proved in Chapter V, (5.8), that this is a Fourier series if y> 1. So the inte-
grated series - iEn-4-i (log n)-Y ei"° einx (3.14)

is the Fourier series of a function of bounded variation (indeed absolutely continuous).
By Chapter V, (5.2), the sum of (3.14) without the logarithmic factor is a function of
the class A,, and by Chapter IV, (I 1.16), the sum of (3.14) is in Aa. On the other hand,

E I Gn 12n2+a) = En-'(log n)-r(%n(t+s)] = o0

if y is close enough to 1. It follows that for both the real and the imaginary parts of
(3.14) the series E(I an If + I bn I-8) diverges if 8= 2/(2 +a).

t If cos (nz+m ). then (ja,, 0+ j b, 5)/p; = j 108 ,, A+ j sin 0. PA is contained between 2-15
and 2, 8o that the series E fla 10+ 1 b.119) and Ep; both converge or both diverge.
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4. Inequalities for polynomials
The problem of the absolute convergence of Fourier series has close connexion with

the following one, for trigonometric polynomials.
Consider all polynomials

T (x) = Jao + E (ak cos kx + bk sin kx), (4.1)
k-1

of fixed order n 3 1, such that I T(x) I < 1. How large can the sum
n

I'(T)=4IaoI+ E(Ikl+Ibk1)
k-1

be? The answer is given by the following theorem, in which A and B denote positive
absolute constants.

(4.2) THEOREM. (i) If I T(x) 15 1, then 1'(T) 5 An};
(ii) Conversely, for every n there is a polynomial (4.1) each that I T (x) 15 1, r(T) >- Bnl.

Since I ak I + I bk I is contained between pk and 2}pk, (4.2) is not affected if we re-

place r(T) by r*(T) = 4Po+Pk-
Part (i) is immediate, since

}/ n
l}I'k(T)_ jpo+Pk<(4Po+Pk) (4+ l2)

l
2

u
'T2 1<-21 1- 2 } - 3}n}.=( f dx) (n++)) (n+) -( n+1) (43)

To prove (ii), consider the polynomial
N

g(x) = g,(x) _ , (c!k_l(t)cos kx + gek(t)sin kx},
k-t

where 01, 0e, ... are Rademacher's functions (Chapter I, § 3). By Chapter V, (8.4),
2w 2' 1 2.

JdtJIg:(x)!dx=JdxJIt(x)Idt AI{Jo (cos2x+sin2x+...+sin2Nx)Idx

= 2rrA,Nl.
2a

It follows that there is a t = to such thatfo I g,o(x) I dx > 277A1N}.

Let ak, bk be the Fourier coefficients of the function f (x) = sign 9,.(x). Let o-, be the
(C, 1) means of S[f ], and let

,

N eN-1

I Ak(x)
1 A,(x)+k=N+1(l N )

be the delayed means of S[f ] (Chapter III, § 1); for n = 2N - I or n = 2N, IrN will be
the required polynomial T.

Clearly, 14rw I -< 1, since I f I k 1 and so I v, I < 1. It is therefore enough to show
that F(rN) >- CN} for some fixed C. Now

I'(TN)3E(Iakl+Ibkl)> IZakO2k-100)+bk04k(t0)I=I nfo 9t.rNdxl.



vi] Inequalities for polynomial8 245

Since g4(x) is a polynomial of order N, and the Nth partial sums of r,, and of S[f J
coincide, this last expression is

i-Jo9(.fdx =nJ I9,,Idx=2A1Ni.
77

This completes the proof of (ii).

(4.4) THEOREM. For any r > 0 and any polynomial (4- 1), let

rr(T)=(JEIao11+E (I a,, '+Ibkjr))u'-
Then, (i) for any 1 < r < 2 and any T(x) with I T I -< 1, we have r,(T) < An_i+lh, and

(ii) for any 1 <- r 5 2 and any n, there is a polynomial (4.1) satisfying I T 14 1 with
r,(T) 3 Bn-i+,/.

The restriction on r is essential: for r > 2, part (i) is false and part (ii) trivial.
Part (i) is proved here as in (4.2), except that we use Holder's inequality instead of

Schwarz's. For (ii) we have, by Holder's inequality,

r(T) -< r,(T) (2n + 1)(r-1)!r <- 3 r,(T) n(r-1)"

for any T of order n ; and the T for which we have r(T) >- Bni satisfies also the
inequality r,(T) >- iBn-i+'/,.

5. Theorems of Wiener and Levy
It is obvious that the absolute convergence of S[f J at a point xo is not a local pro-

perty, but depends on the behaviour off in the whole interval (0, 2n). However,

(5.1) THEOREM. If to every point xo there corresponds a neighbourhood Ix, of xo and
a function g(x) = g ,(X) such that (i) S[g] converges absolutely and (ii) g(x) =f(x) in I=,,
then S[ f ] converges absolutely.

By the Heine-Borel theorem we can find a finite number of points x1 <x2 < ... <xm
such that the intervals 1=,, I, ..., Ii,,, cover (0, 2n). Let Is, = (uk, vk). We may suppose
that the successive intervals overlap and even that Uk < VI-1 < uk+1 < Vk, k = 1, 2, ..., m,
where u, + 2n, vo = vm - 277. Let Ak(x) be the periodic and continuous function
equal to 1 in (vk--1, uk+1), vanishing outside (uk, vk), and linear in (uk, vk_1) and (uk+1, Vk)
It is readily seen that A1(x) + A2(x) + ... + A,,,(x) = 1. Since Ak(x) is of bounded variation,
the Fourier coefficients of Ak are O(n-2), and S[Ak] converges absolutely.

Since S[fAk] = S[gxk All = S[gZ ] S[Ak], it follows that S[fAk] converges absolutely
(Chapter IV, § H). To complete the proof of (5.1), we observe that

S[f] =S[f.(A1+... +A,,1)]=S[fA1]+... +S[fAm].

(5.2) THEOREM. (i) Suppose that S[f J converges absolutely, that the values (in general,
complex) of f (t) lie on a curve C, and that q5(z) is an analytic (not necessarily single-
valued) function of a complex variable regular at every point of C. Then S[q(f )] converges
absolutely.

(ii) In particular, if f(t) * 0, and if S[f ] converges absolutely, so does S[1/f].
For every g(x) = Zak ei - we write

II 9 jI = Z I ak I, Mg = max I g(x) I. (5.3)

Clearly, II 19i Ii 5 E 11 gi II, II 919, Ii II 91 II II 9, Ii (5.4)
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(5.5) LEMMA. (a) If g(x) = Fax eikx is twice continuously differentiable, then

II g II < 4(Mg+Mg"). (5.6)

(b) If g(x, 0) is periodic in x, and if for each value of the parameter 0, 0 < 8 < 2ir, we
have II g(z, 0) II < A, then .

15 g(x, 8) d0 I

I

< 2irA.

(a) We have I a0 I < Mg, and if n + 0 integration by parts gives I an I < n-2Mg".
Since E'n-2 = jn2 < 4, (5.6) follows. Part (b) is immediate.

Return to (5.2) (i). Since 0 is analytic for z=f(z), there is a p> 0 such that 0(z) is
regular in each circle I z -f(x) I < 2p. Let 8(x) be a partial sum of S[f] such that

M(s-f)<IIs-fI <1P
Then 0[s(x) +p ei0] is twice continuously differentiable in x and 0. Hence, for each 0,
II O[s(x) + p ei0] II is finite, and this norm is a bounded function of 0.

On the other hand, we have
W

(8 +P ei0 -f)-1 = P-1 e-0 1 + (f - 8)n p-n a-ins

and therefore, by (5.4),
rr

II (s+pei0-f)-l II <p-1(1+F..(4P)np-n)=2p-I.

Since, by Cauchy's formula,

z
s' 018(x)+Pe{0] etOdB0[f( )]=2_J0 s(x)+Pea_f(x)P

part (b) of Lemma (5-5) implies that II O[f (x)] II is finite. This completes the proof of (5.2).
Theorems (5.1) and (5.2) (ii) are due to Wiener, (5.2) (i) to Levy. A corollary of

(5.2) (ii) is that, if F(z) is regular for I z I < 1, continuous and distinct from 0 in I z I < 1,
and if the Taylor series of F converges absolutely on I z I = 1, then the Taylor series of I/F
also converges absolutely on I z I =1.

We verify without difficulty that the argument of the preceding proof also yields
the following result:

(5.7) THEOREM. Let f (x) have an absolutely convergent Fourier series, and let F,(x)
be a sequence of analytic functions converging uniformly to 0 in a neighbourhood of the
range of f(x). Then II Fn[f(x)] II -+0.

From this we deduce the following theorem:

(5.8) THEOREM. If f (x) has an absolutely convergent Fourier series, then

lim II fn 11 1/n = Mf.
n-W

Let R> Mf, Fn(z) = (z/R)n. By (5-7),

n-fl n-
lira I Fn[f (x) Ill= 1im II f, II _ 0,

Rn

< 1.which implies that lim sup R

n

Since this holds for every R > Mf, it follows that

lim sup 11 P, 11 '/n < Mf.
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On the other hand, we have
Il f' Ii Mf' = (Mf )',

whence lim inf 11 f" 11 '/n> Mf. This completes the proof of (6.8).
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6. The absolute convergence of lacunary series

(6.1) THEOREM. If a lacunary series

E(a1 cos n1z+bf sin ntx) = Ep5 cos (n5x+xi) (n5+1/nf > q> 1) (6.2)

ie an S[f ] with f bounded above (or below), then Ep5 < oo.

(6.3) THEOREM. If the partial sums Fm of any lacunary series (6.2) 8atiefy the condition

lim supam(x) < +oo (6.4)

(or Jim inf em(x) > - oo) at every point of an interval (a,,8), then Epi < oo.

Theorem (6.1) is a corollary of (6.3). For the hypothesis of (6.1) implies that the
(C, 1) means O,(x) of (6.2) are bounded above. Since em(x) - vm(x) -1. 0 (owing to the
lacunary character of the series and the relations ak, bk -i 0; see p. 79), the Fm(x) are
bounded above and Ep, < oo by (6.3).

Nevertheless, it is more convenient to begin by proving (6- 1), which is the easier
of the two; the more so since part of the argument will be used later in the proof of (6.3).

We first recall a few properties of the Riesz products, defined in § 7 of Chapter V.
Let ml, m=, ... , mk be a sequence of positive integers satisfying m1+1/mt > Q > 3 for

all j,andlet k

R(x) = rj {l + cos (m}x+ (6.8)
f- I

R(x) is a non-negative polynomial with constant term 1,

R(x) = 1 + Ey, cos (vx + (6.6)

2*
so that

2a
1 R(x) dx =1. (6.7)

0

Moreover, 0 s y, 1 for all v, and y, = 0 unless

v=m5±m1.±m,..±... (k>j>j'>j'>...). (6.8)

There is at most one such representation of any given v, and so in particular the meth
term of (6.6) is

Let q> 1 be given. Since the sum in (6.8) is contained between

mi(1-Q-'-Q-'-...)=mi(Q-2)/(Q-l) and m1(1+Q-1+Q-2+...)=m1Q/(Q-1),

the v with y, * 0 are confined to the intervals (m1/q, rn5q) provided Q is large enough,
say Q > Q0(q). We shall call the interval (m1/q, m1q) the q-neighbourhood of m5.

Return now to (8- 1), and split {n,} into r subsequences

where 8=1,2,._r.
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We take r so large that Q = q' exceeds both 3 and the number Q0(q). Fix a, and set
k

R'(x)= 11 {1+Cos(n1r+.x+xfr+.)}. (6.9)
1-0

Since the ranks of the (non-zero) terms of R' are in the q-neighbourhoods of the nj,+.
(j = 0, 1, ..., k), and the only non-zero term of 5[f) in such a neighbourhood has rank
ntr+e, it follows that

- o*f(x)R'(x) = f f(x){ E cos(n1.+,,x+xt,+.))dx Eptr+, (6.10)
IT s-0

But if M is the upper bound off the left-hand side here does not exceed

M 1 f R(x) dx = 2M,
IT

by (6.7). It follows that the right-hand side of (6.10) does not exceed 2M. Making
k --> oo and summing the inequalities over 8 =1, 2, ..., r, we see that Ep5 < 2Mr, and
(6.1) is established.

Under the hypothesis of (6.3) there is a subinterval I of (a,/1) such that the F. are
uniformly bounded above, say a,,, < M, in I (see Chapter I, (12.3)). Hence (6.3) is a
corollary of the following lemma about polynomials.

(6.11) LEMMA. Given any interval I and any q > 1, we can find aninteger no = no (q, I 11)
and a constant A = A (q, I 11) each that for every lacunary polynomial

T(x)=E(aicosnnx+b,sinn5x)=Epicos(n,x+x5) (nf+,/n,>q> 1) (6.12)

for which n, > no and T (x) < M in I, we have

Ep, < AM.

We need more information about the y, in (6.6).
Suppose v is given by (6.8) but is not equal to m,. Then

I v-mf >m1,(l-Q-1-Q-'-...)=mf.(Q-2)/(Q-1)>X11

We have already observed that v is contained between ms(Q - 2)/(Q -1) and
m,Q/(Q - 1), and so between }rn1 and lm5. It follows that v must differ from m1+, (if
such an m exists) by at least jm, > lam,. Similarly it must differ from m5_, (if such an m
exists) by at least

Collecting these estimates we see that each v with y, + 0 in (6.8) either is an mi or differs
from all mt by at least jm1.

Return to T (x). As before, we split {n5} into r subsequenoes {nt,+,}, where s =1, 2, ... , r,
and r satisfies the conditions imposed above. Let T' consist of the terms of T which
have rank n5,,, for some j (so that T is the sum of all T') and let R' be defined by
(6.9). We set U=R1+R'+...+Rr.
An argument similar to (6.10) giveess

fThIRtdx=pj.1 1 J 'TR'dx=Z (6.13)
o
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To estimate the left-hand side here we write

T = Ec1 ein,X, U = E8 er'Z, p = Ep1,

where n_i = - n5. Since the only overlapping terms in different Re are the constant
ones, we have 80 = r, 14,1 5 ,) for v 4 0. Hence

Ic,I=jpij, IB,Ikr foralljandv. (6.14)

Let T U = ECm e{n's, where Cm = E cd,, (6-15)
RI-Peru

and let N = [}nt]. We observe that
(i) C0= Jp (since the left-hand side of (6.13) is 2C0);

(ii) ICm_< rEicJI=ru(by(6.15)and(6.14));
(iii) Cm = 0 for 0 < I m I < N (since 8, = 0 in R if v differs from any n, by less than N).
Let now A(x) be the periodic and continuous function equal to 0 outside I, equal to 1

at the midpoint of I, and linear in each half of I. The series S[it] converges
absolutely. The actual values of the A, (see Chapter I, (4.16)) are not needed. Consider
the formula

I *
2n kTUdx=EAmCm.s

On the one hand, by (i), (ii) and (iii), the sum here exceeds

AOCO- E IAmCmI.? /t(Ao-2r E IAnI); (6.16)
ImI'N ImI>N

on the other hand, the integral is

(6.17)
J

ATUdx<2n II
0I

If N = [int] is so large that the expression in brackets on the right of (6.16) exceeds
,).la, a comparison of (6.17) and (6.16) shows that JA,,u 5 Mr, so that p S AM where
A = 4r/.t0, and (6.11) is proved.

Remarks. (a) Theorem (6.3) holds if instead of the partial sums s_ of (6.2) we consider linear
means. It is easier to deal with means applicable to the terms rather than to the partial sums of
series (see p. 84).

Suppose we have a matrix {a ..} ._ o l ... and a series u0+ u, +.... Consider the expression

v,.= Ea..u..
n

The only thing we assume about the a,.,, is that lima,.. = I for each n. Suppose now that the means
m

v.,(x)=Fa,.,,Jplcos(n,x+r,) (6 18)

of (6.2) satisfy the following conditions for xe (a,,8):
(i) they exist (i.e. the series (6.18) converge);

(ii) they are continuous;
(iii) lim sup o,.(x) < + 0o.

m

Then, as before, there exists a subinterval I of (a,,8) in which the v,. are uniformly bounded
above, say by M. Observing that (6.11) holds not only for polynomials but also for infinite series
(as is seen by first considering the (C, 1) means of T and then makings passage to the limit), we have

a.., Ip,4AM.
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If we retain only a fixed finite number of terms on the left and then make m - eo, we see that each
partial sum of Ep, is r AM, and so also Ep, _< AM.

Condition (ii) is certainly satisfied if the matrix is row-finite. It is also satisfied in some other
cases, for example for summability A.

(b) The conclusion of (6.3) holds if instead of (6.4) we suppose that for each xc (a, fi) we have
at least one of the inequalities

limsups.(x)<+co, limin£a (z)> -oo. (6.19)

It is enough to show that the new hypothesis implies that at least one of the inequalities (6.19)
is satisfied in a subinterval of (a,,8). For suppose this is not the case, and lot E+ and E- denote
respectively the subsets of (a, fl) in which lim sup a,,, = + oo and lim info. _ - oo. By Chapter I,
(l2.2), the set E+ (being a set of points at which the sequence of continuous functions

8,+ (x) = max (0, 8,,,(x))

is unbounded) is the complement of a set of the first category in (a. 6). Similarly E- is the com-
plement of a set of the first category in (a, fl). It follows that E+E- is the complement of a set of
the first category in (a, 6) and, in particular, is not empty, contrary to hypothesis.

The conclusion may be stated slightly differently: if Epr= +oo, then in a set of points which is
dense and of the second category in every interval we have simultaneously

lim infa.(x) = - co, lim sup a,,,(z) = + oo. (6.20)

There is a corresponding result for the linear means discussed in (a).
(c) If q is large, Theorem (6.3) can be obtained by the following simple geometrical argument.
Let I be a subinterval of (a, fi) in which s,,,(x) _< M for all m. Consider the curves y = cos (nix -x,)

for j = 1, 2, ... , and denote, generally, by I1 any of the intervals in which cos (nix + x,) 3 J. Assuming,
as we may, that n1 is large enough, we select an interval 11 totally included in 1. Since n2/n1 is
large we can find an interval I, totally included in the 1, just considered, and so on. Let z' be the
point common to 1, 11, I .... Since

p, cos (nix $ + xr) M
J.1

for all m and since cos (n, x' + x!) 3 }, it follows that Ep, converges.
This argument is valid for q>_ 4. For let d, and 8, denote respectively the length of 11 and the

distance between two consecutive I, We can find an I,+r C 1, if

2dr+1+d,+1 <d,. (6.21)

Observing that d, = 21r/3n,, 8, = 4rr/3n,, we find that (6.21) is equivalent to n f+1/n, 3 4.
By considering the inequalities coo (nix +z,) 3 e> 0, where a is arbitrarily small but fixed, we

can extend the preceding argument to the case q> 3. The argument does not work, however, for
general q> 1.

MISCELLANEOUS THEOREMS AND EXAMPLES

1. The set of points where En-1 sin n! x converges absolutely contains a perfect subset. [Con.
sider the graphs of the curves y = sin n! x.]

2. (i) Every measurable set of positive measure is a basis. (Steinhaus [5].)
(ii) Every set whose complement is of the first category is a basis. (Niemyteki [1].)
[Suppose I E j > 0, x e E, y c E. To prove (i), it is enough to show that the set of differencesx - y

contains an interval. Let F5 denote the set E translated by h. Considering the neighbourhood of
a point of density of E, we see without difficulty that EE, * 0 for all small enough h. The proof
of (ii) is similar.]

3. Let C be Cantor's ternary set constructed on (0, 2rr). Every x e C can be written in the form
21r(al3-1+a, 3-1+...), where a, is either 0 or 2. Using this, show that every can be
written in the form x + y with xeC, y e C (which shows that C is a basis).
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4. Let A be the set of points of absolute convergence of EA,(x). Then A is invariant under

(i) the translation, (ii) the symmetry,

making any two points a, b of A correspond. (Arbault [ l ].)
[If [1.7] is written and if a,b,ceA, an argument similar to the proof of (1.7)
shows that the series converges absolutely at the points (i) a-b+c, (ii) a+b-c.]

S. If a trigonometric series converges absolutely on a perfect set E of Cantor type (Chapter V.
§3), then the series converges uniformly on E. (Arbault[1], Malliavin(1].)

[A consequence of Chapter I, (12-3) (ii), of the homogeneous character of E, and of the proof
of (1.10).]

6. A necessary and sufficient condition for S[h] to converge absolutely is that h be the con-
volution (Chapter II, § 1) of two functions f and g of the class L'. (M. Riesz; see Hardy and
Littlewood [12].)

[Thesufficiencyof thecondition follows from Chapter II, (1.7); if EC. 84- converges absolutely,
consider the functions with Fourier coefficients I c I } and I c I i sign c,,.]

7. The hypotheses oftheorems (3- 1) and (3- 10) are unnecessarily stringent. The conclusions hold
if the condition f E Aa is replaced by f e A;.

8. Let 0 < a 1 , 1 4p<2 . If a,,, b, are the coefficients of an f e A;, then E (I a I ft + I b. I e)
converges if,8>p/(p(1 +a) -1). (SzAsz [2].)

[The proof is similar tb that of (3.10) if instead of Parseval's formula we use the inequality of
Hausdorff-Young, which will be established in Chapter XII, § 2.1

9. (i) IffeAa,O<a<1,thenZnO-i(Ia. forf<a. (Weyl[l], Hardy [1].)
(ii) If f is, in addition, of bounded variation, then Enf"(I a, I + I b I) <oo.

(iii) 0<a<1, 1<p<2,then
10. Let F(x), 0 <x < 2n, be a non-decreasing function of jumps; that is, the increment of F

over any interval is equal to the sum of all the jumps of F in that interval. Let dl, di, ... be all
the jumps of F. Show that

lim sup J r cos 2nxdF(x) = Ed,.
n-.ao 0

(Compare (2-I6).]

11. If a lacunary series E(akcosnkx+bksinnkx), nk+t/nk>q> 1, is absolutely summable A
(see p. 83) in a set F of positive measure, then E(I ak I + I bk I) converges.

(Supposing for simplicity that the series is purely cosine, write.f(r,x)=Eakr"kcosnkx. By
('t

reducing E we may suppose that 1 f(" .)I dr is uniformly bounded for xeE. Integrating the
00

integral with respect to x, changing the order of integration, and applying Chapter V, (8.5), we
('t

deduce that J (Eakni r'"t )i dr is finite. If we consider the integral over 1 - q/nk <r < 1 - I/nk and
0

in the sum E keep only the kth term we deduce that E I ak I converges.]
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CHAPTER VII

COMPLEX METHODS IN FOURIER SERIES

1. Existence of conjugate functions
So far, though using complex numbers, we have not systematically applied complex

variable theory; in particular, we have not applied Cauchy's theorem. Our nearest
approach was the use of harmonic functions, which are the real parts of analytic
functions.

In operating, however, with harmonic functions there are certain inconveniences;
thus even the square of a harmonic function need not be harmonic. The situation is
differeit for analytic functions; elementary operations performed on such functions
lead again to analytic functions. So does the operation of taking a function of a
function. Dealing directly with analytic functions instead of with their real parts
accordingly offers distinct advantages. The significance and value of complex methods
in the theory of Fourier series is well seen in the problem of the summability of
conjugate series and the existence of conjugate functions.

In Chapter III we proved a number of results on the summability of Fourier series.
The corresponding results for conjugate series were much less complete. The obstacle
was that at that time we knew nothing about the existence of the integral

_ 1 °f(x+t)-f(x-t) { 1

`(x) n 2tan it -dt=lim t-11 J (1 1)
0 e-i+0 l e 11

all that we proved being that, almost everywhere, the existence off (x) was equivalent
to the summability A of S'[ f ]. Later, in Chapter IV, § 3, we gave a proof of the existence
of (I.1), and so, by the equivalence, of the summability A of S[f ], almost everywhere.
We shall now prove the latter fact by complex methods, without appealing to the
existence of (1.1).

(1.2) THEOREM. For any f E L, S[f ] is summable A almost everywhere. More generally,
the harmonic function conjugate to the Poisson integral off has a non-tangential limit at
almost all points of the unit circle.

We may suppose that f 3 0, f * 0. Let z = r etx. and let u(r, x) be the Poisson integral
and, v(r, x) the conjugate harmonic function. The function u(r, x) + iv(r, x) is regular
for I z ( < I and its values there belong to the right half-plane. Hence

G(z) = e-u(r, x)-iv(r, x) (1.3)

is regular and absolutely less than 1 for I z I < 1. It follows that G(z) is, qua harmonic
function, the Poisson integral of a bounded function. Thus the non-tangential limit of
G(r e'x) exists almost everywhere. Since the non-tangential limit of u(r, x) also exists
almost everywhere and is finite (=f), the limit of G must be distinct from 0 almost
everywhere. Hence a finite non-tangential limit of v(r, x) exists almost everywhere,
and (1.2) is established. As corollaries (see Chapter III, (7-20), (5.8)) we have:

(1.4) THEOREM. For an integrable f, the integral (1.1) exists almost everywhere.
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(1.5) THEOREM. For almost all x, 9[f] is summable (C, a), a > 0, (and so also aummable
A) to sumj(z).

Extensions to Fourier-Stieltjes series are easy. Thus we have:

(1.6) THEOREM. Let F(x) be of bounded variation in 0 _< x < 2n. The conclusion of
(1.2) holds if 9[f] there is replaced by S[dF]. The integral

I (''F(x+t)+F(x-t)-2F(x) ( 1 *1
F*(x) = n o 4 sin' it dt = Jim - - J (1.7)

exists almost everywhere and represents for almost all x the (C, a), a > 0, (and so also the A)
sum of S[dF].

Suppose, as we may, that F is non-decreasing. The Poisson integral u(r, x) of dF
is then non-negative. Let v(r, x) be the conjugate of u(r, x) and let 0(z) be given by
(1.3). Arguing as before, we prove that the non-tangential limit of v(r, x) exists almost
everywhere. In particular S[dF] is summable A almost everywhere. By Chapter III,
(7.15), the integral (1.7) exists almost everywhere, and by Chapter III, (8.3), S'[dF] is
almost everywhere summable (C, a), a > 0, with sum (1.7).

The integral (1.7) may be written

1 (* dF(t) 1 ('A dF(t+x)
18

-
IrJ 2tan4(t-x) ir 2tanit' ( )

where the integrals are to be taken in the `principal value' sense (see p. 51).

2. The Fourier character of conjugate series

Of the erie
cos nx sin nx

2 1ss
log n , log n ' )(

the first is a Fourier series, and the second is not (Chapter V, §1). Thus S[f] need not
be a Fourier series.

Of the series sin nx cos nxi n I n (2.2)

the first is the Fourier series of the bounded function J(n - x), 0 < x < 277, the second
of the unbounded function - log 12 sin ,]x I (Chapter 1, (2.8)). Of the series

sin nx cos nr.

s nlogn' 2nlogn' (2.3)

the first is the Fourier series of a continuous function, since it converges uniformly
(by Theorem (1.3) of Chapter V), the second is the Fourier series of a discontinuous one.
(The latter series diverges to +oo at x = 0, and so is also (C, 1) summable to + oo there;
hence it is the Fourier series of an unbounded, and so also discontinuous, function.)
However,

(2'4) THEOREM OF M. RIESZ. If f E LP, 1 < p < + oo, then f e LP, and

9XP[f] S A,Vp[f], (2'5)

with A. depending on p only. Moreover, 9[f ] = S[11.



254 Complex methods in Fourier series

As we have just seen, (2.4) fails for p =1 and for p = co. For p= 1, its place is taken
by the following two theorems:

(2.6) THEOREM. If f E L, then f e L for every 0<#< 1, and there is a constant Br, de-
pending on 1a only, such that P[f ] \ BµT1[ f] (2'7)

(2.8) THEOREM. If f lOg+ I f I is integrable, then f e e L, and §J] ] = S[ f ]. Moreover,
there are two absolute constants A, B such that

fonif log+IfIdx+B. (2.9)

This result admits of a partial converse, namely,

(2.10) THEOREM. If f e L and is bounded below, and if S[f] is a Fourier series, then
flog+I f IcL.

It follows from (2.4) that if f is bounded, then/belongs to every LP. More generally,
we have

(2.11) THEOREM. (i) If I f I<fexP(AIfI)dxCA1, then

(212)
for0<A<sir.

(ii) If f is continuous, then expA f I is integrable for all A > 0.

The proof of all these results can be based on Cauchy's formula

sr
I z--G(z)dz= 1 r G(re'x)dx=G(0) (0<r<1), (2.13)

2r J O2rri 161-r

valid for any G(z) regular in I z I < 1.
Let f(r, x) be the Poisson integral of f, and f(r, x) the conjugate harmonic function.

The inequalities (2.5), (2.7), (2.9) and (2.12) imply the corresponding relations for
f (r, x) and f (r, x), and conversely are implied by the latter, on making r -* I and applying
the relation Pn[ f (r, x)] -+ 9,[f) (or Theorem (6.15) of Chapter IV) and Fatou's lemma.
Thus it is enough to prove the inequalities for the functions f (r, x) and f (r, x), which
we shall also denote by u(z) and v(z).

Begin with (2- 7), and suppose at first that f > 0 and that f + 0, since otherwise the
theorem is obvious. The regular function

F(z)=u(z)+iv(z) (z=re'r 05r<1) (2.14)

has positive real part, and so F(z) + 0. We may also write

F(z) = R e'm, where R > 0, I I < i>r. (2.15)

The function G(z) = FN(z) = Ro ei,140

is regular for I z I < I and real at z = 0. On taking real parts, the second equation
(2.13) gives

1 2*

2n Rµcosµ4bdx=F"(0)=(2nfrfdx)', (2.16)
0
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F(0) being the constant term of 5(f]. Since R > I v I and cos p( cos }µn, we have
sr .

(f I v I" /1
lip

\ B f dx,
where Bp = (271)1-"/cos Jan < 271/(1 -1u).

On making r-. 1, we get (2.7).
If f is of variable sign we write

l ffl=f+, fz=f-, f=f1-f21 f=I1 fl' (2.17)

R"µ(1]<- 9Rµtft]+3"r[Jz]<- B"vllfo'fidx)r+(Jowfldx)r) <- 2Br1Jo I.f Idx)

since f1 + fz = I f 1. This proves (2.8) with B1 increased by the factor 2.

For (2.5) we need the inequality

Isin0Ip<acospc+,8cos"0 (IcJ<}n), (2.18)

where p is positive and not an odd integer, and a, /i are constants depending on p. We
may suppose that 0 > 0. Since cos Jp71 $ 0, we have for a suitable a (possibly negative)
a cos pal > I in a certain neighbourhood of 0 = in. (2.18) is valid afortiori in this neigh-
bourhood, provided 6_>O. Having fixed a, we take ,8so large that f cosp 0 > I a I + 1,
and so

a cos pO +,6 cosp ¢ > I > sinp ¢,

in the remainder of (0, }n). This completes the proof of (2.18).
Suppose once more that f> 0, and let F(z) be given by (2.15). If we substitute'

for 0 in (2.18), multiply both sides by RD and integrate over 0 <x < 271, we have
R ('4w 2n r2n

s

/ 1 r
vIpdx<, fo updx+a fQ Rpcosp4Pdx=f f0 updx+2rra(2r-Jo fdx) (2.19)

using (2.16) with p replaced by p. Hence, making r--> 1,

J0 1

fIpdxS18f xfpdx+271 1 a I (_ jonfdx)p<(f+I a1)fwIfIPdx
,

and this is (2.5) with AP =/j+ I a 1. (Incidentally, if a < 0, for example if I <p < 2,
we may drop the last term in (2.19), and take AP = P.)

For f of variable sign we use (2-17). By Minkowski's inequality,

P(fl] < `p(fl] + N`p(f2] < 31,[f,)} < (2.20)

We have now proved (2-5) for p > 1, p $ 3,5,7,..., and in particular for I <p < 2.
The proof of (2.5) will be completed if we show that

(2.21) THEOREM. If the inequality (2.5) i8 valid for a certain p> I (that is, for all f
in LP) it is also valid for the conjugate exponent p'= p/ (p - 1). Moreover, we can take
Ap. = Ap.

Let g be any trigonometric polynomial with Dlp(g) < 1. Parseval's relation (Chapter
IV, (8-6)) gives 2,1(r,

1o

x)g(x)dx= F'f(r,x)9(x)dx.
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By Theorem (9.14) of Chapter I, and using the fact that polynomials are dense in LP
the upper bound of the left-hand side for all g is Up,(f (r, x)], and since

ff(r. x) 9dx < J (r, x)) 9J [ ] <_ p,[f(r, x)] `4P P[g] _< A,, TZ,,U(r, x)],

by Holder's inequality and the hypothesis that (2.5) holds for p, it follows that
9R9.[ f (r, x)] < AP9R .[ f (r, x)] and, on making r-*f 1,

Up-[f] <
This completes the proof of (2.21).

To complete the proof of (2.4) we have to show that [f] = S[ f ]. This follows from the
fact that 9P[f(r,x)]=O(l) implies 3RP[f(r,x)]=O(1) (see Chapter IV, (6.17)). Thus
5[f ] is the Fourier series of the function lim f (r, x) =I(x) (see also Theorem (4.4) below).

r-1
We base the proof of (2-8) on the inequality

I sin o I < y(cos yf log cos ¢ + o sin o) + 8 cos o (I 0 I < +)n), (2.22)

analogous to (2.18) and similarly proved (y, 8 are positive absolute constants). First
suppose that f _> 0, f * 0. We again set F(z) = u(z) + iv(z) = Reim and apply (2.13) to the
function G(z) = F(z) log F(z), regular for I z I < 1. Taking real parts we get

1 2n
{R cos 4) log R - RO sin (D) dx = u(0) log u(0), (2.23)

IT 0
po 2.

or I R(cos 4) log cos 4) + Qi sin 4)) dx = R cos log (R cos (D) dx - 2nu(0) log u(0).
J

2.
Multiplying this by y and adding 8f R cos (D dx to both sides of the resulting equation

0
we get, by (2.22),

fo" I v(r ei') I dx < y f 0"u(r ei=) log u(r eu) dx + 8 J Du(reiz) dx - 2nyu(0) log u(0). (2.24)

We now make a slightly stronger assumption about f, namely, that f _> e = 2.718 ... .

Then u >_ e and (2.24) gives

f
2X

D I v(r e'=) I dx < (y + 8)u(r eu) log u(r eu) dx.

Making here r - I we get (2-9), with A = y + 8, B = 0.
In the general case, let E1, Es, be respectively the sets of points at which f _> e,

f e. Let f =f, +f2 +f3, where f, - max (f, e), f2 = min (f, - e), so that I f3 I < e. Then

9l2[f] <9111]+T1[ff]+'R[131-

'0Since sJJl[fk]<Af0 IfkIlog IfkIdx<A IfIlog+Ifldx+2lre(k=1,2),

9J[fs] < (2n)ir 2[f3] < (21r)i l2[.f3] < 2,re,

we have (2.9) with A = y + 8, B=61re.
In proving (2.10), we may add a constant to f, which does not affect }, and thus

suppose that f _> 1. Then u 3 1. Since m sin (D >_ 0, oos 0 log cosm < 0, (2.23) gives
f2'

D ' u log udx < f
0

u log R dx < }rr0 1 v I dx + 27ru(0) log u(0), (2.25)
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and the integral on the right is bounded since §U] ] is a Fourier series. Making t --> 1

and using Fatou's lemma (Chapter 1, (11.2)), we see that f log f is integrable.
It remains to show that, under the hypotheses of (2.8), §[f] = S[ f ]. Instead,

however, of giving a direct proof, which is somewhat less simple than in the case of
Theorem (2-4), we prefer to appeal to Theorem (4.4) below according to which
SS[f]= S[f] whenever feL.

We pass to the proof of (2.11). Let u, v, F have the usual meaning. Applying (2.13)
to the functions 0(z) = exp { ± i iF(z)) and taking the real parts, we get

,o
I

cos Au exp { + Av} dx = 2n cos {Au(0)} S 21r.

Adding these inequalities and observing that

exp (AJv J) _<exp (Av) +exp (-.1v), cos Au > cos A (Ju l_<1, 0 _<A < 4n),

we we obtain
fo

exp(Atlv1)d_c477 (0_< A<in),

which reduces to (2.12) when r -+1.
If f is continuous, let T be a polynomial such that I f - T I < e. By the foregoing,

exp A I f - I' + is integrable provided Ae < fir. Since exp h T I is bounded, the inte-
grability of exp A I I I follows for A arbitrarily large (A < 7r/2e, with a arbitrarily small).

Remarks. (a) Let w(t), t _> 0, be a function which is non-negative, increasing, and
o(tlogt) fort ->oo. Let f(x) be periodic, not less than 1, and such that w{f(x)} is inte-
grable while f log f is not. By (2.10), S[f] is not a Fourier series, and, by Theorem (4.4)
below, f is not integrable. This shows that the integrability off log f in Theorem (2.8)
cannot be replaced by any similar but weaker condition.

(b) There is an feL such that f is not integrable over any finite interval. Let g(x) be
the periodic function equal to

1+- -

1

x I loge

for - n 5 x < n. Thus g exceeds 1 and is integrable while g log g is not. Let {rk) be dense
in (0, 2n), Zak a convergent series of positive terms whose sum exceeds 1, and

f(x) = Eakg(x - rk). (2.26)

The function f is periodic, exceeds 1 and is integrable over (0, 27r) (Chapter I, (11.5));
but f log f is not integrable over any interval. We shall show that f is not integrable
over any interval.

For suppose that J is integrable in some interval (a, b). Let (a', b') be interior to (a, b)
and let A(x) be periodic, continuous, equal to 1 in (a', b'), equal to 0 outside (a, b) and
linear in (a, a') and (b', b). By Theorem (6.7) of Chapter II, the difference .If - (elf) is
bounded, and since, by assumption, Afis in L, so is (.lf ). Hence, by Theorem (2.10) and
Remark (a), f (x) A(x) is in the class L log' L and afortiori each .l(x) g(x - rk) is in L log' L.
which is false for some k.

(c) Theorem (2-4) has useful variants. Let

F(z) = u(z) + iv(z) (v(0) = 0)
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be regular for I z J < 1. Then (2.5) with f (x) = u(r e'), I (x) = v(r e"), and Minkowski's
inequality, immediately give

9Rp[F(r e's)] < AP9Jlp[u(r eu)] (0<r<1) (2.27)

with AD not exceeding the AP in (2.5) by more than 1.
+W

Another variant will be needed later. Let u(re'=) _ c rt" I e{"s be harmonic (not

necessarily real-valued) for r < 1, and let 4)(z) _ ) c. z". Then
0

1 [m(r PI)] a A;Vp[u(f el )] (2.28)

Suppose first that u is real-valued, and let v(z) be the harmonic function conjugate
to u(z) with v=0 at the origin. Then 20=u+iv+co=F+co, and (2.28) follows from
(2.27) and the inequality

r
coE_ fu(r e") dx 52[p[u(re )]STlp(u(re'=)]

Suppose now that u is complex-valued, u = ul + iu2, and that, correspondingly,
0 = 1 +i'l. Then, writing 9Jlp[t] for with a similar notation for u,

9)'lp[,D] _ yZ ,[ b1] + UD[V5] < A,,( R.,(u1] + p[u9]) 4 2Ap p[u]

Similar variants can be stated for Theorems (2-6), (2.8) and (2.11).
We shall now consider a few more substitutes for Theorem (2.4) in the cases p = 1, oo.

One of them is Theorem (8.27) of Chapter IV, which may be stated as follows:

(2.29) Txaoasai. Let f e L and let v(z) _ f (r, x). Then

I IV(z)I dzI_.fDIv(z)z-'I
o

f(x)Idx

for any diameter D of the circle I z I < 1.

Still another substitute for (2-4) at p = 1, oo is as follows:

(2.30) THEOREM. Let u(r, x), v(r, x) be conjugate harmonic functions for 0 S r < 1,
and leta>0,8=1-r.

(i) If u(r, x) =O(8-a) as r- I (uniformly in x), then v(r, x)=O(b'-a).
(ii) If 9J2[u(r, x)] =O(S-a), then 9[v(r, x)] = O(d-a).

We first prove the following lemma:

(2.31) LEMMA. If 1(z)= U(r,x)+iV(r,x) 18 regular for Jz I < 1, and if U(r,x) is
the Poisson integral of a function U(x). then

i26-
0'(z) I < 1 +r

U*(r, x) S 24-1U*(r, x), (2'32)

where U*(r, x) is the Poisson integral of I U(x) 1.
For if P, Q are the Poisson kernel and its conjugate, and if

8(r,t)=P+iQ=}(1+reu)/(l -reu),
we verify that dS r t dt r eu 1- re")-' 2r8-I(1 + r ' P (r, t 2.33
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so that

V(z) r-1 ' <3{1+r)- 1

fs.
U(t) I P(r,t-x)dt,

which is (2.32).
By a change of variable, for any function F(z) = u(r, x) + iv(r, x) regular for I z R

we obtain
F'(z)

I <R
R2

r
uR(r,r) <R2 r4R(r, x), (2'34)

where u*n(r, x) is the function harmonic for r < R and coinciding with I u(R, x) for r = R.
Returning to (2.30), let r = 1 - S, R = 1 - J3, and

q(3) = max I u(r, x) 1, fi(3) = ]R[u(r, x)], J(r) = D2[F(r ex)],
a

where F=u+iv. By (2.34),

F'(r e'-") I <- 43-1u4(r, x) = 43-10(13),

RR[F'(r e")] <- 43-1%R[uR(r, x)] < 43-1TZ[uR(R, x)] = 43-11k(48),

0<J'(r)= f odrd (ua+vz)Idx= J R(uu,+vor)(ua+va)-idx
0

(ur'+vE)fdx=9J1[F'(reiu)]<43-'0i(4 ).
0

Integrating the inequalities for I F' I, J' with respect to r we have

F(r Ox) - F(0) 4J t-'q(4t) dt, J(r) - J(0) < 4 f., t-'t/r( t) dt.
a a

If ¢(3) or (i(3) is O(3-1), the corresponding integral is also O(3-4), and (2.30) follows.

(2.35) THEOREM. Let u(r, x) be harmonic for r < 1 and let I <p < oo, a > 0. Then each
of the relations

(1) '.l1tp[u(r, x)] = O(s_a),

(1')
(2.36)

,[uZ(r, x)] = 0(3-a-1), (iii) 9Rp[ur(r, x)] = 0(3-01-1)

implies the other two.

That (ii) and (iii) are equivalent follows from the Cauchy-Riemann equation
rur=v= together with (2.4) if I <p<oo, or (2.30) ifp=1, oo. The equivalence of (i) and
(ii) follows from (2.4), (2.30) and the following lemma:

(2.37) LEMMA. If F(z) i8 regular for I z I < 1, the two relations

(i) 9Yl [F(re'=)]=0(3-a), (ii) 9R [F'(reu)]=O(3-a-1) (2.38)
are equivalent.

Suppose that 9p[F(p el )] < A(1 - p)-a. Let z = r etz. If C denotes the circumference
with centre z and radius }8 we have

fF'(z)=2niJc( (z)=d > F(z)I5 IF(z+}3e{°)I dO.



260 Complex methods in Fourier aeries [v11

Raising both sides of the last inequality to the power p (if p < oo) and integrating with
respect to x we obtain, by Minkowski's inequality (Chapter 1, (9.11)),

2p[F'(re'=)] n9l [F(ret2+4 e{0)]d9 5QA()-do=
Jc

The first inequality still holds for p =oo. Hence (i) implies (ii).
Conversely, suppose that R,,[F'(p e1z)] < B(1- p)-a-1. Since

F(r e'=) - F(O) I
L fr I F (p el-) I dp,

Minkoweki's inequality gives

D'tp[F(r e ) - F(O)] < f'[r(p eu)] dp <- f. B(1- p)--1 do < Ba-18-a,

and so Tl,[F(r e`')] 5 Ba-18- + I F(0) I (2n)11n = 0(8-).

The following result is an analogue of (2.6) for Fourier-Stieltjes series.

(2.39) THEOBSM. Let F(x) be of bounded variation over 0 < x < 2n, and let F*(x) be
defined by (I.7). Then for each 0 <,u < 1 we have

U,[F'] < B,
J

I dF(x) I. (2.40)
0

Let u(r, x) be the Poisson-Stieltjes integral of F and v(r, x) the conjugate harmonic
function. By (2.7),

{
Is lip

ff
s s.

t o
I v(r, x) Irdx <B,

I I u(r,x) I
dx<BJo dF(x) (2.41)

Since v(r, x) -> for almost all x as r -. 1, (2.41) implies (2.40).

3. Applications of Green's formula
The main tool in the preceding section was Cauchy's formula (2.13). Some of the

results can also be obtained by means of Green's formula. This latter method gives
good estimates for the constants occurring in the inequalities.

Let w=w(f, 1) be a function which, with its derivatives of the first two orders, is
continuous in 6s+ 712 < as. Let I (r) denote the integral of w round the circle with centre
0 and radius r<a. In investigating the behaviour of 1(r) as r-*a, it is natural to
consider the derivative dI(r)/dr, and this in turn suggests an application of Green's
formula rr

fc, da =
J J

Awdv. (3-1)
S,

Here S, is the circle EE + y2 < r2, Cr its circumference,

Aw = wtt + w,1,

is the Laplacian, and 2/ar means differentiation in the direction of the radius vector.
Incidentally, (3.1) is immediate if we introduce polar co-ordinates p, x and use the
formula Ow=p-'(pwp)p+p 1w.. (3'2)
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For owing to the periodicity of w in x, the integral over 0 < x < 2n of the last term of
(3-2) is 0, so that the right-hand side of (3.1) is

r
Jo

P-1opdPdx=f:'wrrdx = fe, w, do.

Let and let F(C)=u(6, q)+iv(6,71)

be regular in the neighbourhood of a point C0 = fo + ir/o. Let

w = w(u,v),

with its first and second derivatives, be real-valued and continuous in the neighbour-
hood of the point uo=u(go,rlo), vo=v(60,'70) Then

at the point g= Co.
For VC,

wff+w" =(w,,,,+ww) I F(5) I' (3'3)

wf1=(w,,,,uu+w.

If to this equation we add the corresponding one for w., and observe that u, v satisfy
the Laplace and Cauchy-Riemann equations, we get (3-3).

Two cases of (3.3) are of interest. First, if R = I F(C) I and if w= w(R), then by (3.2),

Aw=R-1(Rwn)n I P1 2

If w = w(u) is independent of v then, by (3- 3),

Ow = w,,,, I F' 12

(3.4)

(3.5)

Let u+iv be regular for I C I < 1, and let p be any real number. Then, by (3-4)
and (3-5), AIFIP=p2IFIp-4IF'I2, DuP=p(p-l)uP-2IF'Is. (3.6)

The first formula is valid at every point where F+ 0 (otherwise we have to suppose
that p> 2), the second where u+0. We apply them to the proof of Theorem (2.4).
We know that it is enough to prove (2-4) in the case when 1 <p < 2 and when u, the
Poisson integral off, is positive. Since I F > u, (3.6) then gives

OIFIP<p'AuP, p'=pl(p-l). (3.7)

UP(r, z) dx, J(r) = 1 ' I F(r elf-'c ) I P dx, (3.8)We now set 1(r) = fo
Jo

and apply (3.1) to w = uP and w = I F I P. The left-hand sides of (3.1) will then
be rI'(r) and rJ'(r) respectively. Thus (3.7) implies,

J'(r) < p'I'(r).

Integrating this inequality with respect to r and observing that 1(0) = .1(0) > 0, p'> 1,
we get J(r) < p'I(r). Since I F I > I v I, this gives

TZP[v(re )] <AP$tt,[u(re'=)],

where AP = p'11P for 1 <p < 2. If u is of variable sign, the value of AP must be multiplied
by 2. An application of (2.21) shows that

AP < 2pup < 2p for p > 2. (3-9)



262 Complex methods in Fourier aeries VII

A similar argument gives (2.6) and (2.8).
In (2.8) we may begin (as in the preceding section) by supposing that f 3 e; then u _> e.

Let J(r) and 1(r) denote the integrals of I F(r e) I and u log u over 0 < x _< 27T. By
(3.4) and (3.5),

O I F I = I F' 1$ I F I-1, O(u log u) = I F' I2 u-1,

so that D I FI <O(ulogu), X(r) <1'(r), J(r)<I(r)
(since J(0) < 1(0)). This gives (2.9) with A = 1, B = 0. In the general case, arguing as
on p. 256, we have A = 1, B = 61re.

To prove (2.6) f o r f >- 0, we replacep by p in (3.6), obtaining 0 I F l ' < - p(1- p.)-1 Awl.
Hence, if J(r) and 1(r) are given by (3.8) with u for p, we have successively

J'(r) < -p(1-p)-I I'(r),
J(r)-J(0)<#(1-,u)-1{I(0)-1(r))<,u(1 -,u)-11(0),

J(r) < (1-,u)-1I(0),
which leads to (2.7) with Bµ=(2n)1-P(1 -p)-1. The argument on p. 255 shows that
B,, must be multiplied by 211,1 for f of variable sign.

4. Integrability B
There exist functions f e L such that f is not integrable. It is interesting to observe

that, with a suitable definition, more general than that of Lebesgue, of an integral, the
function f is integrable and [f] is the Fourier series off.

Given any function f(x), a <x < b, we define the function f for all x by periodicity:
f (x + h) = f (x), where h = b - a. Let a = x, < x1 < x, < ... < x = b be any subdivision of
(a, b), and let p = max (x1- xf_1). Let 61 be an arbitrary point in (x1_1, x1). Consider
the expressions

I(t)= E Mt+t)(xi-x5_1), (4.1)
1-1

which are Riemann sums for the family of functions fi(x) = f (x + t). If f (x) is R-integrable,
so is f (t + x), and 1(t) tends to a limit asp --> 0, no matter what the choice of x, and 9f.
Owing to the periodicity off, this limit is independent of t. But even if f is not integrable
R the sum I(t) may tend to a limit J in measure as p -> 0. By this we mean that given
any e > 0 we can find a d = 6(e) such that if p < 8, then I I (t) - J I < e, except for a set T
of is of measure <e. (T may depend on the x1 and f61.) If this is so, we say that f is
integrable B over (a, b), and that J is the integral off over (a, b). We may also say that
f is integrable R `in measure'.

(4.2) THEOREM. If f is integrable L over (a, b), then it is also integrable B, and both
integrals have the same value.

For let f =fl +f and correspondingly 1(t) =11(t) + I,(t), where f1 is continuous and
Dl[ f,; a, b] < es/3(b - a). Then

J
b 113(t) I dt < E(x1- x1_1)J D I f,(f, + t) I dt < E(x1-x1_1) e'/3(b - a) = Jet,
a a

so that the set T of is for which I I,(() I > je is of measure less than e. If J, JI, J, are the
integrals of f, f1, f, over (a, b), then

I I(t)-J I= I II($)+1,(t)-J1-J:I < 11(t)-J1 I+ 112(9)1 +1 J:I.
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Here I I1(t) - J1 I < J e, provided p < 8 = 8(e). Again, I IY(t) 15 ,Je fort ¢ T. By hypothesis
J2 { < lte2/(b - a) < }e, assuming as we may that e < b - a. Hence

I I(t)-J <e for t¢T, I T I <e,

provided p S 8; and (4.2) follows.

(4.3) THEOREM. For every periodic f e L, f is integrable B over (0, 2n). Moreover
f (x) e-ikz is integrable B over (0, 27r) for k = 0, ± 1, ... and S'[ f ] = S[J].

Fix k = 0, ± 1, ± 2, ... , and let 1k(t) be the sum (4.1) with f replaced by f(x) e-ikr
Then

{ Ik(t) { _ { E f(t+ f4) e-ikcr+ti> 81 { _ { E f(t + 6i) a-ikti 81

where 8i=xi-xi_1. The last sum is conjugate to 1f(t+6i)e-+kti8i. Thus, by (2.7),

,
9Jli[1k(t)] <_ Bi I Xf(t + fi) e-'kti8i I dt 5 2nB1 fo I f(t) I dt.

This shows that I Ik(t) I <e outside a set of measure less than e, provided that TI[f]
is small enough, say less than 71= rl(e).

We now set f =fl + f2, where fl is a polynomial and R[f] <,q. Correspondingly,
I(t) = I1(t) + I2(t) and (for the coefficients) ck = ck + ck. Obviously 1, (t) tends (as p --* 0,
and uniformly in t) to the kth coefficient of 2nf1, that is to say, to - 27ri(sign k) ck.
On the other hand, I 1 ; (t) I < e fort ¢ T, I T) < e; and I ck I < 71/27r.

Thus for p small enough and t 0 T, the sum rk(t) differs from - 27ri(sign k) ck by less
than 2e, or from - 21ri(sign k) ck by less than 2e + g. Since e, y are arbitrarily small,
1k(t) tends in measure to - 2rri(sign k) ck as p -* 0. This shows that fe-'ky is integrable
B over (0, 2n) and that S[ f] =3[f]. In particular (fork= 0), the function J is integrable
B over (0, 2n) and the value of the integral is zero. This completes the proof of (4.3).

(44) THEOREM. If f and f are both integrable L, then g[f] =S[f].

This is a corollary of (4.3). A different proof will be found on p. 286.

5. Lipschitz conditions

(5.1) THEOREM. (i) A necessary and sufficient condition for a function u(r, x)
harmonic for r < 1 to be the Poisson integral of an f (x) a A., 0 < a _< 1, is that

us(r, x) (5'2)

where 8 = 1- r, uniformly in x as r -* 1.
(ii) A necessary and sufficient condition for u lobe the Poisson integral of an fin A,,, or

in A,, is that u_, = O(8-1), or o(8-1), respectively.

Since Al is the class of the integrals of bounded functions, the case a = 1 of (i) follows
from Theorem (6.3) of Chapter IV. We may suppose then that 0 < a < 1. We need the
following estimates for the derivatives of the Poisson kernel:

II3(r,t){ b", IPP(r,t)ISAt-2 (ItI,<n;8=1-r). (5.3)
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These follow from (2.33) and the inequalities (6.9) of Chapter III. Since the integral
of PP(r, t) over 0 < t < 27T is zero,

us(r,x)= --1f' f(x+t)P,(r,t)dt=1 f "(f(x)-f(x+t)]P,(r,1)dt

=A +B,n Irllca a<ltl<f
IA I< f 0(11 I )a-2dt=O(8a-1), B= fa ,0(1 t la)O(t-')dt =O(8a-1),

by (5-3), and the necessity of (5-2) is established.
Conversely, suppose (5.2) is satisfied. Let v(r,x) be the function conjugate to u and

let F(z)=u+iv. By (5-2) and (2-30)(i), F'(z)=O(8a-1) as r--> 1. From

F(re`=)-F(0)= foF'(peiz)e1 dp=foO{(1 -p)a-1}dp,

we deduce that F(eiz) = lim F(r eiz) exists, uniformly in x. Hence F(r eu) is the Poisson
r '-1

integral of F(e'=) and it is enough to show that F(e`-)eA..
For 0< h < 1 we have

/
F(e +h))-F(eLZ)=I f + f + f.) P(z) dz = J, + J, + J3, (5.4)

where I, is the segment 1 > r > 1- h of the radius arg z = x; I3 is the are z = (1 - h) eu,
x < t < x + h; and I3 is the segment 1 - h < r < 1 of the radius arg z = x + h. Since
F'((1- h) e'') =O(ha-1), it follows that Js = h. O(ha-1) = 0(h). Also

h
J1= f 0(8a-1) d8 = O(ha),

0

and similarly J3=O(ha). Thus J,+J2+J3=O(ha) and F(etz)eA..
That the condition in (ii) is necessary follows from Theorem (9.16)of Chapter III. In

the proof of sufficiency we may restrict ourselves to the case uz,= = 0(8-1), the argument
in the 'o' case being similar.

The hypothesis implies that v,,,, = 0(8-1) (by (2.30)), so that Fu(r e(=) = 0(8-1).
Since d/dx = izd/dz, we have (zF'(z))' = 0(8-1). Integrating this along radii we see that
F'(z) =O(log 1/8) as r -> 1, and one more radial integration shows that F(z) is con-
tinuous in the closed circle I z I < 1.

I)et now 0 < h < 1, = etr, Sh = (1 - h) e'= We need the formula

f (C-z)F"(z)dz,
(5.5)

where the integration is along the radius. For the proof we consider the formula

l(z - c) F'(z)]:a+f
s. z) F"(z) dz,

easily obtained by integration by parts. If we let e -+ 0 and observe that

F(r;J-+ F(C), eF'(r;J = O(e loge)= o(1),
we obtain (5.5).
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The relations (zF')' = 0(8-'), F'(z) = O(log 1/8) imply that F'(z) =O(8-1). Thus the
integrand in the last term of (5.5) is 0(1), the term itself is O(h), and we have

F(etx) = F(rh etx) + hrj ' g(rh e'x) + 0(h),

where r,, = I - h, g(z) = zF' (so that g'= 0(8-')). Subtracting this from the similar equa-
tion with x replaced by x + h, we obtain

r*e" ' A)

F(eicx+A>) - F(eix) = f F(z) dz +O(h),

since the difference of the values of g at the points (I - h) eix and (1 - h) eux+A> is equal
to the integral of g' along the are joining the points and so is h. 0(h-1) = 0(1). From the.
similar equation with x + h replaced by x - h, observing that the sum of the integrals
on the right is

iJ A{g(rn eux+°) _ g(r,, dt = iJ adlfr g'(z) dz = Adt. 0(lh-') = O(h),
0

"

we have F(ei'x+A>) i F(eiix-h)) -- 2F(eix) - 0(h), that is, F e As.
Remark. Combining (5.1) and (2.30) we obtain a new proof of the result that if f is

in one of the classes A., with 0 <a < 1, A*, A*, then f is in the same class (see
Chapter III, (13.29)).

Though the function conjugate to a continuous function need not be continuous (see
(2.3)), it still retains some traces of continuity, as is shown by the following theorem
(for the definition of property D see Chapter II, § 3):

(5.6) THEOREM. Letf(x) be periodic and continuous. The conjugate function

f(x)= lim - I f'f(x+t)-f(x-t) dt} (5.7)_+o 2 tanl

has property D on the set E of points where f(x) exists.

We may suppose that the constant term of S[JJ is zero. The integral F off is then
periodic and has a continuous derivative, and so is in the class.,. Thus the conjugate
function P is also in A.. It is the integral of an f E L. If f(r, x) is the Poisson integral off
and f(x; e) is the expression under the limit sign in (5.7), then

f(r,x)-f(x; 1-r)--3,- 0 as r-*1, (5.8)

by Theorem (7.20) of Chapter III. Suppose that a <b, f(a) = A, f(b) =B, and that C is
any number between A and B. We have to show that there is a c between a and b such
that f(c)=C. Suppose, for example, that A <C<B. By (5- 8),

limf(r,a)=A, Iimf(r,b)=B.
r-+1 r--rl

By Theorem (7.2) of Chapter III, using the smoothness of P,

lim inf (P(a + h) - P(a)}/h 5 A, lim sup {P(b + h) - P(b)}/h ' B.
A-0 A-0

By the remark on p. 44, there is then a point c between a and b such that P(c) = C
Hence f(r,c)-+C, f(c; 1 - r) --* C (by (5.8)), and (5.6) follows.
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6. Mean convergence of S[J] and §[f]
Theorems on conjugate functions lead to results about the partial sums of S[f]

and §1f I -

Let sn(x) = S,(z; f ), 8n(x) = q,a(x; f ), and let sn(x) and be the modified partial
sums of S[f] and §U] ] (Chapter II, § 5). We have

8n(z)= f(z+t)2tsin nt
anitd2

f
)

8n(x)-AX) =- f _xf(x +t) 2"'tan dt.

Replacing here sin nt by sin n(t + x) coo

Jnx

- cos n(t + x) sin nx, and similarly for cos at,
we obtain formulae expressing 8n and an in terms of conjugate functions:

s,*,(z) =g`n(x) sin nx - hn(x) cosnx,

8n(x) - f(x) = - gn(x) cos nx- hn (x) sin nx,f (6.2)

where gn and hn are respectively f (x) cos nx and f(x) sin nx. The right-hand sides here
are defined almost everywhere.

It follows that
I8n11OnI+IAn1,

IBnIgnI+IAnI+III.
(6.3)

(6.4) THEOREM. If f eelLP, I < p < oo, then

mi m]
ylp[8n] _<Cp9,U ], ]np[8n] _<Cpzllq[f]r (6'5)

Jip[f - 8n] -> 0, ltp[ f-fin] -> 0 (n oo), (6'6)

where C, depends only on p.

Since 8n - 8n- > 0, gn - --> 0 uniformly in x, it is sufficient to prove (6.6) with an,
sn replaced by 8,* a. The inequalities

2n I f I dx = W,[f ] < D2p[f],
18n - 8n I - 0

and the corresponding inequalities for do - 8n, show that it is enough to prove (6.5)
for 8n, an.

Using Minkowski'ss inequality, (6.3) and (2-5), we have

m1 fn[8n] 3![p U/n] + p[hn] _< A,{ Yl,,[g ] + up[hn]) < 2A,V.U ],
1 { (6'7)

Rp[8n] _<

which proves (6.5). Now let f =f'+f", wheref' is a polynomial and 9)2p[f`] <e. Then,
with an obvious notation,

f- 8: = V- 8*') + (f, - 8n'),8 * ' ,

flp[f-8n]_< 9p[f'-81*l']+V,U,]+Up[sw,]_Vp(J,J+Vp[8w ],
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the last equation being valid for n large enough. By (6.7) the last sum does not
exceed (2An+ 1)9Rp[f'] < (2A,+ 1) e, so that 9Rp[f-a*] 0 and, by (2.4),

9Yl ,[ f - J*n] -< AJU2,[J- 8*] - 0.

(6.8) THEoasc. If fe L, 0 <,u < 1, then

TZj8,.]sC,9R[f], R,,[en]<-CW[f],

9)l,,[f-8 ] 0, )1 [.f-i,,]-0.

(6.9) THEOREM. IfI f I log+ I f I is integrable, then
R[8A] \

CF.

.
I f I log+ I f I dx + C, l[i,.] < CF" I f I log+ 111 dx + C,

vu-8.1-0, Jl [ f - a'j o.

We confine the proofs to the case of the 8,,, the argument for the i being similar.
It is again enough to consider a* instead of a,,. The proof of (6.8) is analogous to that of
(6.4) provided we use Theorem (2.6) instead of (2.4) and the inequality

instead of Minkowski's.
Dlr[c+14]<-

If f log+ I f I e L, then
9l[8*] - < 2Af, If I log+ I f I dx+ 2B (6.10)

by (6.3), (2.9) and an argument analogous to (6.7). We apply this to kf, where k is a
positive constant (clearly if f log+ I f I is integrable so is kf log+ I kf 1). We have

9R[8*] 5 2Af" I f I log+ I kf I dx + 2B/L-

-We fix k so that 2B/k < e and again put f =1' + f', where f' is a polynomial and the
integrals of both 2A I f' I log+ I kf' I and If' I over (0, 21r) are less than e. (By Theorem
(5.14) of Chapter IV, we may take f' = om(x; f ), with m large enough.) Using the same
argument as before, we have, for n large enough,

fR[ f - a*] -< 93 LI'] + Dt[a*'] -< !RU'] + 2A a I f' I log+ I kf' I dx + 2B/k < 3e.

so that RU- a*] -+ 0.
As corollaries of (6.4) and (6.9) we have

(6.11) THEOREM. (i) If f - Ec, ei"= E LP and g X< a{"s a Lv', where I < p < co, the
aeries in Paraeval'a formula

1 f. +ao

fgdx= Y Cn n2n
(6.12)

is convergent.
(ii) The eoncluaion holds if f log + I .f I is integrable, and g is bounded.

This is a generalization of Theorem (8.7) of Chapter IV. That (i) follows from (6.4)
was already indicated on p. 159. Part (ii) follows similarly from the relation
9R[f - an] -*. 0 (see (6.9)). We also we that if f log+ I f I is integrable then in Theorem
(8.9) of Chapter IV we can replace summability (C, 1) by convergence.
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(6.13) THEOREM. For any f E L there is a sequence {nk} such that snk(x) - f (x),
s.1.(x) -> f (x) almost everywhere.

This follows from (6-8) and Theorem (11-6) of Chapter I. First we select a sequence
(mk) such that sn,, .-> f almost everywhere, and then from {mk} a subsequence {nk) such
that s.;.-> falmost everywhere.

The sequence {nk} in (6.13) depends essentially on f. It will be shown in Chapter XV-
and this is deeper-that for f E LP, p > 1, we can take a fixed sequence independent of f.

Theorem (6-4) ceases to be true for p = I and p = oo since TI[ f - s.] need not tend to
zero for f integrable (Chapter V, (1.12)), nor need an converge (let alone converge uni-
formly) to f for f continuous (see Chapter VIII, § 1). However, if f and f are both
integrable or both continuous, then S[f ] and S[f ] behave in much the same way. We
have in fact:

(6.14) THEOREM. (i) If f and f are both continuous and S[f] converges uniformly, so
].does S[f ]. If f and f are both bounded and S[f] has bounded partial sums, so has §U].

(ii) Suppose that 9(f] is a Fourier series. Then, if fiYl[sn] is bounded 80 is 9J1[sn]; and
if 971[f - 8n] tends to 0, so does 9[f- sn].

We first prove the following lemma, only part of which is needed now:

(6.15) LEMMIA. Let T (x) be a trigonometric polynomial of order n and let p > 1. Then

971P[T'] 5 2n9Jl , f T], 9 P[P'] _<2nT1,,[T]. (6.16)

For p = oo, this reduces to Theorem (13.16) of Chapter III, and the general case can
be proved in the same way. For the first formula (13.18) of Chapter III gives

T'(x) 2n1 JoA T(x--t) I Kn-1(t)dt,

from which, applying Jensen's inequality, we immediately obtain the first inequality
(6.16). The second is obtained similarly, starting with the first formula (13.19) of

Chapter III.
Return to (6-14) and let an and 5. be the (C, 1) means of S[f] and S(f]. Suppose that

S[f] converges uniformly. By Chapter III, (1.25),

5 s 8n sn--8n0+ s-'° =P +Q (6'17)n- nn+ -n-+4-+1 n+1 " °'

where no is fixed and so large that 8. - 8ne I < e for n > no. The first inequality (6.16)
for p = co shows that I P. I < 2e. Clearly I Qn I < e for n large enough, so that I vn - in I < 3e
and vn - in -3 0 uniformly in x. If f is continuous, then an - *f uniformly in x. Thus
s _*f uniformly in x and the first part of (6-14) (i) follows. The part about bounded
f is still simpler and needs no further explanation.

Part (ii) is proved in the same way by using the first inequality (6.16) for p= 1.
Suppose, for example, that 9J1{f- 0. Then 91 [s. - 8.,] < e for na large enough
and n > no. By (6-17), 331E5,,-,,]<3e for n large enough, which means that
9R[5, - s.] -> 0. This and the relation M[ f - 5.] - 0 (valid if S[f ] is a Fourier series)

lead to 9R[f-sn]i0.
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Remark. The relation &n -8n->0 in the proof of the first part of (6.14) (i) was esta-
blished under the sole condition that S[f] converges uniformly. Then S[ f ] = S[ f ],
so that {&n} converges almost everywhere. We have, therefore:

(6.18) THEOREM. If S[f ] converges uniformly, S[ f] converges at every point at which
it is summable (C, 1), in particular almost everywhere.

(6.19) THEOREM. There is an absolute constant A0> 0 such that if I f(x) I < 1, then

w 2x

exp (A I sn I ) d x Aa, I a exP (A I in I) dx S AA, (6.20)

2w

27JoexP(AI8n-f I)dx-*1, n, *eXp(AIBn-ff)dx-+l (n-,oo), (6.21)

for 0 < A < A. If f is also continuous, the relations hold for any A > 0.

If I f I < 1, the functions gn and hn in the first formula (6.3) are numerically < I.
Hence, using Schwarz's inequality and Theorem (2.11), we have

ff
,

l{
29 {

oexP(A Isnl)dz<i(f foexp(2AI9nI)dx)
(Jo

exp(2AIAn1)dx) <- CIA

for A < in. Since 18n - 8n I < 1, the first inequality (6.20) follows (for A < }7r).
We now prove the first formula (6.21). From 0 < e° - 1 < u e°, u _> 0, and Holder's

inequality, it follows that the difference between the two sides of the formula does not
exceed

2. 2 1/P

Te-P
1/y'

2n8.1eXp(A 8n1)dx<- I.f-InIPdx) op,I.f-sn1)dx)

If A < #fl and p is so large that p'A < 17T, the last factor is bounded; and since the pre-
ceding factor is o(1) (by (6.4)), the first formula (6.21) follows.

If f is continuous, then f =f' +f w, where f' is a polynomial and I f' J < e. Correspond-
i ngly, 8n = In + 8n and

f -8n=(f'-8n)+(f"-8n)-f"-8n

for n large enough. Thus the first relations (6.20) and (6.21) are valid for Ae < A0, that
is, for any A > 0.

The results for sn are proved similarly.

(6.22) THEOREM. Let a> 0.,6> -I and let v;(x),o-(x) be respectively the (C, f) means of a trigo.
nometric aeriee EAk(x) and of its conjugate series EBk(x).

If o O,(x) = O(na) uniformly in x, then vw(x) = O(na) uniformly in x. If O(na), then
9[v0] = O(na).

n
This is an analogue of Theorem (2-30). It is easy to verify that the (C, f) means o = E A; _, u,lAa

v-0
(see Chapter III, § I) of any series :.'u, satisfy the relations

inoa"-oa.i=. A vu,.n+f+I A; o -"

n
va-QS - I E Aw 'vu .w-1-n(n+f) A^.-1.1x_0 - y
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In particular, v.P(x)-o;4'(x)=-(n+f+1)-1 o1(x), (6'23)WX-

-fn-'(n+,8)-' o;-1(x). (6.24)

Suppose that I o'(x) 14 fi(n) for all x and n. Then I (ow(x))' I 2nO(n) by (6-16), and

160.+1(x) -&w(x) 14 2n4D(n)/(n+1+ 1) 4 20(n), (6'25)
by (6-23). By (6-24), with.8 replaced by ,8 + 1,

I o*+1 - o:±i I < (f+ 1) n-1.2nm(n),
O*+ll=sl +ll+In+1-ei+1l+...+ +1-o,+y I4i 2(,8 +. 1) 0(n-),

I

1

provided o(v)=O(va). This and (6.25) give ii.P(x)=O(na).
The proof for 1Dl[os] runs parallel.
The following theorem is an analogue of (6.8) for Fourier-Stieltjes series. The function F

here is defined by (1-7).

(6.26) TREOREY. (i) Let e and J. be the partial sums of S[dF) and S[dFJ. Then, for each 0<#< I
we have

rr `Z,(sa]<B,Jo*IdFI' B' foIdFI. (6.27)

(ii) If, in addition, the coefficients of dF tend to 0, then

9Il'(e,-F'J .0, 9R'(a .0. (6.28)

(i) Let dF- and let u(r, x) be the Abel mean of S[dF]. By (6-8),
(r2s w v ur

r
2' Ow

1Jo
dx) B,f Iu(r,x)Idx<Bofo dF(x)

and making r -. 1 we obtain the first inequality (6-27). The result for d. is proved similarly.
(u) This lies deeper and the proof is based on results that will be proved later. The additional

hypothesis c -.0 is indispensable since, for example, the first relation (8.28) implies

9)1µ[s -s.-J) -+ 0,

and so also c -* 0; in particular, F is continuous (Chapter I1I, (9.6)). In view of (6.8) it is enough
to prove the result for F singular. The first relation (6-28) then is -+0.

s
We need the fact that if the coefficients c of dF tend to 0, and if 0(x) = X(t) dF(t), where X is

0
the characteristic function of an interval, then the coefficients of dO also tend to 0. This is a special
case of the more general Theorem (10.9) of Chapter XII, but we give a proof here.

First of all, since F is continuous so is its total variation. It follows that given an 17> 0 we can
find a polynomial T such that In

Js

IX-Tj IdFI<,7.

(We first approximate to X by a trapezoidal function and then to the latter by a polynomial.) Since
2.

the hypothesis c.-* 0 implies that T(x) e-1wsdF(x) -i 0, we immediately obtain that
0

f
2s

e
X(x) e-11:dF(x) -, 0, as asserted.

If F is singular, then given any c> Owe can find a finite system o' of intervals
such that if d is the complement of o', then

r'I<e, f IdFI<e. (6.29)

Let X' and X' be the characteristic functions of o' and o', let

F1(x)=J0 X dF, F1(x)= J0 y,dF,
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and let a, and a,' be the partial sums of S[dF1J and S[dF2J. Since a =a.+8 , it is enough to show
that llN[aw] and 9[11,,[B; J are small with e, provided n is large enough.

By (8.27) and (8.29). r2w
'XJte,[a) BµJ I dFs I = B, f

,.
I dF I < Bc.

0 0
Passing to 8., let o-, be the set obtained by expanding each of the intervals constituting v'

concentrically twice, and let cr; be the complement of o;. Since the coefficients of dF1 tend to 0
and F1 is constant on each interval of o,;, a. converges uniformly to 0 on v. and the integral of
18. Ie' over o, tends to Ot. If now ft <µ1 < 1, Holder's inequality gives

L , I8.IPdxC1f Ia,Il,dx.a,Io.I1 rr
11

dFlµ(2c)1-r+r..
. o. 0

It follows that is small with c if n is large enough. This completes the proof of the first
relation (8.28), and the second is proved similarly.

7. Classes HD and N
Let p > 0. A function F(z), regular for I z I < 1, is said to belong to the class Hp, if

'
fep(r)=un(r; F)=21n

o
I

F(7eiz)Indx (7'1)

is bounded for 0 < r < 1. We shall write H instead of H1. If p > 1, HD coincides with
the class of power series whose real parts are Poisson integrals of functions
(cf. (2.27) and Chapter IV, (6-17)). Thus a necessary and sufficient condition for F(z) to
belong to HD, p > 1, is that

F(z)=27r
0

ea+if(t)dt+iy, (7.2)

where f (t) is real-valued and of the class LP, and y = JF(0). If y = 0, then, by (2-27)
and 97te,[u] _< °.D2nlf ], sa

up(r;T')<Ap f0 If IDdt,

where A. depends on p only.
The case p = 2 is particularly simple, since if

M

F(z)=Ec,,z".
0

(7.3)

the Parseval formula fr
2n

I F(r six) I2 dx = E I c I2 r2" (7.4)

shows that Fe H2 if and only if E I c" Ii <oo.
Clearly, if F e H then F E Hf for 0 <, < a. For u? 0 S lua1 by Chapter I, (10.12 ).
A function F(z). regular for I z I < 1, will be said to belong to the class N if the integral

1 2'
uo(r) =fi0(r; F') = lrrf0

logs I F(r e'Z) i dx

is bounded for r < 11.

t We use here the fact that if a trigonometric series S has coefficients tending to 0 and if the series
obtained by integrating S termwise twice converges in an interval (a, b) to a linear function, then S con-
verges uniformly to 0 in every closed interval interior to (a, b). See Chapter IX, (4.23).

t The most natural study of the classes H' and N would be through the theory of 8ubharmonic fundion8
(see, for example, T. Rado, Subharnwnic fundiona). Since, however, we are here mostly interested in
certain applications, a direct study based on Jensen's formula seems preferable. In order to avoid trivial
complications, we shall always tacitly sesame that F(s) does not vanish identically.
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If F(z) a HP, then F(z) E N. This follows from the inequality

UP _> plog+u (u_> 0).

The inequality is obvious for 0 <_ u <_ 1. For u >_ 1 it is enough to observe that the deriva-
tive of the left-hand side exceeds that of the right, and that for u = I the left-hand
side exceeds the right.

We show later (see Theorem (7.25) below) that each F(z) e N has a non-tangential
limit at almost all points of I z I = 1. Applying Fatou's lemma we therefore see that.
if F E HN, then the radial limit F(e°) = lim F(rei=) is in LP; if F(z) a N, then log, I F(ei=) i
is in L.

Let t 0 be a fixed point in zj< 1, and let

be the point conjugate to with respect to the circumference I z = 1. The function

w=b(z)=b(z; (75)

is regular in the circle z -<I and maps it in a one-one manner onto itself. In particular

Ib(z)I=1 for IzI=1; Ib(z)I<1 for IzI<1.

The point z = corresponds to w = 0. If 0 < < R, the function

w=b(z/R; /R)

has azero maps IzI-<Ronto IwI<1.
Let F(z) be regular for I z I < R and have no zero there. Then log I F(z) 9P log F(z)

is harmonic for I z I _< R, and so
I sA

2n
to logI F(reiz)Idx=log lF(0)I (0_< r_< R) (7.6)

If F(z) has no zeros on z R, but does have some inside, say a zero of order k _> 0
at z = 0 and zeros distinct from the origin, then the function

F1(z) = m F(z) (7.7)
Z,1 fI b(z/R, C/R)r-1

is regular for I z 5 R and distinct from zero there. If we apply (7.6) to Fl and note that
I I I I = 1 on I z I = R, we get the Jensen formula

I 'logIF(Reiz)I dx=logIF(z)z-kl=-ollR/IC..I}+k log R. (7.8)
o l 1

This formula holds also if F(z) does have zeros on I z R. It is enough to show
that both sides of (7.8) are continuous functions of R. For the right-hand side this is
obvious. The same will for the left-hand side if we show that the integral

s.
I (r) = r log l r e'" - i; dx, ICI=R, (7.9)

0

is a continuous function of r at r = R; for in the neighbourhood of I z R, the function
F is a product of a non-vanishing regular function and of a finite number of linear
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factors z - , with
I
i; I = R. The value of I (r) being independent of arg , we may

suppose that <= R. Now, for z =re's with r near R,

log (R + r) ? log I z - R I = log (r$ + R2 - 2rR cos x) >, } log [2rR(1 - cos x)],

and so the absolute value of the integrand in (7.9) is majorized by an integrable func-
tion. We can therefore proceed to the limit r -+ R under the integral sign ; in other words
1(r) is continuous at r = R. Thus (7.8) holds for all functions regular in I z R.

Suppose now for simplicity, that R=1.

(7.10) THEOREM. If F(z) is regular for I z I < 1, then log I F(z) is majorized in I z I <
by the Poisson integral of the function log I F(e's) I , that A,

1 2" I _,02

log I I
<-f log I F(ei2)

I
1

$dx (7.11)
21T o -2p cos

The proof is similar to that of (7.8). If F has no zeros in I z < 1, then log F(r e*z) I
is the Poisson integral of log I F(e*z) I. If F does have zeros in z I < 1 but none on

z I = 1, we apply the result to the function Fl of (7.7); since I F1 I = I F I on I z = 1, and
Fi I > I F I in I z I < 1, (7.11) follows. Finally, if F has zeros on z I = 1, we apply (7.11)

to the function F(Rz), where R is less than I and F + 0 on I z R, and then make
R-+ 1. This completes the proof of (7.10).

Let ¢(u) be a function non-decreasing and convex for - oc < u < + oo. Jensen's
inequality (Chapter I, (10.8)) applied to (7.11) gives

¢(logIF(pe't)I)<
o

(logIF(e`zI)P(p,x-9)dx.

If we integrate both sides over 0 < g < 2n and interchange the order of integration on
the right, we get I clog I F(p e't) I) d < (log I F(el) I) dx.

Suppose now that F(z) is regular for I z I < 1, and let R < 1. Applying the result to
the function F(zR), regular for I z I < 1, we obtain the following theorem.

(7.12) THEOREM. If c(u) is non-decreasing and convex in (-oo,oo), and F(z) is
regular in I z I < 1, then the integral

1 2.

clogIF(rel)I)dx
is a non-decreasing function of r.

In particular (taking 95(u) = exppu, or 0(u) = u+), JLD(r) and fco(r) are non-decreasing
functions of r.

That,u,(r) is a non-decreasing function of r follows already from (7.4).

(7.13) THEOREM. Let F(z) be regular for I z I < 1, and let C1, Cz, ... be all the zeros of
F distinct from the origin (counted according to multiplicity). If the integral

F(r e) dx

is bounded above as r-> 1, and in particular if Fe N, then the product II I , I converges.
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Consider (7-8) with R < 1. We have

'n
2

log I F(z) z-k I:-o + k log R +Elog (R/ 1) = 2n f 'log I F(R etz) I dx _< M,
n-1

p

say, where m=m(R) is the number of the zeros in jz I _<R, and I S1 I I z I <... .
Since, however, the terms log(R/ I) are non-negative, the inequality holds also
for m < m(R). Thus, making R-* 1, we see that for fixed m,

m y
logI F(z)z-k14_0 + Elog(1/I S, I)<M,

n-1
which proves (7.13).

The convergence of fl I n I is equivalent to that of

E(1-ICn0. (7.14)

(7.15) THEOREM. Let S1, t 2, ... be a sequence of points such that 0 < I Sn I < 1, and that
Fl I I converges. Then the product

Ilb(z; ll z
- Cn I 1

(7.16)

converges absolutely and uniformly in every circle I z I g r < 1 to a function fi(z), regular
and absolutely less than 1 in I z I < 1, which has S1, C ... as its only zeros there.

We first prove the convergence of ll((z- (.)/(z -a)). Since, for I z r,

z-zn n-nl I' 1-Ibnl

1-r 2 r (717)
1 z- fin 1 Z.

and since E(1 - I I) converges, the product (7.16) converges absolutely and uni-
formly for I z I < r. That the function fl (z) is regular for I z I < 1 and thatS1, l t, ... are its
only zeros there is clear. Each factor in (7.16) is absolutely less than 1 for I z I < 1,
so thatlf(z)I<1forizl<1.

Given an F(z) a N, let S1, C,... be all of its zeros situated in I z I < 1 and distinct from
the origin. If F(z) has a zero of order k > 0 at z = 0 the expression

Bz)=e'rzk 1

(718)n z-nltnl'
where y is any real number, is called the Blaschke product of F. If F(z) has no zero for
0 < I z I < 1, the product fj is to be replaced by 1, and thus B(z) = e'7, zk for such F.

We have I B(z) 1 for I z I < 1 and the ratio

G(z) = F(z)/B(z) (7.19)

is regular and without zeros in I z I < 1.

(7.20) THEOREM. (i) Suppose that po(r; F) <p <oo for 0 _< r < 1, and let B(z) be the
Blaschke product of F. Then, for G(z) defined by (7.19), we have po(r; G) -/i.

(ii) If u,(r; F) -<,u < co for 0 _< r < 1, then pp (r; G) -<p.

Take case (ii) first, and let Bn(z) be the nth partial product of (7-18). Since I Bn(z)
tends uniformly to 1 as r -+ 1, we have

lim pp(r; lim p,(r; F) <,u.
r-.1 r-.1
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Henoe µ9(r; for every r < 1, and this gives u,(r; 0) <#, since B (z) tends uni-
formly to B(z) on I z I = r. The same argument gives (i).

To sum up, if F belongs to HP or to N, we have the decomposition formula

F(z) = B(z) G(z), (7.21)

where G has no zeros and belongs to the same class as F, and I B(z) I < I _

We shall always suppose they in (7.18) selected so that G(0) is real and positive.
The importance of (7.21) is due to the fact that every branch of loge, and of

Ga = exp (a log G), is regular f o r I z I < 1. Thus G is more `flexible' than F under certain
operations. For example, if G E Ha, then Ga/fi a H,6, and this makes it possible to extend
the properties of certain especially simple classes Ha (for example, when a = 2) to
other classes H.O. A very special but typical application of (7.21) deserves a separate
statement.

(7.22) Tnzoux s. A necessary and sufficient condition that F E H is that F = F1 F,,
where F1 H', F, E H'.

The sufficiency of the condition follows from the inequality 21 FLF, I < I F1 I'+ I F, 1',
which we integrate over 0 <x < 2n. To prove the necessity, suppose that µ1(r; F) <
Let F1(z) be any branch of Gi(z) (see (7.21)) and let F, = BF1. Then

F= F1F,, /us(r; Fk) <µs(r; G) <µ
fork=1,2.

A variant of (7.21) is also useful. Let

B(z) -1= B*(z),

so that B*(z) has no zeros in I z I < 1(unless B(z) _- 1, a case which we exclude from con-
sideration) and I B*(z) I < 2. Then (7.21) may be written

F(z) = G(z) + G*(z), (7.23)

where G(z) and G*(z) = B*(z) G(z) have no zeros for I z I < 1, and I GO(z) I < 2 I G(z) I.
Since I B(z) 1 for z I < 1, the non-tangential limit

B(e's) = lim B(z)

exists for almost all x0. Moreover, where it exists, I I < 1.

(7-24) Tmtoiai m. For almost all x we have I B(e") I =1.

We may suppose that B(z) has infinitely many factors, for otherwise the result is
immediate. Since I B(etx) I < 1 almost everywhere, we have

limµs(r; B) = 2-
u

I B(eu) I'dz < I

and (7.24) will follow if we show µ=(r; B) -+ I as r -1. 1.
Let B (z) be the nth partial product of (7.18), and let R (z) = B(z)/B,,(z). The func-

tion R is regular and numerically not greater than 1 for I z I < 1. Moreover,

Rn(0) = I r.11 +1
r
r +,... I.
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The expression fce(r; Rn) is an increasing function of r, taking the value I R (0) 1Y at
r = 0. Making r-> 1 and observing that + B,,(e'x) = 1, we get

1>limua(r; B)=limp2(r; Rn) Rn(0) 1e= 2.,-I r-*1

Since the last number may be arbitrarily close to 1, we have ,(r; B) 1.

(7.25) THEOREM. If F(z)EN (in particular, if FE Hp), the non-tangential limit
F(e'x) = lim F(z) exists for almost all x. Moreover, log I F(eix) I is integrable. In particular,se°
F(e{2) 0 almost everywhere.

The function G(z) in (7.21) belongs to N, and log G(z) is harmonic for J z j < 1. Thus
Y*

o
log I G(re'x) 11 dx (7.26)

is also bounded as r-, 1. Hence, if we assume the existence of F(e'x), and so by (7.24)
the existence of 0(eix), Fatou's lemma applied to (7.26) shows that log I G(e'x) I E L,
and hence that log ( F(e'x) I c L.

By Chapter IV, (6.5), log I G(z) I is a Poisson-Stieltjes integral. Hence, observing
that Jf log G(0) = 0, we can represent G(z) by formula (6.24) of Chapter IV. Thus

r Ear 0
G(z)=exp{2n fo a (7.27)

where A(t) is real-valued and of bounded variation. Conversely, any G(z) of the form
(7.27) is of class N, without zeros in j z J < 1 and with G(0) > 0.

Let .l(t) =,t,(t) -.k2(t), where al(t) and .le(t) are bounded and non-increasing. Then

G(z) = G1(z)/GE(z), (7.28)

wa
where Gk(z) = exp

(2I7T
e''±zdik(t)} (k = 1, 2). (7.29)

0 111

The functions Gk have no zeros, and I Gk <- 1 for z I < I since the real part of the
exponent is non-positive. It follows that Gk(e'x) exists almost everywhere. It is also
almost everywhere different from zero, the real part of the exponent having a finite
non-tangential limit almost everywhere. Hence G(eix)=and so also
F(e'x) = B(e'x) G(eix), exists (and is not 0) almost everywhere. This completes the proof
of (7.25).

It follows from (7.25) that, if Fi E N, Fe E N, and if F,(eix) = FE(eix) in a set of x of
positive measure, then F,(z)=Fe(z).

We have also, by Fatou's lemma, that if F(z) E Hi', then F(e'x) E L" (p > 0).
It is of interest to observe that, for any set E situated on I z I = 1 and of measure zero

there is an F(z) * 0, regular for I z I < 1, bounded (in particular, FEN) and such that F(z)
tends to 0 as z approaches, in an arbitrary manner, any point of E. It is enough to set

F(z) = exp { - f (r, x) - Or, x)},

where f (r, x) is the Poisson integral of the function f from Theorem (7.26) of Chapter III.
If E is, in addition, closed, then there exists an F(z) regular for I z < 1, continuous for

1 z I _< 1, vanishing on E and only there. Let f (x) be integrable over (0, 2n), differentiable
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outside E, and tending to + oo as x tends to any point of E. Then f (r, x) -* oo as (r, x)
approaches any point of E, and it is easy to see that the F(z) just defined has the
required properties. The function f may be constructed as follows.

Let (a,, b,), (a,, b,), .... be the intervals contiguous to E, d; = bi - ai, so that Edi = 2r.
Let {ei} be a positive sequence such that

(i) ei ldi -* co, (ii) Eei < oo.

Let f(x)=c,(x-a;)-i(bi-x)-I in (ai,bi) (i= 1,2,...), f= +oo in E. The integral of f
over (a,, bi) being a fixed multiple of ei, f is integrable. The minimum off in (a,, bJ is
lei/di, and tends to +oo with i. Hence f has the needed properties.

From (7.21) and (7.27) we see that

(7.30) THEOREM. The general function of class N is

F(z)=B(z)expt(2m (7.31)

where al(t) is any real-valued function of bounded variation, and B(z) is any product
(7.18)with 0<I ,I<1,E(1-Ibnl)<+co.

Closely related to (7.30) is the following result:

(7.32) THEOREM. A nece.ssary and sufficient condition for a function F(z) regular in
z I < 1 to be of the class N is that F(z) = F1(z)/F,(z), where F, and F, are both regular and

bounded for I z I < 1, and F, has no zeros there.

The necessity follows from (7.31), if we observe that, with the notation of (7.29),
we have G= GIG,, where G, and G, are numerically not greater than I and without
zeros. Thus F = F1/F where F1= BG1, F, = G.

Conversely, if F1 and F, are both bounded, say less than I in absolute value, and
F2 * 0, then

I 1( iz)

fo

9w

2n Fo, log+ F,(r eiz)
dx < 2n log rFa(r

a,,)
I

dx = log
F(0) I

We now show that the moduli of the boundary values of functions from N and H'
can be prescribed, roughly speaking, arbitrarily.

(7.33) THEOREM. Let f(x), 0 < x < 27T, be non-negative and such that log f (x) e L
(in particular f > 0 almost everywhere). Then

(i) There is an FEN such that I F(eix) I =f(x) alrno8t everywhere;
(ii) if, in addition, Je LP, p > 0, then there i8 an F E HP such that I F(eix) I =f(x) almost

everywhere.

(i) Consider the F in (7.31) with A(x) the indefinite integral of logf(x) and B= 1.
Then F E N and

I F(eix) I= elogf(x) = f (x).

(ii) Let F be the same as in (i). Since O(u)=e9' is convex, we have, by Jensen's
inequality, `

I F(reix)IP=expCp 'f 2w

P(r,x-t)logf(t)dt
` nfo

<mjoP(r,x-t)eP)oanr)dt=_ f oP(r,x-t) I f(t) IPdt.
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Hence I Fret=) IP is majorized by the Poisson integral of I f IP,

o*I
F(ret=)Ipdx - FeHP.

(7.34) THEOREM. If F(z) a HP, and r and p tend to 1, then

J1,(F(reu)-F(pe'=)]-*0, SJ?P[F(reu)-F(etz)]->0.

It is enough to prove the first relation, since the two are equivalent. Both relations
have been proved in Chapter IV, (6.17) for p> 1. On account of the decomposition
formula (7.23), it is enough to consider the case when F(z) is without zeros. Let
Fj(z) = F}(z), so that Fl a H2". Then

FffI F(rex)-F(peu)IPdx
}

I I Zpdz Jo I Fi(feu)+Fi(pez) I Q°dX

by the inequality of Schwarz. If 2p > 1, the first factor on the right tends to 0, and the
second is bounded, so that the result follows for p > J. From this we similarly get the
result for p > }, and so on.

(7.35) THEOREM. If F(z) a H=, and if F(eu) E Ii for some fl > a, then F(z) E Ha.

This is immediate if a = 2; for if F(z) = F.c z'+ is in H2, it follows that E I c I= < oo,
Ec e("= is the Fourier series of F(ex), F(r eu) is the Poisson integral of F(e'), and since
F(eft) is If, F(r eix) is in Hfl. It is also immediate for any a > 0, if F(z) $ 0 in I Z I < 1.
For if we set F1(z) = F}a(z), then

F,(z)eH°,

so that F1(z) a H2fia, F(z) a H".

In the general case, F = BO with 0(z) * 0, O(z) a Ha. Since I F(ex) I = I G(e`=) I
almost everywhere, it follows that

a(z)EH-8, F=BOEHf.

For any 0 ` or < 1, 0 <- x -< 2n, let A,(x) denote the domain bounded by the two
tangents from the point e'7 to the circle I z I = v and by the larger of the two arse of that
circle between the points of contact. For o-=0, the domain reduces to the radius
through e.

(7.36) TaEoaaI1. For any F e HP, p > 0, let

N(x) = N,,.,r(x) = sup I F(z) I.
29040)

Then N(x) E LP and r 1

( 'NPdx} 1" Ap(r'I
F(e'x)

IPdx)".
(7.37)
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This is contained in Chapter IV, (7.6), if, say, p=2. In the general case we make
the usual decomposition F = GB and have, since G, = GO is in H2,

N` Fdx<f*No adz= f N;.o,dx_< A.t *I Gj(ex) dx
0 0 0 0

This gives (7-37) with A,,= A4 D.

= A;f s*
I
G(eiz) I P dx = A, F" I F(et-) I" dx.

The following result strengthens Theorems (2.4), (2.6), (2-8):

(7.38) TEEOREM. The function
1 *

x)-o sup, nJA[f(x+t)-f(z-t)]Icot}tdt (7.39)

satisfies the inequalities
r s

(1) y4 ] (P 1),
97t[f] (0<fc<1)(ii) 9R [f]<Ap , t

7.40

(iii) R[f]<Bfo*Ifjlog+Ifjdx+C,

where the coefciente on the right depend only on the parameters indicated.t

The expression inside the modulus signs in (7.39) is f (x; h). Let

Vrz(t) = }[ f (x + t) - f (x - t)],

M(x)=M1(x)= sup 1 If(x+t)Idt.
o<Iw wu' 0

The difference f(x; 1 - p) -1(p, x) may be written

n

fl-'V'=(t)Q(P, t)dt - 2 fl-_, ibs(t) it dt-Gp(x)+H(x).

Since I Q(p, t) I does not exceed 1/(1- p), we see that I Gp(x) M(x). Let Rp(t) be the
co-factor of i(rz(t) in H,,(x). We easily verify that

tRp(t)=0(1), f It d R,(t)`dt=0(1),
1 p dt I

whence, integrating by parts, we deduce that I H,(x) I does not exceed a multiple of
M(x). Therefore I AX; 1- p) -PP, x) I < CM(x), (7.41)
where C is an absolute constant.

Let F(p e'x) = f (p, x) + if(p, x), and let N(x) be the upper bound of I F(p eiz) I for
0 < p < 1. Then

I f (x; 1-P) I < I f(x; 1- p) -f(P, x) I + I f(p, x) I < CM(x) + N(x),

and the right-hand side majorizes f(x). If f e LP, Minkowaki's inequality gives

.QDIfJ ] <Ci ,[M]+Vy[N] <A,U9[f],
in virtue of (7-36), (2-4) and Chapter I, (13.17). This gives (i), and the proofs of (ii)
and (iii) are similar.

t Though the point is not important. it is not difficult to we that (7.40) holds if in (7.39) we replace
the condition on h by 0 < h E w. For if I <A s w, If ix; A) does not exceed a fixed multipleof 4R[/].
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(7.42) ThEoREM. Let &,,(x) be the (C, 1) means of 9[f], and let

os(x)=sup I &n(x) I.nil
We have the following inequalities analogous to (7.40):

(i) D[&sl<ATZp[.f] (p> 1),
(ii) µ[&s]SA,9Jl[f) (0</L<1),

r8r

(iii) 7l[&s] S BJ I f I log+ If I dx+C.

The inequalities hold if we replace &s by

&s(x)=supI&n(x)I (0<a<1),
,' 1

(7.43)

where &n denote the (C, a) means of [f]; but the constants on the right then depend also on a.

We shall only consider the case a =1, the proof for 0 < a i 1 being essentially the
same.

Part (i) of (7.43) follows immediately from the inequalities

D[&sl Aply[f), ,[f)
the first of which is an application of Theorem (7.8) of Chapter IV to S[11 = 9[f ].
The argument, however, does not work in cases (ii) and (iii) (in which the integrability
off is not as good as that off) and a different proof is needed.

We have (see the proof of Theorem (3.20) of Chapter IIII)

&n(x)-rJ(x; l/n)-2 f

A
&,,(x) -J (x; 1/n) nfu I

s(t) I dt + n
'. _2 I

0,.,(t)
I dt.

It is easily seen that the right-hand side of the last inequality is majorized by a con-
stant multiple of M(x), and that Theorem (7.42) follows from (7.38) and the inequalities
(13.17) of Chapter I for M(x).

We shall now prove some results about Blaschke products.
By Chapter III, (7.9), the Poisson integr4l of any integrable function tends to a limit

as the variable point approaches almost any point e{x of the unit circumference,
provided it remains within a fixed angle formed by two chords through The result
holds, in particular, for any harmonic function bounded inside the unit circle. Even
for bounded functions the result fails if the angle is replaced by any fixed domain
tangent to the unit circle; we now show this by means of Blaschke products.

(7.44) THEOREM. Let Co be any simple closed curve passing through z=1, situated,
except for that point, totally inside the circle I z I = 1, and tangent to the circle at that point.
Let Ce be the curve C0 rotated around z = 0 by an angle 0. There is a Blaschke product B(z)
which, for almost all 60, does not tend to any limit as z -* e{B inside Co..

We may suppose that for r close to I the circle I z I = r < 1 meets C0 at exactly two
points. (Otherwise we replace the region bounded by C0 by a smaller region having the
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required property.) Let l,, denote the length of the are of i z I =1- 1/n situated inside
Co, and let m _ 1. Let S be any system of m,, equally spaced points situated
on I z I =I-1 /n. The circular distance between any two consecutive points is less than
1,,, so that every CB contains in its interior a point of 8,,. The sum an of the distances of
the points of S,, from the circumference I z I =1 is

m fn1< (1

since the tangency of Co to I z =1 implies that Let us take nk increasing so
rapidly that Yo-.k < oo, and let B(z) be the Blaschke product with zeros at the points
of Since B(z) has infinitely many zeros inside every C°a, the limit of
B(z) as z-*eSO° in the interior of Co. must be zero if it exists at all. By (7.24) such a
limit exists for almost no 0o.

(7.45) THEOREM. A necessary and sufficient condition for a function F(z) regular for
z I < 1 to be a Blaschke product (that is, to be of the form (7.18)) is

f. log I F(r eu) I I dx -+ 0 as r 1. (7.46)

Necessity. We may suppose that F(0) * 0 so that F is, except for a factor et-Y, of the
form (7.16). We may also suppose that F has infinitely many factors; otherwise (7.46)
is obvious. Consider Jensen's formula (7.8) with k = 0 and F(0) = Fl I ,, . The right-
hand side increases with R and so, if m = mo corresponds to a fixed Ro < 1,

2rrf
slog I F(R eLZ)

dx -> log F(O) I H (c
II

} =log R II
0 1 r m.+1

for R > Ro. Hence

lim log F(Re`;) Id, -> logR-.12r o

a negative number whose modulus is arbitrarily small if mo is large enough. Since
F I k 1, this leads to (7.46).
Sufficiency. The hypothesis (7.48) implies that F E N. Let B(z) be the Blaschke

product of F, and let 0(z)-F(z)/B(z). Since (7.46) holds for B(z), it holds for 0(z).
Thus 0(z) is of the form (7.27), and so log 10(z) I is the Poisson-Stieltjes integral of A.

By Chapter IV, (6.9), the total variation of A(t) over (0, 2n) is lim fo I log I G(re1z) I dx,

and so is zero. Hence 0(z)=1, F(z)=B(z).
The following result completes (7.24):

(7.47) THEOREM. If a Blaschke product B(z) contains infinitely many factors, the
set of the radial limits w = B(e'=) = lim B(r et=) covers the whole circumference I w = 1

r-+I

infinitely many times.

It is clear that if B(z) contains n linear factors, the numbers w = B(elz) cover w = 1
exactly n times.

We shall deduce (7.47) from the following slightly more general result:

(7.48) THEOREM. Suppose that F(z) is regular and absolutely less than I for I z < 1.
Suppose also that I F(etz) I = lim I F (r a(x) I =1 at almost all points of an arc a < x < b.

r-#1
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Then either F(z) is analytically continuable across this are or the values of F(eiz), a < x < b,
cover the circumference I w I = I infinitely many times.

Since B(z) in (7.47) has at least one singular point on I z I (because any limit point
of the zeros of B(z) is singular), (7.47) is a consequence of (7.48).

To prove (7.48), fix any a, I a I =1, and let C= L(w) be a linear function mapping
w I <1 onto 0 and making w=a and C=oo correspond. The function L(F(z)}

is regular for I z I < 1 and has a negative real part there whose boundary values are 0
almost everywhere on the are a < x < b. By Chapter IV, (6-26),

L{F(z)}= -
12n

y=.dL(F(0)), (7.49)

where A(t) is bounded and non-decreasing. The real part of L{F(z)) tends radially to
A'(t) at every point of differentiability of A, so that A'(t) = 0 almost everywhere in (a, b).

Let E be the set of points of increase of k (that is, of the points in the neighbourhood
of which A is not constant) situated in (a, b). There are two possibilities: (i) E is infinite,
(ii) E is finite.

In case (i), there are infinitely many points in (a, b) at which the symmetric deriva-
tive of A(t) is infinite.This is obvious if A(t) is discontinuous at infinitely many points
of (a, b). If the discontinuities are finite in number, (a, b) contains an interval (t', t')
where A is continuous and in which there are infinitely many points of E. The
derivative A'(t) must be infinite at infinitely many points of (t', t'), for otherwise A(t)
would be absolutely continuous inside (t', t'), and so constant there (since A'(t) = 0
almost everywhere in (t', t')), contrary to hypothesis. At every point at which
A'(t) = oo, the symmetric derivative of k is also oo.

Thus, in case (i), RL{F(z)} tends to - oo, and Be L{F(z)} tends to oo, along infinitely
many radii terminating on (a, b). From the definition of L(w) it follows that F(z)
tends to a along these radii.

In case (ii), A(t) is a step function in (a, b). Hence, by (7.49), (D(z) = L{F(z)} is regular
on the are a < x < b of I z I = 1, except for a finite number of points at which it has poles.
It is easily seen, taking into account the boundedness of F, that F(z) = L-1{((z)} is
regular at all points of the are (a, b).

Return to Theorem (7.35). Its conclusion, that FEHf, is no longer valid if the
hypothesis F(z) E H' is replaced by F(z) a N. For example, the function

F(z) = exp
/ 1 1+z 1=

exp {P(r, x) + iQ(r, x))
l-zllll

is of the class N and its boundary values belong to La (I F(eu) I = I for x + 0), but
F(z) is not in HQ for any f> 0. (Observe that P(r, x) exceeds a constant multiple of
1/(1 - r)for Jx e I - r, so that µ1(r; F)-->oo.)

To generalize (7.35), we introduce a subclass of the class N. An F(z) E N will be said
to belong to the class N', if the function A(t) in (7.31) has its positive variation absolutely
continuous.

(7.50) TuxoREM. Suppose that F(z) a N' and that 0(u), u >_ 0, ie non-negative, non-
decreasing and convex. Then

f'pog I F (r eh)1) dx _< f b{log+ I F(eft) 1} dx.
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We may suppose that the right-hand side is finite. Consider (7.31), and let sli(t)
and A,(t) be the positive and negative variations of .l(t). Let ul(r, x) and u2(r, x) be
the Abel means of S[dA1}=S[A ] and of S[di,J; then

log+ I F (r, x) 51og+ I G(r, x) I = {ul(r, x) - u2(r, x)}+ < ul(r, x),

2
and so o

x

c{log+ I F(r, x) 1) dx S f, O{u,(r, x)) dx < fo O{A (x)} dz,

by Chapter IV, (6.20). It is enough to show that si(x)=log+ F(e'x) I almost every-
where. This follows from the equations

log jF(e'2) j _ A'(x), A',(x) _ {A'(x)}+,

valid almost everywhere. Thus the proof of (7.50) is completed.
Let us again consider (7.31). By Chapter IV, (6.19), F(z) is in N' if and only if the

integrals
Jiog+ I G(re")I dt (0<r<1),

are uniformly absolutely continuous. This is equivalent to the uniform absolute
continuity of the integrals

Jlog+IF(ret)Idt (0Sr<1), (7.51)

in view of the inequalities

log+j GI +log(Bj-log+I F1 -<log+I GI (7.52)

(see (7.21)) and the uniform absolute continuity of the integrals f
o

log I B(ra°) I dt

(see (7'45))
The integrals (7-51) are uniformly absolutely continuous, if there exists a non-

negative function tlr(u), u >_ 0, such that i/r(u)/u--* oc with u and that

ra.
Jl Vi{log+ I F(r e'=) I } dz _< C,o

with C independent of r (Chapter IV, §6). In particular, taking k(u)=expau, we
see that H°c N' and that (7.35) is a corollary of (7-50).

(7.53) THEOREM. AnrFEN is in N' if and ronly if

Jim
I F(re'x) dx= I R1og+ I F(e'z) dx. (7.54)

o J o

To see this we observe that, by Chapter IV, (6.19), F(z) is in N' if and only if

lim J log+ I G(re'x) dx= f log+ I G(elx) I dx. (7.55)
.-.i o J o

The right-hand sides in these two equations are the same. Thus (7.54) is equivalent to
(7-55), in view of (7.52) and the fact that the integral of log I B I over (0, 2rr) tends to 0
(see (7.45)).

Replacing, in (7-54), log+ by log- we obtain a necessary and sufficient condition for
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the negative variation of A to be absolutely continuous. Adding this to (7.54) we con-
clude that the relation

lim f* I log I F(r e'--) I I dx = f
0
s I log I F(e`z) I I dx, (7.56)

is valid if and only if A is absolutely continuous.

We conclude this section by a few remarks about the classes HP as abstract spaces.
For F(z) a HP we set

1
``a. IiP

II F I, = -1 F) = {2n
0

I F{e1z) I P dx} (7'57)

Then, except for the irrelevant factor (2n)-1"P, II F 11P is the usual norm, in LP, of the
boundary function F(eu). Obviously II F lip % 0, and II F lip = 0 if and only if F = 0
(see (7.25)). Also II kF lip =I k 111 F IIP The triangle inequality

F+0IIP<IIFlip +110lip

is satisfied for p ? 1 but not necessarily for 0 < p < 1. In the latter case, if we define the
distance d(F, G) of two points F and 0 in HP by the formula

d(F,0)=11 F -0 SIP= !_
0

I IPdx,

this distance does satisfy the triangle inequality, and HP is a metric space. It is con-
venient, however, to keep the definition (7.57) of norm even in the case 0 <p < 1,
though the triangle property is then lacking.

We know (see (7.34)), that if F E HP, then

r.
Let

w

I F(eu)-F(Reu) IPdx-30 as R--)-l. (7.58)

F(z)=c0+clz+... +cnzn+... (7.59)

and let e> 0 be given. If in (7.58) we fix R sufficiently close to 1, and then fix N suffi-
N

ciently large, the polynomial P(z) _ Y, cn Rnz" will satisfy the inequality II F - P IIP < e
0

Thus, with the metric (7.57), the set of all polynomials d0+d1z+ ... +d"z' is dense in
HP. Since these polynomials belong to HP, this class can be defined as the closure
under the metric (7.57) of the set of all polynomials. Since we could have required that
the coefficients dk be rational, the space HP is separable.

(7.60) TaaoREM. The space HP is complete.

We have to show that if F" a HP for n =1, 2, ... and if II F,n - F IIP -* 0 as m, n -- oo,
then there is a m f HP such that II F. - It IIP -+ 0.

We show first that, i f F e HP and if II F IIP < M, then

IF(z)I<M(1-R)-1"P for IzI<R<1. (7.61)
If p= 1, (7.59) gives

cnlrn<21

7f
0IF(reu)Idx<M (n=0,1,...),

and making r --1 we have I c, < M. Hence

IF(z)I<M(1+R+...)=M/(1-R) for IzI<R.
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If p $ 1, we set F = OB, where B is the Blaschke product of F and f O 11, -< M. The
latter inequality can be written (( Op ((1 < MP, and so, by (7.81) with pm 1, we have
GP(z) (<MP/(i -R) for (z (<R. Since (B (< 1, the function F=OB satisfies (7.61).
The hypotheses F. E Hp and 11 F. - F I[ --> 0 give p F. B p < M for all m and some M.

By (7.61), the functions Fm are uniformly bounded in each circle z (<R < 1. Hencet
we can select from {Fm) a subsequence converging uniformly in ( z < R'< R. Applying
the diagonal procedure, we may suppose that this subsequence {Fmr) converges uni
formly in each circle ( z ( < R, R < 1 , to a function O(z) regular in ( z (< 1. Let

eN=sup(Fm-.F IIP for m,n3N;
hence eN --> O. If R < 1,

IT J

2'1
O(Rl(Re)_(R eiZ) I p dx =

llim 2n ,(
(Fmt(R eiz) - Fn(Reu) (p dx < en,

which shows that 11 0 - F, (ip < en and completes the proof of (7.60).

8. Power series of bounded variation
We shall now show that if f (x) and f(x) are both of bounded variation then S[ f J

has a number of interesting properties. It will be convenient to state the results in a
form bearing on the power series

F(z) =ae+alz+aszs+... ((z (< 1). (8.1)

We shall say that (8.1) is of bounded variation if its real and imaginary parts, for
z=ei=, are Fourier series of functions of bounded variation. We know (see p. 89)
that F(e=) =1im F(r e=) is then continuous. Consequently, (8.1) converges uni-

r- l

formly for (z(=1,andsoalsofor Iz(<1.

(8.2) THEOREM. If F(z) is of bounded variation, then F(ei=) is absolutely continuous.

An equivalent form of this is as follows:

(8.3) THEOREM. If a trigonometric aeries S and its conjugates are both Fourier-
Stieltjes series, then S ands are ordinary Fourier series.

To prove (8- 3), let (8.1) be the power series which for z = ei= reduces to S + is. By
Chapter IV, (6.5), F(z) is in H and so satisfies the first equation (7.34) with p= 1.
Hence S+is is a Fourier series (Chapter IV, (6.12)) and (8.3) follows.

Part of this argument deserves a special statement: a power aeries to of class H if
and only if its real and imaginary parts for z = sit are Fourier series.

This remark, coupled with (7.35), gives a new proof of Theorem (4.4). Let F(z) be
the analytic function whose real part is the Poisson integral of an f c L. Then F E HP,
0 <,u < 1, by (2.6). If we suppose that l e L, then F(ei=) = lim F(rei=) a L, F(z) E H, and

§[f]=S[f]
t We use here the familiar fact that if the F_ are uniformly bounded in a circle their derivatives

are uniformly bounded in each smaller concentric circle, so that the P. are equioontinuous in the
smaller circle.
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From (8.2) we deduce the following:
+m

(8.4) THxon M. If the partial sums an of Z ck eQZ satisfy

JIs*I=o1, (8'5)

in particular if an > 0 for all n, then ck -> 0.

The hypothesis implies that the series is an S[dF]. Suppose that I e > 0 for
n1 < n, < ... -- or,. The series

+ C" + Cn' 1 e-u + ... + C_n' a-111+2 + ... , e-t",x S[dF),

C,4 + C",-' a-ix + ... + C_nr a-u/nrs = e-!",x a,, (x)

are respectively S[dG,,] and S[dR,], with

G,(x)= L6dF'(t), H,(x)
0

The total variations of G. and H, are uniformly bounded (see (8.5)). Taking subee-
quenc ee, we may suppose that {G,} and {H,} converge to functions of bounded variation
G and H. The coefficients of dG and dH are the limits of the corresponding coefficients
of dG, and dH,. It follows that

(a) the constant term of S[dG] is numerically-not less than e;
(b) S[dH] has no terms with positive indices;
(c) the coefficients of S[dG] and S[dH] with non-positive indices are the same.
By (b) and (c), H and G - H are absolutely continuous. Thus G is absolutely con-

tinuous. If we show that G'(x) = 0 almost everywhere, it will follow that G(x) a 0,
contradicting (a) and completing the proof.

Let F=Fo+F1, where Fo and F1 are the absolutely continuous and singular parts
of F. By the Riemann-Lebesgue theorem,

G(x)=lim fo r e-°' dFl,
r Jo

f e_"kJdF1 _< r dF1 (h>0).
IIII

r s dz

Since the last term is o(h) for almost all x, G'(x) = 0 almost everywhere.

(8.6) THEOREM. A power series of bounded variation converges absolutely on z =1.
We begin by proving

(8.7) THEOREM. If 1(z)=bo+b1z+... eH, then

jb 1En+
1

1

1

21

14(ec=) I dx. (8.8)

It is enough to prove this for functions regular in I z 1 and without zeros on z =1.
For then, applying the result to m(Rz), with 0 < R < 1. and making R -*I we get
(8.8) for general 0 e H.
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The inequality (8.8) is immediate if the bn are all real and non-negative. For then,
multiplying both sides of the equation

bosin x+b1sin 2x+...=J{e D(e*=)} (8.9)

by *(rr-x), integrating the result over (0, 2n) (the left-hand side of (8.9) converges
uniformly), and noting that the nth sine coefficient of }(n - x) is 1/n, we get

fo*f (e'x),dx.

When the b,, are not all non-negative it is enough to construct a function
0*(z) = Eb*zn such that I bn I < b* and µ(1; (*) <_#(1; 0) (see (7.1)).

Let B(z) be the Blaschke product for 4D(z). In our case B(z) has only a, finite number of
factors, the function 'Y = 4)/B is regular and non-zero for I z I < 1, and I'1' (eu) _
Set 4)1 = B` i = Ec;, zn, 4>_ ='Irf = Ecn zn (so that 0=0,0,),

Of =EIcnlzn, Of =EIcn
1

lzn

(D* _ Of (D_ = Eb* zn.

The functions (Dk, and so also the ck, are regular for I z < 1, k = 1, 2. Obviously

Ic-,I>- IEc,'en-,I=lbn1.
Moreover, using Schwarz's inequality and the equation Et9(1; 4'k) =,410; 4)) (a con-
sequence of Parseval's formula),

u(l;0*)<ut(1;0iluj(l;(D:l=uj(l;(D1)ut(l;4'z)
This proves (8.7).

Returning to (8.6), let us suppose that F(z) is of bounded variation. We apply
(8.8) to 4)(z) = F'(Rz) = a1 + 2a$ Rz + ... , where 0< R < 1. (Thus we use (8.8) only in the
case when (D is regular for I z I < 1.) We get

Ia1IR+I a.1R'+...<2 f'RIF'(Re'-')Idx.

The integral on the right is the total variation of F(z) over I z I= R and tends to
the total variatic n V of F(z) over z I = 1 as R-> 1 (Chapter IV, (6.11)). Hence

Ia,+a,I+...jV, (8'10)

which is a more precise formulation of Theorem (8.6).
A corollary of (8.8) and of (2.8) is Theorem (3.9) of Chapter VI, stated there without

proof: If F is absolutely continuous and PE L log+L, then S[F] converges absolutely.

(8.11) THEOREM. If 8n are the partial sum8 of cke'A*11, and if

f2.
18n(x) I dx=0(1), (8.12)

0

then nk- I ck F =O(logn ' (8.13)
1 __)

In particular, if I c1 I > I c: I ..., then c,, = 0(1 /log n).
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Let M be the upper bound of the integrals (8.12). Applying (8.8) to

e-irz8v (x)=cv+cr-,e-iz +... + c_,, a-2i: (v>0),

we obtain
1

I +Ic21!+

Replace here i' by 2n, 2n - 1, 2n - 2, ..., 1 and add the inequalities. Observing that
V

E k-1 _> A log (u + 1) (µ. = 1, 2, ...), we have
1

Sw

AEIck(1og(2n-k+2)<}M.2n,
k-1

whence A log n E I ck 11< Mn,
k-1

and (8.13) follows.
If (8.12) is replaced by the stronger condition TZ[8,,, -a J a 0, we have (8.13) with

'o' instead of '0'.

9. Cauchy's integral
Let g(z) be any integrable function defined on the circumference I z 1. The integral

1 (9-1)2ni ICI-1 S-z

exists for I z $ 1; it defines one function, F(z), regular for I z I < 1, and another, F1(z),
regular for I z > 1. Clearly,

-n -19(C) d (I z < 1), (9.2)
(z) Ep 2ni f, CI-1

F1(z)=-E
z-n f

9"-19(S)dC (Izl>1). (9.3)
n12ns ICI-1

In general, F and F1 are not analytic continuations of each other.
Let z=rstir,

We verify that

z- I sdC= 1 "g(e'9)P(r,t-x)dt. (9.4)IF(z)-Fi(z`)=2n. r 1 r o
Hence F(z) - F,(z*) -g(eXo)

for almost all x0, as z along any non-tangential path.
Formula (9.1) may be written

(9.5)

F(reix)=2[1fo 2sg(e~<)(P(r,t-x)+J)dt+sJ g(e°)Q(r,t-x)dt (9.6)
n J

Thus lim F(z),
X- ell-

where z -+eixo along a non-tangential path, exists for almost all xo. By (9- 5), a similar
result holds for F1 and non-tangential paths in I z I > 1.

From (9.6) and (2.6) we see that the function F(z) belongs to Ho for every 0 < u < 1.
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(9.7) ThEOREm. Let F(z) be defined for I z I < I as the expression (9.1). A necessary and
sufficient condition for F(e'se) = Jim F(z) to coincide with g(etza) almost everywhere is

that S[g(e'=)] is of power series type; that is,

fin-1
"-'g(C)dC=0 for n=1,2,.... (9.8)

By (9-3), condition (9-8) is equivalent to F1(z) = 0. But if F1(z) _- 0, (9.4) shows that
F(z) is the Poisson integral of g(e'=), and so F(ei=) = g(et2) almost everywhere.

Conversely, suppose that urn F(r eiz) = g(e'=) almost everywhere. Since g E L and
r-*j

F f H,1,0 <#< I, it follows from (7.35) that F e H and so TZ[F(r e' z) - g(e{z)] -> 0 as r-1.1.
Hence the Fourier coefficients of F(r e'=) tend to the corresponding coefficients of
g(e'=) as 1. Since the coefficients of F(r e'z) with negative indices are zero, the same
holds for g(e'=). This completes the proof of (9.7).

We shall say that a function 1(z), regular for I z I < 1, is representable by the Cauchy
integral, if

(i) 4(e'=) = lim O (r e'=) exists for almost all x and is integrable;
rvl

(ii) ((z) is given by the integral (9.1) with g(r) replaced by cb(C).

(9.9) THEOREM. A function F(z), regular for I z j < 1, is representable by the Cauchy
integral if and only if F(z) e H.

If F(z) is given by (9 I ), then F e H", 0 < N < 1, and the hypothesis that lim F(r e'y) e L
implies that Fe H (see (7-35)).

Conversely, suppose that F(z) = 2c" z" a H. Since VI[F(r e'=) - F(e'r)] --). 0, we have

f lim J4rF(reu)e-'1lxdx= Jim
1 0 I0,

so that F(z) is given by (9.2)-and so also by (9.1)-with g(C) replaced by F(C).

(9.10) ThEoREM. Let F(z) be regular for I z I < 1. Then the following two conditions
are equivalent:

(i) F(z) is representable by the Cauchy integral;
(ii) F(z) is the Poisson integral of F(e'=).

Both conditions imply that F(eix) = Jim F(r e'=) exists almost everywhere and is
r-.l

integrable. If F(z) is the Poisson integral of F(e'Z) then R[F(r e'=)] = O(1). Hence
Fe H and, by (9-9), F(z) is representable by the Cauchy integral. Conversely, if F(z)
is given by (9-1) with g(e") = F(e") then, by (9-8), the function F1 formed with
g(e") = F(e") vanishes for I z I > 1. Substituting F(e") for g(eu) in (9-4), we see that F(z)
is then the Poisson integral of F(e'=).

10. Conformal mapping
The method of conformal mapping is useful for some problems of trigonometric

aeries. We give here some basic facts which we shall need later.
Let w=F(z)=co+c1z+c,zi+...+c"z"+... (10.1)
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be a function regular and univalent for I z I < R. (Univalent means that to distinct z's
there correspond distinct values of F(z).) Then F(z) maps the circle I z I < R in a one-one
way onto an open domain D bounded by a simple closed curve. If w = u + iv, the
Jacobian a(u, v)Ja(x, y) is ux

U _u=+u,',=IF'(z)Is, (102)

by the Cauchy-Riemann eq

Vx vw

uations, and the area I D of D is

f."f'j F'(rez) l'rdrdx =f Encnrn-1ei(n-1)x Iadz

= 2nr f R (En$I cn I9 rs"-1) dr = nEn I cn 12 Rin. (10.3)
0

If F is regular and univalent for I z I < R only, then the area of D is the limit as
R'--). R of the area of DR., the image of I z I < R' for R'< R. Replacing R by R' in (10.3),
and making R'--)- R, we have

IDI= f f IF'(rety)I2rdrdx=1EnIcn12R2n, (10.4)
dal<R

the right-hand side being finite or infinite. If F(z) is regular but not necessarily
univalent for I z I <R, the integral in (10.4) is, by definition, the area of the image of
I z I < R by the mapping w = F(z). For R =1, we get

IDI=7r9nIcnls. (10.5)
1

(10-6) THEOREM. If the function (10.1) is regular for I z I< 1, and if En I c n I s is finite,
then the series co+cle`=+... +c,e" +... (10.7)

converges for almost all x. If in addition F(z) can be extended so as to be continuous for
I z I < 1, then (10.7) converges uniformly in 0 < x < 2n.

For the finiteness of (10.5) implies that of E I c Is, and so (10.7) is a Fourier series.
Thus the latter series is summable (C, 1) almost everywhere and, by the remark on
p. 79, converges at every point of summability. If F(z) is continuous for I z I < 1, then
(10.7) is uniformly summable A to F(eiz), and so is 5[F(eiz)]. It is therefore uniformly
summable (C, 1) and hence, owing to the finiteness of (10.5), uniformly convergent.

The following result is classical:

(10.8) THEOREM OF RIEMANN. Let D be any simply connected domain whose boun
dary contains at least two points. Then given any point woe D there is always a function
F(z), regular and univalent for I z I < 1, which maps I z 1 onto D in such a way that
F(0) = wo.

We take this result for granted, since there are several proofs in the existing litera-
ture. By simply connected we mean a domain whose complement is a continuum.
In our applications, we shall be interested only in the special case when D is the
interior of a simple closed curve. In that case (10.8) can be completed as follows:

(10.9) THEOREM. Let D be the interior of a simple closed curve C. Then the function
F(z) of (10.8) can be extended as a continuous function to z I < 1, and the extended function
gives a one-one bicontinuous correspondence between I z < 1 and the closure D of D.
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We give the proof of (10-9) here. It is a simple consequence of the following facts:
(a) There is a dense sequence {x} of numbers, all distinct, such that limF(retzn),which

we shall denote by F(etz*), exists for each n.
(b) The numbers F(etz*) are all different and all situated on C.
(c) The set of the numbers F(etzn) is dense on C.
(d) If Z(k) I - 1, 1 zekl I < 1, then all the limit points of the sequence (F(ik))) are on C.
We begin with the deduction of (10-9) from (a), (b), (c) and (d).
Let

w = w(eir) (O _< t _< 2rr) (10.10)

be the equation of C, and suppose that C is described in the positive direction as t
increases from 0 to 27r. By (b), we can write F(e'zn) = w(e'+* ). Since the mapping w = F(z)
is conformal at z = 0, it follows that if etzm, e'zn, etzs are in a given order on I z = 1.
then F(etzm), F(ei- n), F(e{zr) are in the same order on C.

Let z* = e72', and let x,,, < x* < x,,. The image of the sector xm < x < x,,, 0 < r < 1, is
the interior of the curvilinear triangle limited by the curves w = F(r e12m), w = F(r
0 < r < 1, and by the arc t,,, < t < t of C. It follows, in view of (c), that we can find xm, x,,
with x,R < x* < x and such that tm, t are arbitrarily close. From this it follows that
to a nested sequence of intervals (xm, converging to x* there corresponds a nested
sequence of intervals (t,,,, converging to a point t*.

In view of (d) it now follows that if {z(k)} is any sequence of points with I zlk)I <
converging to z*, then F(z(k)) tends to w(e'O' ). Thus F can be extended as a continuous
function to I z I S 1, and the values of F(e{z) are all on C.

By (c), the values of F(etz) cover the whole of C. To show that to different x corre-
spond different F(etz), suppose that x' < x', F(e'z") = F(ett"). If x' < X. < x < x', then
a fortiori F(e{zn) = F(eizn), contrary to (b).

It remains to show that the function inverse to F(z) is continuous in A This follows
from the fact (an immediate consequence of the Bolzano-Weierstrass theorem) that
a one-one mapping of a closed bounded set which is one way continuous is bicon-
tinuous_

We shall now prove (a), (b), (c) and (d), beginning with (d). Suppose it is false. By
selecting a subsequence of z(k), we may assume that F(z(k)) tends to a point w, in the
interior of C. Since the inverse of the function F(z) maps the neighbourhood of w*
onto a neighbourhood of a point z I z* < 1, it follows that all the points z(k), from
some point onwards, are in an arbitrarily small neighbourhood of z*. This contradicts
the hypothesis that I Z(k) I -> 1.

To prove (a) it is enough to observe that the finiteness of (10.5) implies that of
L c 12, s0 that (10.7 ), qua Fourier series, is summable A almost everywhere. A different
argument, which avoids the use of the Riesz-Fischer theorem, runs as follows. The
integral (10.4), with R= 1, is finite. By Fubini's theorem, I F' 12 is integrable on almost
every radius, and so, by Schwarz's inequality, this holds for I F' 1. For every such
radius the curve w = F(r etz), 0 _<r < 1, is of finite length, and so lim F(reiz) = F(etz) exists.

That F(e) is on C follows from (d). Suppose that x' <x',andthat
Then, by (d), the function F(z) - w tends uniformly to 0 as z approaches any arc
a g x <ft interior to (x', x'). The proof of (b) will therefore be complete if we prove the
following lemma.
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(10.11) Lauata. Let G(z) be any function regular and bounded for I z' < 1. If G(z)
tends to 0 as z approaches an arc of the unit circle, then G(z) - 0.

This is a very special case of (7.25), but an elementary proof is immediate. Dividing
G if necessary by zk, we may suppose that G(0) 4 0. Suppose that an are of I z =1 on
which 0 vanishes has length greater than 2n/n, and let a=exp (2ni/n). Then

H(z) =G(z) G(ez)... G(e"-'z)

is regular for , z I < 1 and tends uniformly to 0 as I z -+1. Hence H(z) - 0, which
contradicts the inequality H(0) = G"(0) 4 0. This proves the lemma and so also (b).

It remains to prove (c). Let X, I X J = 2ir, be the set of angles x such that

F(eiz)=limF(re'=)

exists. As the proofs of (a) show, (10.7) is S[F(e'=)]. (The second proof of (a) shows that
ca + c1 r el-- +... tends almost everywhere to F(e'=) as r -, 1, and is majorized by an
integrable function.) The correspondence between X and points on C gives a function
t = t(x), defined and strictly increasing on X, if X is repeated periodically and t(z) is
correspondingly extended by the formula t(x + 2>r) =1(x) + 2n. If (c) were false, the
function t(x), xcX, would have jumps, and the same would hold for the bounded
periodic function w(t(z)) = F(ei2), x e X. This is impossible (see p. 89), and the proof
of (10.9) is complete.

(10.12) THEOREM. If F(z) = Ec"z" maps I z < 1 conformally onto the interior of a
simple closed curve C, then converges uniformly in 0 -< x <- 27r.

This is a corollary of (10.6).

(10.13) THEOREM. If the curve C limiting the domain D in (10.9) has a tangent at
a point w1 e C, then the mapping w = F(z) is angle preserving at the point z1 which corre-
sponds to w1.

This means that if I" and r' are any two curves approaching z1 from J z J < 1, having
tangents at z1 and intersecting at an angle a there, then the images C', c, of r', r'
have tangents at w1 and intersect at an angle a.

The existence of the tangent to C at w1 means that when w tends to w1 along C, the
ray w1 w tends to a limiting position. In other words, as z = e'x approaches .z1 = e'zi
from either side, the expression

g(z) = arg {F(z) - F(z1))

tends to a limit, and the two limits differ by 7r.
The function g(z), being the imaginary part of the function log [F(z) - F(z1)) regular

in I z I < 1, is harmonic for I z I < 1. It is continuous on I z I = 1, for z4 z1. It is obviously
bounded in the part of I z I < 1 outside any given neighbourhood of z1. It is also bounded
in a neighbourhood of z1, owing to the existence of the tangent to C at w1. Thus g(z)
is harmonic and bounded for I z I < 1, and so is the Poisson integral of g(e{z).

The function g(e'Z) has jump d=n at x=z1. By Chapter III, (6.15), limg(z) exists
as z tends to z1 along I" or r, and by the same theorem the two limits differ by ad/7r = a.
The existence of the limits of g(z) along r' and i" implies the existence of tangents
to C' and C" at w1. The angle between these tangents is a, and (10.1 3) follows.
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Suppose now that the curve C in (10.12) is rectifiable. Then the function F(e'Z) is
of bounded variation over 0x < 2n. Using (8.6), we can therefore complete (10.12)
as follows.

(10.14) THEOREM. If the boundary of D is rectifiable, the power series for F(z)
converges absolutely on I z I = 1.

Similarly, using (8.2), we have:

(10.15) THEOREM. If the boundary of D is rectifiable, the function F(e'=) is absolutely
continuous.

Incidentally, in the case which interests us the proofs of (8.2) and (8.6) simplify,
since F'(z) i 0 and so the Blaschke products do not occur.

Let C be rectifiable, and let s be the arc length of C measured from a fixed point
on C. We may takes as parameter and write (10.10) in the form

w = w(s) = u(s) + iv(s), 0 _<s S 1, w(0) = w(l),

l being the length of C. To any point set A on C corresponds a set S on (0, 1). We shall
call A measurable if S is, and the measure of A will be defined as that of S.

Let now E = (a, f) be any are on I z I = 1, and let A be the image of Eon C. The length
of A is the total variation of F(e's) over E, and since F(e'Z) is absolutely continuous,

AI_('ildF )Idx. (10.16)

This formula holds if E is a sum of a finite number of non-overlapping open intervals,
and so also if E is any open set on I z I =1. Passing to complementary sets, we get
(10.16) when E is closed. Since every measurable set E contains a closed set, and is
contained in an open set, of measures arbitrarily close to that of E, (10.16) is valid for
a general measurable set E on I Z I =1.

In particular, I E I= 0 implies A I= 0.
Conversely, suppose that I A = 0. Then dF(e'=)/dx = 0 almost everywhere in E.

By Chapter III, (7.6), if dF(e's)ldx = 0 for x = x0 then F(z) -* 0 as z tends to e'x, along
a non-tangential path. By (7.25), this can happen only in a set of measure zero,
since Fe H. Hence I E I = 0. Thus we have:

(10.17) THEOREM. If Cie rectifiable, then to sets of measure zero on IzI =1 correspond
sets of measure zero on C, and conversely.

At every point wp = F(e''TO) such that dF(e'=)/dx exists and is different from zero,
the curve C has a tangent. We have just proved that dF(e'=)ldx + 0 almost everywhere.
Hence C has a tangent almost everywhere (a result which, of course, also follows from
the classical theorem about the existence of the tangent almost everywhere on a
rectifiable curve). By (10.13), the mapping w = F(z) is angle preserving almost every-
where on IzI=1.

Let zo = e'xo be such that dF(e':)/dx exists and has a finite value u there. Then izF'(z)
tends top as z->z0 non-tangentially. Let z, be any point of the segment zoz. Then

F(z)-F(z0= lim F(z)-F(z,)=

1 lim f'F'()d=_-_1 JoF'()d,
Z-ZO ,, ,, ZZO Z-ZO 4
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where the last integral is taken along the segment zoz. Clearly, the last ratio tends
to u/izo as z -> zo non-tangentially. Hence, at almost every point z0, I zo I = 1, the function
F(z) has an angular derivative

Fz Fzlim ) °) where z -# zo non-tangentially,
z - zo

and this derivative i8 distinct from zero. In particular, the lengths I z - zo I and I w - wo
are asymptotically proportional as z -+ zo non-tangentially.

We conclude by a simple application of conformal mapping to the problem of con-
vergence of Fourier series.

It will be shown in the next chapter that for a continuous f, S[f] need not converge
everywhere, still less converge uniformly. However:

(10.18) THEOREM. If f(t) is continuous and periodic, there is a strictly increasing
function t = t(6), 0 < 0 < 27r, mapping the interval (0, 2n) onto itself and such that the
Fourier series of g(O) = f (t(6)) converges uniformly.

If there is a continuous and periodic function 0(t) such that

u=f(t), v=0(t), 0<t <21r,

represents a simple closed curve C, then the conclusion of (10.18) is a consequence of
(10.12). For C can then also be given by an equation w = F(ei°) where F(z) is a function
regular for I z I < 1, continuous for I z I < 1, with S[F(e's)] uniformly convergent. The
mapping t = t(6) is one-one and continuous. If we select F so that 0 = 0 for t = 0, then
t(0) has the required properties.

The function ¢(t) need not always exist, but it does exist if, for example,

f(0)=f(a)=f(2n) for some 0<a<27r
and if f is strictly less than f(0) inside (0, a) and strictly greater than f(2rr) inside (a, 2n),
or conversely. For then we may take for 0 any function strictly increasing in (0, a)
and strictly decreasing in (a, 27r).

It is therefore enough to show that in the general case there exists a function w(t),
0 < t < 2rr, with w(O) = w(27r), continuous and of bounded variation, such that f1=f+ w
is of the type just mentioned. For, clearly, S[w(t(0))] is uniformly convergent for any
increasing t(0) mapping (0, 2n) onto itself.

By subtracting a constant from f, we may suppose that ffdt = 0. We may also

suppose that f (O) =f(2v) = 0. (Otherwise subtract from f the function f (O) cos t, whose
integral over (0, 2n) is zero and which may be incorporated in w(t).) It follows that
f must vanish at some point a in the interior of (0, 27r). Let M1 and M, respectively be
max 1f (t) I in the intervals (0, a) and (a, 2rr), and let M1, M2 be attained at points tl
and t, of these intervals. Define w1(t) as

max for 0<tt1; max for t,<t<a;
014949 91494a

-max for a<tt,; -max f(6) for t2<t<21r.
a494t 94942.

The function w,(t) is continuous and of bounded variation, with wl(0) = wi(2rr) = 0.
Moreover, I f I Iwl 1, so that f + w1 is non-negative in (0, a) and non-positive in (a, 27r).
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If w'(t) is any continuous function of bounded variation vanishing at the points 0, a, 2n,
strictly positive inside (0, a), and strictly negative inside (a, 21r), then the sum
to = to, + wa has the required properties.

MISCELLANEOUS THEOREMS AND EXAMPLES

1. Let F(z) = u + iv be regular for I z I < 1, and suppose that u and v are non-negative. Show that
then

FJ

IF(re'1)I'-'dx<C1IF(0)I' (0<r<1;0<e<2).
0

If c = 0, the integral on the left need not be bounded.
It follows that if the real and imaginary parts u, v of F(z), I z I < 1, are both bounded below, then

both u(ell) and v(e"") belong to L'-6.
[Let F1(z) = e-"'"' F(z) =u1 +iv1, so that I v1 I iE u,. Apply to F1 the argument used in the proof

of (2.6). The function F(z) =e}"' {(1 +z)/(1- z)}t, mapping I z I < 1 onto the first quadrant, is a
counter-example fore = 0.)

2. Show that the constant A, in (2.4) satisfies an inequality A, Ap for p is 2. This, coupled
with (3-9), shows that A,-Ap for p -* ao. (Titchmarsh [4].)

[Consider f(z) = 0 <x < 2n, and observe` that J(x) = log (2 sin ix) -. logx for x -. + 0.]

3. ForanyfeLandO<e<z,letj(x;e)=-.ffff(x 2t n((x-t)dt.Then
c

(a) J(z;e)= J(x+t)icotitloglsini(t+E)

dt
a"

sin}(t-E)

(b) pal. (M.Riesz[1].)

(Let g(t) be the function equal to 0 in (- e, e) and to i cot it elsewhere in (- n, n). Observe that,
by Chapter IV, (8-6). f "

nJ(z;e)=-J_ J(x+9)g(t)dt=-J J(x+t)$(t)dt.
"

and use Chapter H, p. 72, Example 20.]

4. Let 0, IF and '1, IF, be two pairs of Young's complementary functions. If for every f e Lm,
J belongs to Lm and if A is a constant independent off such that I J pe, <A A fpm (such an A
always exists), then for every g e 14 we have g" a 14. Moreover,

tlgHT

[It is sufficient to show that if b v IIm A n u IIm for every u + iv regular for I z I < 1 and satisfying
v(0) = 0, then q v P r iC 2A h u 1 ,7,. If h is any trigonometric polynomial such that 1 l[O(( h i )] 1,
we have

1!vII,,=suhp 1 vhdx =suhp f u/dxl
I

where a=max{1,supU[m,(I/ I/2A))}(ChapterIV,(10.6)). On the other hand, sinceM[O(I hI)]41; 1,
we have Ih1042,and so phile,_< AllhE 2A. Hence (Chapter IV,(10.4))V[01(IAI/2A)]<1,
a=1, and

5. Let a(x) be concave and non-negative for x_>0, have a continuous derivative for x> 0, and
z

tend to + oo with x. Let S(z) = e(t) dt. Let R(x) be non-negative and convex for x ' 0, have its
0

first two derivatives continuous for x > 0, and tend to + oo with x. Suppose, in addition, that there
is a constant C such that S'(x)+S'(z)/x CR'(x).
Then feLR impliesJeL8.

[The proof is substantially the same as that in §3. Observe that S(2z)FC1S(z), with C1
independent of x. If S(z) G R(z), then we have 0[8(111)) C, J1[R(I f 1)], with C" independent
of f.]
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6. Ifs > 0 and if If I (log+ If I)a a L, then 111 logo-' (2 + 11 I) E L, and

Jo^ II I 1og--1(2+I11)dx <Rar, If I (log' If I)adx+BQ.

7. The preceding result is false for a= O. (Titchmarsh [ 1 ]. )
[Take f (x) = E cos nx/log log n. By Chapter V, (2.17), 11 flog I f I is of the order

(xlogl/xloglogl/x)-' for x-*+0.

The true form of Example 6 for a =0 is theorem (2- 6).)

8. Example 6 has a converse analogous to (2.10), namely: if both I f I (log+ I f 1)1-' and
f I (log+ I f I )a-1 are integrable for an a -> 1. and if f is bounded below, then I f I (log+ I f 1)a e L.

The result can also be stated in the form of an inequality analogous to (2.25).

9. If fs exp I f 11 dx < co, where a > 0, then exp A I f I° is integrable for 8 = a/(a+ 1) and
0

< x,(a).

10. Let J(r, x) be the Poisson-Stieltjos integral of a function F(x) of bounded variation over
O<z<2n, F given by (1-7). Then, for 0<#< 1,

rS.
(i) 9R,(f(r,x)1 <B,

0
I dF1.

(ii)

(see (2.39)). Similarly, if a is the (C, 1) mean of S[dF], then

(iii) N[a 1<B J dF1,
0

(iv) (n .ao).

[For (ii) and (iv) use Chapter 1, (11.9).]

11. Let 0 <a < 1, 1 < p < oc. Then (i) JE A. if and only if its Poisson integral u(r, x) satisfies
ffll,[u,(r,x)]=O(8°-') (Hardy and Littlewood[10],(191); (ii) fcA; if and only if

s[u,,,(r. x)] = O(d-`)

12. Let f e A;, q > p ->1. Then f e A;-,-,+,-,.
[A corollary of (5.1) and of Chapter IV, (6.34).]

13. LetfeA;,q>p>1.ThenfcAi_a-,+.-,.
14. A trigonometric series T is of the class Aa, 0 <a < 1, if and only if its (C, 1) mean a.(x)

satisfies the condition r,(x) = O(n'-a) uniformly in x. The condition f1,[a;,J =O(n'-a) is necessary
and sufficient for T to belong to A;, 1 <p <oo.

15. Let f(x) and O(x) be defined almost everywhere in the intervals a<x<b and aEz<b
respectively, and extended outside (a, b) by the conditions

f(x+h)=f(x), q(x+h)-ta(x)=O(b)-QS(a),
b

where h = b - a. Modifying slightly the notation of § 4, we may say that the integral (') f f (x) do(x)
a

exists in the B-sense, and has value J, if the sums

I(t)=Ef(t+9)[0(t+xr)-¢0 +xr-r)J
tend in measure to J as Max (x1-x1 _1) -+0. Show that

(i) If 0 is of bounded variation and the integral exists as a Lebesgue-Stieltjes integral,
then it exists also in the B-sense, and both integrals have the same value;

(ii) The conjugate series of an S[dF] is S[01. the coefficients of the latter series being defined
in the B-sense.
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16. Under the hypothesis of (7.15) the product (7.16) converges absolutely and uniformly
outside every circle I z I = r> 1, provided we suppress in the product the finite number of terms
having poles there. If an are of I z I = I does not contain a limit point of the sequence 14,1, the
product converges absolutely and uniformly in the two-sided neighbourhood of that are, and so
the inner and outer functions are analytic continuations of each other.

17. Under the hypothesis of (7.15) the function (7-16), regular for I z I<], has a radial limit at
the point e", if

<co. (Frostman(IJ.)le::- I
[We verify, for instance geometrically, that for z=re" the second term in (7.17) is majorized

by a constant multiple of (I - I rY I) f I ell- C I for 0 < r < 1. Observe that

lees-Z".1=lees-YIIYI
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CHAPTER VIII

DIVERGENCE OF FOURIER SERIES

1. Divergence of Fourier series of continuous functions
In Chapter II we gave sufficient conditions for the convergence of Fourier series.

We shall now investigate how far these tests are best possible. It will appear that
(apart from possible minor improvements) the problem of the convergence of Fourier
series at an individual point has reached a stage where we can hardly hope for essentially
new positive results, at least if we use only the classical devices of Chapter II. Such
tests as Dini's or Dini-Lipschitz's represent limits beyond which we encounter actual
divergence.

(I.1) THEOREM. There exists a continuous function whose Fourier series diverges at
a point.

This was first shown by P. du Bois Reymond. Since then several other such con-
structions have been found, and we reproduce here two of them. One is due to Fejer
and is remarkable for its elegance and simplicity. The other, that of Lebesgue, lies
nearer the root of the matter and can be used in many similar problems.

(i) Lebesgue's proof. We know that if n is large enough, there is a continuous
function f (x)f(x)=f(x) not exceeding I in absolute value, such that S (0; fn) is as large
as we please; we may take forf(x) the function sign D (x) smoothed out at the points
of discontinuity (Chapter II, § 12). This function f depends on n. To obtain a fixed
continuous f such that Sn(0; f) is unbounded as n-++oo, we appeal to Theorem (9.11)
of Chapter IV. If we replace there y (t) by D (t), x(t) by f (t), and use the fact that the
Lebesgue constant L. tends to +oo, we seet that there is a continuous f such that

f)+O(1).
Let be any sequence of positive numbers tending to +oo more slowly than

log n. Since the integral of I D (t) I An- ' over (0, ir) tends to +oo, by applying Chapter
IV, (9.11) again, we obtain the following result:

(1.2) THEOREM. Given any sequence A, = o(log n), there is a continuous f such that
f) >-,k,, for infinitely many n.

We know that S (x; f) = o(log n), uniformly in x, if f is continuous (Chapter II,
11). We now see that this result cannot be improved.
Applying Theorem (9.5) of Chapter IV in its most general form to the proof of (9.11)

in Chapter IV, we obtain a result from which we may conclude that the set of
continuous functions f with S[ f) convergent at the point 0, or at any other
fixed point, forms a set of the first category in the space C of all continuous
and periodic functions. Thus the set of continuous functions with Fourier series

t Theorem (9.11) of Chapter IV (which is due to Lebesgue) lies rather deep, but in the special case
y.(() = D.(t) it is not difficult to prove it directly; see Lebesgue's Leyona our tea arias trigorwmAhrquea.
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convergent at some rational point or other is again a set of the first category.
Hence, we have the following theorem:

(1.3) THEOREM. If we reject from the space C a certain set of the first category, the
Fourier series of the remaining functions have points of divergence in every interval.

(ii) Fejer's proof. Let N > n > 0, and let us consider the two polynomials

Q(x, N, n) = 2 sin Nx Z sin (1.4)k

R (x, N, n 2 cos Nx
sin kx

1.5

Clearly,

cos(N-n)x cos(N-n+ 1)x
Q= n + n +...

cos(N - 1)xTcos(N+1)x- -cos(N+n)x
(1 6)

1 i n
is a purely cosine polynomial with terms of rank varying from N - n to N + n. Similarly,
R = - Q is a purely sine polynomial.

Since the partial sums of the series sin x + J sin 2x + ... are uniformly bounded, the
polynomials Q and Q are uniformly bounded in x, N, n, say

IQIkC, IQJ<C (1.7)
On the other hand, at x = 0 the sum of the first (or last) n terms of Q(x, N, n) in (1.6)
is l /n +.. - + 1/2 + 1 > log n, and so is large with n.

Let {Nk} and {nk} be any two sequences of positive integers, with nk < Nk, and let
ak> 0, a1+a2+... <co. The series

EakQ(x, Nk, nk),

F'akQ(x, Nk, nk)

(1'8)

(1'9)

converge to continuous functions, which we denote by f (x), g(x) respectively. If
Nk + nk < Nk+1- nk+1 for all k, the ranks of non-zero terms in different Q's do not
overlap. Similarly for the Q's. Therefore, unbracketing the terms, we may represent
(1.8) and (1.9) as trigonometric series

la,cosvx, (1.10)

Ea,, sin vx. (1.11)

Denoting the partial sums of these series by and 9.(x), we see that and
tNk+,ki (x) converge uniformly, so that the series (1.10) and (1.11) are S[f] and S[g],
respectively. Moreover, S[g] = [ f ]. Since

8Nk+nk(0)-8,vk(0) I >aklognk,

S[f] will certainly be divergent at x = 0 if ak log nk does not tend to zero. Thus, if,
for example, ak = k- 2, JNk = nk = 2k', (1-12)

the Fourier series of the continuous function f defined by (1.8) diverges at the point 0.
It is easy to see that both (1.10) and (1.11) converge uniformly for d 4 Lx f -< n for

any 8 > 0. This follows from the fact that the partial sums of Q(x, Nk, nk) and Q(x, Nk, nk )
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are bounded in that interval uniformly in x and k. (Observe that the partial sums of
the series } + cos x + cos 2x + ... are uniformly bounded in (8, a) and use (2.4) of
Chapter I.) Since S[g ] contains sines only, it converges for x = 0, and so everywhere.

(1.13) THEOREM. There i8 a continuous function whose Fourier series converges
everywhere, but not uniformly.

Consider the sum g(x) of (1.9) satisfying (1.12). The corresponding series (1.11)
converges everywhere. But for x = it/4n, N = 2n, the sum of the first n terms of
Q(x, N, n) exceeds (1 +2-1 +... + n-1) sin ]n > 2-11og n,

so that t3nk(xk)-tsn1(xk) I -> 2-laklognk

for some Xk, which proves (1.13).

(1.14) THEOREM. There is a power Series c0 + c1 z + ... regular for I z I < 1, continuous
for I z I < 1, and divergent for z = 1.

With the previous notation, S[g] = S[ f ], and so the power series co + c1 z + ... which
reduces to S[f ] + iS[g] for z = e' has the required properties.

If we set
ak=2-k, nk=4Nk=2'k (1.15)

in (1.8) and (1.9), the partial sums 8n(x) and tn(x) are uniformly bounded. (Under the
hypothesis (1.12) they were not.) As before, {sn(0)} diverges, and {tn(x)) converges
everywhere but not uniformly.

(1.16) THEOREM. There exist continuous functions F(x) and G(x)=P(x) such that
S[F] diverges at a dense set of points, while S[O] converges everywhere, though in no interval
uniformly.

Let f (x) and g(x) be the functions (1.8) and (1.9) satisfying (1.15). Let E be a denumer-
able set of points r1, r2, ... dense in (0, 2n), and let e1+e,+... be any convergent series
with positive terms. We set

F(x) = Eej(x - r; ), O(x) = e1g(x - rt),

and denote by Fk(x) and Ok(x) the partial sums of these series. The series defining F
converges uniformly, and we obtain a partial sum of S[F] by adding the corresponding
partial sums of S[eJ (x - rt)] for all i.

Write F=Fk+Rk, 0=Ok+Rk,

S[F] = S[Fk] + S[Rk], S[O] = S[Ok] + S[Rk

and suppose that an I > 0 is given. We know that the partial sums of S[f] and S[g]
are uniformly bounded, say are less than A in absolute value. Thus the partial sums
of S[Rk] and S[Rk] are less than

A (ek+l + ek+! + ...) < 71

in absolute value, provided k = k(g) is large enough. We conclude that
(i) S[F] diverges at every point r;, 1 < i < k, at which the oscillation of the partial

sums of S[e;f(x-r1)] exceeds 17;
(ii) if x is not in E, the oscillation of the partial sums of S[F] at x is less than 7?;
(iii) the oscillation of S[O] is less than y at every x.
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Since rl and 1/k may be arbitrarily small, we see from (i) and (ii) that S[F] diverges
in E and converges outside E. From (iii) we see that S[G] converges everywhere. It
remains only to show that this convergence is non-uniform in the neighbourhood of
every rk.

Since S[g(x - rh)] converges non-uniformly in the neighbourhood of rk, so does the
Fourier series of eig(x - rk) +Bk, provided k is large enough. This sum differs from G
by a sum of a finite number of functions whose Fourier series all converge uniformly
in a sufficiently small neighbourhood of rk. Thus S[G] converges non-uniformly in the
neighbourhood of rk.

The preceding argument gives more than we set out to prove, since it shows that,
given any denumerable set E in (0, 2n) there is a continuous f such that S[f ] diverges in E
and converges outside E.

The problem of the existence of a continuous f with S[f] divergent everywhere (or
even almost everywhere) is still open, and seems to be very difficult. It a simple matter,
however, to construct a continuous f with S[f] divergent in a non-denumerable set of
points. For let r1, rs, ... be a sequence containing every rational point of (0, 27T)
infinitely many times, and let

f(x) = 2;k-=Q(x - rk, 2.2k, 2w).

The function f is continuous, and S[f] is obtained by replacing each Q by the expression
(1.6). At every rational point in (0, 21r), S[f] will contain infinitely many blocks of
terms with sums exceeding k-2 log 20 for some arbitrarily large values of k. It follows
that the SS(x; f) are unbounded in a dense set of points, and it is enough to apply
Chapter I, (12.2 ). OurS[f ] even turns out to be divergent in a set of the second category.

(1.17) THEOREM. There is a power series Ec z" = (D(z) regular for f z < 1, continuous
for f z f S 1, convergent on f z f =1 but non-uniformly on every arc off z f =1.

We first construct a series with a single point of non-uniform convergence. Let

P(z) = P(z, N, n) = E
-N-k _ ZN+k

k-1 k k-1 k

be the power polynomial whose real part on z = e1-'is Q (see (1-6)), and let P*(x) = P(e'Z).
By (1 -7). f P*(x) f C1, and summation by parts easily gives

f S,.(z;P*)[<Cif x1-1 (0<:xf _<1r),

where CI and Cz are absolute constants. In particular,

(1'18)

Consider the series
ISm(';P*)ISCtk (k=1,2,...). (1.19)

E akP(ze'k,Nk,nk) (ak=k 3, 1Nk=nk=2k')
k-1

It converges uniformly in f z f _< 1 to a continuous c(z). Since any partial sum of the
Taylor series )c,tz* of 4) is a partial sum of (1.20) augmented by a partial sum of some
akP(z silk, Nk, nk), we immediately deduce from (1.18) that Ec a"u converges uniformly
outside every neighbourhood of x = 0, and from (1.19) that Ec gin- converges at x = 0.
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On the other hand, Ec ei"x does not converge uniformly on I z I =1 since the sum of
the first half of the terms of cek P(z elk, Nk, nk) exceeds at z = e- ilk a fixed positive multiple
Ofaklogn,, C3>0.

To obtain non-uniform convergence on every are of I z = 1 we proceed as in the
proof of (1.16).

Divergent Fourier series of bounded functions can also be obtained by means of
Riesz products (Chapter V, § 7).

(1.21) THEOREM. The Riesz product
m / coal-kx\1+i---k

J
(1.22)11

k-1

is a Fourier aeries whose partial sums are uniformly bounded and which is divergent in
a set of points of the power of the continuum in every interval.

In Chapter V, § 7, we proved that the partial products pN(x) of (1.22) are uniformly
bounded, which implies that (1.22) is an S[f] with f bounded. We note that every partial
sum of S[f] is. for some N, of the form pN+(a partial sum Of PNII -PS). Now

p.v+1 - pv I = (N + I)-' I cos 10N+1x I pN I = O(N-1).

Since pN+1- PN is a polynomial of order 10 + 102 +... + 10N+1 < 10N+2, and since the
Lebesgue constant L, is O(log n), it follows that all the partial sums of pN+1-PN are
O(N).O(N-')=O(1), uniformly in N. Since the pN are uniformly bounded, the same
holds for the partial sums of S[f].

Using the formula 1 +z=exp{z+O(I z I2)), for I z I small, we have
Al

pN(x) = exp {i E k-' cos 10kx) . exp FN(x), (1.23)

where {F} converges uniformly to a finite limit. Since the series Ek-' cos l Okx diverges
in a set F. which is of the power of the continuum (even of the second category) in
every interval (see Chapter VI, (6-3), especially Remarks (b) and (c), to it), and since the
terms of the series tend to 0, the divergence of pN-and so also of S[f]-in E follows.

Our function is complex-valued, f=fl+if2, but as may be seen from (1.23) both
S[ f, ] and S[f2] diverge in E.

2. Further examples of divergent Fourier series
The Dini-Lipschitz theorem (Chapter II, (10.3)) asserts that if the modulus of con-

tinuity w(8) of a function f is o{(logd)-1j, then S[fJ converges uniformly. The same
argument shows that if w(8)=O{(log8)-1} the 8(x; f) are uniformly bounded.
However,

(2.1) THEOREM. There exist two continuous functions f(x) and g(x)=f(x), both
having modulus of continuity O{(log 8)-'}, such that S[f] diverges at some point, while
S[g] converges everywhere but not uniformly.

As before, we define f and g by the series (1.8) and (1 -9), and assume (1.15). We
know that S[f] oscillates finitely at x = 0, and that S[g] converges everywhere, but not
uniformly. To prove the inequalities for w(d; f) and w(8; g), for example for the former,
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we take any 0 < h _< } and define v = v(h) as the largest integer k satisfying 20 < 1/h. We
break up the sum defining f into two parts, f1(x) and fs(x), the latter consisting of the
terms with indices greater than v. Then by (1.7),

Ifs(x+h)-fs(x)I,2CE2-k=4C.2-''-'<4C/IloghI. (2.2)
+1

Now, by (1.4),
Q'(x, N, n) NQ(x, N, n) + 2 sin Nx cos kx,

I Q' I -<NC + 2n = nC' for N = 2n, C' = 2C + 2.

(We could also use Chapter Ill, (13-16).) By the mean-value theorem.

I f1(x + h) -f1(z) I < C'h[2-'22' + 2- 222' +... + 2-122']

= O(h2-122) = O(2-Y) = O{(logh)-'}. (2.3)

Since I f(z+h)-f(x) I does not exceed the sum of (2.2) and (2.3), (2.1) is established.
Arguing as in the preceding section, we can construct f and g=j with moduli of
continuity 0{(log o)-1}, such that S[f] diverges in a set of points everywhere dense, and
S[g] converges everywhere but non-uniformly in every interval. Also the function (P
of Theorem (1.17) may be made to have modulus of continuity O{(log d)-'} on I z I = 1.

We shall now show that, in a sense, the Dini condition (Chapter II, (6.1)) cannot
be improved.

(2.4) THFOREM. Given any continuous µ(t) >_ 0 such that µ(t)/t is not integrable in the
neighbourhood of t = 0, we can find a continuous function f such that I f (t) -f(O) 15 'U(t)
for small t and S(f ] diverges at t = 0.

Let t=u(t sin nt
X"())2tanit*

If TI[Xn]+0(1) as n->oo, we can find a continuous g(x), I g 151, such that the
integral of X (t) 9(t) over (- n, rr) is unbounded for n --)- ao (Chapter IV, (9.11)). This
means that S[ f ], with f = gi, diverges at the point 0. Since we may suppose that
u(0) = 0, we have I f(t) -f(O) I = I f(t) I e µ(t).

It remains to show that our hypotheses imply This we shall deduce
from Theorem (4-15) of Chapter 11. Jetusthereact,8(1)=Isititl,anda(t)=IU(t)icotitI
if 0< E S I t I _<n, a(t)=O elsewhere. Denote the corresponding integral by
Since I (e), we have

lim inf i2[X,,] _> lim inf I (e).

Since the function o(t) i cot it is not integrable, we may make lim 1,,(c) as large as we
please by taking a small enough. This shows that SYl[X,,]-.ao and the proof of (2.4)
is completed.

The casep(t) =o(log 1/111)-' (taking, for example,,u(t) = (log 1/I t I)-' (log log 1/I t I)-'
for small I t I) is of interest in connexion with the Dini-Lipschitz test. It shows that
the latter is primarily a test for uniform convergence, and the relation

f(x0+t)-f(z0)=o{(log1/ItI)-'} as t-0
does not ensure the convergence of S[f] at x0.
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This observation can be completed as follows. Let f be a continuous function with
S[f] divergent at the point 0, such that f (O) = 0, f (t) = of (log I t I)-'}. Let f1(t) =f(t),
f2(t) = 0 for 0 < t 5 a, and f1(t) = 0, f,(t) =f(t) for - n < t < 0. Since f =f1 +fy, it follows
that either S[f1] or S[ fg], say the former, diverges at t = 0. Let (a, b) = (- }n, 0). The
function f, is zero in (a, b), and so a fortiori its modulus of continuity there is o((log 8)-').
Moreover,

f1(a-t)-f1(a)=o{(log 11t)-'), f1(b+t)-f1(b)=o((log1/t)-') as t-++0,
so that f1(x + t) -f1(x) = o{(log I t I)-') uniformly in a -<x -< b. None the less S[ f J diverges
at an end-point of (a, b). Hence in Theorem (10.5) of Chapter II we do not have uniform
convergence in (a, b), even if we assume additionally that f (x + t) -f(x) = o{(log I t I)-'}
at the endpoints of (a, b).

We know that Fourier series with coefficients 0(1/n) converge at every point at
which they are summable (C, 1). Fourier series of continuous functions with such
coefficients converge uniformly. We shall now show that the condition O(1 /n) cannot
be replaced by anything weaker.

(2.5) ThEOREM. Given any function X(u), 0 S u < +oo, tending to +oo wiih u, we
can find two continuous junctions f (x) and g(x) =I(x) having coefficients O{X(n)/n} and
such that

(i) S[f] diverges at a point;
(ii) S[g] = 9U] ] converges everywhere, but not uniformly.

Part (i) shows, in particular, that Theorem (1.26) of Chapter III does not hold if we
weaken the condition that the terms of the series are 0(1/n). Replacing, if necessary,
X(u) by X1(u) =infX(v), we may assume that X(u) is increasing.

u

In the proof of (1) we shall slightly modify the polynomials Q, using instead the
polynomials , sin vxQ(x; N,n,m)=2sinNxE (0<m<n<N), (2.6)

P

which are uniformly bounded and have only terms of ranks between N - n and N + n.
The sum of the terms of rank not exceeding N has at x = 0 the value

i 1 > ('* au
= log (n/m).

P J,nu
Thus if we set f (z) = Ek-'Q(x; Nk, nk, mk),

where Nk_1 +nk_1 < Nk - nk, log (nk/mk) > k', (2.7)

then, as in the examples considered previously, S[f] will diverge at x = 0. We have only
to show that by a proper selection of the Nk, nk, mk we can attain the estimate

a. = O{X(n)/n}
for the (cosine) coefficients of f.

Since the numerically largest coefficient in Q(x; Nk, nk, mk) is 1/mk, and the rank
of the terms is between Nk ± nk, our requirement will be satisfied if

k-'(Nk + nk)/m'k = O{X(Nk - nk)},
or, setting Nk - nk = dk, if

k 2n + 85)/m5 0 d 28
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Suppose that the numbers N1, n1, ml, ... , Nk-1, nk_l, mk_1 have already been deter-
mined. We take a number pk > 0 such that logpk > k8, then an integer Sk > 0 such that

k_2Pk<X(ak)' Nk_1+nk_1<dk, (2.9)

and finally an Mk such that = (2.10)

We set nk=[Pkmk]+1, Nk=nk+8k,

and shall show that (2.7) and (2-8) hold. The inequality log pk> ks and the second
condition (2.9) imply (2-7). The definition of nk, the first inequality (2.9) and the
inequality (2.10) lead to (2-8). This proves part (i) of (2.5).

Part (ii) is obtained similarly, by using instead of Q the conjugate polynomial Q.
obtained from (2-6) by replacing there sin Nx by - cos Nx. The same device as in the
proof of (1.16) leads to continuous functions with coefficients 0{X(n)fn} whose Fourier
series diverge in a dense set, or converge everywhere but in no interval uniformly.

3. Examples of Fourier series divergent almost everywhere

(3.1) THEOREM of KOLM000ROV. There exists an f e L such that S[f ] diverges
almost everywhere.

In § 4 we shall show that there is an f such that S[f ] diverges at every point. The
proof of this result is, however, more difficult and it is preferable to deal with it
separately.

(3.2) LEMMA. There exists a sequence of non-negative trigonometric polynomials f
with constant term }, having the following properties:

For each n there is a number A. and a set E,ac (0, 21r) such that
(i) An->co;

(ii) I

(iii) if x e En, then for a suitable l = t= we have

I "Se(x; f.) n) I > An. (3'3)

This lemma is the main part of the proof of (3.1). We take it temporarily for granted,
only observing meanwhile that if (3.3) is to hold in a 'large' set of points x then l must

necessarily depend on x. For the hypotheses of (3-2) imply that f.dx=7T and so,
,-s

0

by Chapter VII, (6-8), that the integral J , 15,,,(x; If dx is uniformly bounded in

n, m. This shows, by (i), that the measure of the set of points where we have (3.3) for
afixed ltends to0asn->oo.

Assuming (3.2) we prove (3.1) as follows. Let the order off, be v,,. We may suppose
that the l in (iii) satisfies 1 < l < v,,. Let {nk) increase so rapidly that

ZAni<oo.

The polynomial fnk(x) - 4 has constant term 0. Hence, if qk increases rapidly enough.
the order of the polynomial f,, (qkx) - 4 is leas than the lowest rank of the non-zero
terms in in particular the polynomials I do not overlap.
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We write
f(x)=

Fff,(gkx)-}
kk A}k

[vnr

(3.4)

Since EA;4f
I

dxiEA_ fo {f.,(x)+})dx=21rEA; <oo,

the series in (3.4) converges (absolutely) fort almost all x, and its partial sums are
absolutely majorized by an integrable function; in particular, f is integrable. The
majorized convergence implies that S[f] is obtained by adding formally the Fourier
series of the individual terms on the right of (3.4), that is, by writing out in full the
successive polynomials Y'k=ARi{fnk(gkx)-]r}.

Let v°k be the set of points z such that gkxE E.t. Clearly I d'k Enk 1. By (iii), at
every point xc6°k some partial sum of Ok(x), that is, some connected block of terms of
S[f ], exceeds (A,ar - {;) An i in absolute value. Since this tends to + OD with k, it follows
that S[f] diverges at every x which belongs to infinitely many fk. Since Ifk I - 2n,
S[f] diverges almost everywhere. More precisely, {S (x; f )} is unbounded at almost
all X.

In the foregoing argument, starting out with the given polynomials fnk(x) we formed
non-overlapping polynomials 0 &). The non-overlapping can also be achieved by
multiplying fnk(x) by exponentials Write

9(x) = E e=ru fnk(x) Ank . (3.5)

Having chosen the nk as before, we take for k positive integers increasing so rapidly
that /pk + vnk < flk+k - vnk+l for each k. Then the terms on the right of (3.5) are (complex-
valued) non-overlapping polynomials which when written out in full in the complex
form give S[g]. The complex form of S[g] contains only exponentials et with n> 0.
It follows that S[g] is of power-series type. At each point in Enk a connected block of
terms of S[g] exceeds Ank/A*k=A k in absolute value. Hence S[g] diverges at every
point which belongs to infinitely many Enk, that is, diverges almost everywhere, and
we obtain the following result:

(3.6) THEOREM. There exists an S[g] of power-aeries type which diverges almost
everywhere.

The real and imaginary parts of S[g] are Fourier series. It will be shown in Chapter
XIII, (5- 1), that for each f e I, the sets of the points of convergence of SL f] and 9V) ] are
the same, except for a set of measure 0. Therefore (3.6) shows that there exists a real-
valued f E L such that both S[f ] and 9[f] are Fourier series and both diverge almost
everywhere. It is curious that, as we shall see presently, this result cannot be achieved
by the construction (3.4).

Return to the proof of (3.2). We write

_ 4nj
2n+ I

The polynomial fn is defined as an average of Fejlr kernels,

fn(x) = 1 {Kml(x - a1) + Ku k(x - a=) + ... + K,,,n(x - a,k)},
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where the integers m, are such that

nh > n', m1+1 > 2m1, 2m5 + 1 is a multiple of 2n + 1.

Clearly f > 0 and the constant term off. is }.
We have

1 i 1 1 ' , - I + 1 lSn,(x;f,.)=ntE K,,,(x-a`)+nt-
2+

mmr+l
l(x-at)1, (3.7)

and since mt -1 + 1 = (mt - ml) + (ml -1 + 1),
we also have

S..(x;f,.)=1 E
'ns+1K (x-at)+l E m{-m!D"'t(x-a,)

ns-1 ni-f+1 m;+ 1 " n;-)+l mt+ I

Let At=(as-vat), A;=(a,-n-',at+n-') (i=1, 2, .. , n).

The estimate K.(t) = 0(m-it-2), together with mt > n', shows that,K,,,t(x - at) is uni -
formly bounded outside 4 and so the contribution of the first two terms on the right
in the last formula for is less than an absolute constant A outside IA:

1 E -A (j=1, 2, ...,n;xfEA,). (3.8)
n It-t+r mt + 1 '

We observe that since

(2m, + 1) ja
2ml + 12in - 0 (mod 2n),

t 2n+1

sin (my + }) (x - at) sin (m1 + }) x
we have 2sin}(x-at) 2sin}(x-at

Suppose now that x e A!, 1 <-j -< n - Jn. Owing to the condition mt+1 > 2mt + 1, the
multipliers of the D,,,, in (3.8) are not less than }, and since the denominators
2 sin }(x - at) are all of constant sign for i >j we get

nI
E 1

t-f+1 r+l t-f+l at-at-1
-1+1nlsin(mt+zI24+ 1 1

t_s

>41IT sin(m1+x (-l+log(n-j))

>--- sin(m,+})xI(-1+}logn)

sin (m! + J) x log n, (3.9)

for n large enough; thus at the points not in EA; for which

+ }) x I >si (m 3.10n y (log ) f. ( )

we have IS (x; I > (log n)4 - A = A,,. (3.11)

The set of x in (0, 2nr) where (3.10) fails has measure O{(logn)-4). Therefore, if from
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(0, a(,-nil) we remove the points where (3.10) fails, and those which are in EAi, and
denote the remainder by E,,, then

2n - I E. I = O{(log n)-1} + 0(n. n-2) + O(ni. n-') = o(1).

For each xE En and a suitable j =j(x) we have (3.11), and (3.2) follows.
This completes the proofs of (3.1) and (3.6).
We know (Chapter II, (11.9)) that for any f E L we have Sn(x; f) = o(log n) for almost

all x. It is conceivable that this result is best possible, that is, for any sequence of
positive numbers An= o(log n) there is an f e L such that at almost every point x we
have S. (x; f) > A, for infinitely many n (compare (1.2)). The problem is open.

(3.12) THEOREM. There is an f c L such that f ]} diverges almost everywhere.

Consider the f in (3.4) and write m° for the mf in the proof of (3.2). The proofs of
(3.1) and (3.2) show that {SNk[fJ) diverges almost everywhere, if {Nk} consists of the
numbers

qkm t (k=1, 2, ...; 1 - <' -<nk ` Vnk)+ (3.13f )

and it is enough to show that, with a suitable choice of the nk and qk, all the Nk are
powers of 2.

In the construction (3.4), {nk) is any sequence increasing sufficiently rapidly, and
we may select for the nk powers of 2; after the nk have been chosen, qk is any sequence
increasing rapidly enough. For each nk we may select the mf=mit arbitrarily, pro-
vided they increase sufficiently rapidly and 2mf+ I is divisible by 2nk+ 1. Now if
nk = 2 2mf + 1 is divisible by 21+' + 1 provided that mf = 2/1 and 4u + 1 is an odd
multiple of v+ 1. Hence all the mf may be taken as powers of 2, and selecting the qk
likewise we can make all the numbers (3.13) powers of 2. This completes the proof of
(3.12).

We shall show in Chapter XV, § 4, that if f E LP, p > 1, then {S,A5[J]} converges almost
everywhere, provided that the At increase at least as rapidly as a geometric progression.
hk+i(Ak > A > 1; and the result holds for p = 1, provided S[f] is of power-series type.
Theorem (3.12) indicates that the requirement that S[f] be of power-series type is
indispensable. It also indicates that the construction (3.4) cannot give an f E LP, p > 1,
with S[f] diverging almost everywhere (the fact that the sum (3.4) is not in L' can also
be verified directly by showing that the integral over (0, 2n) of the pth power of the
general term of the series (3.4) tends to +oo). An even stronger statement holds: for
fin (3.4), 5[f] is not a Fourier series. For otherwise S[f] would be the real part of an
S[g] of power-series type, and so S,,,[f] would converge almost everywhere which,
with a suitable selection of the nk and qt, is not the case.

From what has just been said we see that, for the g in (3.6), S,,[g] converges almost
everywhere. But again g is not in any La, p> 1, and the problem whether there is an
f E L", P > 1, with S[f] diverging almost everywhere, is open.

(3.14) THEOREM OF MARCINKIEWICZ. t There is an f E L Such that {Sn(x; f )} oscillates
finitely at almost every point x.

t The theorem shown that the behaviour of the S. is different, for example, from the behaviour of the
difference quotient of a. function. For a well-known theorem of Denjoy (nee Saks, Theory of the Integral,
p. 270) asserts that if the Dini numbers of a function are finite at each point of a set E, then the
function is differentiable almost everywhere in E.
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The proof consists in a refinement of the construction (3.4). We consider the same
polynomials f as before, select increasing nk so that E1/log nk converges, and write

f(x) = kE1fnA
log nk *, (3.15)

where the qk are so chosen that the polynomials on the right do not overlap. It will be
convenient to assume that q,,,, divides q,,. The series converges almost everywhere
and f E L.

(i) The partial sums of S[f) are bounded almost everywhere. In view of the con-
vergence of (3.15) almost everywhere, it is enough to show that for almost all x the
partial sums of the individual polynomials on the right of (3.15) are bounded.

Considering n large enough, write

fn (x) = f (x)/log n, Al = (aj-1 + 1 /n log n, aj - 1 /n log n), U = E AJ ,
1

and denote by C various positive absolute constants. We first show that, for all p
and n, I S,(x; fn) I <C if xe U,,. (3.16)

The estimate Dr,(x) =O(1/x), valid for I x I < it uniformly in p, and the equation
Km = (m + 1)-1 {Do + D1 +... + Dm) show that the partial sums of Km(x) are also 0(1 /x)
in x < n, uniformly in m. Applying this to f,,, we find that

Isr(x;fn)I`nlgnIx ta1l+ Ix-a%I+...+Ix

Now if xeA, then both 1/I x-af_1I and 1/I x-a, I are less than nlogn, and the sum

of the remaining terms in square brackets is majorized by Cn(1 + } + ... + 11= Cn log n.

This proves (3.16).
Denote the complement of U by V,,, and the set of points x such that qkx a V, by

l4 Since 2 2
I W°a I = I v", I r`k n'T,g nk log nk ,

we have E I W,,,, I < oo. This shows that almost every point xa is outside all the W,,, with
large enough k, that is, gkxo is in all U., with large enough k. In view of (3.16),
I 's,(xo; fnt(gkx)) I < C for almost all xo and k large enough. This shows that the partial
sums of the polynomials on the right of (3.15) are bounded at almost all points x, and
proves (i).

(ii) S[f] diverges almost everywhere. We suppose that the mf satisfy the same con-
ditions as before, except that on m1 we impose the milder condition m1' n3.

The estimate K, (x) = O(m-'x-2) shows that for x e U we have

Km,(x - a1) =0{m;-'(x - a1)-2) =O(n-' log2 n).

Hence the A in now becomes 0(n--l log2n) and from (3,9) we we that

IS.,(x;fn)I>-
1 Isin(mf+})xI-C loge (3.17)

97T n
for xeA,, l<-j_< n-,n.

Denote by Hi the set of points in A* for which
Isin(m, +})xI_> J.
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Since m, Af is large, we have I H, I > 0 1 A* I, 0 being & positive absolute constant, and
so for E. = E H, we obtain

f4X--/A
47r 2E. (n-Vn-1)L2n+

1
nlogn]0=2rr0[1-o(1)].

Let now dk be the set of z such that qkx a Hence

I >2rr0[1-0(1)]. (3.18)

If xo E dk, then gkxo a E,«., and from (3.17) we deduce that, with a suitable mi = m,(x,, k).
we have

Sarm,(xo;f.`,(gkz)) I = I S,,y(gkxo;f,-.r(x)) I > 1Sn-Clogxk > C> 0 (3.19)
k

for k large enough.
In view of (3.18), the set d of the points which belong to infinitely many dk has

measure at least 27r0. At every point of a infinitely many terms of the series (3.15)
have, by (3.19), partial sums exceeding C in absolute value. It follows that S[f]
diverges everywhere in g'. Let D be the set of the points of divergence of S[f]. We have
just seen that I D 3 2n0. But since qk+1 is a multiple of qk, D has arbitrarly small
periods and so, being measurable, must be of measure either 0 or 2n. It follows that
D I = 27r and (ii) is proved.
Theorem (3.14) is a corollary of (i) and (ii).

(3.20) THEOREM. There is an S[g] of power-series type which diverges boundedly
at almost all points.

We may be brief. Write g(x) = E
log k

where E 1 /log nk < oo and the #,t make the polynomials sit f'k non-overlapping. The
proof that the S,,(x; g) are bounded is similar to that of (i); since not only the partial
sums of K,,,(x) but also those of k,,,(x) are uniformly O(1/x), it follows that the partial
sums of the polynomials e,"K,,,(x) (written out in the complex form) are uniformly
O(1/x), after which we proceed as before. To show that S[g] diverges almost every-
where, we can no longer assert that the set D of its points of divergence has arbitrarily
small periods. It is, however, clear that, for any interval I,

Hence, if E is the set of points which belong to infinitely many E.k, we have
IE I > 10. It follows that E = 2rr, and so also I D I = 21r, since D,E.

4. An everywhere divergent Fourier series

(4.1) THEOREM of KoLM000Eov. There is an f e L such that S[f] diverges everywhere.
We need the following lemma:

(4.2) LEMMA. There is a sequence of non-negative trigonometric polynomials
F1, F .... F .... , of orders vl < v, < ... , with constant terms 1 and having the following
properties:
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With each n we can associate a number A,,, a set E. c (0, 2n), and'an integer A,, such that
(i) A. --p- oo;
(ii) E1cE1c ... , F,E,, = (0, 2n);

(iii)
(iv) for each xe R. there is a k =k(x) satisfying ,l < k (v such that

Sk(x; A,,.

Assuming temporarily the validity of the lemma we prove (4.1) as follows.
Let n1=1 and suppose that n1, na, ... , ni_1 have been defined. We select ni so that

(a) ; > V*i(b) Awi > 4A,H_,, (c) 1'ni_,

Having defined {n,} we write
f(x)=; E Ar * F,,, (x)- (4'3)k-i

Condition (b) implies that EAn <oo,so thatf(x)eL. LetxeE,,,. We havef= u+v+w,
where v = AMi F,,,, u is the sum of the terms preceding v in (4- 3), and w the sum of the
terms following v. Hence

S'(x; f)=$ (x; u)+S8(x; v)+SS(x;w). (4.4)

By (iv), there is a k = k(x, i) satisfying A,,, < k < v,,, such that

Sk(x; v) >
An,.

(4'5)
By (a), Sk(x; u) = u(xo) > 0.1

Since the coefficients of any integrable g are absolutely not greater than n-13R[g],
and so I S5[g)' 4 (2k+ 1)n-19R[g], (b) and (c) give

2k+1 MSk(x;w)21r Z
IT 1-i+l

< 12kA - ni+ , < 12v,,, A,,,+ < 12.

This, together with (4.4) and (4.5), leads to

Since each x in (0, 2n) belongs to all E,,, with i large enough, S[f] diverges everywhere.
We pass to the construction of the F,,.
We fix n, write

x! 2n+1 (9=0,1,...,2n)

(so that xu is our previous a,) and denote by I' the interval (x,- d, x1+d), where 8 is
a fixed number, less than 7r/ (2n + 1), to be determined later. The interval (z! + 8, xx+1 - 8)
is denoted by It.

P. is defined as a sum of two polynomials

Fn=A+0,,,

where f is of the type considered in the preceding section,

f (x)-niFlg.i(x-xx), (4'6)
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though the mi are not the same as before; fn is non-negative and has constant term J.
It will be shown that appropriate partial sums of fn can be made large at each point of
Ell. This is no longer true for xE EIi, and it is to overcome this difficulty that we con-
sider F*=f*+0*-

We deal with the polynomial 0. first. We want it to be non-negative, to have con-
stant term } (so that F. =f. + 0. will be non-negative with constant term 1) and to be
large, say On(x) > n, in all intervals If. This is possible, if d is small enough, by taking.
for example, On(x) = Km((2n + 1) x), (4.7)

where m is large enough. Denote the order of On by ma.
By a further reduction ofd we may suppose that

0 for x e lo. (4-8)

Having fixed d and 0, we proceed to the construction of fn in (4.6), where
mo < m1 < in, <.... The m, will be defined presently. If m1 < k < m1+1, then

11 I * 1 k mi-l+1
Sk(x;f*)=- F, Km;(x-xH)+- E + E - cosl(x-X,)

ni-1 ni-i+1 2 1-1 mi+1

and since mi - l + I = (mi - k) + (k - l + 1) and K,,, > 0, we have
n k

k(x;fn)> 1
mi-

Dk(x-xx) (m5<k<m,+1), (4.9)S
ni-l+1mi+1

and so also sin (k + }) x n !L_Sk(x;fn)> - n {_ 1mt+1 2sin}(x, -x)' (410)

provided 2k + 1 is a multiple of 2n + 1.
We shall show in a moment that if m1 < m= < ... < mn increase fast enough, then to

every x e I, + Iy+1 there corresponds an integer k = k= such that
(a) 2k+ 1 is a multiple of 2n+ 1,
(b) m;<k<jrn5+1,
(c) sink+})x<-}.
Take this result temporarily for granted. For such a k, (4.10) gives

1 * 1 2n+1 * 1
Sk(x;f*)>4ni_ 1xx-x> 18nni_y, .

.>Clog(n-j),

and if j <n-Vn we have fn)> Clogn. (4.11)

Collecting results we come to the following conclusion about P. = f* + 0.: if
z 4E Iw + Itj+1 and 0 <j < n - .fin, then there is an integer k satisfying }m,+1 > k ;?t m! > mp

such that Sk(x; Fn) > C log n. (4.12)
For, with the previous k,

We now consider 8,(x; Fn) in the intervals Ii and show that

5,,,.(x;F,)>}n for (j=0,1,...,2n), (4.13)

if n is sufficiently large.
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In the equation p ,,Snk(x' Fn) = fn) + 0.),
the second term on the right exceeds n for x e EI;. If we show that

Sm.(x;fn)>-Clogn, for xeElf (n>l), (4-14)

we shall have S 1p(x ; Fn) > n - C log n > in,

and (4.13) will be established.
Let therefore x E I,' for some fixed 1. We return to (4.9) and write k = mo, j = 0. It is

easy to see that ifx Eli, then the distance between x and xK is at least n 11 - 2i 1/(2n + 1).
For l odd this gives

1 n 1

A
n

n{_1 2 x-xy,
2n+1 1

2n tZil F1 _-2i
C log n.

If 1 is even, then x - x, E la and, by (4- 8), D,,,.(x - zj) > 0; hence

S..(x;fn)> - 2
2n i' l-2i > -Clogn.

_1 l

Thus we have proved (4-14) and so also (4-13).
Let En denote the interval 0 < z < 4n(n -.Jn)/(2n + 1). From (4.12) and (4-13) we

see that if n is large enough then for each x e En we have Sk(x; F) > C log n, where k > mo.

The sets E,,, the numbers An - Clog n and the indices A. = mo (= man) satisfy the
conditions of Lemma (4-2).

It remains to show that if the m{ increase fast enough, then for each x e IM + 1u.2,
j=0, I, ..., n, we can find an integer k satisfying conditions (a), (b) and (c) above.
It is enough to show that if m0, ml, ..., m, have already been defined, we can find an
integer m! such that (a) and (c) hold for some k=k= between m! and m!; for then we
may take for m1+1 any integer greater than 2m,.

We fix j and write 2k + 1- p(2n + 1), where p is an (odd) integer, and

x2f+2 - x = 4rr0/(2n + 1), where 0<0<1.

Then -sin (k+ J) x =sin (k+ 4)(x2-x)= sin 2npO..

and x is in lu + I2j fj if and only if 0 is in S = (71, j - rl) + (i + il, 1- 71), where, is positive,
less than }, and depends only on 8 and n (more precisely, on the ratio 8/(2n+ I)).
For our purposes it is enough to show that if po is odd and fixed then for every 0 e 8
there is an odd p =p(O) > pa such that

sin 2rrp0 > J.

For then, by continuity, the last inequality is satisfied in an interval around 0, and
using the Heine-Borel theorem we establish the existence of a finite upper bound for
such p(0).

Let J = (1, ; ). We have to show that if 0 E S, then infinitely many of the numbers
0, 30, 50, ... are in J. Fpr 0 irrational, this follows from the fact that the latter sequence
is equidistributed (see p. 142). Suppose now that 0 = p/q is rational and irreducible and
consider the cases (a) q odd, (b) q even.
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In case (a), the q numbers pop, (po + 2) p, ..., (po + 2q - 2) p are all distinct mod q,
so that when we divide them by q we obtain the ratios 0, 1 /q, ... , (q -1)l q as fractional
parts. If q > 3 at least one of the fractional parts must be in the interior of J since
J I = J ; if q = 3, J contains the fraction J. In ease (b), q is even, hence p is odd. The

Jq numbers pop, (po+2)p, (po+4)p, ..., (po+q-2)p are qdd and distinct modq.
Hence dividing them by q we get as fractional parts all the numbers 1/q, 3/q, ...,
(q - I )lq. If 2/q < }, that is, if q > 6, at least one of these fractions is in J; for q= 4 and
q = 6 we verify that } and $ are in J (the case q = 2 must be excluded since J is not in S).

This completes the proof of (4.1).
In view of Theorem (3.14) we may ask if there exists an S[f] oscillating finitely at

each point. If true, this result lies a good deal deeper than Theorem (4.1) and requires
completely different methods. For if Sn(x; f) = 0(1) at each x, then there is an interval
(a, b) in which the S,(x; f) are uniformly bounded (Chapter I, (12.3)), and so also f is
bounded. Hence, replacing f by 0 outside (a, b) we obtain a function ft bounded and
such that S[ft] diverges (boundedly) at each point interior to (a, b). (It would then be
easy to obtain a bounded function f2 with S[f2] diverging everywhere.) However, the
construction above gives divergence of {Sn(x; f )} for indices n = nk tending to + o0
as rapidly as we please, which is certainly impossible for bounded functions (Chapter
XV, § 4).

MISCELLANEOUS THEOREMS AND EXAMPLES

1. In Theorem (8.9) of Chapter IV, summability (C, I) cannot be replaced by ordinary con-
vergence. More precisely, there exists an f e Land a set E such that if S[ f ] is integrated termwise
over E the resulting series diverges.

[A consequence of Chapter IV, (9.13).]

2. In Theorem (7.2) of Chapter III, summability A cannot be replaced by summability (C,1).
More precisely, there exists a function F(x) having a finite (and so also a finite symmetric) deriva-
tive at the point x= 0, but such that S'[F] is not summable (C, 1) at x= 0.

[Verify that f K'(t) sin t dt * 0(1). By Theorem (9.11) of Chapter IV, there exists a con-I
0

tinuous function g(t) with rRg(t)K'(i)sintdi*0(1). Set F(t) = g(t) sin t.]

3. Theorem (8.13) of Chapter II asserts that at every point x at which f has & jump d, the terms
v(b,, cos vx - a,,sin vx) of S'[ f ] are sunvnable to d/n by the method of the first logarithmic mean
(Chapter III, § 9). In this result, logarithmic summability cannot be replaced by summability

(C, 1). More precisely, there exists a continuouaf(x) such that vb,,$O(n).

R

[Observe that I D;,(t) I dt * O(n).]
0

4. A series uo + u, +... + uR +... is said to be summable by Borel's method, or summable B,
to sum 8, if m

B(it)=e-*Es,,,IR/n!-+s as
n-0

where s = uo + ur +... + u,,. Show that
(i) if a series converges, it is summable B to the same sum;
(ii) a power series may be summable B outside its circle of convergence, so that the method B

is rather strong; nevertheless
(iii) there exists a continuous f(x) with S[f] not summable B at some points. (Moore[]].)
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[(i) Apply Chapter 111, (1.2); (ii) the series I+ z+z*+... is surmable B for 5ez< 1; (iii) it is
sufficient tq show that the Lebeegue constants corresponding to the method B form an unbounded
function. These constants are equal to

2 'e-au n
sin (A sin t + it) I

dt,
77,re 2sinit

and are of the order log A. Propositions (ii) and (iii) show that of the two methods B and
(C, k), k> 0, neither is stronger than the other.]

I
5. Let B,k(x, f) = e-'t E S"(x; f) .I"/n! be the Borel means of S[f ]. Show that at every point x,

such that b,,(t) =o(t) (Chapter II, § 11), and in particular at every point of continuity,

(a -i
Bx(xo,

.f)--1

J f(zo+t)-
sin-At

d1-i0n _,l-l t
asA -.co.

6. If [f(xo+t)-f(xo)]logI/ItI -,U as t-0, then S[f] is summable B at xo to the value f(xo).

(Hardy and Littlewood [2].)
1/nf de

[Apply the preceding result and observe that f, /. tlogt=0(0.)f7.
Consider a sequence po, pl, p1, ... of positive numbers with the properties

P"=po+p1+...+p"-*'n,
A series ty+u1+..., with partial sums a", is said to be summable by N3rlund's method corre
sponding to the sequence {p,), or s,unmable N(p,), to sum a, if

0r"_(80P"+8
tends to a as n -; m.

If P. = M., a > 0, we obtain as a special case Cesi ro's method of summation. Show that
(i) if Eu" converges, it is sununable N{p,} to the same sum;

(ii) if 'O <po p15 ... ,and if Eu, is summable (C, 1), it is also summable N(p,) to the same sum.
[For more facts, and literature, concerning the methods N{p,,}, see, for example, Hardy's

Divergent seriea.]

8. Let pr>pr+1 -s 0, P, -i oo A necessary and sufficient condition that the method N(p,)
should sum S[ f ] to sum f(xo) at every point xo of continuity off, is that the sequence

E P,/v
1

should be bounded.
[Fordetails, see Hills and Tamarkin [ 1u](or the first edition of this book, p.186) ; also Karamata[d)

9. Using the polynomials (1-4) show that for any positive sequence c" -r 0 there exists a con-
tinuous function f such that I S"(0; f) 3 e" log n for infinitely many n (compare (1.2)).

10. Let 0 <a < 1. Show that the function

P X) = E 4- Q(x, 2.4k, 4k)

(the Q's being defined by (1.4)) belongs to A. and that I S,"(0; f) -f(O) I iz Cm-" log in for infinitely
many in. Thus the factor log n in Theorem (10.8) of Chapter II cannot be omitted. (Lebeegue [ 11.)

[The proof is similar to that of (2.1). For a= 1, f is of the class As but not of the class A1. To
obtain an example from the latter class a different argument is needed.]

11. There is an f c L with the following property; for almost every x we can find a sequence
q1 <q, <... (depending in general on x) such that

(i) jS,5(x;f)j-+oo, (ii) El/qs=oo.
(This is not possible if S[f) is of power series type; cf. Chapter %V, (4.3), (5,10).) [The proof
is similar to that of (3.1).]
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CHAPTER IX

RIEMANN'S THEORY OF TRIGONOMETRIC SERIES

1. General remarks. The Cantor-Lebesgue theorem
In the previous chapters we have almost exclusively been concerned with Fourier

series. We shall now prove a number of properties of trigonometric series
W

Jao- (a.cosnx+bnsinnx), (1.1)

with coefficients tending to 0, but otherwise quite arbitrary. Riemann found the first
fundamental results in the subject, and these with their subsequent extensions con-
stitute what is now called the Riemann theory of trigonometric aeries. The chief points
of the theory are the problem of uniqueness and the problem of localization, which we
now proceed to discuss.

In this chapter we suppose, unless otherwise stated, that the coefficients of the
trigonometric series considered tend to 0. We recall the notation

EA(x),4ao+ (a,, cos ax + b,, sin ax) =
n=1 n=0

m m

(an sin nx - bn cos nx) = E B. (x),
n-1 nap

A,(x)=pnCos(nx+an) (p8 =an+bn, pn>0).

(1.2) THE CANTOR-LEBESGUE THEOREM. If An(x)-*0 for x belonging to a set E
of positive measure, then an, bn -.0.

If pn does not tend to 0, there exists a sequence n1 < n2 < ... of indices and an e > 0
such that pnt > e for all k. From this and the relation pn cos (nx + 0 in E we
see that cos (nk x + ant) -+ 0 in E. A fortiori, cost (nk x + ant) -- 0 in E. The terms of the
last sequence do not exceed 1, so that, by Lebesgue's theorem on the integration of
bounded sequences, the integral

I.E
cos' (nk x + ant) dx

tends to 0 whereas, after Theorem (4.5) of Chapter II, it tends to E 1. The contra-
diction proves (1.2).

(1.3) THEOREM. If converges in a set B of positive measure, then a, -> 0, bn -*0.
More generally, if I;A,,(x) is summable (C, k), k > - 1, in a set E of positive measure, then
an = o(nk), bn = 0(nk).

We prove the second statement. A consequence of the hypothesis is that

(xeE),

(Chapter III, (1.22)) so that, by (1.2), ann-k--*0, bnn-k->0.
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(1.4) THEOREM. IfA(x)=0(1)foreach xEE, I EI>0,then an=O(l),bn =0(l).
If EAn(x) is finite (C, k), k > - 1, in E, I E > 0, then an =0(nk), bn =0(nk).
The proof is left to the reader.

(1.5) THEOREM. Let X(n) be a positive sequence tending monotonieally to 0. Suppose
that EAn(x) converges in E, E > 0, to sum f (x) and that

sn-1(x) -f(x) =o{X(n)}

for each x e E. Then an = o{X(n)}, b = o{X(n)).
The result holds if the 'o' is replaced by '0' throughout.

Considering the `o' case, set rn(x)=f(x)-sn(x). Then

A (x) = rn_ 1(x) - o{X(n)} + o{X(n + 1)} = o{X(n)}

in E, and the conclusion follows from (I.2).
(1.2) asserts that if I an I + I bn I does not tend to 0, then An(x) cannot tend to 0

except possibly in a set of measure 0. We shall investigate the nature of this set.
A set E is said to be of type H, if there is a sequence of positive integers

n< <n2 < ns < ... and an interval A such that for each x E E no point

nkx (k=1, 2, 3, ...)
is in A(mod 2n).

The closure of a set of type H is also of type H. A set of type H is non-dense.
Recalling the definition of an equidistributed sequence of numbers (Chapter IV, § 4)

we see that if E is of type H, then for a suitable {nk} and each x e E the sequence nkx,
reduced mod 27r, is non-equidistributed over (0, 21T) in a rather strong sense; not only
do some intervals get less than their proper share of points nkx, but there even exist
intervals totally devoid of such points.

The following is an equivalent definition of sets of type H: a set Ec (0, 2n) is of
type H if there exist integers 0 < n1 < nt < ... , a number a and a number d < 1 such that

cos(nkx+a)<8 for (k= 1, 2, ...). (1.6)

We can construct a set of type H as follows. Denote by (x> the fractional part of x,

(x>=x-[x],

fix a number d, 0 < d < 1, and a number a, and consider for each integer n > 0 the set E,,
of points x such that

21r /-d. (1.7)

Then for any sequence 0 < n1 < nE < ... , the set

E = En, Ens ... Enr .. .

(possibly empty) is of type H. For if x e E, then x e En,; thus nkx is situated, mod 2n,
in the interval (a, a + 2nd ), and so never enters A = (a + 2nd, a + 2n).

The set E. of points x satisfying (1.7) consists of intervals of length 2nd/n separated
by intervals of length 2n(1 - d)/n. If we identify points congruent mod 2n (that is,
if we consider E. on the circumference of the unit circle), then En oonsiste of n equal
and equally distributed intervals, and I E, I = 2nd, a quantity independent of n and a.
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The Cantor ternary set C constructed on (0, 2n) is of type H with

nk=3k-1, A=(9rr,*sn) (k=1,2,...).
For, as we easily see geometrically or deduce from the parametric representation of
the points of C (Chapter V, §3), the set of the points 3k-Ix, xcC, is, when reduced
mod 2n, identical with C.

The same argument shows generally that a perfect set of constant ratio of dissec-
tion (z,1-21,g)isanHsetif 4=1Jq,q=3,4,5,....

The following observation is useful. Suppose that in the definition of a set of type H
we make A depend on k; that is, we assume that for xcE the point nkx, reduced
mod 27r, does not enter an interval Ak = (ak, bk). Then the set E is still of type H,
provided the lengths of the Ak stay above a positive number 71. For selecting a sequence
k, such that ak and bk, converge, say to limits a and b, we see that b - a _> y and that any
interval A' interior to (a, b) has the following property: for j large enough and for each
x E E, nki x never enters A' (mod 21r). Hence E is of type H.

Correspondingly, in (1.6) we may make a depend on k.
We may present the result in a slightly different form. Given any periodic set d.

denote by e" the set of points nx, where x c e, and let In be the upper bound of the
lengths of intervals without points in common with en (if f is closed, In is the length
of the largest interval contiguous to es n). a i8 of type H if and only if lim sup In > 0.

A denumerable sum of sets H is called an Ho set. H, sets are of the first category.
They are also of measure 0. This is a corollary of the following theorem:

(1.8) TIiEOREM. A set of type H i8 of measure 0.

Let E be a set of type H associated with a sequence {nk} and an interval A. Let
E be the set of points x such that nx is not in A (mod 27r). Clearly Eccf = EnlEn,...
and it is enough to show that I e I = 0.

Let d = (2n - I A 1)127T. If we omit factors in Enl E,,, ... the product can only in-
crease. Also, if S is any finite system of intervals, then I SE,, I -->d I S I as n-oo.
Let now d < d1 < 1, m1= n1, and suppose that m1, m$, ..., mk_1 have been defined. If

Sk-1=Em,Em,

we find an mk > mk_I in (n,} such that

I ,4k-1Emk I <dI I Sk-1 I

It follows that I E,,,, E,,,... Emk _< 21rd1.

Hence I En, Em, ... I = 0 and, a fortiori, I e I = I En, En, ... I =0.

(1.9) THEOREM. Except perhaps in a Bet of type H,(and measure 0) we have, as n-oo,

lim supAn(x)=limsuppn, liminfA,(x)= -limsuppn, (1.10)

and, in particular, lim sup I An(x) I = lim sup pn,

We first show that if a1, a,... are real, and n1 < n' < ... positive integers, then,
except perhaps in a set of type H, we have

limsupcos(nkx+ak)= +1, liminfcoe(nkx+ak)- -l. (1.11)
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It is enough to prove that the first of these holds outside a set E of type H,. Let
0 < d < 1, and denote by Zi the set of x such that

cos(nkx+ak)-<S for k>,i. (1.12)

In view of the observation made above, Za is an H set. Outside the H, set

Z"=Zi+Z9+...
we have lim sup cos (nk x + Mk) > d,

and outside the H. set E = Zi + Zi + ZI +...

we have the first equation (1.1 1 ).
Return to (1.9). It is enough to consider the first equality (1-10). Let {nk} be such

that lim sup p, limp,,,.. Outside the set E just considered (with a,, for ak) we have

lim sup A,,(x) -> lim sup A,,(x) = lim pn, = lim sup p,,,

that is, Jim sup A,(x) >- Iim sup p,,. Since the opposite inequality is valid for all x,
the first equation (1.10) holds in the complement of E. This completes the proof of (1-9).

A corollary of (1.9) is that if I a I + I b I does not tend to 0, A,,(z) can tend to 0 at
most in a set H,. Hence (H, being of the first category), if A,,(x) tends to 0 in a set
of the second category, then an and b tend to 0.

2. Formal integration of series
Given a series }ao+ X (an cosnx+bnsin nx),

n'1
(2.1)

with an, bn -+ 0, consider the function

F(x) = }a zQ -
an coo nx + bn sin nx (2 2)o n8nil

obtained by integrating the series (2.1) formally twice. F(x) is continuous since its
series converges absolutely and uniformly. It is readily seen that

F(x + 2h) +F(x - 2h) - 2F(x) sin nh` s442 =A0+ A,,(x)I
n-1 `

(2.3)

The numerator of the ratio on the left will be denoted by

AsF(x,24).

We denote the upper and lower limits of ASF(x, h -> 0, by D'F(x) and DIF(x)
respectively ; if D5F(z) = D$F(x), the common value is denoted by D!F(x) and is called
the second symmetric derivative of F at the point x. If D$F(xo) exists we say that (2.1)
is, at the point z0, summable by the Riemann method of summation, or summable R,
to sum D=F(xo).

(2.4) RIEMANN'S FIRST THEOREM. If EAn(x), with an, bn 0, converges at a point x
to a finite sum s, it is also summable R to s.

We have to show that A2F(x, 2h;)/4he s for every positive {h{} --1- 0. Set

sn=Ao+Al+...+An, (sinsh)/h$=u(h).
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Applying summation by parts we find that the right-hand side of (2.3) is, for h=hi.
equal to

sn{u(nhi) - u((n + 1) hi)}. (2.5)
n-0

This is a linear transformation of the sequence (8n}--)- 8, and it is enough to show that
the transformation satisfies the conditions of regularity (Chapter III, § 1). This is
obvious for conditions (i) and (iii). To verify (ii) we observe that

ao ao (n+l) hi
u(nhi)-u((n 1 1)hi) I = ; f u'(t)dt

n=0 n'.O nM
< fo I u'(t) I dt, (2-6)

and the last integral is finite since the integrand is O(t-2) for t-+00.
Theorem (2.4) can be generalized as follows:

(2.7) THEoRE e. If has partial sums sn(x) bounded at x, and if

s(x)=limsup8n(x),
then the numbers D2F(x) and DZF(x) are both contained in the interval (8 - 0, s + kd),
where s ='}{a(x) + s (x)}, S = 4{s(x) - 8(x)}, and k is an absolute constant.

This follows from Theorem (1.5) of Chapter III; k is the upper bound, for all {hi},
of the sums on the left in (2-6).

(2.8) RIEMANN'S SECOND THEOREM. If an,bn-*0, then

F(x+2h)+F(x-2h)-2F(x)A h+A sln2nh--*0,
(2.9)4h e

,
n n2h

h -> 0, uniformly in x.
It is again enough to prove that (2-9) holds for each positive {hi}-*0. The series in

(2'-9) is a linear transformation of the sequence An-*0, so it is enough to verify con-
ditions (i) and (ii) of regularity. (Condition (iii) is irrelevant here.) Condition (i) is
obviously satisfied. To verify (ii) we observe that

h, +
tsine nhi \

hi +
nh{

+ < (N + 1) hi + l /Nhi. (2.10)
n-l n h, n=In n.N+1n hi

If we set N = [ 1 /hi] + 1, then 1 /hi < N <- 1 + 1 /hi and the right-hand sidet of (2-10)
is less than 4 for I hi I S 1. This completes the proof of (2-8).

It is clear that if an and bn are 0(1), the ratio in (2-9) is uniformly bounded as h -* 0.
The relation (2-9) is satisfied at every point x, irrespective of the convergence or

divergence of Following the terminology of Chapter II,§3,wemaysaythatF(x)
is uniformly smooth, or belongs to the class A., or satisfies condition A,. The sum of
any trigonometric series with coefficients o(1 /n2) satisfies condition A ; for it can be
obtained by twice formally integrating a series with coefficients tending to 0. If the
coefficients of EA,(x) are 0(1/n2), the sum of the series satisfies condition A.

The following theorem is a generalization of these results:

(2-11) THEOREM. If the p,, =(an+b,)4 satisfy the condition
n

an = E k2Px = o(n), (2-12)
k-1

t The left-hand side of (2 10) can also be summed exactly. For, eubetituting x=0 in the development
(4.16) of Chapter 1. we find eininl.ih+i -- =}n for

nih
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then EA.(x) converges absolutely and uniformly, and its sum f(x) satisfies condition A..
If we have '0' in (2.12) instead of 'o', then f e A,.

It is enough to consider the 'o' case. If pn = o(1/n2), (2.11) is immediate. To prove
the absolute and uniform convergence of (2.1) in the general case we observe that

N
EPk=!lim Z(o-k-ok_1)k-' o-k(k-2-(k+1)-2) o(k)O(k-3)<oo. (2.13)

Now, supposing for simplicity that ao = 0,

f(x+2h)+f(x-2h)-2f(x) \h_1 Pksin'kh
4h 1

N
hEk$Pk+h-1 E Pk=P+Q,

1 N+1

say. Set N = [ 1 /h]. Then P 5 o-N/N = o(l) as h -* 0, and arguing as in (2.13) we have

Q<h-1 E ok(k-2 -(k+1)-3)=h-1 Z o(k-2)=h-lo(N-1)=o(1).
N+1 N+1

Hence P+Q=o(1) and (2.11) follows.
Set p,,=/n (n=1,2_.).

n
The condition E lclrk = o(n), identical with (2.12), is satisfied in the following two special

1

oases (see Chapter III, p. 79).
(i) Enyn <ao;

(u) 17n -> 0; yn = 0 except possibly for a sequence nk such that nk+1/nk > 9 > 1

The idea of associating with EA,,(x) the function F(x) of (2.2) is due to Riemann.
In some cases we may also consider the function

L(x) _ 4aax + E (an sin nz - bn cos nx)/n, (2.14)
1

obtained from (2.1) by a single integration. Then

L(x+h)-L(x-h)_A + A x sinnh
2h 0 E n( )-

I

(2.15)

The difficulty in using L(x) is that the series (2.14) need not converge everywhere oven
if EA,(x) does. (A simple example is provided by the series E(sin nx)/log n.) Further-
more, even if (2-14) does converge everywhere, L(x) need not be a continuous function.

On the other hand, the series (2.14) converges almost everywhere. For its periodic
part is the Fourier series of a function in L2 (Chapter IV, § 1), and since this has
terms o(1/n) it must be convergent wherever it is summable (C, 1).

If L(x) exists in the neighbourhood of a point zo and if

{L(x0+h)-L(x0-h)}/2h-*8 as h-*0,

we say that EAn(x) is summable at the point zo by the Lebesgue method of summation,
or summable L, to sum s.



322 Riemann's theory of trigonometric aeries

(2.16) THEOREM. Suppose that a" and b are o(1/n) or, more generally, that

kpk = ON. (2.17)

Then, if an(x) are the partial sums of EAn (x) and N = N(h) _ [11h], we have, uniformlyin x,

L(x+h)-L(x =h)_aN(z)
>0

2h

as h-+ 0. In particular, a necessary and sufficient condition for EAn(x) to converge at x
to sum 8 (finite or infinite) is that it should be summable L at z to sum S.

From (2.17) and Theorem (2.11) we deduce that the function L(x) exists everywhere
and satisfies condition A,,,. The difference last written is

N A sin nh I + A sin nh = P +
.E nh -

1
nh Q

Denote by T" the left-hand side of (2.17). Since (sin u)/u -1=0(u') = O(u) for I u I < 1,
we have N

10

T"
O(NN+

1o(W)o(1).

I QI nn
h-1N

1

n- 10

Hence P+Q=o(1) and (2.16) follows.
Part of Theorem (2.16) can be generalized as follows:

(2.18) THEOREM. If a,, and b are 0(1/n), then LA,,(x) is eummable L at zo to
a finite sum 8 if and only if it converges at xo to 8.

Let EAn(x) converge at xo to s. We may suppose that a = 0. Write

L(xo+h)-L(xo-h) kN' sinnh r sinnh
2h io+ EAn(xo) }+( A"(xo) I'+Q,

1 nh kN+1 nh

where N = [1/h] and k is a fixed integer. From

Q h-1 E I A"(xa) I n-1 _< O(N)E 0(n-')=O(N) O(1/(kN)),
kN+ 1 kN+1

we see that Q is arbitrarily small if k is large enough. By Theorem (12.2) of Chapter
III, P tends to 0 as h-,0. It follows that {L(xo+h)-L(xo-h)/2h}-a0 as h-+0.

Conversely, let LA. (x) be summable L at xo to sum a. We may suppose that ae= 0.
The linear term in (2.14) then disappears and EA,,(x) is S'[L]. By Theorem (7.9) of
Chapter III, EA,(x) is, at xo, summable A to sum 8, and so also oonverges to a since
its terms are 0(1/n) (Chapter III, (1.38)).

While a series EA,(x) with coefficients o(1/n) is a Fourier series, this no longer holds
if we impose only the condition (2.17); the lacunary series En-4 ooe 2"x is an instance
in point (see Chapter V, §6).

(2.19) THnonnu. Suppose that EA,(x) satisfies (2.17) and is S[f]. Then
(i) if f(z)-*s, -oo <a 5 +oo, as x->xo+ 0, the series converges at xo to sums;
(ii) if f (x) is continuouat in an interval a < x < b, it converges uniformly in (a, b).

t At a end b only one-sided oontinuity is required.
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(i) L(x) has at x0 a right-hand derivative equal to a. Since L(x) is smooth, the left-
hand derivative at x also exists and equals 8. Hence {L(xo+h)-L(xo-h)}/2h-+a and,
by (2.16), 8N(x)- 8.

(ii) If h --> + 0, then {L(x + h) - L(x)}/h -* f (x) uniformly in the interval

I: a_< x<, a+}(b-a).

Since L E A., we have {L(x) - L(x - h))/h -. f (x), and so also

{L(x + h) - L(x - h)}/2h--> f(x),

uniformly in I. The last relation holds uniformly also in the remaining part of (a, b).
by an analogous argument, and it only remains to apply (2.16).

If we were to assume the two-sided continuity off at a and b, the uniform converg-
ence of FA, ,(x) in (a, b) would follow at once from the uniform summability (C, 1)
there since, owing to (2.17), the 8 and the (C, 1) means of EA (x) are uniformly equi-
convergent.

We recall the following definition (Chapter II, § 3). A function f(x) defined on a set
E is said to have property D, if f (x) takes all intermediate values; i.e. for any two
points xl and xi in E and any number 71 between f (xl) and f (x,), there is a point g e E
between xl and xs such that M) = y.

(2.20) THEOREM. Suppose that EA (x) satisfies (2.17). Then the set .E of the points of
convergence of the aeries i8 of the power of the continuum in every interval, and the Bum
f(x) has property D on E.

After (2.11), the function L(x) in (2-14) is in the class A,,. By Chapter IT, (3-3), (3.6),
a finite derivative L'(x) exists, and has property D, in a set E which is of the power
of the continuum in every interval. Since for smooth functions the existence of L'(x)
is equivalent to the existence of the first symmetric derivative, it is enough to apply
(2.16).

Example. As the series
EVA cos Id'x (2.21)

shows, the set E in (2-20) may be of measure 0 (Chapter V, (6.4)). In every interval
we can find points x, and x$ such that lim sup a (xl) = + oo, lim inf a (x=) = - oo, a
being the partial sums of (2-21) (Chapter VI, p. 260). It follows from (2.16) that the
ratio {L(x + h) - L(z - h)}/2h has at xl the limit superior +oo and at x, the limit inferior
- oo. By the Remark in Chapter IT, p. 44, we deduce that given any finite rl there is
a point g between xl and x, such that (2.21) converges at 6 to sum rl. Hence though the
series (2.21) diverges almost everywhere it converges to any given sum at some point
of any interval.

Given a function f(x) on a (measurable) set E and a point x0, we say that f(x)
has an approximate limit as x-x0, in symbols

limapf(x)=a,

if f(x) tends to s as x tends to x, through a set off, subset of E, having x0 as a point of
density. Since two sets having xo as a point of density must have points in common in
each neighbourhood of x0, there is at most one approximate limit.
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Correspondingly, the two limits

limap(f(xo+h)-f(xo))fh, limap(f(xo+h)-f(xo-h))J2h-.o A-0

[ix

are called the approximate and the symmetric approximate derivative of f at zo and
denoted by f;D(xo) and f,,v(xo).

The following theorem shows the effect of a single integration on convergent
trigonometric series:

(2.22) THEOHSM. If a,,, b -+0 and if converges at xo to a (finite) sum 8, then
L;,o(xo) exiat8 and equals 8.

We may suppose that ao = 0 and a = 0. L(x) exists almost everywhere. If L(xo ± h)
exist, then

L(xo+h)-L(xo-h)-2" sinnh sinnh
2h 1 An(xo) nh s +1`4,.(xO) , =P(h)+Q(h),

1

where the integer N is defined by the condition 2-<N+1) < h < 2-N. A simple summation
by parts (or an application of Theorem (12.2) of Chapter III) shows that

P(h) -+ 0 (h-+ 0).

Applying summation by parts to Q(h), and writing l8(X0) =8,,, we have

Q(h) = o(1) +2 E 1 h h))

= 0(1) + e sin nh - 2 sin }h 8* Cos (n + 4) h

N+1 n(n+1)h h p l n+1
= o(l) + Q1(h) +Q2(h),

1 = o(h-12-N) = 0(1).say. Clearly I Ql I < h-1 max I a I E
n>2s 2s+1 n(n+ 1)

Hence, collecting results, we see that (2.22) will be proved if we show that

lim ap Q2(h) = 0.
h-+0

Since
(n+J)h 2 (2nfQ(h)dh8 1 dh2J (s

N o 2'+t n+ f / o 2s+1 " n+ 1

2r+
1(nl)20(2 N),

the integral on the left is c.2-N-1, where eN -> O. Let EN be the set of those h in
(2-N-1 , 2-N) at which Q2(h) exists and I Q2(h) I >_ et. Then

e, I EN I< eN 2-N-1, I EN I /2-(N+1) e r,

that is, the average density of EN in (2-N-1, 2-N) does not exceed et. It follows im-
mediately that the set E = E1 + E2 +... has density 0 at h = 0, and that Q2(h) -+ 0
as h tends to 0 outside E. Hence lim ap Q2(h) = 0, and the theorem is proved.

Remark. Even without the hypothesis a,,, b --> 0 the convergence of

converges for almost all h, and,to s implies that A (xo) -- 0, so that EA (xo)
n nh
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as the foregoing proof shows, the sum of the last series has approximate limit 8 as
h -) 0. The hypothesis an, b = o(1) was used only to establish the existence of the
function L(x). (It would be enough to suppose that an, bn =O(ni-t), e> 0; see Chapter
IV, (1.1).)

We now consider the special case when EA,(x) is of power-series type

with c 0. For such series

cn einx,

0

F(x) _ 1cox2 - f ZS einx.

(2.23)

(2-24)

If, for a fixed x0, as h -* 0 we have

F(zo + h) = ao + a1 h + }a,h' + o(h'), (2.25)

we say that F has at x0 a second generalized derivative equal to a2. We observe that
(2.25) implies not only

hF(x0+h)+F(xE but also

(2-26) THEOREM. If (2.23) converges at x0 to (finite) sum s, then the function F(x)
of (2.24) has at x0 a second generalized derivative s.

We omit the proof here; a much more general result will be proved in Chapter XI,§ 2.

(2.27) THEOREM. If (2-23) converges at x0 to (a finite) sum 8, then the function

L(x)=cox+E °-nei°z
tin

has an approximate derivative at x0 equal to 8: L;D(xo) = 8.

This is an analogue of (2.22) and it is enough to sketch the proof. We may suppose
that co = 0, x0 = 0, 8 = 0. The convergence of Ecn implies that of Ecn/n, an' defining
N as before we have

L(h) - L(0) 2' ei' - 1 m einA - 1
Cn inh Cn inh P(h) +Q(h)-Jr+

Here again P(h) -+ 0. Summation by parts shows that h-1 Y, cn/n = o(1). Hence
2Jr+1

Q(h)=o(1)+ E
CneinA

sr+1 inh
and the last term tends approximately to 0 as h -> 0.

It will be shown in Chapter XIV, (4-1), that if converges in a set E, the
conjugate series EB,(x) converges almost everywhere in E. From this and (2.27) we
deduce the following consequence:

(2.28) THEOREM. If EAn(x) converges in a set E, then L(x)=,)aox+EB,(x)/n, has
an approximate derivative almost everywhere in E.

3. Uniqueness of the representation by trigonometric series
The theory of Fourier series associates with every integrable and periodic function

f (x) a special trigonometric series-the Fourier series off (x)-whioh, as we have shown,
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represents f(x) in various ways. It is natural to inquire whether functions can be
represented by trigonometric series other than Fourier series. The problem has a
number of answers, since the word `represent' may have various meanings. The pro-
blem of summability, and so of convergence, in mean was discussed in Chapter IV.
In this section we consider the representation of functions by everywhere convergent
trigonometric series. The following result is fundamental:

(3.1) TBEOREM. (i) If
}a, + Z (an cos nx + bn sin nx)

w-1
(3'2)

converges everywhere to 0, the series vanishes identically; that is, all its coefficients are 0.
(ii) More generally, if (3.2) convergent everywhere to an integrable function f(x), then

(3.2) is S[f]

We begin with the proof of (i), though it is a special case of (ii).
By (1 -3), an -s 0, bn -+ 0. It follows that the function

° a cos nx + b. sin nx
F(x) = laox2 - E n (3'3)

%-1

is continuous. By (2.4), D2F(x)=0 for all x and so (Chapter I, (10.7)), F(x) is linear.
F(x)=ax+f. Comparing this with (3.3), making x-+oo, and observing that the
periodic part of the series (3.3) is bounded, we find that ao = 0, a = 0. Hence

,B+ (a,, cos nx + bn sin nx)/n' = 0. (3.4)

The series on the left converges uniformly and so is the Fourier series of the right-hand
side. Hence all the coefficients in (3.4) are 0, and this completes the proof of (i).

A corollary of (i) is that if two trigonometric series converge everywhere to the same sum,
then the two series are identical, that is, the corresponding coefficients of both series are the
same.

We precede the proof of (ii) by the following remark: an arbitrary series (3.2),
convergent or not, is S[f] if the F(x) of (3.3) satisfies an equation

F(x)= f' dy f vf(t)dt+Ax+B, (3.5)
a

where A and B are constants. For let F,(x) = F(z) - }aox2. The periodic part of the series
(3.3) is then S[F1], and (3.2) without the constant term is S'[F,]. Since, by (3.5),
F, is a second integral, we have

S"[F1] = S[K] = SU- Fo]

(Chapter II, (2.1)), and (3.2) is S[f].
Hence (ii) will follow if we show that under the hypothesis of the theorem we have

(3.5). The proof of the latter will be based on a number of lemmas which give more
than we actually require but which will be useful in generalizations of (ii) (see especially
§ 8 below).

t By ' convergence' we mean oonvergenoe to a finite .um.
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(3.6) LEMMA. If a function F(x), a<x<b, has a fink derivative F'(x), and if at a
point xe all the Dini numbers of F'(x) are contained between m and M, then

m 5 D'F(xe) < D'F(xo) < M.

This has already been proved in Chapter I, p. 23.

(3.7) LEMMA. Suppose that F(x) is continuous for a < x < b and satisfies D'F > 0 for
all x in (a, b). Then F is convex.

This is Theorem (10.7) of Chapter I.
Given a function f (x), a S x _< b, not necessarily finite-valued, we call a continuous

Vr(x) a major function for f, if for each x the Dini numbers of lk are not less than f(x)
and are distinct from - oo; a continuous O(x) is a minor function for f, if the Dini
numbers of ¢(x) are not greater than f(x) and are distinct from +eo.

(3.8) LEMMA. Let f(x), a _< x 5 b, be integrable, fi(x) = pdt, and let a be positive.

Then there exist major and minor functions, Or and 0, for f such that

f1(z) - r/r(x) I < e, I fi(x) - O(z) l < e

in (a, b). The functions i/r and 0 can even be absolutely continuous.

This is a well-known result from the theory of the Lebeague integral and we take it
for granted here.t

(3.9) LEMMA. Let f(x), a < z < b, be integrable over (a, b) and greater than - oo. Let
F(x), a < x < b, be continuous and such that

D'F(z) > f (x). (3.10)

Then G(z)=F(x)- f sdy f vf(t)dt (3'11)
a a

is convex.

Let 0* be a minor function off such that
Write

On(x) -faf(t)dt

fl(x)=5Zfdt, f2(x)=Ek at, n(x)=f Ondt.
a a

By ( 3.10) and (3.6), D2F(x) >f(z) > D'4)n(z)

1/n, n = 1,2,....

(3.12)

Since the extreme terms here cannot be infinities of the same sign, we have
D2(F-'n) > 0, and F- 0n is convex in (a, b). As n-+ co, F- mn tends to F-f which
is therefore also convex, and the lemma follows.

(3.13) LEMMA. Let f(x), a < x < b, be integrable and finite-valued. Let F(x) be con-
tinuous and such that D'F(x) ->f(x) > D'F(x). (3.14)

Then F(x)= f Zdy f "f(t)dt+Ax+B,
a o

(3.15)

where A and B are constants.

t See Ch. J. do is VaUbe-Pousain, IntSgrales de Lebeague, or S. Sake, Theory of the Isteprat.
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Since the Gin (3' 11) is both convex and concave, it is linear.
Part (ii) of (3.1) now follows easily. For the F in (3.3) satisfies D'F=f for all x.

Hence F satisfies (3.15) which, as we know, proves that EA (x) is S[f ].
The hypothesis that converges was used only to show that a,,, b --* 0 and

that is summable R. Theorem (3.1) would still hold, therefore, under these
weaker assumptions.

(3.16) LEMMA. If F(x) is convex in (a, b), then D2F(x) exists for almost all x in (a, b)
and is integrable over any interval (a', b') totally interior to (a, b).

Since F(x) is the integral of a non-decreasing function 6(x) (Chapter I, (10.11)), we
have F(x+h)+F(x-h)-2F(x) 1 k

hs h'f ff(x+t)-g(x-t))dt; (3.17)

and 6'(x) exists almost everywhere in (a, b) and is integrable over (a', b'). At each
point where a finite g'(x) exists we have

6(x + t) - 6(x - t) = 2tg'(x) + o(t),

the right-hand aide of (3.17) tends to t:'(x), and D=F(x)=g'(x).

(3.18) THEOREM. Suppose that EA (x) converges everywhere to a sum f(x) such that
f (x) _> X(x), where X is integrable. Then f is integrable and the series is S[f ].

We may suppose, by changing X if necessary in a set of measure 0, that X is finite-
valued. We have D2F> X. By Lemma (3.9),

H(x)=F(x)- fa
f V X(t) dt
o

is convex. Hence D'H exists almost everywhere and is integrable over (0, 2n). It
follows that D=F =f is integrable. Hence the series is S[ f ].

In particular, if converges everywhere to a non-negative sum, the sum is
integrable.

(3.19) THEOREM. Suppose that an, b --1,. 0 and denote by s*(x) and 9* (x) the upper
and lower sums of EA (x)_

s*(x) =1im sup s (x), 8* (x) = lim inf s (x).

If s*(x) and s* (x) are finite outside a denumerable set E, and are both integrable, then
EA(x) is S[ f ], where f = DEF, F(x) _ }ate - EA (x)/n'.

We need a few lemmas.

(3.20) LEMMA. Suppose that F(x) is continuous for a < x < b, and that D'F _> 0 for
each x, except possibly in a denumerable set E. Suppose also that

limsupA2F(x,h)/h>-0 for xEE, (3.21)
A-+o

where A2F(x, h) = F(x + h) + F(x - h) - 2F(x). Then F is convex in (a, b).

This is a generalization of (3.7). As in the proof of the latter we may suppose that
D2F > 0 outside E, for otherwise we apply the argument to F(x) + x2/n and then
make n-oo.
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Suppose that F is not convex. There is then an are of the curve y = F(x) lying partly
above the corresponding chord. Let a, 8 be the terminal abscissae of the are, and let
y = l,,(x) be the equation of the straight line through (a, F(a)) with slope p. If,u exceeds
the slope of the chord but is close to it, the function G,,(x) = F(x) - l,,(x) takes positive
values at some points of (a, f ). Let x0 = x0(u) be a point where G,, attains its absolute
maximum in (a, ft). We have a < x0 < f, since G,(a) = 0, Ge(,6) < 0.

Clearly A2G,,(x0, h) -< 0 for small h > 0. Hence A2F(x0, h) -< 0 for such h and, in
particular, DzF(x0) 5 0. Therefore x0 E E.

Since (3.21) holds with G,, for F, and since A2G,,(x0, h) -< 0 for small h, we have

lire sup AzG,,(x0, h)/h= 0.
h-.+o

But G,,(x0 ± h) - G,(x0) -< 0 for small h. Hence lim sup {G, (xo + h) - G,,(x0)}/h = 0 and

lim sup {F(x0 + h) - F(x0)}/h = fc.
h-+O

This shows that to different admissible u there correspond different x0=x0(,t), which
is impossible since xQe E and the set of the /s is of the power of the continuum.

(3.22) LEMMA. Let f (x), a < x < b, be integrable over (a, b) and greater than - ac,
except possibly in a denumerable set E. Let F(x), a <x < b, be continuous and such that
D'F(x) > f (x) outside E. Suppose that F satisfies (3.2I ). Then (3.11) is convex.

(3.23) LEMMA. Let f (x), a < x < b, be integrable over (a, b) and finite outside a de-
numerable set E. Let F(x), a < x < b, be continuous and such that D'F ->f > D2F
outside E. Suppose that

Jim sup A'F(x, h)lh > 0 > lim inf A'F(x, h)lh (3.24)

in E. Then F satisfies (3.15).

If we use Lemma (3.20) instead of (3.7), the proofs of (3.22) and (3.23) run parallel
to those of (3.9) and (3.13).

We pass to the proof of (3.19). By Lemma (2.7), D'F(x) and D'F(x) are contained
between

In particular, D'F and D2F are integrable. Write f = D'F. Then D'F > f > D'F, and
since F is smooth an application of (3.23) shows that F differs from a second integral
off by a linear function, and in particular that D'F exists almost everywhere. It
follows that is S(f ], with f = D'F = D'F almost everywhere.

The theorem below is a generalization of (3.19). Its proof is less simple and we shall
obtain it as a corollary of results proved in § 8 below.

(3.25) THEOREM. Suppose that a, b,a -+ 0. If the upper and lower sums of EA (x) are
both finite, except possibly in a denumerable set E, and if s5 (x) > X(x) where x is integrable
(in particular, if s, is integrable), then the series is a Fourier series.

Return to Lemma (3.20). The continuity of F there was used merely to guarantee
that G,, attains its maximum, and for that purpose the upper semi-continuity of F'
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is sufficient. The same applies to Lemma (3.22). Hence we have the following result,
which will find application later:

(3.26) Lzmxu. Lemmas (3.20) and (3.22) hold if the condition that F is continuous
is replaced by the condition that F is upper semi-continuous.

4. The principle of localization. Formal multiplication of trigonometric
series -

We proved in Chapter II, § 6, that the behaviour of S[f] at a point xo depends only
on the values off in an arbitrarily small neighbourhood of x0. This is a special case of
the following localization principle of Riemann for general trigonometric series with
coefficients tending to 0:

The behaviour of a series

4a0+ E (an Z A (x)
1 0

at a point xo depends only on the values of the function

F(x) = }aox' - E (a,, cos nx + b,, sin nx)/n' (4.2)
i

in an arbitrarily small neighbourhood of x0.
More precisely, and somewhat more generally, we have the following:

(4.3) THEOREM. Let Sl and S, be two trigonometric series with coefficients tending to 0,
and let F, and F$ be the functions F corresponding to Sl and S. If Fi(x) - F,(x) in an
interval (a, b), or more generally if F1(x) - Fs(x) is linear in (a, b), then in every interval
(a', b') interior to (a, b)

(i) S, and S, are uniformly equiconvergent;
(ii) S, and S2 are uniformly equiconvergent in the wider sense.

If two integrable functions fl and f2 coincide in an interval (a, b), then, since Fourier
series may be integrated termwise, the Fi and F= corresponding to S[fiJ and S[fz]
differ in (a, b) by a linear function. Hence the principle of localization for Fourier
series-as well as for conjugate series (see Chapter II, (6 6))-ie a special case of (4.3).

We base the proof of (4.3) on Rajchman's theory of formal multiplication of trigo-
nometric series, which is of independent interest and has a number of other applica-
tions. It will be convenient to write our series in the complex form.

Given two series +m
C. sins, (4.4)

+m
E Ya ein: (4.5)

we call E C. sins (4.6)

their formal product if

m

tm
C.= E (4.7)
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for all n. We assume that the series defining the C, converge absolutely. This is oer-
tainly the case if, for example, the c are bounded (in particular, if c 0) and

IY"I<00.

(4.8) LEMMA. If cn -> 0 as n - + oo, and if E I yn I < oo, then C. -+ 0.

Let M = max I c* 1. As n -> + co, we have

IC.I<-M E IYw-PI+mSxlkpl E 1Y.-'IPti, P>in P>in
t.o

5M nlyal+m IcPIEIy5I-'0.
As regards the case n - - oo, it is enough to observe that

C ,n= E cpym_,, where c,=c_, YP - I _P.

Remark. If c,, and in depend on a parameter, and the conditions imposed on C
and y,, are satisfied uniformly, then C,, -+ 0 uniformly.

We shall be occupied a good deal with series Ey,, ei"z which satisfy the condition

F'InynI <00.

The condition is satisfied if, for instance, My,, et is the development of a function
having three continuous derivatives.

Let
rn=EIYPI (n,0),

E I ny,. I < oc is equivalent to Ern < oo. For

rn = E I YP I (n < 0).

M z, C C
E(r,,+r_n)=E
R-1 n-IP-n r-1

(4.9) THEOREM OF RAJCHMAN. Suppose that E I ny I <oo, and that Eyneiu
converges to sum A(x). Then the two aeries

+m +C
C. etnz A(x) Cn et'

are uniformly equiconvergent. In particular, if A(x) is 0 in a set E, ECnei.x converges
uniformly to 0 in E.

We first prove the special case. Let

stn:Rk(x) in
n;Ok

If zo E, then Rk(z0) I rk, I R-k(xo) I k-1

for k > 0, and so E I Rk(xo) I converges uniformly in E. Now

Sn.(z0) = E C. a'- = E el"z' E cPYn-Pn--n, n--nt P--W
+`ao m

OP e{PZu E Yn-P tun-P)zi
P--m n--tn

+m +m
CP etP R-w.-D(x0) - ` cP e[pzi R.-9+1(x0)'

P--m P--40



332 Riemann'8 theory of trigonometric series [ix

Applying Lemma (4.8) (with cp e{- and R,(xo) for cp and yp) and the Remark to it,
we see that Sm(xo) tends uniformly to 0 in E.

The result just obtained remains valid even if the c" and y" in (4.4) and (4.5) them-
selves depend on the variable x, provided that the formal product of the two series is
defined by (4.6) and (4.7); for the result is nothing but a theorem on the Laurent
multiplication of arbitrary two-way infinite series. Using this observation we can easily
prove the general statement in (4.9).

Write
Yo = Yo - A(x), yn = y" for n40,

and consider the formal product EC.*et"= of Ec" a{TMs and Ey" es". The remainders
R''. (x) of EyA e;"x satisfy the inequalities

for k > 0. Hence ECn e' converges uniformly to 0 for all x and (4.9) follows if we
observe that (J (4.10)

We state separately a number of immediate corollaries of (4.9).

(4.11) THEOREM. If A(xo) $ 0, a necessary and sufficient condition that W. ei"o
should converge is that Ec" e' ° should converge.

Let T be any linear method of summation satisfying the conditions of regularity
(Chapter III, § 1). Observing that since ECn e"7P converges to 0 it is summable T to
0, we obtain the following:

(4.12) THEOREM. If A(xo)*0, a necessary and sufficient condition that EC"e' .
should be summable T is that It,, e'-, should be summable T. If the sum of the latter
series is e, the sum of the former is A(xo) 8.

(4.13) THEOREM. If Ec"e"'S is uniformly convergent, or summable T, over a set 4', so is
EC"ei"=. The converse is also true if I A(x) I >_ e > 0 in e

Theorem (4.11) can be completed by considering limits of indetermination of the
partial sums. Restricting ourselves to the case of ordinary convergence (there is no
difficulty in stating a result for summability T) we have:

(4.14) THEOREM. If the upper and lower sums of Lc,, e{-T- are e, 8, then the upper and
lower sums of EC" a"'xi are A(xo) s, A(xo) s if A(xo) > 0, and A(xo) 8, A(xo) a if A(xo) < 0.

We now prove an analogue of (4.9) for the series

Ec"e"ef"; (e"= -isignn) (4.15)
conjugate to F.c"e"'Z.

(4.16) THEOREM. Under the hypotheses of (4.9), the series

EC"s"ei"s, EA(x)c"e"ei"s (4.17)

are uniformly equiconvergent in the wider sense. In particular, if k(x) = 0 in a set E the
series

W. C. ei"= (4.18)

conjugate to the formal product converges uniformly in E.
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Let 3 (xo) denote the partial sum of (4.18). Writing c =c. e' -T* and defining C.
and y. similarly, we have

rr m » +m +m m

ai,,(x0)_ En en 1p yn-p 1: Cp Yn-pen
-m -m p=-m p=-m 2tn

+m m
-i ; Cp E(yn-p-y' ,.-p)p.-ao K=1

= - i I cp{R1-p(xo)-Rm-p+1(xo)-R_._p(xo)+R_p(xo)}.

It follows, by the same proof as for (4.9), that if A vanishes in E, and xoe E, then

,9m(xo) - - i X C;{R1-p(xo) + R-p(xo)},

uniformly in xo. This gives the second part of (4.16).
To prove the general statement, we use the same device as before and consider the

formal product EC,*, ei- of Ec e° and Eyw et-. The coefficients CO,, depend on x,
but if we define the series 'conjugate' to ECn e'"Z as EC:c. e{"', the latter series will be
uniformly convergent, as the proof just given shows, and it is enough to apply (4.10).

The following is one of the corollaries of (4.16).

(4.19) TuaoaB,m. If Ee.e,e*- is uniformly summable T over a ad d, so is ECe"e' .
The converse is also true if I .I(x) I ' e > 0 in 8.

A feature of Theorems (4.9) and (4.16) is that we suppose next to nothing about one
of the factors of the formal product, while we impose rather stringent conditions on
the other. However, if the first series is a Fourier series, the conditions imposed upon
the second can be relaxed. It is not difficult to see that Theorems (6.7) and (6.10) of
Chapter II may be considered as theorems on the formal multiplication of trigono-
metric series in the case when the 'bad' series is a Fourier series.

We now pass to the proof of (4.3).
Let T be a linear method of summation satisfying conditions (i), (ii) and (iii) of

regularity (Chapter III, § 1). We say that T is of type U if every trigonometric series
with coefficients tending to 0 and summable T to a finite and integrable function f(x)
is S[ f ]. In § 3 we proved that ordinary convergence and Riemann summability are both
of type U.

In what follows we frequently consider formal products of trigonometric series by
the Fourier series of a function A. We suppose always that A has a continuous third
derivative. Then the coefficients of A are O(n-3) and we can apply Theorems (4.9) and
(4.16). It will also be convenient to suppose that if of two functions O(x) and Or(x) one
is equal to 0 in an interval (a,,8), the product O* is defined and equal to 0 in (a,,8),
even if the other factor is not defined in the interval.

We first prove the following result:

(4.20) TAaoaaas. LetT be any method of summation of type U. If Ec.e{"=, with
is summable T for a < x < b to a finite and integrable function &), then in any interval
(a', b') totally interior to (a, b) the series is uniformly equieonvergent with S[Af], where
A(x) is equal to 1 in (a', b') and equal to 0 outside (a, b). The series and S[Af ]
are uniformly equiconvergent in the wider sense in (a', b').
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To prove the first part of the theorem we observe that the formal product of Ecne{n=
and S[A] converges to 0 outside (a, b) and is summable T to .If in (a, b). Hence the
product is summable T in the whole interval (0, 2n) to sum Af. This sum is integrable.
Hence the product is S[Af], and we apply (4.9). To obtain the second part of the
theorem we apply (4.16).

We are now in a position to prove (4.3).
Let S = S1- Ss. We have to show that both S and its conjugate converge uniformly

over (a', b'), and that the sum of the former series is 0. Integrating S termwise twice,
we obtain a function F(x) = F1(x) - F,(x) which is linear in (a, b). Since D1F(x) = 0 for
each x interior to (a, b), S is summable R to 0 for a < x < b and it is enough to apply
(4.20) with f = 0.

As a special case of (4.3) we have the following theorem:

(4.21) THEoREM. Let S be a trigonometric aeries With coefficients tending to 0, and
let F(x) be the sum of the series obtained by integrating S termwise twice. Suppose that

F(x)=Ax+B+ fa dy f af(t)dt (a<x<b), (4.22)
a

where A and B are constants and f is integrable over (a, b). Let f'(x) be equal to f (z) in
(a, b) and to 0 elsewhere. Then S and S[f'] are uniformly equiconvergent in every interval
(a', b') totally interior to (a, b); and 9 and [ f *] are uniformly equiconvergent in the wider
sense in (a', b').

It is enough to observe that Fourier series may be integrated termwise; hence
if F1(x) is the sum of S[f ] integrated termwise twice, F1(x) satisfies an equation similar
to (4.22), and so F(x) - F1(x) is linear in (a, b).

A special case of (4.3), which was actually used in the proof of the theorem, deserves
a separate statement:

(4.23) THEOREM. If the sum F(x) of a trigonometric series 8 integrated termwise
twice is linear in (a, b), then S and ,$ are uniformly convergent in every interval interior
to (a, b), the sum of S being 0.

The following theorem gives an equivalent form of the condition (4.22):

(4.24) THEOREM. Let S = F(x) = &ao z° - E'A (x)/n1, and consider the series

}aox + E (a, sin nx - b oos nx)/n. (4.25)
1

We have (4.22) for a < x < b if and only if (4.25) converges uniformly in the closed interval
a <- x < b to an indefinite integral off.

We may suppose that ao = 0, so that both F and (4.25) are periodic. Let F1 be
the F corresponding to (4.25). If F satisfies (4.22) for a<x<b, then F1, which is
obtained by integrating (4.2), is equal in (a, b) to a third (repeated) integral of f and
is a second integral of the absolutely continuous function

L(x) =A +faz fdt. (4.26)
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Since Fourier series of absolutely continuous functions converge uniformly, an
application of (4.20) to the series (4.26) shows that (4-25) converges uniformly to sum
(4.26) in every (a', b') interior to (a, b). By (2.19), (4-25) converges to L(x) uniformly
in (a, b). Conversely, if (4-25) converges uniformly in (a, b) to (4.28), termwise integra-
tion of (4-25) immediately gives (4.22) in (a, b). The same conclusion holds if we only
assume that (4.25) converges to (4.26) at every x interior to (a, b); for, by (4-20), the
series (4.26) must converge uniformly in every (a', b') interior to (a, b) and so, by (2.19),
uniformly in (a, b).

(4.27) THEoR$M. If EA,,(x) converges in (a, b), except possibly for a denumerable set
of points, to a finite and integrable function fix), then }ao-x + EB (x)/n converges uniformly
in (a, 6) to an indefinite integral off.

By (3-23), F satisfies (4.22) in (a, b) and it is enough to apply (4.24).
Suppose that is S'[D], where D is a function which in an interval (a, b) is the

indefinite integral of an f e L(a, b). We then call the series a restricted Fourier series
associated with the interval (a, b) and function f. Of course, the a,,, b heed not tend
to 0 (though they must be o(n)).

(4.28) THEOREM. Let S, with coefficients tending to 0, be a restricted Fourier series
associated with (a, b) and f, and let f' be equal to f in (a, b) and to 0 elsewhere. Then S and
S[f'] are uniformly equiconvergent in every interval (a', b') interior to (a, b); S and 9[f
are, in (a', b'), uniformly equiconvergent in the wider sense.

This is a corollary of (4.21), since the F(x) corresponding to S satisfies the condition
(4.22) in (a, b).

Return to the principle of localization. Riemann deduced it from an important
formula which we are now going to prove in a somewhat more general form.

Let a < a'< Y< b, and let A(x) be a function equal to 1 in (a', b'), equal to 0 outside
(a, b) and having coefficients O(n-a). The latter condition could be relaxed but the
point is without importance.

(4.29) THEOREM. Let EAk(x) have coefficients tending to 0 and let

F(x)=}a0x'-F.'An(x)/n .

Then the sequences

f}aa0+ E (akcos kx+bksin kx)- 1 F(t)h(t) a= t) dt, (4-30)
k-1 n dt

b d2
E (aksinkx-bkcoskx)- 1 I F(t)A(t) .D,,(x-t)dl (4.31)

k-1 a

converge uniformly in (a', b'). In the case of (4.30) the limit is 0.

D,, and P. denote the Dirichlet kernel and the conjugate Dirichlet kernel. Since
the integrals (4-30) and (4.31) depend only on the values of F(x) in the interval (a, b),
the theorem includes the principle of localization.

To grasp the meaning of the theorem, suppose for simplicity that ao = 0 and denote
EAk(x) by S; F is then periodic and has coefficients o(n-=). Assume for the moment that
the formal product S[F] S[A] = has coefficients o(n-2) (this is easy to show, but is
not needed for the proof of (4.29)). Then FA - Co may be considered as the function F,(x)
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corresponding to a trigonometric series S1 with coefficients tending too. Since A= 1, and
so F = FI + CO, in (a', b'), the difference S --- S, converges uniformly to 0 in every interval
(a", b') interior to (a', b') (see (4.3)). But (4.30) is the difference of the nth partial sums
of the series S and S"[FI] = S1. Hence (4.30) converges to 0 uniformly in every interval
(a', b') interior to (a', b'); and a similar argument proves the uniform convergence of
(4.31) in (a', b'). In other words, Riemann's formulae are, very nearly, consequences
of the principle of localization. The only drawback of this argument is that it gives
convergence in (a', b') and not in (a', b'). Though this point is of minor importance,
we shall prove the theorem in its complete form partly for aesthetic reasons and
partly because the above argument cannot be applied to the case a' = b' (considered
by Riemann).

(4.32) LEMMA. If V and W are trigonometric seriee, then

(VW)'=V'W+2V'W'+VW',
where products are formal products and dashes denote termwise differentiation.

If c,,, y,,, C are the coefficients of V, W, V W respectively, then the nth coefficient
of(VW)'is

and it is enough to observe that

+

-n2= -(n-p)1+2i(n-p)ip-p'.
The argument presupposes that the formal products in (4.32) exist.

Returning to (4.29), suppose that ao = 0 and denote EAk(x) ay S. The difference
(4.30) is the nth partial sum of the series

S - S'[F,I] = S - (S[F] 5(A))'

_ (S - S'[F] S[3]) - 2S'[F] S'[,l] - S[F]S'[.I].
Since S'[F] = S, we have

S - S'[FA] = SS[ 1- A] - 2S'[F] S'[A] - S[F] S'[A]. (4.33)

Observing that S, S'[F], S[F] have coefficients tending to 0, and S[1-A], S'[A], S'[A] have
coefficients O(n--3) and converge to 0 in (a', b'), we deduce from (4.9) that S - S'[FA]
converges uniformlyto 0 in (a', b'). This gives the first half of the theorem. Toprovethe
second half, we note that, by (4.16), the series conjugate to each of the products on
the right of (4.33) converge uniformly over (a',b'), and that (4.31) is the nth partial
rum of the series conjugate to

Since the general series can be represented as a sum of two series, one con-
sisting of the single term Ja0 and the other of the remaining terms, it remains to prove
(4.29) in the case S = Fao. Integrating by parts twice we see that (4.30) and (4.31)
are then equal to

}ao - n
u

{F(t) A(t)}" t) dt, (434)

-1
W (F(t)

t) dt, (4.35)
n

respectively. Since F(t) _ }act= and {F(t) A(t))' _ Jao in (a', b'), the simplest criteria
for the convergence of Fourier series and conjugate series show that, for a'-< x b',
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the expressions (4.34) and (4.35) tend uniformly to limits, the limits of the first being
0. This completes the proof of (4.29).

Remarks. (a) We supposed that a' < b', but the theorem and its proof remain valid
if a'=b', provided A' = A' = 0 at that point. The conditions A' = A'= 0 are automatically
satisfied in the whole interval (a', b') if a' < b' and the coefficients of A are O(n-s).

(b) The proof which gave (4.29) in a somewhat weaker form, and which elucidated
the meaning of Riemann's formulae, also shows that Rajchman's method of formal
multiplication is sometimes more advantageous than the original method of Riemann.
Following Rajchman, to show that the behaviour of F outside (a, b) has no effect upon
the behaviour of S in the interior of (a, b), we multiply S by S[A], where A is a function
vanishing outside (a, b); the behaviour of SS[A) is known at every point. Riemann's
method consists in integrating S twice, multiplying the resulting function F(x) by
.l(x) and differentiating S[FA] twice. That the resulting series S, is equiconvergent
with S in (a',b') is simply Riemann's theorem; and it can easily be shown that S,
converges to 0 outside (a, b). Riemann's theorem tells us nothing about the behaviour
of S, in the remaining intervals (a, a') and (b', b). Using the theorems on formal
multiplication we can deduce this behaviour from the formula (4.33), and we see that
it involves not only the series S but also the series S'[F] obtained by a single integration
of S.

However, it must be stressed that Riemann's idea of introducing the function F
into problems of localization is of fundamental importance. The method of formal
multiplication complements it but can in no way replace it.

5. Format multiplication of trigonometric series (cont.)
We give a few more applications of the theory.

(5.1) THEOREM. Given an arbitrary closed set Eon the real axis, of period 21r, there i6
a trigonometric series with coefficients tending to zero which converges in E and divergei
elsewhere.

We know that there is a trigonometric series S with coefficients tending to zero
which diverges everywhere (Chapter VIII, §4). Let A(x) be a periodic function with
coefficients 0(n-3) which is 0 in E and different from 0 elsewhere. (See below for the
construction of A.) The formal product of S by S[A] has the required properties since.
by (4.9), it converges in E and diverges elsewhere.

Since, by (4.16), the series conjugate to the product converges in E, the power
series Ea" e'-, whose real part is that product, converges in E and diverges elsewhere.
Consequently, we have the following:

(5.2) THEOREM. For any closed set E situated on the circumference of the unit circle

there is a power series Ea"z" with coefficients tending to 0 which converges in E and
0

diverges at the remaining points of the circumference.

Return to the function A. Consider all the intervals (a,,, 6") contiguous to E and
situated in a period. Let A ,(x) be the periodic function which is

{sin }(x - a,,) sin }(x - f1J)' in (a"> f")
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and is 0 elsewhere. Set ,I(x) _ Zfnkn(x)

where the numbers 71n are positive and F'71n < co. Clearly A is 0 in E and only there,
and termwise differentiation of the last series shows that .°(x) exists and is continuous.

Remark. If the series S used in the last two proofs is a Fourier series, then we need
not appeal to the theory of formal multiplication but can use instead Theorem (6.7)
of Chapter II.

The only everywhere divergent trigonometric series with coefficients tending to 0
which we so far know is that obtained in Chapter VIII, § 4-which is in fact a Fourier
series. We give here a simpler construction (for a series that is not a Fourier series).

(5.3) TaxonuM. The aeries m k 1 1 kcoe (x - og og )E
k9 logk

diverges for every x.
Write

and set

In = [log n), L. = log log n,

In = (Ln, L.+1),
n+1. 1 cosk(x-Lk)

G'(x)=n i logklogk,

Clearly, 0n 3In/log (n+1n)-* 1, (5.4)

and, since I sin u I< I u I,
1 n+r. )'0 Z k'(x - LG (5.5)5 .,. - n(x) <

12 o n$ n+1

Suppose that x e In and k has the same range as in (5.5). Then

I x - Lk I < Ln+r, - Ln < log n < 1 /n,

by an application of the mean-value theorem to the function loglogn. Henoe

G. - pn(x) < (n ; In) In
2n' log n

The right-hand side here tends to ,) as n-,oo. Applying this and (5.4) to the equation

G,(x) = On - (Gn - a,.(x)),

we see that (4(x) stays above a fixed positive quantity, provided n is large enough.
Sinoe each x belongs (mod 2rr) to infinitely many of the intervals In, the divergence of

the series follows.
We shall now apply localization and formal multiplication to power series on the

circle of convergence.
If the series Eanzn (5.6)

0

converges at some point of the unit circle I z I =1, then an - 0. The converse is false-
the power series whose real part for z = e' is the series in (5.3) diverges at every point
on the unit circle. We have, however, the following result:

(5.7) THEOREM of FA!rou-Rissz. Suppose that an-.0, so that (5.6) converges in

I z I < 1 to a regular function ID(z). Then (5.6) converges at every point of the unit circle
where D(z) is regular, and the convergence is uniform over every closed are of regularity.
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It is enough to prove the part about uniform convergence. We may suppose, for
simplicity, that ao = 0. The continuous function

F(x)=

obtained by integrating Ea" e- termwise twice, is the boundary value, for z = e1z,
of the function

`V (z) _ dw.
o C o w

Let (a, b) be a closed arc of regularity of (Von the unit circle. Fore > 0 sufficiently small.
4) is regular on the closed are (a - e, b + e). The same holds of 11'; hence F has infinitely
many derivatives on (a - e, b + e). Let A (z) be periodic, equal to 1 in (a - je, b + je)
and to 0 outside (a-e,b+e). The function F1(x)=A(x)F(x) is periodic and has as
many derivatives as we wish (as many as A has), so that we may suppose that the
coefficients of F1 are, say, O(n-'). But then F1(x) is obtained by integrating termwise
twice a trigonometric series S1 with coefficients O(n-2). The latter series converges
uniformly, and since F = F1 on (a - }e, b + }e), it follows, by (4.3), that Ea,, ei- and
S1 are uniformly equiconvergent on (a, b), that is, Ea" ei- converges uniformly on
(a, b). This proves the theorem.

If ei2o is a point of regularity of 4) and Ea" ei"-'o converges to s, then

a = lim Ea"r" ei"As = lim 4)(r eizo) _ O(eimo).
H1 H]

Hence (5.6) converges to 0 at every point eir of regularity.
The condition imposed upon the behaviour of 4) on the circle of convergence can

be considerably relaxed. If we only know that in (a, b) F(x) is a second integral of a
function f (which is certainly the case if, for instance, Ea" ei"x is uniformly summable
A on (a, b), f being then continuous), it is enough to assume that f satisfies one of the
tests for the convergence of Fourier series.

The proof of the theorem that follows, which contains (5.7) as a special case, employs
this idea.

(5-8) THEOREM. Let a" 0, and let 4D(z)=ao+alz+a=z2+..., I z l < 1. Let I' be a
sector of I z < 1 having the circular arc I (z = e{2, a 5 x < b) on its boundary. Suppose
that the integral rr

J=JJ I (D'(ret2)I 2rdrdz (5.9)
r

is.fiinite. (This is certainly the case if, for example, (D is univalent and bounded in I'.)
Then Ea"z" converges at almost all points of I; and converges uniformly on every arc I'
totally interior to I. if (D(z) admits of a continuous extension to I.

If r coincides with I z I < 1, (5.8) reduces to Theorem (10.6) of Chapter VII.
1

The finiteness of J implies the finiteness of J I (D'(rei-) dr, and so also of
0

f'O
I 4)'(rei=) I dr, for almost all x in (a, b). In particular, the radial limit

O(ei=) = lim O(re") = lim +
r-+1 r-.1 0 111

exists for almost all x in (a, b).
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Let 0 < r < r1 < 1. Making first r1 -1 and then r -> I in

ft b(r1e)-4(re) idx
a

b
we see thatf Ia(eix)-m(reix)Iidx-.0 as r-- 1. In particular, 0(02) 4E LI(a, b). It

s
follows immediately that

I
{O(et") -1(rei")}du (ei") du - Fa*(in)-1r" (5.10)

a

uniformly in a -< 6 -< b.
This implies that Ea"(in)-1(ei*"}ta is uniformly summable A, and so, by Tauber's

theorem (Chapter III, (1.36)), uniformly convergent in a b. Thus

f
e

O(ei") du = Fa*(in)-1(ei"4 - e-tao) (a <-f <,b).
a

Integrating this with respect to 6 we deduce that F.a*(in)-1 ei"a converges, and that
F(x) differs from the second integral of I(eit) by a linear function. We show that
4 (eiz) satisfies condition A in every interval (a', b') totally interior to (a, b), i.e. that

b'

14D(et(z+h)) - gb(eix) 12 dx = o(h). (5.11)

Since functions in A satisfy Lebesgue's test for the convergence of Fourier series
(Chapter II, (11.10)t, (5.8) will follow by (4.21).

Suppose, for example, that h > 0. If x and z + A are in (a, b), and O(eix) and O(ei' ))

exist, we have
r

IO(euz+h))-O(eiz)I , m'(z)dzI+

1
'(z)dzI+J m'(z)dzP+Q+R, (5'12)

where C 1 is the segment z = p eu, 1 - h < p < 1 ; C 2 is the are z = (1- h) et", x <- u -< x + h ;
and Ci is the segment z = peux+h), 1- h s p -< 1.

We easily see that ff rr

Ja
Pidz511 a,dal-hIV(Pel)Iidp=o(h),

and similarly f' Ridx = o(h). If we also show that f Q2dx = o(h), (5.11) will follow.
a

Let (a', b') be an interval containing (a', b') and contained in (a, b). Write rh =1- h.
For h small enough, we have

'

E
8 e' rx+h D'

J
Q2dx-< h f dxJ 4Y(rheta) I2du-< hif I '(rhei") I'du. (5.13)

E .11 a z a'
For any ze on the arc z = rh eiu, a' < u < b', with h small enough and 0 < or < h, we also
have

'(zb) < 2n,r" I V(zb+ei#) Iido.

Multiplying this by a and integrating over 0 < o < h, we obtain

0 d,
/(z) ,I ("z.) Ii 5 hi 55 I

t The argument there is given for functions in li (0, 2ff), but remains valid in our case.

fb ry i b

= J a it (Pe'x) dp (rl - r)J f fr, I (p&)
I i dxdp <-

1-r
r J
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where dig is an element of area. The last integral can also be written

F,(z) I2X(z; zo,h) dw+f zI<1

where X(z; z0, h) is the characteristic function of the circle with centre zo and radius h.
Hence, by (5.13).

e rb

f
l

fa X(z;roc h)dadu

(

b"

=,r-1
,I<1 I F'(z) X(z;

rheid h) du) dw.

The inner integral on the right is 0 if I z 1 - 2h; it is also 0 if z is outside I' and h is
small enough; for z in r and satisfying I z 3 1- 2h the integral is 0(h). Hence

Jb,Qsdx=O(h) f bdu f 1 I
V(Pei") dp=o(h)... I- 2A

This completes the proof of (5.8).

In the remainder of this section we give a few more theorems on the multiplication
of trigonometric series.

Consider two series S = Ee" e72, T = Ey,, ei"r,

and their product ST = EC" of"s (CC = E cn y5).
D+Q-n

The numbers C are defined and tend to 0 as provided

c,,-+0, EiyQI<ao.

Simple examples show that, if E I yQ I < oo, the mere vanishing of

O(x) = EYa ei'

(5.14)

(5.15)

at a point xe does not guarantee the convergence of ST at xQ (see example 19 at the
end of the chapter). Part (i) of the theorem that follows shows that the situation is
different if 0 vanishes in a neighbourhood of xQ:

(5.16) THEOREM. Suppose (5.14) is eati8fied and write O(x) = Ey" ef"s. Then
(i) if 0 = 0 in an interval (a, b), both the product ST and its conjugate (ST) converge

uniformly in every subinterval (a + e, b - e), the sum of ST being 0;
(ii) if there is a function .1(x) which coincides in (a, b) with q(x) and i8 such that

S[01] = Ey;, el' satisfies F I ny i I < oo then in every (a + e, b - e) the two series

ST - 95(x) S, (ST) - &) S
converge uniformly, and the Bum of the first i8 0.

The proof of (i) is based on the following lemma:

(5.17) LEMMA. Under the hypothesis (5.14), and denoting by U = Ed" ei"= any
absolutely convergent trigonometric series, we have the associativity relation

(ST) U=S(TU). (5.18)

Since the coefficients of ST tend to 0, the left-hand side of (5.18) is defined, and
its nth coefficient is E (E c, y,) dt = E c, y, dt,

Q+t-nr+i-Q r+t+t-"
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the series on the right being absolutely convergent. Since T U converges absolutely,
the right-hand side of (5.18) is also defined and its nth coefficient is.

E (E y,a,) c, = E C,.7,.
r+q-n,+t-q r+849-ft

This proves the lemma. (Of course, the assumption c,,=O(I) would have been
sufficient.)

Let U = S[A], where A equals I in (a + e, b - e), equals 0 outside (a, b), and has coeffi-
cients 0(n-3). Since T U =- 0, (5.18) shows that (ST) U converges uniformly to 0, and,
using (4.9), we see that ST converges uniformly to 0 in (a + e, b - e). This implies that
(ST) converges uniformly in (a + 2e, b - 2e), and so also in (a + e, b - e).

To prove (ii) we write ST = SS[A] = SS[c - c61] + SS[01].

By (i), SS[¢ - 01] converges uniformly to 0 in (a + e, b - e) and, by (4.9), SS[O1] is
uniformly equiconvergent with 01(x) S = ¢(x) S in (a, b). Hence ST is uniformly
equiconvergent with O(x) S in (a + e, b - e). Similarly we prove the result about (AFT).

(5.19) THEOREM. Let S = Ec, ew , where c, --> 0, and let T = Ey, el-, where E I y, I < co.
Then:

(i) if S converges to 0 in a < x < b, so does ST;
(ii) if S converges in (a, b) to a finite f E L(a, b) or, more generally, if the function F

obtained by integrating S termwise twice is, in (a, b), the second integral of an f 4E L(a, b)
then in every interval (a', b') interior to (a, b) ST is uniformly equiconvergent with S[of *],
where ¢(x) is the sum of Ey, e'-, and f * =f in (a, b) and f * = 0 elsewhere.

(i) If c,-* 0. E I y, I <oo, and if U is any absolutely convergent series, we have a
formula (ST) U=(SU)T,
which is proved in the same way as (5.18). Let now U = S[A], where A is the same as
above. Since SU converges to 0 everywhere, and so is identically 0, the same holds
for (SU) T = (ST) U, which implies that ST converges uniformly to 0 in (a', fl.

(ii) By (4-3), S = S[f *) + S1, where Sl converges to 0 in a < x < b, and it is enough to
observe that S[f *] T = S[¢f *] and that, by (i), ST converges to 0 in a < x < b.

(5.20) THEOREM. If two trigonometric series S and T have coefficients o(l/n) and
0(1/n) respectively and converge at x0 to sums s and t, then the product ST converges at
x0 to sum st.

The conclusion of the theorem is false if both S and T have coefficients 0(1/n).
For if S = T = En-1 sin nx, both series converge at x = 0 to sum 0, whilst ST, which is
the Fourier series of {J(a - x))2 in J x ii, converges at x = 0 to }n' (cf. Example 21 on
p. 371).

We may suppose that xo = 0. By subtracting 8 from the constant term of S, we may
also suppose that 8 = 0. Let

r n w

8n= FiCr, to= y,, Sn= FiCr-
-n -n -w

The series defining the C, converge absolutely, and
n +m +W w-p

cP y-P Cp yr,
y--%P--m p--w r--,t-p

+ E + E + =P1+P,+P3+P*.
Iplc}w to<Iplcn w<Iplcsw IPI> '
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We have to show that S. -+ 0. (We shall see that in our special case, e = 0, it is enough
to suppose that t = 0(l).)

Let m = [}n). For I p I ` m, considering separately p positive and negative, we have
n-p n-IPI n+IPI
E Y.= E Y.+O E - , (5.21)v--n-P -(n-IPI) n-IPI+1 '

n-P r

so that .aEn-p l

and
1 ILI

P1= E Cptn_Ipl+- E O(1)= E(8p-BP_1)tn-1,+O(l)
Iplc+n nlpIGss p-0

0
=Z8 p(tny-

\
p-0

1Eo(1)+0(1)=o(1).= ap0( 1 I+o(1) =0(),_0
p-o n-p n

Using (5.21) also form < I p < n, we have

A- E o(l)tn-Ipl+ E o(p1()logn+lp +0(1)
,n<IpI<n p w<IPI< I n- p

pl+o(1)
n+n<O(1) +0(1}IPE

I<n
lognn-+I IPI

n

f=o(1) +0(1) llogi±zdx+o(1)=o(1).fi
Similarly, observing that for I p > n we have

n-D IDI+n1 r pl+n
-'£n-n P pI_n}.

we find that Ps tends to 0.
Finally, using the last equation we obtain

Pa= E +-' 0(n l -O(n) E 1 =0(1);
IPI>5" p IPI D>snp!

and collecting results, Sn = P1 + PE +Pa + Pa = o(1). This proves (5.19).
Consider the sine and the cosine developments of an f e L(0, x). While the twodevelop-

mente are uniformly equiconvergent in every interval totally interior to (0, n), their
behaviour at x = 0 (or at z = rr) may be entirely different.

(5.22) THEOREM. Suppose that m
E an sin nx,
n-:

(5.23)

CO

}ao + E a. ow nx (5.24)
n-l

are the sine and cosine developments of an f e L(0, rr). Then
(i) if an=o(1/n), (5.24) converge8 at x=0 to sum 0;

(ii) if an = 0(1/n) and f is continuous at 0, (5.24) converges uniformly at x= 0;
(iii) if an = O(1/n) and f is continuous in a neighbourhood 0 4 x.4 d, (5.24) converges

uniformly in (0, d).
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(i) Let X(x) - sign x (I x I < n). By Chapter I, (4-13),

SW=4 sin(2v+1)x2 +m e<s.+xx

IT
E 2v+ 1 ir, m i(2v-+I)

Since (5.24) is the product of (5.23) by S[yJ, (i) follows from (5.20).
(ii) An analysis of the proof of (5.19) shows that if (with the previous notation)

I881ke, Itn1k1, Iy 1 1/Inl
for all n, then I S. I _< Ac, where A is an absolute constant.

Suppose first that f ( + 0) = 0; then the partial sums s*of (5.23) converge uniformly at
z=0 (Chapter III, (3.8)). Hence, omitting if necessary the first few terms in (5.23),
we have I I _< e for I x I <,I. Since the partial sums of S[X] are uniformly bounded,
it follows that the partial sums S.(z) of (5-24) satisfy I S,(x) I _< Ac for I x I < 71, and
since the contribution to 8,(x) of the omitted terms converges uniformly to a limit,
(ii) is established. The case f (+ 0) $ 0 is reduced to the preceding one by subtract-
ing f (+ 0) S [X] from (5.23).

(iii) At every z interior to (0, ir) the uniform convergence of (5-23) implies that of
(5.24). Hence, using (ii), (5.24) converges uniformly at every point of the closed interval
(0, d), and so converges uniformly in that interval.

We may interchange the roles of the sine and cosine series in (5.22). While (i) has
no interesting counterpart, (ii) has the following analogue; if a = O( 1 /n), f is continuous
at x= 0 and f (0) = 0, then (5.23) converges uniformly at z = 0. A similar extension holds
for (iii). The proofs remain unchanged.

6. Sets of uniqueness and sets of multiplicity
A set E is called a set of uniqueness, or U-set, if every trigonometric series con-

verging to 0 outside E vanishes identically. In § 3 we showed that every denumerable
set is a U-set. If E is not denumerable but does not contain any perfect subset (such
sets exist if we assume Zermelo's axiom), E is also a U-set. This follows from the
fact that the set of points where a trigonometric series does not converge to 0 is a Borel
set, and so, if it does not contain a perfect subset, must be denumerable; this implies
that the series vanishes identically.

If E is a U-set, so is every subset of E.
A set E which is not a U-set is called a set of multiplicity, or M-set. If E is an M-set,

then there is a trigonometric series which converges to 0 outside E but does not vanish
identically.

Every set E of positive measure is an M-set. For let El be a subset of E which is perfect
and of positive measure, and let f (x) be the characteristic function of El. The Fourier
series of f converges to 0 outside El, and so also outside E, but does not vanish
identically since its constant term is I El 1/21r > 0.

It follows that it is only the case of sets of measure 0 which requires study, and it is
a very curious fact that among perfect sets of measure 0 we find both U-sets and M-sets.
Whether a given set E of measure 0 is of type U or M seems to depend rather on the
arithmetic than on the metric properties of E, and the problem of characterizing, in
structural terms, sets U and M is still open.

We shall now construct a family of perfect U-sets.
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(6.1) THEOREM. A set E is a U-set if there exists a sequence of periodic functions
A1(x), Alt(x), ... having the following properties:

(i) all AA, vanish on E;

(ii) each S[ak] = Eyk ei- satisfies EI nvk I < ro;

(iii) I I yk I < A (k = 1, 2, ... ; A independent of k);
n

(iv) 11myk=0forn+0;
k

(v) lim sup I yo I > O.t
We may assume that I E 0. Suppose that

+,
S cnei- (6.2)

converges to 0 outside E; by (1 -2), cn->0. By (i) and (ii), and (4-9), the product

SS[A] = ECk sins

converges to 0 both in E (since A = 0 in E) and outside E (since S converges to 0 out-
side E). It follows that the product vanishes identically. In particular

Co =>.c_nyw =c0Y. +E,c-nyk=0.

But (iii) and (iv) imply that, for fixed N,

j;' c,yk-+0 as k-+oo,
IaI<N

I E c-nYk A max I cn
n2NMIN

It follows that E'c_nyn -+ 0 as k -+oo,

and so ceyo 0, which, by (v), gives co = 0.
Hence the constant term of every series S converging to 0 outside E is 0. This shows

that all the coefficients of S must be 0; for if ek+0 for some k, the formal product of
S by e-iks is a series converging to 0 outside E with a non-zero constant term, which is
impossible. This completes the proof of (6.1).

(6.3) THEOREM. Seta of type H are sets of uniqueness.

Let E be of type H. This means that there exists a sequence of integers nl < n, < ...
and an interval A such that for x e E the numbers nkx are all outside A, mod 2ir. Let
it(x) be a periodic function having three continuous derivatives, equal to 0 outside
A and positive in the interior of A. We write

d(x) = EYn einx

Ak(x) = A(nkx) = EYn etnniz = EYn e"

and verify that the Ak satisfy conditions (i) -(v) of Theorem (6.1). Hence E is a U set.
In particular, Cantor's ternary set constructed on (0, 2n) is a U-set.

t Selecting a subsequence of (xk) and dividing it by suitable constants we may replace condition (v)
by (v') yt_ 1. Conditions (iv) and (v') mean that S[Ak] tends termwise to S[1].
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We now consider a generalization of H-sets. Denote points, or vectors, in the
Euclidean m-dimensional space R" by (x', x', .... x( m)). Suppose we have a sequence of
vectors V1, V,, ... with positive integral components,

V k = (nk, n ; ,. . . , n)). (6.4)

We call the sequence (Vk} normal, if for each fixed non-zero vector (a', a', ..., aG">)
with integral components we have

I a'n' + a'nk + ... + a('")n "> I -> oo as k --> oo.

By taking all the au) except one equal to 0, we see that each n (P tends to oo with k. The
sequence {Vk) is normal if, for example, nk and all the ratios nk/ni, nR/nk, ..., nj"')/ne-1)

tend to + oo.
A set E is said to be of type H"), if there is a normal sequence V1, V ... and a domain

A in R" such that for each x E E the points

(nix, nkx, ..., n '>x) (6.5)
are outside A (mod 2r) (that is, if A has no points with oo-ordinates congruent mod 2r
to the oo-ordinates in For m =1 we get H sets. It is obvious that the closure of
an HW set is also H'"'>.

(6.6) THEOREM. Seta H(m) are seta of uniqueneaa.

It is enough to consider the case m = 2, which is typical. Let R be of type H(l).
We may suppose that A is a rectangle a' < x' < b', a' < x' < V. Denote by (nk, nk) a
normal sequence such that for each x e R the point (nkx, nkx) never enters A. Let
µ1(x) = L e' be a periodic function having three oontinuous derivatives which
vanishes outside (a', b') and is positive in the interior of (a', b'); by µ,(x) = Lo', ei- we
denote an analogous function for (a', b'). The product µ1(x') µ,(x') is zero outside A,
and positive in the interior of A (mod 2n). Let

A(x) =µ1(nkx)fti(nkx)=Ed;,ea".'Ea;e ;==Ey.e" .

Clearly Ak(x) vanishes in E. Also, since the formal product ED,, 0*x of any two series
Ed,; e" and Fwd ex satisfies the inequality E I D. I < E 1 d.1 E I 1, we have

E I y.k I <(E l a:l)(Ela:=A,
0

and on differentiating S(Ak),

In'.I<Ink, I(Elva:l)(Ela:i)+Inkl(Ela.WE I4t)<oo.

Hence the Ak satisfy conditions (i), (ii) and (iii) of (6.1). We shall now show that
conditions (iv) and (v) also hold.

We write (6.7)

and first consider the case n = 0. Then

yo = ao o + E ar r.

and we show that the last sum (in which I V I + I Y' I > 0) tends to 0 as k-o. co. We fix
an N and split the sum into two, DI) and E('>, collecting in E0> all the terms with
I Y' 14 N, I Y' 14 N. Since the sequence {(ni, n0)) is normal, p'ni + Y's; cannot be 0 if
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I Y' I < N, I i' I < N, v' and v' are not simultaneously 0, and k is large enough. Hence
E''> = 0 for k large enough. In E(') either I V I or I V I must be greater than N and so

<(,T- J:)1 l8:I)+(1ry d;l)f E

Since the right-hand side is arbitrarily small for N large enough, we Bee that
DO + EM - 0 as k -> oo. This proves that ya -.dada > 0 as k -* oo, and so condition (v)
is verified.

Suppose now that n * 0. In the formula (8.7) the sum on the right does not contain
the pair (v', v') = (0, 0). Hence, arguing as before, we see that yri -; 0 for each n + 0 and
condition (iv) is established. Thus the kk satisfy all the conditions of (6.1) and E is
a U-set.

(6.8) Tnnoxam. A necessary and sufficient condition for a closed set E to be a set of
multiplicity is that there exists a function O(z), - oo < x < + eo, which is constant in each
interval contiguous to E but not constant identically, and which after subtraction of a
suitable linear function is periodic and has coefficients o(1 /n).

Suppose that S = Ecn el- converges to 0 outside E but not everywhere. By the
principle of localization, S converges uniformly in every closed interval without points
in common with E. Therefore, integrating S termwise, we see that in the equation

N(x) = cox + E'c,, (in)-' et-, (6.9)

the series on the right converges outside E, that the sum 4)(z) is constant in each
interval contiguous to E, that the periodic part of the series is S[O - cox], and that its
coefficients are o(1/n). The function' cannot be constant identically, since otherwise
the periodic part of 'b would be equal to a linear function; and this is only possible
when co = 0 and c1= c_1= cs = ... = 0.

Conversely, suppose that there is a function O(x) which is constant in each interval
contiguous to E but not constant identically, and for which, with a suitable co, 0 - cox
is periodic and has coefficients o(l/n). We write

O(x) - cox ~ C + E'c"(in)-1 e4"s, (6.10)

where c" 0. Let SS = E'c,, el- be the series obtained by termwise differentiation of
the right-hand side. Since Fourier series can be integrated termwise, the Riemann
function F1= - E'c" n-' ei7z associated with Sl and obtained by integrating the series
E' in (6.10) differs from - }cox' by a linear function, in each interval contiguous to E.
By the principle of localization, (4.3), Sl converges to -co outside E, that is,

S=co+S1=Ec"ei"s

converges to 0 outside E. The series S cannot vanish identically, since this, together
with (6.10), would imply that 4) is identically constant. Hence E is an M-set.

Remark. If E is a set of multiplicity then there is a trigonometric aeries converging to
0 outside E but not everywhere and having constant term 0. Suppose that S converges to
0 outside E but not everywhere ; S must have at least one non-zero coefficient ck. If l # k,

T e-41- S
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is the required example: it has constant term 0, converges to 0 outside E but not
everywhere, since the set E1 of points at which S does not converge to 0 is certainly
infinite and, by (4-9), T converges to 0 only in a finite subset of E1, namely at those
points where ck e- a2 - ct e-ikx = 0.

An immediate consequence of this is that, if E is a closed set of multiplicity, then
there exists a periodic function m(x) constant in the intervals contiguous to E, but not
everywhere, and having coefficients o(1/n).

We call a set E a set of multiplicity in the restricted sense, or Mo-set, if there is a
Fourier-Stieltjes series S[d(D] converging to 0 outside E but not everywhere. If
E I = 0 (the only interesting case), then I'(x) = 0 almost everywhere (see Chapter III,

(8.1)) and 0 is singular.

(6.11) THEOREM. A necessary and sufficient condition for a closed set E to be an
Mo-set is that there exists a function O(x), of bounded variation over every finite interval,
constant in each interval contiguous to E but not in (-co, +oo), satisfying the condition

(D(z+ 2rr) - O(x) = 4?(2rr) - 0(0), (6.12)

and having Fourier-Stieltjes coefficients tending to zero.

The proof is similar to that of (6.8). Suppose that S = S[d(D] = Ec e(1z converges
to 0 outside E. Then the Fourier coefficients of dm tend to 0, the function 11 is, up to
an additive constant, given by (6.9) and so, as the proof of the necessity part in (6.8)
shows, is constant in each interval contiguous to E but not in (-oo, +oo). Moreover,
(6.9) implies (6.12). Conversely, suppose that there is a function 0 having the pro-
perties stated in Theorem (6.11). The proof of the sufficiency part of (6.8) shows that
S=S[d(D] converges to 0 outside E but not everywhere.

As in the case of M-sets, we can replace the condition (6.12) by that of periodicity
of (.

In connexion with (6.11), we recall the fact that if the coefficients of d' tend to 0,
then 0 is necessarily continuous (Chapter III, (9-6)).

(6.13) THEOREM. Let E be a closed U-set and fi(x), - oo < x < + oo, a function which
is of bounded variation in (0, 2n), satisfies (6-12), and is constant in each interval con-
tiguous to E but not constant identically. Then the coefficients of d' are not o(1), and the
coefficients of 41(x), 0 <x < 21r, are not o(1/n).

That the coefficients of d(D do not tend to 0 follows from (8.11). If 41(2ir - 0) * 41(+ 0),
the function 41(x) continued periodically from 0 < x < 2n has jumps, and so its coeffi-
cients are (trivially) not o(1/n). If (D(21r -0)=0(0), then S[d41]=S'[41], and since the
coefficients of d41 do not tend to 0, those of (D(z), 0 <x < 2n, are not o(1/n).

(6.14) THEOREM OF MExgOV. There exist perfect M-sets of measure 0.

We do not give the original construction of Menchov, since the theorem is a con-
sequence of results which will be proved later, and which we assume here.

Fix a number 6, 0 < f < 4, and denote by E(f) the set of 'constant ratio of dissection'
(Chapter V, § 3) which we construct on (0, 21r) by subdividing at each stage the 'white'
intervals in the ratio 6, 1 - 26, 6 and removing the central part. The measure of E(f)
is 0. Let m(x) be the Lebesgue singular function associated with E(f). In Chapter V,
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(3.5) we have obtained explicit formulae for the coefficients cn of do. The problem of
the behaviour of the c as n --3,. oo will be solved in Chapter XII, § 11, where we show that
c * o(l) if and only if 0 =1/9 is an algebraic integer all whose conjugates are of modulus
less than 1. It follows that except for such Vs, which form a denumerable set, we always
have en -0, and is, by (8.11), an M- (indeed MO-) set.

Algebraic integers whose conjugates are all in the interior of the unit circle will be
called S numbers.

Remarks. (a) The result just stated shows that, among the sets E(f), sets M are more
numerous than sets U.

(b) The result does not say anything about the U or M character of E(f) if 0 is an S
number, since it merely asserts that the coefficients of a special function 0 do not
tend to 0. In the particular case, however, when 0 is a rational integer (8=3,4,...)'
E(6) = E(1/9) is an H-set (see § 1) and so a U-set.

(c) Though all the sets E(f) are of measure 0, it is natural to think that the `thick-
ness' of E(C) increases with f . In particular, E(1) is `thicker' than E(,). None the less
E(3), as an H-set, is a set of uniqueness, while E(4) is a set of multiplicity. This shows
that it is not so much metric as number-theoretic properties that determine the U or
M character of a set.

If El and E= are sets of uniqueness, their sum E1+Es may be a set of multiplicity.
We obtain an example by breaking a perfect Meet of measure 0 into two subsets E1
and Es without perfect subsets. Then E1 and E, are U-sets (p. 344), but their sum is
not. The sets El and E, are of measure 0, but are not Borel sets. Whether the sum of
two U-sets measurable B is a U-set is not known. In the case of closed sets we have
the following theorem:

(6.15) Tnzoasne or N. Beat. If El, E ..., E ... are closed U-sds, their sum
E=E1+E=+... +En+... is a U-set.

The proof is based on two lemmas.

(6.16) Lsume. Let d be a dosed U-set contained in an open interval J. Suppose that
a trigonometric series S

(i) has partial sums bounded at each point of J-4';
(ii) converges to 0 almost everywhere in J.
Then it converges to 0 everywhere in J.
By (ii), the coefficients of S tend to 0. Let J1 be an open subinterval of J without

points in common with J, and let A1(x) be a function having three continuous deri-
vatives, equal to 0 outside J1, and positive in Jl. Since the partial sums of S are bounded
at each point of J1 and converge to 0 almost everywhere in J1, the formal product
S1= S[A1] S has partial sums bounded at each point of (0, 2n) and converges to 0 for
almost all x. By (3.19), S1 is identically 0, and so S converges to 0 in J1. It follows that
S converges to 0 in J-d.

If now A(x) vanishes outside J and is positive in J, the product SS[A] converges to
0 at each point not in '. Hence it vanishes identically. It follows that S converges
toO in J.

(6.17) LSMMA. A set N which is a denumerable product of open sets cannot be of the
first category on itself ; that is, it cannot be of the form EN;, where the Nt are non-dense on N.
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When N is a closed set, this is Theorem (12.1) of Chapter I. The proof in the general
case is similar. We denote by J1, J ... open intervals and by J, J, ... their closures.
Write N = G1 G, ... , where the Gi are open sets. By hypothesis, there is a JJ such that
J1N is not empty and J1 has no point in common with NN; we may also suppose that
Jlc G1. Similarly, there is a J, such that J,cJ1, J,N is not empty and J, has no point
in common with N,; moreover J,cG,. Generally there is a J. such that
is not empty, j,, has no point in common with N,, and G,,, n=2,3,.... Since
J1DJ,3... and there is a point zo common to all j,, and this point also belongs
to N - G, G,.... But since x, a J,,, x, cannot be in Nn for any n. This contradicts
N = ENn and proves the lemma.

Return to (6.15) and suppose that there is a trigonometric series S converging to
0 outside E but not everywhere. Since I E _< E' En = 0, S converges to 0 for almost
all x. Let N be the set of points at which the partial sums of S are unbounded. N is
not empty; for otherwise, by (3.19), S would be identically zero.

It was shown in Chapter I, § 12, that N is a denumerable product of open sets. Write
N{ = NEt. We have

N = NE = NEE1 = EN1.

By (6.17), some N1, say N=., is not non-dense on N; thus there is an open interval J
such that NJ is not empty and N;.J = E1. NJ is dense on NJ. Since B1, is closed, we
have E,. NJ = NJ and, in particular,

NJc Eye J,

which means that a certain portion of N consists entirely of points of E.
By reducing J if necessary, we may suppose that the end-points of J are not in Et..

Hence the set = E1, J = E,a J is a closed set of uniqueness situated in the open interval
J. Since S converges to 0 almost everywhere in J and since at every point of the set

J-4f =J-E11JcJ-NJ
the partial sums of S are bounded, Lemma (6.16) shows that S converges to 0 in J.
This contradicts the fact that NJ $ 0 and proves (6.15).

Given any set E, denote by EA the set of points Ax, where xeE. The proof of the
following theorem must be postponed to Chapter XVI, §10:

(6.18) THEOREM. Suppose that E and E,A are both subsets of (0, 2n). Then, if E is a
U-set, so is EA.

The remaining two theorems of the section deal with slightly different aspects of
the theory of sets of uniqueness.

We call any set E of measure 0 a U'-set if it has the following property: if a trigono-
metric series S converges outside E to a finite and integrable function f, then S = S[ f).
Every U"-set is also a U-set. Whether the converse is true is not known, except in the
case of a closed E:

(6.19) THEOREM. Let E be any closed ad of measure 0 situated in (0, 2n) and S any
trigonometric series which converges outside E to a finite and integrable function f. Then
the difference S1= S - S[f] is a series which converges to 0 outside E. In particular.
8 =S[f] if E is a U-set.
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This is immediate. For in each interval contiguous to E the Riemann function ob-
tained by integrating S twice differs from the second integral off by a linear function.
Since the same holds for S[ f ], the principle of localization shows that Sl converges to
0 outside E.

The hypothesis of (6.19) can be somewhat relaxed by assuming, instead of the con-
vergence of S, that the upper and lower sums f and f,, of S are finite at each
point outside E (except for a denumerable set) and are integrable. Then f =f, almost
everywhere and S-S[f *j converges to 0 outside E.

Return to U-sets. Let e = (co, el, e2, ...) be a sequence of positive numbers tending
monotonically to 0. We call E a U(e)-set if every series S = Fc,, ef"s converging to 0
outside E and satisfying the condition I

cwI _<eInl (6.20)

for all n necessarily vanishes identically. Of course if two sequences e and e' are
multiples of each other, the U(e) and U(e') sets are the same.

(6.21) THEOREM. For each sequence e = (co, e1, ...) decreasing moxotonieaUy to 0,
no natter how slowly, there exist U(e)-sets of positive measure.

The proof is similar to the proof that H-sets are U-sets.
Denote the distance of x from the nearest integer by {x}; thus 0 < (x) }. Let

dl, J,... be a sequence of positive numbers, less than 4 and tending to 0, to be deter-
mined later; and let E. be the set of points in (- ir, n) at which

{nx/2n} 3 8,,. (6.22)

The intervals constituting E are separated by intervals of length We fix a
sequence n1 < n2 < ... and set E = E,,, E,..... (6.23)

We first show that if {nk} increases fast enough, then I E I > 0. For write
Sk = E,,, ... E,.. We take n1=1, and since I E. 1-+ 2n, we can determine n5, n5, ...
successively so that I Ski 1 I (1- 2-k) St I for k =1, 2, .... Then

EI=limISkl>>_IEII11(1-2-k)>0.

Next we consider the function

A(x, h) = 1 + Z (-s--)ae`h1 = E Y,(h) el,

where 0 < h < }7r. This function is 0 for 3h < I x I < n (see Chapter V, Example 4).
Finally, we determine a sequence of positive h tending to 0 such that

hw a eliwl -a 0, (6.24)

and define the 8T in (6.22) by the condition

3h. = 28 n. (6.25)

Having thus defined the E,,, we shall show that each (6.23) is a U(e)-set. Suppose
that S = Ec ei- satisfies (6.20) and converges to 0 outside E. In particular, S converges
to 0 outside each Since, in view of (6.25), A(% x, hk) is 0 in E.., the product
SS[A(nk x, h,,,)] is identically 0. The mth coefficient of the product is

Cep-rwtYr( wk) = C,,, + _ .r-m
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and, since I en I -1e1n , for nk > 21 M I we get

Cm I %n,1 E' 17r(h,, ) I < gi.tlhnt I Y I

By (6.24), with n = nk, the right-hand side here tends to 0 for k -* oo. Hence cm = 0 for
each m. Since, with a suitable (nk), we have I E I > 0, (6.21) is established.

U(e)-sets may have measure arbitrarily close to 21r; whether or not there are
U(e)-sets of measure 2vr is an open problem.

7. Uniqueness of summable trigonometric series
In the preceding section we proved a number of theorems about the uniqueness of

the representation of functions by means of convergent trigonometric series. Since,
however, there exist Fourier series which diverge everywhere (Chapter VIII, § 4), it
is natural to ask for theorems of uniqueness for summable trigonometric series. We
shall restrict ourselves to Abel's method of summation in view of its significance for
the theory of functions. Since Abel's method also applies to series with terms not
tending to zero, we may first inquire about the conditions which we must impose upon.
the coefficients of the series considered.

Let
P(r,x)=}+rncosnx=2 1-2rcoex+r=

M

The Abel means of the series E n sin nx
i (7'1)

.r(1- ) sin z
are E nrn sin nx P(r, x) = (1- 2r cos x + rs)='

and we see at once that (7.1) is summable A to 0 for all x. Hence there is no uniqueness
for trigonometric series summable A and having coefficients O(n).

Also, since
}+Ecosnx (7.2)

I

is summable A to 0 for each x there are no (non-empty) sets of uniqueness for
trigonometric series summable A and having bounded coefficients.

Given a trigonometric series

(S) }ao + E (an cos nx t- b sin nx) = E
0

we shall write f (r, x) = Y.An(x) rn,

f (x) = line sup EA (x) r", f5(x) = lim inf EA,,(x) rn,
r-.1 r-#1

and call f t and f, the upper and lower Abel sums of S.

(7.3)

(7.4) THEOREM. Suppose that S satisfies the conditions

an = o(n), bn = o(n), (7.5)

and is summable A for each x to a function f(x) finite and integrable. Then S=S(f]. In
particular, if f = 0, then ao = al = b, = ... = 0.

I 1-r=
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This theorem can be generalized in several directions. The proofs of these generali-
zations are, however, far from simple, and it seems desirable to treat them separately
(see § 8). Without loss of generality the may suppose that ae = 0.

The following lemma is basic for the whole argument.

RAJCHMAN'S LEMMA. Suppose that

a.
C 2n

is an S[F], and that (7.7) is summable A at xe to F(xe). Then the intervais

(D'F(xo), D'F(xo)) and (/*(xo), f *(x.))

have points in common; that is,

(7.7)

_<f*(xe), f* (xo) _<D'F(x1) (7.8)

It is enough to prove the first inequality (7.8), since, when applied to - F(x), it gives
the second.

Let F(r, x) be the harmonic function associated with (7.7). We may suppose that
xe = 0, F(- x) = F(x), and F(0) = lim F(r, 0) = 0. We write F(r, 0) = a(r). The lemma
will be established if we show that, for any finite m,

D'F(O) > m implies f *(0) -> M. (7.9)

We may even suppose that m = 0, for otherwise consider F(x) - m(1- cos x) instead
of F(x).

Suppose then that D2F(0) > 0 and that, contrary to what we want to prove, f *(0) < 0.
In the Laplace equation " x) +

lr
aF(r, x)

-01 (7-10)

the first term on the left is r-'f(r,x). It follows that rG'(r) is an increasing function
of r in an interval ro < r < 1. Since 0(r) -s 0 as r - 1, the Cauchy mean-value theorem
gives

Q(r) (3(r)-log,
PC'(P) (re-r<p<1),

log y logy-logI

and so, for some ( between p and 1,

G(r) lop)gp

logy
_PO'(P) - o-0'(o) < 0.

lo

If we show that this is impossible, by proving that

1

r <(7.11)
8 111

the lemma will be established.
Write

0 = 0(r, t) = 1 - 2r cost + r',

O(t) = {F(t) + F( - t) - 2F(0))/sin't = 2F(t)/sins t.
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Representing F(r, x) as the Poisson integral of F(x) we have

G(r) = 1 fff r

edt+o(1)
Sr

a(r=nfoF(t)I-r2dt
21T

I 'r

2rrrf
where r7 is a fixed positive number less than In.

By hypothesis, lim inf fi(t) > 0. Hence, choosing ij small enough, we have 0(t) > h > 0
for tin (0, -1). We have also cost 3 } in (0,71). Noting that 8P/2t < 0 in (0, n) we
obtain

lim inf { r G(r) > lim inf {_ h
2 Jo sin t - P(r, t) dt)

=lim inf(2n f 'costP(r,t)dt)
ll 1.

lim inf { f 'P(r, t) dt)
l

hm`4n f P(r,t)dt)=}h>0.
`l

o

Thus {rG(r)/(1 -r')}' stays above a positive quantity as r--).1. Now, with
c(r)=(1-r2)/(r log r) we have

(T-r))'=
c

rG(r)logy(r)-r2) +c(')1 -r''
and since c(r) - - 2, c'(r) = 0(1 - r), we obtain (7.11), and so complete the proof of the
lemma.

Return to (7-4), and suppose first that the series (7.7), obtained by integrating S
twice, is an S[F], with F continuous. By (7.6), D'F -<f -<D'F for all x. By (3.13), F is
a second integral off, and this shows that S = S[f] (see p. 326).

The hypothesis (7.5) and the Riesz-Fischer theorem imply that (7.7) is a Fourier
series, and in view of what has just been proved, Theorem (7.4) will be established if
we show that the hypotheses of (7.4) imply that the function

F(x) = lim F(r, x) (7.12)
r- I

exists and is continuous.
The existence of F(x) follows by twice applying to S the following lemma:

(7.13) LEMMA. If the series uo+ ul +... is summable A (indeed, if only the upper and

lower Abel sums of the series are finite), the aeries Z is 8ummable A.
1

For if g(r) = uo + ul r + ..., then

G(r)=F, rn= frg(P)-uodp,
n P

and since the integrand is bounded, we have I G(r) - O(r') - 0 as r -+1, r'-->. 1, which
proves the lemma.
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The following observation will be useful later. Suppose that the u are functions of a
parameter x, and that g(r) is uniformly bounded for 0 c r < 1 and x belonging to a set E;
then u1 + }u$ + ... is uniformly summable A for x E E.

Return to the function F(x) in (7.12) and denote by D the set of discontinuities
of F. We have to show that D is empty. We first show that D has no isolated points.

Suppose that x, is an isolated point of D. There is then an interval (a, b), containing
x0 in its interior, such that Fis continuous in the interiors of (a, x0) and (x0, b). By (3.13)

and the inequalities D'F -<f 5 D2F, we have F(x) = f dyJ y f (t) di +Ax +B in the
a

interior of (a, xo), since Lemma (3.13) holds also for open intervals. In particular.
F(xo-0) exists and is finite. Similarly, F(x0+0) exists. Since the coefficients of (7-7)
are o(1 /n), we have, by (2.19) (i)t, F(x0 - 0) = F(x0) = F(x0 + 0) and Fis continuous at x0.
contrary to hypothesis.

Next, let P be any perfect set. Consider F(x) on P and denote by Dp the set of
points xEP at which F is discontinuous with respect to P. We show that Dp is non-
dense on P.

Let r1 < r9 < ... -+ 1 be such that

max I f (r, x) - f (rn, x) I < 1 (n = 1, 2,... ; 0 x 2n). (7.14)

By hypothesis, {f(r,,, x)} tends to a finite limit for each x. By Theorem (12-3)(i) of
Chapter I, on each portion of P there is a sub-portion 11 on which all the f (rn, x) are
uniformly bounded; by (7- 14), f (r, x) is uniformly bounded for x c II, 0 < r < 1. Applying
twice to S the observation following Lemma (7-13), we see that lim F(r, x) exists

Z1
uniformly on II ; thus Dp has no point in common with 11, and so is non-dense on P.

It is now easy to complete the proof of (7.4). Suppose that D+ 0. D has no isolated
points and is non-dense. Hence the closure D of D is perfect. Take a portion 11 of 1)
in which F(x) is continuous with respect to D; we may suppose that II is perfect.
Denote by ds = (a{, bt), i =1, 2, ..., the open intervals contiguous to II. F(x) is con-
tinuous in each d, and, as the proof of the absence of isolated points in D shows, F(a1 + 0)
and F(bt - 0) exist and equal F(al) and F(b{) respectively.

Consider the function
Fi(x) = f dy f

vf(t)
dt.

0 0

The difference FF(x) = F(x) - F1(x) is linear in the closure of each di, and is also con-
tinuous at each point of 11 with respect to D. Hence at each point of II F(x) is con-
tinuous with respect to the whole neighbourhood, which is impossible sine n contains
points of D. Hence D = 0, F is continuous for all x, and (7.4) is proved.

The proof above gives more than was actually stated. Suppose that S satisfies (7.5)
and that both f *(x) and f. (z) are finite and integrable. F(x) then exists everywhere
and is continuous. Let f (x) =f *(x) whereverD'F(x) ->f *(z), and/(x) = D'F(x) elsewhere;
f is integrable and finite, we have D'F >-f > D'F for all x, and the proof above shows
that S = S[ f ]. In particular, f* = f* almost everywhere. All this, however, is included
in the theorem which follows.

t By Tauber's theorem (Chapter III, (1.36)), Abel means and partial sume of any series with terms
o(Iin) er egai-oonvergent.
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8. Uniqueness of summable trigonometric series (cont.)
We keep the notation of the preceding section.

(8.1) T zoaax. Suppose that (i) has coefficients o(n), and that
(ii) f *(x) > x(z), where X is integraMe;

(iii) f, (x) is finite except possibly in a denumerable set E;
(iv) for each xe E and r-i 1 we have

Then S is a Fourier series.
(1-r)f(r,x)-+ 0.

Observe that we do not assume the finiteness off . Condition (iv) is automatically
satisfied if instead of (i) we assume the much stronger condition I a. I + I b. I -+ 0.
Conditions (ii) and (iii) are certainly satisfied if both f; and f, are finite everywhere,
and one of them is integrable.

Since the limits of indetermination of the partial sums of a series contain the upper
and lower Abel sums of the series, Theorem (3.25), stated without proof, is a corollary
of (8.1).

We begin with two lemmas on Fourier series.

(8-2) Lseo[A. If P is integrable and D'F(xo) exists and is finite, then S'[F] is snm-
mable A at xo to span D'F(xo).

This lemma, though more elementary than (7.6), is not a consequence of it.
We may suppose that xe = 0, F(0) = 0, F is even, and D'F(0) = 0. The Abel means

of S'[F] at x = 0 are 2
- 17(1) P -(r, t) d t,

(8'3)a o
where differentiation is with respect to t; and we have to show that this integral tends
to 0as r-*1.

Since the part of (8-3) extended over any interval (e, n), where c> 0, tends to zero,
and since F(t) = o(t') for t -> 0, the lemma will follow if we show that

f" t'I P'(r,t)1dt=r7(1) (8-4)

A simple computation shows that P'(r, t) = 0 means that y=cost is given by

2rys+(l+rs)y-4r=0.
The product of the roots is - 2, and so there is at most one value of t in (0, n) satisfying
P' = 0; there is at least one such t since P'= 0 for t = 0 and t = n. Henoe P' changes sign
exactly once in (0, rr), at a point t = il =11(r). The integral (8.4) is

- f't'P'dt+ I wt'P'dt= -2y'P'(r,y)+2jrtP'dt-2 j"tP'dt
o * o

< -2tj'P'(r,y)-2 f *tP'dt
0

= -Pdt2/'P(r,l)+ir,< -2,1'P'(r,y)+2f
0
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and since, as is easily verified, P' = O(t-') uniformly in r, (8.4) follows and the lemma is
established.

(8.5) LEM%A.t Suppose that C-E'Aa(x)/n' is an S[F) and write

0'F(x, t) = F(x + t) + F(x - t) - 2F(x).

At each point xo at which the series is summable A to F(xe), we have

lim inf M'F(xo, h)!h 4 n lim sup (1- r) f (r, xo), (8-6)
A-.+o r-+1

Jim sup A'F(xo, h)/h >- n lim inf (1 - r) fir, x0). (8.7)
r-1

It is enough to prove (8.6). We may suppose that xo = 0, F(O) = 0 and F is even.
Write fir, 0) = g(r), F(r, 0) =0(r). It is enough to show that, for any finite m,

Jim inf 2F(h)/h > m implies n lim sup (1- r) g(r) >-m. (8.8)

Consider for a moment the special case F1(x) = Jn' - n-' cos nx; Ft is an integral

of '1= En-1 sin nx, and 01 has jump n at x = 0. We verify that both 2F1(h)/h and
rr(1- r) gt(r) (where gt is the g corresponding to Ft) have limits a. Hence by subtracting
mrr-1F1(x) from F(x) we reduce the case of general m in (8-8) to that of m = 0.

The Laplaoe equation (7.10) gives
d d(7(r)

g(r)+rar(r dr ) =0. (8-9)

If the second inequality (8-8), with in = 0, is false, then g(r) < - Ar/(1- r) for some
A > 0 and r sufficiently close to 1. Combining this with (8.9) we get

{rG'(r)}' > A/(1- r).

This shows that (1'(r) -> + oo as r -* 1, and since simultaneously O(r) -+ 0, we see that
0(r) is strictly negative for r sufficiently close to 1.

Consider now the formulae

2 20(r) =- fo-
F(t) P(r, t) dt, g(r) = -J n

F(t) P'(r, t) dt. (8.10)

The first inequality (8.8), with m = 0, shows that F > 0 near x = 0. Since, by the second
formula (8.10), lim sup (1- r) g(r) depends only on the values of F in an arbitrarily
small neighbourhood of x = 0, we may suppose that F > 0 in 0 < x 5 a without impairing
the truth or falsehood of (8-8). But with this new F the first.formula (8.10) indicates
that 0(r) > 0 as r-+ 1, contrary to what we have just shown. This contradiction
proves (8-5).

We now pass to the proof of (8.1) and temporarily replace (i) by the hypothesis that
C - E'A (x)/n' is an S[F], where F is continuous. Our first aim is to show that then

I '(x) = f, (x) almost everywhere. (8-11)

t To understand the messing of the lemma, suppose, for example, that S[P]-S[O] and that O has
a jump d at x d=O(x.+0)-O(z, -0). Then, as one easily sees, A'F(x t)/Hd as"+0. On the other
hand, d is a (generalized) limit of the nth term of wS'[O] = rrS'[F) at z=zo (Chapter III, (0-5)). If we take
here the Abel limit, we have d=n lim (1-r) f(r, x,).
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Since f, (z) > - oo outside a denumerable set, Theorem (12.3) (iii) of Chapter I shows,
as in the proof of (7.4), that every interval J contains a subinterval I such that, with
a suitable A =A,, f(r, x) > A f o r x e I ( 0 - < r <1 ) .

In particular, f* > A in I. By (7.6), D'F 3 A in I; hence F(x) - }Ax2 is convex in I.
In particular, by (3.16), a finite D2F exists almost everywhere in I. By (8.2), f * =f*
almost everywhere in I.

Denote by Q the union of all open intervals I such that f * = f* almost everywhere.
in I. Q is open and f * = f* at almost all x e Q. The complement P of Q is a closed non-
dense set. If we show that P = 0, (8.11) will follow.

Suppose that P+O; this implies that I P I > 0 and, in particular, that P is non-
denumerable. We have f* > -oo in P, except possibly in EP. Hence there is a portion
II of P and a constant A such that

f * (x) > A f o r r d . (8.12)

Let 41, 4 ... be the intervals contiguous to 11. We have f * =f* at almost all points of
F84. By modifying x in a set of measure 0 we may suppose that X is finite in E4 except
possibly in EE4t, and that

f* (x) ->x(x) for x e ES{. (8.13)

Let J be an interval such that II = JP. Since D'F ->f,, (8.12) and (8.13) imply that,
in J, D'F majorizes an integrable function g which can be - oo only in a subset of E.
But, by (8.5),

lim sup A'F(x, h)/h >_ 0 (8.14)
A-sO

in E. Hence, by Lemma (3.22), the difference between F and a second integral of g is
convex in J. It follows that D2F exists and is finite almost everywhere in J, and so
also f * = f* almost everywhere in J. Hence PJ = 0, contrary to the hypothesis that
PJ + 0. This contradiction proves (8.11).

Redefining x in a set of measure 0 we may suppose that x is finite outside E and that

f*>x
for all x. In particular, D'F > x for all x, and D'F > - oo outside E. Let X, be a second
integral of X. Since we have (8.14) in E,

A = F - Xa (8.15)

is convex in (- oo, +co). Hence, by (3.16),

D'F=D'A+D'x,=D'A+x

exists almost everywhere and is integrable over a period.
It follows that f*(x), which is equal to D'F(x) almost everywhere, is integrable,

and we may take f* for the function x of Theorem (8.1).
Since A(x) is convex, it has for each x a right-hand and left-hand derivative D+A(x)

and D-A(x), both non-decreasing. Therefore D+F(x) and D-F(x) exist everywhere,
and F is the integral of either, say of D+F(x) = (P(x). We shall show that tD is oontinuous.

The only possible discontinuities of 0 are jumps. Since S"[F]=S'[(P], and since, by
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the theorem of Fatou (Chapter III, (7.2)), the Abel sums of S'[V] at xo are contained
between. the upper and lower limits for t-+ 0 of (0(x, + t) - 4 (xo - t)}/2t, we see that

lim sup{4'(zo+t)- (xo-t)}/2t>f.(xo)>liiminf{(D(xo+t)-4D(xo-t))/2t.

If x0 f E, and sofs (x0) is finite, this implies that (D(zo + 0) = (D(zo - 0). If x0 c: E, then the
Abel means f (r, x) of S'[N] = S"[F] satisfy (1- r) f (r, xo) -- 0, so that, by Lemma (8-5),

lim sup A'F(zo, h)/h > 0 > lim inf A2F(x0, h)lh.

But the extreme terms here are both equal to P(xo + 0) - (D(xo - 0). Hence again
4)(z0 + 0) = O(xo - 0). It follows that D(x) = D+F(x) is continuous for all z. This implies
that F'(x) exists everywhere and is continuous.

Thus F'(x) _ fi(x). From (8.15), with x= f we deduce that

4)(z)=
f0=f.(t)dt+A(x),

(8.16)

where A is non-decreasing and continuous. If we show that A is constant, it will follow
that F is a second integral, and so that S is a Fourier series.

By the theorem of Fatou,

lim inf {1(x + h) - 10(x - h)}/2h S f. (z). (8.17)

Let if-(z) be a major function for f«; we may suppose that Ifi, is absolutely continuous.
All the Dini numbers of ifr are not less than fs (x) and, in particular,

lim inf {ifr(z + h) - 0r(x - h)}/2h ->f* (x).

Write G(x) = O(x) - if -(x). O is continuous and of bounded variation, and in view of
(8.17) satisfies liminf{0(x+h)-G(x-h)}/2h_< 0 (8.18)

for x 0 E. Let us temporarily take for granted the following lemma:

(8.19) LEMMA. If 0(z) is continuous and of bounded variation, and outside a denumer-
able set E satisfies (8.18), then 0 is non-increasing.

Hence 0(x) = m(x) - Vr(x) is non-increasing. But :[r(x) can be arbitrarily close to

fo f, dt. Hence O(z)- f
o
f. dt is non-increasing, which is compatible with (8.18) only

if A is constant.
This proves Theorem (8.1) in the case when the hypothesis a = o(n), b. = o(n) is

replaced by the condition that S twice integrated is the Fourier series of a continuous
function. This result is of independent interest. It covers the important special case
of coefficients tending to 0 and, more generally, that of a I + I b. I = 0(n*), 71 < 1.

Remark. Suppose that conditions (ii), (iii) and (iv) of (8.1) are satisfied not in (0, 27r)
but in an interval (a, b), and that - E'A,.(x)/n' is the Fourier series of a function F(z)
which is continuous in (a, b). Then fs is integrable over each interval totally interior
to (a, b) and

F(x)- f dy f yf,(t)dt+Ax+B (a<x<b, c=}(a+b)).
e a



360 Riemann's theory of trigonometric 8eries
[Ix

The proof rune parallel to the preceding argument. In view of Lemma (3-26), the
result holds if we assume that F is merely upper semi-continuous in (a, b). This remark
will be used below.

We now complete the proof of (8.1) by showing that, under the hypotheses of (8- 1),

F(x) = lim F(r, z) (8.20)

exists for each x and is continuous, and - EA.(x)/nl = S[F]. We split the proof into
several stages.

(i) F(x) exists for each x and satisfies - oo _< F(x) < + oo. If xa f E, then f, (xo) > - 00
and the argument of Lemma (7-13) shows that lim EA, (xo) r*/n exists and is finite
or + co; repeating the argument we find that - F(z) = lim EAA(xo) r*/n' is finite or
+ co. If xo E E, then f (r, xa) = o((1- r)-'}, whence EA (zo) r*/n = o{log l /(1- r)}, and
EA*(xo) r*/n' tends to a finite limit.

(ii) F(x) is finite for almost all x. By the Riesz-Fischer theorem, EA (x)/n' is a
Fourier series.

(iii) On each perfect set P there is a portion on which F is upper semi-continuous.
There is a portion II of P and a number A such that

f(r,x)>A (xEil, 0_<r<1).

Without loss of generality we may suppose that A = 0, so that f (r, x) > 0 for x E II (this
we can do without impairing the hypothesis ao = 0; assuming, as we may, that the
diameter of II is lees than n, we subtract from 8 a suitable monomial B cos (x - xo)).
Since

x)dpF(r,x)= - (o" PJ:';
is a decreasing function of r for each x c II, F(x) as a limit of a decreasing sequence of
continuous functions is upper semi-continuous (but not necessarily finite-valued) on r l.

(iv) Each interval J contains a subinterval I such that F(x) is finite-valued and con-
tinuous on I. We have f (r, x) > A in a subinterval I of J. Suppose, as before, that A = 0.
The function F(r, x) EA*(x) r-/n' (8.21)

has a non-negative second derivative with respect to x, and so is convex, in I.
For each x in I, F(r, x) tends to a limit which is finite or - oo. It cannot tend to - co at
any point xo E I. For otherwise, owing to the convexity of F(r, x), the limit would
be -ao in the whole interval I, contradicting (ii). It follows that F(z), as a limit of
convex functions F(r, x), is convex, and so also finite-valued and continuous, in the
interior of I.

(v) F(x) is finite-valued and upper semi-continuous. Suppose that this is not so, and
denote by D the set of points where F(x) is either not finite or not upper semi-oon-
tinuous. By (iv), the closure 1) of D is non-dense. We show that D has no isolated
points.

Suppose that an z0ED is isolated. Then F is finite-valued and upper semi-con-
tinuous in the interior of (xo-e,xo) and (xo, xe+e), for some e> 0. By the Remark
above, the difference between F and a second integral of X is convex in the interior of
either interval. Hence F(xo ± 0) exist and are either finite or + oo. Since the coefficients
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of S[F] are o(1 fin), we have F(ze + 0) = F(xo - 0) = F(xs) (cf. (2-19)). By (i), F(xo) < + oo.
It follows that F(xo) is finite and F continuous at xo, and so also in the interior of
(xe-e, xo+e), contradicting the supposition that the interval contains points of b.

It follows that D is perfect. Take a portion fI of D on which F is, by (iii), upper
semi-continuous. In each of the intervals (at, bt) contiguous to 11, F is continuous
and the numbers Flat + 0) and F(bt - 0), which are equal to F(at) and F(bt) respectively,
are finite.

The set of points of fI where F(x) co is non-dense on H. For otherwise it would
be dense on a portion 11, of II and, owing to the upper semi-continuity of F on fl,
would contain fI and so also some of the points a, bt; this is impossible since
F(at)=F(at+0) and F(bt)=F(bt-0) are finite.

Collecting results we see that there is a portion of D (call it 11 again) and an integrable
X such that

f02
F(x)-dyJ yx(t)dt (8.22)

0

is finite-valued and upper semi-continuous on 11, and is convex in the closure of each
interval contiguous to H. It follows that (8.22), and so also F(x), is finite-valued and
upper semi-continuous on an interval J such that TI =JD. This contradicts the fact
that J contains points of D. Hence (v) is proved.

(vi) F(z) is continuous. Suppose that F is not continuous, and denote by D the set
of points of discontinuity of F. The closure D of D is non-dense. We show, as in the
proof of (v), that D has no isolated points, i.e. is perfect. Consider a portion n of D)
such that fe(z) >-A on II (8-23)

for some constant A and denote by 81, d ... the intervals contiguous to II, and by J
an interval such that II =JD. In each 8t, (8.22) is convex, D'F exists almost every-
where, and f =A = D'F almost everywhere. Hence, modifying X in a set of measure
0, we may take X finite outside EEdt and satisfying

fa(x)%X(x) in Edt. (8.24)

By (8-23) and (8.24), f and so also D'F, exceeds in J an integrable function g finite
outside a denumerable set in which we have (8.14). By Lemma (3-22), the difference
between F and a second integral of g is convex. Hence F is continuous on J, contra-
dicting the hypothesis that JD * 0. Hence F is continuous everywhere and the proof
of (8.1) is completed.

We have still, however, to prove Lemma (8-19). We may suppose that we have strict
inequality in (8.18), for otherwise we argue with O(x)-xln and afterwards make
n-*co. Suppose that G is not non-increasing. Then 0(a) <O(f) for some a <,8. By
a well-known result from the theory of integrationt, the total variation of G on the set
N of points where 0 has no derivative, finite or infinite, is 0. This means that we can
cover N by a sequence of intervals I I ... such that, if I is the total variation of 0
over I, then Ev is arbitrarily small.

We may suppose that EV < 0(f) - 0(a). Observing that the projection of the are
y = G(x), x e I, on the y-axis does not exceed V , we see that there is a C, G(a) < C < 0(f ),
such that in no It does Q take the value C; because E is denumerable, we may also

t See de is Vsllbe-Poueein, InQpral" de Lebeegue, p. 93, or SeJe, Theory of the lniprol, p. 126.
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suppose that G(x) * C in E. Let X be the set of points where G(x) = C and let xe be the
last of these points; such an xa exists since X is closed. Since G'(xo) exists, G(xo)=C,
and G(x) > C for x > x0, we see that G'(xe) > 0. Since x0O E and (8.18), with strict
inequality, is false at x0, we come to a contradiction and the lemma is established.t

(8.25) THEOREM. Suppose that a aeries S satisfies conditions (i), (ii) and (iii) of
Theorem (8- 1), and that condition (iv) is satisfied at all points of E, except possibly for
a finite number, x1, x ..., x,,, of them. Then S differs from a Fourier series by

Frat D(x - xt),

where the a; are constants and D(x) _ j + cos x + cos 2z + ... .

We may again suppose that ao = 0. The same proof which gives (8.1) shows that the
F(x) in (8.20) is, in each interval (xt_I, xt), of the form

fe
dyfo f(t)dt+A1x+B{. (8.26)

F is continuous at the x, but may have angular points there. Let

D, (x) = cos x + cos 2x +....

Integrating D, twice we obtain a function having an angular point at x = 0 and only
there. Therefore, if we subtract from S a linear combination, with constant coefficients,
of the series D, (x - xt), i = 1, 2, ..., n, the function F for that difference is smooth at
the xt and is of the form (8.26) with At, Bt independent of i. It follows that the differ-
ence considered is a Fourier series and the theorem is established.

If we confine our attention to series S with coefficients tending to 0, we may consider
sets of uniqueness for the method of Abel. A set E will be said to be of type Us, if every
series S with coefficients tending to 0, and summable A to 0 outside E, is necessarily
identically 0. Every set Us is also U; whether the converse is true is an open
problem, except when E is closed, in which case an affirmative answer is a corollary
of the following theorem:

(8.27) THEOREM. Let E be a closed set of measure. 0 and S a series with coefficients
tending to 0 having its upper and lower Abel sums finite outside E, and one of them, say
f integrable. Then S - S[f,] converges to 0 outside F; in particular S = S[f. ], if E is
a U set.

The function F obtained by integrating S twice is, in each interval contiguous to E.
& second integral off*. Since the same holds for S[f5 ], the principle of localization shows
that S - S[f,] converges to 0 outside E.

t It may be observed, though this in irrelevant for us, that if lim sup (O(x+A)-0(x-A))/EhSO
A-+0

outside a denumerable get E and O is merely continuous, then O is non-increasing. For let F(x) be an
integral of O(x). From

F(x+A)+F(x-h)-2F(z) 1 40(x+t)-O(x-g
h'

fa
2$

24

),

we easily deduce that D'F s< 0 outsideE, and, since F is smooth. -P is convex by Lemma (3.20), and hence
0 is non-increasing.
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9. Localization for series with coefficients not tending to zero
This is a continuation of §§ 4, 5. We first consider formal multiplication of series

with coefficients not necessarily tending to 0.
Consider the series

and their formal product

(S):

(T):
(ST):

Y'C. etnx

EYnetnz

EC,,e{"=,

where C. = E cD Y.-"-

Suppose that cn = o(I n Ik). The series defining C. converge absolutely if E I n Ik I yn I < oC
Since we are going to discuss the summability (C, k) of S, only the case k > -1 is of
interest. The subcases - I < k < 0 and k > 0 usually require slightly different arguments.

(9.1) LEMMA. Let k0. If cn=o(InIk)and EInIkIYnI <oo,then Cn=o(InIk).

The case k = 0 is Lemma (4.8). Suppose that n --> + oo, and write I cr I = e I V I".

I Yv I I V I k= ,,r for v* 0. Then
tm p k

I C.I o(nk)+ ev ryln-rl n vIk,

where the dash signifies that the terms v = 0 and v = n are omitted. We split the last
sum in two, corresponding to I v I -< 2n and I v I > 2n. Then

I' l <(2n)k E' eriin-r+2k z eryln-r
IrIG Yn Irl>9n

(O(nk) + O(1)) F, er ?I n-r = O(nk) 0(1) = °(nk),

using (4.8), and so Cn = o(nk).

(9.2) LEMMA. Let -1 <k <0. If c"=°(I n Ik) and y"=0(1/n), E I Yn I <oo, then
cn = o(I n Ik).

Let n -). + oo, I cr I = er I V I k and suppose that I yr I < 1/1 P I for v * 0. Then

+m
ICnI -< °(nk)+ evlvlkIY"-rir--m

Split the last sum into two, corresponding to I P I -< in and I V I > in. Then

IV I-< Z' erly) k +°(nk) E IY"-.l
(in)

1

Irlti" I,I>*%
+m- 0(1 /n) o(nl+k) + o(nk) E I Yr I ° o(nk),

which gives Cn = o(nk).

(9.3) LzMmA. Let k > 0, S = Ecn ei", T = Eyn el-, U = Ed" et";, where

Cn=o(Inik), EIynllnik<oo, Eldnllnik<oo
Then S(TU)=(ST) U.

For k=0 this is Lemma (5.17), and the general case is proved in the same way.
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(9.4) LEMMA. Let h > 0, a - h > - 1. If for the (C, a) means e,, = SO/An of a series

E u,, we have
0 o, =s+o(n-h),

then Eun is summable (C, a - h) to s.
We may suppose that 8 = 0; hence S. =o(va-h). By Chapter III, (1.10),

cn +Sn-h= EsaAnAv 1 + Pn+Qn,
v-0 rfiin in<' n

P,, I O(n-"-1) E o(va-h) = 0(n-11-1) o(na-h+i) = o(na-u) = O(n"-h)

rt in

Qn _<o(na-") E I An by 1 I <-o(na-h) E I A-h-1 I = o(na-h).
}n<rtn r-0

Hence Sn-h=o(na-h), and the lemma is established.
Before we proceed further, consider the formal product of the two series

E sin nx, sin x.
1

(9.5)

Simple computation shows that the product is }(1+wax) (which is to be expected
since the first series (9.5) represents }cotjz). The two series (9.5) converge at x=0
to sum 0, but the product converges to sum 1. Since the second series (9.5) is a
polynomial, we see that the mere vanishing at a point of the sum of the `good'
factor-no matter how rapidly its coefficients tend to 0-cannot guarantee that the
product is 0 at that point.

In the remainder of this section we denote by k' the least integer >_ k: k' = k if k is
an integer, k'= [k] + 1 otherwise.

(9.6) THEOREM. Suppose that cn = o(I n I k), k _> 0, and that T = S[.1] satisfies the condi-
tion

EIynIIn1k+k+1<co
(so that A has at least k' + 1 continuous derivatives). Suppose also that at every point of a
set Ewe have A'= A'= ... = AW) = 0. Then at every point x in E the two series ECn 0"=
and E.1(x) cn e'nx are uniformly equi8ummable (C, k); that is, the series

E{Cn - ,1(x) cn} erg (9.7)

is uniformly summable (C, k) to 0 in E. In particular, if also .1= 0 in E, then ECn ell-
is uniformly summable (C, k) to 0 in E.

The result holds for -1 < k < 0, provided the condition on T is replaced by

F. I nyn I < oo, yn =0(n-') (9.8)

The proof for any particular point x0 in E shows that the conclusion is uniform in E.
Without loss of generality we may suppose that x0 = 0. Hence

A'(0) =A'{0) =... =.1k(0) = 0.

It is enough to consider the case .1(0) = 0, since otherwise (as in the proof of (4.9)) we
subtract .1(0) from yo.

We begin with the easier case - 1 < k < 0 and return to the proof of (4.9), where now
xo=0. The second condition (9.8) implies that R,(xo)=O(1/n). The first condition
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(9.8) is equivalent to EP,, <oo. Hence, applying Lemma (9.2) to the formula
for S,a(x.) on p. 331, we see that S,a(xo) = o(,Lk) and, by Lemma (9-4), EC ef"a is sum-
mable (C, k) to 0.

We split the proof for k 3 0 into several stages.
(i) k i8 an integer (k'= k), A(x) _ (1- eu)k+i. Write

Cr = Cr - Cr_1, DIC, = i-1Cr - zt-1Cr-1 (1= 2, 3, ... ).

We easily see that +m
(1 - e12)k+1 Cr eivz = E Ak+1Cr e{''=

the left-hand side here meaning the formal product. Hence, if S;, is the lth Cesilro
sum of ST at x = 0, we have

.=
-n

n
Sln = FSSv = ,k-1Cn + ek-l0_n_1 -

2Ak_1C_1,

-0
S

S"w= ESvAk-$c-n-s+O(n),
r-0

(9.9)

a

J
+Sno

P-0

Hence Sn/An=o(1) and ST is summable (C, k) to 0 at x = 0.
(ii) k fractional, A(z) eft)k'+'. Hence k'- I < k < k'. Substituting k' for k in

(9-9) we obtain r k' = o(nI-I),

and it is enough to apply Lemma (9.4) with a = k', h = k'- k.
(iii) k and A(x) general. By hypothesis, A(0) = A'(0) =... = AW)(0) = 0. Hence, if

h = 0, 1, ..., V+ 1, the function AA(x) = A(x) (1- completed by continuity at
x=0, is continuous. Write

Ah(x) = A(x) (1 - eL")-k ^- Ey; ei--.

Since A1_1= (1- eiz) Ak, we have y;- I = yn - ya"_1, whence, using the fact that yn i 0
as n

Y. = E Yx-', (9.10)

aD

Yn= (9'11)
r-a+1

for h= 1, 2, ..., k' + 1. We shall use (9.10) for n < 0 and (9.11) for n > 0. Observing that,
for any a > 0,

4IYnI nana E Iyv-'I<E E =EIY"-'I Zn°<`I-.,`I A+',a-1 a-I r-n+l "-I V-" r-1 n-I r-1

and that, similarly, by (9.10)
ao ao

ao w ao w ao au r m

a-1 ._1
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we have
"+0y

."'IYn+1 I I n Ik=(I Yri +1 I+ I I-+1 I)nk

m

(IYn I+IY`nI)nk+I
n-1

Z(IynI+Iy-nI)nk+k'+l< OD,

R-1
by hypothesis.

We have A(x) = EYn einx = (1- eix)Ie+l EYnk'+l einz.

(9.12)

In forming ST we may first multiply S by T1= 2:y,+l einx and then the result by
(Lemma (9.3)). By (9.12) and Lemma (9.1), ST1 has coefficients

o(I n I k). Cases (i) and (ii) show that ST = (ST,) U is summable (C, k) to 0 at x = 0. This
completes the proof of the theorem. For k = 0 we have a new proof of Theorem (4.9).

(9.13) THEOREM. Under the hypotheses of (9.6), the two series (ST) and A(x)e are
uniformly equi8ummable (C, k) in the wider sense in E.

The proof is similar to that of (9.6). We may again suppose that E_reduces to the
point 0 and that A(0) = A'(0) = ... = Aik'(0) = 0; we have to show that (ST) is summable
(C, k) at x = 0. We denote the lth Cesgro sums of (ST) at 0 by $x.

For k> 0 we consider the stages (i), (ii) and (iii) as before.
(i) Let e = - i sign P. Then

1.10 = [ e, ek+lcv = - i(Akcn + Akc-n-1) + i(OkcO + Akc_1),

n= -1+0(1),
V-1

x= ^'
.rr-1= -t(en+(-1)kC_n-k-I)+

i(1kc0 +Akc_1) Ak-1 + 0(nk-1)r-1

Hence An=o(1)+i(Lkc0+0kc_1)AA i(Akc0+Ake_1).

(9.14)

(ii) Substituting k' for kin the last formula (9.14) we have

Q kk, = i(Akc0 + Akc_1) + o(nk-k ),

and we again apply Lemma (9.4). _
(iii) Using the previous notation, (ST) is the series conjugate to the product of

ST1 by U = (t -eix)k'+1. Since ST, has coefficients o(I n Ik), (ST) is, by (i) and (ii),
summable (C, k) at x = 0.

The case - 1 < k < 0 is treated in the same way as in (9.6).
'T'heorems (9.6) and (9.13) lead to a principle of localization for series with coeffi-

cients not necessarily tending to 0.
In § 4 we associated with every trigonometric series S whose coefficients cn tend to
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0, a continuous function F(x) obtained by integrating S twice. More generally, denote
by F(x) the function obtained by integrating S termwise p times:

D

F(x)=coz +E' cn
a"'= (9.15)F. (1r1)D

If n I k), the series on the right converges absolutely and uniformly provided
p - k > 1. We assume, however, only the weaker hypothesis that the periodic series in
(9.15) is a Fourier series.

The theorem which follows is a generalization of (4.29):

(9.16) THEOREM. Suppose that the coefficients c of S are o(I n I k), k > -1, and that
the periodic part of the function F(x) in (9-15) is a Fourier series. Let 8.(x) and 9,,(x)
be the partial sums of S and 9. Let A(x) be a function differentiable sufficiently often, equal
to 0 outside an interval (a, b) of length < 21r, and to I in a subinterval (a', b') of (a, b). Then
the two sequences 1) D b

sn(x)-(
n J

fF(t)A(t)a-D.(x-t)dt,
(9.17)

a

(9.18)
7r a

are uniformly 8ummable (C, k) on (a', b'), the limit of the first being 0.

The proof is similar to that of (4.29). Suppose first that co = 0, so that F is periodic;
we may also suppose that A is periodic. If T=S[A], (9.17) is the nth partial sum of

S-(S[F]T)(P>=(S-ST)- E {q S(--,O[F]re),
q-1`4

by an extension of (4.32) to the pth derivative. The series S(-c)[F] have coefficients
o(I n !k), and if we assume that TKP> (and so also 7Nq>, q < p) satisfies the conditions
imposed on the coefficients of T in (9-6), all the products S" )[F] DO) are, by (9.6),
uniformly summable (C, k) to 0 on (a', b'), and the same holds for S-ST =SS[1-A].
Hence (9.17) is uniformly summable (C, k) to 0 on (a', b').

The case co + 0 is dealt with as in the proof of (4.29), provided k > 0. If - 1 < k < 0
a modification is needed. We may suppose that S=co, F=coxP/p!. Then (9.17) is

(n>

co - co
1

I (A(t)
-is

) D (x - t) dt. (9.19)
now

p!
This difference tends to 0 in (a', b'). If it is, say, 0(1/n), then, by (9-4), it is summable
(C, k) to 0 and the proof is completed. Suppose that Ace+2> exists and is continuous;
then {t'A(t)}(P" has two continuous derivatives, the terms of S[(tP,I)(V>] are 0(1/n2),
and the remainders are 0(1/n), that is, (9.19) is 0(1/n), as desired.

The proof of the -remaining part of (9.16) runs parallel.
A corollary of (9.16) is the following principle of localization:

(9.20) THEOREM. Let S1 and S2 be two trigonometric series with coefficients ofl n Ik),
k > - 1, and let F1 and Fs be the functions F corresponding to S1 anal S8. If F1= F9 in (a, b)
or, more generally, if 'F1- F9 is a polynomial of degree less than p there, then in every
interval (a', b') interior to (a, b)

(i) S1 and S, are uniformly equisummable (C, k);
(ii) 91 and S, are uniformly equisummable (C, k) in the wider sense.
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To prove (i ), write S, - S2 = 8, F, - F, = F. We have to show that if F is a polynomial
of degree less than p on (a, b), then S is uniformly summable (C, k) to 0 on (a', b').
In view of the summability of (9.17) it is enough to show that

n)pI'-F(t)A(t)_Dn(x-t)dt=n =f'
is uniformly summable (C, k) to 0 on (a', b'). Since(FA)P)=0 in (a', V), this is immediate.
(If - 1 < k < 0, this follows if we assume that ,I(v+') exists and is continuous.)

The proof of (ii) is similar.
0

(9.21) THRORF.M or M. RIFsz. Suppose that ((z) = F a"zn is regular for I z < 1
0

and that an = o(nk), k > - 1. Then !an e ' is summable (C, k) at every point of regularity
of 4, and the summability is uniform over every closed arc of regularity.

This is a generalization of (5.7) and a corollary of (9.20). For assuming, as we may,
that a0 = 0 we see (as in the proof of (5.7)) that F(z) = Ean(in)-n ein. has infinitely
many derivatives on (a - e, b +e) and so coincides on (a - lie, b +,)e) with a function
F, corresponding to a Fourier series S1 which has coefficients O(n-2). Since S, is
uniformly summable (C, k) (even if - 1 < k < 0), 'an eins is uniformly summable
(C, k) on (a, b).

(9.22) THEOREM. If a trigonometric series S with coefficients o(nk), k> -- 1, is uni-
formly summable A to 0 over an are (a, b), then S is uniformly summable (C, k) on every
arc interior to (a, b).

Since u(r, x) = Ecn ei"z rin l -> 0

uniformly over (a, b), we find, on integrating this relation p times over (a, x) that F(x)
is in (a, b) a polynomial of degree p - 1, and the theorem follows from (9.20) with
S2 n o.t

(9.23) THEOREM. If a trigonometric series S with coefficients o(nk), k > 0, is uniformly
.runtmable A over. an are (a, b), then S is uniformly summable (C, k) over each are (a', b')
interior to (a, b).

Letf(x) be any continuous and periodic function equal in (a, b) tothe Abel sum of S.
Clearly S - S[f] is uniformly summable A to 0 on (a, b) and so summable (C, k) on
(a', b'). Since S[f] is uniformly summable (C, k) (Chapter III, (5.1)), the conclusions
follows.

(9.24) THEOREM. Suppose that the condition a,,-->0 in Theorem (5.8) is replaced by
an = o(nk), k 3 0. Then the conclusion of the theorem holds, provided we replace 'ton-
vergence' by 'summability (C, k)'.

The proof is a minor modification of the proof of (5.8). We start from the formula
(5.10) which was obtained without using the order of magnitude of the an. Integrating
p - 1 times the relation

f (b(ei")du-Ean(in)-'r"{ei'a} -.0

t Of course, (9.22) is also a corollary of (9.21), since by the synwnrhy principle of Schwarz (tee e.g.
J. E. Littlewood, Lectures on the theory of functions, p. 129) the harmonic function u(r, x) is oontinuable
across the arc (a, b), and so the same holds for the regular function O(s), s f < 1, whose real part is u.
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which holds uniformly in a < 9 < b, and arguing as below (5.10), we find that
F(x) = a", differs from the pth integral of 0(e{") by a polynomial of degree
p - 1. Let S1 be the Fourier series of the function equal to *b(e"°) in (a, b) and, say, to 0
outside (a, b). The function F1 obtained by integrating Sl termwise p times differs from
F by a polynomial of degree p - 1. Since, as in the proof of (5.8), @(et") satisfies con-
dition A, in every subinterval (a', b') of (a, b), and since k> 0, S1 is summable (C, k) at
every point x interior to (aS b) at which Lebesgue's test is applicable, and by (9.20)
the same holds for Ear ei7z. Hence the latter series is summable (C, k) at almost all
points of (a, b). The part concerning uniform summability is proved similarly.

(9.255) THEOREM. Let

cn=o(jnIk), EIy,,)ln`k<oo (k>0), (9'26)

and write S = Ec,, et-, T = Eyn e{= = S[0]. If 0 takes a constant value 0o in (a, b), the
two series

are uniformly summable (C, k) in every interval (a', b') interior to (a, b), the sum of the
first being 0.

This is an analogue of (5.16), the condition on q1(x) (= j6o) being much more stringent
than before, since we are multiplying series with coefficients not tending to 0. It is
enough to consider the case ¢o = 0. Let A(x) be periodic, equal to 1 in (a', b') and to 0
outside (a, b), and such that S[A] = U = E8n e{nx satisfies E 1 8n 1 In Ik+k'+1 < oo. In par-

ticular, 2:18n 1 n Ik <oo. The last condition, together with (9.26), implies

(ST) U=S(TU)

(the proof being identical with that of Lemma (5.17); we Lemma (9.3)), and since T U
is identically 0, so is (ST) U. In view of the conditions imposed on U, ST is uniformly

summable (C, k) on (a', b') to 0. We prove the result about (ST) similarly.
We conclude with a few remarks about the formal products of S = Ecn et"r and

T = Eyn etiiz = S[A] in the case when c, does not necessarily tend to 0.
We impose on T two conditions. One requires that the y, tends to 0 sufficiently

rapidly (which amounts to the requirement that A have sufficiently many derivatives);
the other demands that a sufficient number of the derivatives of A vanish at the point
xo at which we consider ST. While the first requirement is harmless and can be easily
satisfied, it is not so with the second; and this somewhat restricts the use of formal
multiplication in the case of coefficients not tending to 0.

Suppose, however, P(x) is a trigonometric polynomial which has at xo a sufficient
number of derivatives in common with A. Since the behaviour of SS[A-P] at xo is
governed by Theorem (9.6), the problem reduces to the study of the formal product
SP or, ultimately, of the product S

where m is an integer different from 0.
Suppose, for example, that m> 0 and write T =ei'n=. The difference of the nth

partial sums of ST and 0-% S at x = xo is
n n n -n-1 leivzo - e""rO c et`'ry = - etmsn " c ells- - E a,, el-1
-n -n n-m+1 -n-m
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It follows immediately that the formal product S e"= and the series ei-zo S are equisum-
mable (C, k) at x=xp if both sequences

en e4nss
C-n

a-fnzo (n=0,1,2,...)
are summable (C, k) to Of. Under the same condition, (Se{"'s) and e'"''s are equisum-
mable (C, k) in the wider sense at x = xc.

If W ,, W - W
cn et"x = Jao + Z (an cos nx + b sin nx) A,(x)

1 o

is real-valued, the condition reduces to the requirement that the two sequences
An(xe) and Bn(xo) should be summable (C, k) to 0.

Suppose our function A is 0 outside an interval (a, b) and 1 in a subinterval (a', b')
of (a, b). If we want the polynomial P to be independent of xc, it is convenient to assume
that A itself is a polynomial in each of the intervals (a, a') and (b', b). Then in each
case we may take that polynomial for P, and the remarks just made, together with
Theorem (9.6), may give us information about the behaviour (even uniformly) of ST.

MISCELLANEOUS THEOREMS AND EXAMPLES
1. Prove that

lien sup I a cos nx + b sin nx I = lira sup (a! + M.) i

almost everywhere, by the same method which gave (1-2).
[Observe that if m is a positive integer, E an arbitrary set of positive measure and n -, oo. then

f cosh" (ntx+a,) dx -s I E 112m) 2-2.;
9 m

and that, form large, the right-hand side is of order m-i.)

2. Let a (x) be the partial sums of EA (x). The convergence of at a single point xs does
not imply that an - 0, b - 0. Show that

(i) if .g,
for I h I <A /n, where g is finite, then a,,, b. --o- 0;

(ii) more generally, if a> - I and if the (C, a) means o±(z) of LA ,,(x) satisfy

then IawI+Ib.o(ne).
((i) The hypotheses imply that -s 0; consider the graph of the curve y=A"(x).]

3. Given any set E of positive measure and any integer m> 1, there is a positive number
8=8(F, m) such that for every sum c, with integral p, <pt<... <p.
we have

f. I Ec,e'"sItdx3dL Ic,

(Apply induction; we may suppose that p1= 0.)

4. Every perfect set P contains a perfect subset of type H.
[Consider, for example, the intersection of P with the set E. of points where coanx> 0; take n

large.]

5. Suppose that has coefficients tending to 0, or even only bounded, and let F(x)
be the Riemann function for S. Show that if S converges at zo to sums, then

F(xo+a+fl)-F(xo-a+fl)-F(xo+a-/f)+F(xs-a-fl)
//

Anna sinna

as a and ft tend to 0 in such away that a/,B and f/a remain bounded. (Riemann (1).)
[The proof is similar to that of (2.4).]

t We use the fact, which is immediate, that if a sequence s,, u1, tab... is wmmable (C, k) to s so are
taj....0. us. at, ty,... sod u,. U.
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6. if a., b - 0, then F(x) _ }goxt - ZA.(x)/n5 satisfies

{F(xs+a+f)-F(xe-a+f)-F(xs+a-f)+F(xs-a-fl))/a-*0,
uniformly in x, as a and ft tend to 0 in the same way as in Example 5. (Riemann [1].)

7. A sequence {a,) is said to be summable R' to limits if

2 a
sin' nh

rs_1 n'h
converges near h = 0 and tends to sash a 0. Show that if (a.) converges to s, it is also summablr
R' toe.

[See footnote on p. 320; the theorem is essentially the same as (2.8). where we have e= 0.1

8. The methods R and R' are not comparable. (See Marcinlriewioz[4], Huttnertl].)

9. If S[F] has coefficients o(1/n), then
limap{F(x+h)-F(x-h))=0
A-.o

for each z. (Rejchman and Zygmund [2j.)
{The proof is similar to that of (2.22).]

10. Suppose that S[ f ] = EA.(x) has coefficients 0(1/n). Then a necessary and sufficient con-
dition for the convergence of S(f ] = EB.(x) at xs is the existence of the integral

- I
n

o
{f(x.+t)-f(xs-t))}cot ltdt,

the value of the integral being the sarn as the sum of 9[f) at xs. (Hardy and Littlewood [ 16).)
[This is an analogue of (2-18). Observe that

!e [f(x.+t)-f(xs-t))}cot}tdi=

and that making h -* 0 we apply to EB.(xs) a method of summation somewhat resembling that
of Lebesgue.]

11. If EB.(x) _ S(f ], and if EB.(xs) converges to e, then

limap - 1 [f(xs+t)-f(zs-t)]}oot}edt}=e.
A-.o >r x 111

[This is an analogue of (2.22).]

12. Suppose that S=EA.(x) converges everywhere to sum f(x). If f(zs)>a, thm the set, B.
of points wheref(x)>a is of positive measure. (Steinhaus [2].)

[Suppose that E =0. Then, by (3.18),/ is integrable and S=S[f]. Since fta almost every-
where. the (C. 1) means of S are not greater than a, which contradicts the convergence of 8 at
xs to f(ze) >a. Using formal multiplication we can prove that E is of positive measure in every
neighbourhood of xs.)

13. If S= EA.(z) converges everywhere to sum f(x) 3 0, then f eL, by (3.18). If S converges
to an f3 0 in (a, b), then f need not be integrable in (a, b). (Consider, for example. E(sin nx)/log n
in (0, n).) However, f e L'-'(a, b) for every e> 0.

[It is enough to prove that f 1-' is integrable near z = b. Suppose that b = 0, and let

m(x) _ }asx + EB.(x)/n, F(x) _ }sox' - EA.(z)/n'

By (2.8), F is in A. , and by Chapter 11, (3.4), rv(d; F) = o(8 log 8). Since 0 is monotonically increasing
in (a, 0), and F is an integral of G, we obtain sucoeeeively, as h -+ 0,

f 'bdt=o(hlogh), I'(-h)=o(logh),
fdt=o(log1).

>t J-A
14

Hence 1_ f'-"dtc( fatJ (ih)-0(hrlogh).
JJJ a -A I

and the result follows on setting h = 2'' and summing over all r large enough.]
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14. Suppose that S converges for a< x < b to a non-negative sum f (x). A necessary and sufficient
condition for f to be integrable over (a, b) is that

I
(s) }a,x+ E (a,ainnx-b,ooenx)/n

w-1

should converge for z=a and z=b. (Verblunaky[2].)
[Let F(z) be the sum of (s). F is monotonically increasing in the interior of (a, b), and f e L(a, b)

if and only if F(a + 0) and F(b-0) are finite. Since the coefficients of (s) are o(1/n), it is enough
to apply (2.19) (i).]

15. Let E=E(f) be a perfect set of constant ratio of dissection f, I - 2f, f (f <}) on (0, 2n),
and 1(x) the Lebeegue singular function associated with it (see Chapter V, 13). Show that S[dD ]
diverges, or more precisely is unbounded, at each point of E.

x
[Suppose that 0 < f < }; let z, c E, F(x) _ ' dt. If S[d 41] converges, or is merely bounded, at

0
x then

(s) (F(x,+a+fl)-F(x,-a+fl)-F(x,+a-fl)+F(x,-a-,6))14afl=O(1)

as a and 8 tend to 0 in such a way that a/,8 and 8/,z are bounded (see Example 5 above). Let
h be the length of a 'white' interval, and k,,, the length of a 'black' interval, of rank m. (We
recall that 'black' intervals of rank m are the central parts which we remove at the mth stage of
construction, leaving the two adjoining 'white' intervals.) We have

h,,, = 2af-, k,,, = 2rf"-'(l- 2}).

Consider a 'white' interval of rank m containing xe and the two adjoining 'black' intervals of
ranks m and m -1, 1 > 0. Clearly hw < k,,, since f < J. It follows that x, + h, and x, +k, are in
the same 'black' interval; similarly for x, - h, and x, - k,,. Write a = }(h, +k,), fl, = }(k,- h,)
and apply (s) with =,8.. Observing that the increment of m over a 'white' interval of
rank m is 2-" (which is the property which characterizes the Lebeegue function among all singular
functions corresponding to E), we we that the left side of (s) is

O(zo+t)d- Q" i+
and so is not 0(1). This proves the theorem for f < }.]

16. Let 0 < f < }, and let E be the perfect set of constant ratio of dissection f, 1 - 2f,
constructed on (0, 2n). Let m be the Lebeegue singular function associated with F. Suppose
that the coefficients of S[do] = Ec, e'"' tend to 0, so that S[d4p] converges to 0 outside E without
being identically 0. There is then a linear method of summation M satisfying conditions (i), (ii)
and (iii) of regularity (Chapter III, 11) which sums S(d11] to 0 at every point. In other words, the
empty set is a set of multiplicity for the method M. (Marcinkiewicz and Zygmund [3].)

(Let h,,, k,,, a,,,, f have the same meaning as in Example 15. If x,cE, the points x,+a,,,
are all in the same black interval, where 0 is constant and so F, ob.ained by in-

tegrating S[dc] twice, linear. Hence

J

This relation holds with -a for a.. Taking half the sum of the two expressions we we that

+W /sin nf, '
(a) ` a"saws(

} -- ) coena,ri

is equal to 0 for each x e E, and clearly tends to 0 as m -. ao if z 0 E. The expression (s)defines a
method of summation satisfying conditions (i), (ii) and (iii) of regularity.]

17. Given two sequences and v v1, ... , let w. = u. v, + ul v,, _, +... + u v,. Fix (v,).
A necessary and sufficient condition that w,, -s 0 for each {u,) + 0 is E I v, I < co.

(Compare Chapter III, (1.2) and Chapter IV, p. 168.1
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18. Given two two-way infinite sequences ... , u_1, u0, u1, ... and ..., v_1, v0, v1, ... let

+wo +wo -1
wn= E ulv.-k= E +k--

Fix{v,). A necessary and sufficient condition that the W. should exist for each {u,} tending to 0
as n -. ± co, is that E v < + oo. If E lv" j< + oo, then w -.0 for each (u.)-.O.

m ao

19. Consider two series (U) E u" and (V) E vn, and their Cauchy product (W) E w where
0 0 0

wn = u0 v, + u1 v" _1 +... + u, v0. Fix V. A necessary and sufficient condition that W converge for
every U whose terms merely tend to 0 is that

wo

(i) E v converge to 0,
0

(ii)

a

lrEnvl<+co.

If (i) and (ii) hold, then W converges to 0. (Condition (ii) implies that E I v, c co.)
[If U,,, V , W, are the partial sums of U, V, W, then W. = u0 V. + ul V,_1 +... + u, V0.]

20. Consider two series (U) u, and (V) v and their Laurent product (W) E w,. where
-m -wn -

+wo .. wp -1
W.= E uiv,_k = E + E. Fix V. Necessary and sufficient conditions that W be defined and con.

-m 0 -wo
verge symmetrically for every U with u, - 0 are

(i) E V. I <oo, (ii) Ev,= 0, (iii) E 2. yr <A,
D-- m r--n-D

with A independent of n. If (i), (ii) and (iii) hold then W converges to 0. (Condition (iii) is satisfied
+= I it

if E E v,l and E + E V. are finite.)
n-lie-n n--m r -wo

21. If the series and v0+v1+v,+. have coefficients 0(1/n) and converge to
sums a and t respectively, then the Cauchy product w0+w1+w,+... of the two series converges
to sum at. (Hardy [10]. Compare Theorem (5.20).)

[We may suppose that e = t = 0. If U,,, V W. are the partial sums of Eu Ev Ew then

say, where m = [in). Now

n m n
E =W.+W,,

k=0 k-0 k-m+1

W,_o(1)0V'0=00 1)=o(1).
k-ok-U

and after summation by parts we obtain a similar estimate for W..]

22. Given & series (U) E u write
0

Euu-1) (k=1,2,...),
r-n+ l

provided the series for is defined and converges. U will be said to converge k-tuply, or
have convergence of order k, if E u(I' converges. Ordinary convergence of U is convergence of

n
order 0.

Suppose that c, -.0 and that (V(z) = E c, z" is regular on a closed are z = a <-z <<b, of the
0

unit circle. Then Ec, ei", has convergence of each finite order k in (a, b), and the convergence
is uniform over (a, b). (Rajchman [5].)



374 Riemann's theory of trigonometric series [Ix

[Except for the uniformity, the theorem is a consequence of the theorem (67) of Fatou. Suppose,
for example, that z = 0 is in (a, b). Then

l4D(1)-O(z)=Ec;)z"
cc[) Eer)1-z 0 s+1

is regular at z =1, and, by the theorem of Fatou, EcV converges. This argument can be repeated.
The uniformity of the k-tuple convergence can be proved by considering power series with
coefficients depending on a parameter.]

a
23. Suppose that c,=O(n-°), a> 0, and that @(z)= 1c,z" is regular on a closed arc

z & b; then s
Fic"el":-4D(e{")=O(n a) (a<x<b),

0

uniformly in x. The result holds if n-a is replaced by a positive sequence X. tending monotonically
to 0 and such that X"/X1" is bounded. Also '0' may be replaced by 'o' throughout.

24. (1) Let I, and I, be closed arcs of the unit circumferenoe without points in common, and
suppose that on each Is (k=1,2) we consider a trigonometric series S, with coefficients o(1).
Then there is a trigonometric series S with coefficients o(1) which is equioonvergent with St on
1, and with S. on I,. (ii) The result holds if 11 and I, intersect in one or two disjoint intervals
(not points) provided S1 and S. are equiconvergent in the interior of Ill,. (Phragrnbn [1].)

[(i) Let A be periodic, equal to 1 in 11, equal to 0 in 1,, and let T = S[A] have coefficients 0(n-').
Then S=(Sl-S,)T+S, has the required property.

(ii) We define S as above, with X this time equal to l in Il - I and to 0 in I,-I1.]

25. Let (Sk) be a sequence of trigonometric series with coefficient, uniformly tending to 0.
If each S, = Ec* e'"" converges to 0 outside a closed set P, and if c, = lim c exists for each n, then
S = Ec, e'"2 converges to 0 outside P.

[The function F =}c z'-E'n- c,0"' is linear in each interval contiguous to P.]

26. Letf-..E(a,coenx+b"sinnz), 0<y<1. If
false for y= 1; the true form of the theorem in this ease is (2.8). If 'o' is replaced by '0', then
feA,,.
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NOTES

In these notes we give additional comments about the results in the text and bibliographical refer-
ences; 'Miscellaneous Theorems and Examples' at the ends of the chapters also contain such
references. Numbers in square brackets refer to the Bibliography at the end of the second volume.
We do not try to be complete, especially as regards older literature. The reader interested in biblio.
graphic details may consult

Burkchardt,'Trigonometrieche Reihen and Integrals', Enzyklopddie der Math. Wise. n, i, 2,
1904-16, Art. n, A. 12, 1325-1396.

Hilb and Riesz, 'Neuere Untersuchungen fiber trigonometrische Reihen and Integrals',
Enzyklopddie der Math. Wise. n, 3, 1924, Art. a, C. 10, vol. rr, pp. 1191-1224.

Plessner, 'Trigonometrische Reihen', in Pascal's Repertorium der Hoheren Mathematik, i
1325-1396.

Plancherel [1],
and the relevant sections in the periodicals Jahrbuch uber die Fortschritte der Mathematik, Zentral-
blatt fir Mathematik, Mathematical Reviews and Referativnyi Zhurnal Matematika (in Russian).

CHAPTER I

§ 3. A presentation of the general theory of orthogonal series is given in Kaczmarz and Stein.
haul, Theorie der Orthogonalreihen. For the theory of orthogonal polynomials see Szego, Orthogonal
Polynomials, and for bibliography-Hille, Walsh and Shohat, A Bibliography in Orthogonal
Polynomials.

Rademacher functions as an orthogonal system were first considered in Rademacher [1]. For
various aspects of the theory see the references in Example 6 on p. 34, and also Snider [1], [2);
Fine [ 1]. [2J; Morgenthaler [ 1 J.

§ 4. The theory of Fourier-Lebesgue series was started by Lebeegue. Although his work in the
theory of trigonometric series is basic, we do not attempt to give detailed references to him and
work prior to his, and refer the reader to his Leyone cur lea series trigonomftriquea, which gives an
adequate picture of the period.

For a discussion of the notion of integral in connexion with the theory of trigonometric series
gee Lusin [1], Denjoy, Leyone our is calcul des coefficients dune aerie trigonometrique, and Jeffery,
Trigonometric series. Jeffery's book has further bibliographic references. See also Chapter XI,
if 6-7 of this book.

§§ 9, 10. An exhaustive treatment of the subject, and bibliography, will be found in Hardy
Littlewood and P61ya, Inequalities. Theorem (9-16) is due to Hardy [2].

§ 12. Sets of the first and second category were introduced by R. Baire. A detailed discussion of
the notion may be found in Denjoy's book quoted above.

§ 13. The main results of the section are due to Hardy and Littlewood [1]; am also Hardy,
Littlewood and P61ya, Inequalities, Chapter X. Flett [1] gives a new and somewhat simpler proof
of (13.15) (but not of (13.13)).

CHAPTER II

§ 1. Theorems (1-5) and (1.15) are due to W. H. Young [2],[3),[4); see also Hardy, Littlewood
and P61ys, Inequalities, pp. 198 sqq. For (1.30) see Wiener (1 ], [3).

§ 3. Class As is often denoted by Lip a; classes A,, A; and A by lip a, Lip (a, p) and lip (a, p)
respectively. The theorem that if a (8; f) = o(8), then f n cont., is due to Titchmarsh [5].

Rierann (1) was the first to consider smooth functions; examples indicating the importance
of the notion will be found in Zygmund [1]. Theorem (3.3) is an unpublished result of Z. Zalcwaseer;
it generalizes an earlier result of Rajchmsn [ 1 ] that E is dense in I. (3.4) is proved in Zygmund [ 1
the proof in the text was communicated to the author in 1952 by Vijayaraghavan.
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§4. Estimates (4-1) and (4-12) are due to Lebesgue[I]. The Lipschitz character and the non-
differentiability of the Weieratrass functions are studied in Hardy (1]. For(4-7),(4-9),(4-10) see
Zygmund[1]. ForTheorem (4.15)seeFej6r[IJ;itholds ifaaLr, 8c L', 1!p+1/q=1.

§ 8. The proof of (6-3) is a good illustration of the fact that proving the uniform convergence of
Fourier series may require more subtle devices than proving pointwise convergence. For (6-3)
and (6-8) see Hobson[2]; Lemma (8.4) is taken from Plesener[1); the first part of (6.7)(i) from
Steinhaue [1].

§ 7. See Hardy [4].

§ 8. Theorem (8-9) is due to W. H. Young (53. (8-13) was proved by Luk6es [1], and completes
an earlier result of Fejbr [2] (see Chapter III, (9-3)).

§ 9. For Gibbs's phenomenon see Gronwall[ 1 ], Zalcwasser [ 1 ], Hardy and Rogoeinski [ 1 ],
Hyltdn-Cavallius [1]. (9-4) is proved in Jackson [1), Landau [1], Turrn[1].

§ 10. (10-7) is due to Hardy and Littlewood [2], [3]; (10.8) to Lebesgue [1]; for (10-9) see
Salem and Zygmund [3).

§ 11. For (11.1) see Lebesgue [2]; for (11.3), Hardy and Littlewood [4]; generalizations of (11.5)
will be found in Gergen [ 11; (11.10) is proved in Hardy and Littlewood ( 10].

§ 12. The estimate (12-I) is due to Fejer [1] (see also Examples 23 and 24 on p. 73). The result
may be considered as an extreme case (r= O) of the following theorem of Kolmogorov [1]: If C, is
the class of all periodic functions f eatiefying I ft'>(x) I < I for all x (r= 1, 2, ... ), then

sup I f(x)-S*(x:J) =
4 +O(n ')- 4n nlogn

z.1s C, ;is
log
n,

n

Interesting expressions for Lebesgue constants in the case of power series were obtained by
Landau [2].

§ 13. Theorem (13-7) is due to Weyl [1].

CHAPTER III

§ 1. A detailed exposition of the theory of divergent series will be found in Hardy's Divergent
Series.

Theorem (1-2) is due to Toeplitz (1), and conditions (i), (ii), (iii) of regularity are sometimes
called Toeplita conditions.

Delayed arithmetic means were first considered by de la Vallbe-Poussin; see his Lefona eur
l'approximatson des Jonetions, p. 33. Delayed means can be defined for any method (C, a) as the
(C, a) means of the sequence s", a,, i, ....

The proof of (1.38) follows the ideas of Karamata [1] and Ingham [1]; see also Wielandt [ 1] and
Izumi [ 1 J (the original proof is in Littlewood [3]). Theorem (1-38) holds if the condition u" = O(1 /n )
is replaced by the one-sided condition u"-<A/n (Hardy and Littlewood [18]). To prove this by the
method of the text, suppose that P satisfies condition (i), and that

(ii') P(x)<8x(1-z) in (0, f'), (iii') l-P(x),i 6x(1-x) in (f, 1);
(ii') and (iii') follow from (ii) and (iii) by a change of 8. It follows that the polynomials
P(x) -x) and P.(x)=P(x) -8x(1 -x) are, like P, without constant terms, and that

I<P'(x)-< I+8x(1-x) in (f,1); -8x(1-x)-< P.(x)<0 in (0,f').
Considering Zu" P'(x") - 8N, and arguing as in the proof of (1.38), we obtain that lim inf aN 3 0.
Similarly, considering Eu,, P. (z") - 8N, we deduce that Iim sup 8N. zc 0. Hence Eu" converges to 0.

§ 2. The general remarks of this section are merely elaboration of the proof of the fundamental
theorem (3-4),)f the next section.

§ 3. For (3-4) see Fejbr [3]; for (3-9), Lebesgue [2]; for (3.16) Bernstein [I] (also Nikolsky [2],
Sz. Nagy (2)). Theorems (3-20) and (3-23) will be found in Privalov [1], Pleesner [2].

§4. Theorems about the convergence factors for Fourier series are due to Hardy [3]; for
conjugate series see Plessner [2]
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§ 5. For (5- 1), gee M. Rieez [2]; for (5.8), Zygmund [2]; for (5.15), Kogbetliantc [2].

§ 6. Theorem (6.18) is due to H. A. Schwarz.

§ 7. Theorems (7.2), (7.6) and (7.9) are due to Fatou [ 1] (see also Grow [1 ]). For (7.10), see Hardy
and Littlewood[6]; Theorems (7.15) and (7.20) will be found in Privalov[1], Pleesner[2]. For
(7.26), in the case when E is closed, see Fatou [1].

§ 8. W. H. Young [6], M. Rieez [2], Plesaner [2].

§ 9. For (9.3), see Fejbr [2]; for (9.6), Wiener(I].

§ 10. A proof of (10- 2) will be found in Fejer [4], [11 ] ;see also the literature indicated in the latter
paper.

§ 11. Theorem (11.1) was proved by Cram&r [1]; see also Gronwall [2].

§ 12. The main results of the section are due to Rogosinaki (21,(S],(4]; see also Bernstein [4).
Additional results will be found in Karsmata [3], [4], Agnew [l].

§ 13. The literature on beat approximation is very extensive. General presentations are given in
de la Vall6e Poussin's Lecone cur £'approximation des fonatione d'uns variable refelle, Jackson's
The Theory of Approximation and Achieser's Lectures on the Theory of Approx*naoion. Theorems
(13.6) and (13-14) are due to Jackson [2]; (13-20) to S. Bernstein [1); the significance of the classes
A. and A. for best approximation is pointed out in Zygmund ( 1). The proof of (13.16) given in the
text is due to F. Rieez [ I]. For the first part of (13.29), see Kom [1), Privalov [2]; for the second,
Zygmund [I), the results hold if the classes A5, A. are replaced by A., A* respectively.

For (13.32) see Hille [ 1 ]; the argument also shows that if f * cont., then 9R[o- - f ] * o(1 /n)
The sufficiency part of (13.34) was proved by Alexite [1) (see also Zygmund [3)), the necessity by
Zamansky [ 11.

The proof of (13.6) gives no information about the constants A,, and B,,. Favard [1] shows that
if f(r-1)(x) is absolutely continuous and I fe"(x) I <M almost everywhere (r=1, 2, ...), then for each
n there is a polynomial T (x) of order n such that

4 K,
f (x) -T.(x) n (n + 1), M.- (-

where K, = E and the result is best possible in the sense that for suitable f and x the
k-o (2k+ 1)'+1'

last inequality becomes an equality. It follows in particular that the As and B in (13-16) can be
replaced by absolute constants. Corresponding results for) will be found in Achiever and Krein (I ]
(or in Achieser, Lecture on the Theory of Approximation).

For some other aspects of best approximation, see Zemansky[2), Sz. Nagy(I], N. Bary and
Stekin [1]. Best approximation in La is studied in Quade [1].

CHAPTER IV

fl. Theorem (1-1) was obtained independently by F. Rieez [11 and Fischer [I ]. Several alter-
native proofs will be found in G. C. and W. H. Young[1]. In considering orthogonal systems we
tacitly assumed that such systems must be denumerable. That this is actually so follows from the
fact that the distance 9R,(q - lfr) of any two functions 0, il' of an orthonormal system is %/2, and
that the space L', being separable, cannot contain a non-denumerable system of spheres exterior
to each other.

The existence of) for f L2 was first proved by Lusin; see his paper [1].

§ 2.Marcinkiewicz was the first to recognize the importance of the integrals of the type Ia (see,
for example, his papers [ 1], [2), [3]); but instead of the function X he uses only X (and its modi-
fications) which is somewhat more awkward to apply. Remark (d) is due to Ostrow and E. Stein [ 1 ].

§ 3. The existence of) was initially proved by complex methods (for the literature see the notes
to Chapter VII, § 1), and the proof is one of the rare instances of applications of analytic functions
to the theory of the real variable. The first purely real variable proof of the existence off is due to
Besicovitch [ 1], [2]; in [1] he treats the case off in L', and in [2) the general cane. See also Titch-
marsh [I], Loomis [ 1), Stein and Weiss [3]. The proof of the text is, with slight modifications, that of
Mlercinkiewicz (2).
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Theorem (3-16) was first proved, by complex methods, by Kohnogorov [2]; see also Titch-
marshh [1]. The proof of the text follows the argument of Calderbn and Zygmund [5].

Divergence almost everywhere of the integrals (3.11) and (3.15) was studied by Lusin [I],
Titehmarsh [2], Hardy and Littlewood [7], Marcinkiewicz (3]. For the divergence everywhere
we Kaczmarz [2]. [3], Mazurkiewicz (1].

§ 4. For (4.3), (4-7) and (4.8), see W. H. Young [6]. For (4.9) see Toeplitz [2], F. Riesz (5], and the
literature indicated there.

For (4.21) and (4.22) see, respectively, Carathoodory[2] and Ldvy[li; for (4.25) and (4-27),
Weyl [2], Schoenberg[1].

§5. Theorem (5.2) will be found in G. C. and W. H. Young[[]; for (5.5), see Steinhaus[2],
Grosz[)]; for (5-7), W. H. Young[?], Zygmund [4] (the case 4)(u)=u*, r> 1, is also discussed in
G. C. and W. H. Young[[)). Theorem (5-20) will be found in Sidon[l].

§ 6. For theorems which are analogues of results of the two preceding sections we give only
occasional citations, and refer the reader to Fichtenholz [ 11. In connexion with the representation
(6-6) see F. Riesz [3), Herglotz [ 1). For (6-27) one Zygmund (5), F. Riesz (4] and an earlier paper
of Fejgr and Riesz[I].

Theorems (6-32), (6-33) and (6-34) are from Hardy and Littlewood [9n]. Theorem (6.35) is due
to Nikolsky [I]; see also Szego and Zygmtmd [1], N. Bary [1].

§7. Hardy and Littlewood[1). The second relation (7.13) had been proved in Evans, The
Logarithmic Potential, p. 144.

§8. For (8.7) see G. C. and W. H. Young [ I ], Steinhaus [2], Zygmund[4]. The validity of
Parseval's formula in some other cases is considered in Edmonds [1], Hardy and Littlewood [20).
Theorems (8-15) and (8.18) are due to W. H. Young [1] and Hardy [5], respectively. An inter-
esting application of (8.18) is given in Hardy [6).

§ 9. A general presentation of the theory of linear operations may be found in Banach's Opera-
tions lineaires or in F. Riesz and Sz. Nagy, Lecona d'Analyse fonctionneUe.

Theorem (9.5) is taken from Banach and Steinhaus[1); the idea of basing the proof on the
notion of category of sets is due to Saks, and has proved very fruitful. For (9.13) see Sake [1];
(9.18) will be found in Toeplitz [3); extensions to ly in M. Riesz (11. Titchmareh [4]. Forms (9.17)
are usually called Toeplitz forma; for their theory see Grenander and Szego, Toeplitz forms and
their applications.

§ 10. Classes L , were first introduced by Orlicz[1], initially under the hypothesis that
<D(2u) =O(Q)(u)} for u -.+oo (that this restriction is not necessary and that L; can be defined as
the class off such that ((k If I) is integrable for some k> 0, was shown in the first edition of this
book). There exists considerable literature about Orlicz spaces; we mention here only Birnbaum
and Orlicz[l), Orlicz[2], Zaanen[1]. Morse and Tranaue[l], Luxemburg[1], G. Weias[l]. The
last three papers contain a definition of a norm analogous to (10 .10) but with 1 instead of ((1) on
the right. The definition (10.10) and subsequent developments (except for (10.14)) are taken from
Billik [ 1] (the fact that in general we do not have equality in (10.20) was already pointed out by
Morse and Transue, loc. cit.).

§ 11. A general point of view about classes (P, Q) was first formulated in Fekete [1]. For in-
dividual results am W. H. Young [8], Steinhaus [2], Sidon [2], M. Riesz[4], Boehner [l],
Zygmund [6], Kaczmarz (4), Kaczmarz and Marcinkiewicz [1], Hille [3], Hills and Tamarkiu [lul,
Karamata and Tomi6 [ I ], Karamata [5].

Salem [4], shows that for any Fourier series £A (x) there is a sequence monotonically in-
creasing to +oo and such that 2;A (x) A. is still a Fourier series (a similar result for functions in
Ls, p> 1, is proved in Littlewood and Paley [lm]). The only condition on being that it must
increase sufficiently slowly, we may select it so that (I is convex, in which ease E A;1 cos nx is
a Fourier series (Chapter V. (1-5)). It follows that every Fourier aeries £A (x) is a convolution of
two Fourier series (in our case, a convolution of £A (x) x and }A0 1 + £.1* I coo nx).

CHAPTER V

§1. Theorem (1.3) is due to Chaundy and Jolliffe [1]. For (1.5) and (1.12) see W. H. Young(8],
Kolmogorov [3]. In connexion with (1.14) see W. H. Young [8], Sidon [2], Hills and Tamarkin [ ln].
Other results about series with monotone coefficients will be found in Boss [1], Sz. Nagy(3),
Hyltbn-Cavallius (1 ].
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1 2. Connexion between the asymptotic behaviour of a function and its Fourier coefficients is
a classical topic and has considerable literature. Results have been obtained under various
hypotheses, and it is not always easy to compare them. In this section we give a few fundamental
results, aiming at simplicity rather than generality. The definition of a slowly varying function,
as we introduce it here, occurs in Hardy and Rogoainski(2], though the authors do not use it
systematically. It seems to be most convenient for our purposes, though it differs from the
generally adopted definition of Faber [1] and Karamata[2].

The main result of the section is Theorem (2.6). It is essentially contained in Hardy and Rogo
sinaki [2], who, however, do not settle the limiting cases,8 n 0 andfi=1 completely. From the paper
of Aliaabid, Bojani6 and Tomi6 [2], which appeared reoently, we borrowed the remark that the
part of Theorem (2.6) about sine series is valid for 1 <,8 < 2. Estimates lees precise than in Theorem
(2.6) but valid under more general conditions will be found in Salem [2]; they are reproduced in
the first edition of this book. Finally, there are a number of results converse to (2.6); we refer the
reader to Hardy and Rogosinski[3], Hoywood[1], Alian6i6, Bojani6 and Tomib[2]; and the
literature quoted there.

The main part of Theorem (2.29) is an unpublished result of J. E. Littlewood and R. Salem.
They showed that there exists an a 0 <a,< 1, such that the partial sums s of I n-a cos nx are
uniformly bounded from below for a> a, but not for a <ao. The fact that the a are uniformly
bounded from below for a = a,, and that as is the root of the equation given in the theorem, I owe
to S. Izumi.

Theorem (2.31) is due to Faber (1], who bases the proof on Cauchy's formula. Another proof will
be found in Littlewood's Lectures, p. 93.

13. The formulae for the Fourier-8tieltjes coefficients of Cantor-Lebesgue functions were first
obtained in Carleman [1]. Generalizations are due to Salem [9]. See also Hills and Tamarkin [2].

14. The series (4.1) was first considered by Hardy ani!'Littlewood [Il], who showed that it
satisfies a certain functional equation relating it to Weierstrass's functions. The proof is reproduced
in Littlewood'sLecturesonthe Theory of Functions, pp. 100sgq. (it could be shortened and made more
straightforward by basing it on Poisson's summation formula rather than on Cauchy's formula).
A new and different proof of the functional equation was given by Paley (2]. Generalizations
will be found in Wilton[l), Randels[l], Ingham[2). Hardy and Littlewood (loc. cit.) show that
the series En-i e'°" Is "e`": diverges everywhere. M. Weiss (2] showed that its partial sums s"(z)
satisfy almost everywhere the curious relation

I "(_) Ili,.sup
(log n)i (log log log n) i

and obtained a similar estimate for the Abel means of the series.
The proof of (4.2) follows, in the main, Hille[2]. For lemmas (4.3), (4.4), (4.6) see van der

Corput[1]. Theorem (4.9) is due to Carleman (2); am also Gronwall[3).

§ 5. An asymptotic formula for the function (6.1) will be found in Hardy [7].

§6. Theorem (6.8) is due to Kolmogorov[5]; a generalization will be found in Erdes[1]. For
(8.4), (6.6), (6.10) we Zygmund (8), [9]. Theorem (8.16) of Hadamard is classical. For (6.13) see
Zygmund [7]; the paper also contains a proof of the remark at the and of the section.

The proof of Theorem (6.4) uses the lacunarity of {nk} only in a limited degree. The condition
we actually need is that the equations of±n,=N have a bounded number of solutions, and this
can occur for {nk} satisfying nk.i/nk - 1. The situation is rather typical, and many results about
lacunary series are actually proved for more general series. We do not consider these generaliza-
tions since the condition of lacunarity is the simplest and the case the most interesting.

We mention without proof a few other results about lacunary series. Hardy [1] proves the
non-differentiability of the Weierstrass function Ea" coo b"x under the most general condition
ab 1. Paley [2] gives (without proof) a result about the distribution of the values of a lacunary
power series on the circle of convergence. Salem and Zygmund [4] show that the values of the
Weierstraes function Eb-a"eu" (0 <x 4 2ir) cover a full square provided a is small enough.
M. Weirs [1], completing earlier results of Salem and Zygmund [6] and Erdbs and 04l [1], shows
that for the lacunary series Erk coo (nkx+ak) we have the Law of the Iterated Logarithm:

I sk(x) I is
limsup(2RkloglogRk)i=1 (Rk=}Er;)

.-1
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almost everywhere, provided rk=o((R5(loglogRk)I}. In Chapter XV, § 4, we prove the Central
Limit Theorem for lacunary series.

An important result of Hardy and Littlewood (17] asserts that for numerical lacunary series
(by which we mean a series of constants whose terms are all zero except at lacunary places) Abel
summability implies convergence; a simplified proof is given in Ingham[I]. A corresponding
result for absolute Abel summability will be found in Zygmund [20].

Properties of lacunary series with different definitions of lacunarity are studied in Mandelbrojt.
Series de Fourier ei Classes Quasi-analytiquee de Fonetions, and Levinson, Gap and Density Theorems.

§ 7. Rieaz products (7.1) were introduced in F. Riesz (6]; the complex products (7.14) in Salem
and Zygmund [ 1 ]. For the remainder of the section see Zygmund [9]; also Schaoffer [ 1).

§8. That a Rademacher series Ec,, o, converges almost everywhere if E I c,, I' < co, was first proved
by Rademacher [I) (the proof in the text is from Paley and Zygmund [ lr]). the converse was proved
by Khintchin and Kolmogorov [1]. Lemma (8.3) and the non-summability of Zc,,o if E Ic 1'= oc
will be found in Zygmund[8] (cf. also Marcinkiewicz and Zygmund[I]). The second inequality
(8.4) is valid for a large class of independent random variables and is a classical result of the
Calculus of Probability. The idea of deducing the first inequality (8-5) by means of convexity is
from Littlewood [ 1].

Theorems about almost all series E ± A (x) are considered in Paley and Zygmund [1] (see,
however, earlier papers of Steinhaus [3] and Littlewood (6), [7]). An interesting argument of a
different type will be found in Salem [2, Chapter III]. For (8.22) see Zygmund[10). The second
inequality (8.21) can also be proved directly by the same method as the second inequality (8.5)
(the argument is given in the first edition of this book, p. 216) but the values of B,,, obtained in
this way are too large to give (8.22). For Lemma (8.26) see Paley and Zygmund [1ru, Lemma 19]
and Salem and Zygmund [2]. (8.34) is taken from Paley and Zygmund (1 m], p. 192, the proof in the
text from Salem and Zygmund [2]. The latter paper also contains (8.38). Theorem (8.37), from
Paley and Zygmund [ 1nr), complements an earlier result of Steinhaus [3]. For series Ec,,O we
Paley and Zygmund (1u ).

§9. See Wiener [2], Ingham [3). Nothing seems to be known about possible extensions to
classes L', p $ 2.

§ 10. Salem [2, Chapter IV].

CHAPTER VI

§ 1. (1.3) was proved by Denjoy [1) and Lusin [2]; (1.6) by Fatou (2) (the proof in the text is
due to S. Saks); (1.7) by Salem [1). For (1.9) and (1.11) see Lusin[I]; for (1.10), Fatou [2]. (1.12)
was proved by Niemytski [ I ] (for sine series). That Cantor's ternary set is a basis was proved by
Steinhaus [4]; more general examplesofbases were found later by Denjoy[2] and Mirimanoff[11.

§2. For Theorems (2.5), (2.7), (2.13), (2.16) and remarks to (2.16), see Salem [1], [6]; (2-8) is
an unpublished result of P. Erdos. Theorem (2-12) was proved by Marcinkiewicz [3].

§3. Theorem (3.1) is proved in Bernstein [2), [31; for (3.6) and (3-9) see Zygmund[II] (the
quadratic variation used in the proof appears earlier in Wiener [1]); Salem [7] shows that in the

r1
condition I 8 dd < o o we cannot replace wi by a ". Theorem (3-13) is due to SzSaz [1]; for

J0
generalizations see Salem[2, Chapter V], SWkin[1]. For (3.13) see Waraszkiewicz[1], Zyg-
mund [5].

Given a closed periodic set P and a continuous periodic f(x) defined on P, we may ask whether
we can define f outside P in such a way that the Fourier series of the extended function converges
absolutely. There are perfect sets P for which this is possible no matter what f; see Carlsson [1],
Reiter[l], Helson'21, Kahane and Salem[1]. See also Kahane[l).

§ 4. Theorem (4.2) is due to Bernstein [2], [3); in the proof of (ii) he uses a different construction.
A certain simplification in the proof of (ii) (see the fast edition of this book, p. 144) we owe to
R. Salem. For (43), see Sz4sz [ I].

§ 5. For Theorems (5.1) and (5.2) (ii) see Wiener(3]; for (5.3), Levy [2]. For (5.7) we Beurling [1].
The proofs of (5.2) (ii) and (5.7) given in the text were communicated to us by A. P. Calder6n.

§ 6. (6.1) is due to Sidon [3); for (6.3) see Zygmund [12]. See also Steel kin [1m].
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CHAPTER VII

§ 1. Theorems (1.2), (1.4), (1.5) (for a= 1) and (1.8) were first proved by Privalov [1] and, later
and independently, by Plesaner (2); see also the literature indicated in the notes to Chapter IV, §3.
For (1-3) in the case a> 0, see Zygmund [2].

§2. Theorems (2-4) and (2-21) are due to M. Riesz [1]. His proof was reproduced in the first.
edition of this book; the present proof is from Calder6n[1J; generalizations may be found in
Hardy and Littlewood[14). Theorem (2-6) was proved by Kolmogorov [2]; see also Hardy [8),
Tamarkin[1]. Theorems (2.8) and (2.11)(i) are taken from Zygmund[4); for (2.11) we also
Warechawski[l], and for (2-8), Calder6n[1), Titchmarsh[3]. Theorem (2-10) was communicated
to us orally by M. Riesz. Remark (b) on p. 257 is due to Lusin [1]. For (2.29) see Zygmund [5],
F. Rieez(4], but, except for the best possible factor 1, the result is essentially contained in an
earlier paper by Prasad (1 ), who showed that if J(x) is of bounded variation in an interval, then
S[f] is absolutely summable A at every point interior to the interval. Theorems (2-30) and (2.35)
are taken from Hardy and Littlewood [13); Lemma (2.31) from Zygmund [1].

§ 3. The idea of applying Green's formula is due to P. Stein (I). though some of the formulae
used, like (3.3) and (3.4), will he found in earlier literature, for example, in Hardy[9]; see also
Spencer [1]. The proof of (2.8) by Stein's method was communicated to us by Z. Zalowasser.

§ 4. Integral B is one of the several generalizations of Lebeegue's integral suggested by Denjoy
(3); more details will be found in Boks [1) (the proof of (4-2) given in the text is due to S. Saks).
Jeeeen [1) showed that, if we consider only partitions of (a, b) into 21 equal parts and set fs = xs, then
1(t) tends to I for almost all t. Theorems (4-3) and (4.4) were obtained by Kolmogorov [2]; for
(4-4) see also Titohmarsh [ 1), Smirnov [ 1]. For applications to conjugate functions of a somewhat
different generalization of Lebesgue's integral, see Titchmarsh[1], Ulyanov[1].

§ 5. For classes A. see Hardy and Littlewood [91J; for A. and A., Zygmund [1].
§ 6. The idea of expressing S (x; f) in terms of conjugate functions seems to have appeared

first in Kolmogorov[2]. For (6.4) and (6.11) (i), see M. Riesz[1]; for (6-8) and (6.13),
Kolmogorov [2]; for (8 9), (6.11) (ii) and (6.19), Zygmund [4]. For (6-14) and (6-18) see Fejr;r [9],
Zygmund[10]. (6.22) is taken from Salem and Zygmund[3].

§ 7. Classes H' werefiratconsideredbyHardy (9];classes N by Ostrowaki [1] and Nevanlinna[1].
A simplified and systematic approach to classes H' is due to F. Riesz [7], who proved the basic
facts of the theory, in particular the decomposition theorem (7-20) (ii), the existence of boundary
values, Theorems (7.24) and (7-34). The form (7.23) of the decomposition theorem was systema-
tically used in their work by Hardy and Littlewood. Krylov (1) extends the theory of classes H,
to functions regular in a half-plane, but the paper also contains some novel facts.

It must be observed that the theory of classes H' does not extend to harmonic functions: there
exist functions u(p,x) harmonic in the unit circle, satisfying 9R,[u(p, x)] =0(l) for all r < 1, and
without radial limits; see Hardy and Littlewood [13].

The fact that a function regular and bounded in I z I < 1 can have non-tangential limit-0 in a
prescribed get of measure 0 on I z I = 1 is proved in Privalov [1]. The structure of the set of zeros
on I z I = 1 of functions which are regular in I z I < 1 and satisfy a Lipschitz condition of positive
order in I z 14 1, is studied in Carleeon[1].

For (7-33) see Szego [2].
The theory of classes N was mainly developed by Nevanlinna; in particular, Theorem (7.32)

is due to him. We prove here only results with applications to trigonometric series, and refer the
reader interested in the general theory to Nevanlinna's book Theorie der eindeutigen analytiacher
Funktionert. It may be added that though in Theorem (7.13) we assume only that the integral
of log I F(r es') I is bounded above, the class of functions regular in I z I < 1 and having this property
does not seem to be of special interest, in particular the functions need not have boundary values
(observe for example, that if f (z) is any function regular in z I < 1, then F(z) = exp f(z) is in the class).

Theorems (7-30) and (7.35) will be found in Smirnov [1[2]; (7.36) in Hardy and Littlewood [ 1];
for (7.44) see Littlewood(2] and Zygmund[13]; for (7-45), Frostman[1]; for (7-47) and (7.48)
Seidel [1) and Calder6n, Gonzblez-Dominguez and Zygmund [1], where also earlier literature is
indicated. In connexion with (7.50) see Doob [1), Zygmund [12].

(7-61) was proved by Hardy and Littlewood, [ 10], [9].
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Theorems (8.2) and (8.3) are due to F. and M. Riesz.[1]. (8.4) was proved by Helson [1], settling
an old conjecture of Steinhaus. M. Weiss [3] has shown that the hypothesis 8J1[s.,] = 0(1) does not
imply that lrck e'k' is a Fourier series. Theorem (8.6) is due to Hardy and Littlewood [15); see also
Hardy, Littlewood and P61ya, Inequalities, p. 236, where a different proof is given, and Fejgr (10).
Theorem (8.11) was proved by R. Salem and the author.

§ 9. Privalov [ 1], Fichtenholz (1 ].

§ 10. Literature about conformal mapping will be found in Gattegno and Ostrowski [1J. Theorem
(10.6) is due to Fejer ( I2); (10.14) to Hardy and Littlewood (15]; for (10.15) and (10.17) see F. and
M. Riesz[1], Privalov[l]. For (10.18) we Bohr[1], Salem[3]; in a somewhat similar direction
goes the following theorem of Mengov [ I ]: given any periodic ft L and any e> 0 we can modify
f in a set of measure leas than a in such a coy that the Fourier series of the new function converges
uniformly.

CHAPTER VIII

§ 1. The two proofs of (8.1) are, of course, not basically different. While Lebesgue's proof appeals
directly to a general theorem on linear operations, the same principle is implicit in the more
concrete construction of Fejer. The polynomials Q were introduced in Fejbr (8]. In connexion
with (1.13), (1-14), (1.16) see Fejer[8], Steinhaus[6]; for (1.17), see Fejtr[7]; for (1.21), Zyg-
mund [ 16].

We also mention the following two results.
(a) There exists a continuous f such t h a t S[f ] = Lakcoskz diverges at x=0, and I a1 f a a, >....

(Salem [101).
(b) There exists a continuous f with S[f] uniformly convergent and such that S[f'] is divergent

in a dense set (Salem [S]).

12. For (2.1) we Faber [2], Lebesgue (I ); for (2-5), Hardy and Littlewood [3].

§§ 3, 4. Theorems (3.1) and (4.1) are proved in Kolmogorov [6],[7], Theorem (3-6) is proved in
Hardy and Rogosinski, Fourier Series, pp. 70-2; the almost everywhere divergent Fourier series
which they construct to prove (3.1) is of power series type, a fact which they note in passing, but
do not stress, though the result is of definite interest. Zeller [ 11 uses Kolmogorov's oonstruction
to obtain a Fourier series whose set of points of convergence is an arbitrary denumerable sum of
closed sets. Theorem (3-14) is taken from Marcinkiewicz [2], where also other examples of divergent
Fourier series will be found.

CHAPTER IX

§1. Sets of type H were introduced by Rajchman (2]. For (1.9) and (1.10), see Steinhaus(7],
Rajchman [2].

§ 2. Theorems (2-7) and (2.8) are proved in Riemann [1]; for we Zygmund[1]. Theorem
(2.16), under the hypothesis kpk -- 0, is proved in Fatou (1]. For(220) see Zygmund (1]; for (2.22),
Rajchman and Zygmund (2); for (2.27), Verblunsky [ln]. Theorem (2.28) was stated, under the
hypothesis I E I = 2n, by Lusin [1). but it seems that he never published the proof.

13. Part (i) of (3.1) is due to G. Cantor; part (ii) and (3-19) to de Is (1]. Theorem
(3-18) is proved in Steinhaus [2] (and generalizes an earlier unpublished result of Banach for X =-O).
N. Bary (5], generalizing earlier results of Lusin and Medlov, shows that for any measurable
and periodic f there is continuous and periodic F such that F' _ f almost everywhere and S' [F]
converges to f almost everywhere.

§ 4. The essence of (4.3) is due to Riemann [I); the part about the uniformity of convergence
was lust proved in Phragmhn [ I) and Nader [ 1); the conjugate series are considered in Zygmund (14].

For (4.9) see Rajchman (3),[4]; a number of generalization will be found in Zygmund (14].
For (4.29) see Riemann [I); also Rajchman [3]. Neder [1), Zygmund [14]. In oonnexion with (4.27),
we Lusin [1 ], Hobson [ 1 ]. The notion of a restricted Fourier series was introduced by W. H.
Young, [9], (101.
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§ 5. Theorem (5.1; is proved in Rajchman [3]; for (5.2) see Zygmund [14]; the first example of
a power series converging in a given interval and diverging in another given interval was con-
structed by Steinhaus(10]. It is well known (see Sierpideki[1]) that the set of points of con-
vergence of a series of continuous functions is the most general set of type Fat (that is a set of the
form II E F,,,, where the F,R are closed sets). The problem whether for any periodic not S of type

k i
Fvd we can find a trigonometric or power series having S as the act of points of convergence is open.
For results in this direction see Mazurkiewicz[l], Herzog and Piranian[I], Zeller[1] (see the
reference to Zeller in the Notes to Chapter VIII, §§ 3, 4).

The first example of a power series Ec" z" having coefficients tending to 0 and diverging every -
where on I z I = 1 was constructed by Lusin [3]; the corresponding example for trigonometric
series was obtained by Steinhaus [8]; for (5.3) see Steinhaus [9]. Mazurkiewicz [2] showed that
for every linear method of summation there is a power series with coefficients tending to 0, non-
summable at any point of J z = 1.

Theorem (5-7), without the uniformity of convergence, was proved by Fatcu (1]; the complete
theorem by M. Rieez [5]. [8]. For (5.8), see Zygmund [ 15]. Lusin (4].

Theorem (5-16) was proved, in part, by Phragm6n [1]; the paper seems to have escaped
attention, and the theorem was rediscovered (with a different proof) in Zygmund [17]. Phragm6n
seems to have been the first to consider formal products of trigonometric series, though in applica-
tions his theorem is not as satisfactory as Rajchman's Theorem (4-9). For (5-20) and (5.22)
see Zygmund [18n). A number of results about formal multiplication will be found in
Schmetterer [1], [2).

§ 8. That there exist perfect M-sets of measure 0 was first proved in Menr'fov (1], and the result
marks the beginning of the modern theory of uniqueness. That M-sets are, in & certain sense, more
numerous than U-sets follows also from the results of Salem (8]. The existence of perfect U-sets
was proved independently by Rajchman [2] and N. Bary [41,[21; the theorem that H-sets are sets
of uniqueness was proved by Rajchman (2), (4), [5]; the proof of the second of these papers uses
(8.1) implicitly, but an explicit formulation of (8-1) first occurs in Pyatetaki-Shapiro[l). The
definition of setsH(^) andTheorem (6.6)arealso due to Pyatetski-Shapiro [1]; he proves (loc. citl
that for each m = 2, 3, ... there are sets H(-) which are not denumerable sums of sets Hl"'-'l. He also
shows (loc. cit.) that there actually exist perfect sets of multiplicity which are not sets of multi-
plicity in the restricted sense.

Kahane and Salem [1], (2), have shown that if P is any perfect M-set of constant ratio of dis-
section, then there are trigonometric series other than Fourier-Stieltjes series converging to 0
outside P but not everywhere; on the other hand, there are perfect sets P such that every trigo-
nometric series with coefficients 0(1/n) and converging to constants in the intervals contiguous
to P, is necessarily the Fourier series of a function of bounded variation.

For more literature about sets of uniqueness and multiplicity the reader is referred to the
monograph of N. Bart' [3].

§ 7, 8. M. Riesz [7] was the first to consider uniqueness of summable trigonometric series.
Uniqueness for Abel surnmable series was first studied by Rajchman [l], the paper contains a
proof of (7-6) (it can be shown that neither of the intervals in (7.6) need include the other; we
Rajchman and Zygmund [I]). Rajchman considered the case of coefficients tending to 0, but his
method can be applied to series which after two termwise integrations become Fourier aeries of
continuous functions (see Zygmund[19]). Theorems for aeries with coefficients o(n) are due to
Vecblunsky(I1,n). Considerable generalizations of Theorem (8-2) for the method (C,a) will be
found in Wolf[1]. The uniqueness of series eummable A to 0 is studied, by means of complex
methods, in Wolf [2].

§ 9. See Zygmund [14] and, for (9-21), M. Rieez [7], Rajchman [4].



A. ZYGMUND

TRIGONOMETRIC
SERIES

VOLUME II

CAMBRIDGE UNIVERSITY PRESS
CAMBRIDGE

LONDON NEW YORK MELBOURNE



Published by the Syndics of the Cambridge University Press
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

Bentley House, 200 Euston Road, London NW1 2DB
82 East 57th Street, New York, NY 10022, USA

296 Beaconsfield Parade, Middle Park, Melbourne 8206, Australia

First published in Warsaw 1985
Second edition published by the

Cambridge University Press 1959
Reprinted with corrections and

some additions 1968
Reprinted 1977



CONTENTS

CHAPTER 3

TRIGONOMETRIC INTERPOLATION

§ 1. General remarks page 1

§2. Interpolating polynomials as Fourier series 6

§ 3. The case of an even number of fundamental points 8

§ 4. Fourier-Lagrange coefficients 14

§5. Convergence of interpolating polynomials 16

§6. Jackson polynomials and related topics 21

§ 7. Mean convergence of interpolating polynomials 27

§ 8. Divergence of interpolating polynomials 35

§ 9. Divergence of interpolating polynomials (cont.) 44

§ 10. Polynomials conjugate to interpolating polynomials 48

Miscellaneous theorems and examples 55

CHAPTER XI

DIFFERENTIATION OF SERIES.
GENERALIZED DERIVATIVES

§ 1. Ceei ro summability of differentiated series 59

§ 2. Summability C of Fourier series 65

§ 3. A theorem on differentiated series 71

§ 4. Theorems on generalized derivatives 73

§ 5. Applications of Theorem (4.2) to Fourier series 80

§ 6. The integral M and Fourier series 83

§ 7. The integral M= 86

Miscellaneous theorems and examples 91

CHAPTER XII

INTERPOLATION OF LINEAR OPERATIONS.
MORE ABOUT FOURIER COEFFICIENTS

§ 1. The Riesz-Thorin theorem 93

§ 2. The theorems of Hausdorff-Young and F. Riesz 101

§ 3. Interpolation of operations in the olosees Hr 105



iv Conte t8

§4.

P.
§ 6.

§7.

§8.

§9.

§ 10.

§ 11.

Marcinkiewiez's theorem on the interpolation of operations page 111

Paley's theorems on Fourier ooefcients 120

Theorems of Hardy and Littlewood about rearrangements of Fourier
coefficients 127

Lacunary coefficients 131

Fractional integration 133

Fractional integration (cont.) 138

Fourier-Stieltjes coefficients 142

Fourier-Stieltjee coefficients and sets of oonetsnt ratio of dissection 147

Miscellaneous theorems and examples 156

CHAPTER XIII

CONVERGENCE AND SUMMABILITY ALMOST EVERYWHERE

§1. Partial sums of S[ f ] for f e L' 161

§2. Order of magnitude of S. for f e LP 186

§3. A test for the convergence of S f f ] almost everywhere 170

§4. Majorants for the partial sums of SL f] and 4f] 173

§ 5.Behaviour of the partial sums of Sf f ] and f f j 175

§ 6. Theorems on the partial sums of power series 178

§ 7.Strong summability of Fourier series. The case f e L/, r > I 180

§ 8. Strong summability of S[f) and f f) in the general case 184

§ 9. Almost convergence of S[f] and S[f] 188

§ 10. Theorems on the convergence of orthogonal series 189

§11. Capacity of sets and convergence of Fourier series 194

Miscellaneous theorems and examples 197

CHAPTER XIV

MORE ABOUT COMPLEX METHODS

§ 1. Boundary behaviour of harmonic and analytic functions 199

§ 2. The function s(6) 207

§3. The Littlewood-Paley function g(B) 210

§4. Convergence of conjugate series 216

P. The Marcinkiewicz function p(8) 219

Miscellaneous theorems and examples 221



CHAPTER XV

APPLICATIONS OF THE LITTLEWOOD-PALEY
FUNCTION TO FOURIER SERIES

§ 1. General remarks page 222
§ 2. Functions in If, 1 < r < m 224

§ 3. Functions in If, 1 < r < oo (cont.) 229

§ 4. Theorems on the partial sums of S[f ), f c L', 1 < r < oo 230

§ 5. The limiting case r = 1 234

§ 6. The limiting case r = co

CHAPTER XVI

FOURIER INTEGRALS

239

§ 1. General remarks 242

§ 2. Fourier transforms 246

§ 3. Fourier transforms (cont.) 254

§ 4. Fourier-Stieltjee bransforms 258

§ 5. Applications to trigonometric series 263

§ 6. Applications to trigonometric series (cont.) 269

§ 7. The Paley-Wiener theorem 272

§ S. Riemann theory of trigonometric integrals 278

§ 9. Equiconvergence theorems 286

§ 1 0. Problems of uniqueness 291

Miscellaneous theorems and examples

CHAPTER XVII

297

A TOPIC IN MULTIPLE FOURIER SERIES

§ 1. General remarks 300

§ 2. Strong differentiability of multiple integrals and its applications 305

§ 3. Restricted summability of Fourier series 309

§ 4. Power series of several variables 315

§ 5. Power series of several variables (cont.) 321

Miscellaneous theorems and examples 328

Notes 331

Bibliography 336

Index 353





CHAPTER X

TRIGONOMETRIC INTERPOLATION

1. General remarks
In this chapter trigonometric polynomials will be systematically referred to simply

as polynomials. We shall refer to ordinary polynomials, when we have occasion to
speak of them, as power polynomials.

A polynomial n n
T(x)=Jas+E(akcoskx+bksinkx)= ekeikz (11)

k-1 k--n
of order n has 2n+ 1 coefficients, so that one would, in principle, expect that 2n + I
constraints would be sufficient to determine T. A purely cosine polynomial of order
n has n + 1 coefficients; a sine one, n coefficients.

Let us fix 2n + 1 points
xo, xl, ..., xsn

on the x-axis, distinct modulo 27r. (In what follows we shall speak simply of distinct
points.) If desirable, we can always assume that these points are situated in any fixed
interval of length 2A.

(1.2) THEOREM. Given 2n+ 1 distinct points xo, x ... , x2 and arbitrary numbers
yo, yv ... , y2n, real or complex, there is always a unique polynomial (1.1) such that

T(xk)=yk (k=0, 1, ..., 2n). (1.3)

If we treat (1.3) as a system of linear equations in the ck, the determinant of the
system is

1 e1zo ... e2nixo

I e1z,

I eix:n ... e2nix,,,

e-in(zo}x,+...+x,n) [J (eiz - eizy)
v>r

and this is different from 0.
The polynomial T(x) just defined is called the (trigonometric) interpolating poly-

nomial corresponding to the points (abscissae) Xk and the values (ordinates) yk. The
points xo, xl, ..., x2i are often called the fundamental, or nodal, points of interpolation.

Let lt(x) be the polynomial of order n which takes the value 1 when x=x, and the
value 0 at the remaining points Xk. Then

In

T(x)= Eyttt(x), (1.4)
j=o

since the right-hand side is a polynomial of order n taking the value yk for x = xk,
for all k. The polynomials tt(x), j = 0, 1, ..., 2n, are called the fundamental polynomials
corresponding to the fundamental points x0, x1, ... , x2n-

Clearly
tt(x) = f ] 2 sin (x - xk)/ fl 2 sin }(xf - xk). (1.5)

k+j k+t



2 Trigonometric interpolation [X

For the expression on the right is equal to 1 when z = xi and to 0 at the remaining zk;
and it is a polynomial of order n, since the numerator consists of 2n factors each of the
form ael`=+fe--.

It is also easy to see that if y
A(z) = rl 2 sin }(z - xk),

k-0

then t,(x) = A(x)e{2A'(x5) sin }(x - x,)}. (1.6)

By the number of roots of a polynomial T(x) we shall mean the sum of the multi-
plicities of its distinct real roots (distinct mod 21r, that is). We have now:

(1.7) THEOREM. The number of roots of any T(x) * 0 of order n does not exceed 2n.

From (1.1) we see that e-"-T(z)-P(z), (1.8)

where z = eix and P(z) is a power polynomial of degree 2n in z. If x = is a root of order
k of T(x), that is, if T(6) =T'(,:) = ... = T(-1)(6) = 0, T0>(6) #0,

successive differentiation of (1.8) with respect to x shows that C= et is a root of order
k for P(z), and conversely. Hence if the number of roots of P (x) exceeds 2n, the number
of roots of P(z), multiplicity being taken into aooount, also exceeds 2n. Thus P(z) = 0,
that is, T (x) = 0, contrary to the hypothesis.

As a corollary, we obtain that if two polynomials S(x) and T(z) of order n vanish at
the same 2n point8 61, 4_, ..., fs of the interval 0 S z < 2n, then one of S and T is a multiple
of the other. (If k of the points f coincide, we mean that S and T have roots of multi-
plicity at least k there.) For suppose that S*0 (otherwise, S=O.T), and let
C =T(4)/S(9), where f is distinct from 91, 68, ..., 9,. and is such that S(f) + 0. The
polynomial T (x) - CS(x) of order n vanishes not only at the points f1. gs. .. , 6x but also
at 6. Hence T - CS - 0, T - CS.

In particular, if T vanishes at the roots of cos (nx + a), then T=- C cos (nx + a).

(1.9) THEOREM. If a cosine polynomial C(x) of order n vanishes at n+1 points
60<61<... <4in 0<x_< ir, then C(x)=_0.

If fo > 0 or f, < ir, C(x) vanishes at 2n + I points and so is identically zero. For C(x)
is even, and if, for example, 60 > 0, C, (x) vanishes at ± f,0, ± 61, .. , ± and
- 6. are not distinct if f= 9r). If simultaneously F0 = 0 and F = n, then C(x), being
even, must have at least double roots at x = 0, n, so that the number of roots of C(x)
is at least 4 + 2(n - 1) = 2n + 2, and again C(x) = 0.

(1.10) THEOREM. If a sine polynomial S(x) of order n vanishes at n points
< 4. < ... < 6 interior to (0, 7r), then S(x) - 0.
It is enough to observe that S(x) vanishes at 2n + 2 distinct points 0, ± 61,
It is sometimes important to interpolate by means of purely cosine or purely sine

polynomials.

(1.11) THEOREM. Given any n + 1 distinct points CO, 61, ... , in 0 _< x < n', and any

numbers r/o, 711, ..., %, there is a unique cosine polynomial C(z) of order n such that

C(Sk) ='qk for all k.
Observe that r!(z) = II (Cos x - cos 9k)/ rl (Cos S - cos G)

k+1 k*1
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is a cosine polynomial of order n which is equal to 1 when and vanishes at the
remaining Sk, so that n

C(z) _ I;
ont

r!(x)

is a cosine polynomial having the required properties. Its uniqueness is a consequence
of (1.9).

If the points F. are all in the interior of (0, a), the roots of cos x - cos fi are all simple,
and so

rf(z)= -
d(x)sin fl--

d'(61) (cos x - cos ai)'

where d(x) = II (cos x -cos
k

The case in which C(x) is of order n - 1 and

4%_U_ n n i)=3n (2n-1)7rin, 2n'"-' 2x

is particularly interesting. Here d(z) has the same roots as cos nx, so that

d(x) = C cos nx,
and it is easy to verify that now

C(W
)_coanx E 1)f

cosx-1l (,=(2,j+1)2n}. (1 12)
>-0cos(1-

(1.13) THEOREM. Given any distinct points 61, 4, ... , interior to (0, n) and any n
numbers r11, 711, there is a unique sine polynomial 8(x) of order n such that 8(6k) = ?I,
for all k.

It is enough to set
8(x) = E "ltot(x),

j-1

sin x f -f (cos x - cos ek)
k+where oi(x) = _

sin f ikf I (cos 61- cos 6k)

Clearly v1 is a sine polynomial of order n which is equal to I when x = F. f and vanishes
at the remaining fk

Return to the general formula (1.4). Given any function f(x) of period 2n, the
interpolating polynomial which coincides with f (x) at the points xk (and so also at the
points congruent to xk mod 2n) is equal to

sR
E f(x,) t1(x) (1.14)

1

Suppose now that for each n we have a system

> R (1.15)

of 2n+ 1 fundamental points. It is natural to ask for conditions under which the sum
(1.14) will tend to f(x) as n-+co. This problem of the representation of functions by
interpolating polynomials has something in common with the problem of the repre-
sentation of functions by their Fourier series. It is natural to expect that the geo-
metric structure of the fundamental sets (I.15) is of great importance here. Uttle is
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known about the behaviour of the interpolating polynomials for the general system
(1.15), and in what follows we shall be concerned almost exclusively with the case of
equidistant nodal points. By this we mean that

>=o + 2nj
(j=0, 1, ..., 2n). (1.16)2n+ 1

Thus the points exp (izy(">), j = 0, 1, ..., 2n, are equally spaced over the circumference
of the unit circle. This case has been particularly well investigated, and is the most
important in applications. Moreover, the analogy with Fourier series is here par-
ticularly striking.

If no confusion arises, we shall write x5 for x ).
The polynomial coinciding with the periodic function f(x) at the points (1.18) will

be denoted by 1,,(x, f) or by 1.[f], or simply by 4(x), and will be called the n-th
interpolating polynomial of f.

Consider the Dirichlet kernel

D"(u)=}+ Ecosku_sm(n+})u

k-1 2 sin }u

It is a polynomial of order n vanishing at the points 21Tj/(2n+ 1), j = 1, 2, ..., 2n, and
equal to n + +) for u = 0. Thus the polynomial D,.(x -x,)/(n + jr), which is equal to 1
when x = x5 and to 0 at the remaining points Xk, is a fundamental polynomial for the
system (1.16) and, by

2 2n

(x,f)=2n+1 (1.17)

This expression can be written as a Stieltjes integral. Let Cu be any real number,
and for every positive integral p let wp(x), - co < x < + oo, be any step function which
has jumps 27r/p at the points

f,,=go+2vn/p (v=0, + 1, ±2, ...), (1 18)

is constant in the interior of each interval (C,,, 4.+1) and has regular discontinuities at
the 6, The function c (z) is determined uniquely, except for an irrelevant additive
constant, by the suffix p and by the position of any point f,,; so no misunderstanding
will occur if we denote the function simply by wp(x). If the set (1.18) contains a point

or a point set E, we shall say that the function m,(x) is associated with f, or with E.
The formula (1.17) can now be written

I"(z, f) = nof(t) D"(x - t) dwm+i(t), (1.19)

where ali+1 is associated with the points (1.16). If S(x) is a polynomial of order n,
then 4(x, S) = S(x), since both are equal at the points (1.16). Thus

S(x) = n
J

D"(x - t) dwM+1(t) (1.20)

If g(x) is periodic, then $ gdmp is independent of a. In particular, the integral
a

in (1.19) may be taken over any interval of length 21r.
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If f (x) is continuous, the integral in (1.19) certainly exists as a Riemann-Stieltjes
integral. If f is discontinuous at some of the points (1.16), the integral does not exist
in the Riemann-Stieltjes sense. We might here use the more general Lebesgue-
Stieltjes definition, but it is much simpler to treat the integral in (1.19) merely as a
different notation for the sum in (1.17), and we shall always do so. The advantage of
the integral notation is that it brings to light the formal similarity between the nth
interpolating polynomial off and the nth partial sum

1 ?.
S,(x; {)=- f(t)DT(x-t)dt (121)

?T 0

of S[f]. If we add a suitable constant to osn+1(t), it will tend uniformly tot as n tends
to infinity, and this might suggest that the behaviour of I,,(x, f) as n -)r oo should be
similar to that of Sn(x; f). We shall see later that within certain limits this is actually
the case, though the parallelism does not go so far as might be expected from the formal
resemblance of the integrals in (1.19) and (1.21).

In this chapter, unless otherwise stated, we shall consider only functions integrable
in the classical Riemann sense and of period 2n. In particular, our functions will be
bounded. The most interesting special case, and that in which the most important
problems arise, is that of continuous functions. Usually the extension of results from
continuous to R-integrable functions (if possible at all) does not require essentially
new ideas; but R-integrability is as natural for the theory of interpolation as L-integra-
bility is for the theory of Fourier aeries. That L-integrability is not of much use for
interpolation is clear from the fact that the I (x, f) are defined by the values of f at
a denumerable set of points. By modifying f there, we can change the behaviour
of the 1,U], while S[f] remains unchanged.

The polynomial 7,,(x, f) conjugate to I1(x, f) is obtained from (1.17) by replacing
each Dn(x-x,) by the conjugate Dirichlet kernel 1)n(x-x5), where

NX)= 2]sinkx=Cos
x-coa(n+})x

k-1 2sin}x

Thus rn(x, f) = 1 f(t) b, (x-t)dc 1(t) (1.22)
W 0

In particular, for any polynomial S(x) of order n,

S(X) =
1

s(t) .Dn(x- t) dw2n1 1(t) (1.23)
A 0

Trigonometric interpolation is analogous to interpolation by means of power
polynomials. Given any n+1 distinct points CO, C1, ..., C, of the complex plane, and
any numbers 1, 7.. , 71, there is always a uniquely determined (interpolating)
polynomial P(C) = co + clC + ... + c,,Cn of degree n satisfying

P(Ck)='ik (k=0, 1, ..., n). (1.24)

The uniqueness follows from the fact that the difference of two such polynomials
would be a polynomial of degree n having at least n + 1 zeros, and so would vanish
identically. If we set

W(9) (C -Co) (9 -C3)... (g -W,l (1.25)

l,(A)=w(C)/w (C,) (C-C,), J
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then i,(C) is a polynomial of degree x equal to 1 at and vanishing at the remaining C,.
Thus, if F(C) is any function such that F(C}) _ 71, for all j, we get the classical Lagrange
interpolating formula

P(C) = fE I/f it(c) = fE

E w(C)

J-o w(c)(C-
).

Assume now that all the points C. are real and situated in the interval - 1 < C < 1,
and consider the (standard) mapping

C=coax (1.26)

of the interval -1 < C < 1 on to the interval 0 S x _< n. It transforms any function P(C),
defined in -1 < < 1, into F(coex) = f (x), say, and the points 4, C1, ..., t. into points
x0, z1, ..., x*. The power polynomial P*(C) coinciding with F(C) at the points Ck becomes
PP(oosx), a purely cosine polynomial coinciding with f(x) at the points x0, x1, ..., x*.

Conversely, we suppose that f (x) is any function defined for 0 < x -< rr, that
0 < xo < x1 < ... < x* < n, and that C*(x) is the cosine polynomial of order n coinciding
with f at the points x0, x1, ..., x*. We observe that cos kx is a power polynomial of
degree kin cos x. (This is obvious for k = 0, 1, and for general kit follows by induction
from the formula coo kx + cos (k - 2) x = 2 cos x cos (k -1) x.) Thus the transformation
(1.26), which carries the function f (x) into an defined in - I < C-< 1, also carries
C*(x) into a power polynomial P,1(C) coinciding with F at the points C, = cos x!.

The problem of interpolating by means of power polynomials P*(C) on the interval
-1 4 C < 1 is thus equivalent to that of interpolating by means of cosine polynomials

on 0 <x S n. The case of the so-called Tchebyshev abscissas

/(n_1)-eoe 77 Ytn-1)= 31rSSOO
2n' S1 2n'

is equivalent to cosine interpolation with
3ir/2n, ..., (2n - 1) it/2n.

008
2n

equidistant fundamental points v/2n,

2. Interpolating polynomials as Fourier series
Write

IJ(x, f) = ion) + E (a(,,n) Cog vx + b;*) sin vx)
P-1

_ (n) e[,7

If we replace D*(u) in (1.19) by } + cos u + ... + cos nu and compare the terms on both
sides, we get

a(.*)= f *f(t)cosvtd(,,1 1(t), bn)=n J (2.1)

for v=0, 1, 2, ..., n. Similarly we have

c(*) _ 12n of(t)e-wdw,,.+i(t) (2.2)

for I v n. The numbers b,*) will be called the Fourier-Lagrawge coefficients of f
(corresponding to the fundamental points (1.16)). The 4*) are the complex Fourier-
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Lagrange coefficients of f. Where no ambiguity arises we shall write a b c, for
a;">, b;'), c( "). For a fixed v, the integral defining 4i) is an approximate Riemann sum
for the integral 1

-) f(t)ooevtdt,

and similarly for b;">, ,'1). Thus as n -+ oo the v-th Fourier-Lagrange coefficient off tend&
to the v-th Fourier coefficient off.

We recall a definition from Chapter I, § 3. Let 1(x), (x), ... be defined in an interval
(a, b), and let w(x) be a non-decreasing function in (a, b). We say that the system of
functions 0, is orthogonal over (a, b) with respect to the weight dw if

8

I 01W k(z) dw(z) =
0 for j + k,

Ak>0 for j=k.
Given any function f(x) defined in (a, b), we call the numbers

b

c1=T'Jf(x) j(X) dw(x)

the Fourier coefciente off, and the series

cl$1+c3( +.
the Fourier series of f, all with respect to the system {q,} and the weightdw. The system
is called complete if the vanishing of all the c, implies that f vanishes almost everywhere
with respect to dw; that is, that the variation of w(x) over the set of points at which
f does not vanish is 0.

Return to (2.1). Taking forf(x) one of the functions

}, coax, sin x, ... , cos nx, sin nx, (2.3)

we immediately deduce that this 8y8tem is orthogonal over (0, 2ir) (or any interval of
length 2a) with respect to the weight de Yn+1. The numbers A here are equal to4The

formulae (2.1) imply that 1n(x, f) i3 the Fourier series off with respect to the system
(2.3) and the weight dw 1

Similarly, we show that the system a 1, v = 0, ± 1, ..., ± n, is orthogonal over
(0, 2n) with respect to du2n+l, and II(x, f) is the Fourier series off with respect to this
system.

If for a given f the numbers ao, al,...... a, bn are all 0, then I,,(x, f) n 0. This means
that f= 0 at the discontinuities of a 2fl (since II(z, f) =f there), that is, that the total
variation of co,,, over the set where f does not vanish is 0. We may therefore say that
the system (2.3) is complete with respect to dwan+1.

The orthogonality of the system (2.3) with respect to dw,,+l can also be proved
directly; we have only to observe that

J cos kxdCN(x) +1i sin dwN(x) =
a o 0

e,dwNx, (2.4)

and that the last integral is 0 if k is any integer not divisible by N (see Chapter II,
(1.3)). Under this hypothesis both integrals on the left must vanish, and from this we
easily infer that the system (2.3) is orthogonal over any interval of length 2w with respect
to da n where m is any integer (odd or even) greater than 2n.
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It follows from (2.4) that if T(z) is any polynomial of order less than N, then
zA

(2n)-1 TdwN
0

is equal to the constant term of T(x). Thus

[x

fzAT(x)ddN(x)=fzAT(x)dx (2.5)

0 0

for any polynomial T of order strictly less than N. In particular,

(2.6) THEOREM. If S(x) = Z y, ei- and T (x) = Ey;, e{'" are polynomials of order n < IN,
we have the Parseval formulae

1 I

S(x) T(x) dwN =Y (2.7)

1 J ' S(x) lades
+

e (2 8)
2n v=EIY.

o .--n
The case N = 2n + 1 is particularly important.
If a system of functions {q,,(x)} is orthogonal in (a, b) with respect to the weight

dw(x), and if Sk is a linear combination of the functions 401, c!, ... , cbk with arbitrary
constant coefficients, then the quadratic approximation

rb

I f (x) - Sk(x) 1 3 dw(x)

off by Sk is a minimum for fixed k if Sk is the kth partial sum of the Fourier series
of f with respect to the system {!Yn) and weight dw(x) (Chapter I, § 7). This and the
fact that In(x, f) is a Fourier series give significance to the kth partial sum of I,,(x, f ),

1 t k
IA,k(x, f) = 3a0n) + Fi (a( n) coo Vx + b( n' cos vx)

V-1
1 YA

nJ0 .f(t)Dk(t-x)dwsn+l(t) (k=0,1_-,n), (2.9)

and we have the following theorem :

(2.10) THEOREM. The polynomial I',k[f] minimizes the integral

f
2A

o

among polynomials S of order k.
Hence In.k[ f] is the unique solution of the following problem: among all palynomial8

S(x) of order k <_ n find the one which would approximate best--in the sense of least squares
-to the function f at the points x0, x1, ... , x1, . Fork < n we cannot in general expect that
the minimizing S would coincide with f at those points.

3. The case of an even number of fundamental points

In principle, any 2n+ 1 conditions will suffioe to determine a polynomial T (x) of
order n. In the previous section we assigned the value of T at 2n + 1 pre-assigned
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points. Now we shall choose a set of 2n equidistant points depending on T, more
precisely on the phase of the highest term of T ; and we show that T is uniquely
determined by the conditions of having given values at these 2n points.

For write T in the form
n-1

T(x)=}ao+ I (3.1)
P-1

(p not necessarily positive), and consider the function w,n associated with the roots of
sin (nx+a). Since the product of any two of the functions

4, coax, sin x, .. , cos (n - 1) x, sin (n - 1) x, cos (nx + a) (3.2)

is a polynomial of order less than 2n, it follows from (2.5) and the ordinary ortho-
gonality of the system of functions (3.2) that this system is orthogonal with respect to
dw,n over any interval of length 2n. (This holds for any wgn.) Thus the coefficients
a b, p of T can be determined in the usual Fourier fashion. However, while

fo
,1

pSe
and f cosy vtdw$n = I sins vtdwy,, = rro

for v= 1, 2, ..., n- 1 (by (2.5)), we have

fo
ff cost(nt+a) dw2n(t)= Ion

by virtue of the hypothesis on w,n. Thus J

T(x)=- f *T(t)j4+ Elcosp(t-x)+}cos(nt+a)coe(nx+a) "20)_

To the last term in curly brackets we may add 4sin (nt+a)sin (nx +a), which is 0 at
the discontinuities of w=n. The expression in brackets then becomes D*(t - x), where

n-1 sin nu
D* (u) + Z1cos vu + I cos nu = 2 tan lu

is the modified Dirichlet kernel (Chapter II, § 5), and we obtain the following result:

(3.3) TsEOEEM. For any polynomial (3.1) we have

T(x)
u

T(t)Dn(t-x)dwsn(t), (3.4)
77

provided w, is associated with the roots of sin (nt+a).
The right-hand side here depends solely on the values of T at these roots.
Let now a be any real number. Any polynomial S(x) of order n can be written

S(x) =T(x) + a sin (nx + a),

where T is of the form (3.1). Thus in (3.4) we may replace T(x) by S(x) - o, sin (nx+ a)
and T(t) by S(t), since sin (nt + a) vanishes at the discontinuities of w=n(t). This gives

1 4x

S(z)=asin(nx+a)+-
I

(3.5)
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In particular, let 0,.(t) and 1is (t) be the functions & associated respectively with
the zeros of cos nt and sin nt. Let u1, us, _.. , uM and v1, v ... , vim, be the discon-
tinuities of 0! and %k . We may suppose that

Then, uk = (2k - 1) n/2n, vk = krr/n (k = 1, 2, ... , 2n).

(3.6) TELOREM. For every polynomial

S(x) = }ao + E (a,, coo vx + b, sin vx),
,-1

we have S(x)=a.cosnx+1 S(t)Dn(i-x)d02 (t), (3.7)
0

2a'n

0
S(x) = bn sin nx +

1- S(t)D,',(t-z)dl(!2n(t). (3.8)

These formulae are particularly useful for obtaining expressions for the polynomials
S', S', which, unlike S, contain 2n coefficients only. For example, differentiating

(3.7), where the integral is actually a finite sum, we get

S'(x)= -nansinnx+l S(t) ncosn(x-t)- sinn(x-t)
n(t). (3.9)4sin2,)(x-t)) 2

In this put x=0 and recall that 02n is associated with the zeros of cosnt; then we
obtain sn x+1

S'(0) =n k-El S(uk) (2 sin 1uk)2, (3.10)

and applying the result to the polynomial S(O+x) we have

S"(O)=- X1S(O+uk)(2sin,)uk)z ("k
(k

n )n(311)n k-

This formula for the derivative of a trigonometric polynomial has interesting
applications. If we write 1 %ak =n-(2 sin auk)-

,

2n

it gives 2: akI (3'12)
k=1

Now al +a2 + ... + a2n = n, as we may easily verify by taking S(x) =sin nx in (3.10).
Hence, if I S(x) M for all x, we have

S'(O) I -< M(al + a2 + ... + a2n) = Mn.

More precisely, we have I S'(0) I < Mn, unless S(O + Uk) is alternately ± M for
k=- 1, 2. ..... 2n, that is, unless S(O + x) coincides either with M sin nx or - M sin nz
at the points uk. To fix our ideas, consider the first case and let

ZA(x) = S(O +x) - Msin nz.

Then A(x) has roots UP u2, ..., u2n; but since 18 1 <- M, both S(O + x) and M sin nx
attain their maxima and minima simultaneously at the points uk and the roots must
be at least double. It follows that A(x) has at least 4n > 2n + 1 roots. Hence

S(O+x)=Msinnx, 8(x)-Msinn(x-O),
and we get the following theorem:
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(3.13) THEOREM OF S. BERNSTEIN. If a polynomial 8(x) of order n 8ati8f[es
S(x) I < M for all x, then I S'(x) I < nM, with equality if and only if S i8 of the form

M cos (nx+ a).
It now X(u) be non-decreasing, non-negative and convex in u _> 0. Dividing (3.12)

by n and applying Jensen's inequality (Chapter I, (10.1)) we get

X(n-' I SI(B) I ) <X(n-'Eak I S(0+uk) I ) <n-'EakX(I S(0+uk) I ), (3.14)

and integrating over 0< 0 < 2n we have

Jo^X(n-' S'(0) 1)dd <n-'EakJoTX(I S(4+uk) I )do

n-'Zakf X(I S(B)1)dB,
0

that is J 2wX(I (3.15)

Suppose now that X is strictly increasing and that we have equality in (3.15). The
two members here are the integrals of the extreme terms in (3.14), so that these terms
must therefore be equal for all 0. Since X is strictly increasing, this is only possible if
we have equality for all 0 in (3.12). The latter condition implies that for every 0 the
numbers S(8 + Uk) are of alternating sign. This in turn implies that the distance between
two consecutive zeros of S never exceeds n/n. If S * 0, none of these distances can be
less than n/n, for otherwise S would have more than 2n zeros. Thus either S = 0 or
S has 2n equidistant zeros. In either case (see p. 2) 8 = M cos (nx + 6). Hence

(3.16) THEOREM. For every function X(u) non-negative, non-decreasing and convex
in u ? 0, we have

fa"X(n_118'(0)1)de< (3.17)

If X i8 strictly increasing, equality occurs if and only if S = M cos (nx +6). In particular,
I/P

1J I S'Indo)
_<n(f'ISIDdo)Vv

1.for p (3-18)

When p -> oo, the last inequality reduces to max I S' < n max I S
If I S I < M, then not only I S' l < nM but also I .q' I < nM. This is a corollary of the

following result:

(3.19) THEOREM. If a polynomial S(x) of order n sati8fe8 181 < M, then

{S'2(x) +,3'2(x))i < nM, (3.20)

the sign of equality holding if and only if S = M cos (nx + ).
Since the integral in (3.7) is a linear combination of the 2n expressions Dn(x-uk),

the conjugate polynomial g(x) is given by

(x- t) do:n(t), (3.21)n o
n-1

where Dn(u)= Y_sinku+4sinnu=(l-cosnu)}cot }u
k-1

is the modified conjugate kernel of Dirichlet (Chapter II, (5.2)).
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Let a be any real number. Multiplying (3.7) by cos a and (3.21) by sina and sub-
tracting we get

8(z)cosa- S'(x)sin a=an cos(nx+a)+ 1

7T fo

2w

S(t)
sin [n(2x-

tan
t) J(+a]-

x -
t)sina

d02i(t).

Suppose now that xo is any root of sin (nx + a) such that cos (nxo + a) = 1. Differ-
entiating the equation above with respect to x and putting x = xo we have (exactly as
in the deduction of (3.10) from (3.9))

S'(xo) cos a - AS'(xo) sin a = 1
(- l Qk+ + sin a

S(uk) (3'22)
nk-14sin J(x0-uk)

The coefficients of S(uk) in the sum on the right are of alternating sign. Denoting their
absolute values by ,8, and applying the result to T(x) = S(O + x - x0), we obtain

1 2n
fl kS'(e)Cosa-5''(0)sina I E /k I S(6+uk-xo) I (3.23)

nk-1

Here we have fl1 +,8,+... +p2n = n2, by applying (3.22) to S(x) = sin nx. Thus if
ISIsM, I S'(9) cos a -,S''(0) sin at I _< nM, (3.24)

and the sign of equality occurs if and only if S(B+uk-xo) is alternately ± M, that is,
if S(x) is of the form M cos (nx+ 6). Since a is arbitrary, (3.24), with x for 0, implies
(3.20). If we have equality in (3.20) for x = 0, then for a suitable a we have equality
in (3.24), and so S(x) = M cos (nx + 6).

If X(u) is non-negative, non-decreasing and convex, it follows from (3.23) that

J0X(n-1 I S'(6)cosa-9'(6)sina I )dB. (3.25)

If X is strictly increasing, there is equality if and only if S(x) = M cos (nx + 9). As a
special case of (3.25) we have

f" n X(n-1 19'(0) I) d0 f oT X(I 8(0) I) dO,

and, in particular,

(fo

2nI 'IDd0)I/ _<n(J rISIPd) I/P (P
o

Another formula is obtained by taking x=0 in (3.21). We get1

°(0) 1 Z
2n n

S(Uk) Ln(uk) _ - I Z {S(uk)- 8( - Uk)) 3 Cot'4uk,
n k-1 n k-1

whence S(O)=-
n

(S(4 + uk) - S(0 - uk)) cot
1

puk
n k=1

- - 1 f"b'(f)+t)-S(d-t)d0sn(t).
(3'26)n o 2 tan it

(3.27) THEOREM. The formula (3.26) i8 valid for any polynomial S(x) of order 2n - 1.
Let S(x) be a polynomial of order n. Treating it as a polynomial of order n + 1 and

applying (3.4) we see that
1 2w

9(x)-7T f0 S(t)D.+1(x-t)d!+a(t)
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for any cM+s If the tm denote successive discontinuities of2n+: we have
n+1S(0)=-- E 80 )1-cos (n+1)tm

n+lm.._t, m 2tan itm

Take for the tm the roots of sin (n + 1) t = 0. Then

tm=mn/(n+l), cos(n+1)tm=(-1)m;

and bracketing together the terms corresponding to opposite m we get (since the
coefficient of is 0)

s(0) _
n + 1 Y. A{S(tm) - s(- W) cot it.,

C
m odd

or. applying this to S(x + 9),

S B - rnn
cot

-11,S(6) _ - I S(t3 + '" (3 28)n+ 11<msn 1 n+ 1) ( n+ I)} 2(n+ l)'
m odd

Suppose now that S(x) is of order 2n - I and write 2n - I for n in (3.28). We obtain
(3.26) and the theorem is proved.

Letf(x) be periodic; let
En(x) = f) (3.29)

be the Fourier series off with respect to the system (3.2) and weight dw2,,, and assume
that w2R is associated with the roots of sin (nx + a). The argument which led to (3.4)
gives

f('

2ft

E.(x)=nf,*f(t)Dn(x-t)dw2i(t)=n E1f(xk)D*(x-xk), (3.30)

where x1, x,.... , x2n are the distinct roots of sin (nx+a). Since

Dn(x - Xk) = sin n(x - Xk) i cot }(x - xk)

is a polynomial of order n, equal to n at Xk and to 0 at the remaining x1, E (x, f) is a
polynomial of order n coinciding with f at the points Xk. The most general such polynomial

is E,, (x) + C sin (nx + a),

since C sin (nx + a) is the most general polynomial of order n vanishing at the points xk.
Among the polynomials of this family. E is characterized by the fact that the integral of
its square over (0, 2n) is a minimum. For F,,,, being a linear combination of the functions
(3.2), is of the form (3.1). Hence E. is orthogonal to sin (nx+a), so that

0
o o 2(nx+a)dx> EnJy{En+Csin(nx+a)}2dx=J Endx+C2fsin j dx,

if C$0.
J J

The system ,), cos x, sin x, ... , cos nx, sin nx is complete (though not orthogonal)
with respect to any dm2, that is, if the integrals of f cos kxd4w2,1 and/sin kxd&E over
a period are 0 for k = 0, 1, ..., n, then f= 0 at the discontinuities of w2n. For the
hypothesis implies that the polynomial (3.30), which coincides with fat the discon-
tinuities of G12,,, vanishes identically.

It follows that the system (3.2) is complete with respect to any dw2i,, provided W,,, is
not associated with the zeros of cos (nx + a) (in which case cos (nx + a) vanishes identically,
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and (3.2) is no longer an orthogonal system, with respect to &2,1). For suppose that wz
is associated with the zeros of cos(nx+a'), where, by hypothesis, a $a' (mode),
and that the Fourier coefficients off with respect to the functions (3.2), and weight
dwzi,, are all 0. Since cos nx and sin nx are linear combinations, with constant coeffi-
cients, of cos (nx + a) and cos (nx -- a'), the vanishing of the integrals off cos (nx + a) dw2,,
and f cos (nx + a') d&i2n over a period implies the vanishing of the integrals of
f cos nxdcuzn and f sin nxdwzi,, and the desired conclusion follows from the preceding
result.

4. Fourier-Lagrange coefficients

(4.1) THEOREM. The Fourier-Lagrange coefficients

zr(n)=(a.R)-ibvn))=2e f(t)e-`4
2n+1(t) (4'2)i

tend to zero as v - cc, uniformly inn >_ I v

In other words, given an e > 0 we can find a vo = vo(e) such that
I

(,,") I < e for
n >, I P I vo. We give two proofs.

(i) Let h=h"=21r/(2n+1).

Suppose first that f is the characteristic function of an interval a < x S b. If E' denotes
summation over those k for which the discontinuities tk of i.i t+1 are in (a, b), i c;.^)

is equal to
1 I E' e-i'4 I 1

2

2n+1 2n+II1-e a vI 2I I

(2n+1)sin2,n+1

Hence c(") -> 0. The result holds if (a, b) is open or half-open, and so also if f is any step
function.

For any f integrable R and for any e > 0 we can find a set S of non-overlapping
intervals i iz, ... , iy such that the oscillation off over each ik is less than e, and the
set R = (0, 2e) - S is of measure less than e. Let M(x) be the step function which in ik
is equal to the upper bound off in tik and in R is equal to 0. Then 0 -<M(x) -f(x) _< e
in S, I M(x) -f(x) 15 M in R, where M is the upper bound of I f (x) I. Now

21rc,= w{f(t)-M(t))e-iYrdwz"+1=cY+ev,

Jo 0

say. Obviously, c;, -+ 0; and

Y,

I c, I _
0

w

I f(t) -M(t) I dw2n+1-
8

+
SR

+'/Y,

say. Since JY 5 eJ dwtn+1 < 2ee,
a

r1Y<_M$ dwa",1-'MIRI as n-+oo,
R

it follows that c; is small with e, provided n is large enough. Hence c,-i 0.
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(ii) 'Let yY be the Fourier coefficients off. Consider the Parseval formulae

f= 1 s.
144) I

2nY
I f 1 2 dwln+1,En

E IYYI'= 2n1 I

It is enough to show that for any e > 0 we can find a vo = ve(e) such that

E I C(Tlla <6
s

(4.3)

(4.4)

(4.5)

This property could be described as uniform convergence, in the parameter n, of the
series in (4.3). For this purpose choose vo= vo(e) such that

1 2w

0_<
21TJo IfI'dx-1I

As n -* oo the right-hand side of (4.3) tends to the right-hand aide of (4-4). Moreover,
c;,T> y, for any fixed P. Hence the last inequality gives

ax

0 2nfp If l8d (4.6)

provided n is large enough, say n? no = no(e). (The difference here must be non-
negative, by virtue of (4.3).) We have no 3 vo. Since increasing vo can only make the
difference in (4.6) smaller, we may suppose that vo=no. But, by (4.3), if n? vo, the
inequality (4.6) is identical with (4.5), which completes the proof.

Let D be a family of functions of period 2n. We call the functions f of 0 uniformly
integrable R if

(a) the functions f of 4' are uniformly bounded;
(b) for every e > 0 there is a po =po(e) with the following property: for each f of 4'

we can find p S po intervals i1, 12, ..., iv in (0, 2n) such that the oscillation of f over
each ik is less than e and the set complementary to the ik is of measure less than e.

(4.7) TxsoREM. The Fourier-Lagrange coeficiente c;"> tend uniformly to 0, as I v I eo,

for any set of functions f uniformly integrable R.
The proof is identical with the first proof of (4.1).

(4.8) THsoREM. If f is of bounded variation and V is the total variation off over
0 _< x _< 2n, then V

Write

fork -> 0. Then

S_10,

Sk = e-{K + e-, + ... + e-(At

1
4T)=(2n+1)-1 E f(tk) (Sk-Sk-1)

k=0

sm-1 7

= (2n+ 1)-1 E [f (tk) --f (tk+l)J 8k,
k_0
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since Stn = 0. Thus if h = 2n/(2n + 1) we have

2n-1
277 I c( "I h max I Sk I E I f 0k)(1k) -f(tk+l)

and the proof is completed.

k-0

2hY 77Y
II - a-"I -< vI,

Theorems (4.1), (4.7) and (4.8) hold if in the definition of e;.n) we replace 102n+1 by m2n.
Let y. and c( ,n) denote respectively the Fourier and the Fourier-Lagrangecoefficients

of f. Suppose that (02n{, is associated with the point u. Then

C(n) = E Yr }p(2n+1) t(2n+1) Pu (I P I < 7L), (4.9)

provided S[f] converges to f (tk) at the points tk and the series on the right is inter-
preted as the limit of the symmetric partial sums. For (2n + 1) c is equal to

2n 2n +ao

f (tk) a-u4k = E E Y. ei(m-r)1k
k-0 k-0 m--,

+ 2n

E Ym E eam-r) tk,m--m k-0

and the coefficient of ym is either (2n + 1) eum--Y)u or 0, according as m - v is or is not
divisible by 2n + 1. In particular, if S[f] is absolutely convergent, then

+n +m
E I C(n) I_< E I Yr I- -n V--aO

(4.10)

5. Convergence of interpolating polynomials
We now show that certain tests for the convergence of S[f] (see Chapter II) remain

valid for the polynomials In[f], the proofs being essentially the same. There are,
however, certain differences in the behaviour of Sn and In.

First of all, we cannot expect that the integral tests for the convergence of S[ f ],
such as Dini's or Lebesgue's tests (Chapter II, §§ 6, 11), will hold for interpolating
polynomials. The reason is that the behaviour of the In[ f ] depends on the values off at
a denumerable set of points only, and, roughly speaking, the behaviour of f at these
points can be `bad', though integral conditions may be satisfied.

Secondly, we cannot in general expect the In[f] to have any definite behaviour at
a point f of discontinuity, even if f has only a jump at 6. For let x( ,n) and x(!+1 be two
successive fundamental points straddling 6. Since In(xn>, f) = f(x$n)), it follows that,
if xJ or xJ+, comes close to 6, then In(g) comes close to f(f-0) or f(g+0), as the case
may be. Thus to obtain information about the behaviour of I,(g) we would have to
associate each Wen+, with a definite point, varying with n, and this we do not do.

In what follows we consider the partial sums In,,, of the In rather than the In them-
selves, and discuss the behaviour of 1,,,,, as v->oo, n remaining always >_ v. As before,
all functions mentioned will be supposed integrable R.
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(5.1) TREoREM. If f=0 in (a,b), then I,,.,[f] tends uniformly to 0 in every interval
(a + e, b - e), where e>0-

This is a corollary of the following result (compare Chapter II, (6.7)).

(5.2) THEOREM. If A(x) i8 integrable R and has all its Dini numbers finite at x =xo then

I,.,.(xo, A.f) - A(xo) I,...(xo,f) - 0.

If AE A1, the convergence is uniform in xo.
By (4- 1), it is enough to prove (5.2) for the polynomials I,., , obtained by inserting

a factor } in the last term of I,,.,. We have

1 ,,(xo,.f)=-
o

f(t)D`(xo-t)du.+1(t),
(5.3)

In,.(Xe,Af)-A(xo)I..,(xo,,f)= fgfm2AYa)n-J(A(X0))sina

tBy (4- 1), the last integral tends to 0 if the ratio [A(t) - A(xo)]/(t - x0) is bounded. For
the discontinuities of the function

h=,(t) _ [A(t) - A(xo)] 4 cot }(t - xc)

are those of ;L and, possibly, t = xo, so that f (t) hzp(() is integrable R. I fA c A,, the h=.(t)
are uniformly integrable R, since they are uniformly continuous for I t - xo e > 0.
Hence f (t) h,.(t) is uniformly integrable R, and it is enough to apply (4.7).

To deduce (5.1) from (5.2), let A(t) be periodic, continuous, equal to 0 in (a + e, b - e),
equal to I outside (a, b), and linear elsewhere. Then Af = f and, for xo in (a + e, b - e),

I,...(xo, A,f) - A(xo) 1,,.,(x0, f) = I,.,(xo, f),

from which (5.1) follows.
Theorem (5.1) expresses the principle of localization for interpolating polynomials.

If f, J8 in (a, b), the sequences I,,,,[f1] and I,,,,[f=] are uniformly equiconvergent in
(a+e,b-e).

(5.4) THEOREM. If f is of bounded variation, then 1,,,,(x, f) tends tof(x) at every point
of continuity off. The convergence is uniform over every closed interval of continuity off.

We postpone the proof to the next section.
We mentioned above that the integral test of Dini cannot be expected to hold for

the The following result is a substitute for Dini's test:

(5.5) THEOREM. If I f(6±t)-f(g)I <-µ(t)when 0<t<, 71, where #(t) i8 a non-decreasing

function oft such that f
o

t-1u(t) dt < + eo, then 4,(f, f) -o f (f ).

The integrability of t-lpp(t) implies that u(+ 0) = 0, so that f is continuous at 6. Write

-f 1
f{

{+*
[f(t) -f(f)] D' (f - t) d..,,

n -.
1 t+ 1

+- =P+Q,
7r {_d 7r f,

where R is the complement of (f-d, f+d). For every fixed d> 0, Q tends to 0. It is
therefore enough to show that P is small with 8, if n is large enough.
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2a
For this purpose, given any e > 0 choose 8 so that J t-'1u(t) dt < e. The integral P is

0

a finite sum extended over the fundamental points tJ belonging to (6 - 8, + 8). We
write P=P1+P2, where P1 is the contribution of the two points tk_1 and tk nearest to f
(80 that tk_1 <61< 1k). Evidently P1-* 0. Let h = 2n/(2n + 1). The contribution of the
points tk+1, tk+s. , tk+t belonging to (6, 6+8) does not exceed

2 k+1 If(tj)-f(?;)I <1 u((i+1)h)3h 1 a((i+l)h)
2n+1j _ 1 tf-,F 7-T ; ih 7T _I (i+2)h

AU+-)

\ I

t 'u(t) dt - f"8 ',u(t) dl < e,

the penultimate inequality being valid for n large enough. A similar result holds for
the fundamental points in (4-8, 6). Thus

IPISo(1)+2e
for n large enough, and (5.5) follows.

The case in which u(t) = (log 1/t)--1 for small t is particularly interesting. Here e
must be positive so long as we consider only one point t;. If the conditions are satisfied
at all points of an interval, however, we may relax them slightly, and we have, in fact,
the following theorem:

(5.6) THEOREM. If f is continuous and its modules of continuity is o((log 1/6)-1), then
In,,(x, f) tends uniformly tof(x).

Let z2n+, be associated with a point u, and let
-1 .

n.v=n
U

I Dv(t-Z)I Sn+1 (5'7)

This is an analogue of the Lebesgue constant (Chapter II, § 12), and depends on v, n, x
and u; more precisely, it depends on v, n and x - u. We require the inequality

an,,,5Alog v (1<v-< n), (5.8)

where A is an absolute constant, and this we take temporarily for granted. Let
v be the (C, 1) means of S[f]. Since the modulus of continuity of f is o{(log 1/8)-1}, we
have, by Chapter III, (3.16),

f - -7 = o{(log v)-1}. (5.9)

Now write
(5.10)F r (I IIn. v[J ] = Lf - av] + [o ,]n, J n. v

The last term is a- (x) and tends uniformly to f (x). It is therefore enough to show that
I,., jf -a.] tends uniformly to 0. But

11,..U-TV] I =

by (5.8) and (5.9).

1 r

n Io {f(t)-o'v(t)}Dv(t-x)dsn+l(t)

<. A.,, max I f(t) -CY(t)
1

= O(log v) o(1 /log v) = o(1), (5.11)
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Returning now to (5-8), we have
An,v=1fi

-* I Dv(t) 1 do4n+1(t), (5.12)

where W2n+1 is associated with the point u - x, and it is enough to show that

fo" I Dv(t) I d()2n+1(t) =O(log v).

Let tk be the first discontinuity of 9n+1 satisfying tk >- 1 /v, and let h = 27T/(2n + 1).
Using the fact that D,,(t) is both O(v) and 0(1/t), we write

s rt} '
f I NO I d 2n+1- A I vdmyn+l(t)+ A f t-1d0an+1(t)

=P+Q.
Since the number of discontinuities of wSn+1 in (0, 1/v) is O(n/v), we immediately see
that P-0(i).
Also, if tk+1 is the last discontinuity of c4, in (0, n), we have

Q

AJ t-1dt=O(logv).

Hence P + Q = O(Iog v) and (5.8) is established.
Remark. The inequality (5.8) can also be deduced from the estimate for the

Lebesgue constant L. (Chapter II, § 12), and the following result, which will be
proved in § 7 below : If S(t) is a polynomial of order v and N > v, then

0S(e) I dwN(t) 5A Ionl S(t) I dt,

where A i8 an absolute constant. If then

foul D,(x-t)I N(t) -< AI I DY(x - t)I dt

2n

Afo I D,(t) I dt=AirL,,.

1Since L. = O(log v), the result follows.
The same argument shows that

fo
n t 1)v(x - t) I dmN -< Afo A I .b,(t) j dt = 0(log P),

by Chapter II, (12.3).

(5.13) THEOREM. (i) For any f.

uniformly in x and n.
(ii) If f is continuous at x0, then

1, ,(x, f) = O(log v), (5.14)

I..v(x0, f) =o(log v).

(iii) The latter relation holds uniformly in xo if f is everywhere continuous.

(5.15)
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(i) If If I <M, IIn,r4]I SMA..v=O(1og0.

(ii) Given an e > 0, let 8 be so small that the oscillation of f in (x0 - 8, x0 + 8)
is less than e. Let f1(x) be the function equal to f(xo) in this interval and equal to f(x)
elsewhere. If we set f =fl + f=, then I f,(x) I _< e for all x, whence

I1n,r(f2] 15eAn,,,5Aelogv.

Since f1 is constant in (x0-e,xo+e), In,(xo, fl) converges to fl(xo) and so is o(logv).
Since In.,,[ ,,U] = In,,,[ f1] + 1n, jf2], the result now follows.

(iii) As in (5.10) we have
In..W ] = 4.v[f - -A + I.,.lo.]

The last term is o-,,, and so tends to f (x) uniformly in x, while as in (i) the first term is
0(log v). o(1) = o(log v), again uniformly in x.

(5.16) THEOREM. If S[f] converges absolutely, I, , (x, f) converges uniformly to f (x).
Multiply both sides of (4.9) by eµz, sum the results for v = 0, ± 1, ± 2, ... , ± k, and

subtract from f = E-/, e(Ix; we get

If(x)-In.kI_<2 E IY,I,
IJ I>k

and the expression on the right tends to 0 as k->oo (n always remaining k).
The results of this section remain valid for the interpolating polynomials En(x, f)

(see § 3) and their partial sums Ef.k
If at a point xo of continuity off the expressions In,,,(xo, f) tend to a limit, that limit

must be f (xo). This follows immediately from a result which will be established in
the next section, namely that

f
n+ 1

lln.0+1n.1+... +In,n}

tends to f at every point of continuity off. Whether the existence of lire In(xo, f) at
a point of continuity implies that this limit must be f (xo), is a deeper problem (and
the answer is not always affirmative).

(5.17) THEOREM. Suppose that the fundamental points are associated with the point 0,
and let xo be a point of continuity off. Then

(1) if En(x0,f)->s, s=f(x0);
(ii) if In(xo, f)->s, and x0 is not of the form 27rp/q, where p/q is an irreducible fraction

with even denominator, 8 = f (xo).
The proof of (i) is based on the result of Kronecker that given any real x there are

infinitely many fractions p/q such that

I x -p/qI < q-' (5.18)

(see Chapter VI, §2). The fundamental points in (i) are tk=rrk/n. By Kronecker's
theorem applied to xo/rr, there are infinitely many pairs k, n with

Ixo - tk I <. nn-'.

Consider only such tk. The polynomials En(x, f) are uniformly O(log n), and so their
derivatives are uniformly O(n log n). By the mean-value theorem,

E,.(x0) - En(tk) = (x0 - tk) En(6) = 0(n-') O(n log n) = 0(1),
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where 0 is between xa and tk. Since

En(Q) =f(tk)-+f(x0), En(x0)+8,
it follows that s=f(xo).

The proof of (ii) is the same as that of (i) if xo = x0/2rr can be approximated with error
O(q-2) by infinitely many fractions p/q with odd denominators. This is clearly impossible
if xo is an irreducible fraction p0/go with an even denominator, for if p/q is in its lowest
terms,

I xo _ plq I = I polga -p/q I % 1 /qoq

We shall show that if x is not of the form pa/q, just described then there are infinitely
many fractions pjq with odd denominators satisfying (5.18).

We may assume that x is irrational, for if x is rational with odd denominator the
result is obvious. We know that there are infinitely many fractions plq satisfying (5.18).
We may assume that the q here are even, for otherwise there is nothing to prove.
Let 6, n be a pair of integers such that pq - q9 = 1. Clearly n is odd. We may assume also
that I n 15 4q, for if 60, no satisfy this relation, so also do fo + tp, no + tq for every integer t.
We observe now that

1 1- x-q +q 417Ignl
4ns+ 2<a, (5.19)

and it remains to prove the existence of infinitely many fractions f/n with the required
property. If we had only a finite number of them, the it's would be bounded and
infinitely many of them would have the same value rlo. By making q tend to +oo
through the values giving n = no, we would obtain from the second inequality of (5.18)
the result that x = fo/no, contrary to the hypothesis that x is irrational.

6. Jackson polynomials and related topics
We note that the Fejer kernel

22 (sin i(n + l)IKn(u)-(n+1 2 sin *u

vanishes at the points 21rk/(n + 1) for k =1, 2, ... , n and equals }(n + 1) at u = 0. Thus
if to, t1, ..., to are any n + 1 points equally spaced over (0, 2n), for example

_ 2>rk
tk to+n+l (k=0, 1, ..., n), (6-1)

and if Wn+1 is associated with these points, then
n2

1 2.

VJ0 f(t)Kn(t-x)dn+1(t)

is a polynomial of order n coinciding with f at these points.
Since K;,(u) = 0 for u = 27rk/(n + 1), the derivative J,(x, f) vanishes at the points ft.

Thus Jn(x, f) is a polynomial of order n coinciding with fat the points tk and having a
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vanishing derivative there. This means that Jn satisfies 2n + 2 > 2n + 1 conditions; but,
as we shall see later (see (6-7) below), the conditions governing the derivative J. are
not independent.

The J, are called Jackson polynomials.
The vanishing of J;, at the points tk ensures a certain smoothness of the graph of J.

and suggests that f (x) might be represented better by JJ(x, f) than by In(x, f ). We show
that this is in fact true. It is convenient to consider more general polynomials of
order n, namely,

1 2"

Jn,m(x)=J,.m(x, f)=,n f(t) K,,(x- t) d&m(t), (6.2)
0

where m is any integer greater than n. Thus Jn =Jn,n+1. The case in which m = 2n + I
is also of particular interest.

(6.3) ThEoRzm. Let f(x) be bounded and periodic. Then
(i) Jn.m[f ] remains within the same bounds a8 f;

(ii) Jn, m(x, f) converges to f (z) at every point x of continuity off as n -* oo, m remaining
always greater than n. The convergence is uniform in every closed interval (a, f) of con-
tinuity of f.

The proof is similar to that of Fejer's theorem (Chapter III, § 3) and is based on the

2

fact that Kn is a positive kernel. By (2-5),

Kn(t-x)d6jm()Kn(t-x)dt=1,
(6I)="f o"

IT f,
so that if A < f(x) 5 B

for
all x, then A <Jn m(x) 5 B, a property of Jn,m similar to that

of a-,,.
Consider now (ii), and suppose that If M. Given e > 0, we can find a 8 > 0 such

that + f (t) -f(x) ; _< e for x E (a,,8) and I t - x 8; we include here the case when
reduces to a single point. By (6-2) and (6.4),

say, and

2"

Jn,m(x)-.f(z) fo [f(t)-f(x)]K.(t-x)dwm(t)
=-f=+"=-I

ofz-M x-d + R

=P+Q,
Z+a a 2"

-J CKn(t-x)dWm<_ - f Kn(t) e,
if

s_! 7r o

<_ 2M (RKn(t-x)dr,,,n<
8<U<"n(u)fR

dram.
J

Thus Q --,. O as n -> oo, I P + Q I < 2e for n > no, and (6.3) follows.
Let Bn,Y(z) = Bn.Y(x, f) denote the arithmetic mean of the partial sums In, o, In,

In
Y

of In(x, f ). Thus 1 Y 1oz"

Bn,Y=- E In,k=n- f .f(t)KY(t-x)drysn+1v+lk_o

=JY,2n+1 (6.5)

for 0 ,<v < n, and, in particular, Bn, n = Jn ,,, 1. This leads to the following interpreta-
tion of (6.3):
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(6.6) THEOREM. Let f (x) be bounded and periodic, and let B,,.,, be the arithmetic mean
of the polynomials I,,,,, I,,,1, ..., I,,,,,. Then

(i) Bn.,,(x) remains within the same bounds as f;
(ii) Bn (x, f) converges to f(x) at every point of continuity off as v-soo. The con-

vergence is uniform in every closed interval of continuity of f.
At the points of simple discontinuity of f the behaviour of the Jn,,n is in general

indeterminate, as is that of the I,,,,,.
Consider now any polynomial S(x) of order n. The values which the derivative 8'(x)

takes at the points to, t ... , t, are not arbitrary, since

n2+ 1
a S f onS'(x)dx=0. (6.7)

However, given any two sets of numbers

Yo' y1, Yn'. YO, Y I, .. , yn,

such that ya +Y1 + ... + yn = 0

(so that the number of conditions is 2n + 1), there is a unique polynomial S(x) of order
n such that S(tk) =yk, S'(tk)=yk (k=0, 1, ..., n).

The uniqueness follows from the fact that the difference of two such S(x) would have
at least n+1 double roots, and so would vanish identically. To prove the existence
of S observe that

n

15n+1(u)=Zsinvu+isin(n+l)u={l-eos(n+1)u}}oot}u (6.8)
1

is a polynomial of order n +I which vanishes at thepoints u = 2nvr (n + 1), v = 0, 1, ... , n,
and has derivative zero at each of these points with the exception of u = 0 (v = 0),
where its derivative is ,)(n + 1)2. Thus

n
E yk +1(x-tk)
k-0

is a polynomial vanishing at the points tk and having derivatives yk there. Since
n

yksin(n+l)(x-tk)=sin(n+l)(x-to). Zyk=0,
0 0

we may replace Dn,, by J in (6.9), so that Hn is a polynomial of order n.
We can now define S(x) as Hn(x) + J,,(x), where

Hn(x)=2(n+ l)-2 Z ykDn(x-tk)
k-0

(6.9)

(6.10)

and J,,(x) is the Jackson polynomial taking the values y, at the points tt (and having
zero derivative there). Clearly S(x) has the required properties.

The polynomials H,,(x), which vanish at the points tk and whose derivatives have
given values there, are called the interpolating polynomials of the second kind.

The determination of a. polynomial by means of the values which it and some of its
derivatives take at fixed points is called Hermite interpolation (as distinct from Lagrange
interpolation, where the derivatives are not considered). Thus the polynomials J,, and
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H. give the solution of the problem when the n + 1 fundamental points tk) are equally
spaced and only the first derivative is taken into account.

Return to (6.9) and let Y'= max (lyol, I 1!..., lyn
Then, by (6.10) and the Remark on p. 19,

ar
Hn(x) I (n+ 1) n,lro I

Dn(t -x) I

Y'.O(n-1logn), (6.11)
and we have now:

(6.12) THEOREM. Let f(x) be any bounded periodic function and let Sn(x) denote the
polynomial of order n such that

S(tkn)) =f(tk )), S'(t(An)) =yn.k

for k = 0, 1, ..., n, where (for each n) y,;, u y;,,1 .... yn, n are arbitrary numbers with sum
equal to 0. If Y. =max o(n/log n),

then, as n --* oo, Sn(x) tends to f (x) at every point of continuity off, and the convergence is
uniform over each closed interval of continuity.

For Sn = J + Hn, where by (6.11), H. tends uniformly to 0 and Jn = f ] satisfies
the conclusions of (6.3).

The case Y,, = 0(1) is of special interest.
We now apply (6.6) to the proof of (5.4). In Chapter III, § 1, we proved the theorem

of Hardy, that if a series uo + u1 + ... is summable (C, I) to s, and if u, = 0(1/v), then the
series converges to 8. Suppose now that we have a family of finite sums

,fin)+,uln)+... (6.13)

depending on the parameter n, and that

I u(.") I -<A /P,

where A is independent of n and P. Let sn,,, and o-n,,, denote respectively the partial
sums and the first arithmetic means of the series (6.13). Then, if on,,, tends to s as
v->ao, n remaining always -> v, so does sn,,; if the on,, are bounded so are the 8,, ,.

The second part is an immediate consequence of the equation

1
Y

an,y-on,=V+1+1 ku(,n)

The proof of the first part is actually implicit in the proof of Hardy's theorem, as the
reader will easily verify. Thus (5.4) follows from (6.6), if we use (4.8).

It is important to observe that the analogue of Fejer's theorem about the sum-
mability (C, 1) of S[f ] is obtained by considering the means (6.5), and not the means
of the polynomials Ia, Il, ... (see, however, theorem (7.32) below). Although In[ f ]
represents a complete Fourier series with respect to a certain orthogonal system.
there is little connexion between In and I,,. .

(6.14) THEOREM. Let xp < xj < ... < x;,, be any 2n + 1 equidistributed points, and let
h = h = 2n/(2n + 1). Let U,(x, f) be the polynomial of order n taking at the points x; the
values if f(4 + }h) +f(x' - }h)).
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Then U,,(x, f) tends to f at every point of continuity off, and the convergence is uniform
over every closed are of continuity.

Observing that m:n+l(x 1+ 4h) -(oyn+1(x - 4h) is constant, we have

1J'Un(x,f)=no

1 s*

f(t)4{Dn(t-4h-x)+Dn(t+}h-x)}dwsn+1(t+}h)

_ jann) + (a;, n> cos vx + b(,n) sin vx) COB }vh,
-1

where a(,n), b;n) are the Fourier-Lagrange coefficients off corresponding to the funda-
mental points x,". +4h. The last expression closely resembles the expression

4{Sn(x+ }h) + Sn(x - 4h)}

for the partial sums of Fourier series (Chapter III, § 12), and the two have similar pro-
perties. Summing by parts we find U. (x, f) equal to

n-1 anE In,,,Acos4vh+lncos
P_0 2n+ 1

"-' >rn=r oB,,,,(v+1)Q'cos}vh+Bn,n_InAcos}(n-1)h+Incos2n+1.

Disregarding the last term, which is O(logn)O(1/n)=o(1), we have here a trans-
formation of the double sequence B.., by means of a regular matrix (Chapter III, § 1),
and (6.14) follows from (6.6).

It is also easy to verify that for any fixed f the U,, are uniformly bounded.
For the polynomial In[f) the ratio of the order of the polynomial to the number of

fundamental points is n/(2n + 1) = J. In[ f ] need not tend to f, even if f is continuous ;
we may, however, remedy this defect if we allow the asymptotic value of the ratio
of the order to the number of points to increase, no matter how slightly. (For the
polynomials Jn[ f ], which tend uniformly to f when f is continuous, the ratio is
n/(n + I) ^-- 1.) This can be achieved either by keeping fixed the number of fundamental
points and increasing the order of the polynomial, or, conversely, by keeping the order
fixed and dropping a number of fundamental points. Both procedures will be
considered here.

(6.15) THEOREM. Given any e> 0 and any bounded periodic f, we can define a poly-
nomial of order not exceeding n(1 + e) interpolating f at any equidistant points x0, x1, ... , x7n
and converging to fat every point of continuity off, and uniformly in every closed interval
of continuity.

Let 0 < h < n. The required polynomial will be defined as

I "+A
Ln,1,

2h+ 1 E In-W,
ran-h

1 r
where f(t)D,,(t-x)dwsn+l
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The L,,,h are analogous to the delayed (C, 1) means introduced in Chapter III, p. 80,
and

] n+h n-h-1
Ln.h 2h+l o o

In.v

1 ((n+h+ 1) J (n- h
2h + 1 n+h, sn+I - ) n h 1, 2n+1

If h=[ne], it follows from (6.3) that Jn+h,2n+i-'f, Jn-h-i,2n+i->f, and so also

Ln h-->f.

The order of Ln h is n + h <, n(1 +e). Finally,

1 I 2w 1-cos(n+h+1)(x-t) 1-cos(n-h)(x-t)
Ln.h-2h+1 IrJo __--"m;2 4sin2j(x-t) )f(t)dwan+1(t)

2h+177 J
Dn(t-x)Dh(t-x)f(t)dw9n+1(t)

_ 2 2 2n

= 2h + 1 2n + 1 ODn(x - xk) D& - xk)f (xk),

so that L.,h(xk)=f(xk)
for all k, and (6.15) follows.

The polynomial of order n taking the values y, yl, ... , ysn at the equidistant points
x0 < x1 < ... < x2,, may be written

sin(n+U)(x-xa)( 2n (-1)Jyj
(6.16)2n+ 1 1- sin }(x -

x5)l

(see (1.17)). Let 21 be a fixed even integer and split the points xo, x1, ... , x2n into con-
secutive blocks of 21 elements and a terminal block of less than 21 elements. The number
of full blocks is [(2n+ 1)(21]. Given a periodic f(x) we consider the polynomial (6.16),
where the yl are defined as follows. If x, is in the terminal block we set yl = f (xl). For
all the other x5, except for one in each block, we also set yl = f (xl). Finally, if xt+iis
the first element of any block, we define the yl corresponding to the exceptional xl of
that block by the relation

yi+1 - yi+s + yi+s - - yi+Y = 0. (6.17)

We shall call the polynomial (6.16) defined in this manner a 21-adjusted interpolating
polynomial. It interpolates fat least at

mn=2n+1-[(2n+1)/2l]>, (2n+1)(1-1/21)

points. Hence by taking 1 large enough we may make the limit of n/mn as close to }
as we please.

(6.18) THEOREM. For a fixed 1, the 21-adjusted interpolating polynomial of any
bounded and periodic f converges to f at the points of continuity of f. The convergence
is uniform over every closed interval of continuity.

The difference between the expression in (6.16) and f (x) is

sin(n+>1)(x-xo) -iI (-1)1Ly1-f(x)] E'+E
2n + 1 l l-o sin }(x - x5) } -
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say, where E' corresponds to the xt in (z, x + n) and E' to the other z1. Let p be a fixed
integer, and let E' = o' + or where a' corresponds to the p points xi nearest to z.
If f is continuous at x, each y! -f(z) in o' tends to 0 as n -, co. Since I Dn(u) I < n + },

o-'--* 0. Suppose that If M. By virtue of (6.17), the absolute value of the partial
sums of yk-Yk+1+yk+Y-... does not exceed 41M, whence (cf. Chapter 1, (2'3))

41+ 1

+1M 1 2 1M'2n
sin

n
2n+ 1

p

which is arbitrarily small if p is sufficiently large. Thus 0. Similarly 0, and
(6.18) follows.

7. Mean convergence of interpolating polynomials
In the study of mean convergence we shall consider not only the interpolating

polynomials In and their partial sums I but also the conjugate polynomials In, I, ,.
It will appear in the sequel that the latter tend in the mean to the conjugate function

j(z)= -- fo (f(x+t)-f(x-t)]Icot itdt= --`limo

although, in general, In is not an interpolating polynomial for I.
Since every f integrable R is bounded, and so is in L2, the proof of the existence of

f almost everywhere is particularly simple (see Chapter IV, § 1). However, I can be
unbounded even if f is continuous, and so need not be integrable R. We know that}
belongs to every La, where p < oc; more generally, exp (A is integrable if A ispositive
and small enough (Chapter VII, (2.4), (2.11)).

In what follows we confine our attention to polynomials I*. The argument is
applicable without change to the polynomials E.

(7.1) THEOREM. For every f,
I

J d-2n+1,

52w 1rn ,dx <f2fff"&21.11-
0

Furth,er, 2s
lim

o

lim f(f_4.[fJ)tdz=0.
.-

By Pareeval's formula,
7

r] H[1n], v] Y[I,j.

(7.2)

(7'3)

2w Ys Y
Since

Jo
Isndx= fo fo .fsdwsn+l,

(7.2) follows.
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If f is integrable R,

12[f - In,YI 1< V2U} + TZe[I ,,,],
2w

l2[f]+(fU f2d_sn+11 -29 SUJ.

since f2, along with f, is integrable R. Thus

lim suP 9R2U- In,Y] < 22U]

Let now T be a polynomial such that 97t2[f -T] < e, and let f =fl + T. If v exceeds
the order of T,

whence

In,Y[f] = In,Y[f1] + In,Y[T ] = If.Y[.f1 I + T,

V 21f- In,YUJJ = Jl2U1 - In,YU1JJ1

lim sup IR2[,f- In,Y[.f JJ < M2Ui1 < 2e,

and the first equation (7.3) follows. The second equation is a oonsequenoe of the

inequality
2[ V2U- In,YI

(7.4) ThEoREM. For any f and any finite interval (a, #),

lim I,II.Y[f]dx= Jafd,
J+(`6

lim
J

rn.Y[f ] d.'C = f f dx.
Y YaD a a

For the absolute value of the difference of the first two integrals does not exceed

9)l[f-In,,; a,fl<l[f-In.Y]-<
assuming, as we may, that (a, f) is of length at most 2n. The proof of the second formula
is similar. Both are analogues of the fact that S[f] can be integrated termwise over any

0
interval (a.,,6), the result being r fdx.

The exponent 2 in (7.1) can be replaced by any number p > 0, at the cost of a
numerical factor. The proof is based on the following theorem, interesting in itself:

(7.5) THEOREM. Let S(x) be a polynomial of order n. Then

fo

1/P 1/p
<p<+oo), (7'6)

o
I8 lpdo.2n+1} <A( f2Wo ISIPdx (1

(f"

2lip 2w 1/p

I S I "d x \ A,(fo I S Ip
d,$n+1 (1 <p < +oo), (7'7)

where A is an absolute constant, and A. depends on p only.
That (7.7) is false for p=oo (unlike (7.6), which is then obvious) follows from the

fact, to be proved in § 8, that there is a continuous f such that the S(x) = I,,(z, f) are
unbounded although, of course, they are bounded at the fundamental points. For p =1,
if S(x) = Dn(x) and u1n+1 is associated with the roots of sin (n + f) x, the integral on
the right of (7.7) is 2rrDn(0) J(2n + 1) = n, while 9R[S] = nrL, is unbounded as n -+ co,
L. being the Lebesgue constant. Thus (7.7) fails also forp=1.
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We prove first that for any function 4D(u), non-negative, non-decreasing and convex
inu_> 0, f

0
2*0($ISI) 2n+1- f0 2*rl(ISI)dx. (7.8)

The inequality (7.6) with A = 3 is an immediate consequence of (7.8) with d(u) = uP.
In the formula

1
2*

S(x) S(t) Dn(t - x) dtn o
we may replace Dn by any polynomial whose nth partial sum is D. In particular, we
may replace D by 2K2n-i Kn-1,

K, being the Fejer kernel (see Chapter III, (1.31)). Hence we have

I I8(x) I <I -Jo* 1 S(t) I Ksn-1(t-x)dt+j - f or1 S(t) j Kn-1(t-x)dt,

0(} I S(x) I) 5I1D(nJox
I S(t) I

KSn-1(t-x)dtl + j(D(n
fo

I S(t) I K,,-1(t-x)dt)

Q'( fe*1D(IS(t)I)Kn-1(t-x)dt,
0

using Jensen's inequality twice. If, after integrating the last inequality with respect
to w2n+1(x) over 0 5 x ` 2n, we interchange the order of integration (or rather of sum-
mation and integration) on the right and use the fact that

2* 2*

f Km(t - x) dawn+l(x) fo K,n(t - x) dx =1
0

for m <_ 2n, we get (7.8).
For the proof of (7.7) we take a function g such that

2

T1p[S] = f0 Sgdx, lr,.(g) =1,

where p' =p/(p-1) (see Chapter I, (9.14)). Then, by Holder's inequality and (7.6),
2* 2* 2*

WS]=J Sgdx=f SSn(g]dx= SSn[g]down+l
0 0 0

fo* I S r+)' 1 f 0* I

Snrg] Ip &2n+1

A(f o* I S

Ipdin+i)lip VI
(Sn[g]] (7.9)

By theorem (6.4) of Chapter VII, there is a constant Rp, independent of n and g,
such that the last factor does not exceed Rp TZP [g] = R,.t. Hence the last product

2

in (7.9) does not exceed AR,, (f o* I S Ipdo'2n+)11P. This gives (7.7) with

AV = AR,,.

t The content R, is denoted there by C,. Arguing as in the proof of Theorem (2.21) of Chapter VII,
we can show that the lent value of B. satisfies R,=Rje.



30 Trigonometric interpolation [x

Remark. Let e > 0, and let N be any integer, even or odd, not leas than (1 +e)n.
The inequality (7.6) hold-8 if we replace dw2n+1 by da,N, but the constant A on the right will
now depend one. This is a consequence of the following generalization of (7.8):

2w 2

I

1'(A-1I8 I)dwNfo V(ISI)`x (N>(1+e)n,A=2+e-1).)

To prove this inequality we proceed as in the proof of (7.8) but replace D. by!n1+ Kn+h-1- h Kn-1

It is enough to suppose that h > en and set N = n + h.
The following is an analogue of (7.5) for power polynomials:

(7.10) THEOREM. Let

Yr llp Er 1/p
Then ifo

I P(ea) Ip d-,.+,I < A' (f
o

flea) I p dtJ (1 <p < +oo), (7.11)

lfo*IP(eu)Ipdt?'<A;{$
IP(eu)Ipdw*+1}up (1<p<ce). (7.12)

This follows immediately from (7.5) if n = 2k is even. For then I P(eu) I = I S(t)
where

is a (complex-valued) trigonometric polynomial of order k.
If n is odd, write P(z) = co + zQ(z) and denote P(eu) and Q(eu) by P and Q respectively.

Observing that
IPI-<Icol+IQI, IQI-<Icol+IPI.

and that Q is a power polynomial of even degree n-1, we get

(2n f off P lp *+1) I co l+ (2n f I Q Ip
a+1)1/p

I co I +A2lp[Q] _< I co I +A l co I +A%[P]. (7'13)
Ew

Since I co (2n)-1 f Pdt 4lp[P],
0

(7.11) with A' = 2A + 1 follows immediately. An argument parallel to this, using the

fact that co= (2n)-1 f Pdcon+l, gives (7.12) with Ay = 2Ap+ 1.o

(7.14) THEOREM. For every f, and for p > 1,

mm
7 s. lro

cc

"`P[In.
r0

If lp in+1 (7.15)

Up[`n.v] _< Ap(
o

n I f I P do2n+i)
,

(7.16)

(nov-,ao). (7.17)
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The inequalities 931[I,,] <APUP[In],
1/p 2yy . 11P

111('2wT`p[In] < APIJ
J,

I In IV dw2n+1 =A4o If IP 2n+1}

give (7.15). The proof of (7.16) is similar. Once (7.15) and (7.16) are established, the
proof of (7.17) follows the pattern of that of (7.3).

For a generalization of (7.14) we need the following result:

(7.18) ThEOREM. Let S(x) be a polynomial of order n such that I S(x) I < I at the dis-
continuities of w2n+1. There are two positive absolute constants A5, ao such that

2M

JI em (Ao I sv(x} I }dx -<,ao,
0

for the partial sums S. of S.
We first strengthen (7.7) by showing that

2x l/p

I S Ip d-2n+ 1111 ,TZP[8j <Ap(
0 1

(7.19)

f:wexp ( A oI-q,(x)I)dxFco, (72U)

('2w /P

P[av) <AP 18 IP&2n+1)' I

(7'21)

(7'22)

for p > 1, with AP satisfying the same inequality AP < ARP. as in (7.7). The proofs are
similar to that of (7.7). We take a g(x) satisfying s))29.[g) =1 and such that

2,fo S,gdx.

2 2 2

Then fo'S9dx= rSSA91 2n+1

< ,f
o

n I . I P d" 2n+1)1/P f0
I SJ91 P d 2n+1)

1/p'

2n 11/p 2x
<(

0
18 IP d-2n+11

o I Sv[9)I9'dx

and, as before, the last factor does not exceed RP.. This proves (7.21).
r2.

Similarly, we choose an h(x) with Up [h] = I and =f h dx. This last integral
0

2w

is equal to -fo S,hdx, and arguing as before we get (7.22).

The constants A. in (7.21) and (7.22) do not exceed Ap when p>- 2. (Going through
the proof of theorem (6.7) of Chapter VII, we see that our A. does not exceed a fixed
multiple, independent of p, of the constant AP in Chapter VII, (2.5), and it is enough
to apply Chapter VII, (2.21) and (3.8)). Thus

2ff

lE
A) fonIS,I27dx

coshAIS I dx=27T+

<2rr+1
A21

S I" d-2.+,

2n+' A21

(2Aj)2f21T<oo,
1 -1 (2j)!
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provided that AA < e-1 (using the inequality nn < n! en). Since elu1 < 2 cosh u, this proves
(7.19). The proof of (7.20) is similar.

(7.23) THEOREM. There are positive absolute constants .lo, fao, A such that for every
fwith Ifl<l, zr r2.

fo exp A0 I In.. I dx <,uo, fo
exp Ao I rn. r I dx <, ao, (7'24)

2nf oAexpAlf-Inrldz-*1. (7.25)

If f is continuous, (7.25) holds for every A > 0.
The inequalities (7.24) are consequences of (7.18). Since 0<e"- 1 <ue' for u>_ 0.

-1}dx< nJolf-In,r I eai!-rn,rldx0<2n f A{ea
w

9

2. }A
[f

- In,r )
(fo e2A 11-r... l dz)

by Schwarz's inequality. Since V2[f - I,,.,] -+ 0, by (7.1), and since

I
z

e2A 11-1n,.1 dx < e2A
('z.

e2A I In, r I dx = O(1 )
0 0

for 2A <A , we obtain the first formula (7.25). The proof of the second formula (7.25)
is similar except that here we have (Chapter VII, (2.11))

fz. 2. l} 2

0

. }
e4A1f.,.Idx) =0(1),e2AIi-k 1dx <r`0 eNiildxl

\f0 1

if A is small enough.
If f is continuous, let T be a polynomial such that I f - T I < e and let f = f1 + T. If

p exceeds the order of T and 2Ae < A0, then

2. z.e2AII_n,Ulldx= f e2Al/,-ln,,(t'1ldx
0 Jo

e2Aei e2AIIn.Aft) Idz=O(l).
0

Since e is arbitrarily small, A may he as large as we please. Similarly for the rn.,.
The inequalities (7.24) may be considered as substitutes for (7.7) when p=oo.

The following two theorems, which we state without proof, are substitutes for (7.7),
and for its analogue for 9, when p = 1.

(7.26) THEOREM. For any polynomial S of order n,

Jonl ,S dx<A IoRSlog+ISIdu-2n+1+A,

f
2. 9

o
I>S'Idx<Afo IS1og+ISldw2n+1+A,

where A is a positive absolute constant.
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(7.27) THEOREM. For any S of order n and for 0 <# < 1,

(f2w .

dX)1 r \A,, f0p1
S1&2n+v

(JOnI
cI"dx)u#5Arf0;r

18 1d'02n+l,

where A, depends on It only.
The proofs are based on Theorems (2.8) and (2.6) of Chapter VII.

(7.28) THEOREM. Let 8 > 0, m >- (1 + 8) 2n. Then for any polynomial S of order n we
have

J0ISIA8LSm,
2 2

max S(x) I Ad max S(xk) I,

(7'29)

where xk are the discontinuities of 41m, and Ad depends on 8 only.
Let D. +Dn4 1 +...+Dn+A-1 (n+h) Kn+A-1nKn-1-

Kn.A- h
h

..-.

Then S(x)=n fOS(t)D.(x-t)dt=IT f 8(t)Kn.A(x-t)dt

1 J 0In

S(t) K..k(x - t) dWm(t),
A

provided 2n + h - 1 < m. We take h = m - 2n. Then

w l S(x) ldx , ' 1 S(t) Jdwm(t). max'
o

f . I K..A(x- t) I dx,
o o

1

max I S(x) I 5 max I S(xk) I max
2e

- f0

1 Kn,A(x - t)1 dGwm(t).
X IT

By (7.31) and (2.5), we have J

(7.30)

(7.31)

rs.IK,A(x-t)I
dom(t)<

ra.r(1+ 1Kn+A-i(x-t)+nKn_3(x-t))
pm(t)

J of f
( n1 fs" n 2a

n{ll+hlJ0 Kn+A-i(t)dt +h fo Kn-,(t)dt}

=1+ 2n
-<A(1+8--').

The same estimate (with A = 1) holds if we replace do'm(t) by dl. This gives (7.29)
and (7-30) with Ad= A(1 +8-').

This estimate for A8 is rather crude. To improve it, consider

1

2n
K t dt - I " I sin (n + }h)t sin ,)ht I

dt
IT
f0 n.A() nfo 2hsin2 it

Since only small 8 are of interest, we may suppose that m o 3n, 8 < J; thus 28n < h -< n.
We split the last integral into three, say Il, 1, 19, extended respectively over the
intervals (0,1/n),(1)'n,1/h),(1/h,n). SinceI sin kit I < I ksinuI for integralk, theintegrand
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of I1 does not exceed ,)(2n + h) and I1= O(1). If we replace the numerator in the in-
tegrand of I, by 1, we easily find that I, = 0(1). Finally, since the numerator of 1, does
not exceed h sin it,

1 f l/h f
uh

2sin t`j,1 iro-<logA<log23<log .

Collecting results we see that for the A, in (7.29) we have

A,,= O(log 1/8).

The same inequality holds for the As in (7.30), since

9
1.

I
Kn.h(x-t)1d)m(t)<A fo" IKn.A(t)Idt,

by the remark to Theorem (7.5).

JJJ

We conclude this section by applying (7.18) to the problem of the behaviour of
the I,[f].

(7.32) THEOREM. Let Ik = Ik[f``]

0

and let

k
4 IkI n= 1 E

o
IIk-f ISn= 1

k
Then

(i) if f i8 bounded, En = O(log log n) for almost all x;
(ii) if f is continuous, gn = o(log log n) for almost all x;

(iii) if the modulus of continuity off is o{(log log 1/8)-1}; rfn-+0 for almost all x.
We say that a numerical sequence {sn} is strongly summable (C, 1) to the limit 8 if

as n -* oo. Strong summability (C, 1) implies ordinary summability (C, 1), but not
conversely. Thus the conclusion of (iii) implies that {4[f J} is summable (C, 1) almost
everywhere. (For applications of strong summability to Fourier series see Chapter
XIII, §§ 7,8.)

We easily verify that if 2m-1 < n 2"', then

Sn < 292m, yn 217r., log log n n' log log 2-.

It is therefore enough to prove (7.32) when n runs through the values 2".
(i) Let I f I < 1. Holder's inequality and (7.19) give

f2w
eEpAofndx<fio

0

Let E. denote the set of points x of (0, 21r) at which t'n -> (2/A0) log log n. Then

(7.33)

Y,.

f E.expA0{(2/.10) log log n}dx<
fo

so that I E. I < #o(log n)-2. Hence E I E,.,,1 < oo, so that we have 6sn < (2/A0) log log 2m
for almost all z, provided that m is large enough.
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(ii) By subtracting from f a polynomial (which adds 0(1) to cn), we may assume
that I f I <c. The inequality (7.33) is then valid with A0/e for.lo, so that

42", 1< (2e/Ao) log log 2m

almost everywhere for m large enough. Hence g2," = o(log log 2"') almost everywhere.
(iii) Let lk = log log k when k >, 3, and lk = log log 3 otherwise. Let fk =f- O'k[ f ].

By Chapter III, (3.16), I fk Ek/lk, where ek - 0. Writing I,*F = I,[fk], we have

f2*

exp (,10ek 1 lk I I k I) dx -<,LO,
0

f2,?

expn+°I -ekIlkIIkI}dx5fio
0

As before, we find that

almost everywhere, and so

`n

(n+ I)-x L ek 1 lk I Ik I = O(ln )

0

n
(n+l) 1}. lkIIk =o(tn)

0

almost everywhere. Using the fact that Ik = O(log k) (see the proof of (5.13) (i)) and
that 1,1n =In, we have n

EIIkI lkllk!
0 k5 N/n %/w<k<n

almost everywhere. Since
= O(Vn log n) +O(ln 1) o(nln) = o(n)

Ik[f]-f' 1k[fk}+O'k-f=lk+0(1),

we have I In IIkI+o(1)=0(1)n k-0

almost everywhere, which is the desired result.

8. Divergence of interpolating polynomials
We return for a while to the interpolating polynomials corresponding to general

systems
zo, xi, .. , xin ( n=0 ,1 ,2 , (8'1)

of fundamental points of order n. Let 1' (x) be the corresponding fundamental poly-
nomials, so that the interpolating polynomials at a given point 6 are

rr
2n

Un(b, f) _ I tf (rS)f(xj ) (8'2)
-o

Fixing 6 and n, we have here a functional (Chapter IV, § 9) which we shall consider
in the space C of all continuous and periodic functions. The norm of this functional,
that is, the upper bound of the absolute value of (8.2) f o r all f with I f 15 1, is

{
2n

An(S) = .r. I tJ (S) I, (8'3)
1-0
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which is also the largest value at the point 6 of the interpolating polynomials of all
such functions. It is equal to U.(:;, f) whenever f satisfies the conditions

f (x,) = sign ti (g) (8.4)

for all j. It is an analogue of the Lebesgue constant for Fourier series, but depends on
the point 6.

(8.5) THEOREM. For a fixed f,
(i) if An(g) =0(1), then f) -f(g)for every continuous f ;

(ii) if An(g) r O(1), then U (6, f) * O(1) for a certain continuous f.
The proof is simple.
(i) Suppose that A,, (g) 5 M for all n. Let f =f1 +f, where < e and f2 is a poly-

nomial of order in. Then

and

U,,( ,{f) -f(6r) = QUO,f1)) -fl(f) + Un(S,f2) -f2(S),

I
I Un(S,fl) I + I fl(f) I , (M+ 1)e,

while UU(EE, f2) =f2(g) when n >-m. Hence Un(S, f) f as n -. oo.
(ii) If An(t)*O(1), the theorem of Banach-Steinhaus (Chapter IV, (9.5)) implies

the existence of a continuous f such that Un(f, f) * O(1).
Suppose now that =6. depends on n. The above arguments show that if

An(Sn)=O(1), then Un(f.f)-f(Fn)-- O

for each continuous f; and if

An(ion)*O(1), then Un(Sn,f)*O(l)
for some continuous f. Hence, if JA,)) is not uniformly bounded, there is a continuous
f such that ( U,,(x, f )) is not uniformly bounded.

(8.6) THEOREM. For any sequence of systems of fundamental points there is a con-
tinuous function f such that {UU(x, f )} is not uniformly bounded, and so, in particular,
does not converge uniformly.

We first prove the following result showing a connexion between the interpolating
polynomials and the partial sums of Fourier series:

(8.7) THEOREM. If U/(x, f, u) denotes the interpolating polynomial of order n corre-
sponding to the system (8.1) translated by u, then

2,r

2n

f is a polynomial of order n, since then Un(x, f, u) =f(x) for all u.
It is therefore enough to prove the formula for an f whose Fourier series begins with
terms of rank greater than n, so that the right-hand side is 0.

We obtain the polynomial L;,(6, f, u) if on the right-hand side of (8.2) we replace
xx by x7 + u, for all j. From (1.5) we see that t7 (f) becomes a polynomial t"(6, u) of
order n in u, and so

f
2i

Jo
11(6,u)f(xf+u)du=0

for all j. Therefore in our case the left-hand side of (8.8) is 0, the desired result.
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Return to (8.6). It follows from (8.8) that given 6, n, f we can find a uo = u0(t;, n, f )
such that rr { rr

There is a continuous f with I f I _< 1 such that the right-hand side is arbitrarily close
to the Lebesgue constant Ln, say exceeds Ln - 1. On the other hand,

ti (x, u) = ti (x - u),

and so Un(f P X), u) = Un(9 - u, P X + u), 0). (8.9)

Hence k(9 - u0) >, Ln - 1, A,,(x) is not bounded in n and x, and there is a continuous
f such that {U,,(x, f)) is not uniformly bounded.

The argument just used shows that the functions An(g) are not uniformly bounded,
but it does not prove the existence of a 6o such that An(go)4 O(1), and so does not
prove the existence of a continuous f such that Un(x, f) diverges at some point 4.

The behaviour of An(f) as a function off may be very irregular, since may be
very large for some i's, but is equal to 1 whenever ?; is a fundamental point.

From now on we shall only consider the case of equidistant fundamental points. Then
tn(6) = 2Dn(9-x1)/(2n+ 1), and

1 2"
rC

An(?;) = - Dn(b - t) I dw2n+1(t)
7T fo

is of period h = 2n; (2n + 1) qua function of E.
We compute the asymptotic behaviour of An(f) as n->oo for 6 situated midway

between two consecutive fundamental points. Supposing, for example, that 0 is
such a point, we find

»-I

Dn('}h+vh) I + I Dn(11h+nh) I}An(o)= -0If

k(,}+v)h+')h= sin
Since 1 /sin ('u) decreases in 0 < u _< n, we easily see that

n-1 h 1" du
0 sin }(,) + P-) h }n sin }u'

n-' h '-h duand that E sin f( + v) h < ,fiti sin }u'
These and (8.10) show that r

An(0)-7rf }A sin
-du

Ju
f0(1)

_ -2logtanh+0(1)n

=2
n

logn+0(1).

(8.10)

(8.11)

In particular, An(0) is unbounded. It follows that:

(8.12) THEOREM. If the fundamental points of interpolation are equidistant and g= 0
lies midway between two consecutive fundamental points, there is a continuous f such that
{In(0, f )} 4 0(1). (In particular, {In(0, f )} diverged.)
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An argument very similar to that which led to the estimate (8.11) shows that if
the fundamental points are equidistant, then

n+O(1). (8.13)

Theorem (8.12) is an analogue of a result for Fourier series asserting that there is
a continuous f with S[f] diverging at a given point. While, however, the problem of the
existence of a continuous f with S[f ] diverging almost everywhere is still open and seems
to be difficult, the corresponding result for interpolating polynomials can be obtained
comparatively easily.

(8.14) THEOREM. For each n let the fundamental points of interpolation be equi-
distant and associated with the point 0. Then there is a continuous f such that {I,,(x, f )}
diverges almost everywhere.

The proof is based on the following lemma, analogous to Lemma (3.2) of Chapter
VIII:

(8.15) LEMatA. For every positive integer n there is a periodic and continuous ,.(x)
satisfying the following conditions:

(i) IAI<1;
(ii) I,(x, converges uniformly to as s-* e0;
(iii) there is a set E,,c (0, 27T), a number M,,, and an integer q,,, such that

(a) lim I E = 27T,
(b) +oo,
(c) for each x e E there is a number m(x), not less than n and not exceeding q,,, such

that
I A) I M,,

Denote by Np the set of the fundamental points

2njl(2p+1) (J=O, 1, ..., 2p),

and select (n -1) positive integers pl < p, < ... < p,._1 such that 2p1 + 1, 2p, + 1, ... ,
2Pi_1 + 1 are successive primes, and Pl > n. It is easily seen that-no two of the sets
N,, NP,, ..., Np._, have points in common other than 0.

We first assign the values of f at the points of the sets &I k = 1, 2, ..., n - 1.
Let Pk denote the interval 2nk/n < t < 2ir. We define

fn(t) = Sign COS (Pk + 1) t

at those points of N,,, which belong to Pk. (Thus f,, 1 at those points, since
sin (Pk + }) t = 0 at the points of Ni,,.) At the remaining points of Ni,,, we set f,, = 0.
This definition gives f = 0 at t = 0, and, since no 'other points of the sets Npk coincide,
the function f,, is determined uniquely at the points of NP, + N;, + ... + N,,,,__

At the remaining points of the interval 0 <t < 2n, we determine f by the conditions
of linearity and periodicity. Thus f,, satisfies a Lipschitz condition, and conditions (i)
and (ii) of (8.15) are satisfied.

In order to show that f,, satisfies condition (iii), let us denote by dk the set of points
t such that 2n (k-1)<t<2n k, Isin(pk+})tJ>(logn)-I. (8.16)
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For x e 8k,
I Ipk(x, fn) I =

1 2i

fU
fn(t)Dpk(x-t)d&2Pt+1(t)

77

=1 sin (Pk + 4) x f o.fn(t) 2 sin }(x t) dwsvr+1(t)

(log n)-} f }cosec (t-z)de,k+1(t)1 (8'17)
Ps

since at the points of Npk which belong to Pk we have fn(t) cos (pk +;4) t = 1, while fn = 0
at the remaining points of Npk.

We easily see that the last integral in (8.17) exceeds

t - x
dm2pk+1(t)

J2,, t - 2n(k - 1)/n 9yk+1(t) (8' 18)
l

r2
1

(compare the first inequality (8.16)). If we replace dwspk+1(t) in the second integral
in (8.18) by dt, the error introduced is 0(1); for the difference between the integral

f g(t) dt of a positive decreasing function g(t) and the Riemann sum obtained by

subdividing (a, b) into m equal parts does not exceed g(a) (b - a)/m, and pk is not small
in comparison with n (since p13 n). Hence the second integral (8.18) is

2n dt +O(1)=log(n-k+ 1)+O(1).
axkjnt-21r(k-1)/n

If now n - k >- ,/n, we have

log (n-k+1)+O(1)-> 4logn+O(1)>}logn
for sufficiently large n.

Collecting these results, we see that for n sufficiently large, for k < n - Vn, and for
x belonging to the set 8k defined by (8.16), we have

I jpk (z' fn) 13 - (log n)-1.') log n = 3rr (log n)i.
77

Denote the last quantity by M. The inequality I Ipk(z, fn) I > Mn is satisfied at
every point of the set En= E skk<n-,/n

Since Mn - oo and I En -2n as n - . co, and the pk in (8.19) do not exceed pn-1 (which
may therefore be taken for the qn in condition (iii)), conditions (a), (b), (c) are satisfied,
and the lemma is established.

We show now that if the fn and the Mn are those of the lemma, then for suitably
chosen n1 < n2 < ... < ni < ... the function

f(x) = E fn;(x)/M}; (8'20)
t=1

has the properties enunciated in (8.14). We enumerate the conditions to be imposed
on {nf}.

Denote the complement of En by E. Let (ni) be such that

(i) M*t+i> 4Mn;, (ii) EM;,} < 1, (iii) E 1 E I <co.
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By (iii), almost all x belong to at most a finite number of the E;y and so belong to
infinitely many E,.,.

Given n1, n2, ..., nk_1, and so also qn,, qn., ..., qnk-,, we require nk to be so large that

(iv) I I,[Fk-1] I < 1 for 8 _> nk,

where Fk_1 is the (k- 1)th partial sum of the series (8.20). This is feasible since, by
(ii), I Fk_1 I < 1 and since I,[Fk_l] converges uniformly to Fk_l. Further, let

(v) MA'k>4nk_1.

It is immediately obvious that if of increases sufficiently rapidly it satisfies the
conditions (i)-(v) just stated.

Consider now a point xo in Enk and write

so that Rk =f - Fk. Then
f = Fk-1 +fnkMnt + Rk,

I8(xo, f) = I8(xo, Fk-1) + 18(x0, f,,) Mnt + (x0, Rk). (8.21)

For a certain 8 not less than nk and not exceeding qnk we have

1,(x0, fnk) M; I s MnkMat = Mnk. (8.22)

Since s _> nk, condition (iv) givesI I , Fk ) I < 1.(x (8'23)
Finally, since s S qnk,

0 -1s

I,(xo, Rk) I (28 + 1) max I R5(x) 15 3gnk E Mn,} < 6q,.,Mrir , < 8,J-k+1 (8.24)

by virtue of conditions (i) and (v); the first inequality (8.24) uses the fact that the
complex Fourier-Lagrange coefficients of Rk do not exceed Max I Rk I in absolute
value. From (8.21), (8.22), (8.23) and (8.24) we obtain

II.(xo,f)I iMnk-7.
Hence for each xo which belongs to infinitely many Enk we have

lim sup l l,(xo, f) I = +co,
HM

and (8.14) follows by virtue of condition (iii).

(8.25) THEOREM. With equidistant fundamental points a88ociated with 0, there is a
continuou8 f Such that {In(x, f)} diverge8 almost everywhere, while S[f] converges
uniformly.

This shows that for a given continuous f the behaviour of the sequences {Sm[ f ]}
and {In,[f ]} may be totally different. To prove (8.25) it is enough to show that the fn
in (8.15) can be found so that each S[f,J converges uniformly, and that I Sm[fn] I < A,
where A is independent of in and n. For using the decomposition f = Fk + R. above,
we have S[ U] = S,n[Fk] + Sm[R5]. For k fixed, Sm[F J converges uniformly to Fk. Also

[ k] I =1 E Sm[f ] M-} I "I5 A E M.Sm R
11-k+1

n1
1-k+1

Since the right-hand side here is arbitrarily small for k large enough, the uniform
convergence of S[f] follows.
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Consider now the function A&) which is continuous and even, equal to 1 when
x = 0 and to 0 when 28 -< x < A, and linear in (0, 28); A8(z) is the 'roof function', and,
by Chapter I, (4.16),

4

A8(x) = n 4 + (81n8
cos nx

We observe that
(i) ISm(x;A8)r <1 for all x, m, 8 (0<8<47r);
(ii) given any e > 0 andf > 0, we can find a 8o such that I S,(x; A,,) I < e for,7 5 I x n.

0<8-< 8a, and all m.
Property (i) is obvious since Sm(x; A8) I takes its largest value at z = 0, where it is

less than A8(0) = 1.
To prove (ii) we write

Sm(x;A8)I=I1J Dm(x-t)A8(t)dtl-1J9d IDm(x - t)I dt. (826)n -A IT -28

If, for example, 8 < }n, 0 -< x -< n, then I x - t In and

I Dm(x - t) M <B/I x-1 1, (8'27)

where R is an absolute constant. Now suppose that y -< x <-n (since A ,(x) is even we need
consider only positive x) and that 28 < 4y. Then (8.26) and (8.27) give

sm(x ; A8) I <
1 f
-

J

-28

$d B(x -
t)-1 dt -<-1B(r! - 28)-1.48 < e.

7r IT

provided 8 is small enough. This proves (ii).
Return now to the f in (8.15). The only values off. relevant for our purpose were

those at the points of N,1 + Np1 + ... + Npn_,. Instead of using linear interpolation, we
make f a 'roof function' in the neighbourhood of each point 9 of Na, +... + N,,,<_
In other words, we define f as a sum of a finite number of functions ± A3(x - 6),
where the 6's belong to N,,, + ... + NP,, and 8 is so small that the 'roofs' do not
overlap.

Let r be the number of points 9 in Nn, + ... + Nv. , at which f,, 1, let be so small
that the intervals (6 -,1, l:+r/) do not overlap, and let a=1/r. If now 8 is sufficiently
small, and in particular less than 4i, it follows from (ii) that I Sm(x;A (x-E')) I < 1/r
whenever f+6' and x belongs to (971,+71). Further, by (i) I S. (x; A, (x - 4)) 1 < 1,
whence f S,(x; f,,) I < 2 for x in each (f - y, g+ r/). Since Sm(x; I < 1 when x lies
outside all the intervals (e-y,6+rl), we have I Sm(x; <2 for all x, m, n. Since

converges uniformly, this establishes (8.25).
In the two theorems which follow, we assume that 0 is a fundamental point.

(8.28) THEOREM. Given any sequence of positive numbers e,, - 0 there is a continuous
f such that for almost all x we have

II(x, f) + O(e log n). (8.29)

(8.30) THEOREM. There is a continuous f with modulus of continuity

w(8)=O(1/log (1/8))

such that the I [f] (i) are uniformly bounded, (ii) diverge almost everywhere.
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Theorem (8.28) shows that the estimate II(z, f)=o(logn) contained in (5.13) is
best possible for continuous f not only at individual points (which is an easy conse-
quence of (8.13)), but even almost everywhere. The situation here is different from that
in the theory of Fourier series; if f is continuous the estimate f ] = o(log n) cannot
be improved at individual points (Chapter VIII, (1-2)) but Sn[ f ] = o{(log n)}} almost
everywhere (Chapter XIII, (1-2)).

That the 1j f ], and even the In,,,[ f ], are uniformly bounded when

m(8) = O(I log S 1)-1

is an analogue of (5- 6), and is proved similarly. However, under the same hypothesis
the Sn[f ] are not only uniformly bounded, but converge almost everywhere (Chapter
XIII, (1.16)). Thus (8-30) gives another example of the difference in the behaviour of
{I,[fl) and {Sn[f]}.

Return to (8-28). Its proof resembles that of (8-14), and we may be brief. It is enough
to show the existence of an f such that at almost all x we have I I,(x, f) I > Ae, log 8
for infinitely many s, A denoting a positive absolute constant. For applying this to
the sequence {e;} we obtain Theorem (8.28).

We may suppose that e1 > e, > ... and that e log n - m. We modify the definition
of the set 6k by substituting en for (log n)-i in the second inequality (8-16). The com-
plement E;, of the set E _ E 8k has now measure O(n-1) + 0(4). If x e 8k, k S n -.,/n,

kGn-Vn
we have 1

Ink(x, M I > 3n en log n,

instead of (8.19). We show that this leads to

I lvk(x, fn) I > Aeyk logpk (8-31)

Since pk 3 n, eyk 5 en, it is enough to show that log n > A log pk.
Let pl, p, ... be the sequence of all primes. It is familiar that

p,n-<Amlogm,

but for our purposes it is enough to assume the weaker inequality

p,, 5 Amt; (8-32)

indeed, pn, -< Am*, for any fixed r, would do. Let p1 be the least number not less than n
such that 2p1 + 1 is a prime. Hence n 5 p1 < p2 < ... < pn_1, and, say,

2p1+ 1 =Pf+1, 2P2+ 1=P1+2 .. ,
2Pn-1+ I =P1+n-1'

while pf < 2n + I. Obviously j -< n, so that j + n - I < 2n. It follows from this and (8.32)
that p1+n-1 < 4An2, and so log n > A logpk. This proves (8.31).

To complete the proof of (8.28) we select {ni} so that

En 1 <oo, <m, (8.33)

and write f (X) = Eeni fni(x).

If the n, increase fast enough, then for every x which belongs to infinitely many Eni
(and, by (8.33), almost every x belongs to all with i large enough), there exist
infinitely many 8 such that I,(x, f)=eniI,(x, f')+O(1). (8-34)
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These s are the pk of (8.31) with n=ni. Hence the absolute value of the right-hand
side of (8.34) exceeds A e8 log s - 0(1) for such s, and so also exceeds A e3log s for s
large enough, which completes the proof of (8.28).

For the proof of (8.30) we modify the definition of fn slightly by replacing the con-
dition pl > n by p1 > n2; the purpose of this is to make p1, p2i ..., pn large in comparison
with n. Arguing as before we find that Pn_1 < An4.

Since the distance of any two points of Npl + Np, + ... + Np._
1

exceeds
277/(2pn_1 + 1)2 > An, the slope off,, is less than An8. Hence the functions

gn(t) =fn(t)llog n
satisfy the inequalities 2

9n(x+t}-9n(x) <logn, (8'35)

Ign(x+t)-g(x)I <An8I t1.

Let f (x) = E (- 1)i gni(x),

where ni increases so fast that
log ne+1/log n, > 2.

(8.36)

(8'37)

This implies, in particular, that ni+1/ni > 2 and E 1 / log ni < oo, so that f is continuous.
If

nj ,16 <t<n, 1e (j=],2_.),
we have, by (8.35) and (8.36),

l f(x+t)-f(x) l< (2 + E) I gni(x+t)-gni(x) j
i 1 i=j+1

1

_< At n;+2
i-1

Atne(1+}+(})2+...)+ 2 (1+4+...)
log nj+1

,`1Atnj -
log

n4

<At.t-1+1oK11t=0{(logt)
1

6

so that the modulus of continuity (t)(8) off is O{(log
For a fixed n we have (see (8.17))

IPk(x, f,,) - - Sin (Pk + Z) xJ 4 cosec 4(t- x) do/2Pk'`1(t).
Yt

Denoting by Sk the set of points in 21r(k - 1)/n < x < 27Tkfn at which

tin1 (]Jk+ i)x < -11l

we see that Ip1(x, fn) >
6.-

log n for x e F = Sk. (8 38)
k n-Vn

Since the Pk are large in comparison with n, 6k is highly periodic in (2n(k - 1)/n,27Tk/n),
and if ni increases fast enough almost all points of (0, 27T) belong to infinitely many
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EN with i even and to infinitely many En; with i odd. Denote the jth partial sum of
E(- 1)t by F,(z), and write

f=F_1+(- 1)'g,y+Rf.

We deduce from (8.38) that at almost all z for infinitely many j and suitable Pk we have
Il,k(x, (- 1)/ g,.,) > 1/6ir as well as II,(x, (- 1)/ g,y) < -1/6n. On the other hand, if nt
increases fast enough we have

I,,(x, Fi_i)=Fs_1(x)+o(1)=f(x)+o(l), I,k(x, R1)=o(1),

uniformly in z. This shows that {In(x, f )} diverges almost everywhere.
We conclude this section by pointing out one more difference in the behaviour of

(I[f]} and {Sn[ f J}. It will be shown in Chapter XIII, (1-17), that if n1 < n2 <... is any
lacunary sequence of positive integers (that is, nk+1/nk > 4 > 1), then Snk(x; f) --).f(x)
almost everywhere when f is continuous, and even when f E V. Going through the
proof of (8-15) and (8-14), and selecting for Pk integers satisfying the condition
Pk+1/Pk > 9 > 1, we verify immediately that we obtain a continuous f and that {In,-(x, f )}
diverges almost everywhere for some lacunary sequence {nk}.

9. Divergence of interpolating polynomials (cont.)

(9.1) THEOREM. Suppose that 0 is a fundamental point of interpolation for each n.
There is then a continuous g such that II(x, g) diverges for all x + 0.

Since In(0, g) =g(O) for each n, we cannot have divergence at x= 0.
The proof of (9.1) is based on the fact that, for any real a, sin ax and sin (a + 1) x

cannot be small simultaneously, except in the neighbourhood of x = 0 or x = n. More
precisely, we have

max {I sin ax 1, sin (a + 1)x 1} ->> j sin x 1, (9-2)

as we see from the equation sin x = sin (a + 1) x cos ax - sin ax cos (a + 1) x.
In this section we systematically write a' for a + 1. As before, ND denotes the set

of points 27rj/(2p + 1), where j = 0, 1, ... , 2p. We observe that Nr, and Np. (= Np+1)
have only the point 0 in common. All the r,/J we consider in the proof of (9.1) have 0 as
a point of discontinuity.

(9.3) LEMMA. For each m = 1, 2, ... there is a continuous function f =f. such that
f j -< 1, with the following properties:

(i) {I,(x, f )} converges uniformly;
(ii) for each x in the intervals (1/m, n- 1/m) and (n+ 1/m, 2n- 1/m) there is an n(x)

m.such that I In(.)(x, 1 ) 1 >
We fix m, take an arbitrarily large number M > 0 and select n so large that

2,r/n+ 1/m

2,r/n 2 sin it
(9.4)

for all p-> n.
Next we fix numbers pl, p, ..., pn_1 such that

n,p1<Ps<... <Pn-1, (9.5)

n(2p;+1)3<-2pi+1+1 (i=l,2,...,n-2). (9.6)
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Consider now the sets Npj and Np,. At the points of Np, we set

f(t)=sign cos(pl+4)t or f(t)=0,

according as t > 27r/n or t < 27r/n. In particular, f (O) = 0. Similarly at the points of
Np, we set

f(t)=sign cos(pi+4)t or f(t) = 0,

according as t > 27r/n or t < 27r/n.
Suppose we have already defined fat the points of

k-I
Sk-1- (Npi + N, ),

where k < n - 1. At the points of Npt which are not in 8k_1 we set

f(t)=signcos(Pk+4)t or f(t)=0, (9.7)

according as t > 2nk/n or t < 2nk/n. Similarly at the points of Npk which are not in
Sk-1 we set

f(t)=sign cos(pk+4)t or f(t)=0

according as (>- 2nk/n or t < 217k/n.
In this way we define f by induction in S. .1. At the remaining points of (0, 27r) we

define f arbitrarily, provided I f I < 1 and {I3(x, f)) converges uniformly.
Suppose now that

27r(k-1)/n<x<2nk/n, x<27r-1/-rn, (9.8)

and consider
1

fo
2n cos ( + ) t

Ipk(x, f) = - - sin (Pk+ ) xf (t) 2 sin j(t x) da'zpt+I(t)

= - Isin(Pk+4)x(f + f
IT Nyt-Nyt St_, Nyt St-,

We first show that sin (Pk+ ) xJ = 0(1). (9.9)
Nit St-,

The distance between any two points of Sk_I exceeds lk-1= 2n/(2pk_1 + 1)2. Hence
there are at most two points of N1l_181_1 whose distance from x is less than lk_1
Since ' Drt I <Pk + i, the contribution of these two points to the left side of (9.9)
is 0(1). For the remaining is in ,,S,_1 we have t - x i > lk-1, and since the number of

k-1
points in Sk-1 does not exceed 2 (2pi + 1) < 2n(2pk+ I), the contribution of these

is to the left-hand side of (9.9) is

(Pk-I 1)j rn(
2Pkk

s
= 0(1),

0(lk1 2(2Pk + 1) =0{ +1 1)}

by (9.6). This proves (9.9).
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Let Nnk denote the part of NPk situated in 27Tk/n <t < 2n. In view of (9.8) and (9- 7),
using the argument which led to (9.9) we have

sin(pk+J)x t cos (Pk + 4)tdGlf() 2sin4(t-x) 2Pk+`J N,k-N,k Sk-,

sill(pk+ )xJT'.,t
-N

icosecI(t-x)d(u2pk+1
ykSe-,

sin(pk+4)x fAr* icosec4(t-x)dw2Pk+1+O(1)
J Pk

2

> sill(pk+4)x1 f
2nk,ln

4cosec t--(k-1)dw2p,,1(t)+O(1)
+1/m \

sin(pk+4)x1
*2-1-

(
4cosecitdo2pt+1(t+27T (k-1)I+O(1),

J 2n/n n

Replacing here dw2p;.+1(t +2ir(k- 1)/n) by dw2p}, 1(t) we commit an error O(n/pk) = 0(1).
Hence, collecting results,

Irpk(x,f)I%nI sin(pk+))xI M+0(1).

An identical argument gives, for x satisfying (9.8),

I"(z,f)I >nlsin(pk+))xI M+O(I).

By (9.2), these two estimates lead to

max {, IPk(x, f) 1, IP'(x, f)}> l-M sinx I +O(1). (9.10)

Suppose now that z is in (1/m, n- 1/m) or (n+ 1/m, 2n- 1/m). Then

IsinxI>sin(1/m),

and the right-hand side of (9.10) exceeds (27r)-1 M I sin (.1/m) I + 0(1), and so also exceeds
m if M is chosen large enough. This proves condition (ii) of (9.3).'

The rest of the proof of (9.1) is simple. Using Lemma (9.3) we see that if mi increases
fast enough the function

9(z) = Y-mr ifm;(z) (9-11)

is continuous and {I,(x,g)} diverges everywhere except at x=0, and possibly x=n.
If 1,(7r, g) converges, it is enough to add to g a continuous h such that (I,(x, h)} diverges
at n but converges elsewhere.

Remark. We might set h(x)=f(x.+n), where f is the function of Theorem (8.12),
except that the proof of (8.12) does not guarantee that {I,(x, f)) converges for x+ 0.
To construct a continuous f such that (IJx, f)) diverges at x = 0 and converges else-
where (the fundamental points being the same as in (8.12)), we may proceed directly.
By (8.1 1), A,,;O) > or. There is a continuous fn, I fn I < 1, such that In(0, =11n(0).
if en tends too slowly enough and if we modifyf, by making it 0 outside (-en, en) the
modified f,, will satisfy In(0, i Since only the values off. at the fundamental
points are relevant we may suppose that {I,(x, fn)) converges uniformly for each n.
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It follows that outside any interval (-8,8) the 1,(x, f,,) are bounded by a number
which depends on 8 but not on s and n. Hence, if n; increases fast enough and

f (X) = I {}(0) f,(x),

{1,(x, f)) diverges at x = 0 and converges uniformly outside every (- 8, 8).
The proof of the following theorem is identical with the proof of (8.25):

(9.12) THEOREM. There is a g for which (9.1) hold8, such that S[g] converges uniformly.

Suppose now that the fundamental points of interpolation are the roots of

sin {(n+J)x+f}=0 (n=0,1,2,...), (9.13)

where fl is fixed. Since the inequality (9.2) holds if ax on the left is replaced by ax +,8,
the proof of (9.1) shows that there is a continuous g such that 1,(x, g) diverges for all x,
except possibly for x = 0 and x=rr. In view of (8.5)(ii), (8.13), and the remark above.
if ft is not an integral multiple of in there is a continuous h such that {I,(x, h)} diverges
at the points of convergence of {I,(x, g)} and converges elsewhere. Hence:

(9.14) THEOREM. If the fundamental points of interpolation are the roots of (9.13),
where fl is not an integral multiple of fir, then there is a continuous 9 such that {1e[g])
diverges everywhere.

We may also consider the problem of the divergence of

f(t)DD(x-t)do (t)
7t -1

(see § 3). The case when w,,, is associated with the roots of

cosnx=0

is of particular interest. Arguing as before, but operating with (0, n) instead of (0, 2n),
we find then that there is a continuous g which is 0 in (- n, 0), such that {En(x, g)}
diverges in 0 -< x -< rr. It follows that if g1(x) = ,]{g(x) + g(- x)}, then E (x, g1) diverges
everywhere. Since g1 is even, E [gl] is a cosine polynomial. It is of order n -I
since cosnx is 0 at the fundamental points. Hence, making the transformation
t = coax we obtain the following result:

(9.15) THEOREM. There is a continuous function G(t), - I -< t -< + 1, such that if
denotes the power polynomial of degree n - 1 coinciding with G(t) at the Tchebyshev

abscissas,
rr 3n

cos
(2n - 1) rr

cos- - - co
'

.. ,
2n ' 2n 2n

then diverges for - 1 t -< + 1.
We conclude with a theorem which shows that the behaviour of the In depends not

only on the properties off but also on the selection of the fundamental points.

(9.16) THEOREM. Let t be incommensurable with n, and let I'(x, g) be the interpolating
polynomials for g associated with the roots of (9-13). There is then a continuous g for which
(9.1) holds such that {1s(x, g)} converges uniformly.

The proof is similar to that of (8.25) and we shall be brief.



48 Trigonometric interpolation [X

As we have observed there, we may define fn as a sum of a finite number of
n-1

roof functions' ±,td(x-6), where the g's are in Sn-1= (N,,+Ny, ). Since is in-

commensurable with n, the roots of (9.13) have no point in common with Sn_1. We may
take 8 arbitrarily small, and in the first instance so small that the 'roofs' corresponding
to various ''s do not overlap. The number of 'roofs' does not then exceed the number
of points of Sn_1 and, in particular, is independent of 8. If we can show the existence
of an absolute constant A such that

I I.'(x, fn) I <A (9.17)

for all x, s, n, then, since {Is(x, fn)} converges uniformly for each n, the polynomials
1,(x, g) for the gin (9.11) will converge uniformly. We can also select the h we add to
g so that {I,(x, h)} converges uniformly.

The inequality (9.17) will follow if we show that
(i) I II(x,A (x- f)) I < l for all x, f, 8;

(ii) given any e > 0 and > 0 we can find 8a such that I I,(x, A8(x - 6)) I < e for
iSIx-flSn,0<8<,8o,andalls.

Condition (i) follows immediately from condition (i) on p. 41, since, by (4.10),
the sum of the moduli of the complex coefficients of I,(x, A8(x - 6)) does not exceed
the sum of the moduli of the coefficients of S[,k,(x - 6)], which is 1.

Condition (ii) is analogous to condition (ii) on p. 41, and is proved similarly; if
can+1 is associated with the roots of (9.13) we have

1 as

I I;(x>'ta(x- ) f_aaI
D,(x-6-t) I tea.+1(t) <e,

provided 71 -< I x- 6 1 5 n and 8 is small enough.

10. Polynomials conjugate to interpolating polynomials
Let IS,(u) denote the Dirichlet conjugate kernel:

1%(u) = E sinju = [cos }u - cos (v + J) u] } cosec 4u.
1

The polynomial In,Y(x, f) conjugate to I,,,(x, f) is given by the formula

1 2.
1",(X)

7T
IO f(t) /][/Y(x -t) dw2 +1(t)

COS

_ n

f2, [f(t)-f(x)]cooJ(t-2-sin

(t
(x )4) (t-x)dan+1(t); (10.1)

for subtracting a constant from f does not changer,,,,. Let

hY=2nf(2v+1).

Since 18,(u) I < v, we see immediately that, if f is continuous at x, the interval
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(x - h,, x + It,,) contributes only o(1) to the last integral in (10.1) as v -+oo. This suggests
that we should consider the expression

1 sw(A.)

-nf
o

[f(t)-f(x))IIcot4(t-x)dwY,.+,(t)

2

2

1
E [f(x!)-f(x))I-Dot 4(z1 -x), (10.2)n+

Yw(A.)

where the symbol
J
I means that we integrate only over the part of the interval

o
0 <- t g 21r for which I t - x I >- h, The case v = n is the most interesting, and for brevity
we shall write f for f ,,. The f e(x) is obtained by dropping no more than two terms
from 2 Y

2n+ 1
Y_U(xJ)-f(x))}cot }(xf -x).

It is natural to expect that the limit

f(x)=lim f (x), (10.3)

if it exists, plays in interpolation the same role as the conjugate function

Efy) r px
x) = - 1 4cot4(t-x)dt= - 1 lim { I +J (10.4)f(

'7T lllJ x+e

zz-.

does in the theory of Fourier series. It is easy to see that at the points where f is con-
tinuous the existence of the limit (10.4) when e tends to 0 through the sequence of
values h,,, v = 1, 2, ..., implies the existence of the limit when a tends continuously
to 0. We shall write 1

fv(x)= --Jx[f(x+t)-f(x-t)]4cotitdt. (10.5)

We know that I (x) exists almost everywhere for every f e L, and, in particular, for
every continuous f (see Chapter IV, (3.1) and Chapter VII, (1.4)). As a consequence
of this, one has theorems for series conjugate to Fourier series, analogous to theorems
for Fourier series. In interpolation the situation is different; even for continuous f
the limit (10.3) may not exist anywhere. The same thing applies afortiori to

lim f,,.,(x) (n >-v). (10.6)

For this reason the behaviour of the polynomials In,,(x, f) may be totally different
from that of the R (x; f). The convergence of In in norm was discussed in § 7. Here we
shall consider pointwise convergence. Use will be made of the fact that at every point
z of continuity of f

In..(x,f.(x) f (V +
(10.7)

as v oo. This follows from (10.1), if we observe that the contribution of the interval
(x - h, x + h,.) is o(I ). It is also useful to observe that the o(1) is uniform for any family
of functions f which are equicontinuous.

(10.8) ThEOREM. If A(x) hps all its Dini numbers finite at g, then

tends to a finite limit as v --3, eo. If .I c Al, the convergence is uniform in 6.
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The proof is similar to that of (5.2), and the limit in question is

1 f
2wf() A(t) -A(f) dt.n o

t 2tan

(10.9) THEOREM. If f is 0 in (a, b), then rn,,,(x, f) tends uniformly to a limit in every
interval (a + e, b - e) interior to (a, b).

This is an analogue of (5.1) and is proved in the same way. It shows that if f, = f,
in (a, b), then rn,,[f,J and rn.,,[f$J are uniformly equioonvergent in the wider sense in
(a + e, b -c).

(10.10) THEOREM. Suppose that I f(g± t) -f(6) <fc(t) for 0<t<,I, where 14(t) is

a non-decreasing function oft such that
)

: t-1,u(t) dt <CO. Then as v -> oo,
0

and rn,.(S)-J( )
This is an analogue of (5.5). To prove that fn,,,(g) -f(6), we may suppose that 0,

f (O) = 0. For any fixed 0 < 8 < it the part of the integral

J _ f(t) I cot itdtoyn+, (10.11)

which is taken over 8 < I t it tends to J f (t) J cot Jrtdt, and it is enough to show

that the part of( 10.11) extended over It I < 8 is small with 8, provided that v is sufficiently
large. The proof of this is similar to the proof of (5.5). The proof
of rn.,(f, f)-->f(6) is also similar to that of (5.5).

(10.12) THEOREM. If S[ f J converges absolutely, 1.,,(x, f) converges uniformly tof(x).
The proof is similar to that of (5.16).

(10.13) THEOREM. Suppose that f has a modulus of continuity u(8)=o{(log
Then as v--*oo,

fn,(x)-f,(x)-a0, (10.14)
so that if one of the three quantities

g g
f(x), lim fn(x), lim fn,r(x)

nom Y- m

exi,^ts, so do the remaining two, and all three have the same value.t In particular, the limit
(10.6) exists almost everywhere.

We may suppose that it = 0, f (o) = 0. We shall also suppose that x9n < 0 < xo. (The
case when 0 is a fundamental point can be treated similarly.) Let zD = xp and xQ = xa
be the extreme fundamental points in the interval h, < t < n. Then, since cot in = 0,

Eff
f(t),)cot}tdt-fJ(t cot tde21

= f ,f(t)J;CotJttdt- f4f(t)ilotitdl2n+1+0(1)
x,

a-! x,.,
t x cot tdt+aElf(x . cot it cot x dt+o 1

P xJ A

(10.15)
t Making first v very large but fixed, and then making n-.co, we easily deduce that, at every x where

f is continuous, if lim f (z), and both are equal.
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Numerically, the first sum on the right does not exceed

ft-1dt=o{(logn)-1)log(ir/xl)=o{(log n)-')O(log n)=o(1).

The expression in square brackets in the second sum on the right of (10.15) is
0(1 /nix!) = 0(1 /nxj ), and so the whole sum is numerically not greater than

q-1 q-1

0(1) Ej-eI f(x,)I -< 0(1) 1j-eIf(x,)I =o(1), (10.16)
P 1

f being continuous and vanishing at the origin. Hence the expression on the left of

(10.15) tends to 0 as v -3,- oo. A similar conclusion holds if in (10.15) we replace f by f
JJJ Fi, J

and the result (with uniformity in z) follows by addition.

(10.17) THEoxxm. The relation (10.14) holds if f is of bounded variation in the
neighbourhood of x and continuous at x.

We may again suppose that x = 0, f (O) = 0. We may also suppose that f is non-
decreasing near 0. Since

f.'
f(t)4cotitde,,,+1(t)-,fag f(t)4cotitdt

for any interval (a,,8) interior to (0, rr) or to (- rr, 0), we may assume that f is non-
decreasing and bounded in (- rr, a). Consider the equation (10.15). We show exactly
as before that the second term on the right is o(1). The first term on the right is non-
negative and does not exceed

hn°I f(x>+1)-f(xr),'f(xi+1)-f(xf), (10 18)
p xi 1

since xi > xo > 0, xJ > h j. This last sum we split into two parts E + Z = P + Q.
lcf. f>!.

Here Q <f(n)/j0, and so is small when jq is large. If ja is fixed, each term of P tends to 0
as n --* oo (since f (x!) - f (0) = 0 for each j), so that P -, 0. Hence the expression on the
left of (10.15) tends to 0 and (10.14) follows as before. Since any function of bounded
variation is differentiable almost everywhere, the existence of lim f,, , (x) almost
everywhere also follows from (10.10).

(10.19) THEOREM. Suppose that f has a modulus of continuity o(6)=o{(log 1/3)-1}.
Then as v -i oo, y

Ln, v(x f) -fn.,(x) -> 0 (10'20)

uniformly in x, so that a necessary and sufficient condition for the existence of lim r, ,,,(x, f )
(or of lim r (x, f )) at a point x is the existence of f there. In particular, lim ,(x, f )
exists and equals f(x) almost everywhere.

Let T(t) be a polynomial of order n. Then
r

T(x)=I T(x+t)s (10.21)_,

P(x)= - f T(x+t){}cot}t-cco'(n+i)t)dm'i+1. (10.22)
7T - 2 sin it
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Suppose that wan+1 is associated with the roots of

sin [(n+ {) t + a] = 0, (10.23)

and assume temporarily that a* 0 (mod n). Multiplying (10.21) and (10.22) by cos a
and sin a respectively and adding the results we gett

1

Ir
_"T(x+t)Icot }tdwsn+1=T(x)cot a+l(x). (10.24)

If the order of T is v 5 n, then we also have

A r

D(x)= -
77 f T(x+t){( cot it - cots±

1 )C sn+1

which together with (10.24) implies

that Z lJ

fi f T(x+t)co2a t)td(dzn+1 - -T(x)cota. (10.25)

In proving (10.19) we may suppose that x = 0, f (0) = 0. We have f - o jf ] = o(1/log v)
since the modulus of continuity off is o((log Denote o-,[f] by T and write
f = g + T, so that g (which depends on v) is o (1 /log v) uniformly in x. We write

In,r(O,f)-J,, (0)=(I.,JO,g)-9n...(0)}+{1, ,(O,T)-7n.,(0)), (10.26)

and apply (10.7). Since the functions g are equicontinuous (indeed, tend uniformly
to 0), we obtain

('"(hr)I )
In

co2 (V +
tIrn.r(0>9)-9n.r(O)I52maxI9(t) J

A

A(nr) dw2n+1maxIg(t) f- 1tI
+0(1)=0(1), (10.27)

A

since the last integral is O(log v) and g(t) = 0(1 /log v).
Now, T(0) =f(0) - g(0) = -g(0) = o(1/log v). Hence, by subtracting a constant

o(1/logv) from T(t) and adding the same constant to g(t), which does not impair the
estimate g(t)=o(1/log v), we may suppose that T(0)=0. Applying (10.7) to the poly-
nomial T (which remains equicontinuous as v-+oo), and applying (10.25) at x=0,
we find that

Ln.v(0, T) 1n.,(0)=-1
A(")T(t)CO2a

t)t` '''"+1+o(1)7Tf_

f"
7r fh' T(t)

CO2 ( ) t ala'an+l + o(1). (10.28)_j, sin it

Suppose that I f _< M, so that I T M also. By the mean-value theorem and
Bernstein's inequality,

T(t)I=IT(t)-T(O)I=ItIIT'(t1)I,vMItI,

t By making a-. 0 we easily we that when a= 0 in (10.23) the finite part of the left-hand aide of (10-24)
is but we do not need this.
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so that (10.28) gives
/ vM h t

2sinit .n+i+0(1)-h

5 JVM
h,

dsn+i+o(1) <AM+o(l), (10.29)
J -h.

where A is an absolute constant. From (10.26), (10.27) and (10.29) we get

lim sup I r,,,(0, f) -, f n (0) I < AM. (10.30)

To pass from this to (10.20) (for z = 0), we write f =ft + fi, where fl is a polynomial
and I fz I < e. For f, we have (10.20) (if only on account of (10- 10)), and forf2 the right-
hand side of (10.30) does not exceed Ac.

This completes the proof of (10-19), except for one remark. In the argument we
used the formula (LO- 25), which presupposes that wan+i is not associated with the roots
of sin (n + i) t = 0. For n and v fixed, however, both I., [f] and fn , are continuous
functions of the a in (10.23), and since our estimates are uniform in a they hold also
fora=0.

(10.31) THEOREM. We have r,. (x, f) - f, ,, (x)-+0 as v-+oo if f is of bounded variation
in the neighbourhood of x and continuous at x.

We again suppose that x = 0, f (0) = 0, and that f is non-decreasing. We have to show
that the integral on the right of (10-7) is o(1) for x = 0, and it is enough to prove this
for the part extended over (h., n). We fix e > 0 and write

Ifw
n h,f (t) 2 sin it sn+t = + = P+Q,

h.

where 8 is so small that f(6) < e. We take v so large that h,, < B. We know (Chapter I,
§ 2) that if the ai are positive and monotone

N amax I B! I for {al) decreasing,
Ea,bs < (10.32)

Max I BJ I for {a,} increasing,

where Bf = bM + bM+l + ... + b,. Now let z, = x," and xQ = xQ (p < q) be the first and last
fundamental points in (h,,, 8). Applying (10.32) twice we get

IPI=
2 Q cos(v+i)x! 2

2n+1 Ef(xf) 2sinix! <- 2n+12f(xQ)max E
cos(v+i)zz

V 2 sin ix1

4
e

2
1

in + 1
maxi cos(v+i)x!I

sin 4 z

4e 1 2

2n+ 1 2sinih, 8 ini(v+i)h

Finally, for fixed 8 we have Q-, 0, by (4- 1), and this completes the proof of (1031).
That f ] --),-f almost everywhere when f is of bounded variation also follows from

(10.10) and the fact that f is differentiable almost everywhere.
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(10.33) THEOREM. If f is integrable R, then

$t,[f -fn..] - 0 (10.34)

as v-ioo. In particular, if limfn,,,(x), or limfn(x), exists when x belongs to a set E, this
limit is J (x) almost everywhere in E.

Consider the Jackson polynomial J, 8n+1(x, f) (see (6.2)) and its conjugate

Jv,2n+1(x)- --. _Af(t)Rv(t-x)dw2n+1(t)

A

Lf(t)-f(x)][i "t i(t-x)-(v+1) sin)(}
(t

_

xx)]
(10.35)

If we show that as v- oo (with n 3 v),

yii[Ji, In+1-f] -+ 0,

1I[Jv, In+1 -fn, r] -+ 0,

(10.36)

(10.37)

then (10.34) will follow by an application of Minkowski's inequality. But J,,,,,, is
uniformly bounded and tends to f almost everywhere (indeed, at every point of con-
tinuity of f ). Hence V2[J,,, In+1-f ] tends to 0. Since the last expression majorizes

-f], (10.36) follows.
Since I R,,(u) I < v, we have at every point of continuity off

1 Ac><.> af(t) _f(x)'rv.In+1(x)-fn,v(x) So(1)+`- J dWzn+l. (10.38)rr(v+1) _, 4sins1(i-x)

The second term on the right is o(1) at every point of continuity of f. Moreover, it is
easy to see that the right-hand side of (10.38) is uniformly bounded. Hence we have
(10.37), and (10.33) follows.

(10.39) THEOREM. There is a continuous f(x) each that limfn(x) (and, a fortiori,
limf",,,(x)) exists at no point.

It is enough to sketch the proof since it resembles those of (8.14) and (8.15). The set
N,, is defined as before, and Pk is the shorter of the two intervals (2nk/n, 27r) and
(2rrk/n, 27Tk/n+n). The function fn, which we shall now write as f" to avoid confusion,
is defined to be equal to 1 at those points of N,,k which belong to Pk, equal to 0 at the re-
maining points of Npk, and linear between any two consecutive points of JVp, + ... +N9n_ ,.
The second condition (8.16) is now dropped ; then, for 27r(k-1)/n < x < 2nk/n, k r n-sin,

1
2,("'k' fn(t)

fpx.(x) =17r,1
0 2 tan }(t -x) dt''2pk+1

1 1 1 2" dt_nJ pkt-x
IVk+I+

1)/n

=n-1log(n-k+1)+O(l)_> (3a)-llog n, (10.40)

when n is sufficiently large. If we define En as Y, 8k, E is an interval (0, an), where
k<n-Vn

an -* 2n. Writing 71 log n = Mn, defining f (x) by (8.20), and repeating the argument on
pp. 39-40, we find that lim f,n(x) exists at no point of the interval 0 < x < 2ir.

The f in (10.39) may be such that S[f] and [ f ] both converge uniformly.

+O(1)
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(10.41) TR$oltIM. For the f satisfying (10.39) the polynomials

En(x) = Jn,9n+1(x)

(see (6.5)) diverge at every x as n-- oo. This is, a fortiori, true for the polynomials Bn.,,.
Consider (10.38) with v = n; if f is continuous, we have

.9n(x) - fn(x) = 0(1) (10.42)

uniformly in z, and the assertion of (10.41) follows from the divergence of {J (x)}.
The proof of the following result resembles that of (8.30) and we omit it:

(10.43) TuzonsM. The f in (10.39) and (10.41) can have modulus of continuity
0{(1og

MISCELLANEOUS THEOREMS AND EXAMPLES

1. Let xo be a fundamental point of interpolation. Then

2 1"(1.(x, f) =
2n + 1

sin (n + 4) (x - x,)kE0 2sinl}(x (xxk)

sin2
(n + 1)(x-x5) E !-1)kf(xk)=

2n+1 k__w x-xk
where xk=xo+2rrk/(2n+ 1);

f) = sin n(x - xo) nE
n 1 2 tan 1 kz (xxk-0 *( k)

= I sinn(x-x0) (- 1)kflxk)
x-xk

where xk=xo+rrk/n;
J,,(x,f)= sin' }(n+1)(x-xo) E 'f(xk)

(n+1)' k-e8in }(z_xk)
4 +m .f(xk)sin'}(n+l)(x-xo) E

(n + 1)° k-- co (x -
xk)',

where xk=xo+21rk/ n+ 1). (See (1-19),(3-30) and (8.2)). (de Ia ValIBe-Pouesin [3).)

2. Let tlr(t), 0 <t <2n, be of bounded variation. Necessary and sufficient conditions that

1 2n

c, = 2n r S(t) (v= 0, ± I, ± 2, ... , ± n),
0

or, what is the same thing, that
S(x)=1

n o

n

for every polynomial S(x) = E c e'Y' of order n, are (i) that S[drlr) has constant term 1 and (ii) that

all the other terms of S[dif) of rank at most 2n vanish.
Conditions (i) and (ii) are satisfied by any since

where xo is one of the discontinuities of 6/,.,,.
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3. Consider 2n + 1 distinct points to, t ..., tr of the interval (0, 27T), and a step function Vl(t)
continuous outside these points. A necessary and sufficient condition that

1 2"

e,,=27--T `o S(t)e-ir'dk(t) (+ =0. t 1, ..., ±n)

n f
for any polynomial S(t) = E c,,e''" of order n, is that fi(t) be an ws"+1

-n
tm

[Only the necessity requires proof. Consider the function L(t) = t + E' e'v'/iv, which has jump

27T at t = 0. Every step function }b which has jump a, at t1 for j = 0, 1, ..., 2n and is continuous
elsewhere, is, except for an additive constant, of the form (21r) -1 Zaj L(t-t,). Using the result of
Example 2 we obtain a number of relations between the a, and zf=e"1, from which we conclude
that z02"+1= Z21.+' _ ... = zt:+', which shows that the z, are equally spaced on I z = 1. Finally, we
prove that all the a, are equal.]

4. Let m be positive, not necessarily integral, and -m<w<m. Show that

(i)

(ii)

1 }sinwt da,"(t)=Sign

w,
n -ao t

f + 00 sin +nt
dw,"(t) = 2 cos' }mto,

_,oIT

where to is a discontinuity of e .

[(i) Usingtheforrnula E (a+v)-1 e'a''=n(i+eotan)e-'za, valid for 0<A<2n and a non-
integral a (Chapter 1, § 4), show that

+ao efrl
(iii) - -dw,"(t)=cotJnnto+isignw

n
for I wI<m.J

5. Let T(x) = E c, ell, be a polynomial of order n and lot w> 0, w + n <rm. Show that
-n

.1 f+ aD sinw(t-z) sin u4
IT

T(t) t-x -- dw,"(t)=
-m

T(x+t) de,(t)= E ce'm:
lvlc+o

,,

where the asterisk indicates that if w is integral the extreme terms of E are multiplied by
[Use formula (iii) of the preceding example.]

8. Let I"(f, x) = E c,, 0 < to < n + 1. Show thatR

+MI sinf (t) -- - E
-W t-x

[We have f(x) = I"(z, f) at the discontinuities of

7. Let T(x) be a polynomial of order n. Show that

-1
f_9T(x+t)slrintdw'.(t)=T(x),

provided that w,,, is associated with the point 0.
[Verify when apply Example 4.]

n
8. LetI"(x,f)=Ec,,e'",0<y<n+1. Show that

( _IvI g."=1(+mf()l-coew(t-x)

Iv Gv l y) cre n J -a t w(t-z)o won+1(t)

[Integrate the formula in Example 6 over 0 <w:! y.J
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9. For any polynomial P(z) = co + cl z +... + c"z" of degree n and for I _<p< ao we have
1/D 1/D

M
roA

-<A,n( " IMP(e`l)I°dxl

NP + 1)t
iwhere (ii) As = rr

57

nip+})'
and equality occurs in (i) if and only if P(z) = Az", where A is an absolute constant. Since the A,
tend to 1 as p -s co, (i) contains (3.20) as a limiting case.

[Suppose that co is real, and denote by S(x) and 9(z) the real and imaginary part of P(e").
By (3.26), 2

(iii) J S'(x)cooa+q''(x)sinaI 9dx_< nP AI S(x) I 9dz

for any real a. Integrating this over 0 c a _< 2n, interchanging the order of integration on the left
and observing that, for any real a, b,

r1 AI acosa+bsinada=(a'+b')1 AI sin aI'da,

we obtain (i) with J An=21r sina l'da.
0

Using Euler's function B(x, y) and the formula r(2x) = n-1 22'-1r(z) r(x + 1), we easily obtain

J 'da=2rOI sin 20L da=2a+1 fo Isin acoo atDda
I

=2D+'JOo (sin acosa)ada=2s+ifuI(D-1)(1_u)i( -')du
o

= 2D+1 B(ip + 11, ip+ }) = 2D+1 r'(ip+ i)!r(p+ l) = 2rrl r(ip+i)Ir(ip+ 1),
which gives (ii). If we have equality in (i) we have equality in (iii). for some a. Hence (p. 11)
S(z) = M cos (nx+ f), P(z) = Az".]

10. Let Jp

0+1+0+2-').
Then

(i) 0(O)+l'(1-0)= 1;
(ii) 0<i,r(O)<I for 0<0< 1;
(iii) i(r4) = i

n1Y
[(i) Use the formula E (e+

v sin rrO'

(ii) We have lI'(O) > 0 for 0 <O< 1; use (i).]

11. Suppose that f is periodic and of bounded variation, and has a jump at J. Let x = x, be
the fundamental points for f]. Suppose that z," <6 <x,"+1 and write

2n + IO=(;-x,,.) 2n

so that O=0 is contained between 0 and 1. Then 1.(6,f) is equiconvergent (as n -roo) with

lwA),fa - 0) +ib(l -OA)f(f +0),
where i/ is the function of Example 10. (de Ia Vallbe-Poussin [3].)

[Since 1"[ f] converges to fat the points of continuity off, it is enough to verify the result for
a function f which is equal to I in a left-hand and to 0 in a right-hand neighbourhood of 6. Apply
the second formula for 1 in Example 1.

A similar result holds for E"[f] (with the same l(r and n/ir) and for J"[f ).]

12. Let (n5} be lacunary, that is, let nk+1/n.> q > 1 for all k. Then, almost everywhere,
(i) IA+(z, f)=O(Ioglognk) in the general case;
(ii) IA5(x, f) = o(log log nk) if f is continuous;
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1(iii) 1,i(x,J)=O(1)iffhasmodulusofcontinuity Orll/log loga) ,

(iv) I,s(x, f) -+f(x) if f has modulus of continuity o{ 1/loglogd11
111

'

[The proofs resemble that of (7.32). (i) Suppose that IJ 141. By (7.24), with n= v = nk, we have

(v)
).

J "expAsII,, (x.J)Idx-C (h.
0

Hence the set E,, of points where I I,s 13 (2/A) log log nk has measure I I S µo(1og ns)-'
(iii) By (v),

(vi) f expA0II.,[J]-f Idx<eA.po
0

provided that If 141. Write f, =f - o,[ f ]. Since, by Chapter III, (3.16), f = o(1 /log log n)
and since

I ,[f ] -J= I»[J ]
taking a fixed e> 0 we obtain from (vi) that

exp(e-1 log log nk.Ilw,[f]-f I}dx5eAsiso
0

for k large enough. This implies that lim sup I I,Jf ] -f 14 2e almost everywhere, and so also that
I,A[f ] -. f almost everywhere.]

13. Given et >c, >... -+0, there is a continuous f and a lacunary {n5} such that for almost all x

I,j * O(e,j'log lognk).

[The proof is analogous to that of (8.28). Denoting successive primes by p we choose the pk
so that 2p,,+ 1 runs through the primes of the form p py, ps pu, .... It is enough to use the
estimate (8.32) for the primes.]

14. There is a function f with modulus of oontinuity 0(1/log log8-') and a lacunary (n5) such
that (1,h[J]) diverges almost everywhere.

[The proof is similar to that of (8.30).]
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CHAPTER RI

DIFFERENTIATION OF SERIES.
GENERALIZED DERIVATIVES

1. Cesaro summability of differentiated series
In Chapter III, § 7, we investigated the Abel summability of S'[f]. We shall now

consider the CesIro summability of repeatedly differentiated series.
Suppose that a function f (x) is defined in the neighbourhood of a point xe and that

there exist constants ao, a ..., a, such that for small I t

tr--I r
f(xo+t)=ao+art+...+a,-t(r-1)1+(ar+er)I, X1'1)

where et tends to 0 with t. We then sayt that f has a generalized r-th derivative f(r)(xo)
at xo and define f(,)(xo) = a,. Clearly ao = f (xo).

If ft,l(xo) exists, so does fr,_tl(xo). The definition of ffl)(xo) coincides with that of the
ordinary derivative f '(xo). If f ()(xo) exists, so does f(,)(xo) and they have the same value;
but the converse is not true for r > 1, since then the equation (1.1) need not even imply
the continuity of f in the neighbourhood of xo.

The above definition is due to Peano. For applications to trigonometric series a
certain modification of it, due to de la Vallee-Poussin, is of importance. We define it
separately for r even and odd. Write

X'M = i{f (xo + t) +f (xo - t)),

0zp(t)=i{f(xo+t)-f(xo-t)}-

Suppose first r even. If there are constants fo, f4, A ... , ft, such that

pp p
4 q gr 4

Xso(t)=Y(1+Y42i+...+Yr-4(r- 211+(9,+et)r, (1.2)

where et tends to 0 with t, we call 8, the r-th generalized symmetric derivative-or r-th
symmetric derivative for short-of f at xo. We denote it by the same symbol ft,)(xo)
as the unsymmetric (Peano) derivative and shall take care to avoid possible confusion.
The definition of the rth symmetric derivative for r odd is similar, except that instead
of (1.2) we consider the formula

. f
(1.3)

t This definition maybe slightly modified so as to permit infinite derivatives. Suppose that there are
constants a. al, .... a,_, such that the function a,(t) defined by

tr-' er
f(xe+t)=a.+a,t+...+ar-1 (,_ 1)i+a,(t)

tends to a limit ar (finite or infinite) as t-* 0. We can then call a, the rth generalized derivative. We shall.
however, consider only finite f(,Xx.).
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Taking the semi-sum and semi-difference of (1.1) for ± t, we see that the existence
of the unsymmetric derivative implies the existence of the symmetric one of the
same order, and equality of both. For symmetric derivatives the existence of f(,)(x)
implies that of f(,_v(x) but not necessarily that of f(,_,)(x). The symmetric derivatives
of orders 1 and 2 have already been considered in Chapter I, § 10, and are given by the
formulae

f(v(xo)=limf(xo+it)-f(xo-it),

( 1.4)
t-+o t

ftsAxo)= 1 f(xo+t)-2f(xo)+f(xo_t) (1'5)
f- o is

In Chapter 1, p. 22, we denoted these limits by D f (xo) and De f (zo) and called DJ(x0)
the second Riemann (or Schwarz) derivative. f

The Riemann derivative of order r is defined by the formula

D,f(xo) = lim
O'f(xo,t)I

(1.6)

where Arf(xo,t)=f(xo+itr)- tfr 2)) + ... + ( - I)rf(xo->ktr)

is the rth symmetric difference of f. It is immediately evident that (1.1) implies
D,f(xo)=ar, and that also both (1.2) and (1.3) imply D,f(xo)=f,. Thus, generally,
if the symmetric derivative f1r)(xo) exists, then Drf(xo) exists and equals f(r)(xo). The
converse is false except for r = 1 and r = 2, in which cases the definitions of f(,) and
Drf coincide.

(1.7) THEOREM. If the symmetric derivative f >(zo) exists, then 5V1 [f] is summable
(C, a) at xo to sum f(,)(xo), provided a > r.

We may suppose that r < a < r + 1. Denote the (C, a) kernel, that is, the nth (C, a)
mean of the series + cos x + cos 2x + ... , by Kn (x). We have

--
{

A,'''e-wj. (1.8)a 2 sin it A; sin it "

We first show that, denoting by C constants independent of n and t,

,Kn(t) Cnr+1 (0<t <_ 7T), (1.9)

r

dtrK"(t)I
ryta--rtC Ga+l (110)

for 0 < a < r + 1, n = 1, 2, .... $ (The inequalities hold for -1 < a < r + 1, but we do not
need this.)

Write u(f,n,t)_ Aae-°4.
V-0

t In Chapter IX we used the notation D'f for D,f.
j (1-9) and (1.10) can be combined in one inequality:

d,
Id1,K"{t) I (1+nt)a+t (O!! t<cn).



XI] Cesdro summability of differentiated Series 61

Summation by parts gives

u(f, n, t) _ { - An e-4(n+1)t + u(,6 - 1, n, t)} (1- e-'')-1,

and so u(f,n,t)= -e-uitl> E (1.11)-1
for s =1, 2, .... Hence, as is easily seen,

M
V Aa °-le-u.-n i>I

1 e-}" ° A:-i eicn+}>f

An 2sin}<t1-1 (1-e_1)1 (1-e-4)a2sin}t (1-e')°2sin it
(1.12)

provided the last series converges.
Take 8 so large that the last series termwise differentiated r times is absolutely

convergent; it is enough to suppose that a>a+r. Since An=O(n'), it is easy to see
that the rth derivative of the expression in curly brackets is less in absolute value
than the sum of the three expressions

° na-i r r na-°+r

t1+1+r' C S0to+1+r-µ'

using for the last estimate the fact that

qy-°-I(v-n-})"= E O(va-,+µ-1)=O(na-°+v).
vin+1 vin+l

(1.13)

We now make use of the inequality a5r+1. If nt>- 1, the terms of the three
sums (1.13) are, respectively, less than

na(nt)--1 t-1-'r < na(nt)-1 t-1-r -< na(nt)'-a t-1-',

na(nt)µ_a t-1-' <-na(nt)'-a t-1-r,

na(nt)µ-° t-1--r <na(nt)r-6 t-1--r < na(nt)'_a t-1--r,

and collecting results we see that I {Kn(t)}fr> I -C(nt)r-at-1-, which is (1.10).

To prove (1.9) we note that if a _> 0 then I {Kn(t)}(r) I is

r r try

{+)A'+ EA'_,cosPt)
` .1

/Any

To complete the proof of (1.7) suppose that r is even; the argument for r odd is
similar. If the (C, a) means of S[[f ] are o n(z), the (C, a) means of SW[ f ] are and

o rio(t) {Kn(t)}(r)dl. (1 14)
IT 7T

1 A l (xo t) {Kn(t)}fir) dt =
2f,

Since (1.7) is obvious if f
is

a trigonometric polynomial T(x), and since, given any
2s + 1 numbers 6o, C,_., C4°, we can always find a T such that T11>(xo) = 61 for j = 0, 1, ...,
2s (by writing T in the complex form and solving the equations for the coefficients),
we may subtract a suitable T from f and suppose that fir = fF' _ ... = 0 in (1.2). Then
by (1.9) and (1.10), the last member in (1.14) is

f 1/no(t')O(n'+1)dt+J o(t')O{n'-Ot-a-1)CU =o(1)+0(1)=0(1), (1.15)
0 ltn

and (1.7) is proved.
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Remark. It is not difficult to construct examples showing that (1.7) is false for a = r
(see vol. I, p. 314, Example 2). It is, however, useful to observe that, if f = 0 near
x = x0, then S" )[ f ] i8 8ummable (C, r) at x0 to Bum 0.

This is an immediate consequence of the localization theorem (9.20) of Chapter IX,
but it can also be obtained directly from (1.12) and the resulting estimates for {Kn(t)}I').
First observe that if f = 0 for I x - x0 I < 8, then in the last integral (1.14) we actually
integrate over 8 _< t _< n. If we drop the curly brackets in (1.12), the contributions of
the first and last terms on the right to (Kr (t))(') are o(1) in (8, ir). Although the con-
tribution of the middle term on the right is apparently only 0(1), an application of the
Riemann-Lebesgue theorem (Chapter II, (4.4)) shows that this term is o(1).

Suppose that f, defined in the neighbourhood of x0, has r-1 unsymmetric deriva-
tives ao, a1, ..., a,_,, and define m,(x0, t) by

tf(x0+t)=ao+a1t+...+a,-, ('-1 t
(1.16)

r 1)!

If w,(x0, t) has a limit as t 0, f has also an rth derivative f(,)(xo). It can happen that
w,(x0, t) has different limits for t -> + 0 and t -- - 0. In this case we may consider

8r(xo) =1im 8,(x0, t), where 8,(x0, t) = ()r(xo, t) - w,(x0, - t )
t-++e

as the jump off(,) at x0, even if f(,)(x) is not defined near x0. Clearly if f has at x0 ordinary
right-hand and left-hand rth derivatives f ()(x0) and f -(')(x0), then 8r(xo) exists and equals

f(r)(x0) -1v)(xo)
If r is odd, (1.16) gives

z 1

X:,(t)=a0+az2+... +a,_,[t I)1+ltd,(x0,t) (1-17)

and if r is even, _

1)1+Yar(xo,0 (1 18)

Suppose now, without assuming anything about te,(x0, t), that there exist constants
a, such that we have either (1.17) or (1.18), according as r is odd or even, and that

8,(xo) = Jim 8r(x0, t) (1.19)
1-+0

exists. Then 8,(x0) may be thought of as a jump of the rth derivative, even if this
derivative does not exist near xo.

If r = 0, (1.18) may be interpreted as }/fy.(t) = }80(x0, t), that is,

8o(xe)=lim{f(x0+t)-f(x0-t)),

t-.+0

and 80(x0) = 0 means that f is symmetrically continuous at x0. If r = 1, (1.17) gives

f(x0+t)+f(x0-t)- 2f(xo)81(x0 ta
t

and 8,(x0) = 0 means that f is smooth at x0 (Chapter II, § 3), a property which serves
as a substitutet for the.continuity of the first derivative at x0.

t The following observation may be helpful. When investigating the existence or behaviour of a sym-
metric f,,,(xs) we usually presuppose the existence of symmetric f,,, (xs), the symmetric

need not exist. (For example, the existence of a symmetric f,,,(x,) does not pre-
suppose that f(xs) is defined.) The existence of however, presupposes that of these last derivatives.
Hence the existence of asymmetric f,,, (z,) and of 8,(xs) implies the existence of an unsymmetric f f,,(xs).
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It is natural to call the condition 8,(x0) = 0 the smoothness of order r off at x0.
In Chapter III, § 9, we showed that the existence of the jump 80(x0) is reflected in

the behaviour of the terms of S'[ f ] at x0. We generalize this result.

(1.20) THEOREM. Let f - and suppose that 8,(x0) exists and is finite. Then,
for any a> r+ 1,

8,(x0)=nr(C,a)lim Ann+u(x0). (1 21)

Suppose, say, that r is even and consider the function g(x) = 2;n-1 sin n(x - x0),
which has jump n at x0, and its rth integral

0(x) = (- l )l* En-'-1 sin n(x - x0).

0 has at x0 ordinary right-hand and left-hand rth derivatives, whose difference is ir, and
we easily verify the theorem for f = G. By subtracting n-18,(x0) 0(x) fromf(x) we reduce
the general case to that when 8,(x0) = 0. Further, by subtracting from f a trigonometric
polynomial (for which the theorem is obvious), we may suppose that

f.-1(x0) =f,._(x0) = ... = 0,

so that, finally, ,(t) = o0'). (1.22)

Now the (C, a) means of {A(+1)(x0)) are

( r l r
a-1f A4-2 cooPt1 dt=-J',/,2(t) A

-,, l ,_1 o Y' '

(1.23)

K(t)denoting the (C, a) kernel considered above. We may suppose that r +I< a< r + 2
and apply (1.9) and (1.10) with a- 1 for a and r+ 1 for r. Since A, -1/An =O(1/n), we
immediately see, using estimates analogous to (1.15), that the last member in (1.23)
is o(1). This completes the proof of (1.20).

We now consider the problem of the summability of S0[f]. We recall that

f(x) I o & (1'2`1)

for almost all x (Chapter 111, (3.23), Chapter II, (7.6)).

(1.25) THEOREM. If f satisfies 8,(x0) = 0 (in particular if an unsymmetrie f(,)(x0) exists),
andifr<a_< r+l,then

{va(x0))f')-(-1)
8'(x0'0 dt-+0 (1.26)

IT 1/n t

as n oo. In particular, S('>[ f ] is summable (C, a) at x0 if and only if the integral

- 1 ('°° 8'(x_ °'-t)dt= - 1 lim (1.27)
nf0 t A e-++o e

exists; and if the integral does exist it represents flee (C, a) sum of Sf f ] at x0.
The restriction a _< r + 1 can be dropped, but it saves calculation.
For r 0 this theorem is included in Theorem (5.8) of Chapter III. The integral (I.27 )

may be called the conjugate off of order r. It converges to (d'f/dx)z_=, if, for example,
f has r continuous derivatives and f(') is in Ap for some fi> 0 (since in this case f(')
exists and is continuous).
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If r_> 1 the integral on the right-hand side of (1.27) converges absolutely for each
e > 0. For (1.1 7) and (1.18) imply that, for t > e,

1 )1+I +I .f(x0-t) I ).
t J

Suppose, for example, that r is even. Since after subtracting from f a suitable trigono-
metric polynomial we have ;xo(t) o(t'), it is enough to prove (1.25) in two special
cases: (i) f is a mononomial ei°x, (ii) f satisfies i/r=,(t)=o(t').

(i) Clearly and, by (1.24),n

r
Pr)(xo) =

_4't-1 dr

Z0
J't-r(t) dt = dr { S (xo, t) t') dt

0 dt' 0 dt' 111 ' 111

1 8,(xo, t)
_ n J0 t ,

since V' (t) and 48,(xo, t) tt/r! differ by a polynomial of degree r-1 in t; that the inte-
grated terms in the integration by parts are all 0 follows, if at t = oo we use the fact that
8,t' is the sum of a trigonometric polynomial and a power polynomial of degree r - 1,
and at t = 0 the fact that 8r(x0, t) is odd in t and so, in our case, tends to 0 with t.

(ii) Let k1(t) be the conjugate (C, a) kernel, and

Hn(t) = 4 cot it - An(t).

If O<_ a5r+1,wehave J{Rn(t)}(1)I5Cn'+1 (0_<1_<7T), (1.28)

H(r)(t)JSC,n'-at-a-1 (1/n5tSn), (1.29)

inequalities analogous to (1.9) and (1.10) and proved in the same way. (We obtain
Rn(t) by replacing sin (v+,)) t by 1 - cos (v+ })tin the second member of (1.8), so that
HH(t) is obtained by replacing 0 by -4 in the member that follows.) Since r is even.

2 "
{01(x0))/')=

IT
x,(t){n n(t)}(r)dt

0

({vn(x0)}'')- 2 f V xo(t) (J cot 4t)(r)dt
n 1/n

= -f/n r (t)LRn(t)}(')dt+J b(t)H(n)(t)dt,
(1.30)-0 -

and the hypothesis /r=o(t) = o(t'), together with (1.28) and (1.29), shows that the terms
on the right in (1.30) are o(I).

Hence it is enough to show that the difference between
A

-2 r/rxo(t)( ot}t)(')dt=-1 f(xo+t)(4cotit)(,)dt (1.31)
n 1/n A I/n41114A

and the second term in (1.26) tends to 0 as n oo. We may suppose that r > 1, since
if r = 0 we know the theorem to be true. Using the formula

(r)
(,)cot,)t)(*) =(-1)rr.Et+2nv (t+2nv)'+1
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and the periodicity off, we write the right-hand side of (1.31) in the form

-1 ( dt
n J

where the integral is taken over the complement of the sum of the intervals

I, _ (2nv- IIn, 2iwv+ 1In).

In view of the absolute integrability of f(xo+t) t-'-' over I t I _> IT, the integral of the
latter function over Z I. tends to zero as n -* oo. Hence the difference between (1.31)

+o
and

I f f f(xo+t)dtI f a'(xo't)dtnJ It lai/n J I/n t

tends to zero and the theorem is established.
Remarks. (a) If f = 0 near xo, then §11f) is summable (C, r) at xo to sum (1.27).

This follows either by appealing to Theorem (9.20) of Chapter IX or by using an argu-
ment parallel to the one indicated in the remark on p. 62.

(b) Suppose that f is periodic and absolutely continuous, and has an rth conjugate
function, f say, at xo. Then, by hypothesis, the derivatives f)(xo) = aJ exist for j < r.
and if, ft - example, r is even, then

f,(xo)=
-2 frig

u

t-r-1(1)[f(xo+t)-f(xo-t)]t dt, (1.32)

whore j-1,3,...,r-1.
Since the expression in curly brackets is o(t') for t -+0, and O(t'-') for t -+oo, integra-

tion by parts shows that
F

!,(xo)=(r-1)!
Jm2f

n u
t-'l4[f'(xo+t)+f'(xo-t)]-E(j l)itt-'dt. (1.33)

(Somewhat more generally, if f is smooth of order rat xo, the integrals (1.32) and (1.33)
are equiconvergent at t = 0.)

We might write (1.33) in the form f,=(f'),_1; but this is not strictly true, since f
need not have generalized derivatives in the present sense. (None the less, the relation
h) = (f')(i_,) does hold, in some sense, at least almost everywhere in x; see Theorem (4.26)
below.) The interpretation is correct if we suppose that f has an ordinary (r -1)th
derivative and the latter is absolutely continuous. We may then repeat the argument
r times and come to the following conclusion:

If f has an ordinary (r -1)-th derivative which is absolutely continuous, then ff exists
almost everywhere and is equal to the conjugate function of f(').

2. Summability C of Fourier series
In Chapter II we obtained a number of tests for the convergence of the Fourier

series of a function f at a given point. All those tests represent sufficient conditions
only, and the problem of finding a non-trivial necessary and sufficient condition is still
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open. It is conceivable that no such condition exists, and that the convergence of the
integral

J f(xa+t)t dt
-e

to f (xo) as n->oo is a property aui generic not expressible in terms of simpler properties.
The situation is similar if instead of ordinary convergence we consider summability

by an assigned Ces&ro mean, for example, summability (C, 1): Fejer's fundamental
theorem (Chapter III, (3.44) gives a sufficient condition only. We therefore change the
problem and ask, not when S(f] is summable by some particular Cealro mean, but
when it is summable by some mean or another, that is, when it is summable C. We first
prove the following result:

(2.1) THEOREM. Let a > -1, and suppose that

IIa0 + E (a cos nx + b sin nx) = E A (x) (2*)
w-1 a-e

is summable (C, a) at xo to a finite sum 8. Let r > a + 1, and suppose that (2.2) integrated
termwise r times converges in the neighbourhood of x0 to sum F(x). (This is certainly
the case if I as I + I ba I =o(n°).) Then the symmetric derivative FF,>(xo) exists and equals s.

We consider separately the cases (i) a integral, (ii) a fractional. Only (i) is important
for our immediate purposes, but (ii) is of sufficient independent interest.

(i) We may suppose that r =a+ 2. Suppose also that r is even; the proof for r odd
is similar. Then xr

F(x)=}anr1+(-1)ir n-*(a. cosnx+b,,sinnx). (2.3)

Without loss of generality we may suppose that xo = 0, a = 0, ao = 0, and also that (2.2)
is a purely cosine series, since the contribution of the sine part to the rth symmetric
derivative at 0 is 0. We denote the kth CesAro sums of 0 + a1 + a, +... by an, and write

Y(t) =TI
&u,,=A(Af-tea)

for any sequence {ua}.
Summing by parts r - 1= a + 1 times we have

F(t)=(-l)1't'a,Y(nt)t'F.a.Aa+ly(nt) (2.4)

It is well known that if u(x) is differentiable j times, then on writing u,a = u(xo +mh),
where h > 0, we have

A1ua=(-1)1hfuU)(xo+nh+0jh) (0<0<1). (2.5)

lr-1 X41 cosx-P(x)
Let P(x) = E (- l)'-,, ,I(x)

Zr

Then y(nt) = A(nt) + P(nt) (nt)-r and
it-1 D(2v)F(t) = E 0.+PRt), 2.6)

where D,=(-1)ir+'£a;Aa+1ns R(t)_(-1)irFdwA°+1(nt)
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The series defining the Dr converge absolutely since ew =o(na) and, by (2-5),

Aa+l n2r-r = O(nb-r-a-1) = p(.n-amt).

The theorem will be established if we show that R(t) -> 0 as t --) 0. We write
N=N(t)=[1/t] for 0<t<1. Then

R(t) I < E l en oa+lA(nt) I = Z + E = U + V. (2.7)
1 1 N+l

The function A(u) being indefinitely differentiable for all u, an application of (2.5)
shows that

I Aa+'A(ta) I < Cta+' (0 <, n < N),

N
U <Cta+1 1 sn

=Cta+lo(IVI+l)=0(1), (2.8)
1

C denoting constants independent of n and t. It is also easily seen that I /...(1+1)(u) < Cu-',
and hence I,Ica+n(u) I <Cu-, for u3 1. Using (2-5) again we therefore have

M 1V <Cta+l E o(na) t-1 E o(n-1)=o(1).
N+1 n t' N+1

Hence V = o(1), U + V = o(1), and the theorem follows.
(ii) We may suppose that a < r - 1 < a + 1, so that

r-l=a+8 (0<8<1), (2.9)

and also (as before) that r is even, and that x0 = 0, s = 0, a0 = 0. We keep the previous
definitions of y(t), P(t), A(t).

Summing by parts r -1 times we find that F(t) is equal to

(-1)1'Es' 2O'-1
%-1

The last term is an even polynomial of degree r - 2 (whose coefficients are convergent
infinite series), and for the proof of the theorem it is enough to show that

Y,e'n 'O'-lA(nt)=o(1) as t-*0. (2.10)
,.-1

We express e',a ' in terms of the ey. After (2.9),

e'n Z= EeVAn=+°, (2 11)
r-0

and the left-hand side of (2.10) is, after changing the order of summation,

m m rar m m

E 8r EAR=:°0' Li s, Ans+8Ar-1,I((n+v)t)= e:gr(t), (2.12)
r-1 w-r r-1 w-0 0-1

say. The interchange of the order of summation is legitimate since the double series
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resulting from the substitution of (2.11) into the series (2.10) converges absolutely:
to see this, observe that, since a> 0, the sum (2.11) is majorized byt

E I s I I An-2+11 Cnar An?, a I, Cna, (2.13)
v-0

and that A'A(nt) = O(n-) and r - a > 1.
_

Since cos u - P(u) vanishes at 0 together with its first r- 1 derivatives, we have
successively

cosu-P(u)_ r-1 d
l1

cosv v,J (u-v)(r-
cos nt - P(nt) (- 1)}' (-1);r (' r-l' lt d Sia tnw

- -w) cosnw w=(r-1)i Jo(t-w) e dwn' (

0'-1A( )

(r-1)
o(t_w)'-1(1-eiw)r-leinwdw,

a a.-1 I A inwdgl t i-1 1 'wr(t)=
1

+ en i n-w) ( -e ) w(. Jo() t!-
i `r te f o (t - wy-1(1- ecw)a+1 et,.w dw. (2.14)

The proof of (ii) will be complete if we prove the two estimates

I9v(t)I,Cy ii, I ,(t)ISC (2.15)

since then, with N = [I fit],

N (tl-a m -d

N m
=OW-4) Eo(y-a)+O(t-a) o(v a-1)=o(1).

I N+1

To prove the first estimate (2.15), integrate the last integral (2.14) by parts r- 1
times. Since r - I < a + 1 the integrated terms all vanish, and using the formula for
the (r-1)th derivative of a product we find

r-1) i' r-1 iea a+1 (r-1)
r-1

±(iv) a {(t-w) (1-e ) } dt=Yom'-1) O(wa+1-f)O(tf)
0 of-0

= O(ta+sy'<r-1)), (2.16)

which gives the first formula (2.15). To prove the second formula, we integrate the first
integral in (2.16) by parts once more and obtain

.-1
(iy)-r O(ta+')+(w)- O(wa-1) O(11) dt =O(Y-'tail),

01-0

the needed estimate. This completes the proof of Theorem (2.1).

t If - 1 <a <0 (i.e. r=1) we have for the first member in (2.13) the estimate

2-.1cCn-2+e )o(w)+o(na) E
0 1 [nJ+1
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If EA, (x) is of power series type, (2.1) can be strengthened by considering un-
symmetric derivatives.

(2.17) THEOREM. Let a > - 1 and suppose that

Z . einx
0

is summable (C, a) at x0 to a finite sum s. Let r > a + 1 and suppose that

Zr c
C + n einx
° rl (in)r

(2.18)

(2.19)

cmzverges near xo to sum F(x). Then the unsymmetric F,)(x) exists and equals 8.
The proof runs parallel to that of Theorem (2.1).
The following result is a corollary of (2.1):

(2.20) THEOREM. If a series EAn(x) has coefficients o(no) and is summable (C, a) at
xo to sum s, then it is also summable at xo by the Riemann method R, to sum 8, provided
r -a> 1. By this we mean that

limJjao+ (ancosnxo+bsinnx0)f s
n

1'I-s. (2.21)
k-.olll nay ` 1

In particular, a series summable by some Ceshro mean of negative order is also
summable by the method of Lebesgue (which is the method R1; see Chapter IX, § 2),
and a series summable (C, a), a < 1, is summable R. The latter result generalizes the
classical Theorem (2.4) of Chapter IX.

The special case r= I of (2.17) deserves attention.

(2.22) THEOREM. Suppose that EA,,(x) has coe,fficients O(nk) for some k. Then a necessary
and sufficient condition that the series should be 8ummable C at xo to sum s is that there
should exist an integer r> 0 such that the function F(x) obtained by integrating EA.(x)
termwise r times should have a symmetric F(r)(xo). If the series is of power series type, then
in the above statement we may replace the symmetric Ft,)(x0) by the uneymmetric one.

This is an immediate consequence of (1.7) and of (2.1) and (2.17).
When the series concerned is a Fourier series, Theorem (2.22) can be stated in a

slightly different form.
Given a function g(t) defined to the right oft = 0, we say that the number s is the

(C, r) limit of g(t) as if

rt-f g(u)(t-u)'-ldu-tea as t-s0 (r>0). (2.23)

This is an extension of the notion of CeeAro summability from sequences to functions.
We write (2.23) in the form (C, r) g(l) -18. If (C, a) g(t) -i8 for some a, we write (C) g(t) -+8.

(2.24) THEOREM. A necessary and sufficient condition for S[f ] to be summable C at
xo to sum a is that (C) (t) s.

Since S[f] at x = xo is the same thing as S[y (t)] at t = 0, we may suppose that xo = 0,
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that f is even, and that 8 = 0. Fourier series may be integrated termwise and so, if
F(x) is the result of integrating S[f] r times, we have

Jf(u) (2.25)

where P(t) is a polynomial of degree less than r. From this we see that if (C, r) f(t)-* 0
as t-+0, then F(,)(0) exists and equals 0.

Conversely, if FJ,J(0) exists and is equal to 0, then plus a polynomial of
degree r-2; since the left-hand side of (2.25) is in any case O(tr-1), it must be o(tr),
so that (C, r) f(i) 0. To finish the proof of (2.24) we apply (2.22).

Theorem (2.24) can be completed as follows:

(2.26) THEOREM. (i) If f i8 non-negative and if S[f ] is summable C at a point x, then
S[f] is 8ummable (C, e) at that point, for each e > 0.

(u) If f is non-negative, a necessary and sufficient condition for S[f] to be summable
Catapoint xtosum8isthat (C,1)Xz(t)--). s.

We base the proof of (2,26) on the following lemma:

(2.27) LEMMA. If Eu is bounded (C, a) and summable (C,,6), f > a > -1, then it is
summable (C, a + a) for each S > 0.

We may suppose that,8 = a + 1, 0 < 8 < 1, since the general result follows by repeated
application of this special case. We may also suppose that the sum of Eun is 0, and we
have to prove that where ant° denote the Cesi ro sums for Eun. Now

n (181 n
e.+d= E An-kek= Z + E =Pn+Qnr

k-0 0 (iSJ+1

where 4 < 0 < 1. Denoting by C constants independent of n and 0, we have I sk Cka

for k > 1, and `n

Qn I -<Cna }r An-k =CnaAnCna+"(l -0)".
k-(nBJtl

(Since 0 > 4, the first inequality holds also for a < 0.) Hence, if 0 is sufficiently close
to 1, we have I Qn I /An+e < je, where e is arbitrarily given and n > na. Having fixed 0
we have for, summing by parts,

(n9J

I Pn I <
k
E o(na+')\ -0

(nOJ

C[n(1- 0)],1-2 E o(ka}1) + o(na+a)
k-0

= C[n(I - 0)]4-2 o(na+8) + o(na+d) < 4eAn-' d

for n > n1. Hence 18n+a I /An+e < e for n> max (no, n1), and the lemma follows.
Return to (2.26)(1). We have (2.23), with X=(u) for g(u), for some r>1. Since

X=(u) > 0, the left-hand side of (2.23) is not less than

rt--r oe X..(.) (t - u)r-1 du > X=(u) du,

so that fx(u)du=o(t). (2.28)
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Write V=(t)=t-1 ro I f(x + u) +f(x - u) - 2s I du.

S[f] issummable (C, a), a > 0, to slat each point x where ia(t) = o(1) (Chapter III, (5.1)),
and the same argument shows that S[f] is bounded (C, a) at x if 71z(t)=0(1). Since
(2.28) and X=(t) >_ 0 imply 71z(t) = 0(1), S[f] is, in our case, bounded (C, a) and so, by (2.27),
summable (C, a +d) for each a > 0, d > 0. Writing a+8=e we obtain part (i) of (2.26).

Passing to part (ii), we write yy(i) = X(t) = X0(t) and denote by Xk(t) the integral
of Xk_1(u) over 0 S u 5 t. The relation (2.23) with X(u) for g(u) may be writtent

and to prove (ii) we have to show that X1(t) ^--st. Since Xk(t) is a non-
decreasing function oft for k > 0, (ii) follows by repeated application of the following
lemma:

(2.29) LEMMA, If 8(t), t>0, is differentiable, 8'(t) non-decreasing, and s(t)^-sta as
t -0, then 8'(t) 81ta-1.

Let 0 < 6 < 1 be fixed; by the moan-value theorem,

(1 - 0)18'(Ot) , 8(t) - s(Ot) -<(1 - 0)ts'(t).
.

(2.30)

Since s(t)-s(Ot)=s(1 -&) t, this implies

liminfs (t)s1 -&, (2.31)
t-o to--1 1 -0

and hmsupo - -18 - ,-0)

or Iim sups (ti S s -
1-0.

(2.32)
t-+0 to (1-0)0a'

Taking 0 arbitrarily close to 1 we deduce from (2.31) and (2.32) that a'(t) f ta-1 ^' sa.
This completes the proof of (2.29), and so also of (2.26) (ii).

It is obvious that (2.26) holds if f is merely bounded below, and in particular if
f is bounded.

3. A theorem on differentiated series
It is natural to compare the summability of S( )[F] with the summability of the

Fourier series of the difference ratio whose limit is F'(r). We consider only the case r - 1.

(3.1) THEOREM. Let a >_ 0,

F(x)-4ae+ E (a,, (3.2)
n-I

and suppose that, for a given xe, the periodic function

F(xo+t) -F(xo-t)-
g(t) _ -- 4 tan it g:,(t) (3.3)

is integrable L. Thena necessary and sufcient condition for S'[F] to be summable (C, a + 1)
at ze to sum s (4 ± oo), is that S[g) be summable (C, a) at t = 0 to 8.

t If a=0, this is to be understood as X,(t)=o(t'). The Same remark applies to Lemma (2-29).
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The case a= 0 is of special interest. By Theorem (5.4) below, if F is differentiable
in a set E of positive measure, then S'[F] is summable (C, 1) almost everywhere in E.
Hence, by (3- 1), S[g] converges at t = 0 for almost all x0e E. In particular, if F is abso-
lutely continuous, S[g] converges at t = 0 for almost all x0 (though, by Theorem (3.1)
of Chapter VIII, S[F] may diverge at almost every point x0).

(3.4) LEMMA. Suppose two sequences u0, u1, ... and v0, v1, ... sati8fy.

vn=(n+1)(un-un+1) (n=0,1,...).

Let 6 > - 1. Then, if I un i8 8ummable (C, fl) to sum s, Y, vn is summable (C,/?+ 1) to 8.
o 0

Conversely, if Evn is summable (C, /3+ 1), and the (C,,8 + 1) means of Eun are o(n), then
Eun i8 summable (C, /3).

Denote the Cesaro sums of order ft for Eun and Evn by UP
n

and Vn, and the Ceshro
means by un and 7-fl, respectively. Hence (see Chapter III, § 1)

orn=Un/An, Tn=Vn/An,

An=(/f+1)(,8 +2)...(,8 +n) nP

n!where

vu.Then Vc+1_ Aa+lv = Aa+1(v+1)u 1n-v n- v n-v+1
v=0 v-0 v-0

( n +1

=(Y+2) E An±ruv- u,,[(,/ / +1-V)An±,1,+YAn±v+1],
'-0 v-0

where Aft i1= 0. We easily verify that the expression in square brackets equals
(n+ 1)An_r}1, and we get

Vd+1= (fQ+ 2) Un+1 - (n + 1) Un+1, (3-5)
11

(3.6)

The first part of the theorem is a corollary of (3.6).
Using the equation Un+1= Un+11 - Un+1, we write (3.5) in the form

0."+1

Or - -
O +1

=
Tn+l (3-7)n+/3+2 n+f+3 (n+f+2)(n+f+3)

For the proof of the second part of the lemma we may suppose, by changing u0,
that Tn+1-+ 0. The right-hand side of (3.7) is then o(n-s), and the remainders of a series
with such terms are o(1/n). Hence, using the fact that o-n+1 =o(n), we get from (3.7),
by addition,

+1
n 1

n+ J+2 n

that is, -.e+l -+ 0.

Substituting this in (3.6), we find that o-n--+0. This completes the proof of the
lemma.
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To prove the theorem, write

vn_1= n(bn cos nxo - an sin nxo) (n=1,2,...),
N v N+1
Z Z (b cos vze - a, sin vxe)

vin -n+1
-2 ("F(xo+t)-F(xe-t)

rr o
4 -sin }t {cos(n+J)t-cos(N+1)t)dt,

and denote the limit of the last expression, as N -> + oo, by u,,. Since the fraction
preceding the curly brackets is integrable, we see from the Riemann-Lebesgue
theorem that

un= v 2 ("F(xe+t)-F(xo-t)
cos

(n+4)tdt
,_, v+l n o 4sin}t
2

n
I g(t)cosntdt_2

f01r

[F(X. + t)
- F(xo - t)] j sin ntdt

0 IT

-Tiun,
say. Since g is integrable, Eu;, converges and its sum is juo. It follows that uo + u1 +...
and }uo + ui +... are simultaneously summable (C, a) or not, and if they are summable
their sums are equal.

Observe now that vn = (n + 1) (un - un,1), that jtz + uj +... is S[g] at t = 0, and that
v0 +v1 + ... is S'[F] (without its constant term) at xo. Therefore, by the lemma, if
S[g] is summable (C, a) at t = 0 to sum 8, then S'[F] is summable (C, a + 1) at xe to 8.
The converse is also true, since the partial sums of the series Eu, and so also its
(C, a + 1) means, are o(n)t.

4. Theorems on generalized derivatives
In this section B(k) and C°' denote the classes of functions having respectively a

bounded or a continuous kth derivative. More precisely, f E B(k) means that f (k-1)
exists and is in A1, k = 1, 2, .... We consider functions in the interval 0 < x < 2n.

Let E be a measurable set of positive measure contained in (0, 27r). A measurable
function f(x) will be said to possess in E the property fik, if for each x in E the (un-
symmetric) derivatives f(v, f(2)(x), ... , f(k_1)(x) exist, and the expression u(x, t) defined
by

f(z+t)=f(x)+f(v(x)t+...+f(k-v(x)(ktk1)(+`,1(x,t)ki (4'1)

remains bounded (not necessarily uniformly in z) as t -> 0. Clearly if f 4E B(k) then we
have (4.1) with m(x, t) uniformly bounded in x, t.

The following result is basic for applications of generalized derivatives:

(4.2) THEOREM. If f(x) has the property fk in a set E, i E I > 0, then there is a perfect
set 11 c E, of measure arbitrarily close to that of E, and a decomposition

f(x)=g(x)+h(z) (4.3)

satisfying the following conditions:
(i) g(x) E B(k),

t In the preceding argument we dropped the (zero) constant term from S'[F]. It is, however, easy to
see that if co+c,+ci+.. is eumrnable (C, y) to e, so is 0+ce+c,+..., and conversely.
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(ii) if A A2, ... are the intervals contiguous to n, and X(x) is the distance of x from 11,
zve have

h(z) I 5 C,yk(x) (4.4)

for all x, except perhaps for those situated in a finite number of the intervals Ai, C being
independent of x (in particular, h = 0 in II and' h S C A, k for x c A, and i large enough).

For any integer n > I consider the polynomial

w"(x)= f,02 t'-'(I -t)n-'dt/f1tn-i(1 -t)n-1dt
o

of degree 2n - 1; in particular wl(x) = x. We have

w"(0)=0, wn(1)=1; 1)(l)=0. (4.5)

Also wn)(x) =O(x" 1), w(x)=O{(i -x)' -f} (j- 1, 2, ... , n). (4-6)

Consider a function p(x) defined on a perfect set P with end-points a, b. By a para-
bolic extension of order n of p(z) we shall mean the function 7r(x), a _< x _< b, such that
n(x) = p(x) on P and

n(z)=p(a)+wn(x d
a\

(p(ft)-p(a)) (4'7)

in each interval A = (a, 6) contiguous to P. If n = 1, n is linear in each A.

(4.8) LEMMA. If p(x) is defined on a perfect set P and satisfies

J p(x") - p(x') I e M jx' - x' Jn (x' E P, x" a P), (4.9)

with M independent of x', x", then the parabolic extension n of order n of p has n-1
continuous derivatives all of which vanish on P, and non-') e Al.

Consider first the case n = 1. By (4.9),

171(x')-n(x')I < M I i - x' (4'10)

for x' and x" in P. Since the slope of n outside P numerically does not exceed M,
(4.10) holds if x' and x' belong to the same interval contiguous to P. If (x', x') contains
points of P in its interior, denote by xl and x2 the first and last of those points, so that
X ' - < say. Since the analogue of (4.10) is valid for each of the pairs z', z1;
x1, x2; xz, x", it holds by addition for z', x'. (This type of argument will be repeatedly
used below.) Hence the lemma is proved for n=1.

Suppose now that n > 2. Denote by p''p(x) the derivative of p relative to P, that is,
the limit of {p(x+h)-p(x)}jh forx and x+h in P. By (4.9) we have rrp(x)=p,(x)=0
in P. By (4.7), (4.9) and (4.6),

n'(x)=awn(x8a)[p(R)-p(a)]=O{(x-a)n-1} (4.11)

uniformly in all the intervals A = (a,,B) contiguous to P. We show that n'(x) exists and
is 0 in P. It is enough to consider, for instance, the right-hand derivative of n.

Let xo E P, h > 0, and denote by xo + h' the last point of P in (xo, xo + h). (If no such
point exists, then xo is the left-hand end of an interval contiguous to P and the result
is immediate from (4-11).) Then

n(xo+h)-n(xo)-n(xo+h')-n(xo) h'n(xo+h)-rr(zo+h').
.1Z

h h' h
+

h
(4
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The first term on the right tends to 0 with h since n4(x,) = 0 and h'/h < 1. The second
term on the right is O{(h - h')n A-1} - o(1), by the mean-value theorem and (4.11).
Hence n'(xo) exists and is 0; clearly n'(x) exists outside P.

If, for example, n = 2, to complete the proof of the theorem we still have to show
that 7T' E A1, that is, that I n'(x") - n'(x') I < Mi x" - x' I. (4.13)

This is obvious if x' and x" are in P, since n'=0 there; and it is also immediate if
x' and x' are in the same interval A = (a, /1) contiguous to P, by an application to >r'
of the mean-value theorem and the estimate

n"(x) = 8-Qws (xaa) [P(f) -P(a)) = 0(1) (x E A). (4.14)

If (x', x") contains points of P in its interior, it is enough to consider the extreme
points x1 and x, of P in (x', x") and argue as in the case n = 1. This proves the lemma
for n=2.

If n r 3 the argument is similar and we give it in full. Suppose that n _> 3, that
a', n", ... , n(k) exist, and that they are 0 in P. It is enough to show that (i) if k < n - I

then n(k+1) exists, and n(k+1) = 0 in P; (ii) if k = n -1, then n<k> E A1.
(i) By hypothesis, n= 0 in P. Hence n<P+1> _ (nfk))' is 0 in P. If xo E P, we consider

a formula analogous to (4.12) with ir(k) for n. From this, using the estimate

n(k+1)(x) = a`-{k+1)w(k+1) (f a a) (p(fl) _ p(a)] = O{(x - (4.15)

in the intervals A = (a, f) contiguous to P, we find that n(k+1)(x0) exists and is 0; the
existence of 7T(k+1) outside P is obvious.

(ii) We have to show that
I n(n-1)(X") - 7(n-u(x) 15 M1 I x" - x' (4.16)

This is obvious if z' and x" are in P, and also if x' and x" are in the same interval
A = (a, 6) contiguous to P, by the mean-value theorem and the estimate n(n)(x) = 0(1)
obtained by taking k+ I=n in (4.15). Hence (4.16) holds for general (x', x') and the
lemma is established.

Return to the theorem. Since w(x, t) = 0(1) for each x E E and t -+ 0, there is a perfect
set II c E with I E - H I arbitrarily small, and two positive numbers M and d such that

w(x, t) <M for xE ll, I t I <d.

This fI is the set Il of the theorem.
If we make the special hypothesis that

f(x) =f(1)(x) =ftv(x) =ffk-v(x) = 0 in 11, (4.17)

k
(4.1) becomes f(x+t)=w(x,t)k1, (4.18)

where I w I < M for x e 11, I t I < d. Hence, writing C, = M/k!, we have I f I < CXk in each
interval A, contiguous to II and of length < d. Since there can be only a finite number
of O's of length not less than d, we obtain (4.2) with g = 0, h =f.
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For the proof of the theorem it is therefore enough to show that if we subtract from
f a suitable function in B(k) the difference (again denoted by f) satisfies (4.17). We shall
do the subtraction in k stages.

In the proof we use higher forward differences off,

A,-f(x) = E (-1)"'_'

lm/f(x+it)io .9

and the formula Am+1f(x)-Arf(x+t)-A)^f(x).

Suppose that instead of (4-17) we have only

.f(k-OW =J (k-i+1)(x) = ... =.f(k-1)(x) = 0 on Fl, (4.19)

for some i, 0 5 i 5 k - 1 (i = 0 means that we do not assume any of the conditions (4.17)),
so that

f(k-i-1>(x) k-i-I tk
f(x+t)-f(x)+f(1)(x)t+...+(k-i-1)!t (xE11). (4.20)

't'hen for x E ti and It I < d/k we have

Ai.-if(x)
(Ak.i M I t Ik,

Ark..i--l F(x) =1k-i-1(x) tk-='-' t k,

(4.21)

(4'22)

where - 1 <0 < 1, and Ak i and Aj i are constants. If also x+te 11, we may substitute
x +t for x in (4.22). Subtracting the result from (4.22) and using (4.21) we get

I f(k-i-1)(X +t)-.f(k-i-1)(x) I <- M(Ak,i+2A i) I t 1i+1 (4.23)

provided x E II, x+ t E II, I t i < d/k.
Consider any portion P of II of diameter less than d/k and apply Lemma (4.8) to

p(x) =&-i- 1)(x). Piecing together a finite number of parabolic extensions of p of order
i + 1, we obtain a function 1r(x) differentiable i times, with

1r'=n'=...=1r(i>=0 on 11,
and with 1r(i) E A1.

Denote by 1 (x) the (k - i - I)th indefinite integral of 1r(x). Then I'(x), I"(x), ... , I4-1)(x)
exist, I(k- 1) is in A1, and

I(k-i-1)(x) =.f(k-i-1)(x), 1(k-i)(x) = ... = 1(k-1)(x) = 0 on H.

Hence, subtracting I from f and denoting f - I by f again, we obtain (4-20), where now
f(k j-p(x) = 0 on II. Starting from (4.1) and repeating the argument k times we arrive
at (4.18). This completes the proof of the theorem.

Theorem (4.2) has a number of generalizations and consequences.
(a) Property Yk is almost everywhere equivalent to the existence of the kth un-

symmetric derivative. To see this it is enough to prove the following theorem.

(4.24) T1i o1 EJ1. If f has the property 8k in E, then the unsymmetric derivative f(k)
exists almost everywhere in E.

Consider the decomposition f = g + h of (4-2). Since functions in Al are differentiable
almost everywhere, g(k), and so also g(k,, exists almost everywhere. We show that h(k)(x)
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exists almost everywhere in II. This is immediate, since (4.4) implies that at every point
x of density of II we have

h(x + t) = o(tk)

as t -* 0, that is, h(k) exists and is 0. (Incidentally this shows that f(j) = g(J), j = 1, 2, ..., k,
almost everywhere in 1I.) Hence fk)=g(k)+h(k) exists almost everywhere in UI, and
so also almost everywhere in E.

(b) The following generalization of (4.2) is of interest, though no more effective
in applications than the original:

(4.25) THEOREM. The function g in (4.2) can be made to belong not only to B(k) but
also to CO).

The proof runs parallel to that of (4.2), and it is enough to indicate the idea. First,
by (a), fi(x) exists almost everywhere in E, so that in (4.1) we may replace c (x, t) by
Jk)(x, t) + e(x, t), where e tends to 0 with t for each x in E. Since the measurability of
f implies that of fw, f ( , ),- f<k) on the set where they exist, and the latter set is measur-
able (remembering that the f(j) are limits of certain ratios involving only the function f ),
we may suppose that f, f(1), ... , are all continuous relative to II. From now on we
proceed as in the proof of (4.2). We consider the parabolic extension of order 1 of f%).
The resulting function is continuous, its kth integral I(x) is in C(k), and subtracting
1(x) from f (z) we can make f satisfy the condition f(k) = 0 on II. Next we consider the
parabolic extension of order 2 of f k_t1 and subtract from f the (k - 1)th integral of
that extension, and so on.

(c) In Chapter IX, § 2, we introduced the notion of approximate derivative fp.
We define f.1111 =(j;y-1)}ap. Using these notions we can establish relations between
successive generalized derivatives f(i).

(4.26) THEOREM. If fw, ,f(k) exist in a set E, I E I > 0, then

almost everywhere in E.
f(f) _ (fJ-1))ap (j = 2, 3, ... , k) (4.27)

Consider the decomposition f = g + h of (4.2). Since h = 0 in II , h has at every point
of density of II approximate derivatives of all orders, all equal to 0. Since g', g". ....
g(k-1) exist everywhere, and g<k) almost everywhere, it follows that fap, fp, ... , f( .',) exist

almost everywhere in II. Moreover, almost everywhere in II we have

fsp= Yajp=H ) = N--1)f -<Y--1))ap=1JU-ll)4p

for j = 2, 3. ..., k. This proves (4.27) almost everywhere in II, and so also almost every-
where in E.

(d) Though we only consider measurable functions, it is of interest to observe that
(4.24) holds without assuming that either f or E are measurable, and that this more
general result can be deduced from the special case proved above.

Denote by f *(x) and f* (x) respectively the upper and lower bounds off at the point x.
(Thus f *(x), for instance, is the limit, for h --* 0, of the upper bound of f in the interval
(x-h,x+h).) The function f* is upper semi-continuous and f* is lower semi-con-
tinuous; hence both are B-measurable. We have f* <f <f * everywhere, and f* =f =f *

at every point of continuity off, in particular in E.
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Denote by E* the set of all points where f * has an unsymmetric (k - 1)th derivative
and

f*(x+t)=f*(x)+f(*'#)t
tk-1

1)!+0(tk), (428)

and by E* the corresponding set for f*. Both E* and E* are B-measurable, and, by
the theorem already proved. At) exists almost everywhere in E*, and f*w almost
everywhere in E*.

Since f (x) =f *(x) in E, it is geometrically clear that (4.28) holds in Et. Hence Ec E*,
and similarly EcE*, so that EcE*F,*.

It follows that both f k, and f*,k, exist in a set E-Z, where I Z =0. In other words,
for x in E - Z we may replace the last term in (4.28) by { f(k)(x) + o(I )) tk/k!, and similarly
in the formula for f*(x+t).

Suppose now that x is in E - Z, and that x + t is in E - Z for infinitely many is
tending to 0; only a denumerable subset D of E - Z can fail to have the latter property.
Since f* (x + t) =f(x + t) =f *(x + t) for such t's, we find that f*(i) =f(p=f(*j)in E-Z-D
for .j = 1, 2, ... , k, and in particular f(k) exists almost everywhere in E.

(e) For applications of Theorem (4.2) to Fourier series we must show that it holds
for periodic functions. Suppose that f is periodic of period 2n. The set II defined on
p. 75 is then periodic. Take any interval (a, a + 27f) with a (and so also a + 2n) not
in Fl, and consider the decomposition f=g+h with properties described in (4.2).
By suitably modifying g near the points a and a+ 27T, we obtain a new g which when
continued periodically is still in B(k), and the new h =f - g will still satisfy the required
conditions.

(f) Theorem (4.24) can be considerably generalized, at least for measurable func-
tions. Let Jkf(x, h) denote symmetric kth differences; if

h-k&f(x, h) = 0(1) (4.29)

for each xE E as h .0 (in particular, if Dkf exists in E, and a fortiori if a symmetric
fk) exists in E). then the unsymmetric f(k)(x) exists almost everywhere in E. For appli-
cations to Fourier series the case k = 2 is the most interesting, and we confine our atten-
tion to it.

(4.30) THEOREM. Suppose that f is measurable and that

f(x_+h)+f(x h)-2f(x)=0(1) (4.31)

for each x in E as h --> 0. Then the unsymmetric derivative f(>(x) exists almost everywhere
in E.

We split the proof into a series of lemmas:

(4.32) LEMMA. Suppose that 0 is a point of density of a set d. Then for each sufficiently
small u (positive or negative) we can find in the interval (u, 2u) a number v such that

(i) vet`; (.1) J(u+v)Ecf; (iii) u+VECf.

+ if f(x,+t)=a,+a,t+...+ak_,tk-'+O(tk) for t s0, the graph of f(z) near x=x, is contained in
domains limited by parabolic curves of order k, and so the same holds for the graph off *(x). In particular,
a, =f j, (ze)lj! for j < k.
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Suppose, for example, that u > 0. Let. y(x) be the characteristic function of d, and

write r(x) = f07(t) The sets of points v in (u, 2u) satisfying conditions (i), (ii) and

(iii) have measures respectively

pzuy(v)dv
=T'(2u)-P(u),

u

f2u

y(j(u+v))dv=2{r( u)-I'(u)), (4.33)

f2th

U

y(u + v) dv =I'(3u)-r(2u).

Since r(u) ^ u for small u, each of the expressions on the right-hand side in (4-33) is
asymptotically equal to u, that is, the length of (u, 2u), and it is clear that if u is small
enough there is a v satisfying conditions (i), (ii) and (iii).

(4-34) LEMMA. Under the hypothesis of (4-30), f is bounded in the neighbourhood of
almost any point of E..

Denote by the set of x such that f (x) I < m and j A*f (x, h) I < m for 0 < h < 1 /m.
Since Ec Ei + E$ + ..., it is enough to show that f is bounded near each point of density
of a given At.

Suppose, for example, that x = 0 is a point of density of and that u is small; in
particular that 0 <u < 1/m. Apply (4.32) with Then }(u+v)eEm, v-u< Ilm,
so that

I
2fI f(u)-2f(}u+}v)+f(v) = D (}u+}v, }v- }u) <m. (4.35)

Since v and }(u + v) are in Em, the values off at those points are numerically less than
m, and (4-35) implies that f(u) < 4m. This completes the proof of the lemma. (In
the argument we did not need property (iii) of (4.32).)

(4.36) LEMMA. Under the hypothesis of (4-30) we have

O:f(x+h,h)-f(x+2h)-2f(x+h)+f(x) -O(1) (4.37)
h2 h2

at almost all points of E.
Denote by Em the set of points x such that

Jh-2A=f(x,h)j<m for 0<h<l/m.

We have Ec E1 +E_+ ..., and it is enough to prove that (4 37) holds if z is a point of
density of any Em.

Suppose, for instance, that x = 0 is a point of density of E. and that h > 0. Consider
the expressions

.59 =f(2v)-2f(v)+f(0),

where u is positive and small, and v satisfies the conditions of Lemma (4-32) with 1= Em.
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Since J(u + v) and v are in E,,,, we have Se = 0{(u + v)2} = O(u2), and 43 = 0(v2) = O(u2).
On the other hand,

1 1181-282+83=02f(u+ v, v -u) - 2A2f(3u+Jv, Yv-ju),

and since u + v and ,)(u + v) are in E,,,, the right-hand side is 0{(u - v)2} = 0(u2). But
82 and 89 are also 0(u2). Hence 8, = 0(u2) and the lemma follows.

(4.38) LEMMA. Under the hypothesis of (4.30), f'(z) exists almost everywhere in E.
Consider a point z E E such that f is bounded near x and (4.37) holds. Almost all

.c E E have these properties ; suppose that x = 0 is one of them and suppose also that
f(0)=0. Then

.f(h) - 2.f (4h) = 0(h2), f (Ilh) - 2.f(}h) = 0{(Jh)2}, ... ,

.f 2n

If we multiply the first equation by 1, the second by 2, ..., the nth by 2' ', and add,
we get

,f (h) - 2"f (h) = 0(h2) (1 + 2-' + ... + 2-("-u) = 0(h2). (4.39)

Suppose that f is bounded for I h J _< e. We confine I h I to the interval (fe, e) and write
h/2'1 = h'. As n > oo, h' takes all sufficiently small (non-zero) values. By (4.39),

hf(h')=f(h)+0(h2)=0(1),

and hence (since h stays away from 0), f (h')/h' = 0(1) as h'--* 0.
It follows that f satisfies condition f, at almost all points of E, and therefore, by

(4.24), f' exists almost everywhere in E.
It is now easy to complete the proof of (4.30). Consider a point z E E where we have

(4.37) and f' exists. Without loss of generality we may suppose that z=0 and that
f(0)=f'(0)=0. Keeping h fixed in (4.39) and making n -->oo we see that f(h)=0(h2).
Hence f satisfies condition N2 at almost all points of E, and, by (4.24), the unsym metric
derivative fey exists almost everywhere in E.

5. Applications of Theorem (4.2) to Fourier series
These applications also require Theorem (2.1) of Chapter IV, which asserts that if

II is a periodic perfect set and x(x)=xn(x) is the distance of x from fI, then

(5,1)XA(x+tdt

is finite almost everywhere in IT for all h > 0.

(5.2) THEOREM. If f is periodic and integrable, and has an unsymmetric derivative
f(,)(z), r> 1, in a Bet E, then the r-th conjugate function

1,(z)= -n I o 't)dt (5'3)

(cf. (1.27)) exists almost everywhere in E. f
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Consider the decomposition f = g + h of (4- 2), where g is periodic and in B)'). Since
gr exists almost everywhere (see Remark (b) on p. 65), it is enough to show that hr exists
almost everywhere in 11. This is, however, immediate if we observe that

I h(x+t) I ,CX'(x+t)

for each x in II and It I sufficiently small, so that at each point of R where

h=lkv=... =ht.-1>=k)=0

(that is, almost everywhere in II) the integral

h x - - 1 - h(x + t) ± h(x - t) d,

is majorized near t = 0 by Of x'(x+t)+x'(x-t)
o

an expression finite almost everywhere in II (see (5.1)).

(5.4) TREOREM. If f hae an unsymmeiric derivative f.>, r>- 1, in a set E, then both
S<'>[ f ] and So>[ f ] are summable (C, r) almost everywhere in E.

Consider again the decomposition f = g + h of Theorem (4.2), where g is periodic and
in B('>. By Theorem (3.23) of Chapter III, S('>[g] = S[g<'>] is summable (C, 1), and so also
summable (C, r), for almost all x. The first part of the theorem will therefore be
established if we show that the (C, r) means of SW[h] converge almost everywhere in fl.
These means are

(- 1)'IJAwh(x+t) rK (t)dt. (5.5)

By(19)and(110),
K" (t) < t r+ (J t n), (5'6)

so that (5.5) is majorized by
Jtj-''jh(x+t)jdt. (57)Of'

This integral is finite at almost all points of 11, since I h(x + t) s CC'(x+t) for x in 11
and I t I small enough, and (5.1) with A = r is finite almost everywhere in I].

At each point of II where (5.7) is finite, the means (5.5) are not only bounded but
even convergent. For replacing h by 0 outside a sufficiently small neighbourhood of r
does not affect the (C, r) summability of S(')[h] (see the Remark on p. 62), and at the
same time makes (5.7) arbitrarily small. This completes the proof of the summability
of S('>[ f ]. By (1.7 ), the (C, r) sum of S(')[ f ] must be f(,) almost everywhere in E.

The proof of the summability of S(r)[ f ] is similar. Here again §'>[g] = SS[gU>] is sum-
mable (C, 1), and so also (C, r), almost everywhere, and the problem reduces to showing
that S(r)[h] is summable (C, r) at almost all points of H. If we use the fact that the rth
conjugate function hr exists almost everywhere in fl, the proof of the (C, r) summability
of S('>[h] is parallel to the proof of the summability of P>[h], and we may omit the
details. By (1.25), the (C, r) sum of Sr>[ f ] is j at almost all points of E.
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The function conjugate to an absolutely continuous function may be unbounded in
every interval. Hence if f is differentiable in a set of positive measure, f need not have
the same property. However, we have the following

(5.8) THEOREM. Let f be integrable, and F the indefinite integral of f, both periodic.
If f has an r-th unsymmetric derivative in a set E, the conjugate function f` of F has an
(r+ 1)-th unsymmetric derivative almost everywhere in E.

Let f = g + h be the decomposition of (4.2), and let G and H be indefinite integrals
of g and h. We may suppose that F = G + H. By modifying h suitably in an interval
contiguous to 11 we may suppose that the constant term of S[h] is 0. Hence the
constant tern of S[g] = S[f ] -- S[h] is also 0, and both G and fI are periodic. It follows
that S[G] is obtained by termwise integration r + 1 times of S[G(r-1)] = S[g<'>], and con-
sequently S[G°]=S[G] is obtained by integrating r+ 1 times §[g('>], which is a Fourier
series. This implies that (7 has almost everywhere an ordinary derivative of order
r + 1, and it will be enough to show that an unsymmetric Hcr+1> exists almost everywhere
in II.

It simplifies the argument slightly if instead of A(x) we consider

fffff

which (since 1/u -'} cot Ju is regular for j u I< 2n) differs from )7(x) by a function regular
in the interior of (- n, rr).

We know that h(x+t)=o(t'), (5.10)

.1

n

.
11(t +i) I dt < ac (5.11)

almost everywhere in 11. We show that H(,+,) exists at each x E II where we have (5.10),
(5.11), and H'(x) = 0 (= h(x)). Without loss of generality we may suppose that x = 0 is
such a point. By (5.10), his bounded near the origin, H satisfies condition A, there, and

the integral (5.9) converges near x = 0. Finally, we may suppose that H(x) = J
Z0

hdt, so

that, by (5.10), H(t) =o(tr+1). (5.12)

_ r r}1 +8

Write H(x)f-H(t)I lx dt
77

+a
xk ' H(t) t tx+1> dt +

f. H(t)_
dt. (5.13)

IT k-U J_w n -.tr}2(x-t)
By (5.12), the coefficients of xk are absolutely convergent integrals provided k _< r.
If 0 < e < n, integration by parts gives

}-(r+1) f +nH(t)t-<r+2)dt=[H(t)t-r}1>]rs- f "h(t)t-<r+udt,
fa to

and, by (5.11) and (5.12), the terms on the right have limits as e->+0. Hence all the
integrals in (5.13) have meaning, and the theorem will be established if we show that
the last integral in (5.13)-call it p(x)-is o(1/x) as x-,0.
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Suppose, for example, that x -* + 0, fix a small e > 0, and write

n H(t) 0 ix ix tx- r+Z dl ^ f +
J

+ f + +_nt (x - t) -e 0 fix fix
5

=EIi,
1-1

(5.14)

say. Clearly I1= 0(1) = o(1 /x). An application of the second mean-value theorem to
the (Riemann) integrals Iz, I3, 15 shows that they are respectively

1 f 0 H(t) 2 (ix H(t) 2f-9-- H(t)
X -B,s tr+2 dt, x &8.z t--r+-

dt, x, ix -F,+z dt

where 0 < 01 < 1, and so, in view of the convergence of f
n

Ht-r-2 dt, are arbitrarily small

in comparison with 1/x provided a is small enough. Finally write

I4- -f
}xt'+

H(z)
fxt.+z tx=I4,1+14.:,

the last integral being taken in the `principal value' sense. Since [H(t) - H(x)]/(t - x)
is contained between the upper and lower bounds of h in (x, t), (5.10) implies that

I4.1=o(x')f
i

t -i-edt=o(r1)

By (5.12) and the mean-value theorem,

}x

-it)
dt

I4.z=o(x'+1)f
o (x-'+2 (x+t)r+z}

=o(x'+1) fox(xr
+

2) 2t

Collecting results we see that p(x)=o(1/x), and (5.8) is established.

(5.15) THEOREM. Let f be integrable, F the integral of f, both periodic. Then P has
almost everywhere an approximate derivative equal to f.

This is a corollary of (5.8). For let 1P be the integral of F, and suppose that ID is
periodic. Since F is differentiable almost everywhere, the unsymmetric 4 (w exists
almost everywhere. By (1.7), S[ f J is summable (C,3) to sum 4)<z1.
Hence q(r) =1 almost everywhere. Since, by (4.26), we also have mc _
almost everywhere, the theorem follows.

6. The Integral M and Fourier series
The notion of integral which we systematically use is that of Lebesgue; only in very

few instances have we considered other definitions (see Chapter V, (1.8); Chapter VII,
§ 4).

The Lebesgue integral has a number of simple properties. For example, if f is
integrable, so is If ; an integrable f is almost everywhere the derivative of its in-
definite integral; integration by parts holds; finally, we can, under very general con-
ditions, pass to the limit under the sign of integral. These properties, when applied
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to Fourier series, give a theory of satisfactory simplicity and generality. No other
integral (we disregard Stieltjes type generalizations) has all the properties just listed.
Adopting a definition of integral more general than Lebesgue's, we may strengthen
individual results, at the expense, however, of the generality and coherence of the
theory.

Generalizations of the Lebesgue integral are, nevertheless, of interest for Fourier
series, and we consider two of them.

The first generalization is usually called Denjoy's special integral (to distinguish it
from Denjoy'a general integral, which does not concern us here), or Perron's integral.
We shall base it on the notions of major and minor functions, and call it the M-integral.
There are other, equivalent, definitions, but this one will have the advantage for setting
a perspective for another extension. We recall the basic definitions and properties.t

Let f(x) be a real-valued, not necessarily finite-valued, function defined in a finite
interval a S x S b. By a major function for f in (a, b), we mean any 'F(x), a _< x 5 b,
which is continuous, is 0 at x =a, and whose Dini numbers at each x are not less than
f(x); wherever f= -co, we require that the Dini numbers of 'V shall be greater than
- oo. A minor function (D(x) is defined correspondingly; in particular the Dini numbers
of 4) shall not be greater than f, and shall be less than + oo wherever f = +oo. Since the
Dini numbers of 'F - 4) are everywhere non-negative, 'F(x) - O(x) is non-decreasing;
in particular 'V(b) > d>(b). If inf'F(b) = sup O(b), (6.1)

`Y m

we say that f is M-integrable over (a, b), call the common value of both sides of (6.1)
the M-integral off over (a, b), and denote it by

rb
(M) I f(x) dx.

a

We list a few properties of this integral.
(i) Every f integrable M over (a, b) is necessarily measurable, and is integrable

M over every subinterval of (a, b). The function

F(x) = (M)f f(t) dt
a

is continuous, and at almost all points of (a, b) the derivative F' (x) exists and equals f (x).
(ii) The M-integrability, and the value of the integral, of an f are not affected if we

change the values off in a set of measure 0.
(iii) The M-integral is additive for a pair of adjacent intervals. The integral of a

sum of two functions is equal to the sum of the integrals.
(iv) Every function integrable L over (a, b) is integrable M, and the values of both

integrals are the same (this is Lemma (3.8) of Chapter IX); for f _> 0 integrabilities L
and M are equivalent.

(v) If f is integrable M over (a, b), then there is a dense family of subintervals of
(a, b) over each of which f is integrable L.

(vi) Every function integrable R (we include here functions having improper
Riemann integrals) is integrable M, and both integrals have the same value.

t For the proofs and more details we refer the reader to Sake's Theory of the integral.
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(vii) If f is M-integrable over (a, b), and g is of bounded variation over (a, b),
then fg is integrable over (a, b), and we have the formula for integration by parts

Jfdxb fb
= [Fg]o- Fdg.

a a

We apply these properties to Fourier series confining our attention to a few problems
only.

(a) If f is periodic and integrable M over a period, it has, by (vii), Fourier coefficients

an = - (M)fo f(x) cos nxdx, bn =
-

*(M)J o f (x) sin nxdx,
7T 7r

and a Fourier series Jao + Z (an cos na + bn sin nx) = E
1 0

Suppose that ao=0. Then the integral F(x) of f is periodic and continuous, and in-
tegration by parts shows that S[f] = S'[F]. Hence, by Theorem (5.4) in the case r = 1,
the Fourier series of a periodic and M-integrable f is almost everywhere summable (C, 1)
to sum f(x).

(b) The Riemann-Lebesgue theorem, an important tool for Fourier series, fails for
the integral M: the coefficients a,,, b need not tend to 0. But the relation S[f] = S'[F],
valid if ao = 0, shows that, in any case,

an=o(n), bn=o(n) (6.2)

These estimates cannot be improved (see Theorem (6.4) below); in particular we cannot
replace summability (C, 1) in (a) by summability (C, k), k < 1.

(c) Suppose that ae = 0. The relation S[f ] = S'[F] can also be written 9[ f ] = SS'[F].
(d) Suppose that f is periodic and integrable M, and that f is integrable L over a

subinterval (a, b) of a period. Let f * be the periodic L-integrable function which
coincides with f in (a, b), and is 0 elsewhere, mod 21T. In view of (6.2) and Theorem (9.23)
of Chapter IX, the differences S[f J - S[f *] and 9[f ] - §[f *] are uniformly summable
(C, 1) in each (a +c, b -c), the former to 0. Hence in the intervals where f is integrable
L, the behaviour of S[f] and 9(f] can be read off from that of S[f *] and 9(f *].

(e) In view of (i), (vii), and Theorem (3.3) of Chapter IV, if f is periodic and
integrable M, the conjugate function

1 1 +0-f(x-t) 1 ('F(x+t)+F(x-t)-2F(x)
,fi(x)= - lim J - - dt= -- lim J

a
dt

n s _+0 IT 6 2tan,]t irs-.+o (2 sin Itt)
(6.3)

exists almost everywhere. By (5.4) and (1.25), if f is periodic and integrable M, 9[f ] is
summable (C, 1) almost everywhere to sum (6.3).

(f) If a EA (x), with coefficients o(n) is summable A to an f (x) finite and integrable M,
then the series is S[f]. For f integrable L, this is Theorem (7.4) of Chapter IX, and
for f integrable M the proof remains the same. Corresponding results hold if we con-
sider the limits of indetermination of partial sums and Abel means.

While Riemann's proper integral is less general than Lebesgue's, no comparison is possible for
Riemann's improper integral. The latter is, however, less general than the integral M, and the
results (a) to (f) above hold for Riemann's improper integral. For the same reason, the assertion
that the estimates (6.2) are beat possible for M-integrals is a corollary of the following theorem
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(6.4) THEOB&M. Given any sequence of positive numbers A. = o(n) there is an R-integrable j
whose sine coefficients are greater than A. for infinitely many n.

Let ilk = ekk, ek-.0. We shall define a sequence of non-overlapping intervals Ik = (jak,ak)
approaching the point 0 from the right. Let

(A) f (x) = ck sin nk x for x E Ik (k = 1, 2, ... ), f = 0 elsewhere. The ck and the integers n1 < n1 < ...
are to satisfy a number of conditions, in particular:

(B) nkak are integral multiples of 4n (hence f is continuous for x > 0, and the integral off over
Ik is 0);

(C) ck/nk = 1/k -s 0 (this implies that f is integrable R over (0, n)).
Let n1 = 4, cl = 4, I1 = (}r, 7r), and suppose the nj, c a; have been defined for i<k, and con-

sequently f(x) has been defined for jak_1<x<n. Let ak = 41rlp, p being the smallest integer
such that ak < 1/nk_1. Hence

(D) I /nk-1 Z ak a 1 /2nk_1.

Having defined Irk, we take nk so large that

(E)
f 1A

nsxdx } jIk I = Jak (the integral tends to *1 1A, 1),
Ik

(F) sf(x) sinnkxdx l < 1,
J w

(G) 1/64knk-1

ae*, ak A
Write f(x)sinnkxdx = r +f +I = Pk+(1k+Rk.

0 J 0 iek ak

By (F), I Rk I < 1. Since, by (D), sin nkx increases in (0, ak+1), the second mean-value theorem gives
Pi, - 0. Finally, by (A), (E), (C), (D), (0),

Qk > ick a,, = nk ak/8k > nk/ I fikn k_1 > 4

It follows that
that is fork large.

7. The integral M2
Integral M was introduced by Denjoy (in a way different from that of § 6) to integrate

an exact derivative, and to show that an everywhere finitely differentiable function
is the indefinite integral of the derivative. We now turn to a somewhat similar problem,
and show that, with a suitable definition of an integral, an everywhere convergent
trigonometric series is the Fourier series of its sum.

There are certain difficulties here. On the one hand, if an everywhere convergent
trigonometric series EA(x) is the Fourier series of its sum f (z), it is natural to expect
that the series ja0z - EBf1(x)jn obtained by termwise integration represents the
indefinite integral of f. On the other hand, there are everywhere convergent series

which after termwise integration cease to converge everywhere;

E(log n)-'sin nx

is an instance in point, and starting from it we can, by the process of condensation
of singularities, construct an everywhere convergent EA (x) such that EB (x)/n
diverges in an infinite set, even a set of the power of the continuum (though, of course.
it must be of measure 0, since EB11(x)/n has coefficients o(l/n)). Hence we must expect
that the indefinite integral off need not be defined everywhere, and that the in-
tegrability off over a period need not imply integrability over every interval.
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However, if converges everywhere to sum f(x), the series }asx2 -EAn(x)/n9
obtained by two successive integrations converges uniformly, and we may expect
that its sum F(x) represents a second integral off. Hence we may try to deal directly
with second integrals, without defining first integrals, and in what follows we shall
follow this course.

Consider an f (z), a < x < b, real-valued, possibly ± oo at some points. A function
T(x) will be called a major function (of order 2, to distinguish it from the major functions
considered in § 6, which we shall occasionally call major functions of order 1) for f
if 'Y is continuous, is 0 at x = a and x = b, and if

y (x+h)+'Y(x-h)-2'(x)
Ds'Y(x)=liminf _> f(x)

h- O ha

at each x interior to (a, b); wherever f(z)= -oo we require strict inequality in (7.1).
A minor function C(x) is defined correspondingly, by replacing in (7.1) D' by D2 and
lim inf by limsup, reversing the sign of inequality, and requiring strict inequality
wherever f (x) = + co. In what follows,'Y(x) (with or withept indices) will always denote
a major function, C(x) a minor function.

If Q (z) ='Y(x) -'1(x), the hypotheses imply that D20 ' D 'F - D20 3 0, so that 0
is convex (Chapter 1, (10.7)) and, since f2(a) = 0(b) = 0, non-positive in (a, b). Hence,
if a <c <b we always have T(c) < CD(c), and in particular

sup T(c) _< inf 0(c).
IF m

If we have equality here for some c, then it holds for any other c, since if a sequence
of convex functions f2 (x) equal to 0 at x = a and x = b tends to 0 at some point interior
to (a, b), then it tends to 0, even uniformly, in the whole interval (a, b); this fact will be
repeatedly used below. In this case we say that f is M2-integrable over (a, b), and
denoting the common value of sup ¶(x) and infCD(x) by F(x) (a<x<b), we call F(x)

'F m

the normalized (by the condition F(a) = F(b) = 0) second indefinite integral off in (a, b);
in symbols

F(x) = (Me) f (y) dy (7.2)

If we add to F(x) any linear function, we call the sum a second indefinite integral of
fin (a, b).

We establish a number of properties of F(x).
(i) For any D(x),'1'(x), we have

'F(x) < F(x) < (D(x),

and both differences W(x) - F(x) and F(x) - (D(x) are convex in (a, b).
Let {1(x)} and be such that'Y (z) - 0 in (a, b). Hence F(x),

'Y,(x) --> F(x). Since 'Y (x) - m(x) and 'F(x) - are convex and non-positive in
(a, b), the same follows for the limit functions F(x) - cD(x) and 'V(x) - F(x).

(ii) If f is integrable M2 in (a, b) it is integrable M2 in every subinterval (a', b'). Let
IF, and CDn be major and minor functions for f such that IF, - (Dn -* 0, and let L(";)
and L',?) be linear functions taking at a' and b' the same values as' ,, and (Dn respectively.
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Then and L(,,=) tend to a common limit L(x), `Yn = `Yn - L(n> and cn = D - L;°> are
respectively major and minor functions for f in (a', b'), and 'Yn - (Dn 3 0 in (a', b').

Incidentally, f f(y)dy- J f(y)dy is linear in (a', b').
(a, b, z) (a', b', z)

(iii) If f is integrable M (in particular integrable L) in (a, b), it is also integrable M2.
Let frn(x) and O,(x) be major and minor functions of order I for f in (a, b), such that

:(in(x) - ¢n(x) tends (uniformly) to 0, and let

'n(y) dy + L(°)(x),'F'n(x) = f
a

n(y) dy + L(n)(x), tn(x) = fa Y
a

where L°) and L(,?) are linear functions such that IF, and (Dn vanish at x = a and x = b.
Clearly 'I'n and 11)n are major and minor functions of order 2 for f in (a, b) and since
L1>',, and L() tend to a common limit L(x), we also have Wn(x) - 0 in (a, b), and
(iii) follows. We also have

r
(M2) f* fdy=f {(M)Jvfdt}dy+L(x). (7.3)

(a, b, z) a a

(iv) If f1 and f2 are integrable M2 in (a, b), and c c2 are constants, then f = e1f1 + c2f2
is integrable M2 in (a, b) and

b, x)
(af (y) dy = c1 f,

b, z)
fi(y) dy + c2 f(a,

b, z)
f2(y) dy

(a,J

This is obvious when f = c1f1 (consider separately the cases cl > 0 and cl < 0) and when
f =fl + f2. and the general case follows from these two.

(v) If f is integrable M2 in (a, b), then F(x)= f f(y)dy is continuous, and,
J (a, b, z)

almost everywhere, a finite D2F(x) exists and equals f (x).
Let G(x) be convex and continuous in a - < we shall find estimates for the

measure of the set of points where D20(x) > k > 0.
Suppose first that 0 is non-decreasing, and denote by g(x) the right-hand side

derivative of 0(x); in every (a', /1') interior to (a, f ), g(x) is non-decreasing and bounded
and g'(x) exists almost everywhere and is L-integrable. We have

G(f1')-G(a')= g(x)dx> {g(x)dxf
a

f
6

{ f
xg'(y)dy)dx= f0

(fl'-y)g'(y)dy,
a a

and, making a'-). a. 13, we obtain

G(fl)-G(a)> (Q-y)g'(y)dy> f
a

(f1-y)g'(y)dy
a a+e

for any e < f- a. It follows that the set of points in (a + e, f) where g' > k is of measure
not exceeding {G(f) - G(a)}jke, and hence the subset of (L%,,6) where 9'-> k has measure
not exceeding e+{G(/1)-G(a)}eke, a result valid even if e>,8 -a.

A similar estimate, with G(a) - G(f) for G(/1) - G(a), holds for G(x) convex and non-
increasing. Since for a general convex 0 we can split (a,,8) into two subintervals in
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each of which G is monotone, we see that for any e > 0, k > 0 the subset of (a,#) where
k has measure not exceeding 2e+2w/ke,

where oi is the oscillation of G in (a, b). Since D2G(x) = g'(x) wherever g'(x) exist, as
we easily see from the formula

G(x+h)+G(x-h)-2G(x) 1 f
n

h2
- -- =hio (g(x+t)-g(x-t)]dt

(in particlar, D2G exists almost everywhere), we come to the following conclusion: if
the oscillation of a convex G(x) in (a, f) is small, D2G(x) is small except in a set of small
measure.

Return to (iv), and consider a major function 'l' for f. In the decomposition
F = (F -'l'') +'Y the function F -'Y is convex and, for a suitable 'Y, uniformly small.
Hence D2(F -'F) is small except in a small set. Since D$11'(x) >-f(x) and Ds'V (x) > - co
for all x, it easily follows that D2F(x) 3 f (x), D2F(x) > - Co at almost all points in (a, 6).
Using minor functions we similarly obtain that D2F(x) _<f(x), D$F(x) < +oo almost
everywhere in (a,,8), and (v) follows.

(vi) If f (x) is MZ-integrable in (a,#), and if f1= f, then f1 is also M2-integrable and

f(y)dy=
J(a.b.x) J(a.b.x)

f1(y)dy

We first consider the case when f1 can differ from f only in the set E of points where
f = + oo. Hence f1 _<f, and any major function 'F for f is a major function for f1.

Since, by (v), E I = 0, the function h(x) equal to - oo in E and to 0 elsewhere is,
by (ii), M2 integrable over (a, b) and, by (7.3), its normalized second indefinite integral
is 0 identically. Let 1* be a minor function for h; hence D2 i * 5 0 everywhere,
D2(D* = - oo in E. If 0 is a minor function for f, the sum + V is a minor function
for f1; for

D2(D+ *)<D2(D+D2l*,
where the two terms on the right can never be + oo ; hence

D2((p +4D *) = -00<fi in E,

D2((D +(D*)<D2(D<f=f1< +00 outside E.

Since F - (D and V can be made arbitrarily small, the same holds for 'V - (4) + (D*)
and (vi) is established in the case considered.

Similarly, we can prove (vi) in the case when f1 can differ from f only in the set where
f = - on. Passing to the general case, let g(x) =f(x) wherever f is finite, and g(x) = 0
elsewhere. The function g is finite-valued, the decomposition f, = (f1- g) + g has
meaning, the normalized second indefinite integral for g is the same as for f, the
normalized integral for f1- g (= 0) is identically 0, and it is enough to apply (iv).

We can now speak of M2-integrals of functions defined only almost everywhere.
since we may complete the definition of the function in the exceptional set of measure
0 in an arbitrary way.

(vii) Suppose that the partial sums of a trigonometric series are bounded at
each x, and let

F(x) = }aox' - E An(x)/n2-i
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Then D2F(x) exists and is finite almost everywhere, and is M2 integrable in any finite
interval (a, b), and F(x) is a second indefinite integral of D2F.

The hypothesis implies that the coefficients of are bounded; hence F(z) is
continuous. We also have (Chapter IX, (2.7))

F(x+h)+F(x- h)-2F(x)O(1)
(h 0)

at each x, which, by (4.30), implies that D2F(x) exists and is finite almost everywhere.
The rest of the assertion follows from the fact that if L(x) is the linear function

coinciding with F(x) at x = a and x = b, then F(x) - L(x) is both a major and minor
function for f (x) = D2F(x).

So far we have only considered real-valued functions. If f is complex-valued,
f =fl + ifs, we may say that f is M2-integrable over (a, b), iff1 and f2 are, and define the
(normalized) second indefinite integral off as F1+iF2, where FA: is the (normalized)
second integral of fk (k = 1, 2).

It is clear that (vii) holds for a complex-valued trigonometric series Eckei"x if its
(symmetric) partial sums are bounded at each x, and F(x) is defined as

Jcox2 - E'ck e"A-/k2.

Before we prove our final result, we must express the Fourier coefficients of a func-
tion in terms of M2-integrals. Consider first the Fourier series

of an f e L. We have
i a+aA

CO
ZIT

f(x)dz

for any a. Integrating this over - 21T < a < 0, and denoting by F(x) a second integral
off, we obtain

ca = 472 {F(2rr) + F(- 277) - 2F(0)},

a result independent of the arbitrary linear component of F(x).
Given any f. if F is its second indefinite integral, we shall write

F(x+h) + F(x- h) - 2F(x) =V(f; x, h).

With this notation, the formula for co becomes

(7.4)

(7.5) THEOREM. Suppose that Eck a has bounded partial sums at each point x,
and write F(x) _ Jcox2 - E'ck k-2 etA=. Then

f (x) = D2F(x)

exists almost everywhere, the products

f(x)e-4- (m=0, ± 1, ±2, ...)
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are M2-integrable over every finite interval, and

cm= 4I
-
V(fe-tma; 0, 2n)

91

(7.6)

for each m.
By (vii) (in the complex case), f = D2F exists almost everywhere and is M2-inte-

grable over any finite interval, and F is a second indefinite integral of f. From
F(x) = 44cQx2 - 2:'ck k-2 e' we immediately deduce that

4$ [F(2n) + F( - 2n) - 2F(0)J = c0,n

and (7.6) follows from m = 0.
Consider the formal product Eck+m e1 of Eck elk- and a-4"`s. The partial sums of

Yxk+m et'= are bounded at each x. It follows that Eck+m et'z is summable R almost
everywhere to a sum g(x), and that

cm
One

V(g; 0, 2n).

It is enough to show that g =f e-""s almost everywhere.
To this end observe that, by (I.7), we may take for f and g the (C, 3) sums of Eel,

and F.ck+m e'x respectively. Also observe that the two sequences

eke{'kz, c-ke-ti1" (k = 0, 1, 2, ...) (7.7)

are summable (C, 1) almost everywhere to 0. This follows from the fact that the two

series E (k + I)-1 ck etl'x and Y,(k + 1)-1 c_k a-ice have coefficients 0(11k), and so are
0 0

convergent wherever they are summable (C, 1) (Chapter III, (1.26)); it is now enough
to apply the fact that, if Euk converges then u0 + 2u1 +... + (k + 1) uk = o(k).

By the final remarks of Chapter IX, at the points where the two sequences (7.7)

are summable (C, 1) to 0 the series E ck+m e{k= is equisummable (C, 1), and so also
k--m

(C, 3), with a-t'"= ck e"t0. Hence q = f e-""= almost everywhere and (7.5) is proved
k--w

completely.
Remark. The example of the series 4 + cos x + we 2x + ... shows that, if the partial

sums of Eck elk are allowed to be unbounded at a single point, (7.6) need not be true.
If, however, ck->0, the conclusions of (7.5) hold even if the partial sums of Eckei
cease to be bounded at a denumerablo set of points. The function F is then smooth,
and the exceptional denumerable set does not affect the validity of the result; we omit
the details, which are not difficult.

MISCELLANEOUS THEOREMS AND EXAMPLES

1. Let X,(t) = I{ f(z + t) +f (z - t)).
(i) Iff>a>O,and if (C,a)Xy(t)-.saes-s+0, then S[fIissurnmable(C,a)atx=x. to sums.

(ii) If f > - 1, a> fl+ 1, and if S(f ] is eummable (C,,8) at z = zs to sum e, then (C,a) X.. (t) -8
as t -, 0. (Bosanquet [2].)
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2. If f is bounded and f - EA (z), then LB.(x0) is summable C if and only if it is sumrnable
(C, e) for every e> 0; EB (x,) is summable C if and only if the integral

1

-n o [f (x. +t)-f(xo-t)] icotitde

exists; and if the integral exists, it represents the C.sum of EB (xo). (Prasad [2], Hardy and
Littlewood [26].)

3. Suppose that F(x) is non-decreasing, and F(x+ 21r) - F(x) is constant.
(i) If S[dF] is summable Cat x, then it is summable (C,e) at that point, for each e> 0.

(ii) A necessary and sufficient condition for S[dF] to be summable Cat z to sum a is that

F(x+t)-F(x-t)
lim -

2tt- 0
[The proof is similar to that of (2.28).]

4. If is everywhere eummable (C, -e), 0<c<1, to a finite sum f(x), then f(x) is M-Z
0

integrable, and Ec e'1e is the Fourier series off.
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CHAPTER XII

INTERPOLATION OF LINEAR OPERATIONS.
MORE ABOUT FOURIER COEFFICIENTS

1. The Riesz-Thorin theorem
In this section we prove a general theorem on linear operations which, when applied

to trigonometric series, leads to a number of interesting results. The proof of the
theorem is based on the following maximum principle of Phragmen and Lindelof:

(1.1) THEOREM. Suppose that f (z), z = x + iy, is continuous and bounded in the closed
strip B: a<x
and regular in the interior of B. If I f (z) I M on the lines x = a and x =fl, then I f (z) I < M
also in the interior of B. If, in addition, If (zo) I =M at a point zo interior to B, then
f(z) is constant.

Suppose first that f(x+iy)- 0 (1.2)

as y -- ± oo, uniformly in a < x -<,8. If zo = xo + iyo is in the interior of B, the inequality
I f (zo) I < M follows from the classical maximum principle applied to f in the rect-
angle a < x <,8, I y I -<,I, where y is so large that y > I yo I and I f (x ± iv) M for
Lt _< X -<,8.

If (1.2) does not hold, we consider the function

f(z) =f (z) e2'11t =f(z) e(xs-v2)ln e21xuln (n = 1, 2, ... ),

which satisfies (1.2), and on the lines x = a and x =,8 does not exceed M ey'1n, where
y=max(IaI,IftI). Hence

Ifn(zo)I<MeY'n,

and on making n -> oo we get I f (zo) I < M.
If I f (zo) I = M, then f is constant, for otherwise in the neighbourhood of zo we should

have points z such that I f (z) I > I f (zo) I = M, which is impossible.
It is convenient to state the Phragmen-Lindelof principle in a slightly stronger

form, which, however, is a corollary of (1.1).

(1.3) THEOREM. Suppose that f (z) is continuous and bounded in the strip B, and
regular in the interior of B, and that

I f(a+iy) I <Mi, I f(f+iy) I <M2 (1.4)

for all y. Then for every zo = xo + iyo in the interior of B we have

If(xo+iyo)I<Mf( )ME-u= (1'5)
where L(t) is the linear function taking the values 1 and 0 for t = a and t= fl respectively.
If we have equality in (1.5), then

F(z)=f(z)/M('Ms-ral
is a constant of absolute value 1.
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It is enough to observe that F(z) satisfies the hypotheses of (1.1) with M = 1.
Theorem (1.3) connects the upper bounds of I f I on the three lines z = a, x = xo,

x=f, and is often called the three-line theorem.
We now introduce some notions from the theory of linear operations.
Let R be any measure space, i.e. & .space on which a non-negative and totally additive

measure (mass distribution) 1t(F.') is defined, at least for some ('measurable') subsets
E of R. For our purposes it is enough to assume that R is an n-dimensional Euclidean
space, or a subset of it. The notion of measure leads to that of the Lebesgue-Stieltjes
integral

f Rfdu (1'6)

of a complex-valued function f. The most elementary properties of this integral we
take for granted. The important special cases-and the only ones interesting in our
applications-are when

(i) p(E) is the Lebesgue measure of E; or
(ii) the mass µ is concentrated at a denumerable sequence of points al, a" ....
In the first case, (1.6) is the ordinary Lebesgue integral. In the second, (1.6) may be

defined as
Ef (a;) lei,

where pi is the mass concentrated at ai and the series converges absolutely. The
reader unfamiliar with the Lebesgue-Stieltjes integral may still proceed provided he
interprets (1.6) in one of these two ways.

We consider only functions measurable with respect to u, write

IIfII..,=(fRIfI'd,.)' (1.7)

for 0 < r < co, and denote by II f Ilm.f

the essential upper bound of I f I on R, that is, the least number M such that I f I < M
except on a set E for which p(E) = 0. We denote by the class of functions such that
II f II,.r is finite. If no confusion arises, we write 11 f II, and LU instead of II f II.., and U.P.
In the rest of this section we always have 1 < r < oo.

We call simple any function taking only a finite number of values and (if u(R) is
infinite) vanishing outside a subset of R of finite measure. The set of all simple functions
will be denoted by S. It follows from the definition of the integral that the set S is
dense in every L*, 1 < r < co, though not necessarily in L' unless #(R) is finite.

We need the following two results, in which r'= r/(r - 1):

f Rfgdkl<IIfII,IIgIIl, (1<r<co),

IIJII =sup. Ifffgd/`I (geS, Age.=1, 1<r<co).

The first is Holder's inequality, whose proof in the general case is the same as for
one-dimensional Lebesgue integrals (see Chapter I, § 9). The proof of the second, again
in the case of one-dimensional integrals and for g not necessarily simple, was given in
Chapter I, p. 19. The extension to Lebesgue-Stieltjes integrals does not require new
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ideas. That for g we can take simple functions is easily verified directly when r' = oo,
and follows when r' < oo from the fact that S is dense in If.

Denote by R1 and R, two measure spaces with measures p and v respectively. Let

h = Tf

be a linear operation from R1 to Rs. By this we mean that

T(-J, +asfs) = a1Tfi +asTfs

for all complex numbers a, as and all complex-valued functions f on R1 with II f II,
finite, and that the function h is defined on R,. We say that the operation T is of type
(r, 8), where 1 < r <_ oo, 1 _< 8 _< oo, if

IIhII., M11fllr,,, (1.10)

The least value of M here is the norm of the operation (see Chapter IV, § 9).
If Tf is initially defined for simple functions only, and if I < r <oo, then there is a

unique extension of it, as a linear operation and with the same value of M in (1.10).
to the whole of L" (see Chapter IV, (9.3)).

Our main result can now be stated as follows:

(1.11) ThEOREM of M. RrESZ-Txoane. Let R1 and R, be two measure spaces with
measures fc and v respectively. Let T be a linear operation defined for all simple functions
f on R1. Suppose that T is simultaneously of type (1/a1, I/f1) and (1/as, 1/fl,), i.e. that

II Tf II Tf Uat, (1.12)

the points (a f1) and (a:, fs) belonging to the square

0<_ a_< 1, 0_<f<1.

Then T is also of the type (1/a,1/fl) for all

(0<t<1), (1.13)

and Ua (1.14)

In particular, if a> 0 the operation T can be uniquely extended to the whole space LUa.P,
preserving (1.14).

We fix tin (1.13), and so also the numbers a, f, and consider the functions

a(z)=(1-z)ai+zas, fi(z)=(1-z),8i+z,8s,
which for z = 0, z = 1, z = t reduce to a,,,61; a /ly; a,,8 respectively. We consider z in
the strip 0 < x < 1, which we call B. For any simple f,

II Tf 11 V., =sup
JA Tf.gdv I (gES, u 1). (1.15)

We may suppose that II f II V. =1. Fixing f and g, consider the integral

I=Tf.gdv.

We write f=Ifle", g=lgle`°,
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and introduce the functions
F,1 f IaaNaeru (1.16)

G: = 1 g Ia-fi(=»a1-p)eio (1,17)

where we temporarily suppose that a > 0 and ft < 1. The integral

(D(z)= TF,.G,dv (1.18)
J A

reduces to I for z = i.
If f=0, Fz is to be taken as 0 whatever the value of the exponent; similarly

for at. Thus, if c1, c2, ... are the distinct non-zero values of f, and X1, X21 ... the
characteristic functions of the sets where these values are taken, and if c, = I cf I e1 ;
we have

F,, = E et"i I C1 I aqua X,

A similar formula, with exponents (I -#(z)),'(1 -f), holds for G,. If we replace
Xi by TX, in the sum defining F we get TF,. Substituting this in (1.18), we see that
((z) is a finite linear combination, with constant coefficients, of exponentials as with
a > 0. In particular, 1(z) is bounded in the strip B.

Consider now any z whose real part is 0. The real part of a(z) is then al. Holder's
inequality applied to (1.18) gives

IID(z)I,IITI=Ilvv,IIG,II,Hi-fl,)<MiIIF.IIvv.,II0.11(1.19)
But it follows from (1.1 6) that

it F. 11 .,=III!I1'1111,va,=11fII i

the second equality being valid both for a1 > 0 and a1= 0. Similarly

11 0. 111(1-Q,) =11191(1-fl1(1-fl' 11,](1-v,) = 119 11(1,61 °-' (i-°' =1.

Hence I D(z)1 _< M1 for x = 0. Similarly I O(z) I _< Ms for x= 1. It follows from (1.3)
that

III = I ((t) I < MNMi

By (1.15), 11 Tf II,tf = sup I I I satisfies (1.14).
0

The two exceptional cases a = 0 and ,8 =1 cannot occur simultaneously. If 6 =1.
then also Y, =Y2 =1, and a > 0. We define F. as before and set G, = g; thus G, is in-
dependent of z. The rest of the proof is simplified, since in (1.19) we may replace

f and keepII G. by 11911 V(,-Q,)= 1. If a = 0, and so a,=a2=O, 8< 1, we set F= f
the old definition of G. (It may be also observed that if a1= a2, then (1.14) is a con-
sequence of Holder's inequality.)

The extensibility of T to the whole of L1Ia has already been discussed.
It is sometimes convenient to be able to take M1= M2 = 1. This we can always

do; if 61+,8, then we need only multiply T and dv by suitable constants, while if
a1$ a2 we may multiply f and du by constants.

It is natural to ask if we can have equality in (1.14) for some f * 0 in Via. It turns
out that if

II Tf lvs=MF'M" 11 f 11 va (1'20)
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and 8> 0, then f must satisfy a certain functional relation from which we can often
deduce characteristic properties off. We may suppose that 11f IIva=1. We write

Hence II
II

= 1 and9

g(
Il

I

T
f 1

l('-au,sign (Tf) (1.21)

va-o)
11 Tf I1v,= I Tf.gtip.

Supposing that a> 0, 8 < 1, we define F. and 0', by (1.16) and (1.17) and consider the
function

D(z) =
J

TF,. O,dv. (1.22)

This function is defined fdr each z in the strip B. For since F. is in LlI ), TF, is in
L'"f); and since G. is in L'x'- », the integral in (1.22) converges. Moreover (D(z) is
bounded in B, since

I (b(z) I II TF, Ilirpc II G. M;-=Ms 11 F. Il,raw 1

by-Theorem (1.11).
= Ml-=M9, (1.23)

We show that it is regular in the interior of B.
For each m =1, 2, ... we consider a simple function fm defined on R, and having

the following properties:

(i) fml'< lsl
(ii) I fm -f I< 1 /m whenever 1 f I< m,

(iii) f,,, = 0 whenever I f I > m.

Clearly fm --;-.f as m -* oo. Similarly, we define on R, simple functions g,, g ..., corre-
sponding tog. Denote by F.,,, G,,, ,, Gm(z) the functions F 0 O(z) formed with f,,, g,,.
Hbnoe p

'>,n(z) = J TF»,.,.C1m,,dv
n,

is an entire function. An argument similar to (1.23), coupled with (i) and its analogue
for g, shows that I 0m(z)1 _< Ml-ZMz, for 0 5 x _< 1; in particular, the 0,,, are uniformly
bounded in B. If we show that 0m(z) --> 1(z) for each z with 0 < x < 1, the regularity
of D in the interior of B will follow.

We fix z = x + iy, where 0 < x < 1; hence a(x) > 0, 1- f(x) > 0. It is enough to show
that each of the integrals

A,=J TF,.(Om,,-0,)dv

tends to 0 as m -). oo. Now

11 G,..

M11-z Ms 11 Fm,,-F.11,,.wIl 0.11i1-,w)=M;-=M, I Fm..-F.llu

Observing that F,,,,,+F, at each point of R,, and that, by (i), I Fm,, - F,11/1(2) is majorized
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by the integrable function 21/a(z) I f I1/a, we immediately see that II ' : - F, II vacx, ' 0
Hence A1-> 0. Similarly A. -> 0. It follows that 0 is regular in the interiort of B.

The function t(z)f M; -=MZ is regular in the interior of B and, by (1.23), is not greater
than I in absolute value there. If its modulus is 1 at some point interior to B, the
function is constant in B. In particular, if we have (1.20) for acme f with II f II V. = 1,
and if d > 0, then we have the relation

T(I fjet g)dv=Mi-'Mz, (0<x<1), (1.24)

where g is given by (1.21) and 8ati8fiea jig II uc1-a =1. This is the functional relation alluded
to above.

In the argument above we supposed that a > 0,,8< l! If a = 0 or,8=1, we have to
modify the F. and G, as we did in the proof of Theorem (1.11). These cases have no
interesting applications.

We pass to a generalization of (1.11). Denote by B the strip

B:0<x<1

in the plane of the complex variable z = x + iy. A function I(z), continuous in B and
regular in the interior of B, will be said to satisfy condition E if

logj(b(x+iy)j<_Aeaivi (0_<x51), (1.25)

where A and a are positive constants and

a<n.
We consider a whole family of linear operations T, depending on a complex para-

meter z = x + iy; for our purposes it is enough to suppose that z is confined to the strip
B. Keeping the previous notation, we call such a family {T,} analytic if, for any
simple f and g,

(z) =
I

Ts f .gdv (1.26)
R.

is continuous in B and regular in the interior of B. (The constants a, A in (1.25) may
then depend on f and g.) We say that {T,} 8ati8fie8 condition E, if each 0 in (1.26) does.

(1.27) LEMMA. Suppose that O(z) is any function continuous in B, regular in the
interior of B, Satisfying condition E; and that

I I (iy) 15 M1(y), I 1(l +iy) I c M5(y) (1.28)

where log M1(y) and log M,(y) are O(ea I V 1), a <>r. Then for each 0 < x < I we have

IO(x)I _< Ax=Ax(Mi,M,), (1.29)

where A. depends only on x, and the funetion8 M1, MME, and is bounded in 0 < x < 1 if M1

and M, are fixed.

t l f a(x) stays away from 0, and ,6(x) away from 1, for Ox 45 1, then the above argument easily shows
that OD_(z) tends uniformly to O(z) for z remaining within any fixed bounded subset of B. It followsthat
if neither of the numbers a,. as is 0, and neither of the numbers

Yp1,

6, is 1, then O(z) is continuous in
the closed strip B.
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This lemma is easily deducible by conformal mapping from results obtained in
Chapter VII, § 7. We recall these results.

Suppose that '() is regular in I C I < 1. Then if I I =p < R < 1, we have

log I'F(Pe0)I'<
if -, logIT(Re4)P(R,0-6) do. (1.30)

If log I 'F(R a'#) I is majorized (algebraically) by an integrable function of 0, independent
of R, and if the radial limits '1 (e'O)=lim'I'(Re'4) exist almost everywhere, we may
make R -> 1 in (1.30) and obtain

logI'V(pe'6)I (1'31)

In particular, (1.31) holds if W(C) is continuous in I C 15 I except for a finite number of
points Co on I I

1 in the neighbourhood of each of which

logl'F(C)I cO{IC-CoI-k} (k<I). (1.32)

Suppose now that O(z) satisfies the hypotheses of the lemma, and consider a con-
formal mapping z=h(C) of the circle

r: Is;i,l
onto the strip B. Considering first the mapping w = i(1 + C)l(1- C) of r onto the half-
plane fw 0, and then the mapping z = (nri)-1 log to of that half-plane onto B, we arrive
at the relations

ffs log (i
1

+ C) = h(C).z = -

e"t'-iC_e'(S+i'

(1.33)

(1.34)

In this mapping the points y = + oo and y = - oo correspond to C = - I and + I
respectively, and the segment 0 _< z < 1, y = 0 of B to the diameter (i, - i) of r.

Write
ID(z) = ID(h(C)) ='F(C)

The function 'Y(C) is regular in ICI < I and continuous in r, except possibly for the
points Co = ± 1; and we easily verify that (1.25) leads to (1.32) for Co = ± 1, with
k = a/n < 1. Hence F(C) satisfies (1.31). Going back to the variable z on the left-hand
side of (1.31), and observing that to the segment 0 < z < 1 corresponds the argument
0 = ± in in r, for which the right-hand side of (1.31) is bounded above in 0 _< p < 1,
we obtain (1.29).

Remark. It is not difficult to obtain a precise value of A. (though this is not important for us).
First, by (1.34), if z = z then

i _ coo Az

Suppose, say, that 0 4 x a& 1. Then

l+sinnz

coo nz (1.35)

and0=-jirin(1.31),sothat
+@innx

I _P2
P P0 (1' )(P.0+in)=11+ 0+P,(P'O- )=
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If - w < 0 < 0, then z is on the line z = 0, and from

e'd =

(am (1.34)) we deduce the two relations

sin _ -
cosh n ,

d¢
cosh w

dy. (1-37)
y y

These equations hold, without the minus signs, on the arc 0 < 0 <rr of = 1, corresponding
to the line x = 1 of B. Combining this with (1.35) and (1.36) we deduce from (1.31) that

r+m log l (iy) log 10(1+iy)logIm(z)einnr(j Wcosh ny-Coenxdy+f_,ocosh ny+cosvxdy
The same argument proves the formula for } x < 1. If we replace here I ((iy) and I 0(1 + iy)
by MI(y) and M,(y) respectivrely, we obtain (1.29) with

log A.=}sinrrxJ+W logMl(y) dy+f+°° logmt(y) dy` (1,38)
cosh wy-cosnx -, coshvey+cosnx r

(1.39) THEOREM. Let {T} be an analytic family of linear operators defined for all
simple functions on R1 and satisfying condition E. Let (a1,Y1) and (aa,fiy) be two points
of the square 0<a<1, 0<# <1,
and let (a,,8) be given by (1.13). Suppose, finally, that

11 Tvf I1 v,a,<M1(y)11f1Iva,' (1.40)

II (1.41)
for each simple f, where

logMk(y)<Aea1Y' (a<n; k= 1,2). (1.42)

Then IITf111i,6 <A,11f11 (1.43)
where A, is the same as in Lemma (1.27).

The proof is so like that of (1.11) that it is enough to indicate its main points. Let
f and g be any two simple functions on R1 and R, respectively, satisfying

1If11y.=HgII' -d>°1.
It is enough to show that

JT f.gdv <A,. (1.44)

Supposing first that a > 0, 8 < 1, take the functions Fs and G. defined by (1.16) and
(1.17), and consider the function

r
(D(z)=J T.F..O.dv

analogous to (1.18). Then using the analytic character of T. we easily verify that 1(z)
is continuous in B and regular in the interior of B, and satisfies condition E.
Moreover (see (1.19))

1((iy) I < II TivF,, v',, II Oil I1 1K1-a,) < Mi(y) II F1, II va, < HIM,

and similarly 100 + iy) I < M2(y).

Therefore, by Lemma (1.27), )(t) I < A, and (1.44) follows. The oases a = 0 and
,8= 1 are treated as in the proof of (1.11). Hence (1.39) is established. We easily see
that it reduces to (1.11) if T. is independent of z.
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2. The theorems of Hausdorff -Young and F. Riesz
In what follows we denote by p and q numbers satisfying the inequalities

1<p_<2, 2<q<co. (2.1)

Thus, with the standard notation r' = r/(r - 1), every p' is a q, and every q' is a p.
Letf(t) be a function defined in jarfixed interval (a, b). For every r> 0 we write

IlfIIr=tJIf(t) ire} =MrU).

Similarly, for any sequence c = {c} of complex numbers we write

For functions f defined in (0, 2n) we shall also use the notation

9r[]2nf If(t)Irdtl

It has been proved (see Chapter II, (1.12) and Chapter IV, § 1) that for every f with
Fourier coefficients cn we have

(2.2)

This formula contains two propositions. First, if f E L', then the series on the right
converges and its sum is equal to the integral on the left (Parseval). Secondly, if {c,a}
is any two-way infinite sequence such that Y, I c I' < oo, then there is an f E L' having
c for its Fourier coefficients and satisfying (2.2) (Rie8z-Fischer). It is natural to in-
quire if these results can be extended to exponents other than 2. It turns out that a
partial extension at least is possible.

(2.3) THEOREM OF HAIISDORFF-YOUNG. Let I <p _< 2. (i)Suppose that f (t) E LD(0, 2n)
and 1 2s

cn=2- o f(t)e-{'"dt (n=0, ± 1, ±2, ...). (2.4)

Then it c IND. S 2CDUl (2'5)
(ii) Given any two-way infinite sequence of complex numbers with. 11 c ID <oo,

there is an f E LD'(0, 2n) satisfying (2.4) and

II c IID (2.6)

Part (i) is an extension of Parseval'a theorem, with '=' replaced by ' S '. Part (ii)
extends the Riesz-Fischer theorem. In both (i) and (ii) the argument goes from p
to p', that is, from the smaller to the larger index. The results become false if we
replace p by q. For

(a) there is a continuous f (so that f E Lr for all r> 0) such that II c IUD =co for all
p < 2; the series cos nx±---

nt log' n

is, for a suitable choice of signs, a case in point (see Chapter V, (8.34); also Chapter V,
(4.11));



102 Interpolation of linear operations

(b) there is a series Ec" et"s which is not a Fourier series although V c 110 < oo for every
q > 2. As an example we may take the series

En-4 cos 2"x,

or the series E ± n-1 coo nx,

again with suitable signs (Chapter V, (8.4), (8.14)).
It is apparent that between the two parts of the Hausdorff-Young theorem there is

a certain dualism. Part (ii) is obtained from (i) if the function f depending on the
variable t is replaced by the function c depending on the variable n, integration is
replaced by summation and vice versa. This dualism can be detected in various
parts of the theory of Fourier series and is an important guide in the search for new
results.

Theorem (2.3) is a special case of the following result about any system of functions
0"(t), n=1, 2,..., orthonormal and uniformly bounded over an interval (a, b):

10"(t)1 <- M (2.7)
for t in (a, b) and all n.

(2.8) Tazonss of F. Rinsz. Let 1 < p < 2. (i) If f e LP(a, b), then the Fourier
coefflcienta

c III. < M(210)-1 U f up. (2-10)

(ii) Given any sequence c1, c ... with 11 c Np finite, there is an f 4E LP"(a, b) satisfying
(2.9) for all n and

V f up' < W21'" lI c p' (2.11)

(2.3) is clearly a corollary of (2.8). If (a, b) is finite, then f e L1' implies f e L, and this
together with (2.7) shows the existence of the integrals (2.9). The latter exist, however,
even if (a, b) is infinite. For

f.b

10. IP'dt <MP-2
bIdi=Mp.-=.

(2.12)
a

Hence 0" E I)" and f " is integrable.
We prove (2.10). Consider the numbers c" in (2.9). We have

TI c"I'<fb.

Ifj'(lt (2'13)

pIc"I <MfbI fI dt. (2.14)su
Ja

The first is Bessel's inequality, and the second follows from (2.7) and (2.9). Let /Z
denote the ordinary Lebeegue measure, and let v be the additive measure assigning
value 1 to the sets consisting of a single point x = n, n =1, 2, ..., and vanishing for Beta
not containing any such point. If c(x) =c" for x=n, n=1, 2, ..., and is arbitrary else-
where, (2.13) and (2.14) can be written

OI c h', 4

cum,,<Mu f 111,1. (2'16)
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Thus, using the terminology of § 1, the linear operation c(x) =Tf is simultaneously
of types (2,2) and (1, oo), with norms M1 1 and M1-< M respectively. It is defined for
functions which are not necessarily simple, but if we confine our attention to the
latter and use (1.11), we see that T is also of type (p, p'), where p =1 /a, p'- 1/(1- a)
and a -< 1. The norm corresponding to type (p, p') is, by (1.14), not greater than

-°Y(1-1) a-f)(1-i) 11-' M' -1 uD}-1,

Hence
U CUP.,, <MWP)_1 U f IP.f,

which is exactly (2.10).
Part (ii) can be established by a similar argument (which is left to the reader), but

it is simpler and more instructive to deduce it from part (i) by an argument which
shows the mutual relation of the parts.

Let c1, c1, ... be given, with !I c UP < oo, and let

fn=C101+c2q51+ ... +C.O.,

where n =1, 2, .... We know that f E LP', by (2.12). For any g e LP with Fourier
coefficients d1i d,, ... we have

i
= FiCkd,, (E!ck{P)uP(T, Idx!P)uP

a 1

<IICUDMCI/P)-lUQlIP

by (i) of (2.8). The upper bound of the left-hand side, for all g with II g UP = 1, is
11 f,. !I P = V A UP-' so that

!! f, UP <- Ma/P)-1 !! C NP (2-17)

Since U c Ii, < oo implies Ii c II1 < oo, the series c1 ¢1 is the Fourier series of
an f such that Of. -fl, --j- 0 (Chapter IV, (1.1)). Hence f* --j -f almost everywhere, if n
tends to +oo through a sequence of values (Chapter I, (11.6)). Applying Fatou's
lemma to (2.17) we obtain (211).

The function f of (2.8) (ii) is the function of the Riesz-Fischer theorem. The preceding
argument shows that it is not only in L1 but also in LP'. If m < n, (2-17) gives

nn

w

Of. -fn11 H(1/P1-1 ! c'. I- )
1!P

-* 0
w+1

as m, n- oo. Hence, if UcH, < co, f, tends to f in LP
In a similar way we could deduce (i) from (ii), so that both parts of (2-8) are, in a

way, equivalent.
In the foregoing proof of (i) we could avoid the use of the Lebesgue-Stieltjes

integral. For if we set c(x) = c, for n -1 4 x < n the inequalities (2.13) and (2-14)
can be written

<ab

supIc(x)I-<MJaIfIdx,
f0 Ic(x)I1dx- f

and we apply (1.11) in the case when # and v are ordinary Lebeegue measures.

We now investigate the oonditiona under which we have equality in (2-10) or (2.11). For the sake
of simplicity we assume that (q,) is complete. Sine we always have equality if p = 2, we may
suppose that 1 4p<2 .
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(2'18) Txaoxxu. (i) A necessary condition for equality in (2.10) is that the Fourier eeries off
be finite: N

(nl<nr<...<nN).

For such functions we have equality in (2.10) if and only if
(a) lew,l=lc-,1=...=1c+w1;
(b) I f (t)1 is constant in a set E of measure 1 /NM=, and f = 0 outside E.
(ii) A necessary condition for equality in (2.11) is that only afinite number of the c's, say cw ,

c+s, are distinct from 0 and that they satisfy (a). The function f is then of the form (2.19), and a necessary
and sufficient condition for equality in (2.11) is that f satisfy (b).

(i) The proof is based on the formula (1.24). We may suppose that f $ 0, for otherwise the result
is obvious. Consider the transformation c(x) = Tf, and the measures µ and v appearing in (2.15)
and (2.16); and suppose that for an f with I f 11,= 1 we have U c 11,.= M(21)-1. If

(avfil)=(}, 1, (as,fi,)=(1,0), (a,fi)=(1/p,l/p'),
then a(z) = 1- fi(z) = }(1 +z). In our case M1=1, Mr _< M. Since the mass v is concentrated at the
points n = 1, 2, ... , integration in (1.24) is actually summation, and the relation may be written

l 1 dw Itva+,)signdw J I f(t) 11+11+,>(s;gn f) wdt=M', (2.20)
n-1 a

r ew l,'..1
sign cw.where, by (1-21), dw= li 11.c

Write If I'=F, Idw1'=D,,, signf(t)=+1(t), eigndw=e+.

b

Hence F>O, D+30, f Fdt=1, ED.=1,
a

and (2'21)

The left-hand side here is a regular function of z for 0 < x < 1. It is also continuous for 0 6 x'c 1,
since

(A) each term of the series is a continuous function of z in 0 >fi x 61, the integrand being rnajorized
by the integrable function MF wherever F 3 1, and by the integrable function Ft I S6w I elsewhere;

(B) each integral is numerically bounded by a constant independent ofz and n, in consequence
of the estimates above;

(C) the series (2.21) converges absolutely and uniformly in the strip O'&z6I (apply
Holder's first inequality with exponents 2/(1 +x) and 2/(1-x) to the series, and then (2.8) (i)).

Hence (2.21) holds for z = 1: b

EDwewf
a

This and the relations II

EP
EDw=I,

1J
Fdt=M

II a

imply that for each n with D. $ 0 we have
b

C =M,
a

rb
or I (2.22)

By the Riemann-Lebeegue theorem (Chapter II, (4.4)) for (5+), the integral here tends to 0.
Hence there are at most a finite number of D. distinct from 0, and so only a finite number of c
distinct from 0. The system {qw) being complete, we have (2.19).

The equation (2.22) igvalid for n = n1, n ... , nN. Hence the set E where F (or f) is distinct from
0 has the following properties:

8ignf=sign (ew ,/
Y'w)r towl=M,

for n = nl, ..., nN and almost all points of E. Together with (2.19) this gives

I P') I = ME I e+, I. (2.23)
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Thus I f I is constant almost everywhere in E (see (b)).
The equation (2.22) leads to

f If
I f I is given by (2.23) on E and is 0 elsewhere in (a, b) we have

iIf fo.'* f Efo.deI=M'-'(EI c,,
a J

for n = n1, ... , n v. This proves the necessity of condition (a).
It remains to find I E I. From (2.23) and Parseval's formula we have

F. If =J If I'dt=M'(EIc,*I)'IBI =M'N'IC+.I'IEI,
e

f If I' dt= E I c., I'= N I c., I'.
so that I E I = 1 /NM'.

This proves the necessity of the conditions. To prove the sufficiency, suppose that f is of the
form (2.19) and satisfies (a) and (b). If c' is the common value of the I c., 1, and f * the value of
I f I in E, (2.10) can be written MNc*-<f*. Since the opposite inequality is an immediate con-
sequence of (2.19) we have MNc* =f *, the sign of equality in (2.10), and part (i) of (2.18) is
established.

Passing to part (ii), suppose that we have equality in (2-11), and that II a q, * 0 (otherwise the
result is obvious). Since II f g. t oo, there is a g with II g II, =1, and with Fourier coefficients d.,

such that IIf II =ffg& Al. IIf-f..IIv.-'O, wheref,=cz0,+...+c.,10., (p. 103). Hence
a

Il f n..=f 1 Ete"d
a a 1

c!)cH.HdI.,SM<vM-r11 c4. (2.24)

The extreme terms here are equal. Hence II d J,. = It follows from (i) that

g=d,.,O,.,+...+d.sO"', where Id.,i=...=Id.,1,
and that I g I is constant in a set E of measure 1 /NM', and is 0 outside E. Moreover, Holder's
inequality in (2-24) degenerates into equality, which is only possible if the I c It and I d. I / are
proportional. Thus I c., I =... = I c are 0. The first equation in (2-24)
shows that I f I r and I g I are proportional. Hence I f I is constant in E, and is 0 elsewhere. This
proves the necessity of the conditions in (ii), and the sufficiency is easily verified.

(2.26) Tsnoana. (i) The sign of equality occurs in (2-5) if and only if f (t) =A al", where A is a
constant and k an integer.

(ii) The sign of equality occurb in (2.8) if and only if all the c,,, except possibly one, are equal to 0.
(i) It is enough to apply (2-18) (i) to the system ((2,r)-1 orthonormal on (0, 2n). If we have

equality in (2.5) for an f s 0, then f = Ec, e'"' is a polynomial of, say, N terms, equal to 0 outside
a set E c (0, 2n) of measure 2rr/N. It follows that N = 1, since otherwise we would have f = 0
(Chapter X, (1.7)). This proves (i), and (ii) is proved similarly.

3. Interpolation of operations in the classes Hr
The inequalities (2.13) and (2.14) from which we deduced Theorem (2.8) are valid

for general functions f. There are, however, inequalities which are only satisfied by
functions of special types. For example, the inequality

(3.1)I Ifld<'_o v+ 1 fo
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is valid for functions of the class H (see Chapter VII, § 8) but not necessarily for genera]
integrable functions. Thus if we wanted to interpolate between (3.1) and

I C, 12 If
2n o

we could not apply Theorem (1.11). This brings us to the problem of interpolation of
operations in the classes H'.

We begin by proving an auxiliary result about the interpolation of multhtinear
operations, that is, of operations

h=TU1,f3, ...,f,.)
linear in each f!.

(3.3) THEORzm. Let E and El, Es, ... , En be measure spaces With measures v and
µt, µs, ..., pn respectively. Let h = T[ft, f ..., fn) be a multilinear operation defined for
Simple functions f, on Et, j = 1, ..., n, where the function his defined on E. Suppose
that T i8 simultaneously of types 1/a,), 1/ ) and (1/a?), ..., 1/ar, 1/pm),
that is,

IIT[fi,f1,...,fn)Ilvpu,4Mk IIfiII v ...lIfniv4Zs (k=1,2), (3'4)

where 0 151, 04-x l (k=1,2;j=1,2,...,n).

Then T is also of the type (1/at, ..., 1/a*, 1/fl) for

(j= 1, 2, ..., n; 0<t< 1), (3.5)
fl= (l

and the inequality
11 TUt,f., ...,fn]II t,, Mi-4M'1IlflII tig,... II fnllv.. (3.6)

holds.
Moreover, if all the a, are positive, T can be extended by continuity to

Lt/as-P, x ... x Lt/a- A,.,

preserving (3.6).

The proof is similar to that of Theorem (1.11). We first suppose that a, as, ..., a
are positive and that fl < 1. Fix simple functions ft, fy ..., f, with

11 /11,!., =1 (j =1, 2, ..., n),

and a simple function g with p g It,,u_ft) = 1. We fix tin (3.5) and consider the functions

A(z)=fl(1-z)+fz,
a,(z)=x;1(1

reducing to 8, as for z = t. Writing

f,=lf,lg=IgIe{
we consider the integral

4(z)=fir T[I ftI°,cruwt ,, .... If.jz-O1 ON-] /le"dy
r

which for z = t reduces to '1-f T[ ft, ... , f,J gdv.

(3'7)
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Since-g and the fj are simple, 1(z) is a linear combination of exponentials At, A> 0.
For z=0, Holder's inequality gives (as in (1.19))

O(x) I 111 g 111111-6 Il T(... , I fi la 'gal

1. M1 II I i f1 Il 11.,- = Mi.

Similarly I (D(z) I M, for x=1. Hence

I=I(by)Mi-Ma
Since 11 T [ fi, ..., 11 ,1,6 is the upper bound of I I I for all simple g's with 11 g IIvci-a, = 1,
(3.6) follows when all the norms on the right are 1, and so also in the general case.

The exceptional case 8---l is treated (as in the proof of (1.11)) by replacing
g I et9 in (3.7) by g. Similarly, if some of the a, are zero, we replace the corre-

sponding I f, lay')IaJe'"' in (3.7) byf5.
It remains to show that if all the a, are positive and if (3.6) is valid for simple

then T can be extended by continuity to L1",11 x ... x This follows from the
inequality

11 T [f °>, ... , f;,'>] - T [f,"', .. , fn')] 11

Mi-'M,(E11f1l)-f))Ilua,)(s p11 ft)Ilva,).-'

which, in turn, is a consequence of the inequality

I TUiI), fal), ... , f l)] - T U (a), Al), ... , AS)) ll vp

11 T[f'), fan, .. , fn'>]-T[fi'), fl), fs), , A.91l

+ II TU'), f8>, .. , Jyri>]-

i>v

T[fl'>, f7), .. , f( .1)]11 Ve

+ 11 T [.fi", fa'), ..., fl) ,, fnl)] - T[fI('), fs'), ... , fr')] 11 u,

Thus Theorem (3.3) is established.
We now fix r > 0 and consider the class H' of all functions

P(z) E C' e,
0

regular for I z I < 1, such that the expression

1 s. u,
%,(P, I'') _ {nf0 I F(pe'g) I' dO}

is bounded as p--* 1 (Chapter VII, § 7). We define the norm 11 F 11, by the formula

IIFIIr=l m91r(P)=i2fi f oIF(e'8) I'd}zh'

where F(eO) = lim F(p ei0)
p-+l

We know that H' is a metric space if the distance between two points F and 0 is defined
as 11 F - (III, for r > 1, and as 11 F - G Il: for 0 < r < 1. We also know that H' is a complete
and separable space (Chapter VII, p. 284).
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We shall consider a linear operation
h=TF,

defined for all F in Hr, yielding h ED in some measure space E and satisfying an
inequality

IIhIIa_< MIIFII,

with M independent of F. If T is initially defined on a linear subset of functions F
dense in H and satisfies the last inequality, we can, by continuity, extend T to the
whole of H' preserving the constant M. The polynomials

P(z) =co+clz+...
are an example of a linear subset dense in every H.

(3.9) THEOREM. Let (a1,f1) and be two points of the strip

0<a<+00, 0<_f'<1. (3.10)

Let T be a linear operation defined for all polynomials P(z), and let TP be defined on some
measure space E. Suppose that

II TP ii v,8, S M, II P II va,, II TP II I/'*. S M2 P II,/a, (3.11)

Then for every point (a, /i) of the segment

a=al(1 -t)+a2t, f =f,(1 -t)+f=t (0<t< 1),
we have the inequality II TP Ii,, S KM'-4M', II P IIva, (3.12)

K denoting a constant depending on a, a$ only.
In particular, T can be extended to the whole of H'la preserving (3.12).
Proof. (i) The inequalities (3.11) show that we can extend T in both HI/a, and Hua,,

while preserving MI and ME. The extension TF is the same both in HI/a- and HI/a'. For
suppose that a15a2.

Then HII"= c HI/a'. If Fe HI/a, and II P. - F 11 11a, - 0, then also II P - F h va, -+ 0. The
inequalities (3.11) extended to HI/Ii and HI/a' show that TP tends to limits both in
L''fl1 and VA. These limits must be the same since they are, almost everywhere,
ordinary limits of a suitable subsequence of (TP,J.

(ii) Suppose again that a,,< a.. Let n > 0 be an integer such that az < n. Hence
also a, < n. For any system of n complex-valued simple functions gl, g2, ..., g defined
on (0, 2n) we define an operation T* by the formula

T*[g1, gs, ... , gn] =T[F,FE ... F,], (3.13)
1 "e" +- zwhere FJ(z)=2n

a e°zg1(t)dt (j =1, 2, ..., n). (3.14)

We know (Chapter VII, (7.2), and the inequality following it) that

fiFtIL_< A,IIg1II, (1<r<oo). (3.15)

Hence F1 a H^l°,. By Hiilder's inequality, Fl Ft ... F,, e HI/ai, and so the left-hand side
of (3.13) is defined. It is additive in each g5. By (3.11), extended to the whole of HI/a+,

'I T*[g1, ..., gn] Il v.8k _< M,, 11 F, ... F. 11 1/ar 4 Mx 11 F, II n/at ... 11 F. II n/ar.



X11] Interpolation of operations in the classes H' 109

Hence, using (3.15),

II T*[g1, ... , gn] Iivfk, NkAn/ak N gl It n/ak ... II g+. 11.,.k (3.16)

for k = 1, 2. It follows that T* is a multilinear operation defined for all simple functions
91, 92, , 9n. By (3.3),

II T*[91, gs, .. , 9n] it ua (Ana;A;la,)"M[ 'M II it 9111n/a (3.17)

(iii) The formula (3.13) defines T* when g, ..., g" are simple. The formula (3.16)
shows that T* can be extended to L* % x L'Nas x ... x L"/a=, preserving (3.17). But if g1
is in Ln/a., then F, in (3.14) belongs to H"l"., and so F1 ... Fn is in Thus the right-
hand side of (3.13) is defined. We shall show that the equation (3.13)still holds in this case.

If the g1 belong to H"/a and if the g} are simple and satisfy 11 gj- - gt 1J./., -, 0 as
m oo, then

IIT*[9i,...,9n]-T*[91,...,9"]1lva, >0, (3.1$)

by an argument similar to (3.8). On the other hand, if F,'' is derived from g1 by means
of (3.14) we have

11 F; -F1IIn/a,-s0' 11 IIn/a,=0(I),

so that, by an argument similar to (3.8) but using (3.15), we have

11 T[Fi' ... F?]-T[FI... Fn1 111Ia,-'0.

This and (3.18) give (3.13) in the case considered.
It follows that (3.17) holds if all the g1 belong to L"/a. For then g1 is in Ln/a., since

at <_ a _< a,2.

(iv) Given any polynomial P, we write

P(z) = B(z) G(z),

where B(z) is the Blaschke product of P, and G(z) (also a polynomial) has no zeros for
zI<1. Hence

P=F1F2 ...F,,, where F1=B01/n, Ft= ...=Fn=C J1/".

Multiplying P by a number of absolute value 1, we may suppose that P(0) is real.
Since p(0) > 0 (Chapter VII, p. 275), B(0) is real. Taking the main branch of Ol/n,
we see that F,(0) is real for all j. This and the boundedness of F1 in I z I < I imply that F1
is of the form (3.14), with g1 E L"/a and real-valued. Hence (3.13) holds and, by (3- 3),

TPIIgo =11T[F1...F"]IIva=IIT*[gl, ...,gn]1lvf

.<(Anla'Anla,)" 'Ms n 11 g1 Nn/a
1

The last product does not exceed
(fl, I

F1(e')
In/a a)a1n =

n f0' I O(eu)
I1/a

a)
- (27r)a II P II I/a,

1

which gives (3.12) with K = (21r)a max (A%,, An,a,}.

(3.19) THEOREM OF HARDY AND Lrrr1.EWOOD. (i) Suppose that

f(x) - E C. e1nz
-00



110 Interpolation of linear operations

is in LP, 1<p-_ 2. Then

rr (3.20)

(ii) Let ... c_.1, co, c1, ... be complex numbers such that E 1ck IQ (I k I + 1)0-9 is finite,
q _> 2. Then the ck are the Fourier coefficients of an f in Lo, and

1 f:w
If I Qdt)

AQ{E
I ck IQ (I k I+ 1)a-Y}ua, (3.21)

We first prove the following theorem which is partly more and partly less general
than (i), and from which (i) follows without difficulty:

(3.22) Tasoxam. If F is in LP, I < p (2, and S[F] is of power series type, F - E ck eik:,
0

then 1/P 1 f Yw 1/P

(3.23)o IckIV(k+1)z'-'} <A{ln,l0
I

FIPdx

J

where A is an absolute constant.

For any polynomial P(z) = E ckzk we have
0

1 Yw

E I ck I' = 2n o P(ew) Is dx

lCkI
(3.24)

IP(e*t)Idx.k+1_< }f:*

these being Parseval's formula and the inequality (3.1) respectively. We define an
operation h = TP by setting h equal to ck(k + 1) at the points k = 0, 1, 2, ..., with h
arbitrary elsewhere. If i/r is the additive measure assigning the value (k + 1)-* to the
set consisting of the single point k and the value 0 to the sets not containing any of the
points k, (3.24) can be written

MATTE*=IIPIl,. IIh111,*<nIIPIl1-

An application of Theorem (3.9) then gives II h 11,,0 _< A I] P ii,, that is,

E I ck IV (k + 1)P-2 <_ 2n fo I P(ez) I- dx (3'25)

where A is an absolute constant. J
If F(R, x) = F.ckRk a is the Poisson integral of the F in Theorem (3.22), we apply

(3.25) to the nth partial sum of F(R, x). Making first n tend to +oo and then R tend
to 1, we obtain (3.23).

Return to (3.19). In the proof of (i) we may suppose that f is real-valued. Let F(z)
be the analytic function whose real part is the Poisson integral of f, and whose
imaginary part vanishes at z = 0. Since c_k =ek, the left-hand side of (3.20) does not
exceed 1/P

1/P
l

1

12EICkIP(k+1)P-Y
1

1\21/PAIIF(e`x)IIP<_
0 0

by (3.23) and Chapter VII, (2-4). This proves (i).
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Part (ii) of (3.19) is dual to part (i), and can be obtained from it by an argument
similar to that used in the proof of (2.8) (ii). We shall do this in a more general case
in§5.

The constant AD in (3.20) tends to + oo as p --> 1; for otherwise, making p -* 1
through a sequence of p's for which AP is bounded, we would deduce (3.20) for p = 1,
which is not true. Similarly the constant A. in (3.21) tends to + oo as q -> co (even if
c_1= c_a = ... = 0). For then the left-hand side tends to the essential upper bound of
I f I and (E I ek I a (I k I + 1)5 2)l/e tends to the upper bound of the numbers I ck I (I k I + 1).
If A. remained bounded for some sequence of values of q tending to eo, a function with
coefficients 0(1/n) would necessarily be bounded, which of course is not true.

4. Marcinkiewicz's theorem on the interpolation of operations
An operation h = Tf will be called quasi-linear if T (f1 + fs) is uniquely defined

whenever Tf1 and Tfs are defined, and if

I T (fi +f2)1 < K(I Tf, I + I Tfs 1), (4.1)

where K is a constant independent of f1 and fa. If K = 1, we call T 8uUinear.
We fix two measure spaces R, and R8, with measures p and v respectively, and

consider a quasi-linear operation h = Tf, where f is defined over R, and h over Rs.
Suppose that

I _<r _<o0, 1 _< 8 _< oc. (4.2)

As in the linear case (§ 1), T is said to be of type (r,a), if Tf is defined in and if

IIAII, _< MI1fIll"., (4'3)

with M independent off; the least admissible value of M is the (r, 8) norm of T.
Denote by E5[h] the set of points of R$ where

If 8 <oo, (4-3) implies that

hI>y>0.

v(E1[A]) (M II f 11)'. (4.4)

A quasi-linear operation T which satisfies (4.4), with an M independent of f and y, will
be said to be of weak type (r, 8); the least value of M in (4-4) may be called the weak (r, a)
norm of T. For the make of emphasis, operations of type (r, 8) will be occasionally called
of strong type (r, a).

There exist operations which are of weak type (r, s) without being of strong type
(r, s). By Theorem (3.16) of Chapter IV, the operation Tf =., the conjugate function off,
is of weak type (1, 1), though it is not of type (1, 1). Another example is the operation
Tf=61i(x) defined in Chapter I, § 13. It is sublinear and is of weak, but not of strong,
type (1, 1). Other examples will be found in § 5 below.

We have defined weak type (r, 8) for 8 < oo. We define weak type (r, oo) as identical
with strong type (r, co). Hence T is of (weak, strong) type (r, co) if

msssupIhI_<MIIfII. (1<_rSoo). (4.5)
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(4.6) Ta oass[ or Msncmxmwloz. Let (a f,) and be any two points
of the triangle

e:

such that f, * ft,. Suppose that a quasi-linear operation lE = Tf is simultaneously of weak
types (1 /a 1 /fl,) and (1 /a,,1 /fl,), with norms Ml and M, respectively. Then for any point
(a,,6) With a=(1-t)a,+ta ft=(1-t)fI+tf, (0<t<1)

the operation T is of strong type (1 /a, 1/fl), and we have

IhIva<KMIIMI, lifIV (4'7)
where K = K,.s.,,

A,. QS R1 is independent off, and is bounded if a .81, %,,6, are fixed
and t stays away from 0 and 1.

We postpone comments on Theorem (4.6), and in particular a comparison with the
Riesz-Thorin theorem (1.11), until after the proof.

We begin with the following general remark. Consider any non-negative and
u-measurable function f defined over Rl. Then for any p ;;t 1 we have

f x,f9d,u -fo ys dm(y) =pf ' yv-zm(y) dy, (4'8)

where m(y) is the distribution function off, that is, the p-measure of the set of points
where f > y.

The first equation (4-8) follows immediately from the definition of the Lebeegue-
Stieltjes integral. (Compare a similar argument in Chapter I, § 13, for p =1.) The

fade issecond integral is meant as lim and the equation is valid whethefB.
wmC-O s

finite or not. The equality of the second and third integrals may be seen by observing
that if either of them is finite then yvm(y) -+ 0 as y tends to 0 or co, and that an integra-
tion by parts transforms one integral into the other. If both integrals are infinite
there is nothing to prove. Thus (4.8) is established.

In what follows we systematically write 1 /a = a, 1 /Q = b, 1 /a, = a ... .
Return to (4.6). We may suppose that

a, 'a,.

Let f e V=. Write f =fl +f ", where f'-f whenever if 4 1, and f' = 0 otherwise ; thus
I f' > 1 or else f'= 0. The condition f e Luz implies that f' e Lam, f' a Hence
Tf' and Tf' exist, by hypothesis, and so also does Tf=T(f'+f').

We have to show that h=Tf satisfies (4.7). We first consider the case when both
,8, and ft, are different from 0. This implies that a, 4. 0, a, * 0.

Denote by m(y) and n(y) the distribution functions of f I and I h 1. Then

h 11e = bJ
o

yl-'n(y) dy = (2x)" bf
o

yD-ln(2Ky) 4, (4'9)

K being the same as in (4.1). For a fixed z > 0 we consider the decomposition

f =fl +.f,, (4-10)
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in which f 1 =f when I f I < z and f, = e' * f z elsewhere. It follows that

Ifll=mi.n(If (,z), if I=Jf11+If11 (4'11)

Set h1= T fl, h,= = T f, The inequality (4.1) indicates that I h ! > 2Ky at those points,
at most, at which either hl I > y or I ht I > y. Denote by m1(y), m1(y), nl(y), na(y) the
distribution functions of f1 1, 1 f1 I, 1 h1 1, h1 I respectively. Then

n(2Ky) <n1(i)+2(y)

<M11-Y-6. 11 fi lla + Mi'y"' fl f1 IJ: (4.12)

by an application of (4.4) to f1 and f1. The right-hand side here depends on z, and the
main idea of the proof consists in defining z as a suitable monotone function of y,
z = z(y), to be determined later.

By (4-11), m1(y)=m(y) for 0<y-<z,

m1(y) = 0 for y > z,

m1(y)=m(y+z) for y>0;

and an application of (4.12) shows that the last integral in (4.9) does not exceed

M1' f
o

tJb-b' 1 { f "lf 101 d}"dy
+ o

yb--b.-1 (f. j f1 j°'
d,.}°dw

dy

Mt, a1, fb Y11--b,-1 ro tg-Lin(t) &} dy

r (r
+ Mzt ay+ { '0yb_6+-1 '0 (t - z)°.-1 m(t) dt dy, (4.13)

JJJ a 111 d ,

where k1 = b1/a1, k1= b,la,

are not less than 1, by hypothesis.
Initially, instead of a1 < a$ we make the stronger assumption a1 < a: (that is, as < a1)

and consider separately the two casespp
qq qq

(1)
gq

F'1 <Y1, (ii) Y1 <Y1

Case (i). We have b1 < b < bl, and we set

z = (y1 A )E,

where A and g are positive numbers to be determined later.
Denote by P and Q the two integrals on the right-hand side of (4.13). Then t

P11k,-sxpJ
o

?_a1-1{f otai-lm(t)d }X(y)dy for f:y1_1(v)dy < 1;

o ? -1{f, (t-z)',-1m(t)dt}v.(y)dy for
o

(4.14)

I The computation which follows is designed to lead to the estimate (4.17) below. In the case (im
portent in applications) a, = f a1= fis, when k, =,Es =1, the oomputation simplifies, and instead of
using (4.14) and the degenerate form of H81der's inequality it is enough to interchange the order of
integration in (4.13).
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The integral under the first `sup' is

fo
tai-IM(t) Li

Ac rt
Y6-b,-1X(y) dy) dt

111

f
m a 1/k, a, 1lki

ityb-e,-1Xk'(y)dy) dt
0 AtvF At

A(b-b,)1k,(bi-b)-lrk, ta,-1+(b-b,uk,(m(t)dt, (4.15)

by Holder's inequality and the condition for x, remembering that b1 > b. Similarly,
substituting ta'-1 for (t - z)a'-' and using Holder's inequality and the condition for w,
we find that the integral under the second 1`sup' in (4.14) does not exceed

f
m

ta,-Lm(t) { f
Atve

yb-e'-'w(y) dy} dt
0 0 )))

_<fo
ta' lin(t)\f

orreye b,-1dy)uk, fo

',eyb--b'-i(,k(y)dy}uk,dt

5 A(b-beyk,(b - b9)-1/k1f o, dt.
0

Collecting results we find that

1 b
b

b(f0

ja,l+<b-b,Nk,(m(t)dttk`1b

(4.16)

+MQ'aZ'b b 6'(f
ta,-1+(b-b,Hk2(m(t)dtl

1. (4.17)

We now select g so that the exponent oft in both integrals is a - 1. This is possible,
and we find

Nextt we set A = MgMy II f Ii op

and select p, a, r so that both terms on the right of (4.17) contain the same powers
of M1, M. and II f IIa A simple computation shows that

A = Mb1/(b,-b,)M=,/(b,-b,) II f II a(k'-k')Xb'-b,),

II f IIa)° thus we obtain (4 7) withand that both terms in (4.17) contain (M',-4M.

Kb = (2K)b b (ai/a)k'+(a:la)k' (4.18)
( b1-b b-b$ 1'

Case (ii). We now have b1 < b < b8. We set, as before, z = (y/A )t, where A is positive
and is negative. In the inner integrals in (4.15) and (4.16) the intervals of integration
(Atu(, oo) and (0, Atut) are then interchanged, but otherwise the proof remains the same,
and we again arrive at (4.7) with Kb given by (4-18), but with b - b1 and bs - b for
b1- b and b - b$ respectively in the denominators.

t Since fl, *,8, we can make M, = M, =1 by multiplying T and dv by suitable constants (cf. p. 96).
If also T is positive homogeneous-that is, if I T(kf) I = I k I I Tf I for all constants k-then we can
choose IIf(I.=1, A=1. and the proof in case (i) is already complete. The same remark applies to the
remaining came.
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We now consider the case a1= a=. (This has no interesting applications, nor does the
case f1= f, not covered by the theorem.) Suppose that al = a = at, and that, for ex-
ample, 8Y1 <f</f2. By hypothesis,

n(y) < (Miy-1 II f IIa)°', n(y) < (M2g-1 II f IIa)", (4.19)

where n(y) = We split the first integral (4.9) into two, extended over (0, A)
and (A, oo), where 0 < A < oo. If we apply to these two integrals the two inequalities
(4.19) respectively, and observe that b, < b < b,, we see that II h II$ is finite. Setting
A = MgM; II f 11 a7 and selecting p, v, r so that the exponents of Mi, M1, II f IIa in both
integrals are the same, we arrive at (4.7).

It remains to consider the case when one of the numbers Nl, 8, is 0. Suppose that
= 0. The proof of the theorem requires that after the decomposition (4.10) we

estimate nl(y) in terms of 11 A, Ila,=esssup I h1 I. In general this cannot be done unless
we know that I h1 I < y, in which case n1(y) = 0. Thus we must choose z so that I h1 I < y.

To be more specific, let us confine our attention to the case 0 < a, < as (ft2 > fit = 0),
and consider separately the two subcases (a) a1= 0, (b) a, > 0.

(a) Return to (4.10), (4.11) and (4.12), and take z=y/M1. Then

ess sup I h1 I < M, ess sup I ff I < M1(y/M,) = y.

It follows that n1(y)=0 in (4.12), and an of the two terms in (4.17) only the second
remains. Setting there A =M1, we arrive at (4.7), where again K is given by (4.18)
but with the first term in curly brackets omitted.

We can easily verify that the choice of z and A here conforms to the same pattern
as in the general argument above.

(b) We again select z so that n1(y) = 0, after which the proof proceeds as before.

Suppose that IIfIIaz=(y/A)E, where g=a,/(al-a), A=AM1 ra'

and A is a numerical factor to be determined presently. Except for the presence of this
factor, z, 6 and A are given by the formulae above simplified by the hypothesis that
N1 = 0. It is therefore enough to show that for a suitable A we have ess sup I h1 I < y.

By hypothesis,
(

r. lIra,
esssupIhll<M,IFf FF ,=Mi{alrota'-1m(t)dty .

1111

It follows that we certainly have ess sup I hl y if

Map a, ftai-Lm(t) di < (Az"rt)a, = Aa'za,--a,

and a fortiori (since a, > a) if

Mi'a1za, a tom(t) dt<,1a,M; IIf IIaZa,-a,

0

Since the integral on the left is a-' II f IIa, the inequality is satisfied if ha' ? a,/a. This
completes the proof in the subcase (b). The value of K is easily found.

Theorem (4.6) is therefore established.
Remarrk8. (a) The constant K in (4.7) tends, in general, to co as t tends to 0 (or 1),

for otherwise the operation would be of strong type (1/a1, 1/,8,), which need not be the
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case. The drawback of the proof given above is that, even if T is linear and of strong
types (]/&,, ljf 1) and (1/a,, 1/,8,), we cannot show that K is bounded as t tends to 0
or 1. (There is one exception : if/i1= 0, the first term in curly brackets in (4.18) is absent,
and K remains bounded as Hence Theorem (4.6) is not a complete substitute
for the Riesz-Thorin theorem. In compensation, (4.6) applies to a number of cases
when (1.11) does not; and then additional devices (if a direct appeal to (i 11) fails)
may show that K is bounded.

We illustrate this by the example Tf -f. By Theorem (3.16) of Chapter IV, T is of
weak type (1, 1). T is also of strong type (2, 2). Hence, by (4.6), T is of strong type
(po'po) for each 1 <po<2. By the very elementary Theorem (2.21) of Chapter VII,
T is also of type (po,po) and so, again by (4.6), of type (p, p), ifpo <p <po. The norm
Ay in the inequality

IIf11DsA,1)f1), (4.20)

is bounded in every interval po + e _< p < pa - e (c > 0), and so also in every interval
1 + e _< p _< 1 /e. The inequality (4.20) which was proved in Chapter VII, § 2, by complex
methods can therefore be obtained by means of real variable ones.

(b) From (4.18) we see that in any case

K°=O(tl , K°=0(11 t), (421)
/

fort tending to 0 and 1 respectively.

(c) In a number of problems we are led to consider integrals of the type f c(I f I) du,

where 0 is not necessarily a power. Theorem (4.6) makes it possible to 'interpolate'
the function ¢. Without striving for too much generality we may consider here some
special cases which are both illustrative and useful.

(4.22) THEOREM. Suppose that µ(R1) <oo, v(R2) <co, and that a quasi-linear opera-
tion h = T f is of weak types (a, a) and (b, b), where 1 _< a < b < oo. Suppose also that
¢(u), u _> 0, is a continuous increasing function satisfying the conditions 0(0) = 0 and

0(2u)=O{¢(u)}, (4.23)

(424)

J u t(+idt=O u")1
(4-25)

for u -> oo. Then h = Tf is defined for every f with 0(1 f 1) integrable, and

JR,0(Ih1)dv<K fRj0(If1)dµ+K, (4.26)

where K is independent off.
The function 0(u) = U00, u), (4.27)

where a < c <b and u/r(u) is a slowly varying function (Chapter V, § 2), gives an example
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satisfying the above conditions. The validity of (4-23) is obvious. To prove (4.24),
take 0 < al < b - c ; then, for u large enough,

f 15(1) z f a k(t) dt (u) f °° dt
y tb+1 µ tt F---,+]L u1 tb-e-7+1

MU)
0[ 0

The inequality (4.25) is proved similarly.
Return to (4.22). The proof that Tf exists is the same as in Theorem (4.6), and we

only have to establish (4.26). The proof is similar to that of (4.7), but is in some respects
simpler, since we are dealing with points of the hypotenuse of the triangle A. However,
to avoid having to justify inverting the order of repeated Stieltjes integrals, we confine
ourselves to sums rather than integrals.

Let n(y) be the distribution function of I h I. We have

f o(Ihi)dv--f o
0(y)dn(y)= fo n(y) do(y),

the passage from the second to the third integral being justified as in (4.8).

(4.28)

We write h = 2K and denote by K any positive constant independent of f. If '!t is
the measure of the set in which I h I > ,121, j = 0, 1, 2, ... , then from (4.28) and v(R,) <ao

we deduce

f 1%0(Ih1)dv<K+E v,{O(A21+1)_g(h2f)}=K+Eill81, (4.29)

say. For any fixed j we write f =f1+f,, where f1 equalef or 0 according as I f I < 21 or
I f I > 21. At the points where I h I > A21 we have either I h1 I > 21 or I h,I > 21, where
hi = Tf1. Since f1 and f, are in Lb and La respectively, we have

'!1,Kl2-tbf AI A Ibd#+2-taf.I fa I- d#)
l

lr t w
K`2-1b

21bet+2-1o E 2iaet}
0 t+1

where et, i =1, 2, ..., denotes the u-measure of the set in which 2t-1 < I f I <'24, and eo
that of the set where I f 15 1. If we substitute this estimate of ill in (4.29), and inter-
change the order of summation, we are led to (4.26), provided we can prove that each
of the sums ,° m M i-1

Z 2ibet Z 8,211', Z C2ta Z a12-4a
t-o 1-1 t-1 1-0

is majorized by K + Kf 0(I f I )dµ.

We may suppose that A > 1. Since 8, ` 95(A21+1), we have

E 312-ab K Z ¢(u) du < K f1y
u -0 1O(u) du

t-t t-i AW+' t-t As'+,

(4.30)

K f '° u-b-19S(u) du <_K¢(2t) 2- b, (4.31)
21
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by (4.24). Hence the first sum (4.30) does not exceed

r
KBE e.O(2`)<Keo0(1)+Ket0(2i-1)<K+K JR,0(I f 1) du,

[xu

(432)

by an application of (4.23). Using (4.23) and (4.25) we obtain a similar estimate for
the second sum (4.30), and the theorem is proved.

(4.33) THEOREM. If q(u) = where I < r < oo and rf(u) i8 a positive slowly
varying function, then

fowc6(I

}`I)dx<K fo o(If f I)dx+K.

This is an obvious corollary of (4.20) and Theorem (4.22).
The theorem which follows is a modification of (4.22) in the case when a= I and

(4.25) does not necessarily hold, that is, when the growth of ¢(u) may be `close' to
that of u.

(4.34) ThEOnEM. Suppose that u(R,) and v(RE) are finite, that 1 < b < oo, and that
h=Tf is a quasilinear operation which is simultaneously of weak types (1, 1) and (b,b).
Let X(u), u >- 0, be equal to 0 in a right-hand neighbourhood of u = 0, say for u < 1, positive
and increasing elsewhere; and suppose that X(2u)=O{X(u)} for large u. Write

O(u) = uJ o t-2X(t) dt (4.35)

and suppose that O(u) satisfies (4.24). Then h=Tf is defined for all f such that 0(I f 1)
is integrable, and we have

fR,X(Ih1)dv<KfAO(IfI)dfc+K, (4.36)

where K is independent off.
The proof is similar to that of (4.22) and we shall be brief. First, we verify that

X(2u) = O{X(u)} implies 0(2u) = O{O(u)}. Secondly,

0(u) % u f U t-2X(t) dt >- uX(}u)
U

f t -sdt = X(4u),

which in conjunction with X(u) = O{X(}u)) implies that

X(u) = O(¢(u)) (4.37)

for large u. Next, (4.35) shows that 0(u)/u is bounded away from 0 as u--> oo; hence
if 0(I f I) is integrable, so is I f I, and so Tf is defined. We have now only to prove (4.36).

Substitute X for 0 in (4.29), so that now 8t=X(A2t+i)_X(,121). Arguing as before,
we shall have proved (4.36) if we can show that each of the two sums (4.30), where

now a=1, is majorized by K+Kf 0(I f 1) d1t. We again have (4.31), with X for 0 in
R,

the first three sums; and, in view of (4.37) and (4.32), the first sum (4.30) does not

exceed K 0(I f j)dit+K. An analogous argument shows that the second sum (4.30)
1e,

is majorized by a similar expression. (It is here that we have to define 0 in terms of X
as we did.)
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The most interesting special case is when x = 0 for u < 1 and x = u otherwise. Then
O(u) = u log+ u, and (4.36) may be written

(4.38)fhdv<KfIfllog+{fId/L+K.
More generally, the hypotheses concerning the behaviour of x and 0 for large u are
satisfied if, for such u, x(u)=ur/(u), where 1(r is a positive slowly varying function.
Hence we have the following result:

(4-39) THEOREM. Suppose that x(u) = ui/r(u), where V' (u) is a slowly varying function,
positive except in the neighbourhood of u = 0 where it is 0. Then, with ji defined by (4.35),
we have pew rre2A

Jo x(I 11) dx<KJ 0(i f I)dx+K. (4.40)

Suppose that the operation h = T f is of type (1 /a, 11,8) for (a, /B) interior to a segment
1 with end-points (a1,Yl) and (a2,#$), so that

I h1Iva<Ma'6 11f IIva

for such The norm M,,6 usually tends to oo as (a, f) approaches an end-point of 1.
If M,,, does not increase too rapidly, we can easily obtain additional information about
the degree of integrability of h for f in Ll/at or Ll/ai. For the sake of brevity we confine
our attention to special, but fairly typical, cases which have some bearing on results
obtained previously. We suppose that T is linear, that both p(R,) and v(R,) are finite,
and that l is on the line a -,8.

(4.41) THEOREM. Suppose that h = Tf is of type (r, r) for each 1 < r < oo, so that

11hII,<A,II f II, (1<r<oo).
Let p > 0. Then,

(i) if A,=O(rP) (r-*oe),

there exist positive constants 3, K such that

for each f with I f I < 1;

Jexp(AIhIh/P)dvK (4.42)
R,

(ii) if A,=O((r-1)-P) (ril),
then T f is uniquely d e fi n e d f o r each f such that I f I (log+ I f I )P is integrable, and we have

IR. I h I dv < K f I f I (log+ I f I )P dp + K,
R,

(4.43)

with K independent off.
Proof. (i) By hypothesis, A, < ArP for, say, r > 2. Hence

fR) h I k/P dv < Ak/P(k/p)k JR, I f Ik/p d a <A11P(k/p)k,u(R1), (4.44)

for k integral and not less than 2p. We multiply (4.44) by .1k/k! and sum over all such
values of k. Since kklk! <ek, the series on the right converges if we set AA1/Pe/p = 4,
and so, denoting by P(u)

f{exp(A

a suitable polynomial of degree less than 2p, we have

I h I 11P) - P(I h 1)) dv < K. (4-45)
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The inequality (4.42) follows from (4.45). For at the points where I h I is sufficiently
large the integrand in (4.42) is majorized by, say, twice the integrand in (4.45), and the
contribution of the remaining values of h in (4.42) is 0(1).

(ii) For many operations T, the inequality (4-43) is `dual' to (4.42) and is obtain-
able from the latter by means of Young's inequality; but we give a direct proof.

Suppose first that f is simple. Hence T f is defined. For each k = 1, 2, ... we define
fk as the function equal to f wherever 2k-1 < I f I < 2k, and equal to 0 elsewhere; by fo
we mean the function equal to f wherever I f I < I, and equal to 0 elsewhere. Then
f = Efk, the number of terms being finite. Correspondingly, A = Ehk, where hk = Tfk.
Denote by ek the fu-measure of the set where fk+0. We have

fr:.
i h, I dv < v1j' II hk 11, < KA, II fk II. < KA,2kek (4.46)

for 1 < r < oo. By hypothesis, A, < K(r -1)-P for, say, 1 < r < 2; and if we substitute
r= I + 1/(k+ 1) in (4-46) we obtain

f hk I dv < K(k + 1)P 2ke k+1) k+2)

f a.IhIdv<E f hkIdv<K (k+1)P2k6f+1)Ak+t)

Observe now that those terms of the last series in which Ck < 3-k have a finite sum,
and that for the remaining k we have 6+1)5k+2) < Kek. Hence

fa.h I dv<K+K(k+1)P2kek<K+KfAI f I(log+I If 1),P d#,

and (4-43) is proved if f is simple.
Now for any w > 0 we can apply (4-43) to wf and obtain

JIhId<KfIf{log+(IfI)}Pdv+K/0.1,

all if w is large enough. It follows that, for any f suchso that K/w is arbitrarily sm
that I f I (log+ I f J)P is integrable, if ff is a sequence of simple functions such that

f I f -f. I (log+ w I f -f.I )P d# -> 0 for each w > 0, then 11 h,,, - h 1I 1-+ 0 as m, n -> oo.

Hence Tfm tends in L to a limit h which may be taken as Tf and which satisfies (4.43).
This completes the proof of (4.41). It is clear that the requirement that T should be

of type (r, r) is needed in (i) only for r > r0, and in (ii) only for r near 1.

5. Paley's theorems on Fourier coefficients
In this section we shall extend Theorem (3.19) to general systems {0*}, n

of functions orthonormal and uniformly bounded,

Ic' (x)I<M,
over an interval (a, b). Given a sequence of numbers c1, c9, ... we write

'BAC) = (E I Ck Ir kr-2)W
k
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(5.1) THEOREM OF PALEY. (i) If f e LP, 1 < p < 2, and if c1, ca, ... are the Fourier
coefficients off with respect to 011 02, ... , then 3p[c] is finite and

%,[c) < APM(2-P)1P II f II P (5'2)

(ii) If given numbers c1, c2, ... satisfy the condition F8,[c] < oo for some q _> 2, then there
is an f E La having the c as its Fourier coefficients with respect to (On), and such that

II f 11v
<A.M(q-Z)lQ %,[C]. (5.3)

The function f is the limit, in LQ, of s = cl 01 +... + c ¢ as n--* oo.
(iii) Moreover, use may take AQ=Ao. (5.4)

Let a be the ordinary Lebesgue measure in (a, b); by II f II, we mean a norm with
respect to p. Let v give measure I/n2 to the set consisting of the single point n.
n = 1, 2, ..., and measure 0 to a set which does not contain any of these points. The
linear operation

J (nffndx
b

h=Tf= {ns,} =is

defined everywhere in Lr, µ, I < r 2, and

II h II r, v = 1E I ne,, I r n-2)l/r = 3r[ c]

Bessel's inequality 32[c) < II f II2 implies that T is of type (2, 2). It is generally not
of type (1, 1) (except in special cases; see § 3). We show that T is of weak type (1, 1);
more precisely we show that

v{E [hJ} < 2y II f II1. (5.5)

The left-hand side here is En-2 extended over those n for which I nca I > y. For such n,

y<Inc,,I <nf.Ifinldx<nMIIfIII,
a

that is, n>y/MIIf III-

If we set (a = y/M II f 11, and suppose that w _> 1, then

E n-2 < 2w)-1= 2My-1 II f III,
X>W

which is (5.5). The latter is obvious (since n-2 =4n2) if w < I.

By Theorem (4- 6), with (a1, f1)=(1, 1), (a.,fa)=(,§), (a,f)=(Ilp,I/p), M1=2M.
M2 = we have2

FBp[C] = II Tf IIP.v < ApM('-D)IP II f pP,

which is (i).
We deduce (ii) from (i). Write q = p' and consider any g with II g II P < I I. Let d1, d,, ...

be the Fourier coefficients of g with respect to ¢1, O2, .... which exist by (2.12). For
the s in (ii) we have

f e3n9 1=14Ckdkl= Ck k(0 ZYG. dk k'"- Ip
a I I t

a 1/? ra I/D 1/q

Ck dk IP
kP-y/

1
A9M(Y-PIIP(a

I ck IQ k9-

`1

1 , (5.6)
1 I 1
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by Holder's inequality and (5.2) applied to g. The upper bound of the left-hand side
here for all permissible g is II a IIQ. Thus

II 8,n IIQ _< ApMe-2)10( I Ck IQk5_91(5'7)
lI 1

This inequality applied to a - s,,, gives

II 8n - am IIQ A,M(Q-')Ie Y, I Ck 1 Q ke-zl
0

as m, n --- oo. Hence there is an f e Le such that II s -f IIQ --> 0. This and (5.7) lead to
(5.3), and also to (5.4).t

Condition 18, [c] < oc implies IIcI1, <I co since, by Holder's inequality,
11 CkI=EickI'k'-2. k-xQ-'WQ

s (E I ck IekI-e)WQ(Ek-')(Q-a)/Q

It follows (Chapter IV, § 1) that Eck Ok is the Fourier series of an f, E L2 such that
s,, - fI II %-i 0. Hence f 4, and the proof of (ii) is complete.
We add that (ii) cannot be obtained by interpolating between q = 2 and q = oo. For

the operation f = Th transforming a sequence c1, c,, ... into a function f- ECk Ok is
not of type (oo, oo): the finiteness of sup I kck I does not imply the boundedness of f.

By Remark (b) on p. 116 we have A. =O((p- I)-') as p--> 1. By the Riesz-Thorin
theorem (I.11), Ay = 0(1) as p -). 2 (compare Remark (a) on p. 115). Hence, using also
(5.4), we may take

A,, 5 A I A' <A (5.8)

where A is an absolute constant.
It is obvious that by applying (5.1) to the normalized system 1, ed', a-im, e,

e-' , ... we obtain Theorem (3.19).
Consider two finite sequences a1, a,, ..., a and b1, b" ..., b of non-negative

numbers and set S=albs+a2b,+...+aaba.

Suppose that {ak} is monotone, either non-increasing or non-decreasing. Then,
rearranging bk in all possible manners we get for S the largest possible value if bk varies
in the same sense as ak, that is, if both are non-increasing or both non-decreasing;
S is a minimum if they vary in opposite senses. Suppose, for example, that a1 ? am ? ...
and that NO, Then replacing albs+a,b, by a1 be+asb1 we increase S by
(a1- a,) (b, - b,). Similarly for the other case.

Now consider the case when (ak) and {bk} are infinite, and suppose that {ak} is mono-
tone and bk-> 0. The terms bk distinct from 0 can be rearranged into a non-increasing
sequence. If it is finite, we complete it by 0's. The resulting sequence will be denoted
by {b,'t} and called the non-increasing rearrangement of (bk}. It is not difficult to see
that if {ak} increases, then 8 = Fakbk is a minimum if the bk are arranged in decreasing
order; if {ak} decreases, 8 is a maximum for this rearrangement. For if all bk are
distinct from 0, the 4rgument above remains valid. If some of the bk are 0, we drop
in S the corresponding terms akbk and maximize or minimize the remainder by
rearranging the bk+0 into a descending order. The sum we get will be Eakbk.

t We are not interested in the least values of A, and A. If. however, A, and A' are to have the least
values, then the foregoing argument only gives At'4 A,., and to obtain equality we must also use an
argument dual to (6.6).
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Given a sequence of complex numbers cka0, we denote by {cc} the sequence
c11, I c1 I, ... rearranged in decreasing order. Writing *,?[c] _ $4r[e*], we have

18*[c] < l jr], 3 [e] ffi,[c). (5.9)

(5.10) TnEORBM. (i) Under the hypotheses of (5.1) (i) we have

F8p[c] 4 APM(2-PlIP 11 f IIP-

(ii) If e1, c, ... are complex numbers tending to 0 such that If'3 '[c] is finite, then the c
are the Fourier coefcients, with respect to the {On}, of an f c Le satisfying

II f 1 q S A(9-2)lq 3Q [c].

Part (i) follows from (5.1) (i) if we rearrange the ck corresponding to the Ck distinct
from 0. (Observe that (2.8) (i) implies that ck 0.)

Conversely, suppose that for a given {cn} 0 we have F8, *[c] < oo. Let I cn, I , I cn, 1,
be the numbers which a f t e r rearrangement go into c l * , c . . . . . . By (5.1) (ii), Y-cnkOlk is
the Fourier series of an f e Dr having c, as its Fourier coefficient with respect to On,
and satisfying 11 f II, _< AQM(a-2>' $3Q [e]; moreover, f is the limit in L2 of the partial sums
of Ecnt On,,. The latter result shows that the Fourier coefficients of f with respect to
the ck different from On., O,l, ... are 0. This completes the proof of (ii).

It is interesting to observe that Paley's theorem in the form (5.10) contains the
F. Riesz theorem (2.8) as a special case, though in a slightly lees sharp form, the right-
hand sides of the inequalities in question,

II c IIP" M(2-PUP II f IIP' II f IIP. <(s II IIP,

having an extra factor 8P depending on p only.
It is sufficient to show that

93P[c] YP II c I1P

VQ*[c]YgI1 c11p

where y, depends only on p, and ya only on q. We prove the second of these inequalities
only, the proof of the first being similar. We use the fact that (x + y + ... )' 3 Zr + yr + .. .

for x, y, ... non-negative and r > 1. Then

nan°-$= E E cnana 2 2q-a a a2Y(a u
n-1 Y-0 n-2' Y-0

= 2q-= E (ca}'2Y)q-1
Y-0

co
Y72Y-1229-3 cl

+
0'

-1

M 2'-1 q-1
<22q-9 E e )

-1 n-2YY

2'a-s(2 E c`dl
a-1=

2k-' 11 cn IId,
n-I

a-I
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This result might suggest that perhaps the criteria of Paley and Riesz are, roughly
speaking, equally powerful. That this is not so can be seen by the example

(a,b)_(0,n),

for n =1, 2, .... Then 1f},*[c] _ $4[c] is finite and, by (5.10) (ii), F,c, cos nx is in L'.
Since c 11 1=0o, this result is not a consequence of (2.8) (ii).

We now prove results dual to (5.1) and (5.10), in which the roles of f and c are
reversed. We need the following lemma, in which f * denotes the non-increasing
rearrangement of I f I (see Chapter I, § 13).

(5.13) Lzac &4. If f (z) and g(x) are non-negative, and the latter also non-increasing,
in a finite interval (a, b), then

(514)fafa'bgfdx<b

We first observe that if f (x) -.f(x) almost everywhere, then J(z) ->.f *(x), except
possibly at a denumerable set of points. For I E(,, > y)' I -> I E(f> y) I for each y which
is not taken by f (x) in a set of positive measure, that is, m(y) such y,
if m (y) and m(y) denote the distribution functions of f,, and f. Considering the
inverse functions fn (x) and f *(x) of m (y) and m(y), it is intuitive geometrically that
fn(z) -- f *(x) for each x which does not correspond to a stretch of constancy- of m(y).

Next, if is monotone and tends to the limit f, and if (5.14) holds for each f,,,
then it also holds for f. This follows from the preceding remark and from Lebesgue's
theorem on the integration of monotone sequences.

Finally, (5.14) is true if (a, b) can be decomposed into a finite number of intervals
of equal length in each of which f, and so also f *, is a constant. For then the integrals
(5.14) reduce to sums, a case discussed previously. Since starting with such functions
we can, by monotone passages to limits, obtain any measurable function f (or, rather,
a function equivalent to f ), (5-14) is established.

We now pass to the duals of (5.1) and (5.10). It will simplify the proof slightly if we
assume that (a, b) is finite, for example of the form (0, h), but the proof for the general
case is much the same (see also the Remark on p. 126). By f * we now denote the
function non-increasing and equimeasurable with I f I. We also write

ttru] = I f I r

*[f] = U?[f *] f "zt *dx)

The following theorem corresponds to (5.10):

(5.15) THEOREM. (i) If for a sequence cl, a2, ... we have II c IIP < oo, then the c,, are the
Fourier coefficients with respect to the 0,, of an f with

UPU]< A,W2-PKP II cu9. (516)
(ii) If U* [f ] is finite, and if c are the Fourier coefficients off, then 11 c Ila i8 finite and

II c II o < AQ '°-9v°U*[f ] (5' 17)
with A,= Ad.
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We begin by proving (5.16) in a weaker form with U for U*.
Let ,u be the additive measure giving value I to the sets consisting of the single

points x = n, n = 1, 2,..., and 0 to sets not containing any of these points. By v we shall
mean the measure defined on (0, h) by the condition dv=x-2dx. Then

ll Hr,r="r U]

for g = xf(z). The inequality (5.16) holds for p = 2, with A2 = 1, and it will be proved
generally if we show that the operation

is of weak type (1, 1). We shall show that

v(E(IgI>y))sMy-1 11 c1I1 (5'18)

The left-hand side here is f x-sdx extended over the set where x I f(x) I > y. For

Jsuch x,

y<xI f(x)I =xI EC.O.I <xMIIcHII,

whence x > y/M 11 c II1= w, say. If m > h, there is nothing to prove. If w < h, the left-

hand side of (5.18) is less than f
.

x-2dx = My-1 II c 11 1

We now prove the weaker form of (5.17). Let p=q'. We fix N> 0 and consider all
sequences d1, d2, ..., dN with Ii d IIQ = 1. Write g=d101 + ... +dNS6N. Then

N 1/Q N
i

I A

=sup fofgdxl

fA
=sapl oixcQ-Z)iQ,g-xcp-ZHPdx 11Q[fI sap Ufg)

A,M(2-P)IP1IQW ],

by (5.16). On making N->oo we get (5.17) with AQSAQ.
We now prove the actual inequality (5.17), with U*. We first suppose that f is a

step function. Rearranging the order of the intervals of constancy off, we transform
I f ! into f *. At the same time f (x) is transformed into a function F(x), and the O, are
transformed into functions t/r again forming an ortho-normal system. Since the
coefficient of f with respect to 0, is equal to the coefficient of F with respect to
(5.17) follows from the weaker inequality previously established.

To prove (5.17) in the general case, let {fk} be a sequence of functions for each of
which (5.17) is true. Since any bounded f is almost everywhere the limit of a uniformly
bounded sequence { fk} of step functions, and since ck - c,,, ft* --3--f * as k -+ oo, (5,17)
holds with fk , cn replaced by f *, c,,. If f is arbitrary, we set fk(x) =f(x) wherever
I f (x) I _< k, and f (x) = 0 elsewhere. Here again cn and fk tends increasingly to f * ;
and since the fk are bounded, (5.17) holds for f.

To prove (5.16) we fix N > 0, set f,V = c1 01 + ... -}- CN ON, and observe that

UpUNJ=BOPf OfN*gdx
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for all g _> 0 with UQ[g] < 1; g may further be restricted to the class of step functions.

Then fo f,*vgdz = fo fN ydx, where the absolute value of y(x) = y(x; g, N) is equi-

distributed with JI g I. Denoting by d the Fourier coefficients of y we have
N

Up[f,5]=sUP f offgdx-sup Eand,._<supIIcIInIIdIIa

II c IIp sup {AQ M(Q-2)"QUQ[Y*]}
v

AQM(2-P)1 II c IIp, (5'19)

since UQ[Y*] = UQ[g'] c UQ[g] 1.

Since the finiteness of 11 c 1Ip implies that of II c II, there is a sequence {fN5} converging
to f almost everywhere. It follows that fN .-> f * outside a denumerable set (cf. p. 124).
Comparing the extreme terms in (5.19) and making N=Nk-+oo, we get (5.16), with
AP = Ap..

Remark. In the case (a, b) _ (- oo, + oo) it is convenient to define f * as the function
equidistributed with I f 1, even, and non-increasing in (0, oo). We may then set

U [f]=
Compare Theorems (2.8) and (5.10). Their first parts assert that both II c IIp and

$3p[c] are less than fixed multiples of II f IIp We now prove a result containing
these two as special cases. A similar unification is given for the second parts of (2.8)
and (5.10).

(5.20) THEOREM. (i) Suppose that

p<r<p', A= 1
+

1-1.
p r

Then for the coefficients cn off a LP with reaped to 0. we have

((c * n-A)r}lfr <A,,M(l-YP II f II x, (5'21)

(ii) Suppose that 1 1q <a<q u=+8-1,
4

and that a sequence c -> 0 8atiafies E(c* n-")* < oo. Then there is an f e Le having the cn as
sta coefficients with respell to 0. and such that

Clearly A _> 0, < 0.

11f IIQ<A0M(Q-0Q{E(c*n-rr}1"8. (5.22)

The left-hand side of (5.21) is
{E(c*nuD)rn-')1* (5.23)
1/r

and may be written { f f,(x)rdg(x)) , where I(x) is a non-decreasing step function.

Thus thelogarithm of (5.23) is a convex function of 1 /r (Chapter I, (10.12)). But for r = p
and r = p' the expression (5.23) reduces to F8*[c] and to II c* IIp. respectively. Since
a function convex in an interval attains its maximum at one of the ends of the interval,
(5.21) follows from (5.10) (i) and (2.8) (i).
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(ii) may be obtained from (i) in the same way as in (5.1). It is enough to prove
(5.22) with I C for cn. Then, setting q=p', s=r' and using the same notation as in
(5.6), we have

I5{E Cka k 11)118 (EId k-Ijr)

AP M(2-PNP{ I C,rk-"Isl
t I

and continuing the argument as before we get II f - an 11 a-r 0.
In a similar way we could prove a generalization of (5.15).
The following corollary of (5-20) will be needed in § 9 below.

(5.24) THEOREM. Suppose that

l <p-<2-<q<co, f-Yca LP,

and write a = 1 -1, 9 - Ec n-ae 0,,,
p q

where en is any sequence of numbers such that I e, 1. Then

II g I, v -< AwM2a it f II P. (5.25)

Taker= 8=2 in (5.20) and apply (5.21) and (5.22) to f and g respectively, replacing
there, as we may, c,*, by I c I. Thus

(E I cnn-A l2)i - A,, M('-)'P II f I1 lh - 1 - 1)P
11 9 iQ \ AM(c-2)1q(j: I ca n-(a+") 12)1 (#_

2)

remembering that I e I < 1 . These inequalities imply (5.25) if a + a =A, that is, if
z= lfp - 1/q.

Remark. It is easy to see that (5.24) fails in the cases p < q < 2 and 2 <p < q (which are equivalent).
Suppose that 2 < p < q, that

cos nx
f(x) Eq«nllogn

in (0,n), and that 1. Choosing for a suitable sequence of ± 1, we have jeLD for all
p> 2 (Chapter V, (8.16)). Taking q,,, and for a any positive number less than }, we have

coo nx9(z)^ En}+alogn.

By Chapter V, (2-6), g(x) is exactly of order x-1+a/log(1/x) near x=0, and so is not in La if
I-a> l/q, and in particular if a= l/p- l/q.

6. Theorems of Hardy and Littlewood about rearrangements of Fourier
coefficients

The theorems of the previous section, when applied to the orthogonal system {ei"x}
can be stated in a different form and give the solution of an interesting problem. It
will be convenient to change the notation slightly.

Given a sequence co, C11 C_1, c2, C_21 ... tending to 0, lot ce* 3 cl >_ c* 1 , ... be the
sequence I co I, I cl I, I c_1 I, ... rearranged in descending order of magnitude. Similarly,
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given a function f (x), - n e x _< + n, we denote by f *(x), - n <_ x _< -7r, the function which
is even, equimeasurable with I f(x) I, and non-increasing in (0, rr). For 0 _< x <rr, f*(x)
may be defined as the function inverse to ,) I E(I f I > y) 1. We set

r[C] = 1 I cn Ir (In + 1
Y-sl/r

(6.1)

If Ir l x lr`2dx1" (6.2)
/I

If for the moment we denote the sequence co*, c,*, c* i, ... by dl, d2, d ..., then the ratio

Cnr(I n I + 1 )r-2 dr. nr-2

is contained between two positive numbers depending only on r. Hence we see that
Theorem (5.10) remains true for the system 1, ei'7, a tz, ... if 3, is given by (6.1). Simi-
larly, Theorem (5.15) holds for this system if the interval (0, h) is replaced by (-;T, ir)
and U, is defined by (6.2). In the rest of this section we adopt the definitions (6.1)
and (6.2).

We know that a necessary and sufficient condition for the numbers co, cl, c_t, ...
to be the Fourier coefficients of an f e L2 is that E 1 cn I2 < oo. This condition bears on
the moduli of the cn only. Hence a necessary and sufficient condition that the complex
numbers co, cl, c_i, ... should be, for every variation of their arguments, the Fourier
coefficients of a quadratically integrable function, is again Z I c, I' < oo. One may ask
if anything similar holds for other classes Lr. The answer is always negative; for
consider the two series

2: n-a ei Y, + n-a ei- (0 < a < 1).
n-1 n-1

If e.g. a =1, the first series belongs to LQ for q < 4 only (Chapter V, (2.1)), while the second
belongs, for a suitable sequence of signs, to every LQ (Chapter V, (8.16)); thus two
functions, one of which belongs to LQ and the other does not, can have the same I c,, I .

If a =1, the first series belongs to L', p < g, while the second need not be a Fourier
series.

These facts suggest a change in the problem. We shall now vary not only the argu-
ments of the cn but also their order, and we ask when the new sequences will be those
of Fourier coefficients, with respect to the system 1, a-, ..., of functions belonging
to Lr. The results which follow are due to Hardy and Littlewood.

(6.3) THEOREM. (i) A necessary and sufficient condition that numbers cn-> 0 should
be, for every variation of their arguments and arrangement, the Fourier coefficients of a
function f e LQ, is that 3o [c] < cc. If the condition is satisfied, then

871g[f] e AQ 3' [c] (6.4)
for every such f.

(ii) A necessary and sufficient condition that the c, should be, for some variation of
their arguments and arrangement, the Fourier coefficients of an f e LD, is that 18,*[c] < oo.
Moreover, we have

ZP[c] <A9J 9[f] (6.5)
for every such f.
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The proof is based on the following lemma:

(6.6) LEMMA. (i) If a,>- a,->.. . > 0, a necessary and sufficient condition that the
function g(x) = Ean cos nx should belong to L', r > 1, is that the sum 8, = Ya' n'-2 should
be finite.

(ii) The result holds also for sine series.
Let 0(x) and H(x) denote respectively the integrals of g and I g I over the interval

(0, x). Let An = a1 + a2 +... + an. By B we shall mean a constant depending at most
on r, but not necessarily always the same. If ge L, in particular if gE L', the series
defining g is S[g] (see Chapter V, § 1) and so

G(x) = gdt= ' an
sin nx,

0 n_l n
n-1 n-1a n am am+n am+2n mn am am+n T-- >1

( -n = E - + - ... sin - sinm_1 m m+n m+2n n mat m m+n n
(2A/3) a 12A/31 a

C' iniB _ (-±B
1n/31+1 m m+n In/3)+1 M

Ban,

E
2 2

ann
BZn' 2H'1n)

ro

f
"1(n-1) I1(x)l.

f
w H(x) r

B2 fs/n
x--}dx=B,lo1

x }dx

< Bfo I g v' dx,

by Chapter I, (9.16). This establishes the necessity of the condition in (6.6) (i).
To show that the condition is sufficient we observe that

n i

g(x) Y, a, + Y_ a, cos 'x j -< An + nan/x
1 n+1

(Chapter I, (2.3)). It follows that I g(x) I <BA,, for n/(n+ 1) <x < a/n. Hence

f 0I gI rdx
ftA

gJ'dx<BEAnn-2,
0 1 ./(n+1)

and it remains to show that the last series converges if 8, < oo.

(6.7)

Let a(x) denote the function equal to an for n - I < x < n (n =1, 2, ... ), and A(x)
the integral of a(t) over (0, x). The inequality 8, < oo implies that zi-2 is integrable
over (0, oo). So (by Chapter I, (9.16), with s = r - 2) is the function

{A (x)Ix}' xr-2 = A'(x) x -2.

Since the integrability of the latter function is equivalent to the convergence of

EA;,n-2, Lemma (6.6) (i) follows.
Lemma (6.6) (ii) can be obtained by a similar argument, or, even more simply,

deduced from part (i) by using Theorem (2.4) of Chapter VII.
We are now in a position to prove (6.3). That the condition of (i) is sufficient follows

from Theorem (b 10) (ii), whence also we can deduce the inequality (6.4). To prove the
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necessity of the condition, consider the two series Ec* e2 z and Ee* n e11z. Since both
of them belong to La, so does their sum

(C+C*n)einx=2 Cp +(C+C*n)cosnx],
-W i J

and from (6.6) (i) we see that !6Q[c] <CO.
From (5.10) (i) we see that the condition of Theorem (6.3) (ii) is necessary. That it is

also sufficient follows from the fact that Ecn e'nx belongs to LP if Zp*[c] < 00.
The following theorem, in which we consider the rearrangements not of the coeffi-

cients but of the function, is a dual of (6.3).

(6.8) THEOREM. (i) A necessary and sufficient condition that j! c 11, should be finite
for all f (x) having the same f *(x) is that UQ [ f ] should be finite. If U'[ f J is finite, then

I I
A (6.9)

(ii) A necessary and sufficient condition that jj c jjp should be finite for some f(x) with
u given f*(x) is that U*p[ f ] < co. If this condition is satisfied, then

UpU ] S Ap jj c 1p (6.10)

The proof of (6.8) is similar to that of (6.3), and indeed is slightly easier since f *(x),
unlike c*, is an even function of the argument. The only thing we need is the following
lemma.

(6.11) LEMMA. If a function g(x), j x j _< IT, is non-negative, even, and decreasing in
(0, n), and if an are the cosine coefficients of g, then a necessary and sufficient condition
that 11 a j;, < oo, r > 1, is that the function gr(x) xr-e should be integrable.

We shall only sketch the proof, which follows the same lines as that of (6-6) (i).
Denoting by G(x) the integral of g over (0, x), we show that

j an j <_ 2G(n/n), An > Bg(rrln), (6.12)

where An = j a, + j a, j + ... + I an 1. The first inequality follows from the formula

g(x) cos nxdx.}rran = f
o

g(x) cos nxdx+J
"/I

For the modulus of the first term on the right is at most G(rr/n), and, by the second
mean-value theorem, the second term on the right is numerically at most

g(n/n). 2/n _< G(77/n).

To prove the second inequality (6.12 ), we observe that Iao + a1 +... + E"n is equal to

2 sin nl 2 "tn g(t) g(t + 7r/n) sinni
o [2tan}t 2tan}(t+n/n) dt

rw/Sn g(t) "Hn g(t)
B J o 2 tan t sinntdt >-B t sin ntdt Bg(ir/2n) % Bg(n/n)

0

We now observe that if g'x*-' is integrable, so is (Chapter I, (9.16)); thus
EG'(rr/n) <oo and, in view of the first inequality (6.12), 0 a jj, <co. Conversely, if
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II a II, < oo, then X (An/n)' < co (an easy consequence of Chapter I, (9.16), with 8 = 0) and
the second inequality in (6.12) give ). n-'g'(7r/n) < co. The latter inequality is equivalent
to the integrability of g'x'-2.

7. Lacunary coefficients
We know that a necessary condition for a sequence (an, bn) to be that of the Fourier

coefficients of an integrable function f is that I an I + I bn I -+0. If an, bn are to be the
coefficients of a continuous f, the series E(an+bn) must converge. Neither condition
is sufficient, but we shall prove that, for some indices n at least, the Fourier coefficients
of integrable, or continuous, functions may be prescribed, roughly speaking,
arbitrarily.

(7.1) THEOREM. Let {n1} be a sequence of Positive, integers such that

n1+,/n1 > ,I > 1

for j =1, 2, ... , and let {x1, y1} be a sequence of pairs of real numbers.
(i) If E(xi + yy) < oo, then there is a continuous f with coefficients an, bn satisfying

ant=x1. bn,=y1 (7=1,2,...). (7.2)

(u) If I x1 I + I yi I --> 0, then there is an integrable, f satisfying (7.2).
(iii) If x1, y, are bounded, then there is a continuous non.-decreasing F(x), 0 <x < 2n,

with Fourier-Stieltjes coefficients an, % satisfying (7.2).
We begin with (iii) and suppose, as we may, that ps = x2j + yj < 1 for all j. First sup-

pose that A >_ 3. We set cosn5x+y1sin n5x and consider the Riesz product

]-j (1 + A,,,(x))
1-1

(7.3)

(Chapter V, § 7). Since p1 < 1, A >, 3, this product, when multiplied out, is the Fourier-
Stieltjes series of a continuous, non-decreasing (in general, singular) function with
coefficients x1, y1 at the places n1.

If A > 1, we take k so large thatAk > 3, and split {n1} into k sequences : n nk+1, nk+1. ;

ns, nk+: 1 2 k + , . . . . . . . . . nk, n2k, nsk. Consider the sum
M

n(1+An.t+,)+ 11 (1+A,,,5 ,)+...+n (1+An.L.k) (7.4)

which is the Fourier-Stieltjes series of a continuous non-decreasing function. We
know (Chapter V, Remark (b) on p. 211) that if k is large enough the k series originating
from the product in (7.4) have no terms in common, and so their sum satisfies the
assertion in (iii).

To prove (ii), let {ek} be a positive convex sequence tending to 0 such that the
sequences {x,/e,,) and %/e,,} are bounded. (This is possible since I x, I + I y1 0.)
By (iii), there is a Fourier-Stieltjes series

4a0+(akcookx+bksinkx)

such that a, y = x1/en1, b,y = y1/e,y for all j. Since multiplying the terms of a Fourier-
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Stieltjes series by a convex sequence tending to 0 transforms it into a Fourier series
(Chapter IV, (11.10) and Chapter V, (1-5)), the series

W

Sao eo + E ek(ak cos kx + bk sin kx)
1

satisfies the assertion of (ii). Incidentally, the f obtained in this way from (7.3) or
(7-4) is non-negative.

The proof of (i) follows the same lines. If in (7.3), or (7.4), we substitute iAnj for A,,,,
we obtain Fourier series of bounded functions (Chapter V, (7.12)), and the imaginary
parts of these series have coefficients x1, y, at the places n1. The passage to continuous
functions follows the same pattern as in the proof of (ii).

(7.5) THEOREM. Given an arbitrary function O(u) tending to +oo with u, there exists
a continuous function f having a, b such that if we set rn = an + bn the series
Ern (fi(1/f n) diverges.

Let {ak, ik} be an arbitrary sequence such that Epk < oo, 41 00 /pk) = oo, whore
pk = ak + fl ,2t. By (i), there is a continuous f such that ask = ak, bsk =fik Since EPk 0(1 /Pk)
diverges, so does Er2ko(1/rk).

Theorem (4.11) of Chapter Visa corollary of (7.5) (take, for example, 0 (u) = logu).
We know that the Fourier coefficients of an integrable f can tend to 0 arbitrarily

slowly (Chapter V, p. 184). This is no longer true for f c L', r > 1, if only because then
II c fl,. < oo if r S 2. The latter result can be strengthened if we restrict ourselves to
lacunary coefficients.

(7.6) THEOREM. Suppose that nj+1/nj > h > 1 for all j. If a,,, b,, are the coefficients of
an f E L', r> 1, the series E(anj +bn,) converges. The re8ui.t holds if merely I f I (log+ I f )i

is integrable.
We fix N > 0. For a suitable sequence al, Y1 ... , aN, iN with E (at +f) = 1, we have

i
N

=jZ1(anjaj+bn,Q,)=_ to fgdt, (7'7)

where g = E(aj cos nj t +fj sin nj t), By Theorem (8.20) of Chapter V, there are positive
Ix

constants y, 8 depending on A only such that f, dx < S. Let D(u) = er"' - yu2 - 1.
0

The functions 0 and 0' vanish for u = 0, and (' is strictly increasing for u >_ 0. Hence
(D(u) is a Young function (Chapter 1, § 9). Its complementary function 'F(v), as is
easily seen, is 0(v logl v) for v -> oo. In other words,

'V(v) i A,v(1og+v)i+B,1

for v 3 0. Young's inequality now shows that the last term in (7.7) is not greater
than n1o1r((D(Ir1)+`F(If

I))dt<_Jo"eyo'dt+Ajo f I (logFlf I)idt+2BA,

N
}which gives

j
z (a»j+b,,)

<A5 0 I f I
(log+I If 1)4dt+A;l,- J o

with Al = 2B,A + 4. The inequality holds if we replace N by oo, and so (7.6) is established.



xli] Lwunary coefcient8 133

For power series of type H we have a similar result which is neither more nor less
general than (7.6).

W

(7.8) THEOREM. If ns+1/nt > A> 1 and F(z) = E az" E H, then E I I2 converges.

By Chapter VII, (7.22), we have F=F,F2, where both

F,(z)=Efnz" and F2(z)=EYnzn
0 0

are in Hs. Write E 1,8,,12 = R2, 11 yn I2=C'. Then

lan;= E 8kY,,j-k ,"E'+ E
l k-0 k-0 k-n/_,+1

/
,<Brt IYkIB)i+C! Ifkl2lf;,

by Schwarz's inequality. Hence

I I' 2B2 E I Yk 11 + 20 I Yk I2.
nf-,%j-t 14_,+1

Sum these inequalities for j = 1, 2, .... Since n$ - n1_, >(I - A-1) n$, there is a constant
K = K. such that each k belongs to at most K intervals (n1- n9_1, n1). It follows that

EIa,yI2s2B2KE IA 2+2C'>.I fk1'=2(K+1)B=C=.

8. Fractional integration
Suppose that f(x) is integrable in an interval (a, b). Denote by F,(x) the integral

off over (a, x), and by Fa(x) the integral of Fa_1 over (a, x), a = 2, 3, .... A classical
formula, easily verifiable by induction, gives

Fa(x)=r(a) a(x t)a 1f(t)dt (a.x-<b), (8.1)

where r(a) = (a - 1)!. If I'(a) is Euler's gamma function, the formula (8.1) may be
taken as a definition of Fa(x) for every a > 0.

Let g(u) = ua-1/r'(a) for u > 0 and g(u) = 0 elsewhere. Then

F(x)=
bf(t)g(x-t)dl
a

is the convolution of the integrable functions f and g, and so exists for almost all x
and is itself integrable (Chapter II, If a> 1, F,(x) is even continuous (a result
also valid for a =1), since g is then continuous.

This definition of fractional integral is due to Riemann and Liouville. In the theory
of trigonometric series it is not entirely satisfactory, since in general Fa(x) is not
periodic even if f is. Moreover, it makes Fa(x) depend on a particular choice of a. For
this reason we shall consider another definition, introduced by Weyl and more
convenient for trigonometric series.

Let f (x.) be an integrable function of period 2n. We suppose once for all that the integral
off over (0, 2n) is 0, so that the constant term of S[f] is 0. It follows that the integral
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fl off is also periodic, whatever the constant of integration. If we choose this constant
of integration in such a way that the integral off, over (0, 2n) is 0-in other words, if
the constant term of S[f1J is 0-then the integrabf2 off, will also be periodic, and so on.
Generally, having defined f1, f,, ... , fa_l, we choose for fa that primitive off.-, whose
integral over (0, 2n) is 0. In other words, if

f(x) . Ecnei-, cp=0, (8.2)
einx 1 2

then fa(x) Ecn(in)s 2n cf f(t) 'Y (x-t)dt, (8.3)

"r
where

er
`I a(t)=E (8.4)

(in)

say. The function `l' (t) was already considered in Chapter II, §2, where it was
denoted by Ba(t). For 0 < t < 2n, it is a polynomial of degree a.

The formula (8.3) may be considered as a definition of fa for every a > 0, provided
that in (8.4) we set

n) for yba>=0. (8.5)

The series (8.4) can then also be written

°° cos nt sin nt
2 cos i1ra E + 2 sin i7ra E (8.6)

1 na 1
na

It follows from Chapter I, (2.4), that this converges for t * 0 to a sum'1'a(t), and from
Chapter V, (1.5) and (1.14), that it is S['VaJ. Hence the integral (8.3) exists almost
everywhere and its value fa(x) is integrable. By Chapter III, §4, the series in (8.3)
converges almost everywhere and is S[fa]. q

The series conjugate to (8.6) converges to an integrable sum `Pa(t), and is S['raJ.
It follows that the conjugate of the series in (8.3) is a convolution of S[f] and S['P.],
and so is also a Fourier series. It converges almost everywhere.

Denote fa(x) by Iw[f]. The first equation (8.3) gives

141,jf]]=Ia+a[fJ (a,f>0).
Since fa coincides for a = 1, 2, ... with an ordinary integral, the case 0 < a < 1 is the
most interesting one.

We now define f a, the derivative off of fractional order a. Supposing first that
0<a<1,weset

.fa(x) = dxft-a(x) (0<a< 1).

Consider a special case, namely when f,-.(x) is absolutely continuous. Then

S[f at = SU1-a] = S'[{{J 1-aJ = Z(in)a cn efns = EA a)c eina (8.7)

If a > 0 is arbitrary and n is the least integer greater than a, it is customary to define
f a by the formula

do
f a =nJ n-a(x)-

We shall not, however, use this general definition, since we are concerned only with
the case 0< a < 1.
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The function with Fourier coefficients (8.5) was discussed in Chapter II, § 13.
From Chapter II, (13.8) and (13.9) we see that

r(a) `YQ(x) = 27r urn xa-1 + (x + 277)a-1 + ... + (x + 2nn)a-1 - (27T)a-1 na) (8.8)a
for O<a< 1, O<x<27r.

If we drop the term za-1 on the right of (8- 8), the resulting expression will converge
uniformly for z >_ 0. Hence, since f is periodic and its integral vanishes over a period,
we see that

o * f (x - t) `Y2(t) dt = ! m f (x - t) j (t + 2Trv)a-1dt

= 1 °
r(a)fo f(x-t)t -idi

or fa(x)= f
r(a) f(t)(x-t)a-1dt, (8.9)

It thus turns out that the new definition of fractional integral differs from (8.1) only
in that now a= -oo. It must be stressed, however, that the convergence of the
integral (8.9) is bound up with the vanishing of the integral off over a period.

Denote by r(a) ra(x) the expression resulting from the omission of xa-1 in (8.8).
Clearly ra(x) has derivatives of all orders for x > - 2a (and is actually regular there).
Since W. is periodic we deduce from (8.8) that, for - 27r < x < 27r,

`I'a(x) =1ka(x) + ra(x), (8.10)

where ? (x) is the function (equal to 27/xa-1/r() for x> 0 and to 0 for x < 0. Hence

fa(x)=r(a) f pf(t)(z-t)a-1dt+ 2n f o'f(t)ra(x-t)dt

for 0 < x < 2n. In this range the last function has derivatives of all orders, and we see
that, from the point of view of differentiation properties, the definition (8.9) is not
essentially different from (8.1) with a = 0, provided x is in the interior of (0, 27T).

For some problems we may replace the series (8.3) by & somewhat simpler expression.
Suppose for simplicity that

f (x) - (a coo nx + b sin nx) _
r r

is real-valued. Then

fa(x) = cos Jim sin }na En-Bf1(x), (8.11)

by (8.6). Suppose also, to take an example, that we want to prove that fa E Aft, 0 <'8 < 1.
In this case it is the same thing to show that the function

n-a(an cos nx + b sin nx) (8.12)

belongs toAB. For if it does, so does the conjugate function (see Chapter III, (13.29)),
and so also, by (8.11), does, . Conversely, if f. f A,,, then also fa c AR; and writing for
fa an equation analogous to (8.11), we deduce from these two that (8.12) is in Ae.
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In this argument we, might consider instead ofAa any class K of functions such that
f belongs to K whenever f does. We might take for K the class L', I < r < ao, the class
A,,, etc. Thus it is sometimes enough to study the series (8.12) instead of (8.11).

(8.13) TEEOREM. Let 0 < a < 1, 8 > 0, and suppose that f e A,. Then (i) ff E A,+a
if a+f < 1; (ii) f,EA. if a+f =1.

(8.14) ThEOREM. Lei 0 < y < a < 1. Then (i) f ve A.-, if f e A.; (u) f l e AI_r if f E As.
These theorems clearly show the effect of fractional integration and differentia-

tion upon the Lipschitz character of the function. They also show that for these
operations the class A. is more natural than A1. The corresponding results with .l for
A throughout are also true and can be proved in the same way (they are needed for
(9.1) below).

In the proof we need the inequalities

1"a(t) I <Ca I t la-1, I 'V (t) I <CC I t la-4, I 'F (t) I <Ca j t ja-3, (8.15)

valid for 0 < I t I < n Differentiation here is with respect tot, and C. depends on a only.
These inequalities are consequences of (8.10) and the properties of r,.

We begin with (8.13). Suppose that f e A 0 < a < 1, and that 0 < h < frr. Then

27rfa(x) = f f(x - t)'l',(t) dt =J [f(x - t) -f(x)] `F/t) dt,

27Tff(x+h)= f * [f(x+h-t) f(x)]'F (t)dt= fR U(x-t)-f(x)) 'Y,(t+h)dt,

27r[fa(x+h)-fa(x)]= f U(x-t)-f(x)][W,(t+h)-W,(t)]dt

+ fE
It I E,f

=A+B.
fle?<2h 2h

We have
IAA = f-0(1 t I&) {I `Ya(t+h) I + I I}dt

0(h°`)f 93h21'V,(t) I dt=O(ha)f sh0(t0-1)dt=0(h°+a), (8.16)

and by the mean-value theorem and the second inequality (8.15)

IBI_< O(Itla)hjW (t+Oh)Idt (0<0<1),
2hele It.

45 0(1 t I-)o{(I t I-h)a-i}de=0(h) f to+a-2&=O(h°+a),
sh

since a+fl< 1. Hence A+B=O(ha+a), and (i) follows.
Passing to (ii), suppose that 0 < a < 1, a + fl = 1 (the ease a = 0,8 = 1 is obvious). Then

21T{ f,(z + h) + ff(x - h) - 2fa(x)}

J,
+fM<1f1<W

I ( 2h

Arguing as in (8.18) we have A = O(ha+a) = 0(h).

=A +B.
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Clearly I BI f to+fi-sdt=O(h).

Hence A+B=O(h) and
For the proof of (8.14)(i) we have to show that g(x)=df1_r(x)ldx exists and is in

Aa_y. Let F be the integral off. We have

27rff(x)= - f o* {F(x-t)-F(x)}`l g(t)dt=

since the integrated term is 0. We replace here ,8 by 1 -y and differentiate both sides.
Then

g(x) = 2n J _. (f (x- t) -f (x)}Yi_y(t) dt

exists, since the integral on the right converges absolutely and uniformly. We have
2n{g(x+h)-g(x)}=5*

A(x,h,t)Wi-y(t)A,

where A =f(x + h - t) -f(x +h)- f(x-t)+f(x).

Clearly A = 0(111 a), and regrouping terms we also find that A = O(ho). Applying these
estimates we find

p

2rr{g(x+h)-g(x))= J 0(111-) 0(1 tl-r-')dt+5 O(ha)0(1 tI-r-1)dt=O(h--Y),
ItI h A<Iels*

and (i) follows.
It remains to prove (ii) of (8.14). Let Pa(t) and Qa(t) be respectively the coefficients

of cos iira and sin };ira in (8.6). Since Pa(t) and Qa(() are linear combinations with
oonstant coefficients of `F'a(t) and `Ya(-t), it follows that P. and Q. satisfy inequalities
analogous to (8.15).

Suppose that f e Ay, and let F be the integral of f. In the equation

227f1_y(x)= -sin }nyJ ** F(x-t)P1_y(t)dt-cosJ"f ** F(x-t)Ql_r(t)dt,

the two integrals on the right are conjugate functions. If then we show that the last
has a derivative inA1_r, the same will follow forfl_y, and (ii) will be established.

As in (i) this derivative, which we will call g(x), exists and is equal to
*

20 -*(f(x-t)-f(x))Qi-r(t)d.e= Jo z(t)Qi-y(t)dt,

where ¢=(t)=4{f(x+t)+f(x-t)-2f(x)}. Hence

7r{g(x+h)+g(x-h)-2g(x)}=iu A(x,h,t)Q1'_y(t)dt,

where A = O,+h(t) + 0=-h(t) - 2cz(t). Since, by hypothesis, O=(t) = 0(t), it follows that
A=O(t). On the other hand, regrouping the terms we find that

A = 0,+t(h) + Ox--t(h) - 2Oz(h) = O(h).
Hence

r
>r{g(x + h) +g(x - h) - 2g(x)} =J h O(t) 0(t-Y-1) dt +f O(h) 0((-y--1) dt =O(h'-Y).

0 A
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By Remark (d) on p. 120 of Chapter III (see also footnote in Chapter II, p. 44), this
implies that gEA,_,, and the proof of (8.14) is completed.

The Weierstrass functions

w(x; a) = E 2-na cos 2ax, w(x; a) = 2:2--sin 2^z

show that in (8.13) (ii) we cannot substitute the class AI for A.. For w(x; a) and iv(x; a)
are both in A. if 0 < a < 1, and in A, if a = 1, and these results are best possible (Chapter
II, (4.9)). Hence w,-.(x; a), which is a linear combination with constant coefficients
of w(x; 1) and iv-(x; 1), is in A, (a result which conforms to (ii) of Theorem (8.13)).
That w,-,(x; a) is not in A, is clear since the coefficients of wt_,(x; a) are not o(1/n).

9. Fractional integration (cont.)
We now investigate the effect of fractional integration on the classes Lr.

(9.1) THEOREM. Suppose that f E V, l c r < oo. If 1 /r < a < I + I /r, then f, EA.-v,. If
a=1+1/r, then f,EA..

If r = 1, then 1 < a < 2; and since the integral fi off is continuous, the assertion
follows from (8.13) (i), (ii) with d for A throughout. Similarly, if r> 1, it is enough to
consider the case 1/r < a < 1, since the remaining case is obtained by combining this
particular one with (8.13) (i), (ii).

Suppose then that r > 1, 1 /r < a < 1. By Holder's inequality,

2ir fa(x+h)-f (x) I =
Ifff

f(x - t) {T,(t+h)- T.(t)}dt )

I

<-(f*w I f(t) I'dt)"(f
w.

I'Ya(t+h)
-'Ya(t) Irdt} (9'2)

The first factor on the right can be made arbitrarily small by subtracting from
f a trigonometric polynomial (for which the result is obvious). It is therefore enough
to prove that the last factor is 0(ha-1,'). Using (8.15) we write

f I `F (t+h)-'Y,(t) Irdt=
fie I44d

+
f2h4 IS I Gw

=A+B,
w

where A 2r-' f (I'Fa(t+h) Ir+ I'Y'(t) Ir)dt

3h 3h
0-i)r dt=O h(a-1)r+1

) ( )+f-3h I
a(t)

Ir =

-3h
0(1 t 1(a

B-< f" h"
2k. $g IGw

= 0(hr)f t(a-!)rd1-0(h(a-1)r+1)r

so that the last factor in (9.2) is O(ha-11r). The inequalities (a -1) r' > -1 and
(a - 2) r' < -1, which we used in estimating A and B, are equivalent to the hypothesis
1/r<a<1+1/r.

In what follows we shall use complex methods, and for this purpose a modification
of the definition (8.9) will be needed.
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Suppose that
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O(z) = E cn zn, (9.3)
0

where z =p e'49, is regular for I z I < 1. We define the fractional integral Va(z) of 0(z)
by the Riemann-Liouville formula (8-1), where now the integral is taken along the
segment [0, z]. Thus for a > 0 and I z I < I we set

Pa(z) = 1
J

(z - )a-' za z-1 t (1 - a-10(S) dP(a) to.,l I'(a) ro.,j \ z

= z;(Da(z), (9.4)

say, where (z - S)a and za denote the principal values of the powers: za = exp (a log z)
with - n <.Jf log z 5 7r. On setting = zt, 0 _< t _< 1, and

Scn>

(1 -
t)a-'tndt

P(n(+a+)1), (9'5)

we see that (Da(z)=I(a) (9'6)

is a function regular for I z < 1 (since 0(1)). Thus in any case j Pa(z) I is single-
valued for i z J < 1. Moreover, the boundary values of I (a(z) I and I Pa(z) I on I z I = 1,
wherever they exist, are the same. From (9.8) we see that (,*(z) has a limit on any
radius of the unit circle on which 0(z) has a limit.

It is useful to observe that the numbers 8(,°> are closely related to the CesAro numbers
A, introduced in Chapter III, § 1; in fact

= 1 (97)&n.) AP(a+1)
Thus the numbers 8( ) decrease monotonically to 0 as n increases, and are asymptotic-
ally equal to n-a. Even more precisely (see Chapter III, (1.18))

8',')-n-a I 5 An-'a''. (9.8)

Since fractional integration leads in any case to multivalued functions, we may
consider from the start, instead of (9-3), the (in general) multivalued function

W

¢(Z) = ZY N_ Cnz", (9.9)
0

where, say, y> - 1, c0+0. In this case (9.4) leads to

Pa(z)=za+Ycn
P(n+y+1) zn=za+r(a(Z),

(9.10)
0 P(n+a+y+l)

say,t a formula which immediately shows that

Aq(z))a = (Da+,(z).

Since Oa(z) is an ordinary repeated integral if a = 1, 2, ... , we see that the case 0 < a < I
is again the most interesting one.

t The fact that e:(z) has two meanings should not lead to confusion.
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Suppose for the moment that O(z) in (9.3) is of class H. Then Ec" ei"0 is the Fourier
series of

O(ete) _. lim O(p eu).
P-.1

Using the formula (1.15) of Chapter III, we verify that

4W - a)"+1-(n+a+1)A; P(a+I)

is a decreasing function of n. Hence ( )) is a convex sequence and F,c" ac.) et"g is also a
Fourier series (Chapter IV, (11.10), Chapter V, (1.5)). As can be seen from (9.8), it
must be the Fourier series of lim 4ba(p euu). Thus the latter funetion is integrable

p-*1
and

a{efe) . cn (9.11)
0

If c0=0 we may also consider the Weyl fractional integral 0a(6) of ¢(e'8). By (8.3),

ta(e) ^ a c"n-a es"s (i-a = exp (- }nia)); (9.12)

and, by (9.8),
95a(9) I < A E n-1-a. max I c" I < A. II c(ei°) III

A. (9.13)
for any e -> 1. Hence

II i 1) (e') - qa(6) J. Aa I O(e') II. (B 3 1). (9.14)

Thus in considering the norm there is no essential difference between 1 (eia)
and 0a(0).

We now consider the fractional integral of the function 9(z)=z7c *(z) for 0 in H',
r > 0. The case y = 0 is the only one of interest, but the proof requires us to consider
the general case. As in Chapter VII, § 7, we write

11 11r =o m 2 f o* I Ir =
IT
jo l I' = II ' Ifr=

and in order to unify notation we temporarily set

II
pJ

Ilr-21rU)
for any f (O) e Lr.

(9.15) THEOREM. Set O(z) =zoo*(z), where y> -1, ¢'e Hr, r> 0; and let

8>r, a=1/r-1/8>0.

Then the 4)a in the equation 0a(z)=za+Y4)a(z) i8 in HO, and

(9.16)

1

Suppose first that r = 2. The co-factor of c" z" in (9.10) is {11r(a)JO ,IY+n(1

Suppose we replace y here by 0 if y is non-negative, and by -1 otherwise. We obtain
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( *1) and 3(,°? , respectively, and in either case we increase the integral. Thus the co-factor
is 0(n-0). Hence, applying Theorem (5-24), we get

11 (:Ii- Aa,,10*I1, (9.17)

We now pass to the case r < 2. Since every 0* in H' is a difference of two functions
in H' without zeros and with norms not exceeding 2110* II we may suppose that c*
has no zeros. Then 0* = lU*21', where >/* e H2 and II i/r* II1= I10* I. Denote by N(O)
the upper bound of I ]!r*(z) I on the radius argz=0. By Chapter VII, (7.36),

11N1124A11f*113. (918)
Since r < 2, we have

14Da(z) f
u (1 A, I

r(a)N(2-.Yr(0) f0 (1-A)a-IAr I r/r*(zl) I dA. (9.19)

The function t/r*(z) is the Poisson integral of Vt*(e{B), and so 11/r*(z) I is majorized
by the Poisson integral u(z) of the non-negative function I ]1r*(el) I. Let

x(z) = u(z) + iv(z), where v(0) = 0,

be the regular function with real part u(z). By Parseval's formula,

11x111-2U0, *B1

The right-hand side of (9.19) is increased if we replace I i/r*(zA) I by u(zx). Hence

I lpa *') I s I Xa (pe`9) I.

Apply here Holder's inequality in the form

I!11/2lvfl Hf 111%11f2 Ily,,, (Rvj6,>a;,8=fI+f,),
where f1=N(1)" f,=Xa' f1=(2-r)/2r, 6,=}-a.
Using, (9.18), (9.17) (with x for 0*) and (9.20) we have

i! a(pe0) If (. s !I N II`sa-" 6 xa(pe'B) N lK}-& - (A II ** II a)(2 "Aa,r II x II=,

(A II TG* 11j2-'HrA..., 2f 11 * II = A..,,,110,* 11 A.. 110* II.

If we compare the extreme terms and make p -* 1, we get (9.16). It must, however,
be observed that in applying (9.17) we tacitly assumed that a < 4.

Suppose now that r > 2; then a < J. We fix p < 1. Then

114>*(pese) !j, = suop l
2>t jo (0) d6

for all g with 1 g !Ia = 1. Fix g - E d e'"8. Denoting by the co-factor of c*z* in
_W

(9.10), we write the last integral in the form

n8an.rd*zn= 1_ O(ete)
I*(pece) d0Z c

0 2n J 0 a
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where i2a(z) is associated with the function
W

((z)=zrm'(z),
0

We now observe that a =1 /r -1 /8 =1 /8' -1 /r' and that 1 < a' < r' < 2. Applying
Holder's inequality, using (9.16) in the case already established, and applying
Chapter VII, (2.28), we thus see that the last integral is numericallyrmajorized by

II II, II La*(p e'a) II , < II Il, Aa.r., it `(p efe) IL

II htAar..Arll9llr=Ay....II IIr

Going back to (9.21) and making p -.1 we obtain (9-16), where A depends on a, y, r, 8,
that is, on y, r,,6.

This completes the proof of (9.16) for a < J. The general result follows from it by
inserting between r = r0 and a = rk auxiliary numbers r1 < r3 < ... < rk_1 such that
l/r,_1-1/r5 < }, and successively applying the formula (Oa)r, = 4>x+',. (Observe that
the asterisks in (9.16) may be dropped.)

The following result, in which the fractional integrals are meant in the Weyl sense,
is a simple corollary of (9.15).

(9.22) Suppose that 1<r<8<oo, a=1/r-1/s.
Then if f e li, we have fa a La and

Ilfalla,A,.,IIfII,_ (9.23)

The result is false for r = 1, but it does hold in this case if SW is of power series type.
Suppose first that S[f] is of power series type and r i 1. Then f (O) = ¢(e'), with

O(z) a H. The inequality (9.23) then follows from (9.16) with y = 0 and from (9.14).
If r > 1 and S[f] is not of power series type, we may suppose that f is real-valued.

Let ¢(e8) =f(O) + if(6). Then S[¢(ef°)] is of power series type and II 0(e`8) II. < A, II f II.,
by Chapter VII, (2-4). Thus

Ilfalla<_ I10aI1a4Ar..I1011rsAs.,Afiff

To show that (9.22) is false for r=1, let,
mg) -

cos n6
(log n)1

By Chapter V, (1 -5), the series on the right is a Fourier series, and, by (8.11), S[fa] is

cos no sin n8
cos lira

na (log n)1-a
+ sin ins E as (log,),,.

1 a'1
By the formulae (2-8) of Chapter V, this sum is exactly of the order of (19log

as 6-.+0, and so is not in

10. Fourier-Stieltjes coefficients
s.Denote by

c" = c"[dF] = 2n f e-tom dF(x) (10-1)
0
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the Fourier-Stieltjes ooef cients of a function F(x) of bounded variation over 0 g x _< 2rr.
The class of functions F such that c" 0 will be denoted by R. We know that every
F in R is continuous (Chapter III, (9.6)), but that the converse is false (Chapter V,
(7.5); see also § 11 below). We shall investigate properties of Fe R, confining our
attention, as we may, to real-valued F.

(10.2) THEOREM. If F(x) belongs to R, 8o does its positive, negative and ab8olute
variation.

Denote by P(x), N(x), V(x) respectively the positive, negative and absolute varia-
tions of F over (0, x). If then F(x) is continuous, and so also are P(x), N(x),
V(x). Owing to the relations

P+N=V, P-N=F(x)-F(0),
it is enough to prove the part of (10.2) that concerns V. Incidentally, (10.2) implies
that every F from R i8 a difference of two non-decrea8ing functions from R.

Denote by b, b;, the Fourier-Stieltjes coefficients of 0(x), H(x). The inequality

21rIb,;-b.I=
f2R

0
e-i"=d{G(x) - H(x)}

r2R

5J d(G-H)

shows that if for a given 0 there exist functions H e R such that the total variation of
0 - H is arbitrarily small, then O e R.

Next we prove that if F e R, then

f

.

0,

r(x) e-i"= dF(x) -> 0 (10.3)

for any Step function r(x). The relation (10.3) is true if r(x) = ei"LT, m = 0, ± 1, ..., and
so also when r is any polynomial. Hence it holds for any continuous and periodic r.
If r(x) is the characteristic function of an interval (a, b) (closed, open or half-open)
and h(x) is the continuous function vanishing outside (a - rl, b + ii), equal to 1 in
(a + 1, b - rl), and linear in the remaining two intervals, then

f
/'2x

Jo

{r(x) - A(x)) e. in" dF(x)
(f

a+i

+Jb+,/IdFI

is small with 7), and (10.3) holds again. Hence it is valid for any step function r(x).
Take now any subdivision 0 = xo < xl < ... < xk = 2n of (0, 21r) such that

k
V(277)-EI F(x,)-F(xi-1)I (10.4)

and let 8J be defined as + 1 or - 1 according as F(x1) - F(z! 1) is _> 0 or < 0. Set r(z)
equal to 81 for x,_1 _< x < xf, j = ..., k, and r(27r) =r(2rr- 0). Set

Since

G(x) =Jo r(t) dF(t), A(x) = V(x) - 0(x).

e_i-r(x) dF(x) --)-. 0,
f 2R e-i-d0(z) =fo

0

2'

(10.2) will follow if we show that the total variation of 0 over (0, 21r) does not exceed e.
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Take now any subdivision 0= z < xj < ... < xQ = 2rr of (0, 2n) containing all the
points xa, x1, ... , xk, and let (x,_1, z,) be a subinterval of (x1_1, x5). The difference

AK) - A(x,-1) = VK) - V(x;_1) - [o(x9) - G(x' -,)]

is non-negative. Hence
= V (Z") - V (xn-1) - d![F(x;) - F(xn-1)]

A(x9) - A(xD-1) J = V (21r) - V (O) - E dj{F(x ,) - F(xy_I))

= V(2n) - F(xi) - F(xf_1) .

By (10.4), the total variation over (0, 27r) of the continuous function A does not
exceed e, and (10.2) follows.

(10.5) THEOREM. A necessary and sufficient condition for a function F(x) of bounded
variation over 0 4 x 4 27r to belong to R is that for the characteristic function X(x) of each.
interval (a, b) (repeated mod 2ir) we have

2w 2w 1 2w b - a
X(nx) dF(x) fo dF(x) 2nX(x) {F(2n) - F(0)). (10.6)

fo
For F absolutely continuous, the relation has already been proved (Chapter II,

(4.15)). Theorem (10.5) asserts that F e R if and only if the mass dF is distributed over
(0, 2n) with a certain homogeneity. A good illustration is provided by the Cantor-
Lebesgue function constant over every interval contiguous to the Cantor ternary set
(Chapter V, § 3). Denote by X(x) the characteristic function of the middle third of
(0, 2rr). Then F(z) is constant on each interval of the set whose characteristic function
is X(3kx). Hence in this case, and for n = 3k, the left-hand aide of (10.6) is zero, and so
does not tend to the right-hand side. Hence it follows from Theorem (10.5) that the
Fourier-$tieltjee coefficients of the Cantor-Lebeegue function cannot tend to zero,
a fact already established (Chapter V, (3.6)).

In proving the necessity part of (10.5) we may suppose that F is non-decreasing.
If F.c,,, ei- is S[dF], then +

F(x)=c,z+d+ E' (c,"/ien)eiw'z.

The intervals where X(nx) =1 are of the form

1u 2kn 0 u 2kn 8(-+ n -n, n+ n +-J (k=1, 2, ..., n), (10.7)

20 being the length of the interval where X(x) =1. Since F is continuous, the left-hand
side of (10.6) is

FR(u,8)= 4F(+2krrB)-F(u+2knB))
k_1 `n n n n n n

+m
=2co8+2 Z'

A-M
(10.8)

The right-hand side here is, for fixed u, a non-decreasing function of 0, and is, except
for the linear term, a Fourier series in 0. The termwise differentiated series

+ +m
2c0+2 Z' caw etc" oos,IB = 2c0 + Y-' c_a* e-"") CA°

a--m a-
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is By hypothesis, cm -+ 0. Hence, as the last series converges termwise
to 2e0+E'0. eta8. By Chapter IV, (4.22), 0) converges, for each u, to 2c08, which
is the right-hand side of (10-6).

Conversely, suppose that (10.6) holds for the intervals (10-7), for every u and a single
0, 0 < 0 < rr. Disregarding a denumerable set of values of u we may suppose that x(nz)
and F(x) have no discontinuity in common. Then again the series on the right of (10-8)
represents the left-hand side of (10.6). Consider this series qua Fourier series in u.
By hypothesis, its sum converges (boundedly) to the constant term 2co8 for almost all
u. Hence the remaining coefficients must tend to 0, and taking A = ± 1 we get c -> C

(10-9) THEoREM. Suppose that F e R, and denote by B(x) any function such that the
s.

(Lebesgue-Stieltjes) integral J - I B(x) dF exists. Then
0

f2w
J"-J

e 0 a polynomial T(x) such that.J I B(x) - T (x) I I dF I< e.
0

(This inequality is certainly true, and is a consequence of the definition of an integral,
if T is a suitable step function. Since F is continuous, it is also true for some continuous

29
function T, and so also for some polynomial.) Hence, setting J* = fo e-4- T (z) dF,

J
we have I J" - J;, I < e, and since Jn 0 we get (10.10).

Remark. For immediate applications we shall only need (10-9) in the ease when B(x)
is continuous, except possibly at one point, and bounded. Then the integrals involved
are all Riemann-Stieltjes integrals, and the proof is elementary.

(10.11) THEOREM. If Fe R, then

I(u)-
e

as u tends continuously to ± oo.
Suppose that 1(u) * o(1) ; then there is a sequence {uk} tending to infinity such that

I(uk) 13 8 > 0. Let uk = nk +ak, where nk = [uk], 0 < ak < I. By considering a sub-
sequence of {uk}, we may suppose that ak tends to a limit a. Then

lim {I(uk)- r e-u"t+al=dF}=0.
J o

But, by (10-9),
f4*

0
e-4"=e-i-dF-+0

as n -> oo. Hence I(uk) -+ 0, a contradiction.
Remark. The expression I(u)/2n is the Fourier-Stieltjes transform of a function

equal to F(x) for 0 _< x 5 27r, and equal to F(0) and F(2a) for x < 0 and x > 27r respectively.

If F is absolutely continuous, then c, [dF] tends to 0. The c" cannot tend to 0 if
F is of bounded variation and has non-removable discontinuities. How rapidly can
the c" tend to 0 if F is continuous and singular? It is clear that in any case we have
then E I c" I' = oo.
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(10.12) THEOREM. There is a monotone and singular F such that cn[dF]=O(n-1+f)
for every e > 0.

The idea of the proof will be to consider an S[dG] with coefficients small 'on the
average', and then by a simple mapping of the interval (- n, 7r) onto itself to obtain
an F with coefficients actually 'small'.

Write nk = 22k and consider the Riesz product

+0
Ii (1 + cos nkx) = 1 + a cos vx

k-1

(see Chapter V, § 7). The series here is an S[dG], where C is increasing, continuous and
singular (Chapter V, (7.5), (7.6)). We have 0 S y, S 1 for each v. For any integer .N > 3
there is a k such that nk-1 < N < nk. Hence, if lIk(x) is the kth partial product and if
/Lk=nk+nk_1+nk_s+..., we have

N A&

EYY<- EY,=flk(0)=2k_<ClogN,
-N -Pt

and comparing the extreme terms we see that the y, are small 'on the average'.
Consider now the one-one mapping

a
x=x(t)=(t+ sign t) (-n_< t5rr),

of the interval (- n, n) onto itself, and set F(x) = C(t). Since x'(t) is contained between
two positive bounds, F(x) is increasing, continuous and singular. Moreover, by
Chapter IV, (8.7),

c*[dF] =
1 f* e-I-dF(x) = 1 f e-1-WdG(t)
277 2rr

= E A,.,.Y,.

The series here converges absolutely since the function e-" ' has a derivative of
bounded variation, and so its Fourier coefficients

] a++nn,r=
1

21r
-, e- dt

are O(1/v').
Suppose that n > 0. We shall prove in a moment the inequalities

An-i for all v,

A P-2 for I v l_> 3n,

where A is independent of v and n. Taking these for granted we have

Icn[dFJj_
I ,Iy,= E + E =P+Q,

r- W I043n I.I>3n
3n

P < An-i E Y, S An-i. C log 3n = O(n-i log n),
-3n

Q,<A E v-2.1=0(1/n).
IfrI>3n
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Hence P + Q = 0(n-i log n) + 0(1/n) = 0(n-4)

for each e > 0, which proves the theorem.
It remains, however, to prove (10.13) and (10.14). The first inequality follows from

Lemma (4.3) of Chapter V, since for the function f (t) = nx(t) + Pt we have f'(t) = ± nn-1.
(Since f' is discontinuous at t = 0, we must consider the intervals (- IT, 0) and (0, n)
separately.)

Sincef(t) is odd, nA-.., is

f0 f dt-sod f, f-so
7-2

f'dt=nrr'1
fo

f'a f'dt.

The function P= nx' + v is monotone in (0, ir), and for I v I _> in is of constant sign,
since } <_x' < j. For I P I >3n we have If' 13 } I v I, and the second mean-value theorem
applied to the factor (1/f')' shows the integral to be numerically not greater than

nn-1.(2/Iv()3.2-A/v'.

11. Fourier-Stieltjes coefficients and sets of constant ratio of dissection
We shall now investigate the behaviour of the Fourier-Stieltjes coefficients of certain

non-decreasing and continuous functions.
Take 0 < 6 < }, and consider a perfect non-dense set E = E(g) constructed on (0, 27r)

in the familiar Cantor manner, except that at every stage of construction we remove,
not the middle third, but a concentric interval of relative length I - 26. We considered
such sets in Chapter V, § 3, where we called them seta of constant ratio of dissection.
The Fourier-Stieltjes coefficients of the Lebesgue function F(x) associated with E are
given by the formula (Chapter V, (3-5))

C _ (- 1)" (2n)-11-1 cos {irn.gk-' (l - a)). (11-1)
k-1

One of our problems is to characterize the values of g for which c, -> 0.
If'l/6 is a positive integer, and in particular if E is Cantor's ternary set, the coeffi-

cients c do not tend to 0 (Chapter V, (3-6)). For other values of t, and especially for
6 irrational, the problem is much more delicate; it reveals, quite unexpectedly,
connexions with algebraic number theory.

The proof of (11.1) shows that the formula holds for n non-integral, provided (- 1)""
is replaced by a-"c'. Hence, in the light of (10.11), we may state our problem as follows :
for what 9'a does the function

Y(u) = 11 cos (?Tufk)
k-0

(11.2)

tend to 0as u-soo?
In discussing this problem we suppose always that 0 < f < 1. Although in con-

structing the set E we had to take 0 < 6 < j, the formulae for c and y(u) have meaning
(and are of interest in the calculus of probability) for 0 < 6 < 1. Incidentally, restricting

to the interval (0, }) would not simplify the argument.
Suppose that y(u) $ o(1) as u -> oo. We shall deduce from this hypothesis certain

consequences about
Let 0=1/f (0>1).
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By hypothesis, there is a sequence ul < u2 < ... < u, < ... --). ao such that I y(u,) I >- d > 0.

We can write
U. = A,, Bms,

where the m, are integers tending monotonically to + oo, and I -< A, < 8. By selecting
a subsequence of (u,), we may suppose that A, -> A, 1 -<A <- 0.

Obviously, I y(u8) 15 I cos (nA8). cos (nA,O). cos (nA802) ... cos (7TA,0M,) I .

Hence [j (I - sin' (nA, 0m)) > E'.
M-0

and, using the inequality e2 > I + x,

m,
Y, sin' (nA, 0m) -< log (1/d').

M-0

Therefore, fort > s, sin' (nA,O") 5 log (1/8').
M-0

Keeping 8 fixed and making t oo, and then making s -*co, we obtain from the last
inequality the relation

sin' (rrAO") -< log (1/8'). (11.3)
m-0

Thus we have the following theorem:

(11.4) TH$OBEM. If the coefficients c. in (11.1) do not tend to 0, there is a real A + 0
such that the series E sin' (irAO") (11.5)
converges.

Denote by {a} the distance between a and the nearest integer; thus 0 -< {a) < J. The
convergence of (11.5) is equivalent to the convergence of

E{A0m}'. (11.6)

Suppose that y is an algebraic integer of degree n, so that y satisfies an equation

(11.7)

where b1, b=, ... , b are rational integers, and satisfies no equation of this type and of
lower degree. We say that y is an S number, if y > 1 and if all the conjugates of y (other
than y) have moduli less than 1.

(11.8) THEOREM. Suppose that 0 > 1. A necessary and sufficient condition that there
exists a real A * 0 such that E{AOm}' < ao, is that 0 be an S number.

The sufficiency of the condition is immediate. Suppose that 0> 1 is an algebraic
integer of degree n with conjugates a,, ai, ..., a*_1 of absolute values lees than 1. Then
0-+ai +a'"'+... +an 1 is a rational integer cm such that

{em-Omkk(n-1)o-'" (o'=maxJa1l),

and the convergence of E{ABm}, with A =1, follows.
The proof of the necessity is deeper and is based on two lemmas. The first is the

following:
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(11.9) THEOREM OF KRONECKER. A

M
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E CmZ- (11.10)
m.0 W.

represents a rational function regular at the origin if and on18 if the determinants

A. =

are 0 for all large enough m.

Co Cl ... Cm

C1 C= ... Cm+1

Cm Cm+l Ctm

Proof. First we note that a power series (I 1.10) represents a rational function regular at the
origin if and only if the c,. satisfy, for all large enough m, a recurrence relation

c.ye+c,.+1 Y1+... +c..+5Ye=O, (II I l)
where y., yl, ... , y; are independent of m and not all 0. For, supposing as we may that yk * 0, the
validity of (11.11) for large enough m means that the product of (11.10) by the polynomial

Yezt+Ylzt-1+... +Yk,

which does not vanish at the origin, is itself a polynomial, that is, (11.10) represents a rational
function regular at the origin.

Suppose now that we have (11.11) for m> me, and that yk = 1. Then, for N> me + k, the last
column of AN is a linear combination of the preceding k columns, and so AN = 0. It remains there-
fore to show that if A,. = 0 for all large enough m, then, with suitable ye, yl, ... , ye not all 0, we have
(11.11) for all large enough m.

The special came when Ae = A1= ... = 0 is immediate. For then ce = 0, and if ce = c1= ... = 0,
so that A_ = (- 1)'" c", then also c = 0, that is, (11.10) vanishes identically.

Suppose therefore that (11.12)

for some me> 1. From A..= 0 we deduce the existence of constants ye, y1, ..., y.., not all 0,
such that

Yoca+ylc5+1+...+y,.,ce+w,=0
Since A,,-1$ 0, we may suppose that y,,,.= 1. Write

Then C_ = 0 for all m G me. We wish to show that C,,, = 0 also for m> me.
Suppose that for some positive ml we have C..+., $ 0, while C. = 0 for m <me+ml Consider

1t_, ... Adding to each of its columns of rank not less than me the me preceding columns multiplied
respectively (in order of increasing rank) by ye, yl, , Y+.,-1. we obtain

Cti+-,

Since the elements in the upper right square are all 0, those above the diagonal of the lower right
square are all 0 and those on the diagonal are all C,,,,+,.,, we have

Hence, by (11-12), C_,,_, =0, contrary to hypothesis. It follows that C_= 0 for all m;a 0, and the
proof of (1 I.9) is completed.
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The second lemma we need is as follows:

(11.13) LEMMA. Suppose that a power aeries ECmzm with integral coefficients repre-
sents a rational function; tbn we can write

ae+a,z+...+a,,za
l+b,z+...+bkzk

where the fraction on the right is irreducible and all the a's and b's are integers.

(i) We have Ec,,,z°=P/Q, where

P(z)=ao+a,z+...+akzk, Q(z)=ba+blz+...+bkzk, b0*0.

Since bk c + bk-, cif1 + ... +b0 0 for n + k> h, the b's are commensurable; if we suppose, as
we may, that the b's are rational, the as are also rational. We may suppose that the a's and b's
are integers and that P and Q are without common roots. We may also suppose that the c's are
co-prime (i.e. have no common divisorgreater than 1) and that theb'sareco-prime. For otherwise,
expressing the a's in terms of the b's and c's, we see that the common divisor of the b's would also
divide all a's, and could be cancelled out in the equation Ec,,,z" = P/Q. It is enough to show that
on these assumptions bo = 1.

(ii) If Ey,,,z" is a product of power series Ea,"z'" and 2;,8,"z'" with integral coefficients, and if
all the y's are divisible by a prime p, then either all the a's or all the ft's are necessarily divisible
by p. For suppose neither is true and denote by a, and 8, the first a and 8 not divisible by p.
Then in

y,+,=aafi,+,+... +a,-1Y,+1+a,ft +a,+1fl +... +a,+,,8o

all the terms on the right except a,,8, are divisible by p, and a,fl, is not. It follows that y,+, is not
divisible by p, contrary to hypothesis.

(iii) If the P and Q of (i) have integral coefficients and no root in common, there are poly-
nomials R and S with integral coefficients such that

P(z)R(x)+Q(z)S(z)=N,

where N is an integer. Since the power series for P/Q has integral coefficients, the same holds for
the power series

ECM, Z- =

Q

=
e

R+S.

We assumed that all the b's are co-prime. Then, by (ii), each prime factor of N divides all e.,.
Hence we may suppose that N = 1. This gives c. ba = 1, whence bo = 1, which proves the lemma.

We pass to the proof of necessity in Theorem (11.8). Write AO- = cm + 8m, where cm
is an integer and 1 am 1 t J. The power series F.cmzm has radius of convergence 1/0.
We show that it represents a rational function.

By (11-9), it is enough to show that the determinants A. vanish for m _> me. Now,
Z,,, can be written

Ce cl - Bce ... Cm - Bcm_1 CO 711 ... ?1m

C, Ct - 9C1 ... Cm+1 - BCm Cl r/8 ... 71m+1

Cm Cm+l - BCm ... Cy - BCtm-, Cm r/m+l ... 172M

where 17k=Ck-Ock-1=08k_1-4-

since 17k , (02 + 1) (ax_I + ak),
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the series Y,9k converges. Let Rk be the kth remainder of the series. Hadamard's
well-known estimate of the absolute value of a determinant gives

Om<1 O Ry... Rte.

`Now, since I A8k-ck I _< 4, we have
Ck 5 C8'

where C = C(A, 6) is independent of m. Since Rm --o- 0, it follows that A,,, -+ 0. But is.,,,
is a rational integer. Hence Am = 0 for m ? mo.

By Lemma (11.13), P(z)
Yc Zm=

"' l+blz+...+b,zzn

where the b's, as well as the coefficients of the polynomial P, are integers. Write

Y.. 8m Zm = Y, AO-z- - E Cm Zm
0 0 0

_ A P(z) (1114)1-9z l+blz+.-.+b,,zn

Since 18m j the radius of convergence of E8mzm is at least 1. Renee 1/0 is a root of
1 + b1 z +... + bn zn, and all other roots have modulus at least 1. Since E8,' < oo, the
rational function 146 z- cannot have a pole on I z =1. It follows that

1+blz+...+b,Zn0
has one root, 1/0, inside the unit circle, and the remaining n - I roots outside the unit
circle. Therefore the roots of the reciprocal equation

zn+blzn-1+...+bn=0 (11.15)

are all algebraic integers, and all, except 6, are situated inside the unit circle. Hence
8 is an S number (of degree n, since (11.15) is clearly irreducible).

Incidentally, A belongs to the field generated over the rationale by 8. For if

Q= 1 -i-blz+...+bnzn,

then, by (11.14), - A!6 is the residue of P/Q at z 1/0, so that

A P(1/8)
8 Q'(1/B)

(11.16) THEOREM. Suppose that 0 < 6 < 1. A necessary and sufficient condition that
the coefficients cn in (11.1) do not tend to 0 is that 0 =1 /6 should be an S number different
from 2. '

From (11.4) and (11.8) we see that if cn + o(1), then 8 is an S number. Moreover,
0 + 2, since otherwise cn = 0 for n + 0 (and F(x) = x + C in (0, 27r)).

Suppose, conversely, that 6 + 2 is an S number. It is enough to show that y(u) in
(11.2) does not tend to 0 as u -* oo. Set u = 8k, k = 0, 1, 2, .... Then

I y(ek) I = cos (778) coo (iTOt) ... cos (rrOk) 1. 1 cos (7r/0) cos
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The proof of the sufficiency part of (11.8) shows that E sin 2 n6- < oo. Hence the infinite
product Il cos' 7T91" converges to a number A, which is positive unless for some m
we have 9" =j + j with j integral. The latter is impossible if 0 is an S number. Hence

I y(Bk) I r Al I cos (n/0) cos (n/9$) ... 1.

The last infinite product converges to a number B 0, since 0 * 2. (If 0 is an S number
m = 2 is impossible form > 1.) Hence I y (0k) I _> A} B I and (I 1.16) is established.

The theorem shows that except for a denumerable set of 4's we always have c -+ 0.
If 6+ j is rational, say 6 = p/q, and the fraction is irreducible, then 0 = q/p, and

c"+o(1) if and only ifp=1 cf. (Chapter V, (3-6)).

(11.17) TssoxnM. If 0 < 9 < j and 0 = 1 /f is not an S number then the perfect set E(f )
is a set of multiplicity.

(11.18) THEOREM. If 0 < 6 < } and 6 =1 / is an S number then E(6) is a set of
uniqueness.

Theorem (11.17) is a corollary of (11.16) since under the hypothesis of (11.17), if
F is the Cantor-Lebesgue function associated with E(g), c"-+ 0 and, by Theorem (6.8)
of Chapter IX, S[dF] converges to 0 outside E without being identically 0. Thus E is
a set of multiplicity even in the restricted sense (Chapter IX, p. 348).

Theorem (11.18), on the other hand, does not follow from (11.16). For though, if
9 is an S number, S[dF] does not converge to 0 outside E (indeed, it diverges almost
everywhere), it is not inconceivable that some other trigonometric series, not neces-
sarily even a Fourier-Stieltjes series, converges to 0 outside E without being identic-
ally 0. As a matter of fact, the proof of (I1.18) requires some new ideas.

In Chapter IX, § 6, we introduced the notion of sets H<">. We now need a slight
generalization of this notion.

Consider vectors (x1, xs, ..., x") of n-dimensional Euclidean space R". An infinite
sequence of vectors V(m> = (vj'">, v<- ), .. , v(,-,)) is called normal if for every non-zero
vector (a1, as, ... , a") with integral components we have

t10a1+vr)as+...+vn >a,, I-+oo

as m -> co. A set E c (0, 27T) will be called an H; > set if there is a subdomainA of the
fundamental cube

K : 0 _< x ! < 2n (j =1, 2, ..., n),

and a normal sequence { V(">} such that for each xe E the point (xv4"),
never enters A, mod 21T (m =1, 2, ... ). If in this definition we consider only vectors
VW = (vlm>, .. , v0n )) with integral components, we obtain the sets H(") of Chapter
IX,§6.

(11.19) LEMMA. Every set of type HZ) is a sum of a finite number of sets H(">.
It is easy to see that in the definition of a set H(.-) we may take all the numbers vf">

rational, with the same denominator, at the cost possibly of decreasing A. Further-
more, since now the fractional parts of the vjj > can take only a finite number of values,
we may suppose, by considering a subsequence of (17W), that the fractional parts of
the v(,-) are the same for each j:

(11.20)
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where the n(-) are integers, and 0 S rJ < 1. Without loss of generality we may suppose
that A is a cube I x1- x*, I < 8, j = 1, 2, ..., n.

We split (0, 2n) into disjoint intervals 11, 12, ..., 1,, each of length less than J8, and
write Et = E1. Hence E = EE,, and it is enough to show that each E1 is of type H"">.

If xEE; then, by (11.20), !>x=n(,->x+r x

and, since x is in I,= (a1, b;), rtx is in the interval (rla;, ribi) of length less than ,)8.
It follows that, since the points (vl'">x, ..., v("')x) do not enter A, mod 2a, the points
(n(l'")x, ..., n;"'>x) do not enter the cube I x, -x' I < J8, j= 1, 2,..., n. Hence each Ei is
of type H"">.

Since the closure of a set of type H""> is H"">, we deduce from (11.19) and Theorem
(6.15) of Chapter IX that sets H( 7) are sets of uniqueness.

Theorem (11.18) will be established, if we show that, if 6 is an S number of degree n,
then E(g) is of type HZ).

The proof of this makes essential use of the following lemma:

(11-21) THEOREM OF MINKOWSKI. Consider n linear homogeneous forms

Sr= art xl + a,,x= + ... + a.,, x" (r = 1, 2, . , n) (11-22)

in x1, xs, ..., x", with real coefficients and determinant t, * 0. If All A_, ... , A. are positive
numbers satisfying

A1 Ag ... A"> IA I,

then there are integers x1, x2, ... , x" not all 0 such that

1911<-Al, 19,1-<A2,

The conclusion holds if some of the forms have complex coefficients, provided that along
with each such f its conjugate also appears among the forms (11.22), and provided that
the is corresponding to conjugate f's are equal.

We prove this at the end of the section and proceed in the meanwhile with the
deduction of (11.18).

Let 0 be an S number and a1, a, ... , a,,_1, I a, I < 1, its remaining conjugates. Let
P(z) = z" + b1 z"-' + ... + b" be the irreducible polynomial with integral coefficients and
roots 0, a1, as, ... , a"-1. Denote by Q(z) the polynomial reciprocal to P(z):

Q(z)=z"P(1/z)=1 +b1z+...+b"z".
Finally, let R(z) = as z"-1 + a1 z"-' +... + a"_1 be any polynomial of degree n - I with
integral coefficients, and S(z) the reciprocal of R(z). Consider the formulae

IBz+JE11 a (11-23)E

Since the constant term of Q(z) is 1, the cM are integers.
By changing, if necessary, the sign of R we may suppose that A> 0. In view of (11.23 ),

A0-=c,"+8" (11.24)
%-I

where a, -. 0, (11.25)

-ai

s-I

1< 2;EI3.I i 1
I ItI

(11-26)
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Also A=lim(1-9z)R(z)_-8R(1/B)= -bR(1/6) S(B)

Q(z) Q'(116) {z"p(1/z}_ue
-P(e)

and since a similar argument gives the fij, we have

(j =1,2,...,n-1). (11.27)
aj)

The coefficients of S(z) = a,,,_1 z"-' +... + a1 z + a0 have so far been arbitrary integers.
We now choose them so that

3 = j'k I =
S()

< nBN,
p(8)

(11.28)
S(""1

1611= p,( 417 (.7=1,2,...,n-1),

where ,j and N will be fixed presently. Since S(6), 8(a1), ... , are linear forms
in the a, whose determinant (the Vandermonde determinant of 0, al, ... , a.-,) is
non-zero and depends only on 0, we can apply (11.21); and we easily see that we can
satisfy (11.28) provided

trON 3 A, (11.29)
where A=A(0) depends on 0 only.

Write dm = A6"/(0 - 1). The sequence of vectors

Vm'=( ) ( )
is normal, since for any non-zero vector (e1, e,, ..., e,) with integral e's we have

i dm+k ek =
A6Pm+1

B -1 (e' + ef9 + ... + e B"-')-)" ± 00,
k-l

since e1 + e20 + ... + e 9"-' + 0. We show that there is a subdomain A of K such that
for no x e E is any (dm+1 x, ..., dm+" x) in A, mod 2n.

We know (Chapter V, § 3) that the points of E are given by

x=2n(0- 1)(e16-1

where the e{ are arbitrarily 0 or 1. Hence for any fixed N we have, mod 2sr,

dmx = B 6- x = 2na(em+1 1 + Em+f B-f + ... + em+N 0- ')

+ 27rA(em+N+1 ON 1 + Em+N+f 0-N-2 + )

+21r(em80+Em_181+ ... +e18

=U+V+W,
say (cf. (11-24)). By (11.28) and (11.26),

0 < V < 27r3B-N < 27r77,

(11.30)

W 21T E 18k I < 27rB7),
0

where B = B(B). Hence, by (11.30),

- C77 < dm x - 0-1 + ... + e,"+NB-N) < Ci (11.31)
where C=B+1.
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Denote by g,,, the fractional part of A(E,n+16-1 +... + em+N&-N), and by O", the point
(2ngm, 2ngm+1, , 2irg."+,.-1) of K. By (11-31), the point (d_x, ... , is situated,
mod 27T, in a cube with centre 0m whose sides are parallel to the co-ordinate axes
and have length 201. But. the number of distinct Om is at most 2^'+"-i, since each
Om is determined by the numbers em+1, e,"+2, , em+N+n- and each c, is either 0 or 1.
Hence if, for example, 2N11-1(2Cr/)" <,)(2n)", (11.32)

then there is a subdomain of K free of the points (dmx, ..., dm+n_1x) and E is an H(.")
set.

Write (11.32) in the form
2N,,n <D, (11.33)

where D depends on 0 and n only. Theorem (11.18) will be established if we show that
there exist N and 11 satisfying both (11.29) and (11.33). Suppose that we have equality
in (11.33). Then it is enough to take N so large that (40)N 3 AID, and then to determine
7) from 2Nr)n = D.

Return to the proof of (11.21) and suppose first that all the fare real. It is enough to prove the
theorem under the hypothesis that Al ... A, is strictly greater than I A I, for once this is done we
may replace A, by A;> A, and then make A, -. A1, so obtaining the general result.

Suppose that the inequalities 16,14 A j = 1, 2, ..., n, have no non-zero integral solution; we
shall then come to a contradiction with the hypotheses. Write fox) for f,, where x = (x1, x ..., x,).
Let D be the set of x such that

6.(x) I YA1, J f:(x) 14 }A,, , J f.(x) J <}A,.

Denote by D, the set obtained from D by a parallel translation which moves the origin to the
integral point g=(g1, g:...., g,). Clearly D. is given by the inequalities I f,(x-g) I' }A, for all j.
If g'* g', D, and D,.. have no points in common; for if such a point x° existed, the inequalities
I f,(x°-9) I < #A, and I f,(x°-g') I k }A, would lead to

If,(g-g )I<A,
for all j, and the non-zero integral g =g'- g' would satisfy all the inequalities I f, I A,, contrary
to the assumption that no such solution exists.

We now observe that the measure I D I of D is

f... f,dx,...dz.=fill l<ia,...

11.I<#a.

a(x,,...') df1...df,=A,...,>1,

a(f1,....f.) JAI

since, by hypothesis, A, ... A. exceeds I A J. Consider all D. with g belonging to the cube I x, I ic N,
j =1, 2. ..., n, where N is an integer. Since the various D, have no points in common, the measure
of the union of those D, on the one hand is (2N+ 1)" I D 1, and on the other hand does not exceed
(2N + 2d)", where d denotes the largest distance of the points of D from the origin. Hence

(2N+I)"IDIE(2N+2d)".

Dividing this by N" and making N -moo, we obtain D I _< 1, a contradiction with the previous
inequality I D I > 1. This proves (11.21) when all the are real.

Suppose now that, for example, f, and f, are complex conjugates, and replace f1 and f by the
real forms

f1=it+fs
2

. ft-fi
2i

and A A, by A, = A, = 2-lA,.

We proceed similarly with all conjugate pairs of f'e, and if f, is real we write f,=f A,=A,. The
determinant A' of the now forms satisfies

IA'I=2-'IAI.
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where r is the number of complex-conjugate pairs of E's. Since 1W 14,k1... A,, there is an integral
non-zero solution x° of

and since, for example, I 9j1(x°) 12=61'(x°)+912(x°)<}.tl+}.1i=All,

we easily see that 16,(x°) I <.l, for all j.

MISCELLANEOUS THEOREMS AND EXAMPLES

For Examples 1-4 below see Marcinkiewicz and Zygmund [4].
We suppose that is orthonormal in (a, b) and that

(1)

d.)lit.<M*<oo

111 O /
for n = 1, 2,... and some 2 <q, < co. We write p, = qo = g,/(q, - I)-

1. Suppose that p, <p 4 2, and define q by

p.+2-p.=1.
p q

Then the Fourier coefficients cw off with respect to ssw satisfy

(EM.- I C. Iq)111<119",

a relation which for q, = oo, M1= M, _ ... = M reduces to (2.10).
(The proof is similar to that of (2.10): we have I cw IMw -1 Il1li". and Beeeel's inequality

1012411f lit.)

2. Suppose that I cp 4 2 and define q by

p q

Then if both EMI-' cw ' and E 1 c I l are finite, there is an f e b) whose Fourier coefficients
with respect to 0. are c,,, such that

If 1.<(EMI-'Icw1')lit,
a relation which reduces to (2.11) when q, = co, M1= M, _ ... =M.

If the M. are bounded below (which is certainly the case if (a, b) is finite, since then

Mw is (b - aYI-..x.v.)

the convergence of EMI-' I c I' implies that of E 1 cw 1'
N

[Consider finite Hums cw w =1; interpolate between 919 s = 9 c 9, and

NIf 10.4 EM. I C. 1,

and in making N-rco apply the Riesz-Fischer theorem (Chapter IV, § 1).)

3. Suppose that p, <p < 2, that f c L'(a, b), and that

M1<M,<....

Then the coefficients cw off with respect to 0. satisfy

{E1Cw IPMb-5".l(S-90 n("-1)i(I_ )) t A".". 919"
a generalization of (5-2).

[Write Beesel's inequality in the form
E IcwnaMw 12 n-'aM;'` 4 9191,
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where a,/3 are positive numbers to be fixed presently. Consider the additive measure v equal to
n-QaM-10 for the set consisting of the single point n= 1.2,.... and equal to 0 for the sets not
containing any point n. Consider the linear operation

1

Tf-{c,naM,)={noM,e,J
a

and the norms Ti h,,,,. From (i) we deduce that I c I <- M. f II... and we shall try to choose a, /!
so that Tf is of weak type (po, po). The measure v of the set in which I Tf I > y> 0 is equal to
En-"M-10 extended over those n for which I c,naMs >y. For such n we have, a fortiori,

(ii) n0Mw+1 11f IIf,>y.

Let no be the least n satisfying (ii). Since M, <Mk<..., (ii) holds for each n'no. We shall see
presently that a>- 1. Anticipating this, and denoting by A a positive absolute constant, we have

n-1aM.10<MM10 E n-Qa<Anasat1MM10.
nan° n'4 n.

Comparing this with (ii), we choose so that 2a - I and 2f are proportional to a, f+ 1, and that
the coefficient of proportionality is po. This gives a = 1/(2-po), 8=po/(2 -po), and an application
of easily completes the proof.]

4. Suppose that 2 < q < qo, that M, < M1 < ... , and that S = E I c v.)n t.-1Ya-sd is
finite. Then there is an f E LQ(a, b) with coefficients c,,, satisfying

Moreover, B,,,.=A,.v., B5 ...<A!! 2q.qo-q
In Examples 5-8 which follow, (0,) is a uniformly bounded system (I M) orthonormal

on (a, b).

5. If I c I<- 1/n for n = 1, 2,-, the c, are the coefficients, with respect to {0,}, of en f such that

r.a
where y and d are positive absolute constants.

[The proof is similar to that of (4.41) (i). Supposing for simplicity that c1=0, we deduce from
(2.11) that

L, If I-dx6l
n1<y°Ma_1(q-1)1-1

q q 8 ql

for q = 2, 3, ..., and observe that o usk
expIul<2coahu=2E -.

o (2k)l

We may take for y any fixed number less than I/e.
A somewhat different argument is based on (5.3) and (5.8):

Ja
I f IQdx<MQ-QAQgQE I nc, IQ.n-Q<MQ-QAQgQ,

from which point we proceed as before.]

6. If Z n I c 13< 1, there is an f with coefficients c such that
I

j f°{erM-, f0-1}dx<M-Q4.
a

More generally, if Ent I c, I k}1 < I for some k> 0, then

f {6 M-.-"kl 11,+,i- 1)dx<M-24,.

where yk and dk are positive and depend on k only.
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(The first result has applications to power series. For if F(z) = E c,z" is regular for I z I < 1, we

have

nIc.1'=2A f IP(Pe'°)I-pdpd6.
1.I<1

A proof based on complex variable theory gives in this case somewhat better values for
y and d; we Beurling(2]).

[(1) As in Example 5, d f II.MO-n'' does not exceed

J c j , - (Eni. I c, I . n-i.)u. < (En I c" I2)1 (En-MR-0)(9-02P,

and the last factor on the right does not exceed A(p-1)-i <Aqi.]

7. Suppose that b - a < oo. If 1 <p < 2, ¢(u) = u' 1(u), where 01 is positive and slowly varying,
then the ooeflicients c" off satisfy

EO(nlc.I)n-'<K f b#(If1)dx+K.
a

If 2 <q < co, '(u) = u'161(u), where VVI is positive and slowly varying, and if El((n I c, I) n-s < co,
then the c" are the coefficients of an f such that

b
r j/r(If1)dx4KEyG(nIc,I)n'+K.

8. Suppose that I f I (log+ I f I)a E L(a, b), b - a < ao, a > 0. Then

(1) E I`I(logn)a-1<K f if I(log+if I)adx+K,
Y n a

c 1 a'1

(u) K
aIfI(log+lfl)°alx+x,

(iii) E exp (- k I c. I -ua) < oo,
for each k> 0, with K independent off.

(By (4.34) applied to T f = {nc,}, we have (if a 3 1; for 0 < a < I we replace log (n I c I) on the
left by log(2+n Ie.1)

(iv) E II (log (nIc.I))--'<KJ If I(log- If I)"dx+K.
a

For the n such that n-i < I c. I < ni, log (n I c,1) is exactly of order log n, and since the contribution
of the remaining terms in (i) is <K, (i) follows from (iv). (For a =1, (i) also follows from Example b
and Young's inequality.) Since I c, I >- I/n implies log 1/1 c,1 logn, (i) implies (ii) for a 31. If
0 < a < 1, we must modify (ii) by either omitting the terms on the left with, say, I c, I ;a } or replacing
log (1/I c,1) by log(2+ 1/I c. I) for all n; in either case the contribution of those terms on the left
of (i) for which I e, 13 I/n is less than

KEIc.I'=KJ lfI'dx<KJ fIlog+Ifldx+x.
a a

To prove (iii), observe that (i) holds with c for c and so

9. If 1 < r < a < oo, a = 1 /r - 1 Is, and if f E L', then the least value of the constant A,,. in the
inequality f 8. (cf. (9-23)) satisfies

A,,. < A,

10. It is easy to deduce from (9.22) that if f e L', r> 1, then ft1, is integrable in every power.
But more than this is true: there are positive constants A, A such that if I f e, = 1, then

exp{A I fll,I')dx<A.
0

[Apply an argument similar to that used in the proof of (4.41) (i) to the result of the preceding
Example.]
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11. The first part of Theorem (9.22) is false for r= 1; the following result is a substitute. If
O< a< 1,,8= 1/(1-a), JE L(log+L)1-e, then f. c L0, and

rpw

aUa],As
o

IfI(log+IJI)'-°ax+Aa.

12. (i) If O <a < 1, O < f < 1, a+,6> 1, and then f0 has a derivative fec Aa+,_ .
(ii) If 0 <a <y < 1, and if f has a derivative f' e A,, then f7 c A,+y_a.
[Corollaries of (8.13) and (8.14).)

13. Letf(z) r Ec. ei.: g(x) - Ed. e": h(z) Ec.d. el..
(i) heAQ+,e,hEA.,h'EA,+Q_1,acooedingaea+f<1,

a+f = 1, a+#> 1.
(ii) IffeA., 0<a<1, then Vc A..

(iii) IffcA., gsA., then h'EA..
[(i) Let J(r. z), g(r, x), h(r, x) be the Poisson integrals off, g, A. Then

'
h'(r',x)= f'(r,t)g'(r,x-t)dt,

2r1r

p

where differentiation is with respect to the angle.
If feA., geAp, then f'(r,9)=O(8 -1), g(r,t)=O(d0-1) (8=1-r; see Chapter VII, (51)(i));

hence h'(r', x) = O(8=+0-'), and so also h'(r, x) =O(da+0-'). If a+ f =1, it is enough to apply
Chapter VII, (6.1) (ii). If a +fi < 1, Laplace's equation for h(r, x) gives

r 1 (r' h(r, z)) = O(d a+0"'),

and integrating with respect to r we obtain successively 8h(r, x)/Br=O(da+0_1) h'(r, z) =O(d°+0 '),
h(z) E AQ+O. Similarly for a+,6> 1. The conclusion holds if f c A;, g e A , 1 e a 400.]

14. Let k31,1<r42,1/r+l/r'=1,A>O,£Ic,I,<oo.IfO1,O.,... areRademacher'sfunctions
and f(t)(=rEc,0,(t), then

(1) \J' I f(t) I C,

(ii) fo exp(AIf I1)d9 <co,

where A is an absolute constant.
[(i) holds for r= 2 (Chapter V, §8) and for r= 1; apply (1.11). (ii) Apply (4-41)(i).]

15. Results analogous to those of the preceding example hold for lacunary series £A.,(x),
nk+1/n.>q> 1, except that A =A, in (1).

16. If g~ Ep,cos (vx+z,), gc r 2, and if n,+,/n.> q> 1, then

(£p'.t)u,<A,,e g.(log+g)1Hdx+A,.,
0

(cf. (7.6)).

17. If ra 2, Ep; <co, c> 0, then for almost all changes of sign the nth partial sum of

E±p,cos(vz+z,) is o((logn)ve)

uniformly in x, and the series E±(log v)-"p,coe(vx+x,) converges uniformly [of. Chapter V.
(8.34)].

18. Iff. Ic,e°' gcL11, I<p<oo, then
1 w t

fgdx= E c.c-.,
2n 0

where the series on the right converges (Chapter VII, (6.12)). The convergence is absolute if p = 2,
but for no other value of p. (M. Rieez [ 1].)
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[Suppose, for example, that l <p < 2. Let 0 < a < }, p < 1/(1- a). There is an h e A}, h - Ed" e'-,
such that End"I=oo (Chapter VI, (3.1)). Write d"=I nI n ja=c"c;,, say, (n+0). Then
Ec"e4" cL' (Chapter V, (2.1)), and Ec*e'"a=S[g], where g is continuous (cf. (8.14)) and so also
in Lo, andElc"c_"I

A sec E is said to be a act of multiplicity in the restricted sense, or set M0, if there is a Fourier-
Stieltjes series converging to 0 outside E, but not everywhere. A set which is not M. will be called
a set of uniqueness in the wide sense, or set U,; a series EA"(x) converging to 0 outside such a set is
either identically 0, or else is not a Fourier-Stieltjes series. Every B-measurable set which is a U, is
necessarily of measure 0.

19. (i) If E is M then there is a perfect subset of E which is also M0.
(ii) If E is an M then there is a non-decreasing F, F$const., such that S[dF] converges to

0 outside E.
(iii) If Borel sets Ei, E_, ..., E_.. are U their sum E = EE, is also U,.
(iv) If E is a U and if an S[dF] converges, or is only summable A, outside E to a finite integrable

function f, then S[dF] = S[ f ]; in particular, if S[dF] is summable A to 0 outside E, then F = collat.
[(i) We may suppose that I E = 0, since otherwise the assertion is obvious. Suppose that an

S[dF] = EA"(x) (F# coast.) converges to 0 outside E. Hence F is singular (and continuous, since
the coefficients of EA"(x) tend to 0). Let d be the set of points where F' exists and is ± oo. Since
S[dF] is summable A to ± oo in d (Chapter III, § 7), d is a subset of E. It is well known (see, for
example, Sake, Theory of the integral, p. 125) that the total variation of F over d is not 0. Let P

rP z
be a perfect subset of d such thatJJJI I dF 0, X the characteristic function of P, and G=

0
xdF.

O is not constant, the coefficients of dO tend to 0 (cf. (10-9)), S[dG] converges to 0 outside P.
(ii) Let O, and 0, be the positive and negative variations of the 0 in (i); consider S[dO,) and

S[dG,].
(iii) If E is M then there is a perfect subset P of E, and an S[dG], Olconst., converging to

0 outside P. Since P = PF, = EPE,, there is an i0 such that fps, I dO l $ 0. Let P' be a perfect

( ('
subset of PE,e such that) I dG 0. If X"is the characteristic function of P', then H(x) = J xX'dO

P' 0

is not constant, S[dH] converges to 0 outside P', and so also outside E,. PE,, 01 P', which con-
tradicts the hypothesis that Er. is a U,.

r
(iv) If F is not absolutely continuous, the set d of points where F'= teo is not empty, and

J
`I dF 0. If P is a perfect subset ofd such that J P dF 0, X the characteristic function of P.

X

0 = x dF covet., then S[dO] converges to 0 outside P, and so also outside E, which contradicts
0

the hypothesis that E is UO.]

20. If then the function obtained by integrating
termwise twice, has the following property : for each u and any 0 * 0 the expression

I kNl {0ru+ N+N -281-20ru+ NN

tends to c 6 as N -. oo. Conversely, if E c" e'"- is such that

thel

periodic part of the series de-
fining 0(x) is the Fourier series of a continuous function, and if (*) tends to 0 for some
Bt 0mod n and all u (not necessarily uniformly in u), then c -0. This is an analogue of (10.5)
for general trigonometric series.
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CHAPTER XIII

CONVERGENCE AND SUMMABILITY
ALMOST EVERYWHERE

1. Partial sums of S[f] for feL2
In Chapter II, § 11, we showed that if f E L, then the partial sums 8.(x) = f) of

the Fourier series
jao+I(akcoskx+bksinkx)=ZAk(x) (1'1)

1 0

off are o(log n) almost everywhere. For f c L2, this estimate can be strengthened :

(1.2) THEOREM. If fEL2, then S,(x)=o{(logn)l) almost everywhere. Furthermore,
the function

S*(x) = sup {1 8,,(x) I /(log n)l) (1.3)

is in L2 and 9R2[S*1 S A9)t2[f ]. (1.4)

Here and in the rest of this section A denotes a positive absolute constant not
necessarily always the same. The condition n 3 2 in (1.3) can be omitted if we replace
log n by log (n + 2).

The method used to prove the theorem is of considerable intrinsic interest, and can
be applied in other instances.

We begin with (1-4). Let S, ,(x) be defined like S*(x) except that n is bounded by the
number N. Since Sr,(x) increases and tends to S*(x) as N->co, it is enough to prove
(1.4) with S* replaced by S,*,,.

Let n(x) be any step function taking integral values and such that 2 -< n (x) < N.
Let A(x) = 1/Iogn(x). It is enough to prove that

(J x
A(x) (.)(x) dx)l -< A9)22[f J,

A

since Sn.(x) = AA(x) I 8.w(x) I
for a suitable n(x).

We show first that for the Dirichlet kernel Dn(x) we have

(1'5)

f I dx 5 A log N, (1.6)
J

a generalization of the fact that the Nth Lebesgue constant is O(log N) (Chapter II,
(12.1)). Since I I is majorized by both AN and A/ x 1, the integral in (1.6)
does not exceed

f ANdx+fA I x I -1dx-< A+AlogN-< A log N.
J I=IG1/N 1/N4IxIG*
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Returning to (1.5), we use the fact that the left-hand side is

J

w

AI(x)8 (x)0(x)dx

for some 0 with 9R2[0] = 1. Let ) i(x) ¢(x) = t/r(x). Then the left-hand side of (1.5) is

f S.,,(x) fr(x)dx= J rr(x)dx{- ff(t)D.(.)(x-t)dt)

= f (x) Dn(.)(x - () dx{
n

'-V2U]. 1n f (x)D.(x-t)dx

and it remains to show that the last factor does not exceed A. 11

Its square can be written

l

f R IT
f 's Vr(x) DnW(x - t) dx) (-5t/r(y) D(v)(y - t) dy{ dt

of lrf (y){7Y
1

f'.f'_
77

(x) V,(y) D .Y)(x - y) dxdy, (1.7)

where n(x, y) = min {n(x), n(y)).

The last integral does not exceed

1- fj' iks(x) I I dxdy+
1 fn

f ' 2(y) I D.(x.v)(x-y) I dxdy=J1+J2.2n _, 2n _
Integrating in J, with respect toy and using (I.6), we get

02(x) dx = A.J, , 1 f >1r2(x) A log n(x) dx = A Eff2n _

Similarly, J2 -<A. Thus the right-hand side of (1.7) does not exceed A and (1.5)
is established.

The inequality (1.4) shows that almost everywhere we have S*(x) < co, that is,
Sn(x) = O{(log n)i}. To refine the ' O' to `o' we have to show that the function

S*(x) = Jim sup { I S,.(x) I /(log n)i}

is zero almost everywhere. Since S* _< S*, the inequality (1.4) gives 9)l2[S*] , A$t2[ f ].
But Vs[f] may be made arbitrarily small, without changing,, by subtracting from
f a suitable polynomial. Thus Dl:1S*] = 0, whence , = 0 almost everywhere.

(1.8) Tn$oR$M. Ij E A,, (x) is the Fourier series of an f e L2, then the partial sums 8,(x)
of

W
E (a,. cos nx + b sin nx)/(log n)i
2

(1.9)
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converge almost everywhere. Moreover, for s*(x) = sup 18.(x) I we have

!Ut2i8*] 5 AT12[f] (1.10)

Let to = l = 0, 1 = (log n) _1 for n > 2. If the an(x) are the (C, 1) means of S[f ] and

a*(x) =sup I a+.(x) I,
n

repeated summation by parts gives

8n=Fi(Sk-Sk-I)lk
0

SkAlk+Snln= Fr (k+1)akA21t+n0'n_1Al,,-1+Snl,t, (1.11)
0

18.(x) - SS(x) In I , a*(x) (k + 1) IA21kI +nAln_l -<Ao*(x),
0

since A'lk > 0 fork> 2, E (k+ 1) As lk converges and n A l,_r-->0 (Chapter III, (4.1)). Thus

8*<S*+Ao-*,

XI2,[s*}S

since (Chapter IV, § 7) Tt2[a*] e Als[f]. (1.12)

Thisproves(1.10). The convergence of (19) follows from the estimate =o{(log n)l)
and from Chapter III, (4.3).

(1.13) ThEonEn. If E(ak+A)logk is finite, the partial sums t, of

E(akcoskx+,8ksinkx)=S[f]
2

converge almost everywhere and t* (z) = sup I tn(x) 18atisfiesthe inequality ]R:[t*] S A912,[f ]
n

This is an obvious variant of (1.8). It generalizes Theorem (1.8) of Chapter IV.
It can also be stated in the following equivalent form.

(1.14) THEOREM. If f e L and the function

g(x)= f [f(x+t}-f(x-t)]zde (1.15)
o t

belongs to L2, then S[f] converges almost everywhere.
Let an, in be the coefficients off. By Parseval's formula,

s[g]=I -)
f sinetnt

dt,

and the convergence of S[f] will follow from (1.13) if we show that the last integral is
exactly of order log n ; actually, it is

dt tn(t)de+o(1)^logn,0
by Chapter II, (12.3).

Incidentally, we have shown that if g e L', then also f e L'.
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The following corollary of (1.14) will be needed later:

(1.16) THEOREM. If a > I and if

Jf(x+h)-f(x)J<A(logl/JhJ)-a (O<x<27r),

for, say, I h i < }, then S[f ] converges almost everywhere.
For in this case g is bounded and accordingly in L2.
The problem of what happens in the case when a = J is open. It is well to remember

that, even for a = 1, S[f] may diverge at some points, though its partial sums are
uniformly bounded (Chapter VIII, For a> 1, S[f) is, of course, uniformly
convergent (Chapter II, (6.8)).

Remark. While the estimate S (x) = o(log n) holds at every point of the Lebesgue
set (Chapter II, (11.9)), and in particular at every point of continuity off, the estimate
S (x) = o{(log n)*} of Theorem (1.2) has only been shown to hold almost everywhere,
and it is not known what property of the function (non-trivially) guarantees this
estimate at a given point. That mere continuity is not enough, follows from Chapter
VIII, (1.2).

It is conceivable that the estimate S. = o{(log n)1} in (I.2) is best possible. This is
a rather strong conjecture, since it implies in particular the existence of an f e L2 with
S[f ] divergent almost everywhere. The problem is open. It is easy, however, to prove
the following result:

(1.17) THEOREM. Let f E L8.
(i) If O < n, < ns < ... is a sequence of indices satisfying a condition nk+1/nk > q > 1 for

all k, then the partial sums S,,, of S[f] converge almost everywhere.
(ii) The function S*(x) = sup I S, (x) I salisfies an inequality

k

with A,, depending on q only.
l5[8*] G A^U], (1.18)

The proof of (ii) is based on the following corollary of (1.12) and Chapter III, (1.29):

(1.19) LEMMA. If the Fourier series of an integrable function f(x) possesses infinitely
many gaps mk <j < mk with mk/mk > q > 1, then the partial sums S,,1 (and S.,) converge
almost everywhere to f(x). The functions s*(x)=SUP I Smk(x)f and er*(x)=sup J a,(x) I
satisfy an inequality s*(x) (1.20)

Returning to (i), let no = 0, and let
nh+,

Ao = Ao(x), 4k+1 = F. A1(z) (k = 0, 1, 2, ... ),
Sk+1

where A4(x) are the terms of Sf f ]. We split S[f) into the series

T1=Ao+A,+L +..., T,=O1+i +....

By the Riesz-Fischer theorem, T, and Ti are Fourier series of functions f' and f ", say.
For T1, nk is then either of type mk or of type mk above, and similarly for T2. By (1.19),
the partial sums S*t and Snk of T1 and T. converge almost everywhere. The same holds
for S.i = S,,x + Srt, and (i) is established.
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Passing to (ii), let f', f", Snk, S;,, have the same meaning as before. Observing that
if the function f in (1.19) is in L2 the inequalities (1.12) and (1.20) also imply

SJR2[s*] _< AQ9R2[o,*] _< AQD2U), (1.21)

we have S* <_ sup I S;,k I +sup I Snk I,

9R2[S*] _< AQ9Jta[ f '] + Aq Dl2U'] _< AQ92[f],

since, by Parseval's formula, 9R2[f ] majorizes both SJJ22[f') and R2[f"). This completes
the proof of (ii).

It may be added that, since the hypotheses of (1.17) imply that Dt2[f - 0,
the existence of some sequence {&k) converging almost everywhere follows already
from Chapter I, (11.6). The point of (1.17) is that in our case we have an {nk) in-
dependent off.

The theorem which follows throws some light upon the still unsolved problem of the existence
of an f e L' with S[f] divergent almost everywhere.

If S[J] converges almost everywhere, then the function

8*(x) = sup I S.(x) I.
n

where S. is the nth partial sum of S(f ), is finite almost everywhere. However, more than that is
true:

(1.22) THEOREM. If every S[ f ], f c Ls, converges almost everywhere, then the operation Tf = s* is
of weak type (2, 2) (Chapter XII, § 4), that te, if E(y) = E(y, f) is the ad of points where a* (x) > y> 0,
then

f E(y) I < Ay'' II f 9:. (1.23)
where A is an absolute constant.

Suppose that T is not of weak type (2, 2). Then for each N= 1, 2, ... there is a function pN(x)
and numbers cu(N) and YN such that

j pN II. = 1, t(N) - + oo, I E(yN, pN) I > w(N) yNt.

It is not difficult to see that for the pN we may take polynomials.
From w(N) -+ oo we deduce that YN --* oc. Hence we can find a non-decreasing sequence (Nk)

such that
EyN:<ac, Ecw(Nk)yNJ:-co.

The last equation implies that E I E(yN,,, pNk) I diverges.
Given any (periodic) set e we denote by 6= the translate of if by x. We need the following lemma.

(1.24) LEMMA. Given any sequence (tk) of sets such that E I dk I = oo, there exist numbers xk such
that almost every point belongs to infinitely many o .

We take this lemma temporarily for granted, and apply it to {1k}={E(yN5,pN1)}. Choose
integers Mk which increase so fast that the polynomials do not overlap. Then

E eimk=pN1(x - xk) Y;-1 (1.25)
converges almost everywhere to an f e L':

II a/-k: pNk(x - xk) yNk iI k = E P pNk(x - xk) II i yNi = EyNi < oo.

Written out in full, (1.25) is S(f ]. If x - xk a E(yrrk, pNk), then a connected block of terms of S[ f J
exceeds, numerically, yNk yNI = 1. Hence 5(11 diverges at each point belonging to infinitely many
Ezk(yNk. pNk). that is diverges almost everywhere.

Corollaries. (i) If for some 0 < e < 2 the integral
R

(a*(x))i-edx (1.26)

is not uniformly bounded for all f with p' f Ik= 1, then they, is a Fourier aeries of the class L'
diverging almost everywhere.
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To see this, observe that the integral (1.26) is (2- e)10 I E(y) I yl-sdy (cf. Chapter XII, (4.8))

Since y''` is integrable over 0 <y 1C 1, the unboundedness of (1.26) implies that of

li
E(y)Iy' AY

y1+s'

and since y-'-t is integrable over (I, co), I E(y) I y1 is unbounded in y and f, Q f Q = 1.
(ii) The case e= 1 is of interest. The unboundedness of (1.26) in f, JI f 11 1, is then equivalent

to that of

r,0
where n(x) is any non-negative integral-valued function of x, taking, say, a finite number of
values only. The last integral is equal to

R 1 R ('%R

o
f(t)in f(t)I(t)dt,

say, and its unboundedness is, by Theorem (9.14) of Chapter 1, equivalent to that of

hj9i=F
{

JORD.t.(x-t)dx}tdt=-' f' f' D.(.,,)(x-y)dxdy, (1.27)

where n(x, y) = min {n(x), n(y)}. Hence, if the last integral in (1.27) is not uniformly bounded for all
n(x), there is an S(f ), f e L+, diverging almost everywhere.

We now pass to the proof of Lemma (1.24). If C1+ is the complement of +, then the set of
points which belong to a finite number of E'.+ only is

and so is contained in

E +'2-..., (1.28)
D-I

ff C6t++Cdt++ (1.29)
1 pt+ 1 D,+ I

wherep, <pt <ps <... will be chosen in a moment. Let X+(t) be the characteristic function of C.
Then the characteristic function of the fret product in (1.29) is Xj(t+x,)Xs(t+x,)... X,,(t+x+).
Since

R R R i(2),, e ...
o

(fXi(t+xl)...X,(t+x,)dt)dx,...dxs,=li
2nfRX,,(t)de=f(1-i2

and since, by hypothesis, E I !+ = ao, the last product can be made lees than I by taking p,
large enough. It follows that there are x xt, ..., x, such that the measure of the first term in (1.29)
is lees than 4. Similarly, we can select pt and x,,+,,...,x,. so that the second term in (1.29) has
measure less than (})', and so on. Since now the measures of the terms of the series (1-29) have
a finite sum, we easily we that (1.28) is of measure 0, and (1.24) follows.

2. Order of magnitude of S for f e LP
Theorems (1.2) and (1.17) have analogues for functions in L'. In this section we

consider only generalizations of (1.2); for generalizations of (1.17) see Chapter XV,
(4-4). The main results can be stated as follows:

(2.1) THEOREM. Let 1 < p _< 2, f c LP. Then

S,(x) = o{(loge.)} (2.2)

almost everywhere. Moreover, the function

s`(x) =sup (I S5(x) j /(log n)un} (2.3)
n32
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satisfies an inequality $l9[S*] 5 Ap'Rp[ f J. (2.4)

The inequality (2.4) fails for p =1, but is valid if S[f] is of power series type, and then
we may also replace the A9, 15 p 2, of (2.4) by an absolute constant A.

(2.5) TH$oaEM. If f c LQ, 2 5 q 500, the function

8*(x)= 8Upl S.(x) II(logn)"p (p=4 ),* 2
satisfies the inequality VQ[8*] 5 A972Q[ f ]. (2.6)

Whether or not (2.1) holds for p > 2 is an open problem. It is not inconceivable that
it does not, and that the estimate S. = o((log n)f), valid almost everywhere for fin L2,
cannot be improved for f in Le, q > 2, or even for f continuous.

The proof of (2.5) is immediate. The theorem is valid for q = 2 and also for q = co,
since

I S. (x) 15 A log n

if I f 15 1 and n> 2 (Chapter II, § 12). Fix any step-function n(x), 2 <n(x) 5 N, taking
integral values only and consider the linear operation

(2.7)
1/9

The inequality
{ J

9s i g(x) It log n(x) dx) AQ RQ1J] (2.8)
0

is valid for q = 2 and q = co. On the left we have a norm g II Q taken with respect to the
measure d a = log n(x) dz. By Theorem (1.11) of Chapter XII, (2.8) holds for 2 < q < 00,
with AQ 5 max (A2, A ,). By choosing n(x) suitably, we deduce from (2.8) the inequality
(2.5) with 8* replaced by ON, the latter function being defined like 8* except that n is
to be bounded by N. The result now follows on making N tend to infinity.

Passing to (2.1), we first observe that we could prove (2.4) in exactly the same way
as we proved (2.6), by an interpolation of the linear operation (2.7) betweenp= l and
p = 2, if the inequality (2.4) were true for p = 1. But, as we shall show below, this is
not the case. If we temporarily take for granted, however, that (2.4) holds for p =1
and S[f] of power aeries type, an application of the interpolation theorem (3.9) of
Chapter XII gives (2.4) for such series, even with A. replaced by A.

Now let f be any real-valued function in LP, 1 < p 5 2. We set F =f + if, where f is
the conjugate of f. Then (2.4) holds for F, since S[F] is of power series type. Since
the function S* for f is majorized by the function S* for F, and since V,[F] 5 A,T?,, f ]
(Chapter VII, (2.4)), the inequality (2.4) for f follows.

It remains therefore to prove (2.4) for p = I and

f-co+cleu+e2et.x+....
The function F(z)=co+clz+c2z'+...

is regular for I z I < 1 and of class H, and its boundary values F(el") coincide almost
everywhere with f (x)- Without loss of generality we may suppose that F has no zeros
for I z I < 1 (by Chapter VII, (7.23), F is a sum of functions Fl and F2 without zeros,
such that '[F, (eu)) and D2[F2(elz)] do not exceed 2M [F(eu)]). Then F(z)=G'(z),
where

C3(z) = do + dx z +d2z' + (2.9)
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is of class H'. We shall have to consider the Cesaro sums and means of the series (2.9),

where

Sn(Z)=sn(Z; G) = EAn_,dzI,
Y-0

Ttai(Z) = Sa(Z)'A2 ,

(a+1)(a+2)...(a+n) na
An= (2-10)

(am Chapter III, § 1). Observe that if Ewn is the Cauchy product of EuA and Evn, and
if WY, UY, YA denote the (C,y) sums of the series, then the equations

Wa+d+1 ZA = ) w Z" = 1 , 2C ZA 1 V ZA
0

A (I - Za+6+4
0

n Z)a+1
0

(I _
0

n

imply that
n

W'+6+1= E Uv j'n v
Y-0

Hence the relation F = 02 leads to the equation

SS(e's; F) = E SY i(e`2; G) }Y(e' ;.G).
Y-o

(2.12) LsMal t. For any G(Z) E H2 we have

(2.11)

to n-o (n + 1) log (n + 2)
dx < A fo I G(em) I Adx. (2-13)

We first verify, using (2.10), that JJ

Q 1 n
r;, 1(Z) - a E

A
n_a AY-0

Then
-r fo (e;=)Iadz= i vs(AnJY)sIdYI4.

J o (AA)Y Y-o

n! I'(a+1)

(2-14)

Let 1n=1/log(n+2). Since An is exactly of order na, the left-hand side of (2.13)
does not exceed

A d v n-v+1) =A 2J V21 dIn E E I I2 2( -1 2I 2 E g 1n
CC

0(n+ Y-0
Y

Y-1 r
In-Y(n+1) (n-Y+1)'

We split the inner sum on the right into two, extended over the ranges v < n < 2v and
n > 2v. Correspondingly, the whole expression is split into two parts, P and Q, where

P<AEId,I2v2lr(v+1)-'E - <AId,12,
v-1 n-rn-v+1 v-1

M W
1Q<AEId,12v2 E a<AEId,I',

v-1 w-2.+1 n .-1

since l,<< I for n> 1. Thus the left-hand side of (2-13), which is majorized by P+Q,
does not exceed AEI d, 12, and the lemma is established.
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An application of Schwarz's inequality to (2.11) gives
n n

S,(e'2; F) I E I SY }(e'=; G) I2 = E I ry i(esx; O) A; } I2
Y-0 v-0

A Z
1--}--7K-+A

E
,.-0 v+1 .-0v+

= Un(x) +V,(x)

Now let j(r(x) =sup I r (ex; G) I,
n

169

(2.15)

and let c2(x) be the integrand on the left of (2.13). From Chapter IV, (7.8), we have

IR2[Vr] <A'R2[G(e'x)], (2.16)

and (2.13) means that
On the other hand, clearly,

9R2[qS] <ADl2[G(e'y)]. (2.17)

U,(x) < Ac2(x) log (n + 2) (2.18)

< A r/r2(x) log (n + 2).(x) < AVr$(x) Zand V (2.19)V + 1n
0

From (2.15), (2.18), and (2.19) we therefore get

S* x) =sup I A su ISS(e'Z; F)I
(

n>2 logn n'O log (n+2)

S A[c2(x) + >k (x)],
and so, by (2.16) and (2.17),

9R[S*] < A9R12[G(e'y)] = A9Jl[F(el)]

This completes the proof of the inequality (2.4) for 1 < p _< 2. It implies that at
almost every point we have (2.2), with `O' instead of `o'. The passage from `O' to
o' is the same as in the case p = 2.

That we have (2.2) almost everywhere, for f e L and p =1, is a classical result
(Chapter II, (11.9)). That in this case, however, the function

S*(x) = sup I Sn(x) I /log n (2.20)

need not be integrable, can be shown by the example of the function

f (X) - 4A0 + z An cos nx,
1

where An= I/log log n for n large and is positive, decreasing and convex (see Chapter V,
(1.5)). Summing by parts twice we get

n-2
Sn(x) = 2: (m+ 1) A2A,nKm(x)+nAan_1Kn_1(x) + AnDn(x).

0

The first two terms on the right are non-negative and the third, divided by logn.
is

sin nx(lognloglogn) - 7. __+o(1),
x
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where the o(I) is uniform in x. Since for n = [n/2x] this expression is exactly of order

1

xlog(1/x) log log (I /X)

as x -* + 0, the function (2.20) is not integrable.

(2.21) THEOREM. If f i8 in LP, 1 < p < 2, and has coefficients a,,, b, then the partial
sums 8n(x) of co

Y, (ak cos kx + bk sin kz)/(log k)"IP (2.22)
k-2

converge almost everywhere, and the function a*(x) = sup I satisfiee an inequality

X111,[8*] 5 APTZP[fJ. (2-23)

This follows from (2.1) exactly as (1.8) followed from (1.2).
If f e L, the series (2.22), with p = 1, converges almost everywhere (Chapter III,

(4.4)), but (2.23) no longer holds (see also Example 4 on p. 197).

3. A test for the convergence of S[f] almost everywhere
The Dini-Lipschitz theorem asserts that S[f] converges, even uniformly, if

1

f(x+h)=f(x)=o{log
1/I h

(h -> 0), (3.1)

uniformly in x. We have already pointed out (Chapter VIII, p. 303) that (3.1) may hold
at an individual point without S[f J converging there. We now show that if (3.1) holds
at every point of a set E, not necessarily uniformly in x, then S[f] converges almost
everywhere in E. More generally:

(3.2) TRzoRx1. Suppose that an f E L 8ati8fies for every xaE the condition

h

kfo I f(x+t)-f(x)Idt=0f (h-i0). (3.3)

Then S[f] converges almost everywhere in E.
It is easily verified that at an individual point x the relation

f(x+h)-f(x)=0{lUg (3-4)

--and a fortiori (3.1)-implies (3.3).
It maybe observed-a result which we shall need below-that if (3.4) holds uniformly

in x, the convergence almost everywhere of S[f] follows from Theorem (1.16). Theorem
(3.2) will therefore be established if we show that under its hypotheses

f(x) = c(x) + 1k(x), (3-5)

where 0 satisfies a condition analogous to (3.4) uniformly in x, and Or satisfies the Dini
condition (see Chapter II, (6.1), or (3-8) below) in a subset of E whose measure (for a
suitable decomposition (3.5)) is arbitrarily close to I E I.
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From the hypotheses of (3.2), there follows the existence of a perfect set Pc E, with
I E - P I arbitrarily small, and of two positive numbers M and 8 such that 8 < 1 and

rA MfoIf(x+t)-f(x)Idtlog1/
hI

for Ihl<8. (3.6)

For if E denotes the subset of E in which the inequality (3.6) holds for M=n,
IEI. Sin

enough to take no large and select for P a `large' subset of En,. We shall then have
(3.6) with M = no, e = 1 /no. We may suppose that no > 3.

Our next step is to deduce from (3.6) the existence of a number M, such that for
any two points x, y in P we have

I
f(x)-f(y)I-<-- 111-h, where h=Iy-zI<8. (3.7)
log

We may suppose that x < y. Fix z and y and let

9(u) = I f (U) -AX) I log --
1

- x'
I = (x + jh, x + jh).

The set H of points ue I at which 6(u) exceeds a number N is of measure

HI <N-11 6(u)du<N IIlogJhI$1If(u)-f(x)Idu

N-1I log }hI fo I f(x+t)-f(x)I

h<N2M= 6M
III4

since, by hypothesis, h < J.
Similarly, we prove that the subset H, of I in which I f (u) -fly) I log l/(y - u)

exceeds N is of measure less than 6M I I IIN. Thus for N =12M there is in I a point
uo which belongs neither to H nor to H such that

;I f(x) -f(uo) I <- N/log 1 , I f(y) -f(uo) I -< N/log 1 ,uo-x y-uo

and by addition we have (3.7) with M, = 2N = 24M.
Now let ¢(x) be the function equal to f (x) in P and linear in the closure of each

interval contiguous to P. Let Vr(x) be defined by (3.5). We shall show that 95 and
have the required properties.

First, if x and y, x < y, are in P, (3.7) holds with f replaced by 0. If x and y are in the
same interval contiguous to P, the linearity of 0 makes (3.7) still valid for 40. In the
remaining case, inserting between z and y terminal points of the contiguous intervals
which contain x and y respectively, and using the previous cases, we again get (3.7)
for 0, with M, replaced by 3M,. Thus ¢ satisfies a condition analogous to (3.4), uniformly
in z.

We show finally that Vr satisfies the Dini condition

f Irk Idt<+co-.ix - tI (3.8)
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for almost all x e P. Clearly fr= 0 in P. Let dl, dt, ... denote the intervals contiguous
to P, and also their lengths. Let X(t) denote the distance of the point t from P. This
function was considered in Chapter IV, § 2, where we proved that

f" flog l/X(t))-1dt<+ao
(3.9)1- I x-t F

almost everywhere in P. It is enough to show that (3.8) holds at every point of
density of P at which we have (3.9). Let x be such a point.

Now for any d, = (a5, bf) of length less than 6,

fd)
IV(t)Idt=

fdj
IV%(t)-o(af)Idtsf"

If(t)-f(af)Idt+
fd,

Ifi(t)-0(ai)Idt

5 Mdf(log 1/df)-' + 3M1 df(log 1/df)-1 < AMdf(Iog 1/df)-',

by (3.6) and the analogue of (3.7) for 0. Let d, be so close to x that the length of d,
is less than the distance pf of x from d1. Then

Id, i x
(t

t II dt <Pf
f" (t) I dt < ppdf(1og IIdt)

-AM r {log !IX(t)}-1dt.

J'
Ix-t1

Comparing the extreme terms and summing over all the intervals df sufficiently close
to x, we see that the part of the integral in (3.8) extended over a sufficiently small
neighbourhood of x does not exceed a fixed multiple of the corresponding part of the
integral (3.9). Thus (3-8) holds at the point x, and the proof of (3.2) is completed.

Condition (3-3) expresses a sort of `average continuity' of f at x. The following
theorem, in which we use the integral modulus of continuity off,

c'1(&)=(0(a;f)= sup f A I f(x+t)-f(x)I dx
o<tsa -A

(see Chapter 11, § 3), is much more on the surface.

(3.10) THEOREM. If t-'w1(t)dt <oo,

then S[f] converges almost everywhere.
Since

f AA dx f o L f (x ± t - f(x) Idt =
dt f AA

I f (x ± t) -f(x) I dx fo t (t) dt < oo,

by hypothesis, the inner integral on the left is finite for almost all x; thus f satisfies
Dini's condition almost everywhere, and (3.10) follows.

In particular, S[f] converges almost everywhere, provided

f A I

f(x+t)-f(z)Idt=O(log')-"

(e>0), (3.11)
A

as t + 0. Whether or not the result holds for e = 0 is an open problem, though we do
know that in this case Tl1[f - 0 (Chapter IV, p. 180, Example 7).
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4. Majorants for the partial sums of S[f] and S[f)
Consider the series

m m
ia0+ v (akcoskx+bksin kx)= E Ak(x) (4.1)

k=1 k=0

and its conjugate E (ak sin kx - bk cos kx) _ Bk(x).
k=1 k=1

(4.2)

Using a notation slightly different from that of preceding sections, we denote the
partial sums and (C, 1) means of (4.1) by s,, o-,, and those of (4.2) by sn, &n.

An interesting phenomenon in the theory of trigonometric series is that one-sided
estimates for the s can lead to two-sided ones, and also to estimates for the 8n. This
topic is discussed in the present section and the two following. The proofs .re based on
the formulae

{sn(x+a) +sn(x - a)}
n-2

_ F, (k+l)vk(x)A2coska+non_1(x)Acos(n-1)a+sn(x)cosna, (4.3)
k-0

,){sn(x+a)-sn(x-a)}
n-2

_ Y_ (k+l)&k(x)A2sin ka+n&n_1(x)Asin(n-1)a+sn(x)sin na, (4.4)
k-1

which follow from the obvious relations

Ak(x)coska,
k-0

n
- {sn(x+a)-sn(x-a)}= Bk(x)sin ka,

k-1

on summing by parts twice. (We have used (4.3) and (4-4) already in Chapter III, § 12.)

(4.5) THEOREM. Suppose that E Ak(x) is an S[f ), and that there is a q(x) such that

8.(X)->O(X) for n=0,1,2,.... (4.6)

(i) If f and 0 are both in L', 1 < r <co, there exist functions (, /r, `F, also in L', such that

sn(x) _< fi(x), (4.7)

>f (x) 5sn(z) <_ 'V(x), (4.8)
forn=0,1,....

(ii) if f log+ I f I and ¢ log+ 10 are integrable, we still have (4-7) and (4-8), but with
(D, f, IF in L.

(iii) If f and 0 are in L, we have (4-7) and (4-8) with 0, fr, `Yin La for every 0 <a < 1.
We denote by A a positive absolute constant. Write

sup 1 '7n(x)1 = v*(z), sup 1 &n(x) I = &*(z),
n n

fh
f*(x)= sup I f(x+t)Idt

O<Ihl4* h



174 Convergence and .summability almost everywhere [XIII

We know (Chapter IV, (7.8)) that
o-*(x) <Af*(x).

Sincet I I L' cos ka l< a2,

we obtain from (4-3) and (4.6)

(4-9)

[a2f(k+ 1)+ nIal],
or, using (4.9) and taking I a I <A/n,

- ae(x) cos na < }{ I O(x +a) I + I ¢(x - a) I) + Af *(x).

Integrate this over the interval n/2n < a < n/n. The resulting inequality will not be
W/A

affected if the integral on the right is replaced by f ; and defining 0* similarly to f* we
0

get
n f0 *1,{I

<2 ¢(x+a) I + I O(x-a) 1) da + Af *(x),

8.(x) < A{c*(x) + f *(x)}. (4.10)

We know (Chapter I, (13.14)) that according as I f I', flog+ I f I or f is integrable, the
function f * is in L', L or La respectively. The same holds for 0*, and denoting the right-
hand side of (4.10) by 4'(x), we get (4-7) in all cases (i), (ii) and (iii).

Since we now have two-sided estimates for a*(x), it would seem natural to apply
an argument similar to the preceding one to (4-4) in order to obtain (4.8). But except
in case (i), the integrability of 0 is not as good as that of 0, and the argument would
lead to functions Vr and IF not as good as (D. For this reason a slight modification
of the proof is called for.

Let Rl and R2 denote the right-hand sides in (4-3) and (4.4), without the last terms
aR cos na and i,, sin na. If I a I < A/n, the functions I R, I and I R, I are majorized by
Acr*(x) and A&*(x) respectively. Thus, subtracting (4-3) from (4.4), we get successively

in (x) sin na - a (x) cos na = R1- R, - a),

I I +A{o*(x)+d*(x))-O(x+a),
§.(x) sin na I O(x) I + I O(x) I + A{ f *(x) + &*(x)) + (x+ a)

Integrating the last inequality over the interval 0 < a < it/2n if &*(x) > 0, and over
- n/2n < a < 0 if 0, we obtain

I e,.(x)I <A{I ¢(x)I+I ((x)I+f*(x)+¢*(x)+v*(x)}. (4.11)

Let '1'(x) be the right-hand side here. We have then (4.8) with 1/r = -'Y, and it remains
to verify that IF satisfies the required conditions. In view of what has already been
said of 0 and f *, it is enough to observe that, for f satisfying the hypotheses of (i),
(ii) or (iii) respectively, the function v* belongs to If, L or La (Chapter VII, (7-42)).

We shall say that a sequence of functions f (x) is uniformly semi-convergent to f(x)
from below if, for any 'e > 0, Mx) -f(x) > - e
for all x, provided n > no(e).

t Similar edimetee bold for in ka snd will be aced below.
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(4.12) ThEOSEM. (i) If f is bounded, I f I -< M, and if there is a constant a such that

8.(x)->-a (n=0, 1, ...),

then there is another constant b = b(a, M) such that

(n=0,1,...). (4.13)

(ii) If f is continuous, and SU] is uniformly semi-convergent to f from below, then
S[f] converges uniformly.

(i) Let R1 be defined as before and let a=n/n in (4.3). We get

-a,
I R1 I + a < Av*(x) +a

-<AM+a=b,
and (4-13) is established.

(ii) We note that b=AM+a in (i), and that if we assume 8,,(x)> -a for
n = k, k + 1, ... only, we have (4.13) for n > k.

Suppose that a*-f> -e (4.14)

for n > n0, and let T be a polynomial of order m such that I f - T I < e. We write (4.14)
in the form (s,.-T)-(f-T)> -e,
and note that 8 - T is the nth partial sum of S[f - T] provided n > m. Applying (i)
to f - T with M = e, a = 2e we therefore have, for n > max (n0, m),

and (ii) follows.

-2e-< SAM+a=(A+2)e,
Ien-f I-<I8u-TI+es(A+3)e,

5. Behaviour of the partial sums of S[f] and S[f]
From the convergence of S[f] we can sometimes deduce that of S[f]. For example,

if S[f] converges uniformly then SJ] converges almost everywhere (Chapter VII,
(8.14)). The theorem that follows is of a similar nature though considerably stronger.
It applies to general trigonometric series, but the special case of Fourier series is the
most interesting one.

(5.1) THEOREM. If the series
m m

}as+ E (akcoskx+bksinkx)= E Ak(x) (5'2)
k-1 k-0

converges in a set E, and if the conjugate aeries
m M

E (aksinkx-bkcoskx)= E Bk(x)
k-1 k-1

(5.3)

is summable (C,1) almost everywhere in E, then it converges almost everywhere in E.
In particular, for any f e L the sets of the points of convergence of S[f] and §U] ] are the same,
except for a ad of measure zero.



176 Convergence and summability almost everywhere [XIII

We may suppose that I E I > 0, and that EB5(x) is summable (C, 1) everywhere in E.
Let sn, 3n, orn, on denote the partial sums and the (C, 1) means of (5.2) and (5.3)

respectively, and let
o(x) = limo n(x), ( )-vx= limon(x),

wherever the limits exist. By Theorem (12.15) of Chapter III,

}[s, (x+an)-sn(x-an)]+[en(x)-o(x)]sinnan-*0 (5.4)

for x e E and any sequence of numbers an = 0(1 /n). (This is also an easy consequence of
(4.4).) The whole subsequent argument will be based on this relation.

Let BcE be a set of positive measure in which sn(x) converges uniformly. (By the
theorem of Egorov, I E - J j can be made arbitrarily small.) In particular, or(x) is con-
tinuous on d. Let f be a point in 4f which is at the same time a point of density of e,
and let µ(h) be the measure of d(f, 6+h), the part of if situated in (f, f+h). Then

µ(h)=h+o(h), µ(2h)=2h+o(h). (5.5)

The resulting relation µ(2h)-µ(h)=h+o(h)

shows that the average density of d in the interval (t: + h, + 2h) tends to 1 as h -* 0.
Since the same holds for the interval (C - 2h, f - h), we obtain, by taking h = 1 /n, the
following conclusion: for all large enough n there is a number µn, I <µn 5 2, such that
6 ± µ*/n c B.

We now apply (5.4) with x=, an = µn/n. By the uniform convergence Of (8.(X))
on 8, the first term in square brackets tends to 0 as n oo. Observing that

sin nan = sin µn

stays away from zero, we get en(d) - o(e) -* 0.

Since almost all points of d are points of density of d', and since I E - d I may be
arbitrarily small, (5.1) is established.

Remarks. (i) If EBk(x) is summable (C, 1) in E, and if a sequence {snk(x)} of the partial
sums of EAk(x) converges in E, then {nk(x)) converges almost everywhere in E.

(ii) Let pl < p, < ... <pn < ... -> ao. If EB5(x) is summable (C, 1) in E, and if
sn(x) = 0(pn) at each point of E, then en(z) at almost any point of E. The result
holds if ' O' is replaced by 'o' throughout.

The proofs are similar to that of (5.1). Remark (i) was already used in Chapter V, § 7.
A similar argument gives information about the limits of indetermination of the

partial sums of (5.2) and (5.3). With the notation

e*(x)=limsupsn(x), 8*(x)=liminfsn(x), (5.6)

we have the following result:

(5.7) THEOREM. (i) If EA5(x) is summable (C, 1) for x E E to sum a(x), and if
s*(x)< +oo in E, then s*(x)> -oo, o(x)=}[e*(x)+s*(x)) (5.8)
almost everywhere in E.

(ii) If EAk(x) is summable (C, 1) in E, and if s*(x) = + oo in E, then s* (x) oo almost
everywhere in E.
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This theorem shows that at almost all points at which EAk(x) is summable (C, 1), the
s oscillate symmetrically about o-(x) = lim *(x). In particular, if EA5(x) is an S[ f ], or
§[f ], the oscillation is symmetric with respect to f (x) or f (x) as the case may be. That
a Fourier series may oscillate finitely almost everywhere is shown by Theorem (3.14)
of Chapter VIII.

Since in (i) the inequalities 8*(x) < +oo and 8*(x)> -oo are obviously interchange-
able, (ii) is an immediate corollary of (i). We may suppose that I E I > 0.

To prove (i), we note first that, by Chapter III, (12.9),

o,(x) (5.9)

for xE E, a = 0(1/n) (a simple consequence also of (4.3)). Next, by hypothesis, s*(x)
is finite in E. The sequence of measurable functions

t (x) = max (8x(x), s*(z)}

converges to s*(x) in E. We can therefore find a set 6cE, with I E-X I arbitrarily
small, such that the convergence is uniform on d. It follows that there exist
positive numbers e -* 0 such that

an(x)<,a*(x)+e for xEg.

Since s*(z) is measurable, we may also suppose (by further reduction oft, if necessary)
that a* is continuous on d'.

We shall now need a result which is a refinement of one contained in the proof of
(5-1). It will be used repeatedly and we state it as a separate lemma:

(5.10) LEMMA. Let f be a point of density of a measurable set f and y a fixed positive
number. Then there is a sequence of numbers u. -3 y such that t u,./n e d for all large
enough n.

An argument based on equations analogous to (5.5) shows that if a <,8 are two
positive numbers, then the average density of e4 in the interval (9+ah, 9+fh) tends
to 1 as h -> 0. Hence taking a = y,,8 = y + y, where y is a fixed positive number, we deduce
that there is a sequence of numbers A. contained between y and y +I such that
6 - An/n E g for n large enough. By making r/ tend to 0, and piecing together the corre-
sponding sequences {.In}, we can obtain a (u,,) satisfying (5.10).

Returning to (6-7), let x= l; be a point of density of 4f belonging to e, and let
(X = pn/n, where satisfies (5.10) with y = ir. We may suppose that a(g) = 0, for
otherwise we subtract from the constant term of EAk(x). Using (5.9) and the
continuity of 8* over d we get

and so -a*() s*(), (5 11)

since This proves the first inequality (5.8) for x=?; and so also almost
everywhere in E.

In the general case when o-(C)+ 0, the inequality (5.11) is

l{a*(f) + 8*(f )} % a(g) (5.12)
If we started with the function 8, which we now know to be finite almost everywhere
in E, we should obtain (5.11), or (5.12), with reversed inequality signs. This completes
the proof of the second relation (5-8).
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(5.13) Tnzoszm. If EA5(x) is ssmmable (C, 1) in a set E to a finite sum a#), and
if a sequence (s,t(x)} of partial sums of the series converges in E to a limit a(x), then
8(x) = o-(x) almost everywhere in E.

We may suppose that I E > 0 and (by reducing E arbitrarily little) that {o',)
and {s,t} converge uniformly on E ; in particular 8(x) is continuous on E. Let g E E
be a point of density of E, and let {a,} be such that t a, a E, na, -+ a. From (5.9)
with z n = nk we deduce

s(b) - (4) - o(f)) (- 1) = 0(9),
that is, a(g) = v(f)

The theorem which follows is stated without proof. It generalizes Chapter VIII,
(3.14).

(5.14) Tnnoa u. Let O(x) be periodic, measurable, non-negative, not necessarily
finite almost everywhere. There is an S[ f) such that, for almost all x,

s:(x)=f(x)-fi(x), 8*(z)=f(x)+ss(x)

6. Theorems on the partial sums of power series
Consider the power series

ck eikx
k-°

(6.1)

in z=e". The partial sums and the (C, 1) means of the series will be denoted by t,(z)
and r,(x) respectively. For each x we denote by L(x) the set of all limit points (in-
cluding the point at infinity) of the sequence {t,(x)). L(x) is a closed set which reduces
to a single point if (6.1) either converges or else diverges to oo.

Wherever the limit T(x) =lim T,(x)

exists, we write m(z) = lim inf Jr(x) - t,(x) 1, M(x) = lim sup I T(x) - t,(x) .

We introduce some geometric terminology. By A( ; a,,8), where 0 <, a _< f < oo,
o 1 <,8 of the complex plane. The disk A ( ; 0,8) and thewe mean the annulus a I- r

circumference A&;,8,,8) will be denoted by D( , 8) and C(r., f) respectively. The
interiors of A and D will be denoted by A° and D°.

We say that a set Z in the complex plane is of circular structure if it is a union of a
finite or infinite (denumerable or not) family of circumferences with common centre
r,O, the centre of Z. If Z is closed, the radii of the smallest and largest circumferences
(with centre C.) that it contains will be called the extreme radii of Z.

(6.2) THaossm. If F.ckeikx is summable (C, 1) for then for almost all the

set L(z) i8 of circular structure with centre r(x) and extreme radii m(z) and M(x).
Thus if, for fixed x, we consider the terms of the sequence {t,(x)} as successive posi-

tions of a moving point, then for almost all x E E the terms t,(x) move, roughly speaking,
on the circumferences constituting L(x). The terms may jump from one circumference
to another, but accumulate to every point of each circumference.

If c, -r 0, then t,(x) - t,_1(x) -+ 0, and L(x) must, for almost all x e E, be the annulus
A(r(x); m(x), M(z)). It need not be so in the general case; we give examples below.
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s.
If the real part of (6.1) is an S[ f ], then f° I r - t # dx --* 0 for 0 < is < 1 (Chapter VII,

(6.8)), and so there is a sequence converging to r(x) almost everywhere. In
this case m(x) = 0 and, for almost all x 4E E, L(x) is a circular disk with centre r(x).

The proof of (6.2) is based on the following lemma, in which L1(x) denotes the set
of limit points of the sequence {t,,(x) - r(x)}, that is, the translate of L(x) by - T(X):

(6.3) LEMMA. Let E be the set of x such that (6.1) is summable (C, 1), and that
L1(x) does not contain any poiht of a fixed disk r) with I C I >- r. Then for almost all
x E E the set L(x) does not contain any point of the annulus A°(r(x); + - r, + r).

First, by Chapter III, (12.16),
l "--*r(x) (6'4)

Letrk = r(1 - 1 /k) fork = 2, 3,..., and let Ek.N be the set of x at which (6.1) is summable
(C, 1) and such that all t (x) - r(x) are outside rk) for n 3 N. Then

E= fl EEk,,Vl
k N

and it is enough to show that for almost all x in each Ek.N the set L(x) is disjoint with

A°(r(x); 15I -rk, I r +rk).
The functions tn(x) being continuous and r(x) measurable (on the set where it exists).
each E, ,,v is measurable.

We may suppose that I E,,, I > 0. Let 9E Ek,N be a point of density of Ek.N. The
lemma will be established if we show that L(6) is disjoint with A°(r(f ); I C1 - rk, I C + rk).
Supposing, as we may, that r(g) = 0, we get from (6.4)

t.(6) = (J6+a )e-4^-+o(1). (6.5)

Given any real number y, let be such that na, -* y and 9 +a. E Ek,N for all
large n. It follows from (6.5) that L(6)=L,,(6) does not contain any point of
D°(Ce-'Y, rk) and so, since y is arbitrary, any point of A°(0; (9 -rk, 191 + rk).

We proceed to deduce (6.2) from (6.3). We denote by X the set of xEE such that
L1(z) is not of circular structure with centre 0. The sets L, being closed, for every x c X
there is a disk D° r) with y and r rational, I C r, such that

(i) L,(x) contains no point of D°(C, r);
(ii) L,(x) does contain points of A°(0; --r, +r).
Let X{,, denote the set of xE X satisfying (i) and (ii). By (6.3), 1 X{,, = 0 for each

pair , r. Since X = EX,, where the summation is extended over all rational r;, try, r. it
follows that I X 1= 0, and (6.2) is established.

Now consider together with s*, a* (see (5.6)) the functions

(6.6) THEOREM. (i) Suppose that both) Ak(x) and E Bk(x) are summable (C,1)for xE E
to sums Q(x) and &(x) respectively, and that s*(x) > -oo in E. Then at almost all points
x E E the four functions a*, s*, i*, i*, are finite and satisfy the relations

'){s*(x) +8*(x)} =a(x), (6.7)

>){i*(x) +i*(x)} = &(x), (6'S)
8*(x) - a* (x) = i*(x) - i* (x). (6.9)
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(ii) If the condition on s* is replaced by 8*(x) = -oo in E, then almost everywhere in
E we have

8*(x)=3*(x)= +co, s*(x)= -co. (6.10)

(i) The relation (8.7) is contained in (5.7). Let EAk(x) and LBk(x) be the real and

imaginary parts of ck eikz, which is then summable (C, 1) in E. Thus, at almost
0

all x e E, L(x) is of circular structure with centre r(x) = o(x) + i& (x), and so is bounded
since s* (x) > -0o in E; and the relations (6.8) and (6.9) follow immediately.

(ii) By (5- 7), 8*(x) = + oo almost everywhere in E. By (i) both s* and .* are infinite
almost everywhere in E, for otherwise s* would be finite almost everywhere in E.
Since E Bk(x) is summable (C, 1) in E, s* and s; must be infinites of opposite sign,
so that A* = - co, s* = + co almost everywhere in E.

Examples for (6.2). Let
G(z) = I + z + zs +....

(i) The partial sums t (x) of G(eiz) are bounded, and the (C, 1) means converge
to r(x) = (1- ei=)-1, for each x+ 0 (mod 2n). Here

tn(x) - r(x) = _ ef01 +1)z (1 - eiz)-1,

so that all t (x) are situated on the circumference with centre r(x) and radius 1- ei: I -1.
If x is incommensurable with rr, L(x) coincides with this circumference.

(ii) For the series
aG(ei=) +fG(e1tz) = (a +'8) +a eiZ + (a +'8) eaix + ... ,

the are situated on two circumferences with common centre

all - eiz)-l +,8(1- etiz)-1

and radii Ij I-1 f a+f(1 +e*i:)-1 I.

If 6/a is not real, these two circumferences are different. If x is incommensurable
with n, L(x) is the union of these circumferences.

(iii) Finally, consider
G(z) + aG(e'A z) (z = eu),

where 0 < a < 1, and A is incommensurable with n. If x and A are linearly independent,
the fractional parts of (n i- 1) x/21T and (n + 1) A/21r can be arbitrarily close to any
preassigned numbers of (0, 1). Using this, we easily show that, except for a denumerable
set of x's, L(x) is an annulus not reducing to a disk or circumference.

By combining examples (ii) and (iii), we get series for which L(x) consists of several
concentric annuli.

(iv) For the power series >:ckeik2 whose real part is the S[f ] of (5.14), the set L(x)
is for almost all x the disk with centre f (x) + if(z) and radius 0 (x).

7. Strong summability of Fourier series. The case f e r > 1

Let q > 0. A sequence s0, s1, ..., or a series with partial sums s0, s1, ..., will be called
summable HQ to limit (sum) 8 if

1 s0=8IQ +131=81Q+...+1 8n-e1Q-*0
as n-aoo. (7.1)n+l
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This kind of summability was first considered by Hardy and Littlewood, and is, for
q>_ 1, a generalization of the method of the first arithmetic mean. For clearly sum-
mability Hl implies (C, 1), and Holder's inequality shows that if (7.1) is true for some q
it holds for any smaller q. Sumrnability Hl indicates that the mean value of 8k-8
tends to zero, not because of the cancellation of positive and negative terms, but be-
cause the indices k for which I sk -- 81 is not small are sparse (see (7.2) below).

We shall also speak of (7.1) as the strong summability (C, 1)--or merely strong
summability--of {sk}.

Let (S) nl< n2<...<nk<...

be an increasing sequence of positive integers, and let v(N) denote the number of the
nk S N. The number dN = v(N)I (N + 1) is the density of S in the interval (0, N), and the
limit d = lim dN, if it exists, will be called the density of S. The sequence of positive
integers complementary to S has then the density I - d. Only the cases d = 0 and d = I
will he of interest to us. It is easily verified that d = 1 if and only if kink--> 1, and d = 0
if and only if kink 0.

We shall say that a sequence {sk}, or a series with partial sums sk, is almost convergent
to limit (sum) s if there is a sequence {nk} of density 1 such that Since the
intersection of two sequences {nk) of density 1 has infinitely many terms (indeed, is of
density 1), the numbers is determined uniquely.

(7.2) THEOREM. (i) If is summable H. to limit 8, then is almost convergent
to s.

(ii) Conversely, if is almost convergent to s, and is bounded, then, for any q > 0,
is summable HQ to 3.

We may suppose that 8 = 0. We first prove the following lemma: A necessary and
sufficient condition for an to be almost convergent to 0 is that for any e > 0 the n's such
that is,, i 5 e have density 1.

Only the sufficiency needs a proof. Let 5,,, be the set of indices n such that

ks, j,<I/m (m=1,2,...).

Then 8,:)S,:)... Sm ... , and each 8,,, has density 1. Define a sequence

Nr<Nz<...<N.<...

such that Sm has density > 1 - 1/m in (0, N) provided N> Nm. Let S be the sequence
defined as follows. It consists of the elements of Sl which do not exceed N=, the elements
of Sz which are between N2 and N3, the elements of S3 which are between N3 and N4,
and so on. Then if Nm < N _ Nm+l, the density of Sin (0, N) is not less than the density
of Sm in (0, N), and so exceeds I - 1/m. Hence S is of density 1, and clearly s,,-> 0 as
nico in S. This proves the lemma.

Return to (7.2) (i). Fixing an e > 0, let v(N) be the number of k 5 N with sk I > C.
The left-hand side of (7.1), with s=0, is then not less than ccv(n)/(n+1). Hence
v(n) = o(n), and an application of the lemma yields the result.

The proof of (7.2) (ii) is left to the reader.
The rest of this section is devoted to the strong summability of Fourier series.
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If f e L', r 31, we shall write
k

(k,(h)=
o

Ic (t)I'dt-Jo I iU(z+t)+f(x-t)}'-f(x)I'dt.

It was shown in Chapter II, § 11, that =.,(h) =o(h) almost everywhere.

(7.3) Ta$ossM. (i) If f e L', r > 1, then S[fj is eummabls HQ to eunn f(x) at every point
x at which Q=,,(h) = o(h).

(ii) If f e L and f is continuous at every z, a -< x 4 b, then S[f] is uniformly summable
Ha to f(x) over (a, b).

That S[f] is almost everywhere summable H. for functions f merely integrable, is
a deeper result requiring different methods; it will be proved in the next section.

Let *,(z) - S,(z; f ). It is sufficient to prove the relation

a.(x)-f(x)I° >0 (7.4)
n+1

1 E
for q = r/(r -1) = r'. For {h-1&,,(h)}1^ is a non-decreasing function of r, and so if
m,,(h) = o(h) for some r, the relation holds for any smaller r. Taking r sufficiently
close to 1 we obtain q as large as we please. It is also sufficient to prove (7.4) for the
modified partial sums a,* (Chapter II, § 6), since Is, -f It differs from I a, -f j a by an
amount tending uniformly to zero.

If 0 < v < n, we have
1M

a`(x) -f(z) =
2 (' 0=(t) sin vt

dt = 2 (
+IT o 2 tan }t n o iJ r

,. ila 1 ,. uv 1 ,. uv+11

n 1
+{x+1 Jfl )la}

,

and (i) will be established if we show that each term on the right in the last inequality
is o(1).

Clearly

since &,,(h) = o(h) implies D,, 1(h) = o(h), and- E a. I } 0. (7.5)n+1,_
The ft's are Fourier coefficients of the function equal to O=(t) cot }t for 1/n < t <.n
and to 0 in (- n, 1/n). Hence applying the Hausdorff-Young inequality (Chapter XII,
(2.3)), and supposing, as we may, that r -< 2, we get

E I "> la <)/J-( fff 1 0.0) d(7.6)
where q = r'. Replacing tan it by it and integrating by parts, we see that the right-
hand aide of (7.6) does not exceed a fixed multiple of

=+ r I dtlll1 (PD. X)
(n+ 1)1' t' it. 1M

=..(t)
t'+1

(n+1)vaIO(1)+ J
o(1-')dt}u.

_ (n + 1)-1h o(1).
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Hence the left-hand side of (7.6) tends to 0 and this, together with (7.5), proves
(7.3)(i).

A curious feature of the above argument is that the less we assume about the
function-the smaller the number r is-the larger the value for q we obtain. The argu-
ment, however, breaks down for r = 1.

If f e L', r > 1, the proof of (ii) is essentially the same as that of (i). We need only
observe that if a 5 x < b, then D_ ,(h) = o(h), I (h) = o(h) uniformly in x, and that the
estimates we obtain are also uniform in x. In particular, if the function f(x) is everywhere
continuous, (7.4) holds uniformly for all z.

Suppose now that f E L in (ii). We can then find an interval (a1, b1), a1 < a < b < b1, such
that f is bounded in (a1, b1). Let f = f ' + f ', where f' = f in (a1, b1) and f' =0 elsewhere.
For the partial sums 8, and 8: of S[f'] and S[f'] we have 8,=s,+e and

1 ,. 1 n t/v 1 n irv

n+1 _o n+ 1 _o 0

The first term on the right tends uniformly to zero for a -<x < b, since f' is bounded and
so is in every L'. Since f' = 0 in (a1, b1), I 8_11q tends uniformly to zero in (a, b).
Hence also the second term on the right of the last inequality tends uniformly to 0 in
(a, b), and the proof of (ii) is completed.

Clearly, (7.4) is true if f is in L and is continuous at the point z. (The argument
applies when (a, b) reduces to a point.) The result actually holds if f has a simple dis-
continuity at z and 2f(x)=f(x+0)+f(x-0).

For r=q=2, Theorem (7.3) (i) has an analogue for general orthogonal systems.

(7.7) THEOREM. Let 6b(z), f51(x), ... be an orthonormal system in the interval (a, b).
Then the series

coNz) +c1 Y'I(x) + ... , (7.8)

with T. jck 12 < co, is 8ummable HZ at almost all points at which it is summable (C, 1).
We need the following lemma:

(7.9) LEMMA. If sn(x) and o-n(z) are the partial sums and the (C,1) means of (7.8),
with E I ck 12 < oo, we have

w 8n onla<+co (7.10)
n-l n

almost everywhere in (a, b).
The lemma will follow if we show that the termwise integral of the series (7.10) over

(a, b) is finite. But
m 1 b ao I n1S Zn-1n

a
sn - v" dx-n-In(n+l)'k-Ik ck

A I
kE k' I Ck l nE n(n + l )_ `kT, k' I Ck I'' k=-k2 I Ck I',

and (7.9) follows.
Let now E be the set of points in (a, b) where 8(x) = lim o (x) exists. Recalling that

for every convergent Eu;, we have u1 + 2u, + ... + nun = o(n) (Chapter III, (1.25)),
we deduce from (7.10) that

1 E 8k-ak1 - 0n+ l k_I

1 m
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for almost all x. Theorem (7.-7) follows from this and the fact that in the inequality

{n+lk
fff k0

the second term on the right is o(l) for x e E.

8. Strong summability of S[f] and S[f] In the general case

(8.1) THEOREM. If f E L, then for every q > 0 both S[f] and S[f] are summable H.
almost everywhere.

We may suppose that q 3 1. Since the (C, 1) sums of S[f] and 9U] are f and! almost
everywhere, the sums in (8.1) must also be f and f almost everywhere.

It is no longer true that S[f] is summable H. at every point where 4Ds,l(h) =o(h).
Hence the proof of (8.1) must be different from that of (7.3). It is also much more
difficult. We shall still use the Hausdorff-Young theorem; but since f need not belong
to any La, p >.1, it will be necessary to deal not with f itself but with its Poisson integral
U(p, 0), or even with the analytic function whose real part is U, and then to make p
tend to 1.

We may suppose that f _> 0. Let f1 be a bounded function coinciding with f on a
perfect set Ec (0, 2ir) and equal to 0 elsewhere. S[f1] and S[ f1] are, by (7.3), summable
H. almost everywhere in E, and if we prove this also for f-f1 it will be true for f;
then (8.1) will follow since i E i may be arbitrarily close to 21r. Thus the problem is
reduced to proving that, if an f E L is non-negative, and vanishes in a perfect set E,
then S[f ] and S[f] are both summable H. at almost all points of E.

Next a further reduction. Let F(x) be the indefinite integral of f. At almost all
points x in E the ratio F(x+h)-F(x)

R(x, h) _ -

h
-

tends to 0 with h. Let Em be the set of x E E such that i R(x, h) i < m for i h i < ir. The
sets E. are closed and E differs from EEm by a set of measure 0. It is therefore enough
to prove that S[f ] and 3[f) are summable HQ almost everywhere in each Em. Fixing
m and writing E for E. we thus have

L
+A

f f (t) dt = o(h) for almost all x c E. (8.3)

Let U(p,0) be the Poisson integral of f, and let d= 1 -p. We know (Chapter III,
(7.10)) that for x e E, i h i < 7r, (8.2) implies

0<U(p,x+h)<Am(l-tai). (8.4)

f('A
J U(p,x+t)at <Amihj. (8.5)

0

Here and in the rest of the section A denotes an absolute constant, not always the same.
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We take for the q of (8.1) q =p' =p/(p - 1), where p satisfies 1 <p< 2 but is otherwise
at our disposal; by taking p- I sufficiently small we get q arbitrarily large.

If X(x) is the distance of x from the closed set E, then, by Chapter IV, (2.1),

f *-f(x+t)X I't lp t)dt <co (8-6)

for almost all x E E. Also, S(f) and S'[f ] are summable (C, 1) almost everywhere in E.
Almost all xE E have all the properties enumerated above. If we show that at every

such x both S[f ] and 9[f) are summable Hq, (8.1) will be established. Without loss of
generality we may suppose that x = 0 is such a point.

We now consider the power series

tla0+ E (z=perx).
r_1

(8.7)

which for z = eix reduces to S[f] + i5[ f ]. Denote the sum of the series for I z I< 1 by
F(z) and the partial sums and the (C, 1) means for z = eix by t,(x) and rn(x) respectively.
Since by hypothesis exists, it is enough to show that

n

Itr-TrI°-o(n),
Vet

where tr=tr(0), ry=rr(0)
This in turn will follow if we show that

(8.8)

(v+ 1)5I t r-rrI i' =o(8-q-1), (8.9)

where 8= For if we set 6=11n, retain on the left only the terms given by
v -< n, and observe that (1 - 1/n)r -> (1 - I In)" > e-1 for such v, we get

n
(v+ 1)q i tr-rr Is=o(ns+1),

a relation from which (8.8) easily follows by summation by parts.
Returning to (8.9) we note that

(n + 1) On - rn) = E, v(ar - ibr)
0

is the nth partial sum of E (ar - ibr) vz° for z= 1. Hence, by Chapter III, (1-7),

zF'(z)(v+l)(tr-rr)zY= 1-z .v0
By the Hausdorff-Young theorem,

m ,rQ 1/q pv
Y, (P + 09 27Tro

and (8.9) will be established if we show that

DdVf) lip

(810)F (pe"`)
1 -P&

f " 1 (pei )Ipd =o(8'. sv) (8 11)J 1-peg'



186 Convergence and aummability almost ever where [xlli

Finally, recalling that, by Chapter VII, (2.31),

I" (z) 5 3
U(P, x),

where U is the Poisson integral of f, we see that (8.11) will follow if we show that

I(P)=J -O P(P,'lr)dVr=o(6'-P), (8.12)

where A(p,11r) =1- 2p cos 1/r + p:.

The rest of this section is devoted to the proof of (8.12).
First of all we recall the obvious estimates

(a) 0(p,1k) 3 32, (b) A(P,'k) ->A>y2. (8.13)

We also have
J

.
O p ) S A.81-2a, (a> }) (8.14)

which follows immediately if for I Vr I -< d we apply to the integrand the first, and for
the remaining intervals of i/r the second, of the inequalities (8.13).

Next we note that the inequalities (8.4) and (8.5) with x = 0 become

0-< U(P,IU)<Ain I+ (&15)

fhU(p,Vt)dVtAmIhI. (8.16)

Finally, writing UP= UP

0 I

-'U, we have (see (8.12))

I(P) = f lP-'(P,Od l Jf(u) P( P,l(r-u)du
J

Up-1(P, 0,) P(P, V - u)= f- f(u)du1 -dVf. (8.17)

We shall estimate I(p) by splitting the last integral into a few parts, appealing
in each case to appropriate hypotheses about the behaviour off at x = 0.

We first split the range I u) -< n of the integral last written into two parts, I u d

and the remainder. Correspondingly,

I (P) = A(P) + Is(P) (8'18)
Using (8.13) (a),

r1,(P) Ad-PJ
I u l G

ef(u) du n -* U'-'(P, Vt) P(P, Vt - u) dV'

i
A8_P f (u) du l f , U(P, 0,) P(P, 0' - u) dlb

rIuIGd n

=A8-PJ f(u) UP-'(p',u)du, (8.19)
IulGJ

by Jensen's inequality (since 0 <p -1 < 1).
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Using (8.15) and (8.3) we have

Ii(p) -<
Amp-18-Pr

I f (u) du -< AmP-18 P . o(8)
lalad

=O(81-P). (8.20)

Next 12(P)=12,1(P) +I8,8(P), (8.21)

f'<IUI<.
r)P(p, u)

where Iai(P)==f(u)d up-, (p,
UfI*I<}1ul 0}P(P,0)

--dt/r,

I2,2(P)= f(u)du
UP'(p,r/r)P(p>?/!-u)

Jd<Iulc. f}IuIcI;IsR

The inner integral in I2,1(p) does-not exceed

UP-'(P, !lr)

P(P u) 1AiP(P,%lr)
2-P

4 P(P, }u) (flilt}lul
/

U(p,1/r) do/)" (fl
ily}IYI 1

by Holder's inequality, and so, by (8.16) and (8.14), does not exoeed

A8u-2(Am I u I )P-' (APdl-DKf-P))!-D -< APm'-1 I u'P-a8a-2P.

Hence I2, i(p)SA,mP-'88-2 f(updu<- A,, P-188-2P. o(8P-S)
d"IIIG. u

= 0(810, (8-22)

by integration by parts and application of (8.3) with x=0.
Finally,

P-'(P,) P(P, fi - u) d1(rIs 2(P) I
J

f(u)du
Eff.

U
dGIuI<-Aip(p,0)

4A f (u) UP-'(P', u) du,
fdGltilt. I U IP

by an argument similar to that in (8.19).
The inequality (8.4) shows that

rr r

U(p2,u)<Am1+i (pe)<Am{1+Xau)),

X(u) being the distance of u from E. ``Hence i

I u I -Pf(u) XP-'(u) duI2,2(P) -< AmP-1f
IG+G

I u I -f(u)du + AmP-181-Pr
dGIxIG.

<o(81-P)+Amp-181-P Eff I u I-Pf(u)XP-' (u) du. (8.23)

From (8-18), (8.20), (8-21), (8-22) and (8-23), we get

I(p) -< o(8'-P)+AmP-'8'-r" f('s)XI uII(n )du, (8.24)
J .

and so, by the hypothesis about the integral (8.6) for x = 0, we certainly have

I (P) = O(8'-P).

For the refinement I(p)=o(8'-P), (8.25)
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we set f = f1 +f,, where f, =f in (- 2j1, 2rl) and f, = 0 elsewhere. The value of m for f,
is not increased and, by (8.24), I(p, f,) < e8'-y for any fixed e and 8 sufficiently small,
provided it is small enough. It is therefore enough to show that I(p, f2)=o(81-v).
Let U, be the Poisson integral of f,. Then I(p, f,) is given by an integral analogous
to (8.12) with U, for U. The part of this integral extended over (- rl, rl) tends to 0
with a since U,(p, Or) tends to 0 on -,q <'f < y (cf. (8.14)). The remaining part does
not exceed

0(1),f UP(p.V,)d tr=0{Max Uf')} f " U2(P,'r)difr=o(8r f_f2dV,=,(P 1).

9. Almost convergence of S[ f ] and §[f ]
The following result is an immediate consequence of (7.2), (7.3) and (8.1).

(9.1) THEOREM. For any f E L and almost all x both S[f ] and S[f ] are almost convergent
to sums f (z) andf(x) respectively. If f e L', r > 1, S[f] is almost convergent to f (x) at every
point at which (1) (h) = o(h).

Applying (7.9) to the trigonometric system, we prove the following theorem:

(9.2) THEOREM. If f E L2, then for almost all x the sequence 1, 2, 3, ... can be broken
up into two complementary sequences {mk} and {nk} (generally depending on x) such that

8m1(x) - f (x), E l /nk < oo.

Let x be a point at which simultaneously

< 00
n

(9.3)

(9.4)

and o n -*f. For a fixed e > 0, the sequence {pk) of indices n such that 18 (x) - o-n(x) I e

satisfies, therefore, the condition E1/Pk <oo. By omitting the first few terms we may
make E1/vk arbitrarily small.

Take now e = 2-1. For N, large enough, we can split the sequence N, + 1, N, + 2, ...
into two complementary subsequences 0,I), >Ia ), ... and µ.i1), p41), such that E 2-1
and 1sn(x) - o-n(x) I < 2-1 for n E {µk)}. Similarly, taking e = 2-2, we can find N, > N, so
large that the sequence N, + 1, N2 + 2, ... can be split into two, (pk )} and {µ5r2)}, such that
E 1 /pk) < 2 2 and I sn(x) - o-n(x) I < 2 2 for n a (p )), and so on.

Now lot {nk} be the sequence of all vVf) arranged, without repetition, in increasing
order, and let {mk} be the remaining positive integers. Then

2 lfnk <2 /vk+E1/vk) } ... <2 1+2-2+... = 1.

Also, for any fixed s, all the mk > N, must be in the sequence pt(i ), µ(e ), ..., and hence

S., (X) - 0-.k(X) I < 2

Since (x) .-. f (x), it follows that 8,,,.(x) -+f (x), and (9.2) is established.
A sequence {nk} satisfying El/nk<eo is necessarily of density 0, and so the com-

plementary sequence {mk} is of density 1.
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Theorem (9.2) holds for f E LP, p > 1, and even for general S[f] of power series type,
but the proof is then considerably more difficult (see Chapter XV, § 1). The result,
however, does not hold for f merely integrable.

10. Theorems on the convergence of orthogonal series
The theorem which follows will be needed only in the case of the trigonometric

system, but even in this case we are obliged to consider a general, uniformly bounded,
orthonormal system.

We denote such a system by 01(x), 5t(x), ..., suppose that it is orthonormal on (a, b).
and that

I c I k M (v = 1, 2, ..).

By q we denote a number strictly greater than 2. Finally, for every sequence c1, cQ, ...
tending to 0, where c,, r 0 for all v, we denote by ci , c,*, ... the sequence I cl 1, 1 c, 1, ...
rearranged in descending order of magnitude, where if several I C,, I are equal we
rearrange them in order of increasing index n.

(10.1) THEOREM OF MEN§OV-PALSY. If for a Sequence C1, c, ... the expression

is finite, then the 8erie8

IN

E c,q ,(x)
1

converges almost everywhere. Moreover the function

S*(x) = sup
n

is in LQ and salisftes an inequality

(q> 2) (10.2)

c.gv(x)

(10.3)

(10.4)

9RQ[S*] -< AQM(Q_2 %*[c]. (10.5)

For the present A. denotes a positive constant depending on q only.
We begin with a few remarks.
(a) We proved in Chapter XII, §5, that if 18*[c] is finite, then (10.3) is the Fourier

series of an fELQ and 9Jl0[f] e AgM(0 2)19Z*[c] (10.6)

The proof of (10-6) gave no information about the convergence of (10.3).
(b) An inequality weakerf than (10- 5), namely,

9J1Q[S*] -< AQMtq-2uq %Q[c], (10.7)

is much easier to prove. The generalization from (10.7) to (10.5) is the main difficulty
in the proof of the theorem. This generalization is quite important since we have the
inequality

(ZICvJP)UP -AgS'8v[c] (p=q' 41)
(see p. 123), so that Theorem (10.1) holds if we replace F8Q*[c) by (E I c IP)1/P through-
out, a result which cannot be deduced from (10-7).

t We know that Z:(c) <-21a(cl; see p. 123.
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(c) The convergence of (10.3) is a consequence of (10.5). For suppose that we
replace the first k coefficients of (10.3) by 0's and denote the resulting function S*(x)
by Sk (x). An application of (10.5) then shows that

e

S*q(x)dx-*0
a

as k oo. Hence for each c > 0 the measure of the set of points where Sk (x) > c tends
to 0 as k-)-oo. This shows that Ec, o, converges almost everywhere. It is therefore
enough to prove (10.5).

(d) A corollary of (10.1) is that if F8, *[c] is finite, then any rearrangement of Fc O,,
converges almost everywhere.

We now pass to the proof of (10.5).
2µ

(10.8) LEMMA. Let 4)(x) = E d,O,(x).
I

I n

The function

satisfies an inequality
$t4[(D*] <AQM(c-2)lf 2v(v-2)1Q(E I d,

jQ)'rv

(10-9)
1

With (D for (D* on the left the inequality is an immediate consequence of (10.6).
Corresponding to each k of 0 < A <,u we consider a splitting of 0 into 2A successive

blocks 'of rank A', each containing 21-A terms, and denote the kth block and the
`greatest' block by k2µ-A

4)k.A= d, ¢., (10.10)
(k-I)2µ-A+1

D ,*i(x)=8UPI4k,A(x)I (10.11)
k

where k= 1, 2, .. , 2A.

Considering the dyadic development of an integer n, 1 < n < 2,,, we see that the nth
partial sum of 4 is the sum of a number of blocks of different ranks. Hence

(10.12)
A-0

P
and therefore J Q[4'xlE (10.13)

But, by (10.10) and (10.11),
A o

6

,

b 2A 2A 1,

(PA*gdx
af. E 14'k.A

a k-1
dx= E J I 4)k.Ak-l a dz. (10.14)

Now an application of (10.6) to (10.10) shows that the first integral in (10.14) does not
exceed 2A k2µ-A

E AaMc-22(9-A)(v-2) E I d, I°=AQMa-22(N-A)(a-2)E

k-1 (k-1) 2j1-A+1 1

Substituting this in (10.13) we have

g11,[(*] < E AQM(v-sua2(r-A)(f-2YOr E I d, IQl1u

A-o l
Ua

AQy(Q-2X¢2r(e-2)l9(E I d,
I4

,
1

which proves the lemma.
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We now set 21-1
C, C*q Vq-2,

R1

where u = 1, 2, ... , and consider the terms c(¢1 such that I cI I is one of the c* in e),.
We denote the sum of these terms by t (x), and suppose that the order of terms
within each (I is the same as in (10.3). Let t) (x) be the greatest absolute value of
the partial sums of 4 (x). (4). has 2s-1 terms; thus (D and V may be considered as

P 1,

the functions G and (D * of the lemma.) Since each partial sum of (10.3) is obtained by
the addition of a (finite) number of the partial sums of various (D, we have

S*(x) 5 4)1 (x) + IZ (x) +.... (10.15)

An estimate of 97ta[<l ] is given by Lemma (10.8), and it is natural to combine this
with Minkowski's inequality applied to (10.15). Unfortunately, the resulting estimate
for Ti,[S*] is not good enough to give (10.5) and we must proceed differently.

We first show that b
f ((DA Y )1v AQM4-26i Aep 2-09 a (10.16)
fa

where aq is positive and depends on q only.
We may suppose that A -<u. Writing

and applying Holder's inequality with exponents J(q + 2) and (q + 2)fq we have

J
f

b (f 6 2/(q+2) b 1d4+2)

(c1 4
)ia \

\J
$*ivdx)

(5 A14
a a a

= p2/(a+2)QQ1(a+2) (10.17)

say. Lemma (10.8) applies to P, and
RA-1 RA--1

P-< AQMQ-22A(Q-2) Z c*q s AQMa-2 Z c*q yq-2
2A-' 2A-'

AQMq-let, (10.18)

Q-<sup((DXI(x)}iq-I f 4),*iq+Idz.
x a

Lemma (10.8) is applicable to the integral since ,)q + 1 > 2, and we have
RA-1 i4'-1 Eµ-1Q-< Miq I (Y- c*) Miv-1 A#qv+i 2(n u(iv n c*iq+1 (10.19)
YA-. 21-1

Observe now that
2A-I 2A-1 2A-1 (q-1),'Q

E C* = C* 10-2)lq. V-(q-214 < EA./4 ( E V-(q-2)J(4-1)
2A-I 2A-1 2A-'

e./q(2A -1 .2-(A -1) (q-2X(4-I))(q-I)1q

ez/q 2(A -I)'q,

and similarly 21-1 2µ-1
c,*iq+I =

1..
` C*iq+I V(q-2)(a+2)r2q V-(q-2)(q+2)/2q

Y1- 21-
J/21-I (q+2)/24 21-1 \(q-2Y2q

1 C*qw-2/ -(q+2)

e(q+2N2q. (2--4p-1)(9+1))0-2YE4.
r
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Substituting these estimates in (10-19) and replacing there A#Q+i by AQ (merely
a matter of notation), we easily deduce from (10.17), (10.18) and (10.19) the inequality
(10.16) with aq=4(q-2)/(q+2).

Return to (10.15) and denote by r the least integer not lees than q. Then

Tly[S*] < (E',*, *)q dx - f e
a a

b l+

a

A, A,

b
... fa (0Z, ... I>A*,)Q"dx. (10.20)

Writing

*i....'Drr, = {((1, *,) tea,) ... ((1, (D ,) ... ((DA,_, t)}''-',

where the number of bracketed factors is R = +jr(r - 1), and applying Holder's inequality
with exponents R we have, by (10.16),

Ja((DA,...(D*)q/'dx<1Grl i
b ((DA`-&A,)1Qdx}uR

Ar f.
A QM(Q-a) 11 (sA,s )1AR 2-941 -A/ uR

14i<14r

_ A .M' °-s) e fi (t) {2 }Qyi Ai.-A uR},

where the upper suffix i indicates that the factor j=i (which factor, by the way, is
equal to 1) is omitted. Substituting this in the last sum in (10.20), and using Holder's
inequality again, we have

r 1 (i) A A II(r-1)972Q[s*] < A0MQ-2 II ll E eAr jl 2-'4 r- ;
{-1 A,,...,A, J-1

Consider the multiple sum in curly brackets. Summing first with respect to
A1, ... , Ai-1, Ai+1> ... , A, and then with respect to A;, we see that the sum under con-

y

sideration, and so also the product 11 does not exceed
{-1

1 eA))
A-1 °--9o

Since r - 1 < q < r, we have
l

In [S*] < AQM-= (E eA J (E2-aq"'IQ)Q
A-1 //

and (10.5) is established. This also completes the proof of Theorem (10.1).
Theorem (10.1) fails for q = 2. There are a number of substitute results in this case;

we onlyprove the following, in which 951, h, ... is an arbitrary (not necessarily uniformly
bounded) system orthonormal on (a, b).
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(10.21) THEOREM OF MEN§OV-RADEMACHER. If

EIC,12log2V<00, (10.22)

the series Ec,0, converges almost everywhere in (a, b). Moreover, the function S*(x) of
(10.4) satisfies the inequality

}
Ic,l2log2(v+l) . (10.23)

1

The first part of the theorem extends Theorem (1.8) of Chapter IV to the most
general orthogonal series. On the other hand, Theorem (1.13) asserts that for the
trigonometric system the factor loge v in (10.22) can be replaced by log v.

As in Theorem (10.1) it is enough to prove (10.23).

(10.24) LEMMA. For the most general orthonormal system the function (* of Lemma
(10.8) satisfies 2,. }

99t2[d)*]<A(,a+1) Id, 12) (10.25)

We keep the notations (10.10) and (10.11). The inequalities (10.13) and (10.14"
hold for q = 2 (the factor Ma-2 dropping out and A, becoming an absolute constant A)
so that

IJa 1

2µ

A0 9Jl2[4,*1] <A(ie+ 1) (E I d I2)

(10.26) LEMMA. If E I c 12log v converges, then

(i) the partial sums Sts- Z c, ¢, of Ec, c, converge almost everywhere ;2"
1

(ii) the function S* (x) = sup I S2u(x) I
I

}
satisfies Tt2[S*]5 A { E 1 c 121og (v+ 1) (10.27)

Only (ii) is needed for the proof of (10.23).
By the theorem of Riesz-Fischer (Chapter IV, § 1), Ec,o, is the Fourier series of an

f E L2 and rD

J
1S2µ-f12dx=

10.12,

2$+1
w m m M (log (u- 1)l log 2)

f.' Z I52$-f 12dx= Z E Ic 12^ E E 1

p-0 u'0 u.2$+1 v-2 p-0

,A , IC'12log(v+1). (10.28)
P-2

Thus, under the hypotheses of (10.26), 11 S2 -f 12 converges almost everywhere,
and, in particular, S2$--*f almost everywhere. This proves (i).

Since 2(If 12+IS2$-f 12
.
), we also have

S. 21f12+2E182µ-f 12.



194 Convergence and summability almost everywhere [xul

By (10.28), the integral over (a, b) of the last sum does not exceed AE I C. I2 log (v + 1),
and since fb

J
If I2dx=EI ,,I2-1 AZ Ic,I2log(v+1),

(10.27) follows.
We can now prove (10.23). Setting

S (x)= sup
2N-'<n<2µ

we have

and so, by (10.27) and (10.25),

n
E C, Y' ,W//!/

20 -'+ 1
r

S' < S# + sup S'',

8'2 a 2S; + 2E8*2,

Zk I'l
Ja 1 ral 2N-

m sµ-1
_< A2EIc,I21og2(v+1)+A2E Ic,I2log'(v+1)

1 r-1 go-'

=A2E 1 c,I2log2(v+1).
,-1

11. Capacity of sets and convergence of Fourier series
Theorems about the convergence, or summability, almost everywhere of a trigo-

nometric series EA, (x) can, in some cases, be refined by giving additional information
about the exceptional sets of measure 0. There are a number of classifications of sets
of measure 0; here we consider only one, based on the notion of 'capacity'. We confine
our attention to Borel sets.

We fix a function A(x), periodic, integrable, real-valued, even, continuous for x * 0,
and tending to +ao as x-*0; in particular, A(x) is bounded below. Consider a set
Ec (0, 2n), and let du be any (non-negative) mass distribution concentrated on E,

2+
of total mass 1; hence

1u

du =
a

d#= 1. The convolution
1 2a

l(x)=l(x,p)=- I A(x-t)dp(t) (11 1)

has a definite value, finite or +oo; it is uniformly bounded below for all t. There are
two possibilities: (i) l(x) is unbounded above for all a, (ii) 1(x) is bounded above for
some p. Case (i) occurs, for example, if E is finite or denumerably infinite; case (ii) if
E is of positive Lebesgue measure. (If X(x) is the characteristic function of E, and
dp (x) = I E I -1 X(x) dx, (11.1) is bounded.) In case (i) we may consider the set as
'small', in case (ii) as 'large'. In case (i) we say that E is of {A}-capacity 0, in case (ii)
that E has a positive {A}-capacity.

Suppose, in addition to the previous hypotheses, that the mean value of A over a
period is non-negative. The same then holds for l(x), and L(fc) = sup l(x, u) is also non-

negative. The non-negative number
CB(E) _ {infL(p))-' (11.2)

will be called the {A}-capacity of E.
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If E c E then '(E) _< '(E,). Hence we may think of ''(E) as a sort of measure of E:
but it has the character of an `inner measure' since it is defined by means of masses
situated in E. We might apply the definition (11.2) to open and closed sets, and
inquire about the conditions for E to have inf'(O) =sup'(F), where 0 are open sets
containing E, and F closed subsets of E. We are, however, interested in sets of capacity
0 only, and we define sets of outer (A)-capacity 0 as those which can be covered by open
sets 0 with '(O) arbitrarily small.

If El and E2 are sets of older {A}-capacity 0, so is E,+E2. For suppose that O, F,,

and O2 D E2 are open sets such that '(O,) < c and cf(O2) < c. Let d1ee be any mass dis

tribution of total mass 1, concentrated in O, +02 and suppose that) du >_ J. The first
o,

term on the right in

j A(x-t)du(t)= f A(x-t)due(t)+J A(x-t)dte(t)

is then at least I12e for some x, and the second is uniformly bounded below, and since
f can be arbitrarily small, the assertion follows.

Of main interest in applications are the cases

cos nx 1
(x) = logn

l 2 sin ,)x I'

°° cos nxA(x)_E n,-a -Cajxj-a (x-*0; 0<a<1)

(see Chapter I, (2.8) and Chapter V, (2.1)). In the first case we also speak of the
logarithmic capacity, in the second of a-capacity. The logarithmic capacity is a
limiting case (a = 0) of a-capacity. It is not difficult to see that if B is of outer a-capa-
city 0, then it is of outer a' capacity 0 for 0 5 a < a'< 1.

(11.3) THEOREM. (i) If En(an + bn) < co, then the set of points of divergence of the
trigonometric series EA (x) is of outer logarithmic capacity 0.

(ii) If 0 < a < 1, Ena(an + bn) < co, then the set of the points of divergence of EA (x)
is of outer (1 -a)-capacity 0.

(i) If m(n) tends monotonically to +eo, then at the points where EA (x) diverges
the partial sums of 1w(n) A,,(x) are unbounded (Chapter 1 (2-4)). Taking w (n) such that

Ew2(n) n(an + bn) < co,

we see that it is enough to show that the set of the points where the partial sums s (x)
of EA,,(x) are unbounded is of outer logarithmic capacity 0. It is even enough to show
this for the set E of points where the 8,(x) are unbounded above.

The proof of the following lemma resembles that of Theorem (1.2).

(11.4) LEMMA. Let 0 be an open set, and djt a mass distribution concentrated in O. If

rx. 1

0
5)in J M (11
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for all x, if En(an +b2) s 1, and if n(x) is any Borel measurable function taking only non-

negative integral values, then the partial sums sn(x) of E A(x) satisfy
I

(2'- 8.()(x)d/t(x)_M+A, (11.6)n

where A is an absolute constant.
Let O'n(x) and H,(x) be the partial sums of En-i cos nx and En-1 cos nx respectively.

By hypothesis, En}A(x) is an S[F], Fe 1 ,2, and we have

2n 1 f2n 1 'F(t)sn(Z)(x)du(x)=
J

{ an(x)(x-t)dl)dfu(x)
o n o n o

_ "F(t)II
o

n

Of(x)(x-I)diu(x)}dt=1 f
2n

F(t).1(t)dt,
7r 170 0

say. By Schwarz's inequality, and the hypothesis En(an+bn) 1,

{J F(t)i(t)dt}2_ ronF2(t)dt._JowI2(t)dt

i f1J2w6n(a)(x-t)dfu(x)) fo*On(y)(y-t)d/i(y)}dt

2n 2

ofo 1 ( J
Once)(x-t)On(v)(y- t)dt)du(x)d/c(y)= f0

0
f H.U,v)(x-y)du(x)du(y)

n o

where n(x, y) = min {n(x), n(y)}.
Since, by Chapter V, (2.28),

Hn(x) S log I J cosec Ix I + A, (11.7)

using this estimate for Hn(z,v)(x-y) in the last integral, integrating first with respect
to y, and applying (11.5), we obtain (11.6).

Fix a positive integer N. Since {sn} is unbounded above at each point of E, using
the continuity of the s, we can associate with every x E E an integer n = nz and an open
neighbourhood such that s > N in this neighbourhood. We can cover E by a denumer-
able family of the neighbourhoods. Their union ON is an open set in which we have
a Borel-measurable function n(x) such that 8,i(.,,(x) > N.

Suppose now that E is not of outer logarithmic capacity 0. Then there is an M such
that for any open 0 3 E and some d/c, of total mass 1, concentrated in 0, we have (11.5),
and so also (11.6). But for 0=ON and the n(x) just mentioned

fo, 8.(.)(x) d# > N JOs du = N,

which contradicts (I1.6) for N large enough. This proves (i).
(ii) We modify Lemma (11.4) as follows. If Ena(an + bn) _< 1, and if on the left of (11.5)

we replace the cofactor of dy(y) by H(x)=En-acosnx, we still have (11.6), with
AwM+Aa on the right. The proof is the same as before, if we define G,,(x) and HH(x)
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as partial sums of En-}a cos nx and En-, cos nx respectively, and S[F] as
instead of (11.7) we now have

HH(x) _< A. H(x) +A.,

an immediate consequence of Chapter V, (2.26) and the fact that H(x) is exactly of
order I x J -(1-a) for x 0. The rest of the proof is unchanged.

MISCELLANEOUS THEOREMS AND EXAMPLES

1. Let f e L', and let El, E ..., E ...be any increasing or decreasing sequence of sets in (0, 2n).
Then

k2(logk)-'
11

1 feinkxdx/l')-AIIf Ti,

/
\J 111

where A is an absolute constant. (Salem [2].)
[The theorem is equivalent to (1.10); cf. Chapter I, (9.14)]

2. Let0<n1<n,<...<n,<.... n,+1/n,>q>1,and lot any increasing or decreasing
sequence of sets in (0,21r) such that E,=E,, for n.-1<k<n, (a= 1, 2, ...). IffcL', then

kI1II I
fcoekxdx) +(JEtfsinkzdx)*)

[See (1.10).)

3. Let (a,) be positive decreasing, such that is monotone and Za,/n < co. If #.(x) and t.(z)
are respectively the partial sums of Ea, cos nx and Ea, sin nx, then the functions sup I a,(x)

w
and sup I t,(z) I are both integrable.

n

4. If f-..1:A (x), 8>0, then the partial sums of both E(logn)-'-aA,(x) and E(logn)-'-8B,(x)
can be majorized by integrable functions. For 3= 0 this is no longer true.

5. If a, > 0 for k= 1, 2,..., and if Ea;ein kx is the Fourier series of a bounded function, then
partial sums of the series are uniformly bounded; if f is continuous, the series converges uniformly.

[Let e and o-, be the partial sums and (C, 1) means of the series. If, for example, I f I _< M, then
I c M, I oo,,(x) I < 2nM and, for x= 0,

2n k
E

1 2n + 1
ka, S 2nM, E ka, c 4nM, v,(x) I 'c 4M.]

k-1 k=1

6. If EA,(x) is summable H,,, q>_ 1, in a set E, and if EB,(x) is summable (C, 1) in E, then
EB,(x) is summable H. almost everywhere in E. (Marcinkiewicz and Zygmund [71.)

[The proof resembles that of (5.1); the result holds without the hypothesis that EB,(x) is
eummable (C, 1) in E, but the proof is then more difficult.]

7. Let f . EA,(x). If

h f s[f(x+t)-f(x-t)ldt=o(logll/h) (h-.+0)

uniformly in a cx<b, then a,(x) -v,(x) tends uniformly to 0 in every subinterval (a+e, b-e)
of (a, b) and, in particular, a,(x)

(i) converges uniformly in (a + e, b - e) if f is continuous in (a, b);
(ii) converges almost everywhere in (a, b) if f is integrable. (Salem [14].)

R. Let I,(x) = I,(x, f) be the Lagrange interpolating polynomials with 2n+1 equidistant
fundamental points (Chapter X, § 1). If f is integrable R, and if lim inf I,(x) > - m for x c E, then
iim sup I,(x) < + oo almost everywhere in E, and

f (x) = 4{lim inf I,(x) + lim sup I,(x)}

almost everywhere in E. (Marcinkiewicz [ 10].)
[The proof is analogous to that of (5.7).]
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9. Let 1.(x) be the interpolating polynomials (Chapter X, § 1) of an f e R. If lim 1.(x) and
lim f (x) (see Chapter X, j 10) exist and are finite for x e E, I E I >O, then lim 1 (x) exists,and equals
f (z), almost everywhere in E.

Both here and in the previous example we have analogous results for I,,,,,,

10. Let E(a,,ooenkx+b,,sinn,,z) bea finite lacunary polynomial, n,,,/nL.>q> 1; let A> I and
E C (0, 21r), I E > 0. Then there is a number ve= v,(q, A, E) such that

E E(ay+b,') (S I S,,(x) I),

provided n1 > v0. The result holds for infinite EA,,(x), provided E(aa +bb) < oo.
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CHAPTER XIV

MORE ABOUT COMPLEX METHODS

1. Boundary behaviour of harmonic and analytic functions
The results we are going to prove in this section are not only of intrinsic interest

but also of importance for the study of trigonometric series. Though the behaviour of
functions f(z) regular for ! z I < I is our primary concern, it will be convenient to
assume merely that the analytic functions we consider are meromorphic there and
do not reduce to constants.

Let D denote the unit circle j z I < 1 and C the circumference I z =1. By a triangular
neighbourhood T (O.) of a point e'6- e C we mean any open triangle contained in D and
having ei0° as a vertex. If T(00) is isosceles and bisected by the radius to e'so, we call
the neighbourhood symmetric.

A functionf(z) defined in D will be said to satisfy condition B at 00, if there is some
T(00) such that f(T(00)) is bounded. (For any set Z. f (Z) will mean the set of numbers

f (z ), z E Z.) We say that f satisfies condition B in a set E c (0, 2nr) if it satisfies condition B
at every point 00 E E. The triangles T (O,) need not remain congruent, nor the bounds
for f(T(00)) the same, as 0, runs through E.

(1.1) THEOREM. If a function u(z) harmonic in I z I < 1 satisfies condition B in a set E,
then u(z) has a non-tangential limit at almost all Points of E.

This result is a generalization of the fact that a function harmonic and bounded in
D has a non-tangential limit almost everywhere on 0 (the function u being then the
Poisson integral of a bounded function); and this special result will be used in the
proof of it. Owing to the importance of the result we give two different proofs.

First proof. This will be based on conformal mapping.
For any 0 < S < 1, let Cd denote the circumference I z I = d. By Std we mean the open

region bounded by the two tangents from z =1 to Cd and by the more distant are of
Cd between the points of contact. The set f2d increases monotonically with S and tends
toDasB-+ I.

By Std(0) we mean the domain 0d rotated through an angle 0 around z = 0. If there
is no confusion, we shall write 12(0) instead of S2,(0).

We first consider the somewhat simpler case when all the T(00) are symmetric.
Then for every 004E E we can find an integer n=n(00) such that

lu(z)l<n for zE121i(00). (1.2)

The set of all points 00 in (0, 21r) for which (1.2) holds we call E. Clearly,

E c Es+Ee+...,
and it is enough to show that u has a non-tangential limit almost everywhere in each E.

We therefore fix n and write En = P, 121,,,(0) = S2(0). As can be seen from (1.2), the
set P is closed. The intervals contiguous to it we denote by (ak, fk). Let

U = E S2(0) (1.3)
eeP
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be the union of all f)(0) with B E P. The set U is open. Since we may restrict 0 in (1.3)
to a dense subset of P, containing, say, the points ak,, k, we immediately see that the
boundary B of U is a simple closed curve consisting (see the figure) of

(i) the set II of points e'8,
(ii) the rectilinear sides ak, bk of similar curvilinear triangles constructed on the

circular arcs (ek, eifik) contiguous to II ; and possibly
(iii) arcs of C,;,,. For convenience we shall always ignore the third possibility.
We inscribe in B a simple closed polygonal line consisting of a finite number of the

pairs ak, bk and of chords of C joining points of Il. Since the length of ak+bk
does not exceed a fixed multiple of /3k - ak, it follows from the definition of the length
of a curve that B is rectifiable. The same argument shows that n has the same length
whether as part of B or of C.

fl,

Clearly u is bounded (I u I _< n) in U. Therefore, if z = maps conformally the
circle D (I C I < 1) onto U, the function

u(O(O = u*(f) (1.4)

is harmonic and bounded in D. Hence u*(C) has a non-tangential limit almost every-
where on C (I I = 1). The exceptional set on C is mapped onto a set of measure zero
on B (Chapter VII, (10.17)). If, in addition to the latter, we disregard on B the set, of
measure zero, of points at which B has no tangent, then at the remaining points the
mapping is conformal (Chapter VII, (10.13)) and so the function u(z) has a non-tan-
gential limit.

In particular u(z) has at almost all points of II a non-tangential limit as z approaches
the point from inside U. But a tangent to B at a point of II is also a tangent to C, and
the non-tangential approaches through U and D mean the same thing.

Thus u(z) has a non-tangential limit in II, except for a set Z of length zero on B.
The set Z is also of length zero on C, and (1.1) is established, under the assumption
that all the neighbourhoods T considered are symmetric.
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We shall now remove the latter restriction. The triangles T(B) are characterized by
the two sides emanating from e0, by the angle between these sides and by the angle
that the bisector of T(0) at ei0 makes with the radius to e's. By reducing T(0) if neces-
sary, we may suppose that the two sides in question are rational and the two angles
commensurable with n. We may also select bounds for u(T(b)) from among positive
integers. Thus, by splitting E into a denumerable family of subsets, we may reduce the
general case to a special one in which all the triangles T(0), 0e E, are congruent and
identically situated (with respect to the radii to ei0), and the function u is uniformly
bounded in them. As before, we may suppose that E is closed.

Now let 00 be any point of density of E. We shall show that u is bounded in a sym-
metric neighbourhood T*(00). For let A be any angle with vertex at ei°o bisected by
the radius to e'Oo. Then de being a point of density, if an are (ak,fik) contiguous to E
approaches 0, its length becomes infinitesimally small in comparison with its distance
from Be. It follows easily geometrically that if 0 approaches 0e in E the triangles T (O)
cover all the points of 0 which are sufficiently close to et0o. Thus u is bounded in a
certain symmetric neighbourhood T*(00).

Since almost all points of E are points of density, u has a non-tangential limit at
almost all points of E by the case previously considered, and (1.1) is proved in full
generality.

Second proof. This is independent of conformal mapping and can be applied in more
general situations when conformal mapping is not available.

It will be convenient to modify our definitions and denote by T(0) a curvilinear
triangle limited by an arc of some circle I z I =p < 1 and by the two rectilinear segments
joining e'' to the end-points of the are. As before, we may restrict ourselves to sym-
metric T(©), bisected by the radius to ei0. Furthermore, as in the preceding proof, we
may reduce the problem to the case when E-henceforth denoted by P-is closed.
the T(0) are all identical (i.e. congruent), and it is uniformly bounded, say I u I 5 1,
in all T(0), 0E P. From now on, by T(0) we denote therefore a definite triangle whose
curvilinear part is on a fixed circle I z I = 1 - Se. By T,(0) we denote the part of T(d)
situated in the ring 1 - J8(, < I z I < 1, and we write

V = Z TI(0).
BEP

Hence V is an open set, not necessarily connected. We denote the boundary of V
by B. Clearly I u I < 1 in V.

Let pn = i -1/n for n=2,3,._ and let Pln) be the set of 9's such that pn e'B is in V.
Pn> consists of a finite number of open arcs and contains P if n is large enough; we
consider only such values of n. Let On(z) be the Poisson integral of the function equal
to u(p, ei°) in PI) and to 0 in the complementary set Qln>, and let in(z) be the Poisson
integral of the function equal to 0 in P<n> and to u(pn ei°) in Q(">. Thus

u(Pnz)=¢n(Z)+Y'n(Z) 01<4 (1.5)
Since I On I <- 1 for all n, the On are equi-continuous in each circle I z 1 - e.t It
+ Our hypotheses imply that in the formula

0,,(pe'e)--m
the c's are numerically not greater than 1, so that a0"/ap and a

are equioontinuous -for p 1- e.
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follows that there is a subsequence converging uniformly in each circle
I z I 5 1 - c to a harmonic limit ¢(z) (I z < 1). By (1.5), {0/ ,,,(z)) also converges to a
harmonic limit c/r(z), and we have a decomposition

u(Z) _ O(z)+>y(z) (1.6)

Since 1, 0 has a non-tangential limit at almost all points of 0, and it remains
to show that l/' has a non-tangential limit at almost all points of II, where H denotes
the set of points a°, 0 E P. More precisely, we show that this limit is 0 almost every-
where in H. (Observe that all yr are 0 on 11.)

This will be established if we prove the existence of a positive function X(z) which
majorizes 10, 1 in V, and which tends non-tangentially to 0 at almost all points of II.
For let 0, be a point of density of P such that X has a non-tangential limit 0 at ed..
Consider any fixed triangular neighbourhood N of ed.. Since 0e is a point of density
for P, the union of all T1(0) with 0 in P and sufficiently close to 0o contains all points
of N which are sufficiently close to e'0.. Hence %(r(z) I 5 X(z) near a°e in N, and since
X(z) tends to 0 as z in N approaches eteo, the same holds for i(r(z). It follows that r/r has
a non-tangential limit 0 at eteo.

To construct the required X, we denote by X1(z) the Poisson integral of the character-
istic function of the set Q complementary to P, and consider the positive harmonic
function

Xs(z)=P(r,x)+Xi(z) (z=re'x), (1.7)

where P(r, x) is the Poisson kernel. Clearly Xt has a non-tangential limit 0 at almost
all points of H. We assert that at each point zo of the boundary B of V which is not on
z I = 1 the funetionX2 stays above a fazed positive numberdepending onlyon our (standard)

neighbourhood T.
This is obvious if I zo = 1 - 4 o, since X2(z) > P(r, x)t. Suppose now that ze is in the

ring 1 - (<ae < 121 < 1. For any z in the ring, we call the largest (open) arc (a, f) such that
z is in T (O) for all 0 in (a, 6) the are, associated with z. The geometric interpretation of
the Poisson integral of the characteristic function of (a, f) (see Chapter III, (6.18))
shows that the value of this integral at z exceeds a fixed positive number which depends
only on T. But if z = zo is on B, the associated are (a, fl) is contained in Q, and Xt(zo)
is not less than the Poisson integral of the characteristic function of (a,,8). This com-
pletes the proof of the assertion.

Next we show that I i/rn(z) I _< 2 on B. (Observe that r/rn is continuous and vanishes
on II.) It is enough to prove that I I _< 2 in V. If zo is in V, ze is in some T,(Bo),
0e a P, and, since

1 ae

Pn>1-llao>

Pnzo is in T(0,), which, in view of (1.5) and S 1, gives I I s 2.
Hence Xt stays away from 0 on B- II, while the rlr are uniformly bounded there.

There exists therefore an M > 0 such that MX, ± /r >_ 0 on B - I]. If z in V tends to
a point of n, we have

lirainf{MX5±ifr,j=liminfMXt? 0,

t Since x, is strictly positive in j z 1< 1, the conclusion holds if we omit the term P(r, x) in (1.7). and
take x.=x,. The definition (1.7) will, however, be convenient to us later (Chapter XVII,14).
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and the maximum principle for harmonic functions shows that MX, ± 1(in > 0, that is,
Vfn MX, in V. Finally, making n oo, we get

I'r(z) 1 MXz(z) in V. (1.8)

Hence,y = MX, has the required properties and the second proof of (I.1) is completed.
Theorem (1.1) holds if u(z) is a function regular in I z I < 1. For we may either apply

(1.1) to the real and imaginary parts of u, which are harmonic functions, or repeat the
first proof with u regular. In the latter case, the argument works even if u(z) is mero-
morphic in j z I < 1 (that is, with poles as its only singularities there). We briefly
recapitulate the proof. Arguing as before we reach the stage when 0 is confined to a
closed set P, and there are positive numbers d and rl independent of 0 such that u is
uniformly bounded at all the points of Q ,(O), OE P, which are distant from ei0 by not
more than rl. We can no longer assert the boundedness of u in the whole of Q,(0). It
follows that the singularities of u in the domain 1; defined by (1.3) have a distance
from 11 exceeding a fixed positive number, and so are situated in a circle J z I S I - C.
Since u is meromorphic, we can have at most a finite number of such singularities, and
multiplying u by a suitable polynomial we obtain a function u1(z) regular and bounded
in U. Considering the function ui(1)=u1(O(Z)) of (1.4), we see that u,(z) has a non
tangential limit almost everywhere in Fl, and the same holds for u(z).

We have implicitly proved the following theorem:

(1.9) THEOREM. If a function u(z) meromorphic (in particular, regular) for I z I < I
has a non-tangential limit zero in a set of positive measure on J z J = 1, then u(z) a 0.

For we may suppose that our set P is of positive measure. The function is

then regular and bounded in I j < 1 and has non tangential limit zero in a set of
positive measure on I I = 1. Hence ui (C) a 0 (Chapter VII, (7.25)), u(z) = 0.

CoRou.RY. If two functions ul and us, meromorphic in I z J < 1, have the same non-
tangential limits in a set of positive measure on I z I = 1, then u1= u,.

Theorem (1.9) easily leads to a more general result.
We shall say that a function u(z), meromorphic in J z I < 1, behaves restrictedly at

00 if there exists a triangular neighbourhood T(00) such that u(T(00)) is not dense in
the whole plane, i.e. is wholly situated outside a certain circle. Otherwise we shall say
that u behaves unrestrictedly at O.

(1.10) THEOREM. Let Ec (0, 277) be a set of points at which a meromorphic function
u(z), I z I < 1, behaves restrictedly. Then at almost all points Doe E the function u has a
finite non-tangential limit.

Thus at almost all Be (0, 2n) there are only two possibilities: either u has a finite
non-tangential limit there or else u(T(6)) is dense in the complex plane for every T(6).

The proof is immediate. With every 0 4E E we can associate a T(6) and a circle
tv-a (<p such that u(T(6)) has no point in common with the circle. Taking a,p

rational we may, by splitting E into a denumerable family of subsets, suppose that
a and p remain unchanged throughout E. The meromorphic function

1 /[U(Z) - al

is therefore bounded in some T (O), for each 0 e E, and so has a non-tangential limit
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almost everywhere in E. By (1-9), this limit is distinct from zero, and so the non-
tangential limit of u(z) exists and is finite, at almost all points of E.

The following special cases of (1.10) deserve separate mention:
(i) No meromorphic (in particular, regular) function in I z J < 1 can have an infinite

non-tangential limit on I z I = I in a set of positive measure. (This also follows from
(1.9): consider 1/u(z).) The same holds for harmonic functions.

(ii) If a harmonic function has a non-tangential limit in a set E of positive measure,
the conjugate harmonic function has a non-tangential limit almost everywhere in E.

(1.11) THEOREM. Let fl(z) and f2(z) be regular in the rectangles -a <x <a, 0 < y <b
and - a < x < a, 0 > y > - b respectively. If f1(z) - f2(z) has a non-tangential limit as z
approaches non-tangentially, say from the upper half-plane, any point of a set E situated
on the interval (- a, a) of the real axis, then both f1(z) and f2(z) have non-tangential limits
at almost all points of E.

Let f1 = u1 + iv1, f2 = u2 + iv2, y > 0; the hypothesis is that the harmonic functions
uJ(x, y) - u2(x, _01 v1(x, y) - v2(x, -y) have non-tangential limits at E. It follows
that the conjugate harmonic functions v1(x, y) +v2(x, -y), -u1(x, y)-u2(x, - y) have
non-tangential limits at almost all points of E, and hence the same holds for ul(z, y),
v1(x,y), u2(x, -y), v2(x, -Y)-

The result which follows shows that for functions harmonic or analytic in I z I < 1
the radial behaviour may be totally different from the non-tangential behaviour.

(1.12) THEOREM. Let g(z) be any function continuous in I z I < 1, and E any set of
the first category on I z J = 1. Then there is a function f (z) regular in I z I < I and such that

along each radius terminating in E
lim (f (r eiz) - g(r eu)} = 0.
r- 1

The proof is based on the approximation of continuous functions by polynomials
and will not be given here. Since E can be of measure 2n, the theorem shows that, from
the point of view of radial behaviour almost everywhere in I z I < 1, there is no difference
between functions which are regular and functions which are merely continuous.
The following special cases may be mentioned: (a) A function f (regular in I z I < 1)
may tend to 0 along almost every radius without vanishing identically. (b) f may be
bounded along almost every radius (of course not uniformly) and have a limit only on
a set of radii of measure 0. (c) The real part off may be bounded and the imaginary part
unbounded along almost every radius.

(1.13) THEOREM. If

u(z) = u(r, x) _ Ak(x) rk, (1.14)

harmonic in I z I < 1, satisfies for a given (a, f)

(0,<r<1), (1.15)JIu(rx)Idx<M<x
6

then u(z)=¢(z)+Vf(z), (1.16)

where y5(z) is a Poisson-Stieltjes integral and Vr(z) tends uniformly to 0 in every interval
(a + e, f - e) (e > 0) as r --). 1. In particular, u(z) has a non-tangential limit almost every-
where on (a, /j).
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The proof resembles the second proof of (1.1) but is easier.
Lot r =I - I/n, n = 2, 3, ..., and let On(e'r) be the function equal to u(rn e'r) in

a<x<'8 and to 0 elsewhere; and 1/rn(e'r) the function equal to 0 in a<x<fi and to
u(rn e';) elsewhere. If !n(z) and 7/rn(z) are the Poisson integrals of 0n(e'r) and
then u(rnz) _ 0n(z) + krn(z) (1-17)

Since, by (1.15), QZ [(/!n(e'r)] < M, the Fourier coefficients of the on(eir) are uniformly

bounded, the functions are equicontinuous in every circle I z I < 1 -e, and we can
find a sequence {01k(z)} converging in z I < 1 to a harmonic ¢(z). By (1.17), (Vf nk(z))
converges in I z I < 1 to a harmonic Vr(z), and we have u(z) = c(z) + r/r(z). We will show
that 0 and i/r have the required properties.

Since ])l[OnWx)] M, we have 9 [0n(re'r)] <M for r < 1. Making n=nk-+oo, we
obtain 91t [¢(r etiz)] M for r < 1. By Chapter IV, (6- 5), O(z) is a Poisson-Stieltjes
integral (of a function constant in the complement of (a, fl)).

Let a < a'< a' <//' <,8' < 6, and let S, 8', S' be central sectors of I z I < 1 supported
respectively by the arcs (a, /3), (a', /1'), (a',,8*); we include in the sectors the terminal
radii but exclude the arcs on I z I = 1. Let P(r, x) be the Poisson kernel. If we show
that, for z E S' and A large enough,

jfr(z) I <A[P(r,x-a')+P(r,x-

it will follow that 1/r(z) --3.. 0 for z e S' and r -+ 1, and the theorem will be proved. It is
enough to show that

I r/rn(z) I <A[P(r,x-a')+P(r,x-fl')] for zES', (1.18)

with A independent of n, and then make n=nk-->oo.
First we show that if z e S' then

ik,,(z)=0{l/(1-r)}, uniformly in n. (1.19)

This will follow from (1-17) if we prove the same for ¢n(z) and u(rnz). For 0,(z), the
result is obvious (for all x) since the Fourier coefficients of ¢n(e'2) are uniformly
bounded. As to u, observe that if we multiply (1.15) by r and integrate over I -28-<r-< I
we obtain

Pf1 u(r, x) I rdrdx < 2M8. (1.20)
i- 2a

Suppose now that zoo S' and write zo I =1- 8. If 8 is so small that the disk
I z - zo I < 6 is in S, then,t denoting by do- the element of area and using (1.20),

Hence, with a suitable M', I u(zo) I < M'l(1- I zo I) for all zo E S'. It follows that
u(rnzo) I < M'/(1- : r, zo 1) < 111'/(1- I zo ) for zeE S', and (I - 19) is established.

We can now prove (1.13). If 0 < r < 1, and z = r e'r is on either of the radii bounding
S', then 7/rn(z) satisfies (1.19), and the sum in square brackets in (1.18) is at least
11 +r+r2+ ... > 1/2(1-r). It follows that (1.18) holds for such z if A is large enough.

t The first inequality follows if we multiply the inequality I u(zo) I 59a[u(z.+p e' )1 by p and integrate
over 0 <p <J.
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If z approaches, from S', any point of the circular arc bounding S', then 0
(observe that = 0 on (a,,8)) and Jim inf (P(r, x - a') + P(r, x - fl')} 3 0. By the
maximum principle for harmonic functions (compare a similar argument in the
second proof of (1.1 )) we have (I.18), and (1.13) is established.

The preceding argument shows that if we replace (1.15) by

Ul [u(r', x) - u(r', x); a, fl] -* 0

then the 0 in (I.16) is the Poisson integral of a function f vanishing outside (a, fl).
The conclusion holds if instead of (I.15) we have V .[u; a, f ] = 0(1) for some p > 1;
f is then in LP. If u(r e12) is bounded for a < x -<,8, r < 1, 5(z) is bounded in I z I < 1.

In the remainder of the section we consider the problem of the convergence of a
sequence of functions regular in I z I < 1.

(1.21) THEOREM. Let .F1(z), FF(z), ... be regular in I z I < 1 and satisfy

(2w
J{ 1°g+IFn(pe1z)Idx-<M<oo (0<p<1;n=1, 2, ...). (1.22)

0

Then, if the boundary values Fn(et2) converge on a set of positive measure, the sequence
IF, (z)) converges uniformly in every circle I z I < I - e (e > 0).

In view of (1-22), lim F(r e1x) exists almost everywhere (Chapter VII,
(7-25)). Hence, for each n, we can find a set Z. c (0, 2n) of measure arbitrarily small,
such that Fn(r et2) is bounded on the set of radii terminating outside Z. By the theorem
of Egorov, {FA(et2)} converges uniformly over subsets of E of measure arbitrarily
close to I E 1. Hence, choosing the Z so that E I Z. I < } I E I, we deduce the existence
of a set &I c E, I of > 0, with the following properties

(i) {F,i(e'2)} converges uniformly on 8`;
(ii) For each n, Fn(r e'2) is bounded for 0_<r< 1, x E d .
Fix m, n, and write F,,,.,, = Fm - Fn, u,,,,,, = sup I F,,,,,,(eu) I for t E 4f. Since for r < R < 1

we have
log IFm.n(7ei2)I<n

o
loglFm.n(Reil)IPRdt (1.23)

(Chapter VII, (7.11)), and since (1.22) implies

rz.

Jo

(0<p<1),

where M' is independent of m, n, splitting the integral (1.23) into two, one extended
over 8' and the other over (0, 2a) - 8, we have

log IF',n.n(ree)I<7TJ logIFm.n(Re")IP(Rt-z

By (ii), log I Fm,(R a") I is bounded above on,?. Hence making R-r I we obtain

log I F.,n(re'z) I logµm.n. I P(r,t-x)dt+ 1r. (1.24)ITr IT

If r < 1- e, the last term is bounded. If m and n tend to oo, the preceding term tends
to - oo, since the co-factor of logIt,,,, n, the Poisson integral of the characteristic function
of 8', is bounded away from 0 for r < I - c. Hence F,,,, n (r et2) --) 0 and (1.21) is established.
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Condition (1.22) is satisfied if the F,(z) are uniformly bounded in I z I < 1. In this
case the theorem may be strengthened as follows.

(1.25) THEOREM. If Fn(z) (n =1, 2, ...) are regular and uniformly bounded in I z I < 1,
and if {F.(etz)}- converges at every point of a set E, I E I > 0, then almost all points xo of E
have the property that {Fn(z)} converges uniformly in 12,(x0) for all o- < 1.

We may suppose that I P. (z) I _< } for all n, so that I F,,n I = I Fn-Fn I < 1. Lot 8,
e I > 0, be a subset of E on which {Fn(e1z)} converges uniformly, and let in, n be so

large that the upper bound of I Fm (eu) I on 4e is less than y < 1. Then, making R-+ I
in (1.23), we have

1logIF.,.n(retz)I

<,
fIF ..n(e°)IP(r,t-x)dt5 -log-.- P(r,t-x}dt.

The last factor, the Poisson integral of the characteristic function of d, tends to I at
every point of density xo ofd' as z tends to et2. through 12,(x0) (Chapter III, (7.6)).
Hence, if ze12,(xo) the integral stays above a positive quantity and tends
uniformly to 0 as m, n->oo. This completes the proof of (1-25).

Remark. Let (V be a subset of 8 in which the density of 4f is uniformly 1 (that is,
the density of d' in (xo - h, xo + h) tends to 1 as h -). 0, uniformly in xo a 4f'). The pre-
ceding argument shows that (F,(z)) converges uniformly in the union of all 0, (xo),
xo a d', f o r a fixed o < 1 . The measure of 4' - e', and so also that of E - 6', can be
arbitrarily small.

2. The function 8(8)
Let C, C8, D, 128(8) have the same meanings as in the preceding section.
For any function F(z) = F(x + iy) = F(r eu)

regular in D, consider the integral

e(0)=sa(8,F)=LeiIF'(z)I'do-) (do-=dxdy) (2'1)

It is a non-negative, possibly infinite, function defined for 0 _< 0 _< 2n, and s2(0) is the
area of the image of 12(0) by F. For the finitenessof s(0) only the part of 12(8) situated in
an arbitrarily small neighbourhood of efe is relevant. The main result of this section
will be that at almost all points 0 the finiteness of 8(6) is equivalent to the existence of
the non-tangential limit of F. More precisely,

(2.2) THEOREM. (i) If F(z) has a non-tangential limit in a set Ec(0, 2rr), then s(8)
is finite at almost all points of E for every d < 1.

(ii) Conversely, if for every 0e E there is a 8= 4(0) such that s8(0) < oo, then F(z) has a
non-tangential limit at almost all points of E.

For the proof of (i) we need the following result:

(2-3) LEMMA. Suppose that F(z) = F,c,nzm is of class H'. Then for any fixed d < 1,

8j(0)d0 _< AsE I c,n j2. (2-4)

In particular, for almost all 8, s,(0) is finite for every J< 1.
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Here and hereafter Ad denotes a constant depending only on S.
Let b(z) be the characteristic function of the set Sl(B). The left-hand side of (2.4) is

I

F' (z)
x0(z)do.= f F (z) f2 fxo(z)dO)do.

0
(2.5)J2dof

0 sl< 1 lal<1

We fix z, and consider Xe(z) as a function of 0. We denote the integral in curly
brackets by I(z), and distinguish the two cases

(a) IzI<8, (b) IzI38.

In case (a), Xe(z) = 1 for all 0, and I(z) = 2rr.
In case (b), X8(z) = 0, except for the 8's on an are y of C cut out bythe angle opposite

to the one formed by the tangents from z to C,. As I z 11, the length of y is asymptotic-
ally proportional to 1 - I z 1. It follows that the length of y is always contained between
two fixed multiples (depending on 8) of 1 - I z Hence

I(z)<A8(1-z1), (2.6)

an inequality which holds also in case (a).
Thus the right-hand side of (2.5) does not exceed Ae times

f1el<1(1 -r) I F'(z)12do = f,
f,lo(1-r) I F'(re'r) I I rdrdt

J
1

=2rrf (1-r)Em2ICm l2
r--'dr

0

= 27rFim2 I Cm I2 f (1 - r) r2 -1dr
0

m2_ a= 2n E
2m(2m + 1) I cm

27TZIcml (2.7)
and (2.3) is established.

Remarks. (a) Since 2m(2m+1)r2m.3m=6m2, the left-hand side of (2.7) is not
less than a fixed multiple of the right, and so is finite if and only if Fe Hs.

(b) Let
F' z 2do

Isl4
be the area of the image of the circle I z <_ r by F. Changing the order of integration
we get f',S(r)dr= f (1-r)IF'(z)I2do, (2.8)

o IsI<1

and so the integral on the left is finite if and only if F E H2.
(c) In view of our observation about the length of y, the inequality opposite to

(2.6) is also true. Since the special nature of F is irrelevant for the validity of (2.5)
we have implicitly arrived at the following result, which will be used later.

(2.9) LEMMA. For any function 0(z) non-negative in D (0 # 0), the ratio

f 2
0

Rdo fQ
(e)

G(z)df/ fIsl<1 (1-r)G(z)do

is contained between two positive conatante depending on 6 only.



xlv] The function 8(0) 209

Returning to (2-2) (i), it is enough to prove it for a fixed 8< 1. The result will follow
if we show that we have s(t) < oo for almost all t e H, where H is the set of all t such
that F is bounded in Q(t). Clearly H = H,, + H2 + ... , where H. consists of all is such
that I F 15 n in Q(t). The sets H. are closed and it is enough to show that 8(t) < eo almost
everywhere in each H,

We fix n and write H = P. Let U be the union of all fl(t) with tin P; this set was
already considered in the preceding section. Let z + iii, map the circle
D (I 5I < 1) conformally onto U. Then

I(C)=F(M(S)) (2'10)
is regular and bounded for < 1. Hence, by (2-3), sd(0, (D) is finite for almost all 0
and all 8 < 1.

Let z* = e0 be the general point of 11, and let z* e{". Almost all points
z* have the following properties:

(a) The boundary B of U has a tangent at z*, and so the mapping z = (C) is con-
formal at C* (Chapter VII, (10.13));

(b) 8,1(0*, (D) <oo for all 17 < 1.
It is enough to show that, for every z* = eu* satisfying (a) and (b), we have 8(t*, F) < 00.

Now, if i2 is the set of the C mapped by the function z = #(C) onto Q(t*), we have

f_i V(C)I`dSdj =f d (C).dc-
Is JdCj2dxdy= f I F'(z) Iadxdy.

n dz !dz n(l*)

The left-hand side here is finite, since the part of C which is in a small neighbourhood
of S= g* = eie* is contained in Q1(0*), provided 1>8 (condition (a)), and since
s1(0*, (D) < oo (condition (b)). Hence also the right-hand side is finite, and the proof of
(2-2)(i) is completed.

Passing to part (ii), let E be the set of all t such that se(t, F) is finite for some
8 = 8(t) > 0. Then E = E1 + Ey + ... , where E consists of the t such that F) <, n.
We fix n and write E. = P. It is enough to show that F has a non-tangential limit at
almost all points of P.

By Fatou's lemma (Chapter I, (11.2)), the set P is closed. We consider once more the
union U of all Qv (t ), t e P, and a function z = O(C) mapping conformally D (I S I < 1)
onto U. This time, however, we take a special 0, with 0(0) = 0. Since 10(C) I < 1,
Schwarz's lemmat gives 10(0 I <_ (Cl- (2.11)
If we show that the function 4)(S) = F(0(S)) has a non-tangential limit at almost all
points 0, an argument already used (in the proof of (1.1)) will show that F has a non-
tangential limit at almost all points of P.

It is enough to show that 4) e Ha or, what is the same thing, by Remark (b) on p. 208,
that

o

S(r, 4)) dr < op. (2.12)

Let U(r) be the part of U situated in the circle I z I _< r, and let U*(r) be the image
under z = 0(S) of the circle I C I , r. The inequality (2-11) implies that

U*(r)c U(r).
t Schwarz's lemma asserts (2.11) for any function 0(g) regular in ICI < 1 and satisfying the conditions

0(0)=0, I O([) 1. For the ratio O(C)/C is regular for ICI < I. and numerically does not exceed 1/(1-e)
for jS j=1 - e, and so also in JS J i 1 - e; and it is enough to make a -i O.
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Let X(z) denote the characteristic function of U. Then

and, by (2.9),

8(r, 4D)=J I F'(z)1'do,
I C I <r U.(r)

f Fl-do-fl.
u(r) I<.

[XIV

S(r, 4D)
dr S fl-1<1

(1- r) I F(re") 1 ' X(reu) do,
fo,

SAdJ 'dtf IF'12Xdo,.
(9)

It is therefore enough to show that the inner integral on the right is bounded as a
function of t.

This is clear if t e P, since the integral is then s'(t, F) < n'. Suppose now that t is on
an interval (ak,fk) contiguous to P. It is geometrically immediate that t2(t) is then
contained in the union of i2(ak}, i2(jBk) and the curvilinear triangle Tk whose sides are
ak, bk and the are (e'ak, e'-0k) (see the figure on p. 200). Since X = 0 in Tk,

flu) n(IF' 1'Xdo,< fai) +5n&1 <_ 2n'.
(ft

This completes the proof of (2.2) (ii).
Remark. The conclusion of (2.2) (ii) holds if we suppose that for every 0 E E there

is a triangular neighbourhood T(O), not necessarily symmetric, such that

I JF'}'do<cO.
T(B)

The proof follows the same lines as before (though the geometric details are a little
awkward) if instead of U we consider another domain, analogous to U, obtained from
the union of various T(O).

3. The Littlewood-Paley function g(O)

For any function F(z) = z c.z'" (z = r etO)
0

regular in I z J < 1 we set

g(B) = g(e, F) = (f
o

(1- r) I F'(r e's) dr)

If the real part of F is the Poisson integral of a function f (6),we shall also write g(B, f )
for g(6, F).

The function g, introduced by Littlewood and Paley, will be used in the next chapter
to obtain a number of important results. It has no obvious geometric significance, but
it is majorized by a function which has one, as we now show.

(3.1) THEOREM. g(B) _< A#se(0),

where si(B) is defined in (2.1) and A, depends on 8 only.
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We may suppose that 8 = 0. Let p, =1- 2-*, n = 0, 1, ..., and let r,1 be a point on
(P,.,P,.+,) at which I F'(r) I attains its maximum. Then

9$(0) < 1: I F'(r,1)
Is Jv...

(1 -P)dp < E
n-o _f v, ,.-o

F'(r,.)
2"

2

(3'2)

By Cauchy's theorem, if p < I - r,

f
s=

F'(r) I (r)te 2nJo I F'(r+peu) I dt,

s.
J F'(r) I2 < 2n Jo I F'(r + pe'') I=dt. (3.3)

Let D(r, R) denote the circle I z - r I < R, and suppose that it is contained in I z I < 1.
Multiplying (3.3) by p and integrating over 0 -<p < R, we get

JR2I F'(r)I2< j2jI F'(z)Isdv (do=dxdy).
r,R)

We sot here r = r,,, R = 712-n, 71 being a constant. If y = rl(8) is small enough, all the
circles D(ryk, 712-2k) are in Q= S2e(0) and no two have points in common. Hence

nriz z
2

F'(z) I= d6. (3.4)
x-o

I
r IThis

inequality is still true if 2k is replaced by 2k + 1. Adding the new inequality to
(3.4), and using (3.2), we get (3.1) for 8=0.

Combining (2.2) (i) and (3.1) we see that g(O) is finite at almost all 0 for which F has
a non-tangential limit.

(3.5) THEOREM. Suppose that F c HA, A > 0, and let F(e') = Jim F(r ed ). Then
r-.1

:r 1/A 2w 1/A

{ Jo 9A(8)dO <AAJo I F(eit) IAd91 , (3-6)

where AA depends on A only.

11

It is enough to prove (3.8) for an F regular in I z I < 1. For if O < R < 1, gR =g(8, F(Rz)),
then

g Z(8) = R2 fo (1- p) I F' (Rpece) 12 dP < Rs Jo (1-PR) I F' (RPeis) 12 dP

Thus

R
RJo (1-P)IF'(Pe")I2dp<g2(0).

gR(6) <g(8), g1(8)-+g(6) as R--3-1,

and if (3.8) is valid with g and F(z) replaced by gR, F(Rz), we obtain (3.6) in full
generality by making R --). 1.

The proof of (3.5) consists of three parts. (a) First we establish it for A = 2. (b) Next
we show that if (3.8) is true for any particular A it holds for all smaller A. (c) Having
thus established (3.8) for A < 2, we pass from this to A > 2 by a oonjugacy argument.
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(a) Arguing as in (2.7) we have

1o*g'(0)d6-J "'f"' (1-p) I F'(pe $)1'dpd6

0
70=2irEI

C,,, 2m 1)2m_< 27TM-1

[xlv

JJ++ I F(ew) 1sdb.
0

The argument does not require F to be regular on I z
(b) Suppose that (3.6) holds for some A, and let 0 < K < A. Suppose that F E HK and

assume temporarily that F has no zero for I z I < 1. Consider a branch of F1= FK<A. Then

F; =FK, F, -E H-1.

Set Fl (B)=sup' Fi(pew)
p<1

g(8)=g(O,F), gl(O)=g(8>F1)

By Chapter VII, (7-36), TlA[Fi ] _< CAIRA[Fl(e0)], (3'7)
f1and g'(6) (AI K)= J 0 (1-lp) I Fl I Fl' dp

(A/K )' (F gl (B),
Y, l 4,fO gKdO < (A/K)Kf t

o

A KgKdO

Y _< (A/K)'

2Jl

K[F1] A[g,]

Since (3.6) is supposed true for our particular A, we have, using (3.7),

VK[g]<(A/K){CaTZA[Fi(ei°)])(A-K)KAARA[Fi(e')]=AK

where A,, _ (.1/K) AAC'x -KM . (3-8)

Suppose now that F(z) (* 0), does have zeros for I z < 1. By Chapter VII, (7-23),
we have F=F1+F where Fl and F, have no zeros and 9RK[F!(eu)] _< 29K[F(eu)]
for j =1, 2. t If we set g1 g(B,1 ),, then g - gl + g,, by Minkowaki's inequality, and

V1191 < VK g11 + °'K[921
AK{9Q,[F,]+TlK[FF])-<4AKUK[/t-

].

Here again, the regularity of F on I z I =1 is not called on.
(c) The proof here is rather intricate and it is worth while to observe that for a

number of important results the simple case 0 < A < 2 already proved is sufficient.
In view of (b) it is enough to prove (3-6) for A ? 4. Let # be the exponent conjugate

1.to }A, so that 1 <,u S 2. Let f (O) be any non-negative function such that 9.191
Then, with g = g(B, F), 9 ,

ggd9. (3.9)W9]=V4AW']=sup f
o1

We may even restrict f to trigonometric polynomials. Fix such a polynomial and
t Of oom.e this F, hm nothing to do with the P, oonsidered stove.
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write y(9) = g(O, 6). Let C(z) be a power polynomial with f C(0) = 0, having 6(0) as its
real part for z=e'h. By Chapter VII, (2.27),

R,, &,,[f] < R,,, (3.10)

with a constant R,, depending on u only. Since (3.6) has already been established
for 1 _<A_<2, <A R eO <AR , 3.11Ujyl
where A = sup A. is finite, by (3.8) with A = 2.

Return to the integral on the right of (3.9); we write

J9'(B)6(0)dt9 (1-P)ffoF'(Pe'e)116(0)d0}dP,

and our next stop is to show that

(3.12)

f ' g2(0)
g(6) dB <4

Cl

o

p(1-p)

if"o

Jr

I
F'(Pe'e) I26(P, 0) d9)dp, (3'13)

where 6(p, 0) is the Poisson integral of 6. (Thus 6(p, 0) _> 0.)
Now the right-hand side of (3.12) is (replacing p by p2)

2J o (1
-P2) J o' I F (pee{B) I2 6(B) de)P dp < 4I o P(1-P) (Jo I F'(Psei1) Is 6(6) d9) dp.

Let w(z)= I F'(z) I2.

Since the modulus of a harmonic function (F'2(pz) in our case) is majorized by the
Poisson integral of the values that this modulus takes on I z I = 1, we have

4.

w(p2eie) <
1

- J w(pe{") P(p, 0 - u) du,
rn o

z.6(O)rl rs*w(Pe")P(p,6-u)du}d8

0 0 n o

O w(Pef")
6(p, u) du

0

(on inverting the order of integration), and (3.13) is established.
In (3.13) we should like to integrate by parts in the inner integral on the right, so as

to move the operation of differentiation from F to F and bring in the function y(O) about
which we know something (see (3.11)). The only way to do this seems to be by using
the formula 4 I F12 - A(I F I2)

established in Chapter VII, (3.6). The symbol AU here stands for the Laplacian of U.
In polar co-ordinates,

AU
=p-1(pU,),,+p'2UM=p-'Up+UPP+p_'UeB. (3.14)

This formula implies that for any a(p, 0), b(p, 0),

A(ab) =aLb+bAa+ 2(a, b. +p-2a0be).

Thus, taking a = I F I8, b = 6(p, 0) and observing that A6 = 0, we have

4IF'I'f=A(IFI2T)-2(I ?'1, v+p-'I F21, 4},
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where 6). It follows that the right-hand side of (3.13) does not exceed

f0f0P('-P)I FI1)dpd6+4ff(1_p)IFl (I [f+p2JF8 I I 4 I)d4 °
=I1+Is, (3'15)

say. Since I F(pel) I < F (Per') I. I Fp I = I F' I.
p<1

Ip-1FBI=1F'l, I& Ip-'

we find Is -< 8 fo dd (fo
(1-p) I PI I C' I dpi k 8fo

F-(O) g(B) Y(O) dO

4 8x[F`] RA[9] ,[Y1 <- SACAR,sJ1A[g] VZA[F(eS°)], (3.16)

using successively Schwarz's inequality, Holder's inequality with three indices
A, A, p, the inequality (3.7) applied to F, and (3.11).

To I3 we apply the first equation in (3.14), noting that by periodicity the integral
of (I F I'f)ee over (0, 2n) is zero. Thus, integrating by parts,

fw9r, f (pV
1

I3=fo
d©Jo1

(1-P)aPa
I

dG p -(IFI'C)dP

fo w (I F(ew) I' (6) -f
o I F(Pe") I' 6(P, B) dpl d9

-<fo

From (3.9), (3.13), (3.15), (3.16) and (3.17) we get

WA-191 -< 8ACAR,9R1[F(et")] TIx[gJ +T11[F(e'8)]

Let X = 931(g)ITI A(F(em)]

(3.17)

Since we are supposing F regular on I z I = 1, X is well defined and does not exceed the
largest root of the equation gs = 8ACx R X + 1. (3.15)

This proves (3-6) for A > 4 and so also for all A > 0.
There is a converse of (3-5), at least for A > 1.

(3.19) TgsoRcsx. Suppose that F is regular for I z I < 1, that F(0) = 0 and that
g(9, F) a LA, A > 1. Then F e HA and

Yw 11x sw 1/.l

}fo IF(e")I3dO} -< Bx}fo 0(0)d6l) . (3.20)

(Since g is independent of F(0), (3-20) cannot be true without some assumption
about F(0).) As in the proof of (3-5) we may suppose that F is regular for I z I < 1.

(3.21) Lnmxe. Let f1(6) - I elk et", fs(6) - y, ck e' be continuous functions, and

suppose that at least one of the numbers co, ca is zero. Then, with gk -g(tl, fk),
s.

fo, fif d - 4J glgsdO.
0

(3'22)
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Let fk(p, 0) be the Poisson integral of fk, and let Fk(z) be the function regular for
z 1, with real part fk(p, 0) and with JFk(0) = 0. We have

1 Yn

29T f lun£tikc_krl ski,
0 H1

the middle series converging absolutely. Since 44 = 0, termwise integration shows
the last series to be

f:s: 1ikcPl-1j _kP1)pdp`-
-4frdo- rs/ 1 f4.af1(p,0)af5(P,0)d811Pdp

o 0 0 2 o ap ap
Therefore, since o > p,

1 s. 4 r1 o s.

2n
fo

o
doff

o
I I dPdO

27T_ fo, * JO I fiofso I
do.} d0

4
fo

gale
{ fO(l-p)jfl,fS,jdp)Zn

2_ f o* do (fo
(l -P) I F,'(Pew) I I F.'(Pe'&) I dPl

4 s.

2nfo 91(0) gs(0) do,

by Schwarz's inequality; and (3.22) is established.
We now set -

h(0) =I F(em) IA-1 sign F(em), y(O)=9(0,h),

and denote by H(z) the function regular for I z I < 1, with JH(0) = 0, the real part of
which is the Poisson integral of h(0). Then

lA.[Y] _< AA.9RA,[H(e'8)] _<

AA.R,,U;k-1 [F(e'0)1, (3.23)

using (3.5) and an inequality analogous to (3.10). Hence

4W

l [F(e'O)l = f I F(e'°) IA dO
0

2w ff
= fo F(ee)h(0)d0<4I g(0)Y(0)d6

<_ 4 Ul [9] 4AA.RA,IRA[g] VIA-1[F(elw)]

by (3.22) and (3.23). A comparison of the extreme members gives (3.20) with
FA=4AA.RA..

The following generalization of the inequality V.[g] iE AD4s[F ] will find an applica-
tion in Chapter XV, § 6.



216 More about complex methods [XIV

(3.24) TmcoREM. If f e L°, 2 < q < oo, and f (p, 9) is the Poisson integral off, then

If 2

o Jo
.
(1-P)°-'iP-'Mf(P,0) dpdO <AQJ2w If I dO, (3.25)

where A is an absolute constant.
The inequality can be written N h ° a A.R°[ f ], where h = (1- p) p-lfe(p, 9) and the

norm of h is taken with respect to the measure du = (1- p)-' dpdO in the unit circle.
After Theorem (1.11) of Chapter XIII, it is enough to show that the operation

h = Tf is both of type (2,2) and of type (co, co). The former is a consequence of (2.7)
(observe that I p Ifs I < IF' J, where F(z) is the function whose real part is f, and that
V2[F(eix)] c 292[f]), and to prove the latter we verify that

(1 -P)P-II P(P,4)I AP(p,©),

so that sup I h (p, B) I A sup I f(9) I.
p<I

As a special case of (3-25) we have

A(1-P)° ' (3.26)
JoIo2 2

for F c H.

4. Convergence of conjugate series
In §§ 4, 5, and 6 of the preceding chapter we investigated the behaviour of the partial

sums of a trigonometric series under the hypothesis that the series was summable
(C, 1). The results could therefore be applied to Fourier series and their conjugates.
Some of our theorems are, however, valid without the (C, 1) hypothesis, though the
proofs become less elementary. We shall confine our attention to a generalization of
Theorem (5.1) of Chapter XIII.

(4.1) THaoREM. If a series

}cco+ (a.cosnx+b,,sinnx)= (4'2)
n-I n-o

converges in a set E, then the conjugate series

(an sinnx-bncosnx) EBn(x) (4.3)

converges almost everywhere in E.
The proof requires a series of lemmas.
A sequence of functions sn(x), or a series with partial sums sn(x), defined in the

neighbourhood of x = xo, will be said to converge stably at xo to limit, or sum, s if

sn(xo + hn) -i s for every sequence h= 0(1 /n).

This is a modification (considered already in Chapter III, § 12) of the notion of
uniform convergence at xo; in the latter, A. was merely supposed to tend to zero. An
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equivalent definition of stable convergence would be that for any positive A, a there
exists an no such that

I8n(xo+h)-8I <e for n?no, IhI <A/n.

(4.4) LEMMA. A necessary and 8ufcient condition that

(4ao + E an cos nx
n-I

converge 8tably at x = 0 to sum 8 is that }ao + al + ... converge to 8.
The necessity is obvious. The sufficiency follows from Chapter III, (12.16).

(4.6) LEMMA. A necessary and sufficient condition for

(4.5)

E bn sin nx (4.7)
n-1

to converge 8tably at z = 0 (to sum 0) is that

to = b1 + 2bs + ... + nbn =o(n). (4.8)

Sufficiency. Suppose that I an I _< A /n, to = en n, e -+ 0. Then with f (z) = (sin x) /x we
have, summing by parts,

(van) 111 ``,8n(an)=an vb,=a.ln`ltrAS(van)+tn?;(n'an)
r-1 v-1

I8n(an)I<A1-i'le,I IAC(Pan)I+IenII6(nan)I}
(4-9)

Since 6 is of bounded variation in every finite interval, the right-hand side in (4-9)
is a linear transformation of (I e I) with matrix satisfying conditions (i) and (ii) of
regularity (Chapter III, § 1). Hence sp(an) -i 0.

Necessity. Let 71(x) = x/sin x, an =1 /n. Then

t"=
1F, b,sinvanrl(van)= n),n

LA ev I A I(van) I +en71(nan),

where e = max 18,(a n) I 0, (4.10)
M>v

by hypothesis. Hence to/n i 0 for the same reason as above.
Remark. Selecting an = 1/n in this argument was partly arbitrary. Any {an} with

0<dgnan,<rr-d (4>0) (4.11)

would do. We shall use this remark in a moment.

(4.12) LEMMA. The aeries EA,(z) converges atably at xo to sum a if and only if
(i) Ao(xo)+A1(xo)+A2(xo)+... converges to a, and

(ii) B1(xo) + 2B,(xo) + ... + nBn(xo) = o(n).
We may suppose that xo=0. Taking the semi-sum and semi-difference of EA,(x)

at the points ± x, we we that the series is stably convergent too at x - 0 if and only if
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4a0 + Ea,, coo Px and Eb, sin vx converge stably at x = 0 to sums s and 0 respectively,
and it is enough to apply Lemmas (4.4) and (4.6).

(4.13) LEMMA. A necessary and sufficient condition for EAn(x) to converge stably at
xo to sum 8 is that

(i) the series converges at x0 to sums; and
(ii) there exists a sequence {an}, satisfying 0 < 85 nan < n - d, such that

8,(x0 + an) -* 8 for n >_ v ->. DD.

The necessity being obvious, we suppose (i) and (ii) satisfied and take x0 = 0. From
(i) and Lemma (4.4) we see that the cosine part of EAn(x) converges stably at x= 0
to sum s. Hence, by (ii),

E bk sin kan -+ 0,
k-1

which, by virtue of the Remark to Lemma (4.8), leads to t = o(n), and so to the stable
convergence of Ebk sin he at x = 0. Thus EAk(x) is stably convergent at x = 0 to sum s.

Theorem (1.34) of Chapter III asserts that if a power series LanZn converges at a
point z0 with I zo I = 1 to sum 8, then the function

F(z)=Eanzn (IzI<l)
0

tends to 8 as z tends to z0 non-tangentially. The corresponding result is false for
trigonometric series EAn(x) ; such a series may well converge at a point x0 while the
harmonic function

4a0 + E (an coo nx + bn sin nx) rn (4.14)
n-1

does not tend to any limit as re''; -s e'° non-tangentially. (Consider the series
En-'sin nx with x0 = 0.) However, we have the following lemma:

(4.15) LEMMA. If EA,(x) converges stably at x0 to sum s, the harmonic function
EAn(x) rn tends to 8 as re'za tends to etT non-tangentially.

Let x0 = 0. Then 4a0 + al +... converges t08, and (4.8) holds. It is enough to show that
W

u(r,z)=4ao+ Ea,rrcosvx-+s,

v(r,x)= E b..r sinvx-+0,
r-1

(4.16)

(4.17)

as z tends non-tangentially to 1 . Since u(r,x)=. (lao+ a,z'(4.16) follows from
1111 r-1

Theorem (1-34) of Chapter III. But
Z

v(r,x)-1o(vb,r'coavtl dt_ foSit{Evb,C° dt

-J z 111 -b) iitrbr) dt,
o I o

where C = r eu (see Chapter III, (1-7)), and since t, = o(v), 11- C I _<C(1- r) we have

Iv(r,z){
which is (4.17).
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(4.18) LzMms. If EAn(x) converges for x e E, it converges atably at alnwat all points
of E.

It is enough to show that if EA,,(x) converges uniformly on Ic E, then it converges
stably at every point 6 e e which is a point of density of f.

Let {an} be such that 0 < nan -> }rr and f + an e 8 for all n large enough (see (5.10)
of Chapter XIII). Since

8r(+an)-8(S+an)-+0, 8(S+an)-8(f)--)0

for n, v --sco, it follows that 8,(f +an) --0- 8(t:), and it is enough to apply Lemma (4.13).
The proof of (4.1) can now be completed as follows. If EAn(x) converges on E, it

converges stably on a set E1cE of the same measure as E. By (4.15), the harmonic
function EAn(x) rn has a non-tangential limit at every point of El. By Theorem
(1.10), the conjugate harmonic function

v(r,x)= E (ansinnx-bncoonx)rn
n-1

has a non-tangential limit in a set E,cE1cE of the same measure as E. In particular,
EBn(x) is Abel summable in Es. But, by (4.12),

B,(x) + 2B$(x) +... + nB,,(x) = o(n)

in E,:)E2. It follows that EB,(x) converges in Es, since by the theorem of Tauber
(Chapter III, (1.36)), if Eu, is Abel summable and u, + 2u2 +... + nun = o(n), then
Eu, converges. Thus (4.1) is established.

As a corollary of (4.1) and of Theorem (2.27) of Chapter IX we obtain the following
theorem which was initially stated without proof (Chapter IX, (2.28)).

(4.19) TaaoR.EM. If the series EAn(x) converges in a set E of positive measure to sum
8(x), then at almost all points of E the sum

F(x) = }aox + E (a,, sin nx - bn coo nx)/n
n-1

of the termwise integrated series has an approximate derivative equal to s(x).

5. The Marcinkiewicz function µ(B)
We look for an analogue of the Littlewood-Paley function g(B) defined without

entering the interior of the unit circle, or in terms of real variables.
We might, for example, consider the function

v(o) = v(e, f) =
l
f0't f(o+t)

2t

=}1fo'If(o+t)-f(o-t)is *

t 11

whose definition has a certain analogy with that of g. (We did consider this function
on p. 163 in a different context.) On oloser inspection, however, it turns out that v(9)
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does not have the required properties. For example, v(0) may be infinite for all 0
even if f is everywhere continuous.t

Following Marcinkiewicz we modify the above definition and replace

f(0+t)2tf{B-t)
by

F(0+t)+F(0-t)-2F(0)

where F is the indefinite integral off.

(5.1) THEOREM. Suppose that f is periodic and integrable, and F the indefinite in-
tegral of f. Then =

fl
.

I

F(0+t)+ F(0-t)-2F(t9)12 dt)1
(5.2)

J

is finite almost everywhere.

(5.3) THEOREM. If F i8 any function in L2, periodic, and differentiable in a set E,
then #(0,F) is finite almost everywhere in E.

Clearly (5.3) contains (5.1); but for the proof of (5.3) we must first establish (6.1)
in the special case when f E L2. We show that then p.(0) c Ls.
Write

Then

0(0,t)=F(0+t)+F(0-t)-2F(0).

i (0, t) = iE'

n
ecne (2 sin }nt)2,

2n f *
I c1(0, t) Ie d8 E' I n - (2 sin nt),

_,

fo
t-3& f I 0(0, t) j c J

o (s nst'
dt.

The integrals on the right are all less than f u--a(sin }u)*du, a finite quantity.
0

Hence the double integral on the left, which is aRf[µ], is also finite. In particular,
4u(0) < oo almost everywhere.

We now prove (5.3), for which we may suppose that F is real-valued. The proof
resembles the proof of the existence of the conjugate function in Chapter IV, § 3.

Denote by E the set of points 0 in E such that

F(0+h)-F(0)I\n for JAI-<l/n. (5.4)
h

Then E = El + E$ +.... Fix n and denote by P a perfect subset of E. Theorem (5.3)
will follow if we show that u(0, F) < oo almost everywhere in P.

Let Q(0) be the function which coincides with F on P and is linear in the closure of
each interval contiguous to P. It is easy to see that 0 satisfies a Lipschitz condition
of order 1, and in particular is the indefinite integral of a function in L2. It follows that
u(0, 0) <co almost everywhere.

t In Chapter IV, p. 133, we constructed a continuous f such that Ot-1tI(8+t)-f(6-t)1 dg= +oo

everywhere. The same construction gives a continuous f for which j(6)= +co everywhere.
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Write F = 0 +,H; hence H = 0 in P. It is enough to show that µ(8,H) < oo almost
everywhere in P. Denote by x(8) the distance of 0 from P. For Be P, we have by (5.4),

jH(8+t) < Bx(O+t) for t k k l/n,

where B is independent of O. Hence

Pf

2B2

s{ H(O+t) I + I H(8-t) I}'dt

J pll"xz(O+t)t x2(8-t)dt
+2n3 f 4H'(8+t)dt.

o J Jo

Since the first integral on the right is finite almost everywhere in P (Chapter IV, (2.1)),
the same holds for µ(O, H) and the proof of (5.3) is completed.

The following theorem, which is an analogue of (3-5) and (3.19), is stated without
proof:

(5.5) THEOREM. If f i8 periodic and in Lr, 1 < r < oo, and F is the indefinite integral
off, then µ(8) =µ(O, F) satisfies R Jµ) \ `4,.R,{

J> (5.6)

anr[J) _< Brl,[p], (5.7)
provided, in the case of (5.7), that the eon8tant term of S[f) s8 0.

MISCELLANEOUS THEOREMS AND EXAMPLES

1. Suppose that/ is periodic, of the class L' and that the generalized derivative f(a,(x) (Chapter
XI, § 1) exists at each point of a get E:

k-1 tr tof(x+l)= E f,,)(x)--f(ut(x,t)-,
o

where oi a(x, t) -* f((x) for each x c E. Then the integral

wa(x, - t)]' dt
o t

is finite for almost all points of E.
[If k= 1, this is (5.3); the proof for general k follows a similar line.]

2. (i) Iff(z) is regular for I z < 1 and has a non-tangential limit in a set E on z 1, then, for
almost all x e E,

1

(i) f'(pe':)Idp=o logfl_r (r-+1).
0

(ii) The result is best possible, in the sense that given any function e(r), 0<r< 1, positive and
tending to 0 as r - 1, there is anf(z) having a non-tangential limit almost everywhere and such that
for almost all x the left-hand side of (0) is not O{e(r) log} 1/(1-r)).

[(1) The function g of § 3 exists almost everywhere in E. (ii) Considerf(z) =Ek-lz"a where the
na increase fast enough.]

3. Theorem (3-5) can be completed as follows. There are positive constants a, 8 such that for
any F(z) regular in I z < 1 and such that 1AF(z) I < 1, we have

1 exp {ag(B, F)) d9 ft.
0
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CHAPTER XV

APPLICATIONS OF THE LITTLEWOOD-PALEY
FUNCTION TO FOURIER SERIES

1. General remarks
In § 1 of Chapter XIII we proved that if

nk+1/nk > q > 1

for all k, the partial sums of order nk of S(f] converge almost everywhere, provided
f e Ls. One of the main results of this chapter is that the theorem holds for f e LD,
p > 1. (It was observed in Chapter VIII, p. 308, that it fails for p = 1.) The proof is
now much less elementary than for p = 2. It employs complex methods and in par-
ticular the function g(O) introduced in § 3 of Chapter XIV.

It is easier to apply this function if we work not with general trigonometric series
but with power series

Ecr efre
r-0

in e'6, or, what amounts to the same thing, with functions

F(z) = E c,z°
r-0 (1.2)

regular for I z I < 1.
We shall also have to introduce various auxiliary functions related to g(6) which give

information about the behaviour of Ec, a".
Let n0=0, nl=1<n=<n2<...

be a fixed sequence of indices satisfying one or both of the two conditions

(a) nk+l/nk>a>1, (b) nk+llnk<f<oo (k=1,2,...) (1.3)
71k

and let A0=c0, Ak(O)- e,efie (k=1,2,...) (1.4)

be blocks of successive terms of Ec, eW, so that formally the series is

T. Ak(0) (1.5)
k-0

The first auxiliary function we introduce is
m }

y(B) = y(g, F ' ) _ (E I O5(e) I =) (1.6)

Denote by t"(B) and z"(O) the partial sums and the (C, 1) means of Eee'ie. We shall
also consider the function

_ r t."(0)l(B) =yl(B, F) = r ELI t"k(0)-?"k(0) I') - lt-l (nk+ l)s)}. (1-)
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Both y and y1 depend on {nk}. This does not apply to our third auxiliary function

(
y2(6) = ys(6, F) = E Q6) -7,(6) I' 1 _ 1 tY(6) I' 1 (1,8)

r-1 P / -\r-1 v(Y+1)i)

The significance of y1 is easy to grasp. For suppose that Ec, efa0 is an SL f], where
f e Il, r 31. Then T. -+f almost everywhere. If y1(6) is finite almost everywhere, we
have and so also

almost everywhere.
To obtain another application, suppose that Ec, e' is in IT, where r> 1, and that

also y1(6) is in U. Since the are all majorized by a function in I,' (see
Chapter IV, (7.8)), the same holds for the t,, (6), as we see from the inequalities

T., 1 +y1. (1'10)

The function yi was already considered in Chapter XIII, Lemma (7.9).
It is not immediately obvious why the indices {nk} in (1.6) and (1.7) should be

subjected to either of the conditions (1.3). This will appear from later considerations.
Here we call attention to a purely heuristic argument which makes at least plausible
a oonnexion of, say, the function y(6) with

g(6) =
l J o

(1-p) I F'(pe0) I' dp)} , (1-11)

and so also with the function s(6) defined in Chapter XIV, § 2.
The starting-point is the observation that in certain cases the behaviour of the nth

partial sum s* of an infinite series Eu, is not unlike the behaviour of the power series

F(r) = Eur''

for r= r,,= 1-1/n. (Compare, for example, the proof of Tauber's theorem in Chapter
III. Though other instances of a similar nature can be quoted, it does not seem possible
to cover them by any precise theorem; we merely state a principle which may be a
helpful guide.) This, in turn, leads us to compare a block 8. - s of successive terms

of Eu, with F(r,,) - =J . F'(p) dp. If we apply the idea to the series Ec, e" and

suppose for simplicity that n,=2k, we are led to expect that the function y'(6) is,
in some sense, majorized by

E f
fryc+1 d r,i.i

J... dp F(pe°) dp E(rst+1- r'r) I I F'(peie) I' dp

so that y is majorized by g.

IIR+1

= E (1-r,k+1) I F'(pet8) I'dp
k r,

fst.l

E J (1-p) I F'(pe0) I' dp < 9'(6),
k rat

We shall we that this is actually true, though the proof is far from simple and
bears little resemblance to the heuristic argument.
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The next three sections will be devoted to the case when 14,,e" is an S[f] with f e L',
1 < r < oo. This case yields the most complete and clear-cut results; the extreme cases
r =1 and r = oo will be discussed later.

By Aa, Aa, p, etc. (occasionally by A' , Ba, p, etc.) we mean constants, not necessarily
always the same, depending exclusively (except when otherwise stated) on the para-
meters shown as subscripts. By A (without subscript) we denote an absolute oonetant.

2. Functions in L', I< r < co
The main result of this and the next two sections is:

(2.1) TaaoREM. Let 1 < r < co. Suppose that

F(z) = E c z (2.2),
0

is regular for I z I < 1, and that Mc ens (2.3)

is the Fourier series of PO) = F(e18) = lim F(pete).
P-.1

Then (cf. (1.3)) ),[Y] _< Aa,,'R,Vl, (2.4)

V,[Y11 <_ A,.,l,U], (2'5)

aQ,[Ysl (A,'R,[.f] (2.6)

We also have opposite inequalities

R,[Y] A.,,g,[f ], (2.7)

V r[Y1] Aft, R,[ f ], (2.8)

Tl,[Y2] % A, R,I f], (2'9)

provided we supposet in the case of (2.8) and (2.9) that c0 = F(O) = 0.
Remark. The last three inequalities are understood to mean that if any one of the

functions y, y, y, is in L', then Le, eirO is an S[ f ], where f (O) = lim F(pe") satisfies the
corresponding inequality.

In this section we prove (2.5), (2.8), and also (2.4) in a somewhat weaker form
(with Ae,p,, for A,). We need a number of lemmas.

(2.10) LEMMA. Suppose that 6 is a linear subspace of functions '0(x) in L'(a, b),
1_<r<co,and 1=To (r=/r(y),a'_<y<b')
an additive operation defined for 0 e C`o and satisfying the conditions

(i) if 0 is real-valued so is *;
(ii) ,R/,[it'] < M9R,[O], with M independent of 0.
Let #1, 0 .... ¢,, be a set of functions in (, and write , = TO,,

(D= (E j Ot j')i, tF = (E I V/, I1)i.

t Since y, and y, are independent of c., it is clear that (2.8) and (2.9) cannot be true without wme
assumption about y.
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Then R,[`l'] _< M)l,[0], (2.11)
with the same M as in (ii).

Suppose first that the 01 are real-valued. Let al, at,, ... , a, be a fixed set of direction
angles in n-dimensional Euclidean space. Then (cos al, ..., cos a,) is a point of the
n-dimensional unit sphere E. If 0 = EO1 coe a1, 0, = EVr1 cos a1, then f = To and, by (ii),

bf° I EV/ricosajIrdy<M' f I Ec6lcosa,Irdx. (2.12)
a o

The integrand on the right is I D(x) cos d 1', 6 denoting the angle between the vectors
(01, ... , 0,) and (cos al, ..., cos a,). Similarly, the integrand on the left is I `V (y) cos 8',r,
6' being the angle between (0,,, ..., 0,,,) and (coral, ..., oosa,). We now integrate
(x2.12) over E, interchange the order of integration on each side and observe that

f,
I ooe d 1, du is independent of z and equal to f I cos 8' I r o , which similarly is

independent of y; cancelling this factor on both aides of the inequality we arrive
at (2.11).

If the ¢1= 01 + io; are complex-valued, then IL', = 0,1 + ij(r,, where 0,; = TO1, jk; = TO,',
and the equations

I X112 = ;' +S6JS, I X11' _1'
reduce this case to the previous one, with n replaced by 2n.

Making n -+oo we see that (2.11) holds in the case when (gS1) is an infinite set.

(2.13) Lm w. Let f 1, f2..... fN be periodic, complex-valued and of class Lr, 1 < r < oc.
Let Ij be the conjugate of f, and write

Then

t=(EIf112)4,
S J1,[`P'] < (2.14)

This follows from (2.10) and the inequality 931,[ f ] 5 A,9R,[f ] (see Chapter VII, (2.4)).

(2.15) Lssau. Let fl, fs..... fN be periodic and in I!, 1 < r < oo. Let 8,.k be the k-th
partial sum of S[ f,], and k = k a function of n. Then

f
2r Nt 4

\a-

Nt 4

18n. k,. 1 2/
d 6 < A,

O
I f I') d6

0

\w-s

(2.16)

Let g, ,t and h,,k denote respectively f, cos k4 and f, sin kO. Then (compare Chapter
VII, (6.2)) 8n.k(O)=gn.k(0)sinkG- x,k(B) cosk9+ax,k(B),

1 2x

where an.k(O)=lam f0f,.(t)cosk(t-6)dt.

Denote the functions gn.k,., h,.kw, a,,, , by gn, h a and let] be the integral on the
left of (2.16). We have, successively,

I I+Ia,I,
(EI8,.k.12)1-< (Elgn1")+(ErynI9 +(EIan1')},

ff.(F_Ia.Is)i-de (2.17)



226 Applications of the Littlewood-Paley function to Fourier series [xv

From (2.14) we have

fIw(EI gn1')i-deA'f0"(E1fnl')+'d0,
and the same inequality holds for the nn. Since

I an(0)12 < (f02Ifnt2sI dt).
we have (E 1 an(e)12)} <

{J:

(f04' I f, I

dt)Qi

7T

f2,

by Minkowski's inequality, so that

fo* ( I Cin(8j 1a)i'd0
I (I

fn(0) 1s)f'de. (2.19)

Collecting estimates, we obtain from (2-17)

I 3'-1(2A+ 1) f
0

2x

(E I f, (0)12)i'd0 5 A I0 (11 d0

and (2.16) is proved.
For any periodic f we denote by f (p, 0) the Poisson integral off,

(2.20) LEMMA. Letf1, fs, ..., fN be periodic and in L', 1 <r<. Let k = kn and p = pn,
0 _< pn < 1, be functions of n. Then

N
f =* (E

N
I 8n.k.(Pn, 0) A:f 4* (E 1 f, (0) I')*rdd.

o n-1 0 n-1
(2.21)

Summing by parts and applying Jensen's inequality we have

s_ k-1 kIBn.k(Pn,e) I -
(1

-Pn) F 8n.v(B)Pn}8n,k(B)Pn,-0
k-1

(1-Pn) E 18..,(0) I'P'n + 18n.k(O) I'Pn,-o
Let I be the left-hand side of (2.21). Then

2,. N k,.-1 N iI f0
n-1

(1-Pn) 18n..(B) I'P; +
n
E

1
18n 1'PridB

4 w N k"-1 N }r
A, fo{ I

1
E (1-Pn) I AM I'P:+ - I fn(B) I'Pn"}n- ,-o n-i

_A,IU(n-1Ifn(0)I2)dO,

by Lemma (2.15), and (2.21) is established.

(2.22) LEMMA. Let 0 e pn < 1 f o r n =1, 2, ..., N, and let do denote any subinterval
of (Pn, 1). Then, under the hypotheses of Lemma (2-20),

+&9k
r

N it 2
r

N

0

1 i,

) 5 A:f l d 1f I f. (p, 0) I'dP) , (2.23)
J \ T_ 18n.k(pn, 0)12 d

X-1 0 n-1I n w

where the constant A, is the same as in (2.21).
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We may suppose without loss of generality that no 8n contains the point p=1. If
p', is any number between p,, and 1, (2.21) gives

s:' I 0) ')d0AfI I f(pB) 1dW
We split each interval 8 x into m equal parts and denote by p u o , w h e r e i =1, 2,..., in,

the left-hand ends of the subintervals of 8x thus obtained. The last inequality holds
if we replace each term 18x,,.(pn, 0) I' on the left by m terms equal to nn-1 I &n.4(pn, 8) I',

lil
and simultaneously replace the term I f(p;, 6) I' on the right by m-1 E fn(p(ft'), 0) 1'.

t-1
Making m-*oo, we obtain (2.23).

We now pass to the proof of the inequalities (2.4), (2.5) and (2.6). It is enough to
them withprove

0)={ fo, (1-P) I F'(peie) I"dp)*

instead of f (O) = lim F(pe'O) on the right. The conclusion then follows from the basic
inequality 9,[g] `A .T,U} (2.24)

established in Chapter XIV, § 3. Of the chain of lemmas proved in this section we
need only the last, namely (2.22).

We begin with (2.6). Our starting point is the formula

tA(8)-Tx(0)=-inn+din+
A

(225)

Summing by parts we have
n-1

t ,(0) 8) - (1-P) E P-"-Iy(p, 0)
P-0

for 0 < p < 1, the dash denoting differentiation with respect to 8. Hence

I tn(Q) I' < 2 {p-'n tn(P, 8) I1 +0 -P)1(EP-'-' I t;(P, 0 II J
`t 1-. 1

2 (p-'n I tn(p, 0)11+ pnP' p-'-1 I t;(P, 0) Ia (2.26)
1`

1 8Let P =P. (Pn,Px+I) (2.27)= 1 - n+1'

Then p; > e-1 for 0 < v < n. Using (1.8) and applying Lemma (2.22) we have
4w " (B 2 m l n- 1P

' I tv(Pn, a) 1,
it

41
I n 3p2n) I + Z ...3PPni(Yz) f {

o n-1 n n A-1 n n r-o

21-el A4
o

{1fdF(te)
I =dp +xZ ;n Z F8- 1

f,.j
PF(pete)

j'dp)
d9

2(n+1ri8n+2)f
8. I

F'(pe;a) I'dp)'dd

(21eA,)10,
2(n+1)(n+2)'fd.(1-P)I F'(Pe`e)I'dpjir

d6
n1

<('° ,)10,
,q'(6)dO.

(2.28)
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It follows that V,[ys) < A,V,[g),

and (2.6) is established (see (2.24)).
It is worth noting that in the definition (2.27) of p* we applied the principle used in

the heuristic argument of § 1.
We pass to the proof of (2.5), which is largely similar to that of (2.8). Suppose

that (nk} satisfies the condition (1.3)(a). Observing that

1->
1+ (a+1)=a'>1+i n +lnk k

fork=l,2,...,weset
Pk=1 Rk+1.

8k=(pk, I(2'29)
No two dk overlap. If we replace n by nk in (2-26), we have

U'[yi) <, 01 efo
s. (E

[nic i t,k(pk, 8) 12 + nk s El I t;(pk b) {'1} d6
J k-1 ,-0 11

whence

4*e*A:Jo'( (dk
ap(ptw)dp)fPd0

<, PeA,Y f oaa ii i (n nk 1)1J+s (1-p)

(al -
4a'

1)* 1 fo" gr(B) d8)

where a'=}(1+a), and (2.5) follows by an application of (2.24).
We now pass to the proof of (2.4) in which we temporarily require that {nk} satisfies

both conditions (1.3). For 0 -< m < n, summing by parts, we have

I c, e{'d Ivo, eisA -
m+l t*+1

t to

m+1+n+I m+lv(v+1)'
Hence, with m = nk-1, n = nk (see (1.4))

l'&kI-!' {3

*I
+ +I*, iv(YI (2'30)nti+1n +i}

Since g(O) is independent of c0, and
I 2w

(2n)"* I ca (2n)'/'2 fo I f I do 1R,U],

it is enough to prove (2.4) under the hypothesis F(0) = 0.
From (2.30) and the equation I t; I /(v + 1) = I i, - 7,1 we deduce

(2.31)

ao ao *a t' IS

74 Ak Is . 8v + 3 k

= 8yi + 3yi.
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say, where y3 >_ 0; and it remains to show that

9,[Ys] s A.,,,,, ,[f ]

n*
tvNow

+I V(V+ 1) s --1( K; It'I)B< nk
Zn

It'1 2(nk-1+ 1)' nk_,+1 1) nk-,+1
G4 nk

nknk-,+1

By (2.26) with v for n, p for v, and & for p, where p. = 1- (nk+ 1)-I, we obtain

I
r1

J'o lk.-i knk-,+1

229

(2.32)

Ham{ ao 1 r-1 }r
E a E (I It,(Pk

0

k-in1

k

-nk-nk,+1

nko-0 JI
By Lemma (2.22) the last inequality holds if we replace each I t, I $ on the right by

3k I-If. I F'(pe'B) I sdp, provided we simultaneously multiply the right-hand side by

A. A computation analogous to the one used in estimating l [yi] gives
m

1 1

d6,;[Y3] _< (2fl2eA,)' f
{ 'II I I F

(pe,a)
2dp

1'0z.

k=1 nk 8k ak

(a'-1)
where a' = j(1 +a), and (2.32) follows by an application of (2.24). This completes the
proof of (2.4) with for (that the constant is actually independent of 6
will be shown in §4 below).

3. Functions in L', 1 < r < oo (cont.)
We now prove the inequalities (2.8) and (2.9), beginning with the latter.

(3.1) LEMMA. For each 0, 0 < A

We have F'(peie) I = I vcr pr-i e;ra I = (1-P) E
1 1

where t;, = t;,(0). If pn = 1 - l /n we can write

g2(0) = E f
p,.,

(1-P) I F'(pe'e) I sdp
n-1 p.

n 3f (1-Pn)EIt'Ip;'n-i l` 1

(3.2)

m n E ao ao 2

< 2 E n--1 t' I Pn+i) + 2 n-6 ( E t; I P;.+i)
n-1 r-1 n-1 r-n+l=; +Q,
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say. From the estimates

P<2n-5(rEIe;
SI(fn-1 -1 v-1 v-1 n-r

A I2 P-3,
.-1

Q<2En-5

+1(
n-1 r-»+1 v-»tl

2
n

\ I

tY

I V_) ( Op'K ))

m m m
<A En1(1-P»+1)1E AT, It; Is v-3,

n-I r-» r-1

we deduce g$(B) P+Q<A j I t,,I'v-s<Ay,(9),
r-1

and the lemma is established.
The inequality (2.9) follows from (3.2) and from the basic inequality

R,[F(p etl )] < AM,[g] (F(O)=O) (3-3)
(Chapter XIV, (3.19)).

The inequality (2.8) is & simple consequence of (2.9) and Lemma (2.15) (with N = oo):

1r4 m nt I t' I'

dB A
r9

s
nt

dBr:[ys] =J
t 1 rJ Y I

tnk I E
0 k-1 v-»t_,+1 1)' 0 k-1 nt-,+1 V(V + 1)

Sw i
A:I ( i i I'

nk
) d©< Alf

S Z'm

I t;. I' } dO
o k-] (nk_l+i)s

Uw

k-1 r (nk+1)s

= A:RtrUrr[y1],
so that R,[ys] < Aa.,V,[y1],
and (2.8) follows from (2.9).

The inequality (2.7) will be proved in the next section.

4. Theorems on the partial sums of S[f ], f e If, 1 < r < oo
We first consider the case of an S[f ] of power series type:

f(9)-j:cre"'°ELr (1<r<oo),
0

so that, with the previous notation,

f(8) = F(e'a) = lim F(pete),
y-+]

where F(z) _ E crzr
0

(3.4)

(4.1)

(4.2)

is in Hr. The partial sums and (C, 1) means of the series (4.1) will again be denoted by
tr and Tr.
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(4.3) THEOREM. Given an f(O) a II, we can, for almost all 0, decompose the sequence
1, 2, ... into two complementary sequences { pk} and (qe) (depending in general on 0)
such that

(i) tnk(0)-+f(0);
(ii) E1/gk<oo.
The case r = 2 was proved in Chapter XIII, § 9. The proof was based exclusively on

the finiteness of y,(O) almost everywhere, and so is valid for general r > 1 in view of (2.6).
We show in § 5 (see (5.10)) that (4.3) holds for r= I.

(4.4) THEOREM. Suppose that the indices nk satisfy the conditions

no=0, n1=1, nk+i/nk>a>1 (k=1, 2,...), (4.5)

and Bet t*(6) =SUP I tnk(0) I.
k

Then for f E L', we have
(i) tni(0)-*f(0) almost everywhere;

(ii) Al,[t*l < A.,TlrU1
By (2.5), y,(0) <co almost everywhere, and this implies (i) (see (1.9)).
The function r*(0) = sup I T,(&) I satisfies an inequalityTR,[r*] -< A,V,[f] (ChapterlV,

(7.8)), and since, by (1.10),

t* <-r* + yl, 9R,[t*] SDl,[r*] + IR.[yil, (4.6)
(ii) follows from (2.5).

(4.7) THEOREM. Suppose that {nk} satisfies the conditions

no=0, n1=1, nk+i/nk>a>1 (k=1,2,...), (4'8)

and that {ek} is any sequence of numbers ± I. Then, for f c II, the series (cf. (1.4))

E ek Ak (4.9)
0

is (when written at length as a trigonometric aeries) the Fourier series of an f,eL', and

A.,,TR,[f l < 9JlrUjl -< A,,, 1l.U] (4.10)

(4.11) THEOREM. Suppose that f and {nk} are the same as in (4.7) and that {1k} is any
sequence consisting entirely of the numbers 0, 1. Then

ro
71k Ak

0

is the Fourier series of an f2 E L' and

9Z[fsi -< Aa,,T4[f]

(4.12)

(4.13)

We first deduce (4.11) from (4.7). We have 7k = }(I +6k), where ek = ± 1. Thus, with
the notation of the previous theorem,

I,= U+h),
and (4.12) is in U. The inequality J ,.(fkl 4 }{R4f]+91R,[fi]}, together with the second
inequality (4.10), gives (4.13).



232 Applications of the Littlewood-Paley function to Fourier series [xv

It is instructive to compare the last two theorems with Theorems (8.12) and (8.41)
of Chapter V.

Before we pass to (4.7) we prove the following theorem.

(4.14) THEOREM. Suppose that A, is a sequence of numbers such that

2'+'-'1kI<M, Ihr-Aj+11_<M
Then, under the hypothesis (4- 1), EcAetvs
is the Fourier series of an h(O) a L' and

{Vr[h] _< A,M ,[f]

(v=0, 1, ...). (4-15)

(4.16)

(4.17)

Since 9,[ce] 5 l)2,[ f ] (see (2.31)), we may suppose without loss of generality that
co=0.

We take nk=2k-1 (k=0,1,...), (4-18)

define the Ak for f accordingly, and set
e %

leAk.a= Z C,e

wk

Ak = Y,
AA_+1

(s3nk_1+1; k=1,2,...).

Summation by parts and Schwarz's inequality give

(4-19)

nk

2k= Ak.a(,Aa-As+1)+4kAnk+1,

IAk12 IAa-ae+ll+IA.,+11)(_ 1Ak.a11aa-As+1I+IAk121An,+1I)
Ak-,+1

nk

2M I k,a I2 1 a - a+1 I '} I k I2 I nk-F1 1Lk ,+1

Hence, by Lemma (2-15),

//
\1

I

(,
I Al 12) d6 -<(2M)i' A; f

2

(E I ok 1 I s - a+1 + l A, 1 I l }{*d ,
0 k-1 0 k-1 `nk-,+1

r2 .

I

f E I Ok IZ db 5 (2MA,)' 12 (E 1 Ak (4-20)
0 \k

ro

-1 fl
,2w

The sequence (4.18) satisfies the condition 2 S nk+1/nk _< 3, and Theorem (4.14)
follows from (4.20) and the inequality R2[y] <Aa a established in § 2, p. 228.

Example. If 3 is real and non-zero, the numbers A,= 08 satisfy (4.15).

Theorem (4-7) is a corollary of (4-14). If (nk) satisfies (4.8), the sequence {A,l defined
by the conditions

ho=eo, h,=ek for nk_1<j5nk (k=1, 2,...)

satisfies (4.15) with M = M., and the second inequality (4.10) is a consequence of (4-17).
Since f and f1 in (4.7) play symmetric roles, the first inequality (4-10) is a consequence
of the second. This completes the proof of (4-7).

nk-,+ 1
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Let now the {Ek} in (4.7) be the sequence of Rademacherfunctions rk(t) (Chapter I, § 3).
If tis not a diadic rational, we have

py f s.
pprr 7Aa., Jl [f]

o
I Erk(t)Ok(x) Irdx_< A',r+M[f1

Integrate this over 0 t < I and interchange the order of integration. Observing that
for any s = Eak rk(t), with S = (2; I ak I=)+ finite we have

A,S<D't,[s]<B,S (r>0), (4.21)

(Chapter V, (8.4)), we immediately obtain

2' E I Ak(z)Aa.r9:[.f]
fo

(

The second inequality here is the same as (2.4) (we had already proved it in § 2, with
A. ,,g,, for A.,,), and the first is the same as (2.7). Thus Theorem (2.1) is proved com-
pletely.

The following result is a simple consequence of (2.4) and (2.7):

(4.22) THEOREM. Suppose that f E L' and that n0 = 0, n1= 1, nk+tink > a > 1. Then
(i) if 2<r<oo, we have

2 11'r

A (E I °k Ir) do)
<_

A.,'A,U];0f
(ii) if 1 < r < 2 we have

f
2x

(E
I Ak I')

fl

O

>
Ae , U,[J ).

Case (i) follows from (2.4) and the inequality

(1IAkl )" >- El'kI' (4.23)

valid for r 3 2. Similarly (ii) follows from (2.7) and the inequality opposite to (4.23),
valid for r < 2.

Similar conclusions could be derived from the remaining inequalities of Theorem (2.1).
The results obtained for S[f ] of power series type have analogues for general S [f] e Lr,

1 <r <oo. As an example we shall consider the case of the inequalities (2.4) and (2.7).
Suppose that q5(6) E Lr is real-valued and

Then E L', and
¢(8) - lla0 + E(a,, cos vO + b, sin v6).

m m

f =0+ic-,]a0+ E (a, -ib,)e"'s= Ec,et10.
1 0

Retaining the previous definition of A. (see (1.4)), where {nk} satisfies the conditions
(4.8), we set Ok=8k+Jk. Thus

nt
80 =11 a0, 6k= Z (a,cosvO+b,sinvO) (k = 1,2,...).

nt_,+1

(4.24) THEOREM. If 0 E It, 1 < r < oo, then

Aa.r
2x

e Aa
r `r['Y] (4.25)

0

1 This argument presupposes the finitenees of I:1 A,,(x) j' almost everywhere. It is enough to apply
it to the partial sum of order ni, of S [ f ] and then make k-em.
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Let y'= (.8 )1, y'= (ESf )1. Then

Y'=Y''+Y"Y,

The second inequality (4.25) is immediate since the middle term in (4.25) does not
exceed

On the other hand,
WCr[Y]

Rr[o] -< 9r[.f ] -< Aa, r T1r[Y] < A, r (9r[Y'] + Vr[Y']),

and the first inequality (4.25) will follow if we show that

Tl,[Y'] -< A, ,.[Y'] (4.26)

It is enough to prove (4.26) when 0 is a polynomial of order nk (and then make k
tend to co). But in this case (4.26) is a consequence of Lemma (2.10), since = T¢ is
a linear operation satisfying the hypotheses of the lemma (with M =A,).

5. The limiting case r= 1
Most (though not all) of the results obtained in the preceding sections fail in the

limiting cases r=1 and r=cn, the first of which we now discuss. Our discussion will
be less complete than in the case 1 < r < oo, and we shall almost exclusively confine
our attention to analogues of the first three inequalities of Theorem (2.1). As before,
we write

.f (e) = F(ete) ,.. I C. e¢e, (5.1)
0

where F(z) = £,c,z'' is regular for I z I < 1.

M

(5.2) Th$owcm. If f T, e,eiiee L, then
0

(5.3)

9r[Yi] < Aa,rT?[.f], (5.4)

TZr[Ya] 5 ArTIU], (5.5)

for every 0 < fc < 1. In particular the function8 y, y y, are finite almost everywhere.

(5.6) Tn oB&M. If f y c, e" .atiefim f log+ I f 14E L, then
0

4 ; I f I log+ I f 10 + A.,,,,J[y] 4 Aa.6 f (5.7)

9[Y,]<Aa f0 If Ilog+If IdO+Aa, (5.8)

TZ[y.] -< Af0 IfIlog+IfIdO+A. (5.9)

These inequalities are the main results of this section. Before we pass to their proofs .
we give a few oorollegies.

(5.10) TssoasM. Theorem (4.3) holds for r=1.
This follows from the finiteness of y. almost everywhere.
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Since the convergence of Eu implies that ul + 2u%+ ... + nu,, = o(n), we deduce
from (5-5) that S[f] ] i8 eummable H' almost everywhere (see Chapter XIII, § 8).

This result is weaker than Theorem (8.1) of Chapter XIII, if only because the
latter theorem was proved for S[f] hot necessarily of power series type.

w
(5.11) THEOREM. Let f - Y. c, et''B and suppose that nk+l/nk > a > 1 for all k. Then

0

tnk(O) --+f(O) almost everywhere. Moreover, for sup I I we have

(0<p<I), (5.12)

s.
)1[t*],AaJo If Ilog+I f I dO+A.. (5.13)

The proof of the relation tnk-i f is the same as in Theorem (4.4). The inequalities
(5.12) and (5.13) follow from (5.4), (5-8), the first inequality (4.6), and the estimates

2n

[f], Tl[rS]_< AJ0 Ifllog+If I dO+A
(see Chapter IV, § 7).

Return to Theorems (5.2) and (5.6). For their proofs we need lemmas analogous to
those used in §§ 2 and 3. But this time we shall not be able to use the direction angles
for the purpose of averaging (see Lemma (2.10)); less precise results obtained by means
of Rademacher functions will, however, be adequate for our purposes.

(5.14) LEMMA. Let r,(t) be Rademacher functions,

s(t)=ar(t), S = (E I a, I')i < oo.

Then A,S S 91r[e] g B,S (r> 0), (5.15)

I

ASlog+S-A',< J0 I8Ilog+I81dt_< ASIog+S+A'. (5.16)

Here (5.15) is the same as (4.21).
In order to prove (5.16) we set x(u)=log(u+e), observe that X2(u) is concave and

apply the inequalities of Schwarz and Jensen:

Jo
18Ilog+I81dtJo 18Ix(I8I)dt_<

(Jo
l8Isdt)}

(f:(I8I)a)i

(Jo
I812dt)} (x'(Jo I8I dt))}5Sx(S)_<AS1og+S+A'.

The first inequality (5.16) is a consequence of Theorem (8.25) of Chapter V, according
to which there are two positive absolute constants e, i such that 18(1)1 > ,?IS in a set
of measure at least e. Thus

JI8I1og+I8Idte17sIog+(178).8 (5.17)

We may suppose that 71 _< 1. The right-hand side in (5.17) is e17S (log+S-log 1/117)
if S > 7-1, and is 0 if S _< ij-1. Hence the first inequality (5.16) holds in every case.

The two lemmas which follow are analogues of Lemma (2.10), from which we
retain some notation.



236 Applications of the Littlewood-Paley function to Fourier series [xv

(5.18) LEMMA. Let 0 < s e r and let 6 be a linear subspace of II(a, b). Suppose that
Vi = To is an additive operation defined for 0 e C ( = %G (y), a' < y < b'), such that

Tl,[Y' J < M93lr[qi] ( a `G' ).

Then there is a constant A,,8 such that

9,['Y] < MA, BR ,.['].

If _ (x) = Er,(t) 0,(x), fr = 1r (y) = Er,(t)'r,(x),

(5.19)

then =To. Integrating the inequality <M'Dl [Ol with respect to t, and
applying Holder's inequality on the right, wehave

Cl

I Er,(t)'',(y) I'dy < M, J
Cl

dt b I Er,(t) 95,(x) JrdxJ
0 a' 0 a

If we now change the order of integration on both sides and use (5.15) we get

bAe f "P(y) dy < M' {Br f b (V(x) dx
a a

which is (5.19) with Ar.8= BrIA,.

(5.20) LEMMA. Suppose that 8 is a linear subspace of L(a, b), with b - a < oo, and
that 0, = To is an additive operation defined for 0 e 6 (k = Vr(y), a' < y < b'), such that

So'a
I IdyMf aa

Then f 'Fdy<M' f a"log+IV dx+11'1',
a' a

where M' depends on M and b - a.
It is enough to integrate both sides of the inequality

fW

I ,(y) I dy < Mfb
I Er,(t) 0,(x) I log+ I Er,(t) 0,(x) I dx+ M

a a

with respect to t, change the order of integration, and use (5.16).
We shall use Lemmas (5.18) and (5.20) with To= c.

(5.21) LEMMA. With the notation of Lemma (2.15) we have

(Anfo(Elfni2)}d8 (0<µ<1), (522)

fo*(E I8nk,I2)1dO<A fo(EIf, 2)1log+(EIf,.I2)1dd+A. (5.23)

The proofs resemble so closely that of Lemma (2-15) that we need indicate only the
main points. We begin with (5.22), and denote the left-hand side by I. Starting with
the inequality immediately preceding (2.17), we get instead of (2.17) the inequality

I< f(' I 9n l2)1"d°+ I (E 12n f')i1d0+ f L an j_)6dO,
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instead of (2.18) the inequality

237

2

Jon(J;

(a corollary of Lemma (5-18) when Tor= 1, 8=µ), and instead of (2.19) the
inequality ('2n 2.

J o
(2; 1 a 1 s)f# d9 < (21r)'-#

lfo
(Y I fn I2)f

do}µ

Collecting estimates we arrive at (5-22). The proof of (5-23) is similar.

(5-24) LEMMA. With the notation of Lemma (2.20) we have

(0<u<1), (5.25)12)+"do <{A, f
o2

+A. (5.26)

The proof is similar to that of Lemma (2.20).

(5.27) LEMMA. With the notation of Lemma (2.22) we have

f" (Y-18n.k (P,,, o) I2)i# do < {AI fo"(1 I an ' fd^ I fn(P, 0) I2 dp d6µ, (5 28)

I8nI-lf Ifn(P,o)I2dp)
o

(5'29)
The proof is similar to that of Lemma (2-22).
Passing to the proof of Theorem (5.2), we observe that it is enough to prove the

inequalities with l[g] instead of T?[ f ] on the right, since by Theorem (3-5) of Chapter
XIV we have

IM[g] <AAl[f].

We begin with the proof of (5-5), and again we may be brief, since the proof runs
parallel to that of (2-6). Starting with (2-25) we have, instead of the first inequality
(2-28),

TZµ[y2]<2b,
2w{...)il

d9;
0

and a series of inequalities, parallel to those in (2-28) but based on (5-28), gives
DRp[y2] <A,U [g]. This completes the proof of (5-5).

The proof of (5.4) resembles that of (2.5) and does not require additional explana-
tions. Similarly the proof of (5-3) resembles that of (2-4) with A.,ft,, for As,, (p. 228).

It remains to prove Theorem (5-6). We confine our attention to the inequality (5-9),
the proof of the remaining inequalities being analogous.

If we start out from the first inequality (2.28), where now r= 1, and use (5-29),
we arrive at the inequality

f
2,y2ds<A

f 2T glog+(A g)do<A f *glog+gdo+A.
Jo Jo0'

Hence (5.9) will be established if we prove the following lemma:



238 Applications of the Littlewood-Paley function to Fourier series [xv

(5.30) LEMMA. If f - L log +L, we have
0

fo*glog+gd4<-A f0*If Ilog+If IdO+A. (5.31)

We may suppose that co is real. Consider the inequality

)lr[g] a

valid for F e H', r > 0. Suppose now that r > 1, and set

f (O) = u(9) + iv(O) .

Then 9R,[9] -< ArVr(ul, (5.32)

since T4[f] < A,9R,[u] (Chapter VII, (2.4)). The function u(O) is an arbitrary (periodic)
function in L' and F(z) is uniquely determined by u(9). Hence

9(0)={ f o (1 -p) I F'(pe1e) I2dp)Tu (5.33)

is an operation defined for u e L'. By Minkowski's inequality, T is a sublinear operation
and, by (5.32), is of type (r, r) for each r > 1 (Chapter XII, pp. 111, 95). Byt Theorem
(4.22) of Chapter XII we have

Io
J

9'Iog+gdO<-A 19Ru=log+udO+A,Jo
and, a fortiori, f o*g'log+gdO <A fO I f I'log+ I f I d9+A. (5.34)

In order to deduce (5.31) from (5-34) we suppose first that F has no zeros in 121< 1,
and set F = F. Then denoting by 91 the g corresponding to F we have

9(0) = 2 {J (1-p) I Fi I2 I F' I' dp}}<-2fi (B) gi(e),

where f, *(O) = sup I F1(peta) 1. Hence
P

2 INfo glog+gd9- fo (2fi 91)log+(2fi g1) d0

2I f1*2 log+(2f12)do+2 fo92 log+(2gi)d9+A

A f
oVfl'log+f,

d9+A fo"gilog+gldo+A. (5.35)

By (5.34,1 applied to F1,
Jo.glog+gldOSA

fo*1f1l'log+I.fjId0+A<A fo If Ilog+If Id0+A.

From this and (5.35) we obtain (5.31), provided we show that

fo If1I'log+I f1ldo+A<A fo*If Ilog+If Id9+A. (5.36)

t We met there 4(u) -u* log+ u; the fsot tht 4 is strictly inoresing for r> I only. is of no importance.
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Only the first inequality requires proof. Considering F(z) as the Poisson integral
of f, we immediately find that f * (0) = sup I F(peiB) = Tf is a sublinear operation, of

P
type (r, r) for r> I (Chapter IV, Hence (5.36) follows from Theorem (4.22) of
Chapter XII.

If F has zeros in I z I < 1 we have a decomposition F = Fl + F2, where F1 and F2 are
without zeros and I f14 -< 2 J f J, I f, <- 2 1 f (Chapter VII, (7.23)). If g1 and g2 are the
g for F1 and Fs, then g 5 g1 + gz and

f oWglog' gd9-(291)log+(291)d4+
I

(2g2) log+ (292) do

2w

-<A f(, gllog+gldO+A I g,log+g2d6+A

A

J
A f

o
if I1og+I fIdt3+A,

which completes the proof of (5.9).

6. The limiting case r=oo
This time, and contrary to what precedes, we get the best results by considering

general Fourier series
iao + E (a, cos vO + b, sin vO) A, (0) (6.1)

.-1 P-o
W

and their conjugates E (a, sin v6 - b, cos v9) = Z B,, (fl). (6.2)
-1 .-1

The partial sums and the (C, 1) means of (6.1) are denoted by and o",(8), and of
(6.2) by and &,(0).

Suppose that
nO- = 0, n1 =1 < nf< n8< ..., n k+1/nk> a > 1. (6.3)

If E A,(O) is the development of a bounded function, then both EA,(O) and E B,(6) are
in L', r > 1, so that, by (4.4), the sequences and {ank} converge almost everywhere,
and the functions

8*(6) = sup 1 snk(0) J, a*(©) = s kp I I (6.4)

are in L'. It is the latter fact which we are now going to generalize.

(6.5) THEOREM. Suppose that E A,(O) is an S[ f ], where I f -< 1, and that {nk} satisfies
(6.3). There are positive constants A and fz, depending on a only, such that we have

fo*exp(As*)dOSu, fo*exp(Ai*)dOSu. (6.6)

If f is continuous, the integrals (&6) are finite no matter how large A is.
The part concerning continuous f is a corollary of the result about bounded functions,

as is seen from the decomposition f=f1+f2, where f1 is a polynomial and max I f,I
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arbitrarily small. It is therefore enough to prove (6.6), and we begin with the first
inequality. The proof has some points in common with earlier ones, but is shorter and
more elementary, no use being made of the deeper inequalities for the function g.

(6.7) LEMMA. If ink) satisfie8 (6.3) and if E Ar(9) is an S[ f ], where f e L°, q > 2, then

J0x(kEII.9.,-0-n1I9) f Iad0' (6.8)

where Av Q5 qA,,. (6.9)

Except for the estimate (6.9), which is important, (6.8) is contained in (2.5) in view
of the obvious inequality E I an I° 5 (I I an I4)}Q; but the following proof is on different
lines.

From the equations sn-Qn=3;,/(n+ 1) we deduce (compare a similar argument in
(2.25) and (2.26))

18, (8)-qn(B) I - n+1
Hence, if n > 0,

2Q-1
18(O)-O(O) I ° < w-0-0

n-1
(1-P) E +w;-1 I sn(p'8) P-"

x-1

E 6) P-r-1
P-1

Q 2v-1

+ n° 18;.(P.8) IvP-"°

2°-1 n-1 n-1 °-1 2°-1

(E 0) I °) ( per+udl +nv I Bn(P, 0) I °P-na

n° (1 -P)°
lv r 0 J

2q- 2q-
< °1-p-n"('-P) ElI 8 (P B) I °+ nQ1 p-"° I An(p, 8) I°. (6.10)

By the second inequality (6.5) of Chapter VII, we have

JoWI&(p,8)I°d9<All J I f'(P'0)lod9,

where, as is easily verified (see Chapter VII, (6.7), (6.3), and (3.8)),

A, -< Aq.

Setting p =pn = 1- 1/n in (6.10) and applying (6.11) and (6.12), we obtain

f2wI rf f',0)I°de.n
4s

The integral fo I f'(p, 0) Ivd9 is an increasing function of p. Hence, setting

p., = 1 - 1 /nk, ak = (1 - 1 /nk, 1 - 1 /ank )

2.
we have

J
(E I o-nk I °) d9

0

A°q°
k

1 1'o
d0 fel

I

f'(p, 0) I° dp
-El n;( I8 kI

(Aqa)° E f
4.

f I f '(p, B) I° (1-P)9-1 dPa-1 k1 0 a

` (Again
f o, jo I f'(P, 0) I ° (1-p)Q-1 dpd9,

(6.11)

(6.12)
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and (6.8) follows if we observe that the last integral does not exceed AQf f(8)1'd9
0

(Chapter XIV, (3.25)).
We can now prove the first inequality (8.6). Set

U2 IL3X(u)=eu-u- 1=2f +i-I +...

Multiplying (8.8) by (2A)Q/q!, summing the results over q = 2, 3, ..., using (6.9), and
observing that qQf q! eQf , we find

,kA(2 Ea9)°<AdO <22Xj r (6.13)
provided 2A,, Xe < 1.

- A.R)8rk-O*kj) rq-2Jo kE X(

Now, we have successively

- QI + I a I 1 + 18
I

I QI d - tT 1
(6.14)fh *k *k *k ,sknk

8* <, 1+SUP 1Bno I, (6.15)

X(ae*) , X(2A) + EX(2,I 18rik - O*k I ). (6.16)

Hence, fixing A and observing that

fo exp (As*) d9 < AIo X(X8*) 0 + A,

we obtain the first inequality (6.6) from (6.16) and (6.13).
The proof of the second inequality (6.6) is similar. Clearly (6.8) and (6.9) hold if we

substitute ink, for 8nk, and the same applies to (6.13). Instead of (6.14) and
(6.15) we now have

8* , v* + sup l ank - &nf I,
k

X(X8*) , X(2.10*) +EX(2,I I °*k I ),

where v* = sup I &s . Since X(2Av*) <exp (2A FT*), it is enough to show, writing 2A
for A, that

J
E,,

exp (,Iv*)dO-< A,, (6.17)
0

for A sufficiently small. This in turn will follow if we show that SDlQ[o'*) < Aq for q 3 2.
But

gRQ[Q*) <ATt[f) -<A4VQ [f) -< A9,
Q

by the inequalities (7.8) of Chapter IV, and (2.4) and (3.8) of Chapter VII.
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CHAPTER XVI

FOURIER INTEGRALS

1. General remarks
Given a function f (x) in (- oo, oo) and a number e > 0, consider the integrals

S (x)=S(x, f)=Iff(x + t) dt

r+
S(x)='. (x, f)=- ' d l .

dl (12)
n I

If f is periodic and integrable over a period, the integral (1.1) exists and represents
the sum of the terms of S[f] of rank not exceeding w, with the understanding that, if
w is an integer, only half of the term of rank w is taken; (1.2) bears the same relation
to S[f] (see Chapter II, § 7).

In this section we consider the integrals (1.1) and (1.2) for general (non-periodic)
functions in (-oo, +oo). We suppose that f is integrable over every finite interval, and
that the behaviour off near ± oo is such that (1.1) and (1.2) converge, say absolutely.
This is certainly the case if I f(x) /(1 + I x 1) is integrable over (-co, +oo), and so, in
particular, if Je L(- oo, + oo) or (using Holder's inequality) if f e L'(- oo, + oo) for
some r > 1.

It is an important fact that if f satisfies locally some convergence test for Fourier
series, then S, (z, f)->f(x) as This result is known as the representation off by
Fourier'8 single integral, and is a corollary of the following theorem, which also con-
tains a parallel result for the integral (1.2).

(1.3) THEOREM. Suppose that I f (t) I /(1 + I t 1) is integrable over (- oo, + oo), and let
fa(t) be the periodic function coinciding with f in the interior of a given interval
J. = (a, a + 2n). Let a (x) and 3,(x) be the partial sums of S[fa] and S[fa]. Then in each
interval Ja totally interior to Ja, the differences

8.,(x)-s1,1(x), £.,(x)-afol(x)

tend uniformly to limits as w--oo, the first limit being 0.
We shall only discuss S,-8[v[, the argument applying without change to &-i[y[.

For the sake of clarity we first consider only pointwise convergence. Suppose that
xo a J., and that S > 0 is so small that xo ± 8 e Ja. From (1.1), using the Riemann-
Lebesgue theorem in the form (4.6) of Chapter II, we deduce

d

S(xo)=-j
sin

(1'4)
-a

since I f (xp + t) i-1 I is integrable over I t 8. Write w'= [w] + }, so that - } w - W'<-
The difference between the last integral and the integral in the formula

fsmw t dt +o(1) (1'5)
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(Chapter If, (7.1)) is

w-w'
n J_af(xo+t) -('w-w')t(w+w')tdt= n f-e f(xo+t)oos}(w+(o')tdt

(1.6)

(where 0 < 8' < 8, 0 < 8' < 8), by an application of the second mean-value theorem to
the factor which is even, positive and decreasing in
(0, 8). By the Riemann-Lebeegue theorem, the last integral is o(1), and the relation
S,,(xo) - 8( I(xo) -- 0 follows.

It remains to show that the o(1) in the preceding argument is uniform in xo a J..
Split the integral in (1.1) into three, extended respectively over I t I '< 8, 8 51 t I '< A

and [ t I -> A. If A is large enough, the integral over ( t I 3 A is arbitrarily small uniformly
in xo (and w). Fix A and apply the second mean-value theorem to the factor 1/t in
the integrals over (- A, - 8) and (6, A); we immediately see, by the Riemann-Lebesgue
theorem, that the integrals are o(1) uniformly in xo. t Hence the o(1) in (1.4) is uniform
in xo. That the o(l) in (1.5) is uniform was shown in Chapter II, § 7, and that the last
integral in (1.6) tends uniformly to 0, is obvious. Hence S (x) -'%I(x) = o(1) uniformly
in x0EJ., and the proof of (1.3) is completed.

Theorem (1.3) enables us to deduce tests for the pointwise convergence of S,(x)
from the corresponding tests for Fourier series. The same applies to uniform con-
vergence over finite intervals since such intervals can be split into a finite number of
intervals of length less than 2n. We omit specific applications.

Return for a moment to the difference S. - §t.l. Suppose that the integral defining
the conjugate function fa converges at an x0 E Ja. Then the integral

1 f' f(xo+t)-f(xo-t)dt= TM f(t) dt= -1 Jim I f(t) dt
n o m t-xo nr...+o It-x.l>r t-xo

also converges; for near t = ± oo it converges absolutely. It is called the function
conjugate to f, or the Hilbert transform off, and is denoted$ byf(x). It exists for almost
all xo in (-oo, +oo). The proof of (1.3) is easily modified to show that

S.(xo) -f(xo) - (8[,$xo) -fa(xo)} - 0, (1.7)

so that 'Vx0) -f (xo), if -->fa(xo)-

(l 8) THEOREM. The conclusions of Theorem (1.3) hold if f is integrable over every
finite interval and if, in addition, f(t)19 tends to 0 as t -+ ± oo and is of bounded variation
in the neighbourhood oft = ± oo.

We confine our attention to S - a(.l. The last hypothesis of (1.8) means that there
is a B > 0 such that f(t)/t is of bounded variation in (- oo, - B) and (B, + co).

We may suppose that (- B, B) contains J. in its interior. Let g(x) =f(x) in (- B, B)
and g(x) = 0 elsewhere. Then gQ = fQ and, by (1 -3), S (xo, g) - sa(xo; fa) -s 0 uniformly
in xo a Ja. If we write f =9 + h and show that S.(xo, h) -+0 uniformly in x0 J;, then by
combining this relation with the preceding one we obtain the required result.

t We apply Theorem (4.8) of Chapter II to the family of functions J(x,+t) depending on the para-
meter x but the change of variable z.+t-t' moves the parameter from the integraud to the limits of
integration.

t We use the some notation for the conjugate funetion in the periodic and non-periodic case.
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Now h = 0 in (- B, B) and h =f elsewhere, so that
B

S.,(xo,h)=-
1

(J-m+JBtt)t xusincu(t-xo)dt. (1.9)

We may suppose that/(t)/t is monotonically decreasing to 0 in (-co, - B) and (B, + oo)
as t - ± co; for otherwise we can replace f (t)/t by a difference of two functions with this
property. The integrals are limits, for B'-+ + oo, of integrals extended over (- B', - B)
and (B, B') respectively. Applying the second mean-value theorem to the monotone
factors f (t)/t and tl (t - xa), and then making B'-* oo, we find that (1.9) tends uniformly
to 0 for xo E J., and the proof of (1.8) is completed.

Suppose that f (t) is integrable over (- co, + oo). Then

S4,(x)=n f
+M

f(t)dt Jo cosa(x-t)d8=- Jo de Jf(t)coss(x-t)dt, (1.10)

the inversion of the order of integration being justified by the absolute convergence.
Hence 8,(x) is a partial integral of the infinite integral

1 +m

n

o°°

de J f(t)oose(x-1)dt (1.11)

=
o

{a(,)cosex+b(8)sin8z}de 0(s)e"Zde, (1.12)

where
a(8)=T.0

f(t)cosetdt, b(s)=' f +f(t)sin8tdt,

1 +.' J
c(8) =

2n
f- f (t) a-'" dt = }<{a(a) - ib(a)}. (1 14)

The integrals a(8), b(8), c(s) are analogues of Fourier coefficients; they are called the
Fourier transforms (cosine, sine, complex) off. We considered them earlier in Chapter I,
§ 4. The integrals (1.12) are analogues of Fourier series; they are called Fourier
integrals; sometimes, in view of the representation (1.11), Fourier'8 repeated integrals.
We may also consider general integrals of the form (1.12), where the coefficient
functions a(8), b(8), c(8) are not necessarily Fourier transforms; such integrals are
called trigonometric integrals. If a(s) and b(s) are real-valued and y(8) = a(8) - ib(e),
(1.12) is the real part of the Laplace integral

y(s)ei-d8 (z=x+iy), (1.15)

for z = x. The imaginary part of (1.15) for z = x is the integral

E {a(s)sinsx-b(s)cosex}de= -if_+:c(e)(signs)e'-de, (1.16)

conjugate to (I.12). The integral (1.15) converges, under very general conditions, in
the upper half-plane y > 0 to a function regular there.

Given an f (t), - oo < t < +co, such that the integrals (1.13) have a meaning, we may
ask in what sense (1.12) represents f (x). If the inversion of the order of integration in
(1.10) is justified for all oj, then the partial integrals of (1.12), S,,(x) say, are given by
(1.1). The problem then reduces to that of the representation off by Fourier's single
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integral, and so (in view of Theorem (1.3)) to that of the representation of a function
by its Fourier series. The formula (1.10) is, however, true only under certain conditions
on the behaviour off (t) near i = ± co. Consequently the range of application of Fourier's
repeated integral is more restricted than that of Fourier's single integral.

The formula (1.10) holds if f e L( - oo, + oo), and the problem of the convergence of
(1.12) and (1.16) may therefore be considered as settled in this case by Theorem (1.3).

The case when f (t) is not necessarily integrable in the neighbourhood oft = ± co, but is of bounded
variation there and tends to 0 with 1/t, has applications. We may suppose thatf(t) tends mono-
tonically to 0 as t -+ ± co, ; t j > B > 0. The second mean-value theorem shows then that the trans.
forms a(8) and b(s) converge for s * 0, and that the convergence is uniform for (a f 8> 0. Hence
the following version of (1.10) holds:

d + I +<o sintw(x - tl 1 }0D sin8(z-t)1

n
da f(t)coea(z-t)dt= mf(t)

x-t dt-n f(t)---z_= de. (117)
e -m -m

We show that the last integral tends to 0 with 8. Split the interval of integration (- oc, + oo)
into (- oo, - A), (- A, A), (A, + co). If A > B is large enough, the second mean-value theorem
applied to f shows that the first and third integrals are arbitrarily small. If A is fixed, the
second integral tends to 0 with E. This proves the assertion, and we have the following theorem:

(1' 18) THEOREM. If f is of bounded variation near t = t co and tends to 0 with l 1t, we still have

(1.10), provided the outer integral on the right is taken as lim f
a-.+o e

That the latter restriction is essential, and that g(8) = f- m f(t) cos a(x - t) dt, qua function of s,
J m

need not be Lebesgue-integrable near 8 = 0, can be seen from the following example. Take a sequence
a, > as> ... - 0 such that the sum of Ea coons is not integrable near a = 0 (see Chapter V, (1-9)).
Let x = 0, and letf(t) be even and satisfy

f(t)=O for 0-<t< J,

f(t)=a for n-jEt<n+} (n=1,2,...).

Then g(s) = ne,
4 sin {a

and g(s) is not integrable near s = 0.
This example shows that under ths.hypothesis of (1.18) the outer integral in Fourier's repeated

integral must be taken as lim lim. J.+m a .+oa

Return to (1.3), and for each (a-> 0 denote the sum of terms of rank not exceeding u
in S[ fa] and 5'[ fa] by ad and s. respectively. Thus 8,,, = s = By (1.3), 8.(x) -
tends uniformly to 0 in Ja. It follows that

w

tends uniformly to 0 in J. as w - oo. Denote the second term by tr (x) ; it is a con-
tinuous analogue of the discontinuous (C, 1) mean and the two
are equivalent (see Chapter III, p. 83). Integrating (1.1) over 0 < tv < w and inverting
the order of integration in the repeated integral we find for the (C, 1) means of S .(x)
the expression

1
oIf f(x+t)2siJuI

dt, (1.20)uji
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which is an analogue of Fej6r's integral for Fourier series. Using basic results about
the summability (C, 1) of Fourier series (am Chapter III, (3-7), (3-9)) we arrive at the
following theorem:

(1-21) THaoRgss. I f If (9)11(1+ is integrable over (- oo, + oo), the (C, 1) means
(1-20) of S (x, f) converge to f almost everywhere. In particular they converge to

}{ f (x + 0) +f (x - 0))

at each point where f (x ± 0) exist. The convergence is uniform over each finite and closed
interval of continuity off. t

If we integrate (1.7) over 0 5 w < w and observe that the continuous (C, 1) means
ir,o(x) of a,(x) tend tofa(x) almost everywhere (Chapter 111, (3.23)) we obtain similarly :

(1.22) THEOREM. I f I f(t) I/(1 + I t 1) is integrable over (-oo, +oo), the (C, 1) means

ai wt)dt--f .,f(x+t){t - n
9

JJ !

of 9.(x) converge to the Hilbert transform f (x) almost everywhere.

2. Fourier transforms
In § 1 we investigated the representability of functions by their Fourier integrals,

single and repeated, and proved that, locally at least, the problem is reducible to that
of the representability of periodic functions by their Fourier series. We shall now study
in greater detail properties of Fourier transforms as such. The latter are analogues of
Fourier coefficients, but there is now more symmetry in the situation, since f and its
Fourier transform are both functions of a continuous variable.

Given an f(x) in (-oo, +co), consider its Fourier transform

+
c(x)=2nff(y)e_ztvdy. (2.1)

If f is in L( -co, +oo), c(x) is defined everywhere, is a continuous function of x, and
tends to 0 as x-- ± co; the latter is the Riemann-Lebesgue theorem (Chapter II, (4.6)).
The representability off by its Fourier transform means, as we proved in the preceding
section, that

f(x)= c(y)e'rydy, (2.2)
1

in the sense that the partial integrals f w of the integral on the right are summable
J d

(C, 1) to f (x) almost everywhere.
We may also define c(z) in certain cases when f is not absolutely integrable over

(-co, +co), but then the validity of (2-2) must be investigated afresh. If, for example,
f is of bounded variation over (- oo, + co), then c(x) exists for x * 0, and we have (2.2)

t It may be instructive for the reader to prove this theorem (and Theorem (1-22) below) directly,
without using Fourier series. It is not difficult to see that the integral (1-20) has meaning, and converges
almost everywhere to f(z) as if/(t)/(1+t') a L(-ao, +m).
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for all x, provided f (z) _ }{ f (x + 0) +f (x - 0)), and provided the integral (2.2) is under-
stood as* A

Jim lim
r_+W d_+0 GI VIGr

this is a consequence of (1-8) and (1.18).
Remark. Suppose that y(A) is integrable over every finite interval of A (but not

necessarily over (- oo, + oo)) and that

9(x) = Y(A) el dA,

where the integral converges uniformly over every finite interval of x. We have then

2nw
rdw, 9(z) a- dx= J+W 2 ' dec.

fJ 0 w (,U - )
+m

The formula is easy to verify by substituting g(z) = y(fu) eur du into the left-hand
_m

side, and integrating first with respect to z and to, which is justified by uniform con-
vergenoe. The right-hand aide of the formula tends to y(p) for almost allA under rather
general conditions for y (it is sufficient, for example, to assume that

y(,-)/ (l +1C') a L(- co, + oo)),
and we have then 1 +

y(A) g(z)
a-ua dx,

where the integral is meant in the (C, 1) sense. This observation will be used in § 10
below.

It is desirable to make the definition of the Fourier transform more symmetric by
changing the factor (27r)-' in (2.1) to (2n)4. The Fourier transform off, thus modified,
will be denoted systematically by/, and the relations (2.1) and (2.2) can be written

1

f_f(y)e- -dy,
(2.3)

1

f(y)e dy. (2.4)

These two relations are sometimes called Fourier inveraion formulae.
In the special case when f is even, f(-x)=f(x), (2.3) and (2.4) can be written

f (x) = of f(y) cos xydy, (2.5)

f(x)=j2
0 f(y)cos xydy, (2-6)

so that f (x) is also even. If f is odd, f(- x) = - f (x), then

and f (x) is odd.

OX) =
IT

J f
u

f (y) ain xydy, (2-7)

- if (x) =
2f

o , f (y) sinxydy, (2.8)
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If f is defined in (0, oo) only, the right-hand sides of (2.5) and (2.7) will be called the
cosine and sine transforms off and denoted by f, and f, respectively.

If f 4E L( - oo, + oo), f (x) is continuous and tends to 0 as x -* ± oo. If, in addition,
feL(-oo, +oo), the right-hand aide of (2.4) is a continuous function, which we may
identify with the initial function f by modifying the latter, if necessary, in a set of
measure 0. Hence if both f and f are in L(-oo, +oo), then both are continuous and
tend to 0 at infinity.

But the integrability of f need not imply that of f. Hence, id spite of the formal
resemblance of the relations (2.3) and (2.4), there is a basic asymmetry in the metric
properties off and f, if f is merely integrable over (- oo, +oo). It turns out that this
asymmetry disappears if we confine our attention to functions f in L2 = L2( - oo, oo),
and that in this case we also have the basic Parseval-Plancherel formula

fIf(x) I sdx= J I f(x) I2dx.
-W -W

(2-9)

But of course we must first define f for f e L2.
Let S be the class of all step functions in (- co, + oo) which are 0 near ± co. We define

the Fourier transforms of such f directly by (2.3). For all other f e L2, we shall define
f indirectly. Let f E S. Then, if 0 < u < oo,

fI.f(X) I2dx=L d
2n5+

f(y)e-`ZYdy f +°° f(y')e;XY'dy

1=
f+m

f+.f(y)f(y')dydy2n YY aix(V -Y)dx (2.10)

=n
J+m

)dydy'= 51(Y) S(Y J) dy,

where S. is given by (1.1). The transformations are legitimate since all integrations are
actually over finite intervals.

Observe now that, in the case under consideration, S,(y, f) is uniformly bounded in
y and w, and tends to 1(y) as a, - + oc, except possibly at a finite number of points. It
is enough to consider the case when f is the characteristic function of an interval; the
result then follows from the formula

sin At
J t dt=jnsign .I,

0

and the fact that the partial integrals of this integral are uniformly bounded. Com-
paring the extreme terms of (2,10) and making m-->oo, we obtain (2.9) by Lebesgue's
theorem on the termwise integration of bounded sequences.

The formula (2.3) defines a linear operation f-Tf for all f in the set 8, which is
dense in L2. Since (2.9) holds for f e S, the operation Tf can be extended by continuity
to all f E L2; this extension is unique (see Chapter IV, (9.3), and satisfies II Tf II < 11 f 11,
where

11 f 11 - Ilf IllW If I'd-)
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We show now that we actually have II Tf II = II f fi. For let f e L2, and let fl, f=, ... in
S be such that II f -fn II -> 0. In particular, by Minkowski's inequality, II fn II --* 11 f 1.
Since

II Tfn -Tf II=IIT(fn-f)II IIfn -f II ->o,
we also have II Tfn II -* II Tf II, and making n-+oo in the equation II Tfn II = II fn II, we

obtain II Tf II = II f 11, which is (2.9). Collecting results we see that there is a linear
operation f = Tf defined for all f e L2, satisfying (2.9) and given by (2.3) for f E S.

Next we show that if f e L2 is 0 outside some interval (- A, A), then f = T f is still
given by the formula (2.3). For denote by f *(x) the value of the integral (2.3); we have
to show that f = f * almost everywhere. Take a sequence of step functions fl, fs, ...
vanishing outside (- A, A) and such that II f -fn II -* 0. Hence II 1-1* II 0, and in
particular

f
+

(2.11)

for each c > 0. Schwarz's inequality shows that fn tends uniformly to f * over every

finite interval, and in particular I fn -f * I' dx - 0 as n--,o. This and (2.11) show

that f * = f almost everywhere in and so also almost everywhere in (- oo, co).
Finally, for an arbitrary f e L=, write

1 +Y

fi(x)=J(2n) -Yf(+J)e-'=1'dy. (2'12)

Then f, = Tf,, where f, coincides with f in (- w, w) and is 0 elsewhere. Since

IIfL-f11=1T(f_-f)II=11f.-f5- 0

as to i oo, we see that for each f e L', the integral (2.3) converges in L' to f, that is,

1110-111-0.
The last relation implies that there is a sequence wk such that f., -+f almost every-

where. In particular, if the right-hand side of (2.3) converges almost everywhere, it
converges to f.

We now prove (2.4) forfe Ls. It can be written

f = T *Tf, (2.13)

where T* denotes the operation obtained from T by changing to in (2.3)
(T*f =Tf ). Since T and T* are continuous in L2, so is T*T, and it is enough to prove
(2.13) when f 4E S, or even when f is the characteristic function of an interval (a, b).
In this case f (x) = i(e-{b1 - e-i-) (2n)-I x-1, and

I ('1 f sin(x-a)y 1 olosin(b-x)
dyJ( 2n)

erzv dy
y

dy
+ nf o y

}(sign (x - a) + sign (b - x)). (2.14)

Hence the left-hand side is 1 for a <x < b, and is 0 for x < a and x > b. Hence T *Tf =f,
and the proof of (2.4) is completed.

We can represent f in a different form. Let m(x) and (Y(x) be the integrals of f
and fY respectively, from 0 to x. By Schwarz's inequality,

I m(x)-4Y(x) I °IJo (f-f.) dyI _< I xI1I1f-fLI) =a(1)
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as (a -> oo, so that O(z) = Jim (Y(x) for each x. Since, by (2.12),

r
YY1(y)e_t"y

ldy,

and f (x) =1)'(x) = (d/dx) lim 4D,(x) almost everywhere, it follows that almost every-
where we have

d r +.f(y)e--iy ldy(2.15)
and correspondingly for (2.4),

d 1 ff+°° a '-1
f (x) = ax J(2n) -.f(y) iy dy} (2.16)

For fin L', the results about f obtained so far can be summarized in the following
theorem:

(2.17) THzoREM OF Pr&NCRERXL. For each fin L'(-oo,oo) the integral (2-3) con-
verges in L' to a function l e L'; that is to say, h f - fe 11 -, 0, where fY is given by (2-12).
Similarly the integral (2.4) converges in L'to f. The functions f and f satisfy the Parseval
formula 11 f IJ = 11 f Il , and for almost all x the relation. (2-15) and (2-16) also.

If fl and f2 are in L', then
f fj,dz=

f
+wfjdx. (2.18)

W- CO

For applying (2-9) to f -f, +ff and using the equations 11 f! 11 _ 11 ff 1, j =1, 2, we find
that the real parts of the two sides of (2.18) are equal. Hence, replacing fl by if,, the
imaginary parts must also be equal, and (2.18) follows.

The formula (2-18), which generalizes (2.9), is the source of many important
identities. It shows in particular that if f f.) is an orthonormal system on (- oo, + oo),
so is if is complete, {f,J is also complete.

The formula (2-4) tells us that each f in L' is the Fourier transform of age L', namely
of V(x)=1(-x).

If f., is given by (2-12), and 0 : w < oo, we have

(2v)fw.fjy) e z1 dy=I If YYf(y)sin x(y y)dy

Since fY tends to f in L', we can make e->oo and obtain

./(21r)f -mf(y)e'Vdy=

f (y) f (y) on the right and f( - y) for/(y) on the left, we find the
formula

4(1 -f tlaf(y)e-fzrrdy-1 f y y)dy (2.20)

or 1e(x)=S (x,f)-

From this we can deduce the following consequences (for f e L'):
(a) The integral (2.3) ie summable (C, 1) almost everywhere to J. For f(t) I /(1 + I l

is in L, and it is enough to apply (1.21).
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(b) We have
o{(log w)f)

for almost all x. For (1.3) is applicable, and it is enough to use the fact that the nth
partial sum of a Fourier series in L' is o{(log n)f} almost everywhere (Chapter XIII, § 1).

(c) If wi < (02 < ... , wk+llck > q > 1, then f t(x) -* f (x) almost everywhere. The argument
is the same as in (b), except that now we use the fact that lacunary partial sums of an
S[f] in L2 converge almost everywhere (see Chapter XIII, (1.17) ).

Whether or not we have f, x) -* f (x) almost everywhere for f in L2 is an open question.
In view of (1.3) and the fact that f in (2.20) is the most general function in L', the pro-
blem is equivalent to the problem whether the Fourier series of a general function in
L2 converges almost everywhere.

We consider a few examples of Fourier transforms.
(a) If f(x) is the characteristic function of an interval (a -A, a+A), then

2 i sinAx
I (x) = (;)

x

An application of (2-9) to thief gives the basic formula

m sin' Axr_w. =n

(2'21)

(2-22)

(see also Chapter III, (11-4)).
Consider a sequence of numbers not necessarily integers, such that the intervals

(ni-A,n1+A) do not overlap. Then the characteristic functions of these intervals are mutually
orthogonal. By (2-18), the same holds for their transforms, a result which, in view of (2.21) and
(2-22), can also be stated in the following form:

If the intenwl& (nr- A, nk+d), k =1, 2, ..., do not overlap, then the funetiona ec ei""", .. form an
orthonormal system over (- eo, + co) with respect to the weight

do (x) =
sin' Ax

nAx2
(see Chapter I, p. 6).

(b) Let X(x) = X,(x) be the 'triangular' function defined by the conditions that X(x) = 0 for
x > h, X(0) = 1, X(x) is linear in the intervals (- h, 0) and (0, h). Then .

12 sins }hx
j(X) =

hxs , (2-23)P
a relation which can also be written

1

+ao ,
-N 2 siII ;* dy = I - LX (2.24)

y
(c) Let f (x) = e-"" , x > 0, where a > 0. Then for the cosine and sine transforms off we have

i
fe(x)=(2 x2+as, (2'25)

fdx)_(a)ixs+asI (2-26)

The inversion formula for (2-25) leads to the familiar equation

fO y' dy= }
a

e 11 1I.

(d) Let 0<#< 1, f (z) _ (x+)'-'1. Then

f(x)=(2n)-iRxl- P(a)exp(-}a.signx)
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(e) Let f(x) =
1 1

where C _ £+it/ is complex (v/ * 0). Then, if 11 > 0, we have

if 71 <0, we have
f(x)=0 for x>0, f(x)=e-'C for x<O;

f(x)=-e-' for x>O, f(x)=0 for x<O.

(f) The function g(x) _( )
-io

is its own Fourier transform, that is to say, 9(x) =g(x).
Clearly 1 f +m 1 +oo

e Andy=e-ir'
2 n

1(y)
-m o

f
+4o

If we show that the last integral is independent of y, that is equal to e-iOdx=(2n)},

the assertion will follow. To show this independence it is enough to apply Cauchy's theorem
to the function

e-41 =

and the rectangle with vertices t R, ± R + 1y, and then make R - oo.

We conclude this section with a few results about Fourier transforms. We consider
only functions which belong either to L or to L', though the formulae hold under more
general conditions. We occasionally write Tf for f

The first formula is
Tf(x + a) = el- Tf(x). (2.27)

If f E L, the formula is an immediate consequence of the equation

1 r
f(y+a)e-1-dy=eu°rr+ f(y)e-'dy

r f r+a
r+a

If f E L2, it is enough to observe that, in view of (2.9), the integral
J

f (y) a dy
r

tends to 0 in L' as w -s co, and the same holds for r- r
J r 6

Given two functions g and h in (- oo, + oo), we define their convolution g*h (compare
Chapter II, § 1) by the formula

1 +m
g*h V(2n) g(y)h(x-y)dy. (2.28)

We want to show that T(g*h) = Tg. Th. (2.29)

As in the proof of Theorem (1.15) of Chapter II, if g E If, h c: V and

1 1 1

r=a+t-1' (2.30)

then f = g*h exists almost everywhere as an absolutely convergent integral, is in If,
and satisfies

(
1 + 'ti 1

f+
. u, 1 f U

J(2ir)J
If Nix) J(2n)J- Ig I*dx} (i-j

m
Ih Igdx) . (2.31)

Observe now that Tf is defined if r is either 1 or 2, and so if either both a and 9 are 1,
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or one of them is 1 and the other 2. In the first case, (2.29) is justified by the following
argument; analogous to the one we used for Fourier coefficients (Chapter II, § 1):

.f(x)e-'Ty
dy7(12

g(u)h(1,-u)du

1 + fg(u)e-ixudu h(y_u)e
iz(- )dy

=9(x)h(x)

In the second case, suppose, for example, that a =1, t = 2. Thus f is in L'. Consider
a sequence hl, h2, ... of step functions vanishing near ± co and such that u h - h; 0.
Write fn = grh,a. By (2.31), with r = 2, 8 =1, t = 2, we find that

Il f.-f
Now J n = ghn (2.32)

by the case already dealt with. Since

IIE=IIf-fn 112-'01

and Ilghn-ghi1 (maxlgJ)i h-hnIlE-->0,

(2.32) leads to (2.29).
If g and h are in L', their convolution is bounded and continuous. Since bounded

functions in general have no Fourier transforms, we cannot expect (2.29) to be valid
in the same sense as before. If we observe, however, that

(2n)f +m g(y) h(x-y)dy-V(2n)J +m 9(y)h(y)e "dy, (2'33)

a formula easily deducible from (2.18) and (2-27), we may interpret this an (2-29).
The inversion formulae (2.3) and (2-4) can be represented in various forms. One of

these, particularly useful for functions of a complex variable, will be given here.
Suppose that f (x) is defined for 0 < x < co. Consider the integral

F(8)
=1:

x'-lf (x) dx. (2.34)

The function F is usually called the Mellin transform off. The familiar formula

r(8) =1, e-z x"-ldr
0

shows that r(8) is the Mellin transform ofe-z. Though f is a function of a real variable,
it is important to consider 8 complex, a = o + it.

Set x = e-V. We can then write (2-34) in the form

F(o+it)= f(e y)e-voe-i'ady, (2.35)

and so, formally (compare (2-3) and (2-4)),

f (e-y) e-y° = 2n ± F(o + il) a{° dt = 1 lim (2.36)2Aw,p

J r
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o+i '
or f(x) 1_j F(a)x-'da= 1 lim

o+t.
r . (2.37)2m o t 2vi .m ,1 -t.

The pair (2-34) and (2.37) are called Mellin inversion formulae. The preceding
argument was formal, but since we know conditions for the validity of Fourier's
inversion formulae, these conditions can easily be adjusted to the Mellin case. For
example, if x°-If (x) a L(0, co), and f is of bounded variation near x, then

td
}(f(z+0)+f(z-0)]= 1

0'+
Jim, Jim f F(a)x-"da. (2.38)

2mw+m o-tm

For the conditions on f guarantee the absolute convergence of the integral in (2-35)
and the validity of (2.36), with the left-hand side replaced by half the sum of its
limits from the left and right.

Since Mellin's transform is merely another version of Fourier's, derived by a change
of variable, all results for Fourier transforms can be stated in the language of Mellin
transforms.

We add that in general the domain of convergence of the integral (2-34) (considered

as lim lim f')is a strip a < v <,B, and F(a) is regular in it. For it is enough to write
e

the integral (2.35) in the form (o + f and observe that r converges in a half-
J , Jo Jo

0

plane o- > a, and f
-

in a half-plane v <,8.

3. Fourier transforms (cont.)
In the previous section we investigated the Fourier transforms

+..
If(x)=V(2a) fly) e-1- dy (3.1)

in the cases when either f e L one L'. In the former, the integral converges absolutely;
in the latter, it converges in L'. It is natural to ask if the integral (3.1) has meaning for
fin other L' .

In this section we use the notation

11f 11 r-(f ±m If(x)Irdx)

(3.2) Taaoaast. If f e Lv, 1 < p < 2, the right-hand side of (3.1) converges in
LP = IFKP-1) to an f e Lu'. The function f aatiafiea the inequality

(,I2v)( 1 If(x)Iy dx) <( (2n)J+m If(x)I'dx)",
the equations (2-15) and (2.16) for almost all x, and we have

1

f(x) = V(2n)
.{(y) e"T'' d1/,

where the right-hand aide converges in L.

(3.3)

(3.4)
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The inequality (3.3) is an extension to Fourier transforms of the theorem of Haus-
dorff-Young (see Chapter XII, (2.3)). It asserts that if f is in LP, then f exists and is
in LP', and conversely each f in IP is the Fourier transform of some function from L.

For the proof of (3.2) we observe that (3.1) defines a linear operation J= Tf if
for example, f is a simple function (one taking only a finite number of values and
vanishing near ± oo). Using the terminology of Chapter XII, § 1, we may say that T is
of types (1, oo) and (2, 2), and that the norms of T satisfy

M; = (2n)-i MLA= 1.

Hence, bythefundamental Theorem (1.11) of Chapter XII, the operation Tin (uniquely)
extensible to allf in Lp and is of type (p, p'), with iifp p. S (2ir)I-'1". The last inequality
is (3-3).

Given an f, let f denote (as in the preceding section) the function equal to f in
(- w, w) and to 0 elsewhere. Ifttf a LP, then f a L, so that f = Tf. satisfies (3.1). Since,
by (3'3),

the right-hand side of (3.1) converges in LP to an f e LP'.
The proof of (2.15) for f e Lp, 1 <p < 2, is the same as in the case p = 2, except that

instead of Schwarz's inequality we now use Holder's.
The proof of (2.16) is based on the following remark. Suppose that gEL, and

consider the Fourier repeated integral of g, that is,

(2n)J
+m

g(y)e'''dy. (3'5)

Integrating this formally over a finite interval (a,,B), we obtain the integral of g over
(a,#), that is, +igv_eray

1a g(x) dx =

1

V(2ir)
f.'9-(y)'_- sg dy, (3'6)

where the integral on the right converges. This could be proved in many ways. The
shortest is to assume, as we may, that ,8 - a < 2n, and observe that the partial integrals

I
g(y) eir'dy (3.7)J(2a)f- -

of (3-5) are, by (1.3), uniformly equioonvergent over (a,f) with the partial sums of
the Fourier series of a function coinciding with gin (a - e, fl + e) ; since Fourier series when
integrated termwise give the value of the integral of the function, (3.6) then follows.

Hence, observing that f E L, we have for I x I < w:

5:1(t) iy
dy.

Since 11 1-f. lip. -> 0, Holder's inequality shows that

5f(t)d=-j-_-)jJ'(Y)+e iy ldy,I

and (2.16) follows.
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It remains to show that the right-hand side of (3.4) converges in LD to f. This is an
analogue of Theorem (6.4) of Chapter VII, which asserts that the partial sums of an
S[f ] in LP converge to f in L. The proof is also analogous, and is based on the following:

(3.8) THEOREM. If f E L', r > 1, the Hilbert transform

f(x)=' +m f(t) dt= -1im 1
f(x+t)-f(x_t)de

(3.9)trrf 9fe,
exists almost everywhere, and

II,/ Ilr"Ar 11J Ilr, (3.10)
where A, depends on r only.

That f exists was pointed out in § 1. To prove (3.10), write

9n(x)=-1 f(t) cot 2ntdt (IxI<ir),2nn _ n

and consider the difference 8n(x) =f(X) -gn(x). Clearly 8n(x) is

1 f
f(t)

! 2n x - tl }
1r - n f(t)

dt +
1 /'+'c f(t)

dt = OG 9.J+ - cot
2n

- ff J n +yn2rrn _,,,, x-t 2n n x-t n ,,, x-t
Holder's inequality shows that Yn -> 0, yn _+ 0 for each x. If x is fixed and n large
enough we have

an I An-'
nn

I f
ih

(27rn)1 ' = o(l ),J an an

where A is an absolute constant. Thus 8n -s 0.
The functions gn and I are defined at exactly the same points inside (- mt, nn), and

gn ->f wherever f exists. Observe that gn (nx) is the conjugate function of f (nx) in
j r I < rr. Using the inequality (2.5) of Chapter VII we have

((

an \ l.r
< A ( f

f
((

\1/r
A rl f

lh} ao

I f I'dx\J-nn
I gn dxl

-
nn

,m
I f I' dxf -M

whence, by Fatou's lemma (Chapter I, (11.2)),
1-r

(
+ 1o-

(f
W

I I I'dx) _ Arlf
-M

If I'dx)

for each w > 0, and making w oo we obtain (3.10).
Consider now the formula (see (2.19))

w 1 +m sin w(x- y)
v(2n)

_wf(y)e'ZVdy-n Wf(y) x-y dy.f f_
(3.11)

This was established for f in L2, but holds also for f E LP, 1 < p < 2. (It is enough to use,
in the proof, Holder's inequality instead of Schwarz's.) If

fl(y) =f (y) cos wy, fs(y) =f (y) sin wy,

then the right-hand side of (3-11) is f1(x) sin wz - f2(x) cos wx, and, denoting the left-
hand side by f''(x), we have, by (3-10),

II.f'tl11pp<2A,II f II . (3'12)
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It remains to show that II f410 lip -* 0 as w-* oo. It is now enough to prove this for a
dense set of functions, for example for step functions. This will follow if we verify
the result for the characteristic function of an interval (a, b). Then

f(y) = (2rr)_} y-1i(e-1"°f- e-"'a),

fw(x)=1
-G)wain

f dy+J (- )w
ydy]

(3.13)

Since fto(x) is uniformly bounded in z and w, and tends tof(x) for x+a, b as w-*oo,
the relation II f'° _f lip -* 0 will be established if we show that the integral of I f W l p
over the set x I > A is small for A large. This is immediate if we observe that, by the
second mean-value theorem, the right-hand side of (3.13) is w-10(lfz) for I x I large.
This completes the proof of (3.2).

The following result partly generalizes (3.2):

(3.14) TxsoazM. Suppose that f e LP, 1 <p < 2. Then the Fourier transform

fwf(x)=lim f.(x)= lim ,/(2n) Yf(y)e-i"dy (3.15)

converges almost everywhere. Moreover, the function

0
6(x)= sup f f(y)e-1:"dy (3'16)

a,a30 a

is in I. P', (3.17)

We may suppose that 1 <p < 2. It is enough to prove (3.17), from which the exist-
enoe almost everywhere of the limit (3.15) follows easily. To see this, write f = g + h,
where g is a step function vanishing near ± oo and II h lip is small. Then = 9Y ^ h, ,

tends to a limit at each point, and, by (3.17) applied to h, lim sup h, - lim inf hY is
small except in a set of small measure. Since the latter difference is equal to
lim sup fY - lim infJ,, the existence of lim fY almost everywhere follows.

We may suppose that f (x) = 0 for x < 0, and that a = 0 in (3.16). We may also suppose
that f (x) = 0 for x large enough, x > y say. For then (with Ap independent of y) the
general result follows by a passage to the limit.

We fix a A > 0 and denote by CA(x) the function analogous to 6(x), except that ,B
now runs through integral multiples of A. It is clear that 6x(x) -> 6(x) as A -- 0.

Consider also the series
ao (kt 1)x

ak a-'kay, where ak = f (y) dy. (3.18)
k-0 J kt

Denote the partial sums of the series by (x), and let 71A(x) = sup I ' ( Z ) I Since the

functions (z) _ (}A/n)f form an orthonormal system on (- n/.I, rr/A), and
I 0,a I _<(JA/ur)i, Theorem (10.1) of Chapter XIII and the inequality (5.12) of
Chapter XII show that

Now

{f_T/A{ A(x)
'dr)11p'<Ap(

2n}i( Yp(
at

I

I
I

dy)D)1/9 f.'OA

If Ipdy) A,,
k

(3'19)
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by Holder's inequality, and (3.19) reduces to

with a different AD.
LI-I/A {t,A(x)J-

Fix a w> 0 and suppose that n/A > w. By (3.20),

LI_

(VA(x))P,dx)i/n'
< AP f 1ID

(3.20)

(3.21)

Supposing that of < y and I x I < w, we have
wA s-1 (k+1)A

'l.A-l(x)- fe
f(y)e-':"dyI

<kF-OfkA
I f(y) I I

e-ikAa-e- I dy

<AIxl foIfIdy<AwI1f11,y"p>

so that f,A(z) ?,A (X) + Awl f 11D y"1,

and, by (3.21),
(6A)Pdx}un'

AD 11 f 11, + (2w)VP'Aw II f 11Py11P,

Making here first A- 0 and then w-*co we obtain (3.17). This completes the proof
of Theorem (3.14).

Let 2 <q < oo. It is not true in general that functions f in L° have Fourier transforms. Consider
the following example. Let al, a!, ... be a sequence of numbers such that 11a. I < x . E a" '= co
(take, for instance, a" = n-I ), and let f (x) be a function such that f (x) = a" for 2"- J< I x :< 2 + }
(n = 1. 2, ... ), f (x) = 0 elsewhere. Then

2 2 sin }x
a cos 2"x+o(1),G

f
(2n- x 2-1.

where the o(1) is uniform in x. Since Falcos 2"x is not summable by any linear method in any set
of positive measure (Chapter V, (6.4)), f(x) cannot be defined as a (generalized) limit of f (x).

Nor does the formula (2.15) help here, though the integral on the right converges absolutely and
represents a continuous function if f r I.'. We show that, for the f just defined, this function is
differentiable only in a set of measure zero. It is equal, except for a numerical factor, to

4*+Isin xy 1 1 4*+}
Ea"J dy=Y-z,, 2.)ainxydy+Z---f. ainxydy=01(x)+0,(x),
1 s -i y -i

say. We easily verify that the termwise differentiated series for G has terms 0(2-"), so that d
exists everywhere. But

O x- 2 sin }x" sin 2*x
i( ) x 2*

and since the function Ea. 2-"sin 2*x has a derivative in a set of measure zero only (otherwise the
series Ea" coo 2"x would be summable by the method of Lebeegue in a set of positive measure),
O, +Oi is differentiable only in a set of measure zero.

4. Fourier-Stielt}es transforms
Let F(x) be of bounded variation in (- oo, + oo). The function

1 +m
fi(x)=V(2n) -. (4.1)

is called the Foarier-Stieltjes tranaforni of F, or the Fourier transform of dF. We shall
also denote it by dF. If F is the integral of an f e L(-co, +oo), then dk=, j
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The integral (4.1) converges absolutely and uniformly, and ¢(x) is a bounded and
continuous function. The example F(x) = sign z shows that ¢(x) need not tend to 0 as
x-, ± co. This F is discontinuous, but there are continuous F with 0 not tending to 0.
For example, if F(x) coincides on (0, 27T) with the Cantor-Lebesgue function (Chapter
V, § 3), and is equal to F(0) for x 5 0, and to F(2rr) for x > 2a, then (2a)-i O(n) is
the nth Fourier-Stieltjes coefficient of F(x), 0 < x g 2n, and so does not tend to 0
(Chapter V, (3.6)); and afortiori gS(x) does not tend to 0.

Let A, A,,... be all the discontinuities of F, and c, c=, ... the corresponding jumps:

We call F a function of jumps, if

fly) - F(- oo) = 2;' c,,, (4.2)
A.< y

where the dash indicates that if y coincides with a A,,,, then c,n in the sum is to be
replaced by F(.1,,,)-F(A., -0). The series in (4-2) converges absolutely, and (4-1)
can be written

(21r)* O(x) = Ec a-{ n . (4.3)

The case k = n, n = 0, ± 1, ± 2, ..., is of special interest, and the series (4.3) then
becomes a general, absolutely convergent, trigonometric series

+m
cn e_inz (4.4)ns-w

We now show that 0 determines F, apart from an arbitrary additive constant.

(4.5) THEOREM. If F is of bounded variation in (-oo, +oo) and aatiefiea

F(x) = }(F(x + 0) + F(x - 0)) (4.6)
for all x, then

F(x) - F(0) V(27T)J + eg 1 _ /(2>r) lim f Yr . (4.7)

Fix p, write

s(9)e" r±m e-it(z_P)dF(x)= J(2n)Je-r{:dF(x+p),

and subtract (4.1) from this. Then, writing

G(x) = F(x + p) - F(x),

1

we have V(2a) -

The function G is of bounded variation and integrable over (-oo, +oo). To verify
the latter fact we may suppose that F is non-decreasing. If, for example, p > 0, so that
G > 0, we have

/
1Y G(x)dx=JY (F(x+p)-F(x)}dx=l Ir+'-

f-:+P)F(x)dx-,p[F(+oo)-F(-co))
Y Y

(4.9)

as w -, oo, which proves the integrability of G.
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Since O(x) --> 0 as x -+ ± oo, we obtain, on integrating by parts,

1 +
0(9) (e'°E -1) _ (2>r) if O(x) a-'E= dx,

so that, in view of (4.6),

O(x)
(2n)5 (?;) ii;

a limJ (4.10)

for each x. In particular, taking x = 0, we deduce (4.7) with p for x.
The integral (4.7) converges in general only conditionally (and symmetrically).

But it converges boundedly over each finite interval of x; this is a consequence of
(1.3) and of the bounded convergence of Fourier series of functions of bounded
variation (Chapter II, (8.1)).

From (4.7) we deduce that
+m

F(x)-F(-x)= J(2n)Jf-OO(f)81j xd4

If we integrate this with respect to x and change the order of integration on the right,
we get the formula

L 0(l;)1 f0 df, (4.11)

in which the integral converges absolutely, and so is easier to deal with than that of
(4-7).

The behaviour of #(x) as x -+ ± oo is to a certain degree influenced by the discon-
tinuities of F. The result which we are going to prove is analogous to the formula
(9.7) of Chapter III. Without loss of generality we may suppose that F satisfies (4.6).

Let h> 0. By (4.7),
n Ch

--df. (4.12)F(x+h)-F(x-h)=- ---- 0(6)eif=s

Hence, by the Parseval-Plancherel formula (2.9),

f + I F(x+h)=F(x-h) I2
dx=4j+,0

I

fh , (4.13)

provided either side is finite (and so also in the general case.)
The left-hand side is finite. For, using (4.9) for non-decreasing F, we find that for

general F we have
f

+

5 I

F(x+p) -F(x) I dx V I p I, (4.14)

+.0
r I F(x + h) - F(x - h) dx2Vh, (4.15

where V is the total variation of F. The last inequality and the boundedness of F
imply that the left-hand side of (4.13) is finite.

Let Al, h9, ... be all the discontinuities of F, and dk = F(hk + 0) - F(Ak - 0) the
corresponding jumps. We prove the following formula:

lim
j+ m

I (l;) I' df =}E I dk I' (4.16)
h +0 -
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In view of (4-13) we have to show that

1p+ F(z+h)-F(x-h)dx, 2E1 dkI:. (4-17)

(a) This is certainly true if F is everywhere continuous. It is then uniformly
continuous in (- oc, oo), and denoting its modulus of continuity by w (d) we see that
the left-hand side of (4.17) does not exceed

w(2h) h-1 f + F(x+h)-F(x-h) I dx_< 2Vw(2h) (4.18)
J

(see (4-15)), and so tends to 0 with h.
(b) The formula (4.17) is true if F is a step function having jumps d1, d5, ..., dk at

the points A1, Ay, ... , Ak and continuous elsewhere. For if h is small enough,

F(x + h) - F(x -h)

in (4-17) is equal to dj for x inside (A5 - h, h! + h), j = 1, 2, ..., k, and is 0 outside these
intervals, so that the left,hand side is 2(di + ... + di), and the formula follows.

(c) In the general case write F = F1 + F, where F1 is a step function of the type just
considered, formed with the first k discontinuities of F, and k is so large that all the
discontinuities of 1 are numerically less than a given e. If w(d) is the modulus of
continuity of F2, then a )(2h) < e if h is small enough. Hence the left-hand side of (4.17)
with Fz for F can be made arbitrarily small if k is large enough.

Denote the square root of the left-hand side of (4-17) by c (F). Since a5(F) is
contained between ah(F1) ± ak(FE), and since fork large enough and h sufficiently small
a,,(F=) can be made arbitrarily small and aA(FI) arbitrarily close to (2Fd )I, (4.17) and
(4-16) follow.

(4.19) Taso1EM. Each of the following two conditions is both necessary and sufficient
for a function F(x) of bounded variation to be continuous:

f O(?;)l'dg=o(O') (4-20)

f 0(6) 1 =o((a) (4.21)

This is an analogue of Theorem (9.6) of Chapter III and the observation following
it, and the proof follows the same pattern.

In Chapter IV, § 4, we discussed a kind of convergence of a sequence of non-
decreasing functions F1(x), F,(x), ..., 0 e x < 2n. We say that such a sequence converges
if there is a (non-decreasing) F(z) such that F(x) each point of continuity
of F.

Denote the Fourier coefficients of dFn by c". We showed that if the F. are also
uniformly bounded, then they converge in the sense just described if and only if
lim c; exists for each P. Moreover, if c, = lim c" does exist for each v, then the c, are the

Fourier-Stieltjes coefficients of F = lim F,,.
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Consider now functions Fi(x), F,(x), ..., non-decreasing and bounded in (- co, + oo),
and denote the Fourier transform of dF" by 0,,(x). The following two examples show
that results valid for the finite closed interval (0, 2n) do not extend to ( - oo, + co).

(a) Let 0 for z < n, FM(x) =1 for x > n. Then F"(x) - 0 for each x, and yet
(2ir)-Ie-t- does not tend to a limit as n-+ +co, except at z- 0(mod 2n).

(b) Let F"(x) be continuous, equal to 0 for x < - n, equal to 1 for x >- n, and linear in
(- n, + n). Then F,(x) -- 4 for each z; but though 0n(x) = (2n)-1 (sin nz)lnz has a limit
(21r)-i at 0, 0 elsewhere, this limit is not the Fourier-Stieltjes transform of lim F..

The reason of this failure is that the interval ( - eo, + oo) is not compact; and the
situation can be restored if we confine our attention to non-decreasing F which have
fixed limits at ± oo, for example, such that

F(-oo)=0, F(+co)=1. (4.22)

Such non-decreasing functions are called distribution functions. It is sometimes
required that F be continuous on a definite side, but we do not impose this restriction.

The Fourier-Stieltjes transform of a distribution function F is called the characteristic
function of F, but for historical reasons the factor (2n)-i in (4.1) is then omitted and
the characteristic function is defined by

1a(x) = f + a-` l dF'(y), (4.23)
m

a rule to which we shall adhere through the rest of the section.
Thus a characteristic function is continuous, does not exceed 1 in absolute value,

and takes the value 1 at the origin. It determines F uniquely at the points of continuity
of F.

(4.24) Th-aoaaar. Let Fl, F, ... be distribution functions and 01, 0,, ... their charac-
teristic functions. Then

(i) if F. converges to a distribution function F (at the points of continuity of the latter),
and if 0 is the characteristic function of F, then

On(x) -> O(x), (4.25)

and the convergence is uniform over each finite interval.
(ii) Conversely, suppose that the characteristic functions On(x) tend to a limit at

each z, and that the limit function O(x) is continuous at the particular point x = 0. Then
the Fn converge to a distribution function F whose characteristic function is 0.

Example (b) above shows that the continuity of b at 0 is important for the validity
of (ii). This condition is certainly satisfied if the convergence of {on) is uniform near 0.

(i) Given an e > 0, select an w > 0 such that F is continuous at ± w and

F(-w)<e, 1-F(w)«.
Then F. satisfies the same inequalities for n large enough. Now OW - On(X) can be
written

f I<d
e- d{F(y)-FF(y)}+ JIvl>- e-'xVdF(y)- f{vi>& e-dFF(y)=P+Q+R,

Iv

say. Clearly J'Q I -< {1- F(w)}+ F(- w) < 2e for all z, and similarly I R I < 2e for n
large enough.
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Integrating by parts we find that

P = ([F(y) - F,(y)] e-`="}±Y + ix f [F(y) - F.(y)) a-`=" dy.
Ivied

Sinoe F (± w) -> F(± w), the first term on the right tends to 0 uniformly in x. The second
term does not exceed

in absolute value, and so tends to 0 uniformly over each finite interval.
Collecting results, we find that 10 (x) - O(x) I < 5c for x in a fixed interval and n

large enough. This proves (i).
(ii) The F, being monotone and uniformly bounded, we can find a sequence F,1 (x)

converging to a non-decreasing.F(x) (see Chapter IV, (4.6)). It is enough to show
that F is a distribution function, and that the F tend to F at each point of continuity
of F.

Apply the formula (4.11) to the Fnr and recall that we are using the definition (4.23).
We find

fo {F*r(y) - F-k(- y)} dy = ,,J 1- d . (4.26)

where h > 0. Since the 0n are uniformly bounded and tend to 0, (4.26) gives

h-' fo {F(y)-F(-y))dy=. m 0(f)1 hLhdg=n if +- 0() 16 dg. (4.27)
7T

_
92

Make h-->ao. Since 0(1) is continuous at 0, 0(t/h) converges to 1 uniformly in every
finite interval, and from the absolute integrability of the function (1-cos>;)/f' and
the formula (2.22) we deduce that the last term of (4.27) tends to 1. But the first term
of (4.27) clearly tends to F( +co) - F(- oo). Since 0 -<F(x) -<1, this implies that
F( - oo) = 0, F( + oo) = 1, that is, that F is a distribution function.

Suppose now that ?; is a point of continuity of F and {F (f)) does not converge to
F(f). We can then find a sequence {F*t} which converges everywhere to a distribution
function F*(x) such that F*(g) + F(g), say F%) > F(g). In view of the continuity of
F at 6, we have F* > F in an interval (6, g + yl), which is impossible since, by (i), the
characteristic function of F* is also 0, and the characteristic function defines the
distribution function essentially uniquely.

5. Applications to trigonometric series
Theorem (4.24) plays a fundamental role in the calculus of probability, especially

in the study of the behaviour of sums of large numbers of independent random
variables. In this section we make an analogous application of (4.24) to lacunary
trigonometric series (Chapter V, § 8) whose behaviour in many respects resembles
that of series of independent random variables.

Consider the function
fzO (x) (2n)e-iv, dy, (5.1)

It is continuous and increasing, and satisfies the conditions G(- co) = 0, a(+ oo) =1;
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thuait is a distribution function. It is called the (standard) Gauss distribution function.
In view of example (f) on p. 252, the characteristic function of G(x) is

Y(x) =
e_}O. (5.2)

Let f (x) be a (measurable) function defined on a set E of finite positive measure. For
each y denote by F(f < y; E), or 4f(f < y), the subset of E where f < y. The ratio

f( <y)
J

is obviously a distribution function; it is called the distribution function off on E.
If we have a sequence of functions f,, on E, and if their distribution functions on E,

F. say, converge to a distribution function F, we say that the fn have asymptotically
the distribution function F. In particular, if F= G is given by (5.1), we say that the
f, are asymptotically Gauss distributed.

Consider a lacunary trigonometric series

(akcosnix+bksin nix)=Erkcoo (nkx+xk)=EAni.(x), (5.3)
k-1

where nk+l/nk > q > 1, and rk > 0, for all k. Write

k
Sk(x)= (a,cosnix+bisinnix),

i-1
k }

Ak=(}iE(as+bsj)

(Note that A. and A., (x) mean different things.) We confine our attention primarily
to series such that (i) Ak->co (ii) rk/Ak-a0. (5.4)

We know that if At -- co, then the Sk(x) are unbounded at almost all points (Chapter V,
(6.10)); the theorem which follows makes this fact in some respects more precise. The
second condition (5.4) is satisfied if, for example, the rk are bounded but E A,k(x)
is not in L'. It is not satisfied if the rk increase too rapidly, for example if rk = 2k
a>0.

(5.5) Thxoaax. Under the hypothesis (5.4), the functions Sk(x)IAk are asymptotically
Gauss distributed on (0, 2n). More generally, they are asymptotically Gauss distributed
on each set Ec(0, 2ir) of positive measure, that is

r

J E I_l I e(Sk/Ak <y; E) (--(2n)
00 dx. (5.6)

In view of (4.24) and (5.2), it is enough to show that the characteristic function of
the left-hand side of (5.6) tends to 00. For simplicity of notation we suppose that
(5.3) is a pure cosine series, but the argument is unchanged if we replace ai oosnix by
ri oos (nix + xi). We first suppose that q > 3, in which case the proof is somewhat
simpler.

Denote the left-hand side of (5.8) by F5(y) and its characteristic function by O (x),

+m
#k(x)=

a ydFk(y)
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From the definition of the Lebesgue integral, applied to the real and imaginary parts
of the right-hand side, we find that

c'k(z) _ I E I-i f, exp { - izSk(t)/Ak) dl

= I E I -1Iaexp (- ixAt'
1

fk

i
a, cos nit) dt. (5.7)-

It is not difficult to we that (5.4) is equivalent to

Hence, using the fact that

(max a,I)/Ak--*0.
1G1<k

(5.8)

expz=(l +z)exp{}z=+O(Iz Is)}=(I +z)exp {}zs+o(! z Is))

for z -, 0, we can write (5.7) in the form
\

JD, +-' rse°ci)1jj { (1- ixa1 A ' coe nl t) exp -
2AJ

ooes nl t) } dt, (5.9)

where the term o(1) in eat) tends to 0 uniformly in t as k -a co, provided x = O(1), which
we assume from now on.

Observe now (since I + u -< e°) that

k

1(1-ixa5Ak1coenlt)iE L1 (5.10)
jj

and that if we write

k a1
s

of
EA cos nit= 1 + 1E12A

then the measure of the set of points in E where > 0 is less than

k

11-$ fs (t)dt l(t)d =}mil s(

jm7-'(max aJ)/AI,
1G5Gk

and so, by (5.8), tends to 0 as k-*co. Since I gk(t) I < 1, it follows that (5.9) is

k
E -1e-tt' j jj (1 -iza1A;1cosnit) dt+o(1), (5.11)

51-1

where the o(1) is uniform in x. Denote the last integral by Ik. It is enough to show that
Ik-IE1.

Write k
f (1-ixa1Ak'coenlt)=ask>+ E ak)ooevt, (5 12)

1-1 r)1

ef)=JxJlall/Ak, (5.13)

so that the depend also on x. The numbers a which actually occur in the sum (that
is, those such that a(,k)+ 0) correspond to the indices v >- 0 of the form

n ±nt, ±...±nt, (ii>is>...>i,). (5.14)
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If q 3, such a representation, if it exists, is unique (see Chapter V, p. 209). In particular,
a(o) = 1, so that

Ik=IEI+1 h,a(;),
r>I

where the hr are the cosine coefficients of the characteristic function of E. (Thus if
E = (0, 2n), then Ik = E I and the proof is completed.) If a positive v is of the form
(5.14), then

a(k) 21-re(k)E40 C(k) (5.15r I h 1.... Jr

and, in view of (5- 8), each a(k) tends to 0 as k-*co, and v=1, 2, .... Hence, if vo is fixed,

o(l)+I
h1)}/ I4k)I2

r31 r-1 r,+1 r.+1 I\r.+l /I

The first factor in the last product is arbitrarily small if vo is large enough (since Eh; < oo)
and the last factor is bounded, by (5.10), and Parseval's formula. Hence
Ik -+ I E 1, and the theorem is proved for q > 3.

The proof in the case I < q < 3 is similar, except that we operate not with individual
terms of E A n1(x) but with blocks of them. We may suppose that nk1/nx > q for all k.

Let r be an integer such that q' > Q > 3, where Q will be chosen later. Write E A,,(x)
in the form A,+ A$ + ... , where

fr
A!(t)= aicosntt (j=1,2,...).

{-U-I)r+1

In view of (5- 4), it is enough to prove (5.6) when k is an even multiple of r, k=2Nr.
Decompose Sk = S=,,, into two sums, one consisting of the A j with j odd, the other of
those with j even. Applying the estimate e = (1 + z) exp (}z' + o(I z 12)) to the blocks
Ai and using (5.4), we obtain for 0k the expression (see (5.9) and (5.11))

I E 1 -1 1
eau

E

N
x jj {(1-ixA _,Ak1)exp(-,)x2Ak2A'25_1)(1-ixA1Aki)exp(-}x'Ak'A,21)}dt

j-1

=o(1)+IEI-lj rl {(1-ixA5_IAk1)(1-ixA2jAk1)}exp(-}x'Ai'EAJ)dt. (5.16)

In this argument we used the fact that the product r1( } is bounded (compare (5.10)).
Write

2N
AkI E Al +fN(t)i-I

If we show that ONdt --)- O, (5.17)f0'

then, as before, (5.16) will reduce to

o(1)+IEII ((1-ixAk'Aj_1)(1-ixAk'A1y)}dt,
El-1

and it will be enough to show that the last integral, IN say, tends to I E
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Take (5.17) temporarily for granted, and write

N
fl (1- ixAk' A21-1) = ar + E a(-,) cos (5.18)
1-1 1

rN
11 )C08vt. (5.19)

The # and v which actually occur here are of the form (5.14), where now it - is > r,
i2 - is > r, .... Such a p is contained between

ni,(1-Q-'-Q-2-...) and ni,(1+Q-'+Q-2+._.),

that is, between nil(Q - 2)/(Q - 1) and ni,Q/(Q - 1). Since Q > 3, there is no cancellation
of terms in the products (5.18) and (5.19), and in particular ao = = 1.

The condition ni+1/ni > q > 1 implies that the intervals (ni q-i, nig1) have no points
in common. Take r so large that

q-1 < (Q - 2)/(Q - 1) < Q/(Q - 1) < q1. (5-20)

Hence the u and v which actually occur in (5.18) and (5.19) are confined to the intervals
(niq-f, nigf), where the ni come respectively from blocks A with odd or even indices.
This implies, in particular, that the series (5.18) and (5.19) do not overlap, except for
the constant terms. (Hence, if E = (0, 2n), then I,, = I E 1, and the theorem is esta-
blished once we prove (5.17).) Indeed, more than more non-overlapping is true; if u
and v actually occur in (5.18) and (5.19) respectively, then either

IL/v<q-1 or ,u/v>q*. (5.21)

If hx are the cosine coefficients of the characteristic function of E, then

Iv= E +}n a(') (5.22)
p.i> o
K+v>0

We prove, as before, that ar and tend to 0 as for each µ, v=1, 2, ... .
Hence to prove IN - E I we need only show that

0= E j j (5.23)
p+Y>p

can be made arbitrarily small if p is large enough.
Now using the observation (5.21) we easily find that each integer n + 0 can be

represented in at most a limited number of ways, w say, in the form ,u ± v (compare
the argument in Chapter V, p. 203). By Schwarz's inequality,

a, 1 2) (p+v>p p+v>p 0 0 n>fy12) j
where no is the least integer representable in the form fu ± v with p + P;?! p. It is not
difficult to see that np is large with p. Hence the last factor is arbitrarily small if p is
large enough. But the preceding two factors are bounded, in view of the boundedness
of (5.18) and (5.19). Hence IN-> I E 1.
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It remains to prove (5.17). Write 6, = Ak 2021. The non-constant terms of 8J are

v) U)Ak2Y. aia,.cos(4,-n,.)t+Ak2 a,a,.cos(n,+n,.)t
r<i

U)
+ 4Ak2 E a, cos 2n,t, (5.24)

where the superscript j means that the ni come from Al. The integral over (0, 2n) of
U)

the square of the last sum is rr j,, a%. It is clear that if i and i' differ by not less than a
certain d = d(q), then the numbers ni + n1. of the second sum are all distinct, from which

U)
we easily deduce that if we square the sum and integrate we obtain CQFai at most.
The same holds for the first sum; and collecting results we deduce that

2R 8zdt_< CcAk4Za,. (5.25)

Similarly, if I j -j' 3 d then St and 8i. are mutually orthogonal. Hence
2 2N 2 2n 2n 2N 2

f 8i) dt= 8218f.dt f (8'+81.)dtd E fo 8ldt,
o / If-r;<a o <a./o

and combining this with (5.25) we get

f
2r k

62N dt CcAk4Eat, (5.26)
o 1

which, as before, leads to (5.17).
This completes the proof of (5.5).
The theorem which follows indicates that if Ak -- oo then the second condition (5.4)

is indispensable for the validity of (5.5).

(5.27) THEOREM. Suppose that Ak- oe and that the distribution functions Fk(y) of
the ratios S,/ A, formed for E tend to a distribution function F which is not constant
outside a finite interval (that is, either F(y) > O for all y or F(y) < 1 for all y). Then (5.4) (ii)
must hold.

Suppose e.g. that F(y) < I for all y, and that (5.4) (ii) does not hold. There is then an
e > 0 such that rk!Ak > 2Ie for infinitely many k; consider only such k. Lot Ek(y)
denote the subset of E where, .4kiAk < y. From Ak , + irk = Ak we deduce that

Ak_1//Ak<(1 -e2)I.
Since the last term in

Sk = Sk-i Ak 1 akcosnkx+bksinnkx
Ak Ak _, Ak Ak

does not exceed ,J2, it follows that if y> 0 then at each point of Ek_ 1(y) we have
Sk/Ak < y(1- e2)I +, 2. It follows that Ek_1(y) c Ek(y(1 - e2)I + V2), so that

Fk-1(y) <Fk(y(1 -e2)I+V2).

Let y be a point of continuity of F. Making k -> oo we obtain

F(y) <F(y(1-e2)I+j2). (5.28)
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But from the hypothesis that F(y) < 1 for all y and the fact that F(y) -> 1 as y it
follows that there are points of continuity y > 0 such that

F(y)> F(y(1-c2)i+J2).

This contradicts (5.28) and completes the proof of (5.27).
If the series (5.3) is an S[f ], f E L2, then it converges almost everywhere (see Chapter

V, (6.3)). Let Rk(x) =f(x) - Sk_,(x). The proof of the following result follows the same
pattern as that of (5.5):

(5.29) THEOREM. Suppose that E (x) is an S[ f ], f e L2, and that

rk/Bk -+ 0, where Bk = (} rQ) . (5.30)
j=k

Then the distribution function of Rk(x)/Bk over each set E of positive measure is asymptotic-
ally Gaussian.

Theorem (5.5) and (5.29) have analogues for general linear methods of summability,
but the case of main interest is that of summability A. The following result corresponds
to (5.5):

(5.31) THEOREM. Suppose that (5.4) is satisfied. Then on each set of positive measure
the distribution function of

mI

(ak cos nkx + bk sin nkx) rnk/
l
Z j(af + bn) rank

is asymptotically Gaussian as r 1.

Theorem (5.29) has a similar analogue.

6. Applications to trigonometric series (cont.)
Denote by S a series

(6.1)
i

and by S, the series M

E (an cos nx + b sin nx) al ,,jt), (6.2)
i

where r/r,(t), r/r2(t), ... are the Rademacher functions (Chapter 1, § 3). In Chapter V,
§ 8, we saw that for almost all t the series S, converges or diverges almost everywhere
in (0, 2m) according as E(an+bn) is finite or not. We shall now study the distribution
functions of the partial sums Sk.g(x) of (6.2) qua functions of x.

We shall consider functions Q(u), u > 0, which are positive, monotonically increasing
to +oo, and such that u/S2(u) also monotonically increases to +oc, and

ri U-20(u)du < oo. (6.3)

For example, we may take fl(u) = ua, where 0 < a < 1.
We write

y
f k

rk=(ak+bn)}, Ak=f r!)
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(6.4) THEOREM. Suppose that

Ak-oo, rk=0{1)(Aj)), (6.5)

where fl(u) satisfies the conditions just stated. Then for almost all t the functions Sk,t(x)IAk
are asymptotically Gauss distributed on (0, 2n).

The conditions (6.5) are equivalent to

max rf = O(D(Aj)). (6.6)
IrSGk

They are satisfied if, for example, rk = 0(1), Ak -00. Since (6.5) implies that rk = o(Ak),
the condition (6.5) is stronger than (5.4).

Denote the distribution function of Sk,1/Ak by Fk.t(y), and the characteristic function
of Fk,t by 4.1; we shall also use the abbreviated notation Fk, Ok, and shall denote the
partial sums of (6.2) by Sk; no confusion should arise from this. We suppose for sim-
plicity that S is a cosine series, so that rk ak

We have (compare (5.7) and (5.9))
s

Ok.t(A) =
I
I

exp (- i lSk.1(x)/Ak) dx
2 YT

f0

-2nf
orP`Kni ((1 -iAa,Aklr/ri(t)cosjx)exp(-2Ak cos=jxl}dx,

where the o(1) is uniform in A = 0(1). J

Observe now that
k k

ijjl(1-ilajAk1%bj(t)cosjx) < jj1(1+.A=aiA;2)}<eA',
- J-

k k
and that, if E as Ak 2 cost jx =1 + E jaj Ak 2 cos 2jx =1 + k(x),

1 1

then the measure of the set of points where Ek(x) I > 8> 0 does not exceed
2n

8-2fo gdx=}rr8-2(ai+...+aj)Ak4,

and so tends to O as N -> oc.
Hence, with an error tending to 0 as k --> oo (uniformly in A = 0(1)), ¢k(,1) is equal to

2r ke_}a 1

2nf II (1-iAa5Ak 10rt(t)cosjx)dx,o i-1
and it remains to show that

1 to k
j1 (1 - cosjx) dx-. l

2n o i_1

for almost all t, where ej = ei(k) = ,fa,Ai1.
Denote the last integrand by II (z) and write

1 or 1 9
J5(t)=2n,f n(x)dx-1=2nf0 {n(x)-1}dx.

0

(6.7)
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Then
2w 2w

fo fo {lI(x)-1}{II(y)-1}dxdy,

fo
IJk(t) 12dt

4a2 f ow f owdxdylo {l(x)-1}{II(y)- 1}dt.

Since
f l fI(x)dt=

f l II(y)dt= 1

o Jo

1and f fl (x) rI (y) dt = f jj{ 1 + es cos jx cos jy + ie!(cos jx - cosjy) ii(t)} dt
o Jo I

k
= fI (1 + e2 cos jx cos jy),

1

we deduce that

f
=4n2

fow

4w 2exp( Ek
escosjxcosjyldxdy-1.

0 0 `I 111

If we now apply the equation eu = 1 + u + }u2 e'' 0 < y < 1, to

k
uejcosjxcosjy,

k 2

and observe that u of = 2,12,
w 12w

udxdy = 0,
1 0 fo

2. e2A2 ('2w 2w k 2 k
we get fo I Jk(t)12dt5n2Jo Jo (1ieoajxeosjy)

k
_IA4e2A'Ak4Ea',

1

which, in view of (6.6), gives

fo,
I Jk(t)12dt=O{w(At)), (6.8)

whore 0(u) = S2(u)/u decreases monotonically to 0.
We now fix a 0 > 1 and denote by n, the first integer satisfying 66 -<A Ij < 9!+'

Such an integer exists for all large enough j, for otherwise for infinitely many j and
suitable n we should have Of < An < Bt+', An_1 < 01-1, that is,

}an > 0 - 61-1, }4/A> (61- e1-1)181+1= (g- 1)/0,

contradicting the relation an = o(A' ). Thus, by (6.8),

fl

Since the condition (6.3) is equivalent to the convergence of Ew(n)/n, and so also
to that of Eo(0' ), (8.9) implies that J 1-> 0, that is,

1 2w

2nfo

e-iAs,yla"j dx-). e-}x' (6.10)

for almost all t, uniformly over each finite interval of A.



272 Fourier integrals

Consider now any integer m such that n1 _< m <n5i,1, and let

2. Sw
A _

7T
e dx.

Using the estimate I et° - eiv'- i(v - v') I , }(v - v')1 and the fact that the integrals of
S,,, and over (0, 2n) are 0, we find

A2 f 2 S. S \ 2

4n J o J. A.) dx
A2 2' (SM-S.)2 A2 2 1 1 \1
2nJ o Am dx + 2n J o SInJ Am - A da

A2An'A2
Anf+A2(A'j`As

A'j)2
n n!

2A2

2nLI
- Ant < 212

9j+2 - 01

A22J Bi

that is, I 0 12.12(02 - 1).

Since 0 can be arbitrarily close to 1, we deduce from this, (6.11) and (6.10) that
1 2.

e-iASm1dm dx , e-lAI
2n o

for almost all t, and (6.4) is established.
A modification of the proof shows that the functions Sk,(x)/Ak are, for almost all t,

asymptotically Gauss distributed not only on (0, 2n) but on each subset of (0, 2n) of
positive measure, so that (6.4) is a complete analogue of (5.5). There are corresponding
analogues of (5.29) and (5.31), and their proofs do not require new ideas.

7. The Paley-Wiener theorem
We shall now characterize the Fourier transforms of functions which are in L2 and

vanish outside a finite interval; for the sake of simplicity we assume the interval to be
symmetric with respect to the origin. It turns out that the problem has connexions
with the theory of integral function, of exponential type, that is to say, functions F(z)
regular in the complex plane and such that

F(z)=0(eai°I) (Z -*00) (7.1)

for some positive a. The lower bound o- of such a is called the type of F; it is necessarily
non-negative. The class of integral functions of type at most o- will be denoted by E°.
The functions F in E° satisfy

for each e > 0.
F(z)=O(e(+')' ') (z-*co)

(7.2) THEOREM OF PALEY-WIENER. Let o-> 0. We have

F(x) f f(!;)e4=d (7-3)
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for some f in L2(- v, o-) if and only if F(x) is in L2(- 00, +oo) and can be extended to the
complex plane as a function in E°.

It is immediate that if we have (7.3) where f is in L= (and so also in L), then

F(z) =f f(6)e1t`d6 (7.4)

is an integral function of a complex variable z = x + iy and

I F(z) I-< e°''' I f(f) I dg,

so that F(z) a E°; clearly F(x) e L2(- oo, + oc).
The converse lies deeper. We have to show that if an F(z) in E° is in L2 on the real

axis, then the function +,
f (x) = f_ F(f) a-{£Z A (7-5)

is 0 for almost all x outside (- o-, v); the integral (7.5) is meant as the limit in L2 of

the partial integrals f Y for w -+ oo.
J v

Suppose that F(z) e E°. Consider the function

g(z; 0) fo F(e)e-c=d (z=x+iy), (7'6)

where the integral is taken along the ray argC= -0. We show that
(i) the integral (7.6) converges absolutely and uniformly in each half-plane contained

together with its boundary in the half-plane

xcos6+ysin0> o-.

This latter is that half-piano hounded by the tangent to 1 C I =cr at e'8 which does
not contain the origin; call it Ha.

It is clear that at = pe-ie the integrand of (7-6) is majorized by

O{exp((o-+e)p-. ((x+iy)pe-'s))}=O{exp((o-+e)p-p(xcos0+ysint3))}

for each e > 0, and so tends to 0 exponentially if z e Ha; from this (i) follows.
(ii) If 0 < 1 0'-0' 1 <7r, the functions g(z; 0') and g(z; B') coincide in the intersection

of H, and Hs..; hence each function is an analytic continuation of the other.
Suppose that 0 < 0" - 0' < n, and that z e H. H8... Fix z and consider the integrand

G(i;) of (7.6) as a function of g alone. It is geometrically obvious that z belongs to all
HB, 0' e 0 < 0", and that G(C) tends exponentially to 0 as C-3, oo in the angle (- 0', - 0').
By Cauchy's theorem, we can rotate the ray of integration within this angle without
changing the value of the integral. This proves (ii).

Write go(z)=g(z; 0), gi(z)=g(z; n)
(iii) The functions go and gl are regular in the half-planes x > 0 and x < 0 respectively,

and are analytic continuations of each other across the segments y > o- and y < - or of the
imaginary axis. (In particular, go and gl define jointly a function regular in the
complex plane cut along the segment - o- -< y <- o- of the imaginary axis.)
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If x,>e > 0, then

Igo(z)I= (fo' IF(>;)12df/}(fo e--#df) },Jo
F(4) e-fcz+'v> d f

[XVI

which shows that go is regular for x > 0. Similarly, we prove the regularity of gr for
x<0.

Consider now g(z; }7r). It is regular in Hi, and, by (ii), coincides with g0 in the
subset Rz > v of H},,. Since gO is regular in the whole half-plane x > 0, it follows that
g(z; fir) is the analytic continuation of g0 across the segment y> di of the imaginary
axis. Similarly, g(z; }rr) is the analytic continuation of gr across that same segment,
so that go and gr are analytic continuations of each other across the segment. A similiar
argument holds for the segment y < - and (iii) is established.

Consider the integral
go(x+iy)= f0 F(6) e-ize-i1v df (7.7)

for x > 0. It is, except for the factor (2n)-1, the Fourier transform of the function
equal to F(C) e--fz for g > 0, and to 0 elsewhere. Since

f0 I F(g) (I - e-4z) df

tends to 0 as z-.+0, (7.7) tends in L' to

fF()eYd.
o

Similarly, g1(x+iy)= fo
-f F(g)e-4(z+cv) dl; (7.9)

o

tends in L', as x -> - 0, to o-f F(g)e-+Evd . (7.10)

Hence as x-++0, the difference g0(x+iy)-gr(-x+iy) tends in L' to
+mF(g)a-411

dg, (7.11)

But, by (iii), this difference tends pointwise to 0 if I y I > o. Hence the function (7-11)
is 0 for almost all such y. This completes the proof of (7.2).

The argument just concluded holds for v= 0, and from (7-4) we deduce that F- 0
is the only function from E° which is in L' on the real axis.

From (7.2) and the Riemann-Lebesgue theorem we deduce that if an F(z) a Eo' is
in L' on the real axis, then F(x) --> 0 as x -+ ± oo.

Theorem (7.2) leads to interesting representations of functions from E° which are
in L2, or are merely bounded, on the real axis.

We have already observed (see § 2) that if is an orthonormal system on
(- oo, +oo), then the Fourier transforms (fin} are also an orthonormal system on
(-00, +co); if is complete, so is

Consider the functions 95, defined by (7.12)

(JxJ<-n), 0.(x) - 0 (1 xl »),
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where n = 0, ± 1, ± 2, .... This system is orthonormal over (- co, + oo). It is not
complete.: the Fourier coefficients of any function vanishing in (- it, ir) are all 0.
It is easy to see that sin rx

$n(x) _ (- 1)nn(x - n)
. (7.13)

Given any F e L2(- oo, + oc), consider its Fourier series with respect to the system
(7.13): sinnxF(x) Ean On = Ean(- 1)" (7.14)

n(z n)'
where an are the Fourier coefficients of F. The system {$n} is not complete, so that in
general the series (7.14) does not represent F. We may ask which functions F are
representable by their Fourier series, that is, which F satisfy

N S
IIF- E an& I-a0 (7.15)

-N

} .las N -* + oo. + We write II f II for (J - 'If I'd,)
We know (Chapter IV, § 1) that a necessary and sufficient condition for the validity

of (7.15) is that for each e > 0 we can find a finite linear combination Ean$n with con-
stant coefficients such that

F - EanY'n II < e. (7.16)

Let f be the function whose Fourier transform is F. Then (7.16) is equivalent to

f - Ean 0. II < 6- (7-17)

Since the 0. are all 0 outside (- n, it), we can have (7.17) if and only if f a 0 outside
(- n, n). Hence, by (7.2), we have (7.15) if and only if F is in E" and in L'(- co, + co).

Suppose these conditions satisfied. Observing that Ea,', and E(sin nz)1/(x - n)'
converge, and applying Schwarz's inequality, we find that the series (7.14) converges
uniformly over (- oo, + co). Since F is continuous, we can replace the sign ' -' in
(7-14) by F(x)=sinnxEan(

1)n (718)z

Setting here z = n we find the interesting fact that

an = P (n) (n = 0, ± 1, ± 2, ... ).

The last series converges also in the complex plane, uniformly in each band
-a S fz 4 a. Hence it represents an integral function and we may replace x by z
in (7.18). Thus we have the following theorem:

(7.19) TasoRsm. If F is in E" and its restriction to the real axis is in L', we have the
interpolation formula F(z) = sin nz Z (-

1)n F(n) (7.20)
it z-n

From this we can easily obtain interpolation formulae for functions F in E" which
are merely bounded on the real axis. For then 0(z) = {F(z) - F(0))/z is both in E" and
in L'(- oo, + oo), and applying (7.20) to Owe find

F(z)=F(0)+sinnziF'(0)+* zFn(z-n)O)] (7.21)
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If we use the development

n =1+E 1 +1)(-1)n=1+zE n(z 1)n),sin nz z z- n n z

we may rewrite (7.21) as follows:

F(z)='iTnz F'(0)+ z0 + E (- 1)nF(n)(z In+n)} (7.22)

Both (7.20) and (7.21) presuppose that FEE,. If F is in Ev, o->0, then F(zn/o)
is in E", and we may apply previous results and obtain modifications of preceding
formulae. In concrete problems, however, it is easier to reverse the procedure and
reduce the case Ea to E".

In Chapter X, § 3, we proved a number of inequalities for the derivatives of trigo-

nometric polynomials T(x) = E ck e"-4. Typical, and the most important, of these re-

sults is Bernstein'8 inequality
max+T'(x)nmax T(x)(743)

where we actually have strict inequality unless T is a monomial A oos (nx+a). Since
n

T (x) is the restriction to the real axis of the integral function E ck e"k' which belongs to

En and is bounded on the real axis, (7.23) is a special case of the following result
likewise due to Bernstein:

(7.24) THEOREM. If F is in E', and bounded on the real axis, and if M = sup I F(x)
then jF'(x)j aM (-oo<x<+oo), (7.25)

the sign of equality being possible if and only if

F(z) = a e{°'+ b e-!°', (7.26)

where a and b are arbitrary eonstant8.
We may suppose that o > 0, for when this case is proved, (7.25) with o = 0 follows

by taking limits. (Hence for a = 0 constants are the only admissible functions.)
Furthermore, we may suppose that o-=7r, for otherwise we take F(zn/o-) instead
of F(z).

The termwise differentiation of (7.22) leads to a series converging uniformly for all
real z. Hence, denoting by F3(z) the contents of the curly brackets in (7.22), we have

F'(x)=cosnxFi(x)+sinnx (-1)n-1F(n)
n n-- (x-n)

and taking x we find 4 + I)--' F(n)
(727)F(})sm (2n-1)2

4 +m 1 4"(})I <Ir E(2n-j)i=nM.}ra=Mn. (728)
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Take an xo and consider the function G(z) = F(xo + z - }), which is in E" and satisfies
0 I < M on the real axis. By the result just obtained,

and (7.25) follows.
IF'(xo)I=IG'(k)I <Mn,

Applying (7.27) to G and replacing xo by x we obtain

F'(x) =4 E +n++)
it (2n+1)2 (7'29)

This is a generalization of a formula for the derivative of a trigonometric polynomial
(see Chapter X, (3.11)).

Suppose now that we have equality in (7.25) for x=x1. It follows from (7.29) that
then

F(x1+n+ )(-1)"=Meia (n=0, ±1, ±2, ...).

Set F(x1+z+4)=H(z). Then H(n)(-1)"=Me'a=H(0). If we apply (7.22) to H(z)
and use the formula

IT cot n 'z -,(z-n
we find that

sin nz
H(z) n {H'(0)+rrH(0)cotnz}=Acosnz+Bsinnz=Ale"+B1e_t"',

which, since F(z)=H(z-x1- J), leads to (7.26) with o =n.
It is immediate that for the function (7.26) we actually have equality in (7.25) for

some x. For as x increases the arguments of the numbers a elf o and be-t°= vary in
opposite directions, so that for some x=x1 the arguments differ by 27v, and

F'(x1)I=a(IaI+IbI)=amaxF(x)

Concerning the cases of equality in (7.25) f o r F in E it is interesting to note that the
equality

sup I P, (X) 0- sup I F(z) (7.30)
X

can occur for functions other than (7.28). For example,

F(z) = cos,J(1 + z2) (7.31)

is a function in El for which max I F(x) I =sup I F'(x) I = 1, so that (7.30) holds with
a=1. But for this F we have I F'(x) I < 1 for all x.

The formula (7.29) is a source of a number of inequalities analogous to those we
proved for the trigonometric polynomials. We state only one, an analogue of the
formula (3.17) of Chapter X.

(7.32) THEOREM. Suppose that F is in ET and is bounded on the, real axis. Then for
any w(u) which is convex, non-negative, and non-decreasing we have

J1:- F'(x)I)dxf w(IF(x)I)dx.

The case w(u) = uD, p >_ 1, is the most interesting.
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8. Riemann theory of trigonometric integrals
In this and the next section we consider general trigonometric integrals

r+
esxxdX(h), (8.1)

where X is of bounded variation in each finite interval and the integral is meant as

the limit, ordinary or generalized, of the symmetric partial integrals f as w -* + oo ;

the latter are meant in the Riemann-Stieltjes sense. Without loss of generality we
may assume that X has no removable discontinuities.

f
Since eis of bounded variation over each finite interval of h, the partial integrals

exist if X is merely continuous, or even merely bounded and with no more than

a denumerable set of discontinuities. We do not investigate this generalization
systematically (though occasionally we have to consider it), but concentrate on the
case when X is locally of bounded variation.

Integrals +m

where h is integrable over each finite interval, and series

(8'3)

are both special cases of (8.1), the latter when X is a step function discontinuous at
most at the points A = n.

In Chapter IX we discussed Riemann's theory of trigonometric series, especially
for those series with coefficients tending to 0. In this section we prove a number of
analogous results for the integrals (8.1). In spite of certain dissimilarities (see below),
the two theories run parallel and no basically new ideas are involved. Our approach
will, however, be different and, as in § 1 of this chapter, our main purpose will be to
show that under certain conditions the general integral (8.1) is, in each interval of
length less than 2n, uniformly equiconvergent with a certain series E e"ei"" having
coefficients tending to 0. This will enable us to translate results about trigonometric
series into results about integrals (8.1).

While the terms of a convergent series uo + ul + ... + u" + ... must necessarily tend

may converge without u(x) tending to 0. This is
40

to 0, an integral 5'u(x)dz=limf'
the main difference in the behaviour of trigonometric series and integrals, and the only
one which requires serious attention.

The theorem of Cantor-Lebesgue, which asserts that if Ec,, el- converges in a set
of positive measure then c,, -+0 as n- ± oo (Chapter IX, (1.2)), has the following
analogue for trigonometric integrals:

(8.4) THEOREM. If (8.1) converges in a set E of positive measure, then

lim { sup IX(X+h)-X(A)I}=0. (8.5)
A-+*co 04441
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The integral (8.1) can be written

Jo

where

{cos AxdX1(A) + sin Ax dX=(.l)), (8.6)

Xi(X)=X(A)-X(-A), X2(X)=s[X(A)+X(-X)],

and it is enough to show that X1 and X2 satisfy conditions analogous to (8.5) for A -* + co.
Without loss of generality we may suppose that Xl and Xs are real-valued, otherwise
we consider the real and imaginary parts of (8.6) separately.

Let d be a closed subset of E, of positive measure, such that (8.6) converges
uniformly on B. Suppose first that x = 0 is a point of density of d, and so also belongs
to d. Substituting - x for z in (8.6) and taking half the sum and half the difference
of the integrals, we see that both integrals

fcosixdxi(A). E sinAxdX5(A) (8'7)

converge uniformly on a closed set d* having 0 as a point of density. (! is the inter-
section of if with its reflexion in x = 0.) If we set x = 0 in the first integral, we see that

$0dXi converges, and the condition for Xl follows.

The uniform convergence of the second integral (8.7) on d* implies that

Jt'
sin AxdX9(A) (8.8)

tends to 0 as u -, ± oo, uniformly in x e d * and 0 _< h < 1. Since 0 is a point of density
for d *, each interval (Jrru-1, 1rru-1) contains a point x = x of if *, provided u is large
enough. It follows that +A

f sin (8.9)

tends to 0, uniformly in 0 < h < 1. Observing that Ax = ux + (A - u) x is in the in-
terval (*11,'n) for u large enough and u S A S u + 1, we see that the factor sin Ax,, in
(8.9) is monotonically increasing. By the second mean-value theorem,

X2(u + h) - X2(u) = f u+ASinI sinAx.dX5(X)-sinux f ,U+A'kx.

where 0 < h'< h; and since the last integral, being of type (8.9), tends to 0, we find
that X2 satisfies a condition analogous to (8-5).

Consider now the general case when 0 is not necessarily a point of density of d. Let
xo be a point of density of S. Making the substitution x=x'+xo, we write (8.8) in
the form

J
{cos Ax'dyj (A) + sin Ax'dX* (A)}, (8.10)

where X1* (A) =J0 {cos pxodXj(µ) +sin ax0dX,(,a)},

ANA) =Jo {-ain#xodX1(,u)+oosaxodXt(p)}.
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Since (8.10) converges uniformly in a closed set having x' = 0 as a point of density,
the expressions

Y+A
Xi(u+h)-Xi(u)=J {cosuxodX1(,)+sinpxodX5(,a)}, (8.11)

u

rYtA
Xs(u+h)-Xs(u)=J {-sinuxodX1(p)+cosfixodX2(u)} (8.12)

tend to 0 as u -- + oo, uniformly in 0 S h _< 1. The same holds if we multiply the integrand
of (8.11) by cosµzo and that of (8.12) by - sinpxo, since both multipliers have only a
finite number of maxima and minima in u <# S u + 1, and it is enough to apply the
second mean-value theorem to each interval in which the multiplier is monotone.
Adding the two resulting integrals we obtain

f
('u+h

J dX1(,u)=X1(u+h)-X,(u),
U

which proves the condition for X1. It we multiply the integrands in (8.11) and (8.12)
by sin pxo and cos sxo respectively and add, we obtain the result for X=. This completes
the proof of (8.4).

For the integrals (8.2) the condition (8.5) is equivalent to

lim ( max
u-f m lll0GA. 1

h+

L
and for the series (8.3) to the condition c 0 (the conclusion of the Cantor-Lebesgue
theorem). We call the condition (8.5) condition No, and consider almost exclusively
integrals (8.1) satisfying this condition.

From (8.11), (8.12) and the second mean-value theorem we deduce that condition
No remains invariant under translation x-+x + xo of the variable; and the condition is
satisfied uniformly in xo if xo=0(1).

It is also easily seen that if the integral

f era:dX(A)

(an analogue of a power series) converges at a single point z0, then X satisfies condi-
tion No.

We immediately see that condition No implies

X(u)=o(J u I)
as u -+ ± oo ; more generally

f eldx(A)=o(Iu1)
uniformly in ;=0(1).

In Chapter IX we associated with a trigonometric series I cne'u having coefficients
tending to 0 a continuous function

F(x) = Jcox' - E' c n-a einx

obtained by integrating the series twice. Integrating (8.1) formally twice we introduce
in the integrand the factor -A-', which is unbounded near A = 0 and may result in
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the divergence of the new integral. To avoid this difficulty we define the function F
for (8.1) somewhat differently and write

f
A I<1

eiAz - 1- iAx r
F(x) -J As dX(A) -

A2
dX(A) (8.13)

I IAI>1

Formal differentiation of the right-hand side twice still gives (8.1), and the integral
converges uniformly over each finite interval of x, provided X satisfies condition No.
To see this we write

X*(A)=lo et"*z dX(p)=X:(A),

integrate by parts and use the fact that X*(A) = o(I Al) uniformly in x over each finite
interval.

The two theorems of Riemann about the function F (see Chapter IX, (2.4), (2.8))
have the following analogues:

(8.14) THEOREM. If X satisfies condition No and (8.1) converges at a point xo to value 8,
then

D'F x lim
F(xo + 2h) + F(xo - 2h) _2F(xo)

(8.15)
A-0

exists and is equal to 8.

(8.16) THEOREM. If X 8ati8fie8 condition No, then F is smooth, that is,

F(x+2h)+F(x-2h)-2F(x)
8'174h ( )

as h 0, for each x.
To prove (8.14) write fz

X`(A) =J - dX({i) (8'18)

We may suppose that X is continuous at 0. (Otherwise we subtract from X a fixed
multiple of the function sign A, for which (8.1) is identically 2, F(x) is x', and (8.15)
is obvious.) The ratio in (8.15) is then equal to

f + eixox {e
}IdX(A)=fo \ Viam

-,1 o X*(X)dA
(sin

Ah )'dA'

since the integrated terms in the integration by parts vanish. Substituting

X*(A)=8+e(A), where e(A)-)-0,

we split the last integral into two, the first of which is 8; then we have only to show that
the second tends to 0 with A. This is immediate if we observe that the total variation
of (sin Ah)'/A'h' over each finite interval tends to 0 with is, that it is bounded (constant)
over (0, oo) and that e(A) is arbitrarily small outside a sufficiently large interval.

To prove (8.18) we use the notation (8.18) and write the ratio (8.17) in the form

sin Ah (n+})w/A co (n+1)w/A
dX*(A)= E J + E J =P+Q,

0 A'h n-0 nw/A n-0 (n+}) w/A

say. The function sin' Ah is increasing in each integral in P and decreasing in each
integral in Q. Since X* satisfies condition No, the oscillation of X* over each interval
occurring either in P or Q is o(1/h) as h->0. Hence, applying the second mean-value

.
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theorem to the factors sin2.Ih and A-2 in each integral of P except the first, in which
we apply it instead to the (decreasing) ratio (sinAh)2/A2, we find that

P = h2. h-1. o(h-1) +n1 h-lo(h-1) = 0(1).

The relation Q=o(1) is proved similarly, and (8.17) is established. It holds uniformly
over any finite interval of x.

The integral

- if (sign A) 0-1z dx(A) (8.19)

may be called conjugate to (8.1). Since sign A is discontinuous at A = 0, and the integrals
are taken in the Riemann-Stieltjes sense, we may suppose for the sake of simplicity
that X is continuous at 0.

In the rest of this section we consider the 'formal multiplication' of trigonometric
integrals. It is analogous to the formal multiplication of trigonometric series discussed
in Chapter IX, though the details are somewhat less simple. We restrict ourselves to
results which will be useful in the proofs of the main theorems of the next section.

Given two integrals +10

1
e°:do(A), (8.20)

we define their formal product as

(8'21)

(8'22)

+m
etaz d{r(A),

+m

1-
eix:dX(X),

+
where x(A)=

rm{SS(A-,-)-O(ho-k))do,(u), (8.23)

A0 being any fixed number. If the integral (8.23) exists for some AO (and all A), then it
exists for any other A0, and the two X's differ by an additive constant. We assume once
for all that 0 and Vr (but not necessarily X) are of bounded variation over each finite
interval.

The integral (8.23) converges, even absolutely, if 0 satisfies condition No and 0, is
of bounded variation over (-co, +oo); moreover, X satisfies condition No. For if
0: h_< 1, then

X(A+h)-x(A)I I
+I

Idi'(u)I=f +JR'

where R is the complement of (- M, M). Since the last integral is arbitrarily small if
M is large enough, and the preceding integral tends to 0 as A -> t co and M remains
fixed, the assertion easily follows. The hypotheses do not guarantee, however, that
X is of bounded variation in any interval.

Under the same hypotheses we may interchange the roles of 0 and 1!r in (8.23).
For, integrating by parts and making the substitution A -fi = v, we find for the partial
integral of (8.23) over A -< # B the value

{O(A - B) - O(A0 - B)} tr(B)- {c(A-A)-q5(A0-A)} {f(A)-f A.-Allr(Xo-v)d¢(v)
(8'24)

A -B A.-B
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The integrated terms tend to 0 as A -+ - oo, B + oo, sine the expressions in curly
brackets tend to 0 and s/r is bounded. Supposing q5 and i/r real-valued, and decomposing
ifr into a difference of two non-decreasing positive and bounded functions, we find that
if we omit A, As in the limits of the last two integrals we commit errors o(1). Hence the
difference between (8.24) and

JA
_B

{i/r(.Z - v) - ,r(Ao - v)} do (v)

tends to 0, and the symmetry of X with respect to 0 and ifr is proved.

If 0 satisfies condition No and t` I I di/r(,u) I <cc, we may take for X the integral

1-: c(A-z)dV1(,a),

which converges absolutely since ¢(u) = o(I u I) for large I u I, and which differs from
(8.23) by an additive constant.

If the two functions in (8.23) have a common discontinuity, the integral does not
exist in the Riemann-Stieltjes sense. We may then either use the Lebeegue-Stieltjes
definition or assume that one of the functions 0, ifr is continuous. The latter course is
sufficient for most purposes since in our main applications (8.21) will be the Fourier
integral of a function L(z) vanishing outside a finite interval and having any pre-
scribed number of continuous derivatives.t In this case (8.21) is

5
etAx g(A) d l (8.26)

1 +
where g(A) = 2n _ e-ix= L(x) dx. (8.27)

Such a g is even analytic, and integration by parts shows that if L has k continuous
derivatives then each derivative of g is 0(1 A I-k) at infinity.

It is useful to have a simple sufficient condition which guarantees that X is of
bounded variation over each finite interval. Suppose that 0 satisfies condition No, and
denote the indefinite integral of 0 by (D. If difr(A) = g(A) dA, and if Ag'(A) a L(- oo, + cc),
then, as we easily see, g(A)=o(1/.I) and, integrating by parts, we can write (8.23) in
the form f [O(A-,u)-D(Ae-,a))g'(fc)da.

This function is in A, (and in particular is of bounded variation) over each finite
interval, since the formally differentiated integral is a locally bounded function.

It is also easy to verify that, if 0 satisfies a condition stronger than Ne, namely
fA+1

I d4(,u) I =o(1) (a-+oo),
x

and if ifr is of bounded variation over (-oo, +co), then the X in (8.23) is of bounded
variation over each finite interval (and the result holds if o(1) is replaced by 0(1)).

t Using the Lebeegue-Stieltjes definition, it is not difficult to see that if 0 satisfies condition No and
i(r is of bounded variation over (- w, +oo), then the X in (8.23) is bounded over each finite interval
and is continuous except possibly at the points (+r), where l; and q are discontinuities of 0 and V,
respectively.
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The following result is an analogue of Theorem (4.20) of Chapter IX:

(8.28) THEOREM. Suppose that 0 satisfies condition No, that f
+m

X I ldl(r(X) I <oo,

and that (8.22) i8 the formal product of (8.20) and (8.21). Then, if L(x) is the value of
(8.21), the two differences

AY(x)
= fY

ei- dX(X) -
L(x)f-.

dc(h), (8.29)
Y

(-isignA)euAd#(X) (8.30)DY(x)= f
Y

Y
(-isign A)ei;adX(X)-L(x)f-'&

converge uniformly over each finite interval as w -> + oo, the former to limit 0.
We consider only (8.29), the proof for (8.30) being similar, and take first, for sim-

plicity, x = 0. We may define X by (8.25). Then

AY(O) = X(w) - X(- (o) - L(0) {o((a) - 5(- w)}-f
(8.31)

and it is enough to show that the last two integrals tend to 0. This, in turn, will follow
if we show that given an e> 0 we have

(8.32)

for all p, provided w is large enough. It is enough to consider the first inequality.
We observe that if p' and p" tend both to +o0 or to -oo, then 0(p")-O(u') is

o(lp" -,u' + 1). It follows that
Ow - p) - 00)) = 00 p 1) (8'33)

if w - - 00, p < }w, for then both w and w -,u tend to + oo. We also have (8.33) if w - oo,
p ? 2w, for then the left-hand side is o(p - w) + o(w) = o(p). Finally, if }w -<# < 2w, the
left-hand side is o(w) =o(p). Hence we have (8.33) for w-0o, uniformly in p, and the
relation DY(0) -+ 0 follows.

Passing to general x, write

f Y0
ei2 do(t) = O.(u),

and define Vr=(u), X=(u) correspondingly. The first term on the right of (8.29) is
X=(w) - X=(- w), and is equal to

X(w) e'=Y _ x(- w) e"" _ ix f YY eizA X(A) dA

-f +Weiz('-v)0(w-p)elz#diJr(u)_5e,x(- r)0(-w-p)e`:"di(p)

-ix f YYdA f +m

The inner integral in the repeated integral converges absolutely. If we interchange
the order of integration and combine the three integrals in one we obtain

f
1

{0:((j -p)-0.(-w-p)}di,:(fu)
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r+,o
Since the last term in (8.29) is dO7x(u), we easily obtain the

formula

O&(x)=f l#x(w-4')-0x(I))do,x(#)- (&34)

analogous to (8-31). Since x(A) satisfies condition No uniformly in each finite interval
of z, and I dr/rx I = I d1r 1, the previous argument shows that A, (z) tends to 0 uniformly
over each finite interval. This completes the proof of (8.28).

The lemma which follows will be used in the next section. It is obviously a special
case of a more general result which, however, is not needed.

(&35) Lsate. If 0 is bounded and

sup I 0(u+h)-¢(u) i =o(u-') (u-*± co), (8-36)
0<441

tm
u' I dVr(u) I < co, 0,(± co) = 0, (8.37)

then X(u) = f + O(u - v) d>/r(v) = o(u-') (8-38)

as u-+±co.
We first show that, if e, = o(p-'), and i7(u) is bounded and o(u-'), then

ePr!(u-p)=o(u-') (8-39)
P°-m

We suppose that u--3,. +co, and split the sum into two parts, A and B, extended over
I p I_< +u and I p I> }u respectively. Then

A I _ sup 1/(v) I
P

E UI EP I =o(u-').O(l)=o(u ')r

IBI suplePl E Il(u-p)I
IPI>}u IPI>iu

and (8-39) follows.
Return to (8-38), and again suppose that We have

X(u)= - V(v)doO(u-v), (8.40)

the integrated term being 0 since = O(1), 1G( ± oo) = 0. Split the integral into two,
extended over v > 0 and v _< 0 respectively; it is enough to show that the first of them
is o(u-2).

We may suppose that 0 and Vr are real-valued, and also that %r (u) is monotonicalIy
decreasing to 0 in (0, oo); for otherwise we decompose fr into a difference of two such
functions, the positive and negative variations of 1/r, which also satisfy (8-37). Then if,
for instance, p > 0, (8-37) implies

1

lr(p)= -
P

dVf(u) <_j
P

u'I da/r(u) I =o(p-').

Denote the upper bound of the left-hand side of (8-36) for w < u 4 w+ 1 by a(w);
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clearly a(w) = o(w-s). By the second mean-value theorem, denoting by e, numbers
between 0 and 1, we have

f
0 I p-1 p-1 p-1

The last sum is o(u-2) by the previous remark about {en} and rl(u).

9. Equiconvergence theorems
In Chapter IX, § 4, we proved that if Ec" e{"= is any series with coefficients tending

to 0, F(x) the function obtained by integrating the series termwise twice, and L(x)
a periodic sufficiently differentiable function equal to I in an interval J, a <x < b,
and to 0 outside an interval J', a'-< x < b', where a' < a < b < b', then the differences

E F(t)L(t)DN(x-t)dt, (9.1)
InNN A '
(-isignn)cne`"=_1f F(t)L(t)f,(x-t)dt (9.2)

InIeN n '

converge uniformly in J', the limit of the first being 0.
We need a corresponding result for integrals

5
e'Ax dX(A).

We denote by F the function (8.13).

(9.3)

(9-4) THEOREM. If X satisfies condition No, and L(x) is differentiable five times, is
equal to I in the interval J, a < x < b, and to 0 outside the interval J', a' < x < b', then the

differences
eix=dX(A)-n fj, F(t) L(t) d2 sin (x- t)dt, (9.5)

I
dt' x-

f isignA)e`AxdX(A)- fr F(t)L(t)
'de 1-cosw(x-t)d (9,6)

converge uniformly in J, the limit of (9-5) being 0.
We consider only (9-5). We may suppose that X is constant in (- 1, + 1). For if

(9.3) is of the form f ei,12 dX(A), then the corresponding F is an entire function, and

the second integral in (9-5) is, after integration by parts,

sinw(x - t)
n-l f

r'
(FL)" x - t - dt,

fand so converges uniformly to - eixz dX(A) in J.

Under our hypothesis, therefore,

F(x) A-'dX(A) (9.7)f m

It is natural to expect that if 1a is the formal product of the trigonometric integrals
I, and I, then 1;=R, I,+211If+111 (9-8)
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where products are formal products, and dashes denote formal differentiation. Take
this formula temporarily for granted.

Denote the integral (9-7) by 13 and write it as

100

+00 et xdX(A), (9.9)
A

where X(A)=-J j,-2dX(l/). (9.10)

Denote the Fourier integral of L by a[L]. Then

I eiA:9(,1)dl,
m

L(x) e-iA: dx =
2a

L(,),-'A-d,.where g(A) = 2n f-, - I

If 93 is the formal product of and a.[L), we have, by (9-8),

I$' = 3'a-[L] + 2,,1"ur[L'] +;ltas[L], (9-13)

since a-(k)[L}=[L)] for k=1,2. Observing that L= 1, L' =L" = 0 in J, and that the
Fourier transforms of L, L', L" are O(A-6), O(A-4), O(A-a) respectively, we obtain,
by an application of (8-29),

9d-`d-i0
uniformly in J, where J. and 9 are symmetric partial integrals of I and 9i. Since

is the first integral (9-5), the theorem will be proved if we show that

= f 9dt (9.14)E
.$. n

It is enough to show that, under our hypotheses,

+00

eiAzp(X) dA, (9.15)

where p is continuous and p(,1)=00-8). (9.16)

For the last relation implies that p(,1) c L(- co, + co), and since, by (8-29),$. converges
everywhere to F(z) L(x), the equations (9.16) and

p(A)=1rIT

lead to (9.14).

Now, in any case, (+
etAZ dP(A),

where P(A) I +mg(X-,u)X(,u)d,u.
d m

Since X(µ)=0(1), g(µ)=0(14-6), the last integral converges absolutely and uniformly
provided .t remains in a finite interval. The same holds if we substitute g'(A -,a) for
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g(A-,c) since, by (9-12), g'(A) is the Fourier transform of -ixL(x). Hence P has a
continuous derivative

p(X)=P'(A)= f
m m

and, by Lemma (8.35), p(A) = 0(,k-2).
Hence (9-4) is established. The estimate (9-16) was much better than we actually

needed, but the equation
1 p+

2n J _ F(t) L(t) a-eu = o(A-=), (9.18)

which follows from (9-16) and (9-17), will be useful later.
Return to (9.8). This is an analogue of a formula for the formal product of trigono-

metric series (see Chapter IX, (4-32)), but the proof for integrals is somewhat less
simple. While '112, and so also has meaning if, for example, the 0 in

I1= f +"'A=do satisfies condition Na and the ;'r in 12= f e:A:dl(ris of bounded varia-
J m

tion over (-co, +oo), the right-hand side of (9-8) requires stronger conditions one
and y/r to be meaningful; we prove (9-8) under the hypotheses (8.36) and (8.37), so that
all terms in (9-8) have meaning.

We define X by (8-23), write
z=fA.f.kdX(k)

for k=1,2, and define #k(A), '' (A) similarly. The right-hand side of (9-8) is

Ei2 era: dXw (X), where Xs (A) is

{[02(' -'u)-02(A0-f')]+2[c1(A-It)-O1(Ao-,u)]fi

+[¢(X-u)-O(A0-p)lu2) dA(a)
T m A-f

{ J
(12+ 2t# +,u2) dO(t)) d fr(p)

m 1 A .-P

= 1

Jla

k,
t2dif5(t -.u)) do,(u)

.II m

f00 (A2[(A-/L)-0(Ao

-2f. t[O(t-k)-O(Ao-E/,))dtdfr(p).

If we split the last integral into two and invert the order of integration (this being
justified by the hypotheses on 0 and 0i), we obtain

A2X(A)- 2f z tX(t)dl= f A t2dX(t),
A. A.

so that which implies (9-8).
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The following two theorems are the main results of this section:

(9.19) FIRST EQUICONVEROENCE THEOREM. If X sati8fces condition No, then for
any interval J of length less than 2rr there is a trigonometric series Ec e'"s with coefficients
tending to 0, such that the two differences

I eia:dX(A) - E cei- (9.20)
-Y InIGY

Y

(-isignA)e' dX(A)- E (-isignn)c,,ei- (9.21)
-Y Y InItw

tend uniformly to limits in J as w -s + oo, the first limit being 0.

(9.22) SECOND EQUICONVERURNCE THEOREM. If X Satisfies condition No, then for

any intervalJ of finite length there is an integral c(A) CM, dA, where c(A) is continuous

and tends to 0 with 1 /A, such that

f eia:dX(A)- rYY eu=c(A)dA (9.23)

and
- (-isignA)eia:dX(A)-5 (- isigii.I)eia:c(A)dA (9.24)

J Y

tend uniformly to limits in J as o -s+oo, the first limit being 0.
We consider only the differences (9.20) and (9.23) and begin with (9.20). Since 1

satisfies condition No, it is enough to take ar = N + }, where N is an integer.
Let J' be an interval of length 21r containing J in its interior. Let L(x) be a function

having five continuous derivatives, and equal to 1 in J and to 0 outside X. Wo
have (9.18) and, in particular,

1 r FxLz " a
J O Oe- =o(n- ), (9.25)

2rr

so that the Fourier series of the periodic function coinciding with FL in J' has
coefficients o(n-2).

Let F.cr ei"s be obtained by differentiating that Fourier series twice; then c -). 0
and, incidentally, co = 0. Clearly

c
_ I f d2 sin (N + }) (x - t)

In 14N
e"'= n j F(t)

,
2sin}(z-t) dt. (9 26)

By Theorem (9.4) with w = N + 1,

J

c +V
e' dX(A) - - IJ' F(t) L(t) da sin (Nx J) (x - t) dt (9.27)

tends uniformly to 0 in J as N -> + oo. If we show that

F(t)L(t)
aa 1 - 1 )sin(N+})(x-t) dt (9.28)

2-s in 4(x - t) x - t.r. dt U
tends uniformly to 0 in J, the assertion of Theorem (9.19) concerning (9.20) will follow.
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Fix an x in J and denote the difference in curly brackets in (9.28) by 0(x-t).
Performing the differentiation, we express (9.28) as a sum of three terms, one of which
is

-- (N + })s f F(t) L(t) A(x - t) sin (N + 1) (z - t) dt (9.29)
J r

and the other two contain lower powers of (N+4) (and higher derivatives of A). We
show that the terms tend to 0; it is enough to consider (9.29).

We need only observe that t(u) is analytic in - 2n <u< 21r, so that L ,(t) = L(t) A(z - t)
has, like L(t), five continuous derivatives; the fact that (9.29) tends to 0 then becomes
a consequence of the general relation (9.18). Moreover, if x E J and t E J', then x - t
stays in an interval (- 2ir + e, 27r - e), and all estimates for L.(t) are uniform in x,
with the result that (9.29) tends uniformly to 0 in J. We may consider the proof of (9-19)
as completed.

The proof of (9.22) is even easier. By (9.18) the Fourier transform of FL is o(A-2).

fHence, if c(.A)e+x=dA is obtained by differentiating the Fourier integral of FL

twice, we have

'd c(A) e.a=d,1=
1 f" F(t) L(t) - sin w(xt t)

dt,
IT W2 X-

and since, by (9.4),
1

ru
et,udX(A) - - J F(t) L(t) d'

sini (xt t)
di

tends uniformly to 0 in J, the difference (9.23) also tends uniformly to 0 in J.
Incidentally, not only is the c(A) in (9.22) continuous but it may have as many

derivatives as we please--even infinitely many if L is differentiable infinitely many
times.

(9.30) T soasu. Suppose that X satisfies condition No and that the Fin (8.13) satisfies
in an interval J of length leas than 2n an equation

F(x)= 2du$uf(t)dt+Ax+B,
(9.31)

J. X.

where A, B are constants, xo is a point of J, and f is integrable over J. Then, if J' is any
interval of length 2rr containing J in its interior, f a periodic function coinciding with
f in J', and Ec* ei- the Fourier series off a, the differences

f e1a:dX(A)- E c*es (9.32)
J r InlGor

E. (- i sign ,l) e{a= dX(A) - I a(- i sign n) c* ef- (9.33)

converge uniformly in every interval J' interior to J, the limit of the first being 0.
This is a consequence of. (9.4). Consider, for example, (9.5). Integrating the second

+
integral by parts, we find that f

m
e' dy(X) is uniformly equioonvergent on J with

,1

the Fourier integral of the function (FL)', which on J is equal to f and so also to f .
Since, by (1.3), the Fourier integral of (FL)' is uniformly equioonvergent on J' with
S[f ], the assertion follows.
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Suppose that x satisfies condition Ng, and consider the function

291

'(z) e -a'dx(A) (9.34)

of the complex variable z = x + iy. Integrating by parts we easily find that the integral
(9.34) converges uniformly in each bounded closed subdomain of the half-plane x> 0;
in particular, c(z) is regular in this half-plane.

The following theorem genefalizes the theorem of Fatou-Riesz on the convergence
of power series on the circle of convergence (see Chapter IX, (5.7)):

(9.35) THEOREM. If x satisfies condition No and the m(z) in (9.34) is analytically
continuable across a finite closed segment J, a < y < b, of the imaginary axis, then the
integral (9.34) converges uniformly on J.

This is a simple consequence of (9.30). We may suppose that x = 0 for 0 < A < 1, and
that b - a < 2n. Denote J by J" and reserve the notation J for a slightly larger closed
segment across which 0 is still continuable. Consider the function

T(z) =J A-2 e_z° dx(x) (9.36)

It is regular in the half-plane x > 0 and it is easy to see that the integral (9.36) converges
uniformly in each bounded subset of the closed half-plane x > 0. For x > 0 we have
T"= C, so that '1'' is continuable across J, and - 'V(iy) is a second integral of (D(iy)

on a < y < b. Since -'I'(iy) is the function F formed for the integral j a-ixv dx(A), and

since the Fourier series of a periodic function which coincides with (D(iy) for a < y < b
is obviously uniformly convergent on J", the theorem follows.

We have already observed (p. 280) that if the integral (9.34) has at least one point
of convergence on the imaginary axis, then x must satisfy condition N0.

10. Problems of uniqueness
We shall now investigate the uniqueness of representation of functions by integrals

and, in particular, by integrals
J- era=d¢(x) (10.1)

f eOX c(A) dx, (10.2)

where c(A) is integrable over each finite interval. We may assume that 0 has only
regular discontinuities.

(10.3) THEOREM. Suppose that (10.2) converges everywhere to a function f (x) which is
finite and integrable over each finite interval. Then

1 r+ m 1 Y w
c(x)=(C,1) - _ f(x)e-ra:dx

..li u
dw

(10.4)
for almost all A.
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In view of Theorem (8.4), the function 95(A) = f c(p) d1z satisfies condition Na:
a

A+A
max c(u)du =0(1) (A-+± co). (10.5)

04AGI A

We begin by making a strongerassumption, from which we free ourselves later, namely
that c(A)--s0 as A-.±co.

The theorem is obvious if c(A) vanishes outside a finite interval. We may therefore
suppose without loss of generality that c(A) = 0 in (- 1, 1). We write

F(x) = -f +m u-2c(p)
e'"x dµ. (10.6)

By Theorem (9.19), in each interval J of length less than 2n the integral (10.2) is
uniformly equioonvergent with a series Ecn ei"x having coofficients tending to 0 (and
depending on J):

5 c(A)eiAxdA- E cnet"x-*0 (10.7)
-OW 1nJGY

We may suppose that cc = 0 (seep. 289). If we integrate (10.7) twice over a subinterval
(xo, x) of J we get

5
(-A-2)c(A)etAxdA- Z' (-n-2)c e1"x-AYx-BY- O (10.8)

-Y InIGY

where A. and B. are constants depending on w and xo only. It is clear that A. and B.
must tend to limits as w-++co. By Theorem (2.4), and Lemma (3.13) of Chapter IX,
the series - E'n-2c, e{' converges in J to a second integral off. Hence

F(r)= f dyJ 2f(t)dt+Ax+B, (10.9)
0 0

for x in J. It might appear that the constants A and B may vary with J, but using the
continuity and smoothness of F (see (8.17)) we find that A and B are independent of
J and, since J is arbitrary, (10.9) holds for - oo < x < + oo. t

The hypothesis c(A) = o(1) implies that c(A) A-2 is in L( - oo, +co), and the Riemann
Lebesgue theorem applied to (10.6) shows that F(x) -> 0 as x --o. ± co. Inverting (10.6)
we find that

C( A) 1)2n f +mF(x)e 'A:dx= lim
2nw fo J

Ydw f w F(x)e-;Axdx (10.10)
2 1-ao a+w -w

for almost all A.
Now

JF(z)e_2dx=w 1[F(x)__-_i+F'(x)a-2iJw

:=-w-,2fw -wf(x)e-tiudx (10.11)

if A + 0. We have just observed that F( ± oo) = 0, and integration by parts gives

(C, 1) lim F'(±w)J tAw=0. (10.12)

From this and the preceding two formulae we get (10.4).

t We could have obtained (10.9) without using equiconvorgenoe with trigonometric series, by appealing
directly to Theorem (8.14) of this chapter and Theorem (2.4) of Chapter IX. We wanted, however, to
indicate a method which might be advantageous in other cases.



xvi] Problems of uniquenes8 293

Remark. If c(A) is continuous, or has only regular discontinuities of the first kind,
then (10.4) holds for all A. For A + 0 this follows from the preceding argument. To
prove the result for A = 0 we have to show, since c(A) = 0 near A = 0, that

jf duf f(t)dt-r0 (w++oo).a

But, in view of (10-9), the left-hand side is

w-1 fu[P(,)-F'(-w)]dw=w-1[F(w)+F(-w)-2F(0)1=o(1),
0

which proves the desired result.
Before we proceed with the proof we apply the results above to the integral (10.1).

Suppose that (10.1) converges everywhere to an f(x) i ntegrable over each finite in-
terval. Fix a p + 0. We have

f edo(A)=f(x), f e'do(A+p)=f(x)m
m

Subtracting these equations and integrating by parts we have

f [O(A+P)-O(A)]erxadA=f(x)x 1, (10.13)

since the integrated term is 0 because of the condition No for 0. Hence, by the result
already established,

I +m 1"':
tX

dx, (10.14)O(A+P)-O(A)=(G 1)2n f
(X)e

since 0 has only regular discontinuities. We come therefore to the following conclusion:

(10.15) THEOREM. If (10.1) converges everywhere to an f (x) integrable over each finite
interval, we have (10.14) for all A and p.

Return to (10-3). It remains to remove the hypothesis c(A) =o(1). This was used to
show that we have (10.10) and that the integrated terms in (10.11) tend to 0 as w -+ + Co.
The latter need not be true under the hypothesis (10-5), but for our purposes it is
enough to show that these terms tend to 0 by the method of the first arithmetic mean.
We have to show that

JF(w)e_'dw=o(w) , (10.16)

J
,F'(w)e-'x"'dw=o(w), (10.17)

0

for each A + 0, and that this still holds if w is replaced by - w in the integrand. It is
enough to prove (10.16) and (10-17). Integration by parts shows that (10-17) is a
consequence of (10.16) and the relation

F(w)=o(w) (w-+±oo), (10.18)

and we confine our attention to the latter two relations.
To prove (10.18), we may suppose that w + Co and that c(A) = 0 in (- k, k), where
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k is arbitrarily large but fixed (by the Riemann-Lebesgue theorem the contribution
of the interval (-k, k) to F(w) is o(1) as w-*oo). Write (10.6) in the form

F(w) _ - E µ-2c(µ) e'Pwdµ. (10.19)
ni0 wnw-'G I #d w(n+1)w-'

Since c(al) = 0 in (- k, k), it is enough to sum over those n such that 7r(n + 1) w-1 > k.
Let no be the smallest n satisfying this inequality; clearly no ^- kwlsr. In each interval
of integration in (10.19) the real and imaginary parts of eikwhaveat most oneextremum.
Applying the second mean-value theorem and observing that the real and imaginary
parts of 0 satisfy condition N0, we find that the series (10.19) is majorized in absolute
value by a fixed multiple of

(irnw-')-2.0(l) = 0(w2) E n-2 = 0(no 1 w2) = 0(w/k), (10.20)
n=M n)n.

and this proves (10.18).
Passing to (10.16), we observe that it is obviously true if c(µ) vanishes outside a

finite interval, since in this case F(w) = o(1). Fixing our A, we may therefore suppose
that c(µ) = 0 f o r ! µ f _< ,I + 1. By (10.6) we may write the integral (10.16) in the form

+ 1

s f -d1z=tie-u-,f r_
m1,-2c*(1u)ei

du+0(1),

where c*(µ)= c(,u)l(u-A). By the second mean-value theorem, c*(µ) satisfies a con-
dition analogous to (10.5), so that, applying to the last integral the decomposition of
(10.19), with w for w, and using estimates analogous to those of (10.20), we obtain
(10.16).

It remains to prove (10.10). Since the integral representing F(x) converges uniformly
in every finite interval, we have

2rrm
f"Odwf.F(.),-i--1dx=IT J + I _c($)\ 2e n22t+)(IL-A)d'U

A)R

(see the remark on p. 247). If we show that the right-hand side tends to -c(A)JA2 for
almost every d, the proof of (10.3) will be completed. Since this is true for functions
c(A) vanishing outside a finite interval, it is enough to show that if A is fixed and if
c(µ) = 0 for - k <µ _< k, where, say, k >_ I A + 1, then the integral is small for k large,
but fixed, and co-- co. Writing c*(µ) _ -c(,u)/(,u -A)s, we present the integral in the
form

2 E
J

c,(IL)µ-2sin2}o(,u-.1)dµ,

and the argument follows the same line as in (10.20).
Remarks. (a) If the f of Theorem (10.3) is identically 0, then c(A) _- 0. In this special

case the proof given above simplifies somewhat. A similar remark applies to
Theorem (10.15).

(b) If instead of assuming the convergence of (10.2) we merely suppose that
satisfies condition No and the two functions

f*(x)=liminf f eiA2c(.I)dl, f*(x)=limsupf+el"c(A)dl
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are finite except for a denumerable set of x, and one of them is integrable over each
finite interval, then f* =f * almost everywhere and we have (10.4) for almost all A,
where f(x) is the common value of f*(x) and f*(x). This follows from the preceding
argument and the corresponding result for Fourier series (Chapter IX, (3.26)).

We recall certain definitions and results from Chapter IX. A point set E is said to
be a set of uniqueness for trigonometric series, or a U-set, if each series

+m
C. einx
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(10.21)

which converges to 0 in the complement of E, vanishes identically. A set which is not
U is called a set of multiplicity, or an M-set.

Similar definitions may be introduced for trigonometric integrals

or integrals

+W
C(A) eix: dA, (10.22)

+co
e"u dX(A) (10.23)

A set E is a U-set for integrals (10.22), if the convergence of an integral (10.22) in
the complement of E to 0 implies that c(A) = 0; for integrals (10.23) we replace the latter
condition by x = cont. Sets which are not U are called M-sets. To avoid misunder-
standing, U-sets for expressions (10-21), (10.22), and (10.23) will be denoted respec-
tively by U U, and Ui., and the corresponding M-sets by M M, At,,. Sets U. and M,
if considered on (- co, + oo), are periodic, of period 2ir; the other sets are, in general,
non-periodic.

We confine our attention to measurable sets. Sets U, are then of measure 0 (Chapter
IX, § 6). The converse is not true: among sets of measure 0 there are M,-sets (see
Chapter IX, § 6, and Chapter XII, (11.17 ), (11-18)). Sets Ui and Ui are also of measure
0; the proof is the same as for sets U,.

Formal multiplication of trigonometric series shows that
(a) If a U,-set E is contained in an open interval J, and if a series E c ei"; converges

to 0 in J - E, then the series converges to 0 in J.
Let A(x) have three continuous derivatives, be distinct from 0 in J, and equal to 0

elsewhere. The formal product of Ec ei' by S[A] converges to 0 in the complement
of E, and so everywhere. It follows that Ec einx converges to 0 in J.

From this it follows at once that
(b) If a set E is locally U. (that is, if for every x there exists a neighbourhood Nz of x such

that EN, is U,), then E is a U; set.
Results (a) and (b) hold for sets Ui and and the proofs are essentially unchanged.

(10.24) T noREM. Sets U,, U, Uy are locally the same.
It is clear that each set U. is both U. and Ui, and the theorem will be established

if we show that
(i) every set U, of diameter less than 27r is Ui.;
(ii) every set Ui of finite diameter is U.
(i) Suppose that E is a U,-set of diameter lees than 2n, and that an integral (10.23)

converges to 0 in the complement of E. Let J be an open interval containing E and
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of length lees than 27T. By (9.19), there is a series Zen e'", with coefficients tending
to 0, equiconvergent with the integral on J. By proposition (a) above, the series con-
verges to 0 in J. Hence the same holds for the integral, and since the latter, by
hypothesis, converges to 0 outside J, it converges to 0 everywhere, and so is identically
0. This gives (i), and the proof of (ii) is similar, except that instead of (9.19) we use (9.22 ).

Proposition (i) shows that every set E which is an M. and has diameter less than 2n
is an M,. But the argument just used gives also a series of multiplicity for E. For if an
integral (10.23) converges to 0 in the complement of E but is not identically 0, and if
.I and Yen e'"Z have the same meaning as above, then the latter series converges to 0
in J - E but not at each point of J. Hence the formal product of Len e'- by S[L],
where L, sufficiently differentiable, is 0 outside J and different from 0 in J, is a trigo-
nometric series which converges to 0 in the complement of E but not everywhere.
A similar'remark applies to (ii).

Given a set B and a number 1, we denote by E, the set of points lx, where xe E.
We now prove the following result which was stated in Chapter IX, (6.18):

(10.25) THEOREM. If E is contained in J0: 0 <x < 2n, and i8 a U,-set, then each E,,
l > 0, which i8 contained in Je is also a U; sel.

We may suppose that x = 0 is not in E, since otherwise we first prove the theorem for
the set E minus the point 0, and then add x = 0 to E, (since adding a point to a U,-set
does not affect the U,-character of the set). Then both E and Et are interior to (0, 2n).

Consider a series Zen ei"x, S say, converging to 0 at each point of (0, 2n) which is not
in El. Let x, be a point of E; it is enough to show that S converges to 0 at LT.-

Denote by J an open interval containing x0; then J, contains lxe. We take J so
small that both J and J, are contained, together with their endpoints, in the interior
of (0, 2n). Since S converges to 0 in J, - El, the series

Zen of"12 (1046)
converges to 0 in J - E. Treating (10.26) as an integral e'A= dX(A) and applying

(9.19), we find a trigonometric series Ec;, e'- with coefficients tending to 0, S' say,
equiconvergent with (10.26) on J. By proposition (a) above, S' converges to 0 in J.
Hence (10.26) converges to 0 in J, and in particular at x0. It follows that S converges
to 0 at Lxa, and the proof of (10.25) is completed.

The fact that if E is a Ui-set, then each E, is also a U,-set, is much more obvious and
follows by a change of variable in the integral. Similarly it is immediate that if E is a

so is E,.
A set E of period 2n and measure 0 will be called a U, -set, if every trigonometric

series converging in the complement of E to a finite and integrable function f is neces-
sarily S[ f ].f Every U; -set is obviously a U,-set; whether the converse is true seems not
to be known except in the case when E is closed. For, by the principle of localization,
if Ec,, einx converges outside a closed set E, I E I = 0, to an f e L, then the difference
between the series and S[f] converges to 0 outside E, and so is identically 0 if E is U.

(10.27) THEOREM. If a set E ie locally U,*, then it is U,*.
Suppose a trigonometric series S converges in the complement of E to a finite and

integrable function f. Consider any point z, and an open interval J containing x,
t Cf. Chapter IX, p. 350.
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such that JE is U; . Let J' be an interval containing x0 and totally interior to J, L(x)
a sufficiently differentiable function equal to 1 on J' and to 0 outside J, and T = SS[L].
Clearly T = S[fL], and since S and T are uniformly equiconvergent on J', the function
F obtained by integrating S twice is, on J', a second integral off:

z
F(x)= I dylyf(t)dt+Ax+B (10.28)

0 0

By the Heine-Borel theorem, and the continuity and smoothness of F, (10.28) is
valid for all x, with A and B independent of x. Hence S = S[ f ].

A set E c (- oo, + oo) of measure 0 will be called a Ui -set, if every trigonometric
integral (10.2) converging outside E to a finite function f (x) integrable over each
finite interval is the Fourier integral off in the sense of (10.4).

(10.29) TasoasM. Every set E which is locally U; , is Ui . Every set E which is U{ and
of diameter leas than 2n, is U,*.

Suppose that a set E c (- co, + oc) is locally U,*, and that an integral (10.22), I say,
converges outside E to a finite f (x) integrable over each finite interval. Let J be an
interval of length lees than 2rr, and S a trigonometric series with coefficients tending
to 0 uniformly equiconvergent with I on J. As in the proof of (10.27), we find that
S when integrated twice represents in J a second integral of f. Hence by integrating
I formally twice we also obtain a function which on J is a second integral of f. This
leads to the formula (10-9), valid for all x, with A and B independent of x, and the
Fourier character of I follows as in the proof of Theorem (10.3).

The proof of the second part of (10.29) is similar.
The idea of extending results from trigonometric series to trigonometric integrals

by using the equiconvergence theorems of the preceding section can be applied in
many other cases. For example, we may obtain an analogue of Theorem (10.25) for
U,-sets; we may obtain uniqueness theorems for integrals (10.22) or (10.23) summable
by Abel's method; we may consider limits of indetermination for integrals, etc. No
new difficulties appear if it is only a matter of translating results from series to in-
tegrals (or conversely), and there is no point in considering such results in detail.

MISCELLANEOUS THEOREMS AND EXAMPLES

1. If 0 e L'(- oo, + oo), the Hilbert transform satisfies

2. If (#,) is orthonormal over (- co, +co), so is (c,); if (95,) is, in addition, complete, so is {,}.

3. Let be orthonormal and complete over a finite interval (-o-, o), and let
er, be the Hilbert transform of the function equal to 1/r, in (- o, o) and to 0 elsewhere. Then the
system (J.) is orthonormal over (- ac), + co), and is complete with respect to functions which are
in U(-co, +ao) and restrictions to the real axis of functions from Ea (p. 272).

In particular, if Po(z), P1(x), ... are Legendre polynomials, the functions

Q.(r) = I
+1

=(t) do
i

z

are orthogonal over (- oo, +a)), and form a system complete with respect to functions which
are both in El and L'(- ao, + co).
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4. Let a'+b;<1,0<2h<-a1<.I,<...,3for Y=1,2,...,and let
1 = sin'yh NFN(x)=- 11 (1+a,cosA,y+b,
rr -ao Y'h -1

Then FN(x) is a distribution function (p. 262) and tends, uniformly over any finite interval, as
N -. oo, to a continuous distribution function F(x) satisfying

}a,=1+'cosA,,xdF(x), sinA,xdF(x)
m ao

(F(x) is an analogue of the Rieez product; Chapter V, §7). If, in addition, E(a;+b,)=co, F is
singular. Similarly, if E(a,+ b,) < co and if the A, satisfy the same hypotheses as before, the function

sins hx °
rf(x)=

x'h
fl(l+ia,coeAvx+ib,sinA,x)=g+ih

is bounded, is in L( -m, +co) and satisfies
1f+mja, h(x) coo A, x dz,
A -ao

with a similar formula for b,,. The functions F and f can be used to obtain for Fourier integrals
theorems analogous to those of Chapter XII, § 7.

5. If EIa,<co, 0<A,<As<..., A,+,/A,>q>I then converges almost everywhere.
(K- [11.)

[Let 8 be so small that the intervals (A, - 8, A, +.5) do not overlap, and let

f(x)=a, for f(x)=0 elsewhere.
A.

Then f c L',
r
( f (t) a"' (I - dt tends to a limit almost everywhere, and since the hypotheses

0
A.

imply that A-I f0 tI f(t) I

A. 2 sin 8x
lim f(t)e"sdt= lunY, a,tax,s

w-.aa 0 x
exists almost everywhere.]

6. If 0<A'<A,<..., A,+,/Av>q> 1, A-v= -A and if converges in a set of positive
measure, then E I c, I' < co. (Kac [ 1 ], Hartman [ 11.)

(The proof is analogous to that of Theorem (6.4) of Chapter V; we use the fact that the system
(CA"') is orthogonal over (- oo, + oo) with respect to a weight function x-1 sins 8z.]

7. If the A, satisfy the hypotheses of Example 6, if c_,=Pr, and if the symmetric partial sums
of Ec,e'A'' are bounded below in a set of positive measure, then E I c, <oo.

n+1 f

8. Suppose that f(x) is integrable over every finite interval and that E(f If (y) I dy con-

verges. If f (x) is equal to f(x) in (- w, w) and to 0 elsewhere, and if f,,, is the Fourier transform of
f., then there is a function f' such that f (x)j(l + x 1) a L'(- oo, + co) and

(t) IU.)f(x)Idx -1- 0
f-10 l+x'

In particular, f converges to f in L' over every finite interval. (Wiener [5].)
[If g e L(- oo, + oo) and 0 is the indefinite integral of g, then

(`) e f +CO

g(t) a-'"ds = f } 0D G(x+h);O(x-h) a '.edt.
a, m

Denoting by F and F. the indefinite integrals of f and J. we therefore have with fl,, F for
g, Q. The hypotheses about f imply that #.(x) = {F(x+h) - F(x- h))/2h is in L'(- oo, +co) and
that j 40, - 41.,., J , -. 0 as - + - where 01,,, is the O, for F. Since

II hx (fa(x)-f'(x))II =Af,a-c.'rlf=Aib..a-#f.aYs
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-'/2h
and since theright-hand side tends that J f, for each

h> 0, and so there is an f such that f,,, tends to f in Li over every interval.
To obtain the stronger form of the assertion we observe that f (x+in) is the Fourier transform

of 0"'M t). Hence, from (05) with h = 1 we deduce that

1+m xx/ /W (x+) I }0° coesx
dx=

j _co (x }n)= I f.(x)-f,.(x) J'dx 0,

as w, e ' -a oo. Considering the intervals - n < x _< wand its complement separately/, using the weaker
result obtained above and the fact that coal x+sins x= I, we arrive at the desired conclusion.

If f satisfies the hypothesis that E (f n+ 1 J f(y) I
dy1 l' < co, where 1 <p < 2, then

Y.
f(x)/(1+Ixt)EL"(-oo, +oo),

and we have (t) with exponents 2 replaced by p' throughout.)

9. Let = p e'e, z = x + iy. A function f (C), regular in I , < 1, is said to belong to the class H',
r> 0, if there is a finite p such that

2,

2n
fo Jf(p'O)j'dB1_p' (0<p<l)

(cf. Chapter VII, § 7). Correspondingly, a function F(z), regular in the half-plane x> 0 will be
said to belong to the class S', if there is a finite M such that

1 +°°

2rr J I
(0<x<00).

Consider the correspondence t=
z-1,

Z=
1 +

z+I 1-C
between the circle and the half-plane.

(i) A necessary and sufficient condition that a function F(z) regular for x>0 should belong
to £j' is that

f(r) = 211'{ 1- C)-"r F(z)
should belong to H'.

(ii) A necessary and sufficient condition that a function f(C) regular for I I < 1 should belong
to H' is that F(z)=2u'(l+z)-u'f(t)
should belong to f)'.

(iii) If for p and M in the definitions above we take the least admissible values, then p = M in
(i) and (ii).

10. If feL'(-oo, +co), 1<p<oo and

(x)=sup I -1 f"f(x+t,-f(x-t) t

e>e if c t

then 11011,<A,11fll, (Cf. Chapter VII, (7.38).)
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CHAPTER XVII

A TOPIC IN MULTIPLE FOURIER SERIES

1. General remarks
The notions of orthogonality of functions, of Fourier coefficients, and of Fourier

series, initially defined for functions of a single variable, extend without difficulty
to functions of several variables.

If D is a set in the m-dimensional Euclidean space Em, functions 0l(p), 0,(p), ... of
a point p in D are said to form an orthogonal system in D if

=0
J o,(P)MP) dP

(j * k),

D =A1>0 (j=k),
for all j, k; here dp denotes the elementr( of m-dimensional volume. If

n
J

are the Fourier coefficients off with respect to (0n), is the Fourier series off,
and we write

f(p)=I;cnOn(p). (1'1)

Results obtained for general orthogonal series of a single variable extend to the
case of several variables, and the proofs remain in general the same. (Replacing single
by m-dimensional integration is purely formal.) In particular, we still have Bessel's
inequality, the Riesz-Fischer theorem, the equivalence of the notions of a complete
and closed orthogonal system (Chapter IV, § 1), etc.

Suppose that for each j = 1, 2, ..., m the system

.W, ... (1.2){(x), fi(x), of
is orthogonal in an interval (a,, b,). It is clear that the functions

On&, nt,..., nm(x1, x ..., Xm) = 0n,(xl) Ont(x8) ... O+mi,,,(xm) (1 .3)

are then orthogonal in the m-dimensional interval (parallelopiped)

a1<z, <b1 (j= 1, 2, ..., m),

and the A's associated with (1.3) are the products of the corresponding A's for (1.2).
Finally, if all the systems (1.2) are complete, so is (1.3).t

The system {e' }n_o,±1. ts,... is orthogonal and complete over (- n, pr), and all the
A's are equal to 2n. Hence the system

ef(n, x,+n,Xt+... +nmxm) (- oo < n! < +oo; j = 1, 2, ... , m) (1.4)

is orthogonal and complete over the m-dimensional cube

Q:-n<x,<>r (j=1,2..... m);

t For m = 2 the proof is indicated in Chapter I. p. 34, Example 8.
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the Fourier coefficients of an f integrable over Q are

Cn - (2n)-IQf (y(, ... , y,n) e-0n,Y,+ ... +-YV ) dy1 ... dym; (1'5)

and we write A X2, ... , xm) ' E.C....... ei(n,x,+... +nmx,n) (1.6)

We denote the series by S[ f ]. We do not arrange the terms of S[f] linearly (as in (1.1)),
but treat it as a multiple series. We may consider f as defined over Em and periodic
(i.e. periodic in each x5).

The completeness of (1.4) implies (see Chapter IV, § 1) the validity of the Parseval
formula

E I Cn,....,nm 12= (2n)-IQ I f(x,, .. , xm) I2dxi ... dxn,. (1.7)

It often simplifies formulae if we use vector notation. We denote points or vectors
(x1, ... , xm), (y ,, ... , y,), ... by the corresponding bold letters x, y,.... Points (n,, ..., nm)
with integral co-ordinates are denoted by n, and the point (0, 0, ..., 0) by 0 and
(1, 1, ..., 1) by 1. The symbols kx (where k is real) and x+y mean the vectors
(kx ..., kxm) and (x1+y1, ..., xm+ym) respectively, and (xy) stands for the scalar
product x, y, + ... +x,n yin. Finally, we write I x I for (xi + ... + xm )f, and dx for the
element of volume dx,dx2 ... dxm.

With this notation, (1.4) is e'(Dz), and (1.5), (1.6) and (1.7) take respectively the
forms

ca=(2n)-m f f(y)e-'(a,)dy
v

f(x) - Eca e01)

E I C.
I2=(2n)-mJQ I f(x) IIdx.

The theory of multiple Fourier series (1.6) is vast, but much of it is a straightforward
extension of results for a single variable. Only those results are of interest, of course,
which have no counterpart for a single variable, or whose proofs require essentially
new ideas. In this chapter we confine our attention to a rather special topic, namely
the rectangular summability of Fourier series (see below) and its applications, and in
this section we collect a few simple facts and definitions.

The proof of the Riemann-Lebesgue theorem (Chapter II, (4.4)) is based on Bessel's
inequality and holds for the system (1.4): the coefficients C. of any integrable function f
tend to 0 as I n I - oo; this means that only a finite number of the ca exceed numeric-
ally a given e>0. A slightly more general version, analogous to Theorem (4.6) of
Chapter II and proved in the same way, asserts that if f is integrable over Em, then

J
f(Y)ei(a)dy

tends to 0 as I X I - oo.
If D is any bounded domain in Em and f . Eca e'"), a sum

aED

is a partial sum of S[f]; we denote it by SD(x), or by SD(x; f). If we have a sequence of
domains D1, D1, ... such that each n belongs to all D, with j large enough, we may ask
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if SD,(x) converges to f (pointwise or in some norm) as j moo. This problem has many
aspects since the D5 may have various shapes. In general, however, partial sums are
not adequate to represent the function and, as in the case of a single variable, we may
have to consider various means of partial sums.

The most important special cases are when the DJ are either in-dimensional spheres
or m-dimensional intervals, with centre at 0. Spherical partial sums are

Z c,ei*&'> (1.8)
MGR

and the rectangular ones can be written

E en a '). (1.9)
InjIGNj

We shall also use for (1.9) the notations SN....... ,.(x) or S1(x) or S1[f].
The spherical and rectangular partial sums of an S[f] behave in many respects

quite differently. Each type requires a different technique and makes appeal to
different properties of f. If we consider S[f] primarily as an orthogonal series, it is
natural to arrange its terms according to the magnitude of I n 1, and dealing with
spherical partial sums has advantages. On the other hand, there are problems where
rectangular partial sums, and their means, are indispensable. This is, in particular,
true of the problems of the behaviour of multiple power series

n

near the boundary of the domain of convergence.
In this chapter we consider only rectangular partial sums of S[f], and their means.

We shall be concerned exclusively with the (C, 1) (that is, the first arithmetic) means

1 *,.... P_
o-.(x)=0'ni....,"(x)= F../ Sk,....,k,,,(x),

and the Abel means

(1.10)

f (r, x) _ fin,...., nm
ri"' ... rm I +n,,xm}. (1.11)

While for one-dimensional series the method (C, 1) is stronger than ordinary con-
vergence, and the method A stronger than (C, 1), and while under certain conditions
the same holds in the multi-dimensional case, these conditions are quite restrictive
and complicated, and we shall not be concerned with them here. The methods (C, 1)
and A have interesting features : the o- are trigonometric polynomials in in variables,
and the A-means are harmonic functions of each pair of variables (r,, x5), and so also
of their totality. As with one-dimensional series, the methods run largely parallel,
and in general it is enough to prove results for one of them only.

It is easy to see that the partial sums of S[f] are given by

'Ss(x)_n-m fQf(x1+t...... xm+tm) I1 D,y(Q1)dt, ...de,
1-1

=n-^°fif ( x+t)D,(t)dt=n-mf f(t) D.(x - t) dt, (1.12)

using the obvious abbreviation
Da(t) = Dn,(t1) ... D,,,,,(t,,,). (1.13)
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Similarly, if Kn(t) and P(r, t) are the F6jer and Poisson kernels, and we set

Kn(t) = Kn1(t1) ... (1.14)

P(r, t) = P(r, t1) ... P(rm, tm), (1.15)

we have o-,(x)=n-mfQ f(x+t)K,(t)dt, (1.16)

f(r,x)=n 'n fQf(x+t)P(r,t)dt. (1.17)

The right-hand side of (1.17) is the Poi88on integral of f.
It is useful to observe that if f (x1, ..., xm) = f1(x1) ... fm(xm) we have

si(x; f) ='Sn,\x1; A) ... Snm(xm; fm), (1.18)

and corresponding formulae hold for o-,(x) and f(r, x).
We have to discriminate between various kinds of convergence of multiple sequences.

We say that n = (n1, ... , nm) tends to + oo if each n) tends to +oo, and we say that
{8,) converges to limit s if for each e > 0 we have 18, - 81 < e provided that all n, are
large enough. This definition, as opposed to one with I n I --* oo, imposes no condition
on infinitely many of the 8 and as a result there are occasionally difficulties in oper-
ating with it. Sometimes we have 8, -+ 8 as I n -, oo; this happens, for example, in the
Riemann-Lebesgue theorem.

In defining summability (C, 1) we suppose that the (C, 1) means c tend to a limit
as n-goo.

In Abel summability we have a variable r = (r1, ..., rm) tending continuously to
1= (1, ..., 1), and the preceding remarks apply also to this case. If z = (z1, ... , zm),
zo = (z°, ... , and if j zj I < 1, I zf I =1 for each j, we say that z tends non-tangentially
to zO, if each z, tends non-tangentially to zj.

If
, , , , T 1 'n I rl nm l ei(n,z,+... +n-z-)nl nm 1 m

tends to a limit 8 as (r1 e ' . . . . . rmeizm) tends non-tangentially to (eixi, .- e'.10), we
say that Ey is summable A* to sum 8.... n+n

Return to o(x) and f(r, x). By (1.14) and (1.15), we have

n-mf K,(t)dt=1, n-*nf P(r,t)dt=1. (1.19)
Q Q

From this, the positiveness of K (t) and P(r, t), and (1.16) and (1.17), we we that
if m <f <M, both o and f(r, x) satisfy the same inequality.

Let r _> 1. Applying Jensen's inequality to (1.16), and using the first equation (1.19)
we obtain, successively,

Y .(X) I' . -mfQ f(x+t) I'K,(t) dt,

fQI Qa(x)
I-dxfQI

The inequalities hold for f(r, x).
The following theorem is an extension of the olassioal theorems of Fejer and Poisson

(see Chapter III, (3.4), (6.11)) to multiple Fourier series.
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(1.20) THEOREM. If f i8 bounded, then S[f] is summable both (C, 1) and A* at each
Point of continuity, and the summability is uniform over any closed set of points of
continuity.

We shall see presently that the condition that f should be bounded is essential.
Consider summability (C, 1). If 0 < 8 < ir, then, by (1.14),

JQ,Itlae
K,(t)dt-i.0 (1.21)

as n-+ oo, since the domain of integration can be split into a finite number of sub-
domains in each of which at least one of the ti satisfies 8m-i < t1 I < n, so that the
corresponding K, (t5) tends uniformly to 0, while the integral of the product of the
remaining K, even if taken over the whole of Q, remains bounded. Suppose now that
x0 is a point of continuity off. Write

foo(xo) -f (xo) = n-- fQ U(xo + t) -f(xo)] K.(t) dt, (1.22)

and split the integral on the right into two, one extended over a small sphere I t I < 81
and the other over the remainder of Q. The first integral is small with 8, for all n, and
if 8 is fixed the second is small as n -->oo. (Observe that I f(xo + t) -f(xo) I <2M,
where M=sup I f 1, and use (1.21).) Hence a,(xo)-f(xo) tends to 0, and uniformly
in xo if xo is in a closed set of points of continuity off. The argument is the same for
summability A and, with minor modifications, for summability As.

(1.23) THEOREM. If f E LP, 1 < p < oc, then II f - o-, I P --> 0 as n -i oo ; the result holds
also Jor the Abel means.

Here 1/P

iifliP=H if(x)Indx}

Suppose that 0 is continuous, periodic and such that II f - 0 IIP < e. Then

IIf-a.[f]l!P<1if-0IIP+ (0-ao[0]IIP+11x.10-f]IIP, (1.24)

and the first and last terns on the right are less than e, while the middle term tends
to 0 as n -* oo. Hence l( f - o-,[ f ] IIP - * 0.

We now consider problems of localization. Suppose that f = 0 in a neighbourhood
x I < 8 of 0. We show by an example that this does not necessarily imply that

S,(0; f) converges to 0.
Suppose, for simplicity, that m = 2 and set f (x) = fl(x1) f9(x2), where fl and fq are

continuous, f2(x) = 0 for I x < 6, and S (0; Jy) is unbounded (Chapter VIII, § 1). Then
f(x)=0for IxI <8, and

8,(0;f)=5, (0;A)S,,,(0;fa) (1.25)

Considering suitable fl we may suppose that SS1(0; fl)+0 for infinitely many n1, so
that, if n2 increases sufficiently rapidly, the hypothesis fz) $ 0(1) implies that
(1.25) is unbounded for n oo. Hence, even in the case of continuous functions. the
principle of localization does not hold for spherical neighbourhoods.

Clearly, the principle of localization does hold for continuous, or even only bounded,
functions and spherical neighbourhoods, provided we consider not the partial sums
but the (C, 1) or Abel means; this is a consequence of Theorem (1.20). In the above
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assertion the condition of boundedness is essential and cannot be omitted. Take the
example f (x) = f1(xl) f2(x2), but this time with f' integrable and with o (0; fa) # 0(1)
(take say fa(x) = En.-1 cos nx). Then

though f = 0 near x = 0.
oa(0, f) = o"n'(0, fl) (rn.(0, f!) # 0(1),

This example shows that the condition of boundedness in (1.20) cannot be dropped.
Given an x° = (x°, ..., AD and a 8 > 0, we call the set of x satisfying at least one of

the inequalities
1x,-41<4, .. , I x -xn I < 8 (1.26)

a cross-neighbourhood of x°. (For m = 2 it actually has a cross-like shape.) Its diameter
does not tend to 0 with 8.

(1.27) THEOREM. If f = 0 in a cro88-neighbourhood of x°, then Sn(xo; f), o (xo, f)
and f(r,x0)all tend to 0asn-*ooor r-*1.

For S. the result is a consequence of the Riemann-Lebesgue theorem. For the o-.,
and f (r, x) it is a consequence of the fact that Kn(t) and P(r, t) tend to 0 uniformly
outside every cross-neighbourhood of 0. It is easy to see that the convergence of
o- and f (r, x) is uniform in every m-dimensional interval I x , - x ! I < 8, j = 1, ... , m,
8' < 8; this result holds also for the S but requires a somewhat more delicate proof,
similar to that of Theorem (6.3) of Chapter II.

Theorem (1.27) expresses the principle of localization for cross-neighbourhoods.

2. Strong differentiability of multiple integrals and its applications
The problems of summability of Fourier series have close connexions with the pro-

blems of the differentiability of integrals. The differentiability of multiple integrals
has features which do not appear in the one-dimensional case.

Let Ax) = f (xl, ..., x,,,) be integrable over the cube

Q:0<x1<I (j=1, ...,m).

The integral off over any subset E of Q is denoted by F(E). We shall denote subintervals
a,<x!<bf, j=1, ..., m, ofQ by 1.

We say that I tends to x if I contains x and if all dimensions b1- a1 tend to 0. If,
in addition, the ratio of each two dimensions remains bounded, we say that I tends
restrictedly to x.

The classical theorem of Lebesgue asserts that for almost all x the ratio

F(I)_ f(y)dy

III III
(21)

converges to f(x) if I tends restrictedly to x. Examples show that the condition of
restrictedness is essential and cannot be omitted. (For a stronger statement see part
(ii) of Theorem (2.2) below.)

If (2.1) has a finite limit as I tends unrestrictedly to x, we say that F is strongly
differentiable at x. In view of the theorem of Lebesgue, if F is strongly differentiable
in a set E, the limit of (2.1) must be f (x) almost everywhere in E.
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We write systematically

f I f(y) I dy
f*(x)=sup 1

1): III
For positive f the modulus sign in the numerator can be omitted.

(2.2) TaxoRzM. (i) If I f I (log+ I f I)--' is integrable (in particular, if f is in any
LP, p > 1), the integral F off is strongly differentiable almost everywhere.

(ii) Given any 0(u), u >_ 0, positive, increasing, and such that 0(u) = o(u 1og1"-1 u) for
u--> oo, there is an integrable f > 0 such that 0(f) is also integrable and (2.1) is unbounded
at each x as I tends to x.

1j P

(iii) With the norm I I f IIP =
J
/

1 fQ I f lv dy) , we have

:I f*IIP <AP.",Ilf\IIP (p> 1), (2.3)

I1 f*II1A,"f IfI(log+IfI)'"dy+A,,,, (2.4)

IIfelirA,.mfQIf I(log+IfI)--1dy+AXm (0<J.i<1). (2.5)

We do not prove (ii); it is included here only to show that (i) cannot be improved.
It is enough in (i) and (iii) to consider non-negative f.
We begin with (iii) and recall the following results (Chapter I, Theorem (13.15)).

s+h
If g(x), 0<x<1, is integrable and non-negative, andg*(x)-sup h-1 f gdt}t, then

s+o s 111

lI g* IIP <AP II 9IIP (p> 1), (2.6)

II 9* II1 <A fo glog+gdt+A, (2.7)

I!9*Iiµ<A,IIgill (0<a<1).

From (2.7) we shall deduce that for r _> 2 we have

(2.8)

fo g*. (log+g* )r-1 dt < A,J
o

g. (log+ g)' di + A,. (2.9)

It is enough to prove this for g non-increasing (see Chapter 1, (13.4)), when

9*(x) =X--f gdt.
0

Since i!r(u)=u(log+u)r-1 is non-decreasing and convex, Jensen's inequality, together

with (2.7), gives

f
fo (9*)dx=foVii- f o9(t)dt)dx<fo {x-1 f oVr(9)dt)dx<A fo1/r(g)log+'r(9)dx+A

1g. (log+g)rdx+A=Af 9(log+g)r-llog+{g. (log+g)r-1)dx+A _< Ar f
00

and (2.9) follows.

t We use a different notation now; the present gs is the Or of Chapter I. 113.
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Given any integrable f(x) =f(xl, ..., x,,,) we consider, f o r each j=1, 2, .. , in,
functions

A{f}=Mt(x,f)=
s+o(h-1f

+A

=
f(x1, .., xJ- t' xt+i, ...,xm)dtJ. (2.10)

X1
J

The M j are measurable and, if I x, the ratio (2.1) does not exceed X. -1 ... Ml{ f }

taken at x. In particular
f*1< MmM,,,_1...M1{f}.

Each MM, being of the type g*, satisfies with respect to xj inequalities analogous
to (2.6), (2.7), (2.8) and (2-9). From this (iii) follows easily. Take m = 2, a case entirely
typical. By (2.11) and (2.6),

IIf* IIp <_ fo dx' fo (M,M,{f})"dxa AP fo dxl f0 M'{f}dx

=ADfo dx ,fo

M!(f)dx1 <_ APfo dxs f of'dx1

A'p1IfIIp'
which gives (2.3). We prove (2.4) similarly. As regards (2.5) for, say, m=2 we have,
using Holder's inequality at the appropriate place,

IIf*II fo`ixlf(M$M1(f})pdx'_A"fo`z1\f0M1{f}dz,

_< Asp (f
o dx,f,1 MI(f) dx,/ A"(fo dxifo Mi{f }

dxi)

dx2 (Af of
log+fdxl+A)jµ

This gives (2.5) and completes the proof of (iii).
Part (i) is a simple corollary of (2.5). If we apply it to kf, where k is a positive

constant, we obtain

IIf * II p < Ap. m f
Q

if I (log+I kf I )in-l dy+k-1 Ar.m

The last term is arbitrarily small for k large enough. Fix k and write f = f1 +f,
where f, is continuous and the integral of I f, I (log+ I kf, I)--' small. By the last in-
equality with, say, ,a = }, f2 is small except in a set E2 of small measure. In particular,
if x is not in E, and I contains x, F,(I)lI I I is small. On the other hand, F1(I)lI I I
converges uniformly to f1(x) as I converges to x; and fl differs little from f, except
in a set E1 of small measure. Hence, if x is not in the small set E, +E,,

F(I)F1(I) F2(I)

III
_

III + III
differs little fromf(x), provided I contains x and is small enough. This completes the
proof of (i).

Clearly (2.2) holds for functions defined in any finite interval, though the constants
A in (2.4) and (2.5) will then depend also on the interval.

Consider a set E in Em. We say that x is a point of strong density for E, if I El 1/1 1
tends to 1 when I tends unrestrictedly to x. Theorem (2.2) (i) applied to the character-
istic function of E implies that almost all points of 9 are points of strong density for E.
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We now apply (2.2) to Fourier series. Given a periodic f (x)= f (zl, ..., xm), denote
by o-z the (C, 1) means of S[f] and write

o*(x)=sup I oi(x) I (2.12)
a

Also, fixing a8 with 0<4< 1, denote by 171(x), or simply by il(x), where 0 < x < 2n,
the domain limited by the two tangents from Ox to the circle I z I = 8 and the more
distant are of the circle, and by S2(x) the Cartesian product of the domains
S2(xl), ... , fl(xm). We write

f* (x) = sup I f(r, y) (2'13)
(r, 7) anc=)

where f (r, y) is the Abel mean of S[ f ].
(Note that f * and f* have totally different meanings.)

(2.14) Taxoaxu. (i) If I f I (log+ I f I)--' is integrable (in particular if f e LP, p > 1),
then S[ f ] is summable both (C, 1) and A* at almost all x.

(ii) Given any O(u), u> 0, positive, increasing and o(ulogm-'u) for u-->oo, there is
a periodic and integrable f _> 0 such that O(f) is integrable andS[f] is nowhere eummable
either (C, 1) or A.

(iii) We have
(p>1), (2.15)

11 o-* i11 <Am fQ I.f I (log+ I f I)-dx+A,,,, (2.16)

I1o*11r<A,,.mfQIf
I(log+ifl)m_1dx+Ar,,m (0<,u<1); (2.17)

and analogous inequalities hold for f* (with A's depending also on 8).
We begin with (ii). Suppose that the f of (2.2) (ii) is initially defined for - n < x, < n,

j = 1, ..., m, and then continued periodically. Let x° be interior to Q. There is a
sequence of intervals I tending to x such that F(I)/I I I tends to +oo. We may suppose
that the I's have x° for centre and, moreover, are of the form

I,....,,.,,,: -1/nJ<t!-xi<1/ni (j=1,...,m),
with n1 integral. Since K, 3 0, and Kn(t) ->An f o r I t I-< 1/n, we deduce from (1.16) that

°n,....,n,,,(x°)>Amnl...n, f(t)dt=A m(2.18)
7., ....., I In...... n,,, I

Hence o-o(x°) is unbounded as n-*oo, and S[f] is not summable (C, 1) at x°. Clearly
if g(x)=f(x)+f(x+nl),S[g]is not summable(C, 1) anywhere, not even on the boundary
of Q.

The same argument works for summability A.
In the proof of (iii) we may suppose that f > 0. We recall (Chapter IV, (7.8)) that if

the o-,, are the (C, 1) means for a g(x) 3 0, then

o* (x) < Ag*(x), (2.19)
x+h

where nowg*(x)= sup h-1f gdt; this g* satisfies inequalities analogous to (2.6)-(2.8),
IhIG', x

with norms taken over (0, 27r).
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Suppose now that we modify the definition (2.10) of M, by replacing the condition
h+0 by Ih I <-n. Then starting from

0-.(X) =7r^' ...I_ f(xi+tl,...,xm+tm)Knl(tt)...K, (tm)dtl...dt,n

and using (2.19) we deduce the inequality

o-, 5 A"'M,, Mn-1... MJ,

analogous to (2.11), and the proof of (iii) runs parallel to that of (2.2) (iii) (the new
M's behave like the old ones, with new constants). Similarly for the method At (see
Chapter IV, (7.8)).

For the proof of (i) we write f =f '+ f ", where f ' is a trigonometric polynomial and
is small (see (1.23)). Then

I o'o(x; f)-o .(x;f) I<- I o*n(x; f")-o-a,(x; f"1 I +o(l)<2tr*(x; f")+o(1),

where the o(l) is uniform in x. Since, by (2.17), o-,(x; f") is small except in a set of
small measure, the convergence of (Q,(x; f)) almost everywhere follows without
difficulty. Similarly for the method At.

It must be stressed that, in contrast to the case of a single variable (see Chapter III,
(3.9), (7.9)), Theorem (2.14) (i) does not specify the points at which summability (C, 1),
or A, happens. It is possible to state conditions, satisfied almost everywhere, which
guarantee summability C, or A, at individual points, but they are inevitably rather
complicated in the absence of a theorem of localization.

3. Restricted summability of Fourier series
We say that n = (nl, ... , nm) tends restrictedly to oo, if the of tend to +oo in such a

way that all the ratios nj/nk (j, k= 1, ... , m) remain bounded. Similarly r = (rl, ... , r,,,)
tends restrictedly to 1, if each rf tends to 1 and all the ratios (1-r5)/(1-rk) remain
bounded.

Let aa=be the (C, 1) means of a series S. We say that S is restrictedly
aummable (C,1) to sum 8, if o-n tends to 8 as n tends restrictedly to oo. Similarly, we
define restricted summability A. If, in the definition of summability A* in § 1, we
introduce the condition that all the ratios (1- r1)/(1- rk) are to remain bounded, we
obtain the definition of restricted summability At.

(3.1) THEOREM. Each S[f] is almost everywhere restrictedly summable, both (C, 1)
and At, to sum f.

Restricted summability of series is analogous to restricted differentiability of
integrals, and one might expect that (3.1) would follow fairly easily from the restricted
differentiability of indefinite integrals. Actually the proof of (3.1) is not so easy. We
give it in the sufficiently typical case m = 2. We need first some lemmas. By rectangles,
we shall mean rectangles with aides parallel to the axes.

(3.2) LEMMA. Let h(t) and k(t) be two continuous functions of t -> 0, strictly increasing
to + oo and 0 at t = 0. Let E be a plane set of finite positive outer measure. Suppose that with
each (x, y) in E we associate a rectangle R = R=,v with centre (x, y) and sides 2h(t), 2k(t),
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where t depends on (x, y). Then we can find a finite number of disjoint rectangles
R, j =1, 2, ..., n, such that

EIR,I>$ IEI (3'3)

The proof which follows effectively shows that the a in (3.3) can be replaced by any
constant less than but this is of no significance; the point is that the numerical
factor is independent of the functions h, k. For applications to (3.1) we need only
the case h(t) = t, k(t) = at, where a is a constant, but the proof is no simpler in this case.

Denote by Ki the family of all R's associated with E, and let t, be the upper bound
of the corresponding t's. We may suppose that ti < co, for otherwise it is enough to
select a single R with I R I > a I E 1. Take an R, such that if t, is the corresponding
value of t, then h(t,) >;h(tl ), k(tl) > 4k(tl ).

Denote by K,' the family of those R in Kl which have points in common with R
and by K, the set of the remaining R; thus K, = K' , + K,. It is easily seen that the
rectangle R, obtained by expanding R, about its centre by a factor 5 contains all the
R's from K.

We repeat the argument, starting this time from K,. Let t, be the upper bound of
all relevant t's, and select from K, an R, such that if t, is the corresponding t we have

h(t,) > }h(t,` ), k(t2) > jk(ta ).

Denote by Kg the set of those R E K. which have points in common with R,, and by Ka
the set of the remaining R E K,. Hence K, = K,' + Ks, and all the R in K,' are contained
in the rectangle R, obtained by expanding R, likewise by a factor 5.

The construction is now clear. We obtain a sequence of numbers t,*, t2 , ..., finite or
not (in the former case Ki is empty for some j), and a sequence of disjoint rectangles
Rl, R .... Suppose first that is infinite. Since tl >- t, >- t, >- ..., there are two
possibilities: (i) the t.* stay above a positive number, (ii) t, -s 0.

In case (i), (3.3) is obvious for n large enough. In case (ii) it is easy to see that each
R in K, is contained in some Ri. For otherwise a certain rectangle R' would belong
to Ki for each j, which is impossible since the dimensions of the rectangles from K, do
not exceed 2h(tf ), 2k(ti ), and so tend to 0 as j -> co.

Since E is contained in the union of the R E Kl, E is contained in R, + A. + ... .
Hence

IEI<Ri25ElRi (3'4)

which gives (3.3) for n large enough.
If (RI) is finite and ends with R,1, we have (3.4) with n for co, and (3.3) holds a fortiori.

This completes the proof of (3.2).

(3.5) Line. Let Q be the square I x rr, I y I n, and Q' the square I x I <- 2r,

y 12r. Suppose that f is integrable over Q', and for each (x, y) in Q write

f kkf(x+u,y+v)idudv, (3.6)

where h(t) and k(t) are the functions of Lemma (3.2) and t is so small that the domain of
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integration is contained in Q'. Then the set J* (e) of points of Q for which f* (x, y) > g
satsefiea

I d * (6) 15 26g-' fQ I f(x, y) I dxdy. (3.7)

If (x, y) is in iff* (f), there is a rectangle R with centre (x, y) and sides 2h(t), 2k(t) such
that the ratio on the right of (3.6) exceeds f. By (3.2), there are a finite number of
such rectangles disjoint and satisfying (3.3) with E = d* (i); and the lemma follows from

fQ
I .f I dxdy>_ Ef I f I dxdy> Y - 1 9 I t .t*(f) I

(3.8) Lsata&. Let h(t), k(t), f be the functions of Lemma (3- 5), let a and 8 be fixed
positive numbers, and let y) be the function f* of Lemma (3.5) with ah(t), ffk(t)
for h(t), k(t). For (x, y) in Q let

f *(x, y) = sup { f«'''i(x, y) 2-k{+n} (i,j = 0,1, 2, ... ). (3.9)
i. i

Then for the set d' *(6) of points (x, y) in Q at which f *(x, y) > 4 we have

I if *(f) I_< AE:-lf
Q

If I dxdy. (3.10)

Let be the set 8*(E:) of Lemma (3.6) with ah(t), 8k(t) for h(t), k(t). Since
f *(x, y) > f if and only if f y) > 6 21(i+i) for some non-negative integers i, j, the set
6*(6) is included in the union of all dn; 21(f 21G+i>), and

I e*(6) I<_ E I d;'. v(6 21(i+i)) I<_ 264-1(E 2-kW)) fQ I f I dxdy,
{. i t.1

which gives (3.10).

(3.11) LEMMA. Let o-, be the (C, 1) mean of S[ f ], and let

ae (x, y) = sup I o (x, y) I for a-' c v//c 5 a. (3.12)

Then the set of points (x, y) of Q for which e* (x, y) _> £ has measure not greater than

Aa C-' fQ If I dxdy.

In the proof, f* and f* denote the functions of Lemmas (3.5) and (3.8) for
h(t) = k(t) = t. In view of Lemma (3.8), it is enough to show that

±(x, y) < A. f *(x, y). (3'13)

Clearly I o-,(z, y) I is majorized by a sum of four integrals of which a typical one is

r,,.(x, y) = ' f
o fo I

f (x + u, y + v) I K,(v) dude, (3.14)

and for the proof of (3.13) it is enough to show that

rr.(x, y) < Aa f *(x, y). (3-15)

Let h = min (µ, v) _> 1. Since K,(1) is majorized in (0, n) by n and by An-'t-s, both
K,,(t) and K,(t) are majorized, with a suitable A., by either of the expressions

AgA, AaA-lt-*. (3.16)
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Split the domain of integration in (3.14) into four rectangles by the lines u= 1/,I,
v =1/A. Using both estimates (3.16), we easily see that Tr,,,(x, y) is majorized by

1/A r
Aa f du f v s I f I dv+A

1M
a f dv f u-- I f I du

0 1/A J, J

1n

/A

l/A 1/A

+Aad-a 1/Af u-av-i I f I dude+A.A% f I f I dude
/A 0

Io

=AaPA+A.Q,t+A.RA+A.,SA,

say, where f stands for f(x + u, y + v). The inequality (3.15) will be proved if we show
that PA, QA, RA, SA are all majorized by Af *(x, y).

Let L be the integer satisfying n < 2L/A < 27r. Then

L 1/A ?1/A L 1/A VIA

PA (X, Y) < Y f duf v-2 I f I dv < 2-21f_ du f I .f I dui-1 0 21 '/A 1-'1 1 1A -2i/A
L

16 E 2--ifs 'i(x, y) < 16f *(x, y) 2-ii
J-1 f-1

so that PA < Af *(x, y), and it is clear that the same inequality holds for QA. Similarly

L t'JA
f

41/A

RA(x, y) <-' f
J

u--' I f I dudei.1-1 tl-'/A 25-'/A

L VIA VIA
2-xi+t f- f IfI dudv

i.i-1 J VIAJ -31/A
L

<64 X 2-(i+i) ffi. v(x, y)
i.i-1

<64f*(x,y) 2-}(i+i)=Af*(x,y)
i.5-1

Since SA(x, y) <4f.(-,y) < 4/ *(x, y), the lemma follows.
By the standard decomposition f =f '+ f ', where f' is a trigonometric polynomial

and II f" II1 is small (cf. (1.23)), we deduce from (3.11) that v',,.(x, y) converges almost
everywhere as u, v -* oo, provided a-1 < v/µ < a. Taking a=1,2,3,... we see that
c(x, y) converges restrictedly almost everywhere. By (1.23) it must converge almost
everywhere to limit f. This completes the proof of the part of (3.1) concerning sum-
mability (C, 1).

The argument goes without change for summability A since the Poisson kernel
satisfies the same inequalities as Fejer's, and the extension to A* does not introduce
new difficulties.

Let F(E) be a countably additive function of sets defined for subsets of the semi-
open cube (torus)

Qo: -rr<xi« (3=1,2..... m).

If desirable, we can extend F(E) to the whole Em by assigning identical distributions
to all cubes obtained from QQ by translations 2nn. It is well known that F(E) has at
almost all points x a restricted derivative F'(x), by which we mean the limit of
F(1)/I I I as I tends restrictedly to x. The derivative of F(E) is almost everywhere
the same as the derivative of the absolutely continuous component of F(E).
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We may consider the Fourier series of F(dx) (a Fourier-Stieltjes series)t

F(dx) - Ec, 00-),

where c,=(2n)-'^ f
Q.

(3.17)

are the Fourier coefficients of F(dx). The following theorem generalizes (3.1).

(3.18) THEOREM. The 8erie8 (3.17) ie almost everywhere restrictedly 8ummable both
(C, 1) and A* to Bum F'(x).

In view of (3.1) it is enough to prove (3.18) in the case when F(E) is purely singular,
that is, when F'(x) = 0 almost everywhere. We may also confine our attention to sum-
mability (C, 1). Going over the proofs of Lemmas (3.5), (3.8) and (3.11), we verify

that themeasure ofthesetofpoints where e,(x,y)> f does not exceed A.f-1 f F(dxdy),
J Q.

so that o-,.(x, y) = 0(1) at almost all points if (ku, v) tends restrictedly to oo. The proof,
however, that a',,,,(x, y) tends restrictedly to 0 almost everywhere is somewhat elaborate,
and the argument in the case m = 2 would no longer be typical. We take therefore
general in, and prove the following lemma:

(3.19) LEMMA. If F(E) = 0 for all E contained in an interval

I: Jzt-x,0j_<a! (j=l,..., m),

then the (C, 1) means v, of (3.17) tend restrictedly to 0 at almost all point8 of I.
Denote by Id the interval I with a, - 8 for a,, where 8 > 0 and j = 1, ... , in. It is enough

to prove that the a', tend restrictedly to 0 almost everywhere in I. We may suppose
that F >, 0. If x e 1e, then in

o-,(x)=n-TMf Kn(x-t)F(dt) (3.20)
v.

we need only integrate over the union of m (overlapping) sets each characterized by
a single inequality I x! - t, I 3 8, j =1, ... , in. Since F >_ 0, it is enough to show thatthe
integral extended over one of these sets, say over I xl - tl I 8, tends restrictedly to
0 almost everywhere in I,. Denote by Qo the (m -1)-dimensional interval - n _< xf < 1r,
j = 2, ..., m, and for Y c Qo write (D(E') = F(E), where E is the set of points of QQ
that project on to points of E'. Then the integral in question is majorized by

it m max K,,,(t)f , K,.(x' - y')'(dy'),

where n' = (n2, ... , nm), x' = (x2.... , xn.), y' = (ys, ... , ym). We already know that the last
integral is bounded almost everywhere in Qo as n' tends restrictedly to oo, and since the
preceding factor tends to 0 with 1/n1, the product tends to 0 and the lemma follows.

Wenow complete the proof of (3.18) forsummability (C, 1); we may supposethat m = 2
and that F is singular. Then given any e > 0 we can find an open set 0 c Qe, with I Qe - 0

arbitrarily small, such that f
o

I F(dx) I < e. Let F,(E) and F,(E) denote respectively

F(OE) and F(E - 0), and let o,,,, and o-r, be the (C, 1) means of the Fourier series of

t Since 7(S) is a set function, the notation P(dz) sees preferable to d7(z).
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F1 and F. By (3.19), the r tend restrictedly to 0 almost everywhere in 0, and, as
we know, the measure of the subset of Qe where the upper bound of the I a- ,. I,

subject to - < a , exceeds e1, is less than Aee-I f I Fi(dx) I <Asef. From this
J Q.

we easily deduce that o-,, = o , + o- tends restrictedly to 0 almost everywhere.
Let o, and f (r, x) be the (C, 1) and Abel means of a series Ec, 0-1. The theorem which

follows will be needed in § 5 below.

(3.21) THEOREM. (i) Either of the conditions

JQIIdx_< M<oo, fLf(r.x)IdxMczco (3.22)

is both necessary and sufficient for Ec, e'') to be the Fourier series of a Mass distribution.
(ii) Either of the conditions

o,(x)>0, f(r,x)_> 0 (323)

is both necessary and sufficient for Ec, e{5') to be an S[dF] with dF> 0.
Consider, for example, the o,. If we have (3.20), then

I on(x) 15 Jn(Y) I F(dy) I.

Integrating this with respect to x over Q, and interchanging the order of integration
on the right, we get

JIF(dY)I1T_mfK(X_Y)dX=fIF(dY)l.
QI

(x)dxThis

gives the necessity part of (i). The necessity in (ii) is proved in the same way as
for ordinary Fourier series, from (3.20).

Conversely, consider the first inequality (3.22) and denote by Fr(E) the mass
distribution with density or(x ). Then the total mass of F,(E) over Q does not exceed M.
Thereforet we can find m sequences N,.k, 1V V.,r, ... , Nm.k, k= 1, 2,..., each tending to oo,
and a mass distribution F(E) such that for every M-dimensional interval I c Q we have

F(I) = lim Frt(I)

provided the total mass of F over the boundary of I is 0. Now, if I n{ I N,,

(I N +Il) ... (1 - n+Ill -m f e-iav)or(Y)dY=7r-'" f e-!av)F.(dY)
1 m J JQ

and the exponential function is continuous. Hence, decomposing Q into a large
number of non-overlapping intervals I with the property just stated,$ substituting
N1. k, ... , N,,,, k for N1.... , Nm, and making k --b- cc, we find that the c, are the Fourier
coefficients of F. This proves the sufficiency part of (i), and the sufficiency part of
(ii) follows if we note that oa _> 0 implies F, z 0.

t We use here the analogue of Theorem (4.6) of Chapter IV. Cf. the references in
the notes to Chapter XVII at the and of the volume.

If the boundary of Q carries a non -zero man we have to replace Q by a suitable translation of Q.
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4. Power series of several variables
In this and the next section we consider functions of in complex variables z1, z ... .

Z,,,. We Write Zk = Xk + iIk, zk = rk e'Bt (and, if no confusion arises, also zk = rk euL) and
z = (zl, ... , z,,,). The set of all points z is denoted by Z,,,.

The (open) subset of Z. defined by the inequalities

Iz11<1, lz,l<l, ..., Izm1<1

will be called the unit m-cylinder and denoted by A,,,; it is the Cartesian product of m
open unit disks and has dimension 2m. The boundary B. of A. has dimension 2m.- 1
and is the union, for j =1, ... , m, of the Cartesian products of the circumferences
Iz,J=land the disks I zkI <- 1, k+j. The set

IztI=1, zs1=1, IZwl=1

is a subset of B,,,; it has dimension m and will be called the extremal boundary of Am;
we denotet it by P,,,. In certain problems it plays a more significant role than the full
boundary Bm.

A function u(zs, ..., zm) defined and continuous in a domain Dc Z. will be called
m-harmonic if it is harmonic in each pair of variables xk, yk; it is then a a fortiori
harmonic in the totality of variables xl, ..., yw.

It is clear that each u(zl, ..., z,,,) which is representable in A,,, by an absolutely
convergent series + W

E c r' (4.1)n,..... nw 1_W

is m-harmonic in A,,,. Conversely, if u(zl, ... , z,,,) is m-harmonic in A,,,, it is representable
by a series (4.1) absolutely convergent in Am. For suppose, for simplicity, that m = 2
and u = u(zl, z,). Then for each fixed z=, jz, I < 1, u is of the form

c!(za) r ' es1 ' 1
where c1(z,) =

i i
f ,u(rl et', z2) e-1' da. (4.2)

!_-m 2nrl 0

It is obvious that each c!(z,) is harmonic in x2, y so that

+W
c,(z2)= E ckrl*I eik8,,

where

(4.3)

1
Is

cfk 2Mi f0 c!(r,e'4) a-'+'dt-kI

1

r
s s'

rskif o',1o
u(rlei',r,ea)e-w,+ar)dsdt. (4.4)

Substituting (4.3) in the series (4.2) we obtain a series (4.1) (with m = 2) which converges
absolutely in A,; for if we fix any p, < 1, p, < 1 and observe that, by (4.4),

Jc!kjkMp1slip,1k1, where M=M(px,pa),

we see that (4.1) converges absolutely for rt <pl, r, <p,, and so also in As.

t r_ in sometimes called the edpo of B., or the diati,guie"ad boundary of A..
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A function ¢(z) = O(z1, ... , Zm) will be called regular in A,,, if it is representable in
Am by an absolutely convergent power series

nm m

(4,55)

C zn, znm= ++ nrn, ..rnmmei<n,B,+...+nmBm)n,...., 1 ... L n,. .... 1n,..... nwa0

We say that 0 belongs to the class H', p > 0, if the integral

fQ
I 0(rl ere, ... , rmer°m) I" d61... dOm (4-6)

is bounded for r1 < 1, ..., rm < 1. We say that 0 belongs to the class N if

fQ log+ I 0(r1 ere, ..., rmer°m) I d91 ... dom

is bounded, and to the class Na (where a > 0) if

f
J Q

log+ I c(r1 ere,...) I (log+log+ I ¢(r1 erl,...) I}° dO1 ... d9m

is bounded, for r1 < 1, ... , rm < 1. It is clear that if q> p, then

HgcHncNacN.

We have studied the classes H' and N in the case m =1 (see Chapter VII, § 7).
This case is rather exceptional and many results facilitating its study are false when
m > 1. For example, the zeros of regular functions of a single variable are isolated;
and if we divide any f from HD or N by the corresponding Blaschke product we do not
alter the class of the function, so that we can thereby reduce the general case to that
of a function without zeros. The zeros of regular functions of several variables, on the
other hand, form continua, and no analogue of the Blaschke product exists, with the
result that the theory of classes HP and N is much less complete.

In view of the Parseval formula (1.7), the function is in the class H2 if and
only if E I ca I2 is finite, that is to say, if and only if LC' er*w is a Fourier series of class
L2. Hence, by (2.14) (i), a function c(z) from H' has a non-tangential limit at almost
all points of the extremal boundary rm. This result will be generalized considerably
(see Theorem (4.8) below), but the following very special case of it is already of interest.

(4-7) TH$oa$a1. If O(z1, .... , zm) is regular and bounded in c1m, then 0 has a non-
tangential limit at almost all points of rm.

This result can be generalized as follows:

(4.8) T$EOREM. If O(z1, ..., zm) i8 in N._1 (in particular if I0EH'), then 0 has a
non-tangential limit at almost all points of rm.

We fix a number 0 < A < 1, and consider the function

c5 (z1, .. , Z.) =O(AZi, ..., Az,n),

which is continuous in the closure of Am. We recall that if 1(r(z) is regular for I z 1,

then log+ I t(r(z) I is majorized in I z I -< 1 by the Poisson integral of the function
log+ I)fr(e1t) I (Chapter VII, p. 273). Applying this to OA(z1, ..., zm) qua function of
z1, we find that

log+ I OA(r1er=,,zf, ... , Zm) I <n
u

log+ I O"(efv,, zy, ..., zm) I P(r,,y1-x1)dy1 (4.9)
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for rl < 1, I z, I < 1, .. , I zm I 1. Similarly

log+ 01(rl e:z, r=eal,, z3, ... , Zm) I

1 2*

V
log+ 10x(rl efzl etv., zs, ... , Z1.) I P(r,, ys - x2) I days

for r, < 1, r2 < 1, I z, I < 1, .. , I zm < 1. This combined with (4.9), gives

log+ I O A r2 e;z, zs . , zm) I

flog'
Sw

-i o J o log'' I sty., za, . , zm) I P(ri, yi - x1) P(rs, Ys -x:) dyidys,

an inequality immediately extensible to

log+ I Y?-(r' etz,... , rm etz,^) rI

r <nmJQlog+ I O(e;y,, ..., etym)1 H P(rj,yf-x!)dy1. (4.10)

Hence log+ 95a(z) I is majorized in cam by the Poisson integral of the values taken on
rm by log+ Oz I.

We fix a 8 with 0 < 8 < 1, and consider the domain f2(z) = f 8(x) described on p. 199,
and the Cartesian product fl(x) of domains f(xl), ..., S2(xm). Let ux(z) =ua(zl, ..., zm)
be the Poisson integral of the (non-negative) function

log+ j 01(etyt, .. , e''ym) I.

Denote by u*(x) the upper bound of uA(z), by v*(x) the upper bound of log+ I OA(z) I,
and by v, (x) the upper bound of log+ I ¢(z) I, all for z e L2(x) (see (2-13)). By Theorem
(2.14), we have for0<u<1

J u(x)]" dx)<A$,,.m

=A,,,,.m f ...)I}'"-'dx+A8.r.m
(4.11)

Q

By hypothesis, the last integral stays below a certain bound M independent of A
By (4.10), we have v-1 (x) <u*(x), and in (4.11) we may replace u by v;. It is also
easily seen that v; (x) -> v, (x) for each x as A --> 1. Hence (4.11) leads to

[v*(x))#dx)1/1U

.m, (4.12)
JQ

which implies in particular that v,(x) is finite at almost all points of r,
The function v,(x) depends on the parameter 8. Making 8 tend to I through a

sequence of values, we see that log+ I O(z) I is non-tangentially bounded at almost all
points of Pm. Hence c(z) is non-tangentially bounded at almost all points of Fm.

The rest of the proof of Theorem (4-8) consists in showing that we can refine the
non-tangential boundedness of 0 to non-tangential convergence.

Given a point z, I zo I = 1, consider a curvilinear triangle limited by an are of a
circle I z I =p < 1 and by the two segments joining the end-points of the are to zo. The
interior of such a triangle will be called a triangular neighbourhood of zo and will be
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denoted by T(z°) (see p. 201). If z = (z1, ..., z,,) is on Pm, the Cartesian product of
triangular neighbourhoods T(z5), j = 1, ... , in, will be called a triangular neighbourhood
of z and denoted by T(z); the T(z5) may of course vary with j.

A function u(z) defined in Om will be said to satisfy condition B at a point z0E r,,
if u is bounded in some triangular neighbourhood of z°.

The proof of Theorem (4.8) will be completed if we establish the following m-dimen-
sional analogue of Theorem (1.1) of Chapter XIV.

(4.13) ThzoRzm. If u(z) = u(zl, ... , zm) is m-harmonic in A,,,, and satisfies condition
B at each point of a set E c Q, then u has a non-tangential limit at almost all points of E.

This theorem gives slightly more than we actually need, since the of Theorem (4.8)
is bounded not only in triangular neighbourhoods T(z) but in larger domains S)(z).
The proof of (4.13) runs parallel to the second proof of Theorem (1.1) of Chapter XIV,
but certain details require more elaboration. We may suppose that u is real-valued.

Suppose first that all T(z) in (4-13) are symmetric, that is that each T(zJ) is bisected
by the radius to zJ. We may further suppose that T(z,), ..., T(zm) are congruent. Two
neighbourhoods T(z') and T(z') will be called similar if T(zz) and T(4) are congruent
for all j. The same argument as in the case of a single variable shows that under
the hypotheses of (4.13) we can find a perfect subset P of E with I E - P' arbitrarily
small, and similar neighbourhoods T(z°)=T(zl) x ... x T(z,°n), such that if z° is in II,
where II denotes the set of points (ei, ..., e{-) with x in P, then u is uniformly
bounded, say I u 1, in T(z°). From now on, T(z°) denotes this uniquely defined
neighbourhood.

Suppose that the curvilinear parts of the T(z°) are on the circle 4 z 1 -d, and
denote by T1(z°) the intersection of T (2°) with the ring 1- }8° < I z I < 1. Write

Ti(z°) = Ti(4) x ... x T,(z°,n),

and V= E TI(z'). (4.14)
een

The set V is open, but not necessarily connected, and I u 1 in V. Denote the boundary
of V by B.

Write pn =1- 1 /n, n = 2, 3, ..., and denote by P(n) the set of x = (xl, ..., xA) such that
(pn etz-, ... , pn etz") is in V. P(14 is open, and contains P for n large enough; only such
n are considered. Let 0,(z) be the Poisson integral of the function equal to
u(pn a'i, ... , pn el-) in Ptn) and to 0 in the complementary set Q(n), and let %rn(z) be
the Poisson integral of the function equal to 0 in Fe') and to u(p ei, ... , pn eiz-) in
Q'n); then Y&, is continuous in the closure of V and is 0 on H. Since u(pnz) is the Poisson
integral of the values it takes on r., we have

u(P.Z) = On(z) +'fn(Z). (4.15)

The 0n are Poisson integrals of a function numerically not exceeding 1, and so
are equicontinuous in the set I z, I _< 1- e, ..., + z,n I _< 1- e. We can therefore find
a sequence (O.k) converging in A., and uniformly in each set just written. The function
¢(z)=limq5n!(z) is m-harmonic, with `¢(z) _< 1, in A,,,,. By (4.15), (ilrnr(z)} converges
in A,. to an m-harmonic function 0,(z), and

u(z) = O(z) + k(z). (4.16)
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Since 0 is bounded in A,,,, and thus is the Poisson integral of a bounded function, 0
has a non-tangential limit at almost all points of Pm. For the proof of (4-13) it is there-
fore enough to show that r/r has a non-tangential limit almost everywhere in 11; we
show that this limit is 0 almost everywhere in II . For simplicity of notation we suppose
that m = 2, but the proof is general.

It is enough to prove that there exists a positive X(z) in A. which majorizes
Vr(z) I in V and tends non-tangentially to 0 at almost all points of H. For consider an

x°= (xi, xz) in P which is a point of strong density for P (see p. 307) and at which X
tends non-tangentially to 0; almost all x°E P have this property. The hypothesis that
x° is a point of strong density implies that if 0 < A < 1 is fixed, and (x1, x,) is any point
sufficiently close to (xO,,xn), then the rectangle (of the points (fl, fn))

I fl-x1l A x1-xo 1, I f,-x,i <AI x,-4I (4.17)
must necessarily contain points of P. This in turn implies that if N is any fixed
triangular neighbourhood of z°=(etxl,et ), then the part of it which is sufficiently
close to z° is totally covered by the T(z) with z in H. Hence X(z) majorizes I Or(z)
for those z in N which are close to z°, and Or has a non-tangential limit 0 at z°.

It remains to construct the required X.
Let h(x1, xs) be the characteristic function of the open set Q complementary to P, let

X1(z)=-
J.sP(r1,t. -x1)dtl(-

f' h(tt.)P(r,,t%-x2)dt, J (4.18)

be the Poisson integral of it, and let

`

1

X5(z) = P(r1, x1) + P(r,, xs) + X1(z), (4.19)

where z = (r1 etxt, rl etzs). Clearly Xt has a non-tangential limit 0 at almost all points
of 1I.

For each n, t/rn(z) is a continuous function in the closure 17 of V. If we show that
there is an M > 0 independent of n such that, for each n, as z in V approaches a point
z° on the boundary of V, we have

-MlimsuPXs(Z)<ifn(z°)<MlimsuPX,(z), (4.20)

then the maximum principle for harmonic functions (each m-harmonic function is
also harmonic) will imply that

''//rr

Y'n(Z) I -< MX1(Z) (Ze V),

t Since the situation is geometrically somewhat lees simple than in the one-dimensional case, we add
a few words of explanation. Instead of a bi-cylinder we may consider the Cartesian product of the half-
planes - m <x, < +m, y, > 0 and -m <z, < +m, y, > 0. Let P be a closed set of positive measure in
the plane y,=0.. y,=0, and T(91. f,) a fixed triangular neighbourhood

h>y1>a1z,-f, , h>y,>ajz,-trl
of a, variable point (i We have to show that if (xi. A.) is a point of strong density for P. fi> 0 is
fixed, and y,, y, are arbitrary positive and sufficiently small, then any point (x,, y,) x (x,, y,) satisfying

(*) yt>fjz,-xij, yt>fihz,-zip
belongs to some T(f,, g,), with (f f,) r P, that is

(**) Y'>ajx,-W. ((fj,t,)EP).
We may suppose that fl < a, for otherwise the result is obvious. But if we have ('), then the (Cl. f,)e P

satisfying (4.17) with A = fl/a satisfy also (" ).
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and, making n- oo, jr(z) < MX2(z) (z E V),

so that X = MX, will have the desired properties.
We recall that I Vrn 5 2 in V, and Vf = 0 in H. Let z°E B and consider various

special cases:
(i) 140 1 = 1, 14 I = 1. (4.20) is then obvious;

(ii) I z = 1 - J60 or I z2 j = 1- J6°. (4.20) is again obvious;
(iii) both z° and z2 are in the ring

R: 1-,)8°<jzj<1.

Given a z E R, consider the largest open arc (a, fi) such that z is in T1(ei=) for x in (a,,O);
we call this the are associated with z. If z1 E R, z2 E R, the point z = (z1, z2) is in V if and
only if the Cartesian product of the are (a1,fi1) associated with 21 and the are (x2,412)

associated with z2 contains points of P. Hence, under the hypothesis of (iii), if (a5, fi)
is associated with zf, j = 1, 2, the Poisson integral of h is at z° not less than the Poisson
integral of the characteristic function of (a1, 481) x (a2, 482), which is the product of the
one-dimensional Poisson integrals of the characteristic functions of (Lz , B1), j =1, 2.
But the Poisson integral of the characteristic function of (a1, fl1) exceeds at zf a positive
number depending on T only (Chapter III, (6.18)). Hence X&°) is bounded away from
0, and since I ?' (z°) I < 2 we again have (4.20).

= 1 (or, vice versa, 4 °2 E R, I zi I = 1). Write zPj = t! 0-4, and consider(iv) zi E R, 11 4
the formula (4.18). Fix t1 in the inner integral. Then h(t1, t2) becomes a function of t2,
continuous at each point where h takes the value 1. It follows that as 22- 4 the inner
integral approaches h(t1, x2) if h(t1, x2) = 1, and has non-negative inferior limit if
h(t1, x2) = 0. Hence in all cases the inferior limit of the inner integral as z2--> 4 is not
less than h(t1, x2). This gives

lim inf X2(z) _> P(ri, xi) + h(t1, x2) P(r1, t1- xi) dt1. (4.21)
,-.r n -r

Denote the right-hand side by X2(zi; x2), and replace 4 by general z, I z I < 1. The
resulting function X2(z; x2) is a one-dimensional analogue of X2(z) and has been dis-
cussed in detail in Chapter XIV, p. 202. Clearly h(t1, x2) is the characteristic function
of a one-dimensional open (possibly empty) set Q(x2). The complementary (one-
dimensional) set P(x2) is closed, and non-empty, and consists of points t1 such that
(t1, x2) E P. Let V(x2) be the union of T1(ei'i) for t1 E P(4), and let 11(x2) be the set of
points et'i, t1 E P(x2).

Consider also eiza) qua function of z. It is harmonic and numerically not
greater than 2 in V (x2), continuous in the closure of V (x2), and 0 in 11(x9). Therefore
(see Chapter X I V, (1.8)) there exists a constant M, depending on T only, such that

I

e"i) MX2(z; x2) for z E V(x2), from which we deduce, by (4.21), that

I I = I V' ,.(zi, 4)1 < MX2(z° ; 4) -< M lim sup X:(z)

This completes the proof of (4.20), and so also of Theorem (4.13) when the neigh-
bourhoods T are symmetrical. The general case is reducible to this, since if we fix 7'
and a closed set P as in the symmetric case, then at every point of strong density of P
we have a symmetric neighbourhood in which u is bounded.
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The preceding proof also shows that the conclusion of (4.13) holds if u is m-harmonic
not in the whole of 0,,, but only in triangular neighbourhoods of each point of E. We
shall use this remark presently.

If u is regular in Am, (4.13) can be strengthened. We say that $(z), regular in A,,,,
behaves restrictedly at a point z° = (e'zi, ..., e'-'), if there is a triangular neighbourhood
T(z°) such that 1(T(z°)) is not dense in the complex plane.

(4.22) THEOREM. If w = (D(z) = (D(z1, ..., zm) is regular in A. and behaves restrictedly
at each point of a set Ec Fm, then (D has a finite non-tangential limit almost everywhere
in E.

We may suppose, without loss of generality, that each rD{T(z°)},z°E F, ie disjoint
with a fixed circle i w - w° I < r, so that u= 1 /{ b(z) - w°} is regular and bounded in each
T(z°), Hence u has a non-tangential limit almost everywhere in E. It follows
that V has a non-tangential limit almost everywhere in E, and we have to show that
this limit can be infinite only in a set of measure 0.

For a fixed choice of real parameters al, a2, ..., am consider the function

`1'(z) =1)(z eu', z e t , . . . , z e'°-) (4.23)

regular in I z I < 1. Let E- be the set of points where V(z) has an infinite non-tangential
limit. The set of is such that `l'(z) has an infinite non-tangential limit at e'r is of measure
0 (Chapter XIV, (1.11)) and contains the is such that Hence
the intersection of E°° with the straight line x, = t + a,, j = 1, ... , m, has linear measure 0.
The a's being arbitrary and F' measurable, we have I E°° = 0.

(4.24) THEOREM. If (D(z) is regular in Am and not identically 0, then the set E° of
l'm, where b has a non-tangential limit 0, is of measure 0.

Consider the function (4-23). It cannot be identically 0 for any choice of the a's.
Hence, arguing as before, the intersection of E° with any straight line x, = t + a,,
j = 1, 2, ..., m, is of measure 0 (see Chapter XIV, (1.9)) which implies that I E° I = 0.

5. Power series of several variables (cont.)
We shall now study the boundary behaviour of functions 0 regular in Om and of

class N, that is, such that

j 0(r, et2 rm e12") I dc, ... dxm < A (5.1)fQ

forfor some A and all r, < 1.

(5.2) THEOREM. If 0 E N, then 0 has a restricted non-tangential limit at almost all
points of Fm.

We first show that if 0E N then log+ 10(z) I is majorized in A. by a non-negative
m-harmonic function u(z).

Consider the Poisson integral
m

Rm(zi, ... , Zm) =
n--m

log+ I q5(R1 e'"".... , R,,, 06) I n P(rt,i R,,1, - x,) dt, ... dtm,uH,
fQ t-i

(5.3)
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where R1 < 1 for allj. Theright-hand side is m-harmonic in the m-cylinder I zl I < R1, ... ,
zm I < R,,,, and when extended by continuity to its closure coincides with log+

foriz,I=R,,...,Izml=Rm.
Since 0 is a regular function of z, for z, ... , zm fixed, the integral

r2w
,-1f" log+ I O(Rj A, ...) ( P(rl/Rl, tl - xl) d41 (5'4)

is a non-decreasing function of Rl for rl < Rl (Chapter VII, p. 273)t. If we multiply
(5.4) by P(r2/R2, x2 -t2) ... P(rm/Rm, Xm - tm) and integrate over (0, 2n) with respect
to t2, ... , tm, we still have a non-decreasing function of Rl. It follows that, for any z
in Om, uR, ... R,,,(z) is a non-decreasing function of Rl, ... , R. provided that I zl I < Rl,
... , I zm I < Rm. Hence at each z e A. the function UR, .. R,(z), which is defined if
Rl, ... , R. are sufficiently close to 1, tends, increasing, to a limit u(z) = u(zl, ..., zm).

This limit is finite, since if I zJ < R < R' < Rt < 1 for all j, then, by (5.3),

(1 R' +Ru )'" ( R e{4 ... R e{ dtR,...R,,(z)I<_ 2n
log'

.JQ
$+ I 1 m )I 1... dtm,

so that the left-hand side is uniformly bounded.
A similar argument, under the same hypotheses concerning the z, and Rt, shows

that the partial derivatives of UR, ... R. with respect to r5 and xJ are also uniformly
bounded. Hence the convergence of uR, ,,, R.(z) to u(z) is uniform in every m-cylinder
Jzl I < R, ... , I zm I < R, R < 1, which shows that u(z) is m-harmonic in Om.

Since 0 is regular in zl, we have
+r 2r

log+ I (rl e'u', z2, ... , Zm) I < n-1J log+ I Y'(R1 e", z3, ... , zm) I P(rl/Rl, x1 - tl) dtl
0

for rl < Rl < 1 (Chapter VII, p. 273). Since Orl a xi, z2, ... , Zm) is regular in z we have

log+ 10(ri e:z, r2 eiz, z3... , zie) I

2r

n-1J log4 I g(r, eu', R2 eui, z3, ..., zm) I P(r./R2, x2 - t2) dt,
0

for ri<,,(( R2 < 1. This and the previous inequality give

log+ I Y'(r1 eiz, rr eixt z3 z,)
f2 2

n 2J
J

l og+ I O(R1 ell-, R, e", z3, ..., zm) I P(rl/R1, x1- t1) P(r2/R2, x2 - ta) dt1&2
o a

f o r r, < Rl, r2 < R2. Proceeding in this way we see that log+ I #(rl eel, ..., rm e ) I does
not exceed (5.3), and making R,, ..., Rm tend to 1 we find that log+ I O(z) I is majorized
by a non-negative m-harmonic function u(z), as asserted.

t Let O(z) be regular for I z I < 1, and let 0 < R, < R. < 1. In the argument above we are using the fact
that, if r < R then

l J7r log' I O(R,eu) I PI r. x-,l dt E 1
J

clog' I (Rzere) I P3 , a-t as.n o ,R, I n o `R,

To prove this, denote the right-hand side by u(z), where z =re' . Since u is harmonic in I z I < R. the
right-hand aide does not change for I z I <R1, if log+ I #(R,8")I is replaced by u(R,t") and P(r/ R,. x-l)
by P(r/R,. z-t). Since, by Chapter VII, (7.10), we have log' j #(R,e1f) I au(R, e" ), the required inequality
follows.
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By (3.21) and (3-18), u has a restricted non-tangential limit at almost all points of
rm. Hence 0 is restrictedly non-tangentially bounded at almost all points of rm,
This gives (5.2) as a corollary if we prove the following general result:

(5.5) THEOREM. Suppose that c(z) is regular in Am, and that at each point of a set
E situated on the extremal boundary r 0 is restrictedly non-tangentially bounded.
Then 0 has a restricted non-tangential limit almost everywhere in E.

The main idea of the proof consists in reducing the case of restricted non-tangential
boundedness to that of ordinary (unrestricted) non-tangential boundedness by a
suitable change of variables. The geometric aspect of the change of variables is slightly
easier to grasp if we consider functions not in A,,, but in the Cartesian product of half-
planes; these two cases are clearly equivalent through linear transformations of
the individual variables.

Write z1=x1+iy1, and suppose that c(z)=q(z1, ..., z,,,) is regular in the domain

yl > 0, ... , Ym > 0, (5.6)

and that, as z restrictedly and non-tangentially approaches any point x°
of a set E situated on the extremal boundary

y1= 0, ym = 0 (5'7)

of (5.6), the function remains bounded (not necessarily uniformly in x°).
The hypothesis that 0 is bounded as z restrictedly and non-tangentially approaches

an x° e E means that 0 remains bounded as z tends to x° in such a way that

max(yk/y1)-<a (j,k=1,..,m),
1,k

(5'8)

x1-x;I <,6y1 (j=1,..., m), (59)

where a and ft are any fixed but arbitrary constants. Of course the upper bound of cI
may depend also on a and,8.

Condition (5.8) expresses the restrictedness, and (5.9) the non-tangential character,
of the approach. If we omit (5.8) and merely require that the y's tend to 0 through
positive values we obtain the unrestricted non-tangential approach.

We fix an e, 0 < e < 1, and consider the transformation

z1= w1+ew,+...+ew

z,=ew1+ w,+...+ew,,,,
..............................

zm=ewl+ew,+...+ w..

On setting m1= u1 + iv1 we reduce this to two transformations

z =eu+ +...+u111 1
c

IN,

x1= u1+eu,+,..+eum,

(5.10)

(5.11)
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and y1= vl+evz+...+evm,
..............................

(5.12)
ym=evl+ev2+...+ Vm,J

either of which we denote by T.
Let X, Y, U, V be the spaces of points x = (x,, ..., xm), y = (yl, ..., ym), etc. 1,et

Y+ be the `positive octant' of Y, that is, the (open) set of all y's with strictly positive
co-ordinates; we define V+ similarly.

Since T is non-singular, it establishes a one-one correspondence between the points
of X and U. The map of V+ by T is an 'angle' A,, a conical domain whose closure,
except for the origin, is interior to Y+. (If the of are non-negative but not all 0, the
yf are positive.) The map of AE by T is another angle, which we denote by B,, whose
closure, except for the origin, is interior to A,. For obviously B,cA,, and if some
boundary point of B, were on the boundary of A,, it would mean that there were two
points p and q on the boundary of the positive octant such that T2p = Tq, that is,
q=Tp, which is impossible unless p=q=0.

We now prove the following two facts:
(i) If the point (w,, ... , wm), whore all the w1 have positive imaginary parts,

approaches a point (u°, ... , non-tangentially, then (zl, ..., zm) approaches the
corresponding point (x°, ... , restrictedly and non-tangentially.

(ii) If (z1.... , z,,,) approaches (x ..., non-tangentially and in such a way that
(y1, ..., ym) E B then (w,, ..., wm) approaches (ui, ..., un,) non-tangentially.

Observe that (ii) is, in a sense, a converse of (i). For in the first place, if (y ..., ym)
is in B,, and so also in A,, then we have (5.8) for some a=a, Conversely, since T
tends to the identity transformation as e-* 0, and so A, and B, exhaust the positive
octant as e -* 0, it follows that if we have (5.8) for some a, then (yl, ... , ym) is in B,
for e small enough.

In view of the homogeneity of T we may suppose that

(xi, .. . X O.) = (u0, , 'um) = (0, , 0).

To prove (i), suppose that I uf' Avf for allj. Then, by (5.11) and (5.12), f x, < Ayf.
Moreover, by (5.12), for all (y l, .... ym) E A, we have

tmaxvf<yk<(1+ne)maxvf (k=1,...,m), n=m-1, (5.13)

which shows that the ratio of any two y's does not exceed (I +ne)/e; hence (i) is
established.

To prove (ii), suppose that I xf Ay, for all j. Solving the equations (5-11) with
respect to u1, ... , urn, we obtain the Uk as linear functions of x1.... , xm. Hence
! uk I < B max I x, I for all k, whore B is a constant. This, combined with the preceding
inequality, shows that + Uk ABmax y1, for all k, and so, by (5.13),

Iuk I < AB(1 + ne) max vf. (5.14)

Finally, since (y,, ... , ym) is in B,, it follows that (v1, ..., v,,) is in A,, and since the
ratio of any two v's in A, does not exceed (1 +ne)/e, (5.14) implies that

IukI<AB(1+ne)se-'vk (k= 1, ..., m),
which proves (ii).
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Return to the function b(z1, ... , z,,,), and, substituting for z1, ..., zm the values
(5-10), write

O(z1, . , zm) = O w ,. . . , Wm). (5-15)

The function Vi is defined and regular if all the v, are positive. Let E* be the set in the
U-space obtained from E by the transformation (5.11); the measures of E* and E
differ by a constant factor different from 0. If (w1, ... , w,,) approaches non-tangen-
tially a point (ui, ... , E E*, then, by (i), (z1, ... , z) approaches restrictedly and
non-tangentially the corresponding point (xi, ... , x°m) E F, and, by (5.15) and the
hypothesis of (5.5), ,/, remains bounded. Hence, after (4.13), 0, has a non-tangential
limit almost everywhere in E*. This in turn implies, by (ii), that if z approaches non-
tangentially a point (x°, ... , x°m) e E in such a way that (y1,..., ym) stays in Be, then
c(z1, ..., zm) tends to a limit; the exceptional set depends on e, and we call it Ne. Take
now a sequence s1, e2, ...-> 0, and write N = ENef. Clearly I N I = 0, and since Be exhausts
the positive octant as e -* 0, we immediately see that 0 has a restricted non-tangential
limit at all points of F - N.

This concludes the proof of (5.5), and so also of (5.2).

The account just given may be completed by the following remarks.
Theorem (5.5) is an analogue of (4.13), but while in (4.13) it was enough to assume that the

function was m-harmonic, in (5.5) we imposed on 0 a much stronger condition, that of regularity.
It is, however, easy to see that (5.5) holds if 0 is the real part of a function regular in A,,.

The restricted non-tangential approach in Theorem (5.5) may be replaced by a slightly weaker
hypothesis, namely, that z approaches x° restrictedly through a triangular neighbourhood
T(x°). The condition of boundedness may be replaced by the requirement that 0 does not take
values insidesome circle; the circle may vary with x°, and even with the upper bound of the ratios
(I - r,)/(1 - ri) when all the is tend to 1. It can then be shown (we omit the proof since it does not
require now ideas) that under these weaker conditions 0 is restrictedly non-tangentially bounded
at almost all points of E, and so the conclusion of (5.5) still holds.

Finally, if o is regular in A. and tends restrictedly and non-tangentially to 0 in a set E of positive
measure situated on I',,, then 0 = 0. For 'transplanting' 0 from A. to the Cartesian product of
half-planes and using (5.15) we find, after (4.24), that Vf - 0, and so 0=0.

The rest of this section is devoted to the study of the behaviour of ¢(z) = O(z1i ... , zm)
when only one of the variables zy tends to the boundary. By X(t) we denote a function
which is non-decreasing and convex fort > 0, satisfies X(0) = 0, but is not identically 0.
Then X(t)lt > c > 0 for t large enough.

(5.16) THEOREM. Suppose that O(z) =O(z1, ..., zm) is regular in Am, and that
zw 2

... log+ I c(r1 e'.t,, ..., rm etzm) I dx1 ... dxm < M (5.17)
0 o

or some M and all r1 < 1. Then, for almost all x1 in (0, 2n) and all z" ..., zm of modulus
less than 1, the function 0(z1, z2, ..., zm) converges to a limit as z1 tends non-tangentially
to eu'. The convergence is uniform over every set

1zd-<l-r7, ..., lzml_<l->7

so that 02'(22, ... , Zm) = lim 0(z1, a2, , zm)

is a regular function of z, .. , z,,, in Am_I
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If instead of (5.17) uje have
2 Ys

J o ,fo
X(log+ I O(r, rm elzm)1) dzi ... dxm < M, (5.18)

then f'...f'x10g+Ix1(r,es orm e'") I } dx, ... dxm < M(xl) < co (5.19)

for almost all x1.
In particular, if O(z1, ... ; zm) is in H', then almost all functions c,(z,, ... , z,,,) are in

H°, a> 0.
Since X(t)/t > c > 0 for large t, (5.18) clearly implies (5.17) (with a new M).

2 2

Consider IP(z) =fo ...J o I1og+ I c(z, pei==, ..., pet:-) I dx,... dxm, (5.20)

where z = re1z, r < 1, p < 1. Fix an R < I and suppose that r < R. We have

log+ I #(reix pecs,... , perm)
1 aN

- loB+ I O(Rert pei:,..., peiZm) I P(r/R, x - t) dt, (5.21)n o
and, furthermore, the right-hand side is a non-decreasing function of R in (r, 1).
Integrating this over 0 _< x, _< 27r, ... , 0 _< xm 5 2n, and interchanging the order of
integration on the right, we obtain the inequality

1 s.

IP(reis) a ro IP(Re") P(r/R, x - t) dt (r < R). (5.22)

Denote the right-hand side here by uR(reiz). It also is a non-decreasing function of
R for r < R < 1. Moreover, it is non-negative and harmonic in refs, and the limit

u(reis) = lim uR(reis),

finite or infinite, exists in the interior of the unit circle.
If we integrate uR(rei=) with respect to x over (0, 2ir) and apply (5.20) and (5.17), we

get 2. 2.
fo u, (re'=)dx= fo I,(Reit)dt

J
2. 2.

... log+I (Reu pe' i Idtdx,...dx,,,<M. (5.23)
0 0

Now the limit of a non-decreasing sequence of harmonic functions is either harmonic
or + oo (uniformly in every smaller domain).The latter is impossible since in that case
the first integral (5.23) would tend to +oo. Hence u is harmonic, and using (5.22)
we come to the following conclusion: under the hypotheeis (5.17) the function 1,(z)
is majorized in I z I < 1 by a non-negative harmonic function u(z).t

Denote by M8(x1) the upper bound of u(z) in the domain (For the definition
of £ see p. 199.) Since a non-negative harmonic function is the Poisson-Stieltjes
integral of a non-negative mass distribution, M8(x1) is finite for almost all xl and all
8 < 1. Suppose that M3(xi) is finite for all d < 1, and that I z, I k ro, ... , I zm I . ro, where

t Our u(z) is an increeeing function of the parameter p, but making p-.1 we can obtain a u(z)
independent of p.
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ro < p. Then, since log+ I c(z1, ... , z,,,) I is majorized by its Poisson integral with respect
to any of the variables z1, ..., z,,,, we have

1og+ I c(z1, ... , zm) I 1 p+ro I O(z1, pe1, zs, ... , zm) I dx22n p-ro o
< / 1 2 /p+r_\: Js. Js..2,)2

(\ 11 t
JJ

108+ I 0(z1, pe;:, pe12-, ..., zm) I dxydxsp-r o o

11 rp m- 2.r 2.rp+(-)'^-1J
J ..J0

log+ 10(zv pe..., pe1-) I dx, ... dx.
2n p -ro

= ( Ii4) M-1 1P + ro
Z,)''T-

and we get Iog+ I O(z1, z2, ... , Zm) nl-"` (p - ro)1-'" M8(4)

for z1 E QJ(x ), I Z21 r0, . I Zm I < r0.

Hence O(z1, z2, ..., zm) is bounded for z1 E i2e(xi) and I z2 I, ..., I z,,, I not exceeding ro,
for each ro < I and d < 1. It follows that O(z1, z2, ..., zm) is equicontinuous in the vari-
abler z2, z3, ... , zm, provided these variables numerically do not exceed an ro < 1 and the
parameter z1 stays within an S2e(x°) such that Ma(xi) is finite.

We can now prove the existence and regularity of c,(z2, ..., zm) for almost all x1.
It is enough to show that there is a sequence of points (z4, ..., zm), k = 1, 2, ..., dense
in Om_1 and such that O(z1, z;, ..., 4T,) has, for each k, a non-tangential limit at almost
all points et=1. For there will then exist a set E of measure 2a, such that for zi E E all
functions O(z1, z:, ..., z%) have non-tangential limits at etz°i. Using the equicontinuity
just established, we come to the following conclusion: if xO, EE and I z3 I < 1-y, ...,
I zm I < 1 - y, the function O(z1, z2, ..., zm) converges to a limit as z1 tends non-tan-
gentially to etc, and the convergence is uniform in z2, ..., zm. Hence °i(z2, ..., zm)
exists, and is regular in Am_1.

The existence of the required sequence ((z2 ..., z')) will be established if we show
that for each system of radii ra, ..., r°m less than 1 almost all systems of amplitudes
(xs, ..., xe,) have the property that O(z1, re, et-Ts, ..., rom e' .) has a non-tangential limit
almost everywhere. By (5.17),

J.,2"

2w 2"

J log+ I O(r1 etz, rierz,, ... , rome'Zm) I dx1 dx2 ... dxm < M.
0 of

The inner integral being a non-decreasing function of r1, it follows that at almost all
points (x4, ..., xo") we have

f0bo+I(ni&hi, ro2ex*2, ..., r°me=) dx1=0(1)

as r1 1, so that o(z1, r, et'i, ..., r,me` :) has a non-tangential limit almost everywhere.
Suppose now we have (5.18). We write it as

z" 2"

'-{10
Io X{log+I 0(rletz,, ..., rmeum)I}dx,...dxm)dx,<M.
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Making r1--3,. 1 and keeping r2, ..., r,,, fixed we obtain

('2a Yr

f
YA l

J (
0 l 0 O

111

Since the inner (repeated) integral is a non-decreasing function of each of the radii
r2, ... , rm, we deduce (5.19) with M(x,) finite almost everywhere. This completes the
proof of (5.16).

If q5(z1, ..., z.) is in N, then, by (5.19) with x(t) = t, the function OZ (z2, ..., zm) is
in N for almost all x1. Hence the iterated limit

( Y 2 ' NZ2+ . + Zm) = llm Y'2'(Z2, .. . zin)

exists and is in N for almost all points (x1, x2). Repeating the argument we see that if
O(z,, ..., zm) is in N then the iterated limit

02,X,...2,,, = lim {... { lim 0(z, .. , zm)fl

exists at almost all points (x1, ..., xm).
If 0 is in N._1 then, by an ordinary non-tangential limit, which we may

denote by et2m), also exists almost everywhere.

(5.24) THEOREM. If O(zi, ..., zm) is in Nm 1, then
Y' (eu' ... , elm) = (5.25)

at almost all points (x1, ..., xm). In particular, at almost all points (x1, ..., xm) the value
of the iterated limit of 0 is independent of the order of the passage to the limit.

Suppose, for example, that m = 2. The existence of g(eiXi, eu.) almost everywhere
implies that, given an e > 0, we can find a set E in the square Q(0 <x1 < 2n, 0 <x2 < 27T)
such that I Q - E I is arbitrarily small and

GI 0(rt eiz, e.2 eixi)- Y'(et2i, euf) F. (5.26)

for (x1, x2) a E, I - r1 < 8, 1- r, < 8, 8 = 8(e).

(We use here only the existence of the radial limit.) Hence, making r,-3- 1 in (5.26),
we see that I 2'(z ) _ ( ;: ;2) I \ e (1-r<2 <-8)r e2+ a ,e <

for almost all x1 such that (x1, x2) is in E, that is, for almost all (x1, x2) in E. Now,
making r2 -* 1, we see that I 02,:, - 0(eix, ei2,) < e almost everywhere in E. Since
e and I Q - F I are arbitrarily small, the theorem follows.

MISCELLANEOUS THEOREMS AND EXAMPLES

1. If the integral of I f I is strongly differentiable in E, tho integral off is strongly differentiable.
almost everywhere in E.

[For each n = 1, 2, ... write f=g,+h,,, where g,(x) is eitherf(x) or 0, according as) f(x) I <n oi-
l f(x) I > n. Then I f) _) g, I +) h , F = C + H,,, D) = r. + X,,, where F, G,,, H,,, 1, F,,, X denote
respectively the integrals off, g,,, h,,, ) f), I g, ), 1 h, J. Since g, is bounded, it follows that 0, and
I', are strongly differentiable almost everywhere, X,= m- P, is strongly differentiable almost
everywhere in E, and X.= I h, I almost everywhere in E. Let E. be the subset of E where (i) h, = 0,
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(ii) the strong derivative of X exists and equals I h I = 0, (iii) the strong derivative of G. exists
and equals g,,. Then, if x° E E. and I is an interval converging to x°, the right-hand side of

F(I) I II-`=G.(I)III-'+H.(I)III-'

tends to g (x°) + 0 = f (x°). Observe that I E - E. I -+ 0 as n -> co.]

2. There is an f E L such that the integral off is strongly differentiable almost everywhere, and
the integral of I f I almost nowhere. (Papoulis [I].)

3. (i) Suppose thatf(x) x,,,) is 0 near x = x° and that each of them functions

is bounded in x. Then S[ J] is summable to 0, both (C, 1) and A', near x = x°. (ii) If m = 2, the result
holds if g, and g. are bounded near x°.

4. (i) If the integral of f(x x1) is strongly differentiable in E, then S[f] is summable A' almost
everywhere in E. (ii) If the integral of I f(x xr) I is strongly differentiable in E, then S[f) is sum-
mable (C, 1) almost everywhere in E. (iii) If is 0 in a two-dimensional interval I, then
S[f] is summable to 0, both (C, 1) and A', almost everywhere in I.

5. The analogue of Example 4 (iii) is false for m> 3: there is an xr) which is 0 in
a neighbourhood N of (p, 0, 0) and such that S(f) is summable neither (C, 1) nor A at any point
of N.

[Let fl(xl, z3) be periodic, non-negative and such that, say, the Abel means of S[fl] are unbounded
at each point (x x.) (cf. (2.14) (ii)). Let f(x x x3) be equal to f(xl, x5) for 1tr <, I xr I < rr, and too
elsewhere. Then, if ; x. 17T and (x1, xr) is fixed, the Abel mean of S(f] at (x x xs) exceeds

and so is unbounded if 1 - rs tends to 0 slowly enough in comparison with I - r, and 1 - r,.]

6. Suppose that f(z) = f(z ..., E N. If the integrals

0

fF..
0log`If(rle'r,...,r,.,e'r-)Idy,...dy,,,

are uniformly absolutely continuous (that is, if the integral of log+ I f I taken over seta E C Q is
small with I E(I,Q uniformly in r), then for any convex non-decreasing X(u), u>0, we have

f Q
I

f(r.e':,, .... rme':-) I}dx< fQ X{log+If(e':...... ...) I}dx,

where f(e'=', .., ell-) denotes the restricted radial limit off.
In particular, the conclusion holds if there is a non-negative convex X(u) such that X(u)/u -s co

with is, and the integral

r, <p < 1 for all j wee have (cf. pp. 321-2)
M r

.,r,.,e.:..)Icn-- log'If(Pea,, .,pe,r-)InP ',x,-tJ dt.
Q f-t P

Using the hypothesis of uniform absolute continuity, we can make p -* 1 on the right, and we
obtain

log+ I f(r, ell-, ., log+If(e",, .,eu-)I HP(r,,x,-t,)dt.
Q 1-1

By Jensen's inequality, we may replace log+ If I by X(log' I f I) throughout, and integrating
both sides of the resulting inequality with respect to x over Q, and changing the order of integration
on the right, we obtain the desired inequality.)

7. If f(z) E H=, and if the boundary values off belong to 1-0,.8 >a. then f(z) c HI.
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8. If f (z) a N. and if the integral (*) in Example 6 is a uniformly absolutely continuous function
of (x,, ...,x.) then, for almost all x1,

_. z.
.. log+ I fA(rs e'w ..., r. e'-) I dal, ... dy.,

0 0

is an absolutely continuous function of (xs, ..., x.).
[The hypothesis is equivalent to that of the existence of a x(u), u ;x 0, non-negative, convex,

non-decreasing, satisfying x(u)/u ->co as u -> co, and such that the integral

r JQx(log+If(rler",...) I)dx

is bounded in r. Apply (5.l6).J

9. .Let f(z) a Ha, and let g#(x) be the upper bound of If I in the domain 1l(x) = tl,(x) considered

on p. 317. Show that if fQ I f (z) Ia dx r M for z e A., then

(i) IQ I ga(x) Iadx<A,,,aM.

(u) JQIf(rtr.e'sw)-f(eln,...,el-) Iadx-.0 (as r-.1).

10. If f(z) a N1(that is, if the integral of log+ If(z) I log log+ If(z) I over Q is bounded in r), then

for almost all (x1, xs). If f (z) a Ns, then f'""4(z....., z.) is almost always independent of the
permutation of (x1, z1, xs), etc.
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NOTES

CHAPTER X

§ 1. There are two expository articles about trigonometric interpolation : Burkhardt, Trigono-
metrische Interpolation, Eau. der Math. Wise. ii, A, 9a, pp. 642-93, covering the period up to the
end of the nineteenth century, and E. Feldheim [ 11, presenting results prior to 1938.

The case of non-equidistant fundamental points has been studied extensively by Fejer; a list
of his papers will be found in Feldheim [ 1]; see also Erdos and Turin (1].

In using the Stieltjes notation we follow Marcinkiowicz [7].

§ 2. Theorem (2-10) seems to go back to Bessel; see Burkchardt, loc. cit. p. 648 sqq.

§3. For (3.6) and (3-1l) see M. Riesz[3]. Theorem (3.13) of Bernstoin [I] has considerable
literature; see, for example, an expository articlo of Schaeffer (2]. An important generalization
will be found in Schaeffer [3]. (3.16) will be found in Zygmund [ 10]; see also E. Stein [ I ]. For
(3-19) see Szegd [3].

§ 4. For (4-8) see do In Val16e-Poussin [3]. (4-9) goes back to Euler and Gauss; cf. Burkhhardt,
loc. cit. p. 651.

§ 5. Convergence of interpolating polynomials is studied in de Is Vallde-Poussin [3] and Faber [2),
where we find (5-6) in the case v = n. It seems that Jackson (5) was the first to consider the con-
vergence of I,,.,, for v*n, but he limited himself to Theorem (5-6), and apparently did not recog-
nize the generality of the problem.

For (5-5) see Natanson [ 11, for (5.13) and (5.16) Faber [2]. (5.17) (i) is due to Mareinkiewicz [91;
the extension to (ii) was communicated to us in conversation by P. Erdos; see also Erdos [2).

§ 6. Polynomials J. were introduced by Jackson [3]; the B,,. , by Marcinkiewicz (6], [ 101. Bern-
stein [3], was the first to point out that the J. are Hermite interpolation polynomials. (6-12) is
due to Foj6r [13]; for (6-14), (6-15), (6.18) we Bernstein[5], [6]; for (6-14) see also Offord[1
Klein [I].

17. In connexion with (7.1) and (7-4) see Erdos and Turin [ 1. I]. (7-5) is due to Marcinkiewicz [9]
(see also Marcinkiewicz and Zygmund [6); Lozinaki [ 1 ]); an analogue of (7-6) for Tchebyshev
interpolation was proved by Erdos and Feldheim [1); interesting extensions to derivatives will
be found in Zarantonello(1). For (7-10), (7-23), (7-26), (7-27), (7-29) see Marcinkiewicz and Zyg-
mund [6]; (7.30) is an earlier result of Bernstein [6]. (7-32) was proved by Erdos [3]. That
(I,+I, +... 1) (and a fortiori the f of (7-32)) can be unbounded at some points, even if
f is continuous, was shown by Marcinkiewicz (10).

§ 8. (8-6) is due to Faber; it seems to be still an open problem whether for any sequence of
systems of fundamental points there is a continuous function for which the interpolating poly-
nomials diverge at some point. For (8-8) see Faber [3], Marcinkiewicz [9]. (8-14) was proved
independently by Grunwald [1] and Marcinkiewicz (7). (8-25) is proved in Mareinkiewicz[7]
(the fact that there are continuous f such that S[f] converges uniformly, and (1.[f)) diverges at
some points, was observed by Faber [2]), and so are (8-28) and (8-30).

§ 9. (9 I) is essentially a result of Gri nwald [2] and Marcinkiewicz [8], though both of them
actually proved (9-15); the proof of (9.1) given in the text follows theargument of Marcinkiewicz [8].
For (9.18) see Gosselin [ 1).

CHAPTER XI

§ 1. The definitions of generalized symmetric derivatives appear in do Is Vallbe-Poussin [2].
For (1.7) and (1.20) see Gronwall [4), Zygmund [22). (1-25) is stated in Plessner [6] and his Trigo-
nometriache Reihen.

§ 2. For (2-24) and (2.26) see Hardy and Littlewood [12], (8]; they were the first to formulate the
problem of necessary and sufficient conditions for the summability C of a Fourier series. For (2.1)
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see Plessner, Trigono;netrische Reihen, p. 1381, who considers only integrala (the case - 1 <a< 0,
r= 1, was proved by Hardy and Littlewood [26]). For (2-20) and (2.22) see Kogbetliantz[1],
Verblunsky[4]. See also Bosanquet[2], Obrechkoff[l].

§ 3. For (3.1) see Zygmund [ 12; § 31, where also earlier literature is indicated. A generalization
will be found in Bosanquet [1].

§ 4. The basic theorem (4.2) is proved in Marcinkiew;cz [2J; (4.30) is a special case of a general
theorem proved in Marcinkiewiez and Zygmtmd [2].

§ 5. For (5-2) see Plessner [5], where complex methods are used; the proof of the text is from
Marcinkiewicz (2]; (5.4) and (5-8) will be found in Marcinkiewicz [2] and Marcinkiewicz and Zyg-
mund [2] respectively. (5-15) is due to Titchmarsh [I].

§ 6. References to the 31-integral are scattered in the literature on Fourier series; the exis'ence
of] for f e M is proved in Plessner [5]. That Fourier-Riemann coefficients need not tend to 0 was
known to Riemann [1]; another example is indicated in the first edition of this book, p. 19.
For (6-4) see Titchmarsh [7].

§ 7. Basic work here is due to Denjoy; see his Calcul dee coefficients dune eerie trigonometrique,
where we also find references to his earlier papers. Marcinkiewicz and Zygmund [2], have shown
that, suitably defined, major and minor functions of order 1 are sufficient to prove the Fourier
character of an everywhere convergent in using major and minor functions of order 2
we follow Cage and James [ 1), and James [ 11. Further bibliographic references (especially to the
work of Burkill and Verblunsky) will be found in James [2] and Jeffery's Trigonometric aeries;
see also Taylor [ 1 ].

CHAPTER XII

§ 1. A theorem equivalent to (1.11) was first proved by M. Riesz [4] for (a,fi) in the triangle
0 _< /J S a _< 1, and extended to the square 0 E a i 1, 0 -</3 1 by Thorin [ 1 ]. In Riesz's paper we
find for the first time the idea of an 'interpolation of linear operations', which has proved very
fruitful since. Riesz's proof was real-variable, Thorin used complex methods. Further simplifica-
tions of proof will be found in Thorin [2], Tamarkin and Zygmund (11, Calder6n and Zygmund [1]
(the argument of the text is that of the latter paper). An extension of the argument to 'sublinear'
operations (for the definition see § 4 below) will be found in Calder6n and Zygmund [3). (1-39) is
due to E. Stein [2]; see also Hirschman[1]. Interpolation of measures has been considered in
Stein[2], Stein and Weiss(1). The observation on p. 96 that we can take M1=M1= 1 in (1-11)
is due to G. Weiss.

For other proofs and extensions, see Paley [4] (his argument is reproduced in the first edition
of the book), L. C. Young [ 1 ], Salem[ l 6], [17). Calder6n and Zygmund [4].

§ 2. (2-3) was proved by W. H. Young [3], [4], for P = 4.0,8,..., and by Hausdorff (1) in the
general case; (2.8) is due to F. Riesz (8); the idea of proving (2-8) by using interpolation of linear
operations is due to M. Riesz [4]. (2.25) was proved by Hardy and Littlewood [15]; the extension
to (2.15) is due to Verblunsky [3]. See also Hardy and Littlewood (23]; Mulholland [1].

§3. A particular instance of interpolation in the classes H' (a proof of (3.22)) will be found
in Thorin [2]; general theorems were obtained by Salem and Zygmund (8), Calderdn and
Zygmund [1] (whence we take the argument of the text) and G. Weiss [2].

§ 4. The basic theorems (4-6), (4-22) and (4.39) are due to Marcinkiewicz [14]; see also Zygmund
[28). The argument giving (4.41) (i) is not novel (see, for example, Zygmund (4]) but the theorem
has not been formulated explicitly; for (4.41) aft Yano[1] (also Titchmarah[3]).

Recently Cotlar and Bruachi [ 1 ] have shown that the proof of (4.6) can be modified so as to give
the Thorin-Riesz theorem (1.11) for the triangle 0 _<,8a, with an extra constant on the right
of (1.14).

§ 5. The main results here are due to Paley [3], who extended (3.19) to uniformly bounded
orthonormal systems (later, certain extensions which do not require new methods were also
formulated, independently, by Verbluneky [3], and in the first edition of this book). See also
Zygmund[28]. For further generalizations see Pitt[1], Stein and Weiss[1], Littlewood[5].

16. See Hardy and Littlewood [15], [22], Gabriel [1], (2].
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§ 7. For (7- 1) we Banach [1]. Sidon (4], [6); the first edition of this book reproduced the proof of
(7.1) from Verblunsky (3]; the present argument is from Salem and Zygmund [ 1 ]. (7.5) is due to
Gronwall [3] (see also Paley [6]); for (7.6) see Zygmund (8] (which contains a slip easy to correct:
the class conjugate to exp L' is L(1og+L)1); for (7.8)-Paley [5), Hardy and Littlewood [24].

§§8,9. For the definition (8.3) see Weyl 11). The main results here are due to Hardy and Little-
wood [9,.,i], [19] (for limiting cases see also Zygmund [5], [1]).

§ 10. For (10.2) and (10.9) see Milicer-Gruzewska [ 1) ((10.9) is stated there forB(x) bounded only;
that the result is valid in the general case was observed by Pyatetaki-Shapiro [1), and Salem
(unpublished)). The proof of (10.9) given there is shorter but less elementary. For (10.5) compare
Rajchman [7]. (10.11) will be found in Salem [121].

(1012) is due to Wiener and Wintner [2), who generalized an earlier result of Littlewood [4]:
see also Schaeffer[1]. That the mans carried by F can be confined to a perfect non-dense set of
measure 0, was shown by Salem [9). [11]. Iva.ev-Musatov [1] showed recently that the c" in
(10.12) can be made 0(n-1), O((nlogn)-1), O{(nlogn loglogn)-1}, ..., etc.

§ 11. Important work in the theory of numbers S has been done by Pisot [ 11; see also his exposi -
tory article [2] (to the literature mentioned there one should add Hardy [12]). In calling the num-
bers S we follow Pisot's terminology. The importance of numbers S for the problems of uniqueness
was first realized by Salem [ 12, 11] (see also an earlier paper of Erdos [4)), where we find (11.17)
and (11.18). Salem's proof of (11.18) contains a slip, as stated by Salem himself in [1271,]. How.
ever, the theorem is correct, and was proved finally in Salem and Zygmund [8], [9], by using an
idea contained in Salem [12,,,) together with the important notion of sets H1"'.

Sets H1"" were introduced by Pyatetski-Shapiro (I ]. [ 2]: he also showed that for each n there are
sets H""1 which are not denumerable sums of sets H1"-11.

Sets H", which appear in the proof of (11.18) could be avoided, and we could deal directly with
sets H111, by borrowing a little more from the theory of algebraic numbers; see Salem and Zyg-
rnund [9].

In [2), Pyatetski-Shapiro shows also that there are perfect sets M which are not Al in the
restricted sense (for the definition of sets M in the restricted sense see Chapter IX, p. 348).

Example 12, p. 159. R. O'Neil has suggested the following argument, somewhat simpler than
that indicated in the text. Suppose, for example, that f e A_ 0 < a < 1, g c A,, 0<,8< 1, a + fi< 1.
We can easily verify that

1 (2x
h(x+2u)+h(x-2u)-2h(x)=2nrl (f(t+u)-f(t u)] [g(x-t+u)-g(x-t-u)] dt.

The right-hand side is clearly 0 (1 u la+f), and so h E Aa,B (cf. footnote in Chapter II, p. 44).
The argument works in other cases.

CHAPTER XIII

§ 1. (1.2) and (1.8) are final forms of results obtained successively by Kolmogorov and Seli-
verstov [1 J, [2], Plessner (3], Hardy and Littlewood [21]. For (1.14) see Plessner[3); (1.17) is
a corollary of results of Kolmogorov [5] and Hardy and Littlewood [ I ]. (1.22) was communicated
to us by A. P. Calderdn.

§ 2. (2.1), (2.5) and (2.21) are due to Littlewood and Paley, (1]. The original proof of (2.1) was
quite difficult; simplifications are from Salem and Zygmund [6). See also Marcinkiewicz [13].

§3. (3.2) is due to Marcinkiewicz [5); in paper [2] he shows that the 0((log 1/h)-1) in (3.3)
cannot be replaced by anything tending less rapidly to 0. See also Salem [ 14].

§ 4. See Paley and Zygmund (2).

§ 5. (5.1) is due to Kuttner [2]; the proof of the text is from Marcinkiewicz and Zygmund [2),
where also (5.7) will be found. (5.13) was communicated to us by Mrs M. Weiss. is due to
Menllov [3]; see also his papera[4], [5].

§ 6. See Marcinkiewicz and Zygmund [7].

§7. For (1.3) see Hardy and Littlewood[4], Sutton[I], Carleman[3]; for (7.7)-Borgen[1],
Zygmund [23].
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§ 8. (8- 1) was proved by Marcinkiewicz [10], for q=2; for general q we Zygmund [21u). That
S[f] need not be summable Hu at the points where ,1(h) = o(h), was shown by Hardy and Little-
wood [6]; see also Wang [1], Hardy and Littlewood [141.

§ 10. That Ec,4, converges almost everywhere (for any orthonorrnal {i,}) if E I c, I' < co (p < 2),
was proved by Men4ov [em]; the rest of (10.1) is in Paley [3]. For (10.21) see Menliov [6d,
Rademacher[1]; a different proof will be found in Salem (17). For more results about the con-
vergence and summability of orthogonal series we Kaczmarz and Steinhaus, Orthogonalreihen.

§ 11. For (11.3) (i) see Beurling [3); for (ii)-Salem and Zygmund [10], Broman [1].

CHAPTER XIV

§ 1. (1.1), proved by the method of conformal mapping, and (1.9), are in Privalov[1]; see also
Lusin and Privalov [ 1 ]. The second proof of (1.1) is due to Calder6n [ 2). (1.10) was proved by
Pleesner [6]; for further study see Collingwood and Cartwright(l]. (1.11) seems to be new; a
simplification in its proof we owe to P. Cohen. For (1.12) see Bagemihl and Seidel (1), Rudin [ I ].
(1.21) is due to Ostrowaki [1] and (in the case of uniformly bounded functions) Khintchin [1].
(1.25) will be found in Zygmund [25]; the condition of the uniform boundednsees of the F. can be

replaced by a weaker one (loc. cit.), but not by the condition that the integralaJ * log+ I ell) I dx
0

are uniformly bounded (a counter example can be easily constructed by means of the function
exp((l+z)/(1-z))), though the latter condition implies the existence of a subsequence (F,, (z))
converging uniformly in each fle(x,) for almost every xs EE; see Tumarkin [1].

§ 2. For (2.3) am Lusin [5]; parts (i) and (ii) of (2.2) will be found respectively in Marcinkiewicz
and Zygmund [8] and Spencer (I ]; see also Calder6n [3]. The case of integrals of I F' 1' over domains
tangent in the unit circle is discussed in Piranian and Rudin[I].

13. For (3.6) and (3.16) see Littlewood and Paley [1r.u]; the proof of (3.15) given in the text
is new and was communicated to us by J. E. Littlewood. Partial extensions of (3.15) to the
case h 41 will be found in Flett [2]. Analogues of (3.6) and (3.15) for the function at are discussed
in Marcinkiewicz and Zygmund [8]. For (3.24) see Littlewood and Paley (In].

§4. For (4-1) we Pleeaner[4]; the proof of the text is from Maroinkiewios and Zygmund[7).
The result admits of an extension to aummability (C, a) (loc. cit.), but not to sununability A
(of. (1.12)).

16. For (6.1) and see Marcinkiewicz [ 1 ]; for (6'6) -Zygmund [20].

CHAPTER XV

Most of the results of this chapter will be found in Littlewood and Paley [I]; they mostly
confined themselves to functions in p> 1. Extensions of results to other classes, and sim-
plifications of proofs, will be found in Zygmund [21, I]. (4-14) is due to Marcinkiewicz [ 12]. The
function y, is essentially the same as the function g* introduced by Littlewood and Paley (loc. cit.),
and important in their work; this fact was noticed rather late; we Sunouchi [2], Zygmund [27).

For (2.10) we also Marcinkiewicz and Zygmund [6], Boss and Bochner(I].
Extension of the theory to classes H', r < 1, is not yet complete; see Zygmund [21u] (Theorem 4

of t,lue paper contains a misprint: the denominator (log n)v" should be replaced by (log n)ua), (20],
(27], Sunouchi [1], [2], Stein and Weiss (2]. Here we only mention the following result: If
F(z) = Ec"z" E H', r< 1, then £c" e'"6 is summable (C, r-' -1) almost everywhere (Zygmund [21n]).
The example of the function F(z) =(I - z)-u'= EA;"''' uz", which belongs to every H'-' (e> 0),
shows that summability (C, r-t - I) is a beet possible result.

CHAPTER XVI

§ 1. In this chapter, after a general introduction, we consider only a few selected problems on
Fourier integrals. For other aspects of the theory, and bibliography, as Titchmarsh, Fourier
integrals; Boohner, Vorleaungen fiber Fouriersehe Integrals; Wiener, The Fourier integral; Paley
and Wiener, Fourier trunefor+iw in Me oomplss domain; and relevant chapters of Schwatz's Th[erie
des distributions. For older literature see Burkchardt, Trigonometriache Reihen and Integrals,
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A brief account of the aummability (C, k) of integrals can be found in the first edition of this
book.

§ 2. For (2.17) see Planoberel [2], [3].

§ 3. For (3.2) we Titchmarsh [6]; also M. Rieez [4], Hills and Tamarkin [3]. Hewitt and Hirsch-
man (1) have shown that we have strict inequality in (3-3) unless]=0. For (3-8) see M. Rieez [1]
(a limiting case is in Kober [i]); for (3.14)-Zygmund [29], Kao [2).

The important problem of the harmonic analysis of bounded functions has been started by
Beurling. A brief account of the results obtained, together with bibliographic references, will be
found in Pollard [ 1 ].

§ 4. For (4-19) see Wiener [4]; the essence of (4-24) is a classical result of the calculus of prob-
ability, in a form strengthened by Cramer.

§ 5. See Ferrand and Fortet [ 1]; Salem and Zygmund [7).

§ 6. Salem and Zygmund [2).

17. More details about the theory functions of exponential type will be found in Boas's Entire
functions, to which we also refer for bibliography. In connexion with (7.19) see Hardy [11]. The
example (7-31) was communicated to us by R. P. Boas.

§8. For (8-4) see Wolf[3].

§ 9. The case of integrals Je'xzdX(A) with x absolutely continuous is discussed in Zygmund [30];
for the general case see Wolf [3], Zygmund [31), where also applications are given. All theme papers
also treat the case of summable integrals.

§ 10. (10.3) is due to Offord [2). who also considers the more general case of integrals eummable
(C, 1). The latter case can also be reduced, by means of equisummability theorems, to that of
series eummable (C, 1) (treated in Chapter IX, 117, 8).

CHAPTER XVII

§ 1. An elementary introduction to double Fourier series can be found in Tonelli's Sera trigo-
nometriche. For bibliographic references to older literature see Geiringer[1).

Concerning spherical summability of multiple Fourier series see Bochner [3], E. Stein [2],
Chandrasekharan and Minakshisundaram, Typical means.

12. For (2.2) (i), (iii) and (2.14) (i). (iii) see Jeeeen. Marcinkiewicz and Zygmund [ l ] (also Bur-
kill [1]). A proof of (2.2) (ii) will be found in Sake (2].

For certain aspects of rectangular summability we also Herriot [1].
13. Restricted (C, 1) summability of double Fourier series was first considered by Moore [2];

for the main results of this section see Marcinkiewicz and Zygmund [9], Zygmund (24).
The m-dimensional analogue of Theorem (4-6) of Chapter IV which we use in the proof of

(3-21) can be found in de Is Va116e-Poussin[4) or Frostman[1].

§ 4. For (4.7) see Zygmund [26] (where, however, only the case of radial approach is explicitly
stated), and for (4.8)-Zygmund [25], where a different proof is given; the present proof uses ideas
from Calder6n [2]. Calder6n's paper also contains (4-13), (4.22) and (4.24).

For related problems see also Bochner[2], Bergman and Marcinkiewioz[1], Bore [1).
15. See Calderbn and Zygmund [2].
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a(b) refers to item b on page a; n. refers to a footnote.

21, [f; a, b] (average), 16
Abel: mean(s), 96, 149 if.. approximation by,

123, bounds for, 101 (7.10), majorants for,
164 ff.; sets of uniqueness U., 362; sum-
mability A, 80, 99 if., 262 f., 302, limits of
indetermination for, 80, uniqueness under,
352 ff.; theorem, 4; transformation, 3

Abscissa: of interpolation, 2; Tchebyshev, 6
Absolute convergence of: Fourier series,

240 if., lacunary series, 247 if., trigono-
metric series, 232 if.

Absolutely continuous: functions (A), 136;
positive variation (functions N'), 282;
uniformly, 143

Adjusted interpolating polynomial, 26
Agnew, R. P., 377
Akhieser, N., 377
Alexits, G., 229 (14), 377
Algebraic integer, 148; S-number, 349, 148
Aljan5ic, S., 229, 379
Almost convergence, 181
Almost everywhere: convergence, 161 if., test

for S(JJ, 170 ff.; summability, 161 if.
Analytic: family of linear operations, 98;

functions, 252, boundary behaviour of, 199 if.
Angle preserving map at a point, 292
Angular: derivative, 294; point, 43
Annulus, 178
Approximate: derivative, 324, of higher order,

77; limit, 323
Approximation: best 13 (7.3), 115, 8;devia-

tion, 114; error of Abel means, 123; to
functions by trigonometric polynomials,
114 ff. ; of reels by rationals, 236, 20

Arbault, J., 251 (4, 5)
Arc: associated with a point, 202, 320;

opposite, 99
Area of an image, 290
Arithmetic means, 78; delayed, 80, 376 (1);

first, 88 ff.; integral, 83, 69; k-th, 76; third,
110(10-2)

Arzelh, C., 148
Associated : are, for a point, 202, 320; function,

for a set, 9
Asymptotic behaviour and Fourier coeffi-

cients, 379 (2)
Asymptotically: distributed functions, 264;

equal functions, 14
Average, moving, 117

262 if.
Bagemihl, F., 334
Baire, R., 375

Banach, S., 378, 382
Banach space(s), 163; examples of, 163 f.
Banach Steinhaus, theorem, 185
Bary, N., 377 f., 382 f.; theorems, 349, 382
Basis, 234
Behaviour (of functions): boundary, 199 ff.;

restricted, 203, 321
Below, uniformly semi-convergent from, 174
Bergman, S., 335
Bernoulli polynomials, 42
Bernstein, S., 378 f., 380, 331; inequalities, 11,

276; theorems, 240, 244 (4.2), 11, 276
Bers, L. 335
Besicovitch, A. S., 377
Bessel, F. W., 331; inequality, 12 ff.
Beet approximation, 13, 115, 377 (13), 8
Beurling A., 380, 334 f.
Billik, M., 378
Birnbaum, Z., 378
Black interval, 194
Blaschke products, 274, 280 if., 316
Boas, R. P., 229 (10), 378, 334 f.
Bochner, S., 334 f.
Bohr, H., 382
Bojanic, R., 229 (10), 379
Boks, T. J., 381
Bore], E.: means, 315 (5); summability B,

314 (4)
Borgen, S., 333
Bosanquet, L. S., 91
Bound: lower, upper, 67 n., essential, 18
Boundary: behaviour of functions, 199 ff.;

distinguished, 315 n.; external, 315; recti-
fiable, theorems on, 293

Bounded: deviation, 229 (14); essentially, 18;
functions (B), 136; sequence (C, a), 76

Bounded variation: functions of (V), 138;
power series of, 285 ff. ; sequence of, 4

Boundednese: Ces&ro (C, a), 76; uniform, of
the S,[J), 90 (3.7)

Bray, 230
Broman, A., 334
Bruschi, M., 332
Burkchardt, H., 375, 331, 334
Burkill, J. C., 332, 335

C (summability), 65 if.
(C, 1) (Ceearo), 88 ff., 138 if., 143 if., 169
(C, a) (Ceegro), 76, 94 if., 110 if.
Calder6n, A. P., 378, 380, 332 f., 335
Cantor, G., 382
Cantor set(s), 195; with constant ratio, 196;

ternary, 196, 235, 250 (3), 318
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Cantor-Lebeegue; function, 195 f., 379 (3),
144, 259; theorem, 316

Capacity of a set: a, 195; A, 194; outer A 195;
and convergence of 5[ f]. 194 ff.; logarithmic,
195

Caratheodory, C., 71 (11), 378; theorem,
140

Carleman, T., 379, 333
Carleson, L., 380 f.
Cartesian product, 317
Cartwright, M., 334
Category (first, second), set of, 28, 162
Cauchy, A. L. de, 76, 353; formula, 254; inte.

gral, 288, functions representable by, 289;
theorem, 75

Cauchy-Riemann equation, 259
Central limit theorem, 380 (V, 6)
CesSro (C, a): boundedness, 76; (C, 1), 88 if.,

136 ff., 143 if., 159, 302; Gibbs phenomenon,
1 10 ff. ; Kernel, 94, conjugate, 95; limit for a
function, 69; limit for a sequence, 76; means,
76, (C, 1) of Fourier series, 136, 143, major-
ante for, 154 ff.; numbers, 76; summability,
76, 94 if., 59 ff., C, 65 if., 69; sums, 76

Chandrasekharan, K., 335
Characteristic: function of a distribution, 262;

of a transformation, 168
Chaundy, T. W., 378; theorem (with Jolliffe),

182 (1.3)
Chebychev : see Tchebyshev
Circle, unit, 1, 199
Circular structure, get of, 178
Classes of: complementary functions, 157;

functions and Fourier series, 127 if.
Closed: orthonormal system, 127; set, 162
Coefficients of a trigonometric series, 1;

Fourier (sine, cosine, complex), 5, 7, 11,
35 if., 7, 93 if., 300; Fourier-Lagrange, 6,
14 ff.; Fourier-Stieltjes, 11, 41, 142 if.,
147 ff. ; lacunary, 131 ff. ; monotone, 182 if.,
186 ff.; not tending to zero. 363 ff.; real, 3;
tending to zero, 182, 316, 383 (5). 301,
monotonically. 182 if.

Cohen, P., 334
Collingwood, E. F., 334
Complementary functions: classes of (Par-

seval), 157 ff.; in the sense of Young, 18
Complete: metric space, 162; orthogonal

system, 5, 7
Completeness of the trigonometric system,

11 f., 89
Complex: Fourier coefficients, 7; Fourier

transforms, 244, 247; Fourier-Iagrange co-
efficients, 6; methods, 252 if,, 199 ff.; trigono-
metric system, 7

Composition, 36, 38, 252; see also Convolution
Concave function, 21
Condition(s); for absolute continuity, 151

(6.19); Dini, 171; on functions: B, 199; E,

98; rie, 280; on kernels: A, B. B', C, 85 f.;
Lipschitz, 42, 263 if.. 375 (3); Toeplitz, for
regularity of a matrix, 74, 376 (1)

Conformal mapping, 289
Congruence mod 2n, 3
Conjugate exponent, r', 16
Conjugate Fourier series, 1, 7; convergence of,

35 if., 52, almost. 188 f.; Fourier character
of, 253 ff.; mean convergence of, 266 ff.;
partial sums of, 49 ff., 175 if., majorante for,
173 ff.; and simple discontinuities, 89; sum-
mability of, 84 ff., Abel, 98 if., (C, 1), 88 if.,
92, (C, a), 94 if.. 5[df, 105 if., strong,
184 ff. ; symbol for, 7

Conjugate function(s): for Fourier series, 51,
and the Darboux property D, 265, existence
of, 131 if., 252 f., of order r, 63; harmonic,
258; Hilbert, 243; for interpolating poly-
nomials, 48 if.

Conjugate kernel, 85
Conjugate Poisson integral, 96
Conjugate series, 1; convergence of, 216 if.. in

the mean, 266 ff.; Fourier, see Conjugate
Fourier series; Fourier character of, 253 ff.;
summability (C, 1) of, 92 (3.23)

Constant(s): Euler, 15; function, 375 (3), 377
(13); Lebesgue, 67, 73 (23), generalized, 181
(14); ratio of dissection, set of, 196, 372,
147 ff.; term of a series, 91

Continuity: integral modulus of, 45; modulus
of, 42 ff.; one-sided, 87

Continuous functions: absolutely uniformly,
143; class of (C), 138; convex, 22; diver-
gence of Fourier series of, 298 if.

Continuous: randomly continuous series,
219

Continuous transformation, 164
Convergence, 326 n.; Abel's theorem on (for

a sequence), 4; Absolute: of Fourier series,
240 if., of trigonometric series, 232 ff.; al-
most, of a sequence, 181; almost every-
where, 161 if., test for. 170 ff.; of conjugate
Fourier series, 35 if., 52, 216 if., 266 ff.;
equiconvergence theorems, 286 if., 289; fac-
tors, 93 f., 376 (4); of Fourier coefficients
to zero, 45 (4.4); of Fourier series, 35 if.,
266 if., tests for, 52, 57, 63, 65 f., 303; of
interpolating polynomials, 16 ff.; of order
k, 373 (22); in U, 26 ff.; mean, 268 if.,
27 ff.; in measure. 282; of orthogonal series,
189; and Parseval's formula, 267 (6.11); of
partial sums to zero, 326 (3.1); restricted,
309; stable, 216; Tauberian theorems, 78
(1.26), 79 (1.27), 81 (1.38), 378 (1), 380
(V, 8); uniform, 15, at a point, 58, semi-
convergence, 174

Conversion factors, 175 if.
Convex : function, 20 if., logarithmically con-

vex, 25; sequence, 93
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Convolution (composition), 36, 38, 252;
Fourier series of a, 36 (1-5); of F and dO, 38;
norm inequalities for a, 37 (1.15)

Corput, J. C. van der, 197, 379; lenunas, 197
Cosine: Fourier transform, 244, 247; series, 8
Cotlar, M., 332
Cramer, H., 377, 335
Cross-neighbourhood, 30.5
Cube: m-dimensional, 300; semi-open (torus),

312
Curve, rectifiable, 293
Cylinder, unit, m-, 315

D D,,, 49; D;,, b,*, 50; 0 (r, t), 96
D (Darboux) property, 44, 265; of derivatives,

44 (3.6); forfix), 265 (5.8)
Decomposition of a function, 139, 381 (7), 73

(4-2); formula (Blaschke), 275
Delayed: first arithmetic means, 80; means

(C, a), 376 (1)
Deleted index in a sum (symbol), 41, 69
Denjoy A., 380 f., 332; special integral, 84;

theorem. 308 n.
Denjoy-Luain, theorem, 232
Dense set, 28, 162; everywhere, 28, 162
Density : of an increasing sequence, 181; points

of strong, 307
Denumerable set, 9
Derivative(s): angular, 294; approximate,

324, 77, symmetric, 324; Darboux property
of, 44 (3.6); fractional, 134; generalized, 59
if., 73 if.. symmetric (do Is Vallbe-Poueein),
59, unsymmetric (Peano), 59; left-hand
side, right-hand side, 21; lower, upper, 23;
restricted, 312; strong, 305; symmetric;
first, 22, second (Riemann, Schwarz), 22 f.,
319

Development in series, of a function, 5
Deviation (maximum error), 114
Differentiated series, 40, 71; Cesilro summa-

bility of, 59
Differentiation : of Fourier series, 40 ff. ; of

series, 59 ff. ; termwise, 338
Differentiability: of smooth functions, 43, 48;

strong, 305 ff. ; of Weierstrass functions
(nowhere), 206, 376 (4), 379 (6)

Dini: condition, 171, numbers, 23, 53 (6.7), 327
(3-6); test, 52 ff.

Dini--Lipschitz test, 62 if, 63, 66, 303
Dirichlet: conjugate kernels, D., b,;, 49 f.;

kernels, D,,, 49 f.; lemma, 235; prob-
lem, 97

Dirichlet-Jordan test, 57 if., 66
Discontinuity: of the first kind, 41 (2-2), 60;

removable, 60; simple, Fourier series at a,
108 if.

Disk, 178
Dissection, set of constant ratio of, 196
Distance, in a metric space, 162

355

Distinct points, 3, 1
Distinguished boundary, 315 n.
Distribution: functions, see below; mass, 11,

94, 314; of primes, 42
Distribution function(s), 29, 112, 262; asymp-

totically distributed, 264; characteristic of,
262; Gauss, 264; of a sequence of numbers,
141; on a set, 264

Divergence of: Fourier series, see below; inter-
polating polynomials, 35 ff., 44 ff. ; a trigono-
metric series, 338 (5.3)

Divergence of Fourier series, 298 ff.; almost
everywhere, 305 ff.; of bounded functions,
302; of continuous functions, 298 ff.; every-
where, 310 if.

Domain, simply connected, 290
Doob, J. L., 381
Doubly infinite matrix, 74, 168
Dualism in the Hausdorff-Young theorem, 102

Edge, 315 n.
Edmonds, S., 378
Elements of a set, 162
Equality, asymptotic, of functions, 14
Equation: a Cauchy-Riemann, 259; Laplace,

97, 353
Equicontinuity, a condition for, 285 n.
Equiconvergence, 53; in the wider sense, 53;

theorems on, 286 if., 289; uniform, 53
Equidistributed: functions, 29; sequence

(mod 1), 142
Equisummability : uniform, 364, in the wider

sense, 366 (9.13)
Equivalent: functions, 9; norms, 174
Erdbs, P., 379 f., 333
Error of approximation, we Approximation
Essential bound (lower, upper), 18, 94
Euler, L., 57, 331; constant, 15; gamma

function, 69, 77, 253
Evan, G. C., 378
Even: function, 7; number of fundamental

points, 8 if.
Everywhere: dense set, 28, 162; divergent

series, 310 if., 338 (5.3)
Examples: of Banach spaces, 163 f.; of Fourier

series, 9 f.; of Fourier transforms, 261 f.
Existence of conjugate functions, 131 if.,

252 if.
Exponent, conjugate, r', 16
Exponential type, functions of, 272
Extension, parabolic of a function, 74
Extremal boundary, 315
Extreme radii, 178

Faber, C., 379, 382, 331; theorems, 192 (2.31),
36(8-6)

Factors (numerical) : convergence, 93 ff. ; con-
version, 175 if.. of type (P, Q), 178

Family, analytic, of linear operations, 98
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Fatou, P., 374 (22), 377, 380, 382 f.; lemma,
26; theorems, 99, 100 (7.6), 101 (7.9)

Fatou-Riesz, theorem, 338
Favard, J., 377
Fej6r, L., 97, 124 (1), 125 (4.5), 298 f., 376-8,

382, 303, 331; kernel, 88, conjugate, 91;
theorems, 89, 97, 290 (10.6), 24 (6.12)

Fekete, Al., 378
Feldheim, E., 331
Ferrand, J., 335
Fichtenholtz, G., 378, 382
Fine, N., 375
Finite: series, 104 (2.18)
First: arithmetic mean, 76 (k =1), 83, 88 ff. ;

category, set of, 28, 162; equiconvergence
theorem, 289; Riemann theorem, 319; sym-
metric derivative, 23, 99; term of & series, 91

Fischer, E., 377; Riesz-Fischer, theorem, 127
Flett, T. M., 334
Formal: integration of series. 319 ff.; opera-

tion on Fourier series, 35 ff.; product of
integrals, 282; products of trigonometric
series, 330 if., 337 if.

Forms, Toeplitz, 378
Formula(e): Abel's transformation, 3;

Cauchy's. 254; decomposition (Blaschke),
275; Fourier's inversion, 247; Green's, 260 ff. ;
Jensen's, 272; Lagrange's interpolation, 6;
Mellin's inversion, 254; Parseval's, 12 ff., 13,
37, 127 f., 157 if., 8 (2.6), 101, 301; Parseval-
Plancherel, 248; Poisson's summation, 68 ff.,
70; Riemann-Liouville, 133 (8.1), 139

Fortot, R., 335
Fourier coefficients, 5, 7, 35 if., 7, 93 ff.; and

asymptotic behaviour of a function, 379
(2); complex 7; convergence to zero, 45
(4.4); cosine, 8; of dF, 11; generalized sine,
48; for multiple Fourier series, 300; order
of magnitude of, 75 ff.; Paley's theorems on,
120 if., 121; rearrangements of, 127 ff. ;
sine, 8

Fourier integrals, 9, 242 ff.; repeated, 244;
single, 242; and trigonometric series, 263 if.

Fourier inversion formulae, 247
Fourier series, 1 if., 5-7, 300; Abel: means of,

149 if., summability of, 96 if., 99 ff. ;
absolute convergence of, 240 ff. ; almost
convergence of, 188 f.; Borel means of,
315 (5) ; Ces&ro : (C, 1) means of, 136 if.,
143 if., (C, a) summability of, 94 ff.; and
classes of functions, 127 if., LI, 127 ff.;
Lm, 170 ff.; complex, 7; complex methods
in, 262 ff.; conjugate, 1, 7; convergence
factors for, 93 f., 175 if., 376 (4); conver-
gence of, 35, and capacity of sets, 194 if.,
at an individual point, 299, tests for, 52, 57,
63, 65 f., 303; conversion factors for classes
of, 175 ff.; of a convolution, 36 (1.5); cosine,
8; of dF, 11; differentiation of, 40 ff.;

divergence of, 299 if., 302 if., 305 if., 310 ff. ;
and dualism, 102; examples of, 9 f.; finite,
104 (2.18); formal operations on, 35 ff.;
Fourier-Riemann, -Lebesgue, -Denjoy, 9,
-Stieltjes, 10 if.. 41; and the integral M. 83
ff.; integration of, 40 ff.; interpolating
polynomials as, 6 ff. ; and the Littlewood-
Paley function, 222 ff.; of products of
functions (Laurent's rule), 159 (8.13); mean
convergence of, 286 ff.; multiple, 300 ff.;
partial sums of, 49 if., 161 if., 175 if., 230 if.,
differentiated series, 59 if., majorants for,
173 if., products of, 159 (8.13); real-valued,
7; restricted, 335; at simple discontinuities,
106 ff.; sine, 8, 109 if., generalized, 48, 185
(1.15); summability of, 74 ff., 84 ff., C, 65 ff.,
69, restricted, 309 if., strong, 180 if., 184 ff. ;
symbol for, 7; trigonometric, 7

Fourier transform(s), 246 if., 254 ff.; of dF,
258 ff. ; examples of, 251; modified, 247;
sine, cosine, complex, 8, 247

Fourier-Denjoy series, 9
Fourier-Lagrange coefficients, 6, 14 if.
Fourier-Lebesgue series, 9
Fourier-Riemann series, 9
Fourier-Stieltjes: coefficients, 11, 142 if., 147

ff.; integrals, 6; series, 10 f., 41, 136, 194 ff.,
313, summability of, 105 f.; transform, 258

Fractional : derivative, 134; integral, 133, 139;
integration, 133 if., 138 ff.; part function,
235, 317

Froetman, 0., 297 (1), 381, 335
Function(s): absolutely continuous (A), 136;

analytic. 252; approximation to, by trigono-
metric polynomials, 114 ff. ; associated with
a point, set, 4; asymptotically equal, 14;
best approximation of, 115; bounded (B),
136; of bounded deviation, 229 (14); of
bounded variation (V), 136; Cantor-Lebee-
gue, 195f., 379(3), 144,259; Cauchy integral,
289 ff.; Cesbro (C, a), limit of, 69; charac-
teristic.: of a distribution function, 262, of a
transformation, 168 (9.17); classes of, see
below; complementary: classes (Parseval),
157 if., in the sense of Young, 16; concave,
21; conjugate, 51, 131 if., 243; conjugate, of
order r, 63; constant, 375 (II, 3), 377 (13);
continuous (C), 138; convex, 20 if., logarith-
mically, 25; decomposition of, 139, 276, 381
(7), 73 (42); development in series, 5;
distribution, 29, 112, 262; equidistributed,
29; equivalent, 9; even, 7; of exponential
type, 272; fractional part, <x>, 236, 317;
gamma (Euler's), 69, 77, 253, Gauss's
definition of, 77; Gauss distributed, 264,
asymptotically, 264; harmonic, 97, 252,
conjugate, 258; m-harmonic, 315; inte-
grable B, 262 f.; integrable R (Riemann), 5,
uniformly, 15; integral part, [x], 80 n.; of
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jumps, 259; Lebesgue, 195; Lipschitz, 375
(3); Littlewood-Paley, 210; lower semi-
continuous, 133; major, minor, 327, 84, of
order I and 2, 87; Marcinkiewicz, 219 if.,
220; of monotone type, 64; negative part
of, 138 (4.11); odd, 7; parabolic extension of,
74; periodic, 8, 136, 301; positive part of,
138 (4.11); Rademacher, 6, 34 (6), 159 (14);
rearrangements of, 29 ff.; regular, 289, 316;
representation of, 5; restricted behaviour of,
203, 321, 325; roof, 10; of the same order
(of magnitude), 14; sign, 3; simple, 94;
slowly varying, 186, 379 (2); smooth, 42 ff.,
43, of order r, 63, uniformly, 43; step, 46;
subharmonic, 271 n.; sum, 83; trapezoidal,
10; triangular (roof), 10; truncated, 166;
uniformly absolutely continuous, 143;
univalent, 290; variation of, 139; Walsh, 34
(6); Weierstrass, 47, 206, 379 (4.6), 138;
Young, W. H., 16, 25

Function(s) (classes, types, particular, satisfy-
ing conditions): symbols: 2I, 2C,, 16; A,
136; B, 136; B'k', Ak, 73; C, 136; C'k', 73;
E, 98; E°, 272; r, 69; g, 210; Y, Yi. Y.
222 f.; H, 271; Ho, 271, 316; .5f, 299 (9);
L, L`, L`, O(L), L (log+L)Q, 16; L', 127;
Lo, 170; A,, .1,, A4, Zs, 42, 43; A;, 4, AJ,
a:, 45;Lr' 94;IR,SR,,16;u,219;N,271,
316; N', 282, Na, 316; P,, P,, 139; R, 5,
143; 5, S,, 16; S, 136; a(8), 207; V, 136

Functional, 164
Fundamental: points, 1, even number of, 8 if.,

non-equidistant, 331 (1); polynomials, I

g(0) (Littlewood-Paley function), 210 if.
Gabriel, R. M., 332
Gage, W. H., 332
Gal, I., 379
Gamma function (Euler's), 69, 77. 253
Gaps, 79; series with small, 222 if.
Gategno, C., 382
Gauss, K. F., 331; asymptotically distributed

functions, 264; definition of the r-function,
77; distribution function, 264

Geiringer, H., 335
Generalized derivative(s), 59 if., 73 ff.;

infinite, 59 n.; r-th: jump of an, 62, sym-
metric (de la Vall6e Poussin), 59, unsym-
metric (Peano), 59; second, 325

Generalized Fourier sine: coefficients, 48;
series, 48, 185 (1.1 5)

Generalized jump, 108
Generalized Lebesgue constants, 181 (14)

Gergen, J. J., 376
Gibbs's phenomenon, 61 if.
(C, a), 110 if.
Gonzalez-Dominguez, A., 381
Gosselin, R., 331
Green's formula, 260 if.
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Grenander, U., 378
Gronwall, T. H., 376 f., 379, 331, 333; theorem,

132 (7.5)
Grosz, W., 377
Group of transformations, 169
Griinwald, G., 331

H° (functions), 271 if., 316
H' (functions), 105 if.
Hadamard, J. S., 229 (14), 379; theorem, 208
Hardy, G. H., 48, 70 (1), 206, 251, 315 (7),

373 (21), 375 f., 378 f., 381 f., 333, 335; see
also Hardy, G. H., and Littlewood, J. E.;
inequalities, 20 (9.16); theorems, 20 (9.18),
78, 160 (8.18)

Hardy, G. H., and Littlewood, J. E., 70 (2),
126 (14), 126 (15), 180 (8.9), 197, 251 (9),
296 (11), 315 (6), 371 (10), 375, 377-82,
331-4; maximal theorems, 29 ff.; series,
197; theorems, 30, 63 (10.7), 288 (8.6), 293
(10.14), 380 (V, 6), 109, 127 if., 128

Harmonic functions, 97, 252; boundary
behaviour of, 199 ff.; conjugate, 258;
m-harmonic, 315; and the Poisson integral,
152; on the unit circle, 258 f.

Harmonic series, 185; Euler'e constant for, 15
Hartman, Ph., 229 (9), 298 (6)
Hausdorff, F., 332
Hausdorff-Young, theorem, 101
Heine, E., 245
Helly, theorem, 137
Helson, H., 380, 382
Herglotz, G., 378
Hermits, C., 331; interpolation, 23; inter-

polation polynomials, J,,, 331 (6)
Herriot, J. G., 335
Herzog, F., 383
Hewitt, E., 335
Heywood, Ph., 229 (10), 379
Hilb, E., 375
Hilbert transform, 243
Hills, E., 229 (14), 230 (16), 315 (8), 375,

377-9, 335
Hirschman, 1. I., 332, 335
Hobson, E. W., 376, 382
Holder's inequality, 17, 94; generalization of,

175
Homogeneous operator, positively, 174
Hyltgn-Cavallius, C., 376, 378

1 (x, f) (interpolating polynomial), 4
Image, area of an, 290
Imaginary part of a power series, I
Improper integrals, 85 n.
Independent random variables, 380 (8)
Indetermination, limits of, 76, 80
Inequality(ies), 16 ff.; Bernstein's, 11, 276;

Bessel's, 13; Hardy's, 20 (9.16); Holder's,
17, 94, generalization of, 175; Jensen's, 21,



Inequality(iee)-coruinu d.
24; for kernels, 51, 96; Minkowski's, 18 f.,
for integrals, 19; for Poisson kernal deriva-
tives, 263; Schwarz, 17; triangle, 162; for
trigonometric functions, 2. 71 (12), 91, 234,
255 f.; Young, W. H., 18, 25

Infinite: generalized derivative, 59 n.; matrix,
74, 168

Ingham, A. E., 229 (14), 376, 379 f.
Integer, algebraic. 148; S-number, 148
Integrability: B, 262 ff.; R (Riemann), 5, in

measure, 262, uniform, 15; of 111', 253 (2-4)
Integral(s) 14 if., 40; arithmetic mean, 83, 69;

B, 262 ff., 381 (4); of a bounded function,
43; (C, 1) means of a sequence, 84; Cauchy,
288 f., functions represented by, 289; con-
jugate, 282; Denjoy's special (Perron's),
84; formal product of, 282; limit of a
function by method of first arithmetic
mean, 83; Fourier, 9, 242, single, 242,
repeated, 244; fractional, 133 if., 138 if.,
Riemann-Liouvil)e, 133, Weyl, 140; func-
tions of exponential type, 272; Jensen's
inequality for, 24; k-th integral, 40 (2.1);
Laplace, 244; Lebesgue, 9, 5; Lebesgue-
Stieltjes, 5, 94; M. 83 if., 84; M', 86 f., 87;
modulus of continuity, 45; part function
[x], 80 n.; Poisson, 96, 303; conjugate, 96;
principal value of, 51; Riemann (R), 5;
Riemann-Stieltjes, 8; second indefinite,
normalized, 87; strong differentiability of,
305 ff.; trigonometric, 244, 278 if.

Interpolating polynomials, 1; adjusted, 26;
convergence of, 16 if., 331 (5); divergence of,
35 if., 44 ff.; as Fourier series, 6 ff.; and
functionsls, 35; Horn-site J,,, 331 (6); local-
ization principle for, 17; n-th, 4; polynomials
conjugate to, 5, 48 ff.; second kind, 23

Interpolation I ff.; abscissa, ordinate of, 2;
formula, Lagrange, 6; Hermits, 23; La-
grange, 23; of linear operations, 93 ff.; of
measures, 332 (1); of multilinear operations,
106; of operations: in H', 105 if., Mar-
cinkiewicz's theorem on, 111 ff.; Tcheby-
ehev, 331 (7); trigonometric, I if.

Interval(s): black, white (Cantor), 194; of
integration, 8; open, closed, 21

Inversion formulae: Fourier's, 247; Mellin's,
254

Iterated logarithm, law of, 379 (6)
Ivahev-Muaatov, 333
Izumi, 8., 378, 379

Jackson, D., 376 f., 331; polynomials, 21 if.,
22, conjugate, 54; theorems, 115 (13.6), 117
(13-14)

Jacobian, 290
James, R. D., 332
Jeffery, R. L., 375, 332

Jensen's: formula, 272; inequality, 21, 24
Jessen, B., 381, 335
Joiliffe, A. E., 378; theorem (with Chaundy),

182 (1.3)
Jordan: Dirichlet-Tordan test, 57
Jump, 357 n.; discontinuity, 41 (2.2); function,

259; generalized, 108; of a generalized
derivative, 62

K,,, R. (kernels), 88, 91
Kac, M., 298 (6), 335
Kaczmarz, S., 34 (6), 375, 378, 334
Kahane, J. P., 380, 383
Karamata, J., 316 (8), 376-379
Kernel(s), 85; Ceshro (C, a), 94, conjugate,

95; conditions A, B. B', C, 85 f.; Dirichlet,
49, conjugate, 49, modified, 60, modified
conjugate, 50; Fejbr, 86, conjugate, 91;
inequalities, 51, 96; M (matrix), 85, conju.
gate, 85; Poisson, 96, 151, conjugate, 96,
152, derivative of, 263; positive, 86; quasi-
positive, 86

Khintchin, J., 380
Klein, t3., 331
Kober, H., 335
Kogbetliantz, E., 377, 332
Kolmogorov, A. N., 230 (26), 376, 378-82,

333; theorems, 305, 310, 376 (12)
Korn, A., 377
Krein, N., 377
Kronecker, theorems, 20, 149
Krylov, V., 381
Kuttner, B., 371 (8), 333; theorem, 175 (6.1)

L', 127 f., 161 ff.; Lo, 166 if.
L', 16, 26 ff., 180, 222 ff. ; L*, 170
Lacunary: coefficients, 131 ff.; series, 202 if.,

380 (V, 6), absolute convergence of, 247 if.,
central limit theorem for, 380 (V, 6)

Lagrange interpolation, 23; formula, 6
Lagrange: Fourier-Lagrange coefficients, 6,

I4 ff.
Landau. E., 376
Laplace: equation, 97, 353; integral, 244
Laplacian, 280, 213
Laurent multiplication, 159, 332
Laurent series, 2; of power series type, 3
Law of the iterated logarithm, 379 (6)
Least essential upper bound, 18
Lebeegue, H., 70 (1), 298, 316 (10), 375 f., 382,

102; constants, 67, 73 (22), generalized, 181
(14), for interpolation, 36; function, 196;
integral, 9, 5; set, 66; summability (1), 321;
teat, 66 f.; theorem(s), 64 (10-8), 90; 305,
Cantor-Lebeague, 316, Riemann-Lebesgue,
45

Lebeegue-Stieltjee integral, 5, 94
Left-hand aide derivative, 21
Lemma: van der Corput's, 197; Diriohlet's,
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236; Fatou's, 26; Rajchman's, 353; Riesz,
F., 31 (13.8); Schwarz's, 209 n.

Levinson, N., 380
Levy, P., 378, 380; theorems of Wiener and

Levy, 245 if.
Limit(s): approximate, 323; central limit

theorem, 380 (V, 6); Ces&ro (C, r), for a
function, 69, integral (C, 1), 83; of indeter-
mination, 75, 80; radial, 272; restricted
summability, 309

Line, supporting, 21
Linear: means, 74; method: M, 74; T', 203;

T, 221; operations, 162 if., 164, analytic
family of, 98, norms for, 164, 95, of type
(r, 8), 95; space, 162, normed, 163; trans.
formation, 184

Liouville, Riemann-Liouville: formula, 139;
fractional integral, 133

Lipschitz, R., 376; classes: A., Ai, A., A.,
A, 1., 43; A;, AP., 45; condition (of order a)
42, 45, 263 if., 373 (3); Dini-Lipschitz: test,
62 if., theorem, 63

Littlewood. J. E.. 97 n.. 368 n.. 375-82, 332-4;
are also Hardy, G. H., and Littlewood, J. E.;
theorem, 81

Littlewood-Paley function g(0), 210 ff.; and
Fourier series, 222 ff. ; theorems, 166 (2.1),
167 (2.5), 170 (2.21)

Localization (principle of), 52 If., 53, 330 if.,
367, 304 f.; for cross-neighbourhoods, 305;
for interpolating polynomials, 17; Riemann,
330, 367; Riemann-Lebesgue, 53; for
series with coefficients not tending to zero,
363 ff. ; for trigonometric series, 316

Logarithm, law of the iterated, 379 (6)
Logarithmic: capacity of a set, 195; convexity,

25; mean summability, 106
Loomis, L., 377
Lower: bound, 67 n., essential, 18; second

derivative, 23; semi-continuity, 133; sym-
metric derivative, 23

Lozinaki, S., 331
Luke, F., 376
Lusin. N., 375, 377 f., 380-3, 334; theorem

of Denjoy-Lusin, 232
Luxemburg, W. A. J., 378

0, [f, a, b) (norm), 16
M (integral), 83 if., 84
M= (integral), 86 if., 87
p(0) (Marcinkiewicz function), 219 if.
Magnitude, order of, 45 if., 186 if.
Major function, 327, 84; of order a, 87
Majorants: for means, 154; for partial gums,

173
Malliavin, P., 251 (5)
Mandelbrojt, S., 229 (14), 230 (16), 380
Mapping: angle preserving, at a point, 292;

conformal, 289 ff. ; theorem of Riemann, 290
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Marcinkiewicz, J., 371 (8), 372 (16), 377 f.,
380, 382, 156. 197 (6-8), 331-4; function,
219 if., 220; theorems, 129 if., 308, 28 (7.5),
111 if., 112, 170 (3.2), 232 (4.14)

Mass distribution, 11, 94, 314
Matrix (M): doubly infinite, 74, 168; kernels,

85, conjugate, 85; positive, 75; regular, 74;
summability 74, absolute, 83; Toeplitz
conditions, 74, 376 (1) ; triangular, 74

Maximal theorems of Hardy and Littlewood, 29
Maximum: of a function at a point, 88;

principle of Phragmen-Lindelbf, 93; proper,
22 n.

Mazurkiewicz, S., 378, 383
Mean convergence: of 5[f] and 5[f], 266 ff.; of

interpolating polynomials, 27 if.
Means : Abel, 96, 149 ff. ; arithmetic, Ceehro

(C. a), 76; Borel, 315 (5); delayed (C, 1), 80,
376 (1) ; first arithmetic, 88 ff. ; integral
arithmetic, 83, 69; linear (M), 74; logarith-
mic, 106

Measure, 94; convergence in, 262; inter-
polation of measures, 332 (i); space, 94;
zero, 9, 383 (6)

Mellin: inversion formulae, 254; transform,
253

Menitov, D., 382 f.; theorems, 348, 382 (10),
178 (5.14), 333

Men8ov-Paley, theorem, 189
Method(s): Borel's, of summation, 314 (4);

complex, in Fourier series, 252 ff. ; of first
arithmetic mean, 83; linear: M. 74; T',
203; T, 221; Poisson's, of summation, 80

Metric space, 182
Milicer-Gruzewska, H., 333
Minakshisundaram, S., 335
Minimum of a function at a point, 88
Minkowaki's inequality, 19; for integrals, 19
Minor function, 327, 84; of order a, 87
Mirimanoff, D., 380
Mod 2n, congruence, 3
Modified: Dirichlet kernel, 50, conjugate, 50;

Fourier transform, 247; partial sums, 50
Modulus of continuity, 42 if., 45, 72 ff.; for

functions in A., A., 44 (3.4); integral, 45
Monotone coefficients: and magnitude of

functions, 186 ff.; not tending to zero, 186;
tending to zero, 182 if.

Monotone rearrangements 29 (13.1), 122
Monotonic type, functions of, 64
Monotonically decreasing coefficients, 182 (1.3)
Moore, C. N., 314 (4)
Morgenthaler, G. N., 375
Morse, M., 378
Moving average, 117
Mulholland, H. P., 332
Multilinear transformation, 106
Multiple: Fourier series, 300 ff.; integrals,

strong differentiability of, 305 if.
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Multiplication, 162; formal, 330 ff.; see also
Formal products

Multiplicity, set of, 344 ff.; in the restricted
sense (M. -set), 348, 160 (18)

N (function), 271 if.
N (sets), 235 if.
Nagy, see Sz. Nagy, B.
Natanson, I. P., 331
Neder, A., 382
Negative part of a function, 138 (4.11)
Neighbourhoods: cross, 305; symmetric, 199;

symmetric and similar, 318; triangular, 199,
318

Nevanlinna, R., 381
Niemytski, V., 250 (2), 380
Nikolsky, S. M., 376, 378; theorem, 154 (6-35)
Nodal point, I
Non-dense set, 28, 162; perfect, 194
Non-differentiability, 376 (II, 4), 379 (6)
Non-equidistant fundamental points, 331 (I,

1)

Non-increasing rearrangement of a sequence,
122

Non-negative functions, 183 (1.5)
Non-tangential path, 81
Norm(s), 163; equivalent, 174; of a linear

operation, 164, 95; weak, 111
Normal: sequence of vectors, 346; system of

functions, 5
Normed space, 163
Normalized second indefinite integral, 87
Nowhere differentiable function, 378 (II, 4),

379 (6)
Number(s): Ces&ro, of order a (A*,), 76; Dini,

23; real, approximated by rational, 236, 20;
of roots of a polynomial, 2; S-number, 148,
333 (11)

Numerical series, summability of. 74 if.

0 (large), 14
v (small), 14
Obrechkoff, N., 332
Octant, positive, 324
Odd function, 7
Offord, A. C., 331, 335; theorem, 291 (10.3)
O'Neill, R., 333
One-sided continuity, 87
Open set, 162
Operation(s) (transformation(s)), 164;

bounded, 164; continuous, 184, 95, 111;
interpolation of, 93 ff.; linear, 162 ff.;
multilinear, 106; norm of, 164, 95, 111;
positively homogeneous, 174; quasi-linear,
111; of strong, weak type (r, 9), 111; unitary,
169

Opposite: are, point, 99
Order: a, Ceshro, 76 f.; derivative of fractional

order, 134; function(s): conjugate, of order

r, 63, major, minor, of orders 1 and 2, 87,
of the same order, 14, smooth of order r,
63; of magnitude: of Fourier coefficients,
45 if., and monotone coefficients, 186 ff., of
partial sums for feLO, 166 ff.; of a poly-
nomial, I

Ordinate of interpolation, 2
Orlicz, W., 181 (18), 378 (10); space, 170
Orthogonal: series, convergence of, 189 ff.;

system, 5, 7, complete, 5
Orthonormal system, 5; closed, 127; with

respect to dw(x), 6
Ostrow, E. H., 377
Ostrowski, A., 381, 334
Outer (A) -capacity, 195

P(r, t) (Poisson kernal), 96
Paley, R. E. A. C., 34 (8), 378-80, 197 (5),

332-4; Littlewood-Paley function g(8),
210 if., and Fourier series, 222 ff. ; theorem(s).
120 if., 121, Men8ov-Paley, 189, Paley and
Littlewood, 166 (2.1), 167 (2.5), 170 (2.21),
Paley-Wiener, 272 if.

Parabolic extension, 74
Parseval's formula, 12 if., 13, 37, 127 f.,

167 if., 8 (2.8), 101, 301; complementary
classes for, 157; convergence for, 267 (6.11)

Part : fractional part function <x> 235, 317;
integral part function (x], 80; negative,
positive parts of a function, 138 (4.11)

Partial sums, 49 ff., 161 ff.; as best approxima-
tions, 13; bounds for, 266 (6-4); for conjugate
Fourier series, 49, 175 ff. ; formulae for, 49
ff. ; for Fourier series, 49, 175 if., 230 ff. ; for
L* functions, 161 ff.; majorante for, 173 ff.;
modified, 50; order of magnitude for Lo
functions, 166 ff.; of power series, 178 ff.;
rectangular, 302; spherical, 302; sym-
metric, 2

Parts: real, imaginary, of a power series, 1;
summation by, 3 if.

Path, non-tangential, 81
Peano derivatives, 59
Perfect sets: of measure zero, 383 (6); non-

dense, 194; symmetric, 196, 240
Perron's integral, 84
Phenomenon, Gibbs, 61 if.. 110 if.
Phragm6n, E., 374 (24), 382 f.
Phragmen-Lindel6f, maximum principle, 93
Piranisn, G., 383, 334
Pisot, Ch., 333
Pitt, H. R., 332
Plancherel, M., 335; theorem, 250; Parseval-

Plancherel formula, 248
Plessner, A., 375-7, 381, .3.31-4; theorem.

203 (1-10)
Point(s): angular, 43; distinct (mod 2n), 3, 1;

function associated with a, 4; fundamental
(nodal), 1; maximum and minimum at a,
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88; opposite, 99; of strong density, 307; of
symmetry, 233

Poisson integral, 96, 303
Poisson kernal, 96, 151 f.; conjugate, 96, 151 f.;

derivative of, 263; derivative of conjugate,
103

Poisson summability, 80; formula for, 68 ff., 70
Pollard, H., 33.5
Polya, G., 124 (2), 375, 382
Polynomials, 1, 1 ff.; adjusted, 26; Bernoulli,

42; conjugate, 5; fundamental, 1; inequali-
ties for, 244 (4.2), 11 (3.13); interpolating,
I if., 331, of the second kind, 23; Jackson,
21 if., 22, conjugate, 54; order of, 1; power,
1; roots, number of, 2; trigonometric, 1

Portion of a set, 28
Positive: kernel, 86; matrix, 75; octant, 324;

part of a function, 138 (4-11); quasi-
positive kernel, 86

Positively homogeneous operator, 174
Power polynomials, I
Power series, 1; of bounded variation, 285 ff.;

Lauurent series of power series type, 3;
partial sums of, 178; parts, real, imaginary,
1; of Salem, 225; of several variables, 315 if.,
321 if.

Principal value of an integral, 51
Pringsheim, A., 52
Privalov, I. I., 376 f., 381 f., 334
Primes, distribution of, 42
Principle: of localization, see Localization

(principle of); maximum, of Phragmen and
Lindelof, 93; of Riemann, 330; of Riemann-
Lebesgue, 53; of symmetry, Schwarz, 368 n.

Problem, Dirichlet, 97
Products: Blaschke, 274, 280, 316; Cartesian,

317; formal: of series, 330 if., of integrals,
282; Fourier series of, 159 (8.13); Riesz,
208 if., 209

Proper maximum, 22 n.
Property: j9 , 73; D (Darboux), 44
Pyateteki- Shapiro, I. 1., 383, 333; theorem,

346(6-6)

Q (n, t) (Poisson conjugate kernel), 96
Quade, E. S., 377
Quasi-linear operation, 111; sublinear, 111; of

type (strong, weak) (r, 8), 111, (r, a) (strong,
weak) norm III
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Randels, W. C., 379
Random variables, independent, 380 (8)
Randomly continuous series, 219
Ratio of dissection, set of constant, 196,

147 if.
Rationals as approximants of reals, 236, 20
Real: coefficient, 3; part of a power series, 1;

variables, 14 n.
Rearrangement(s) : of Fourier coefficients,

127 ff. ; of functions, 29 ff., monotone, 29
(13.1) ; non -increasing, of a sequence, 122

Rectangular summability, 301 f.
Rectifiable: boundaries, theorems about, 293;

curves, 293
Regular function f, 289, 316; in 0,,, 316;

with R(f) ;0, 152 (6.26)
Regular matrix, 74; conditions (Toeplitz) for

a, 74, 376 (1)
Reiter, H., 380
Removable discontinuity, 60
Representation of a function, 5; uniqueness of,

325 if.
Restricted: behaviour of a function, 203, 321,

325; convergence, 309; Fourier series, 335;
sense, set of multiplicity in the, 160;
summability, 309, A, A*, (C, 1), 309

Raymond, P. du Bois, 298
Riemann, B., 321, 336 f., 370 (5), 371 (6), 375,

382, 133, 332; derivative, 23; integrals (R),
5, proper, improper, 85 n.; localization
principle, 330; mapping theorem, 290;
summability R, 319; summability Rr, 69;
theorem(s), 290, first, second, 319 f.; theory
of trigonometric integrals, 278 if., series,
316 if.

Riemann-Lebesgue: localization principle, 53;
theorem, 45, generalization, 49 (4.15)

Riemann-Liouville: formula, 139; fractional
integral, 133

Riesz, F., 377 f., 380-2, 332; lemma, 31
(13-8); products, 208 if., 209; theorems,
101 ff.; with M. Riesz, 285 (8-2, 8.3),
Riesz-Fischer, 127

Riesz, M., 72 (20), 251 (6), 295 (3), 375, 377 f.,
381-3, 159 (18), 331 f., 335; theorems, 94,
253, 255 (2-21), 368, with F. Riesz, 285 (8.2,
8-3), Fatou-Riesz, 338, Riesz-Thorin, 93 if.,
95

Quasi-positiveI kernel, 86 Right-hand side derivative, 21
Rogosinski, W., 71 (12), 124 (3), 125

Rademacher, H., 375, 380, 334; functions, 6, 376 f., 379, 382; theorems, 112 if.
34 (6). 159 (14); Menlov-Rademacher, Roof function, 10
theorem, 193; series, 212 if., 380 (8) Roots, number of, in a polynomial, 2

Radial limit, 272 Rudin, W., 334
Radii, extreme, 178
Rado, T., 271 n. S, 148, 333 (11)
Rajchman, A., 371 (9), 373 (22), 375, 382 f., S[f], S[f], 7; S[df] S[dJJ, 11, 105 if.

333; formal multiplication, 330, 337; lemma, S'k' [x], 40; S. (x;J), (x;f), 49
353; theorem, 331 S: (x; f), 9, (x, f), 50

(13),
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G,, 16; a (x, f), 89
Saks, S., 308 n., 327 n., 361 n., 378, 380, 381,

84 n., 160 (19), 335
Salem, R., 181, 376, 378-80, 382 f., 332-5;

power series of, 225 ff.; theorem, 225
Same order (of magnitude), 14
Scalar, 162 n.
Schaeffer, A. C., 380, 331, 333
Schmetterer, L., 383
Schoenberg, I., 378
Schur, 1., 125 (6), 181 (18)
Schwarz, H. A., 377; derivative, 23; inequality,

17; lemma, 209 n.; symmetry principle,
368 n.; theorem, 99 (6.18)

Schwarz. L., 334
Second: category, set of, 28, 182; equiconver-

gence theorem, 289; generalized derivative,
325; indefinite integral, 87; symmetric
derivative, 23, 319; theorem of Riemann, 320

Seidel, V., 381, 334
Seliverstov, G., 333
Semi-continuous function, lower, 133
Semi convergent from below, uniformly, 174
Semi-open cube, 312
Sense: set MO of multiplicity in the restricted

sense, 160 (18); set Uo of uniqueness in the
wide sense, 160 (18)

Separable space, 182
Sequence(s): almost convergent, 181; bounded

(C, a), 76; of bounded variation, 4; Cesdro
(C, a) limit, 76; convex, 93; density of an
increasing, 181; equidistributed, 142;
integral (C, 1), means of, 84; non-increasing
rearrangement of. 122; normal, of vectors,
346; strongly summable (C, 1), 34; of type
(P, Q), 176

Series, 1 ff.; absolute convergence of, 232 if.,
240 ff.; conjugate, 1; cosine, 8, 343 (6.22);
convergence of, see under Convergence;
differentiation of, 40 if., 336, 59, 71 ff.;
finite, 104 (2.18); formal integration of,
319 ff. ; formal product of, 330 ff. ; Fourier,
5, 300, Fourier trigonometric (sine, cosine,
complex), 7; Fourier-Denjoy, -Lebesgue.
-Riemann, 9, Stieltjes, 10 f., 11, 41, 105 f.,
136. 194 if., 313; gap in a, 79; generalized
Fourier sine, 48, 185 (1-15); of Hardy and
Littlewood, 197 ff. ; harmonic, 186; lacunary,
202 if., 247 if., 380 (V, 6); Laurent, 2;
localization for, 316 if., 363 ff.; orthogonal,
5 f., 189 ff. ; power, 1, 3, 285 ff., Rademacher,
212 if., 380 (8); randomly continuous, 219;
representation of a function, 5; of Salem,
225 ff.; sine, 8, 343 (5.22); with `small' gaps,
222 ff.; summability of, aeg under Sum-
rnability ; trigonometric, I

Set(s): basis, 234; Cantor, 195, with constant
ratio of dissection, 196, ternary 196, 235,
250 (3), 318; capacity of, 194 if., logarith-

mic, 195; of circular structure, 178; closed,
162; of constant ratio of dissection, 196,
147 ff.; dense, everywhere dense, 28, 162;
denumerable, 9; distribution function on,
264; of first category. 28, 162; functions
associated with, 4; Lebesgue (for functions),
65; of multiciplicity (M-set), 344, 383 (6),
in the restricted sense (M0-set), 348. 160
(18); non-dense, 28, 162, perfect, 194; open,
162; perfect, of measure zero. 383 (6);
portion, 28; of second category, 28, 162;
simply connected, 290; symmetric, perfect,
196, 240; translates of, 165; of uniqueness
(U-set), 344 if., 383 (6), Abel (UA-set), 382,
in the wide sense, 160 (18)

Sets (classes or types of) : symbols : [d, a(1),
.. , a(d), '1], 194; F,+, 383 (5); H, 317;
H,, 318; H'°', 348; H'"' 1.52; Srj', 299 (9);
M. 344; Me, 348; M. M M,., 295; N, N
236; U, 344; U', 350; U(c), 351: UA, 362;
U U',, U U; , 295 f.

Several variables: functions of, 300; power
series of, 315 if., 321 if.

Shohat, J. A., 375
Sidon, S., 378, 380, 333; theorem, 247 (6.1)
Sierpinski, W., 383
Sign function, 3
Simple discontinuity, Fourier series of a,

106 if.
Simple function, 94
Simply connected domain, 290
Sine Fourier transform, 244, 247
Sine series, 8: Fourier, 109 f.; generalized

Fourier, 48, 185 (1-15)
Single integral, Fourier's, 242
Slowly varying function, 186, 379 (2)
Small: gaps, series with, 222 ff.; o, 14
Smirnov, V., 381
Smooth functions, 42 if., 43; and differenti-

ability, 43, 48; of order r, 63; uniformly, 43,
320

Sneider, A. A., 375
Space(s), 162; Banach, 163; complete. 162;

H°, 284; 10, L°, 163; linear, 162; measure,
94; metric, 162; normed, 163; Orlicz, 170,
378 (10); separable, 162

Special trigonometric series, 182 if.
Spencer, D., 381, 334
Sphere, 162
Spherical partial sums, 302
Stable convergence, 216
Standard Gauss distribution, 264
Steckin, S. B., 377, 380
Stein, E., 126, 377, 331 f., 334 f.; theorem,

100 (1.39)
Stein, P., 381
Steinhaus, H., 250 (2), 371 (12), 375 f., 378,

380, 382 f., 334; Banach-Steinhaus, theorem,
165
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Step function, 46
Stieltjes, see also under Fourier-Stieltjes;

integrals, 6, Jensen's inequality for, 24
Strip, 98, 108 (3.9)
Strong: density, points of, 307; differenti-

ability, 305; summability (C, 1), 34, 181;
type (r, a), I11

Subharmonic function, 271 n.
Sublinear operation, 111
Subportion, 28
Subtraction, 162
Sum function, 83
Summability: A (Abel or Poisson), 80, 98 if.,

99 ff., 252 f., 352, 302; A', 303; absolute A,
83; almost everywhere, 161 ff.; B (Borel),
314; C, 65 if., 69; (C, 1), Cauchy's result on,
75; Cesero: (C, 0), (C, 1), (C, a). 78, 94 if.,
.302, of differentiated series, 59 ff.; of
conjugate series, 84 if., 92 (3.23); by first
arithmetic mean, 88 ff.; of Fourier series,
84 ff.; of S(dFJ and 5[dF], 105 ff.; Hq,
180 f.; L (Lebesgue), 321; M (matrix), 74;
of numerical series, 74 ff.; Poisson, 80;
rectangular, 301 f.; restricted: A, A*,
(C, 1), 309 ff.; Riemarm, 319; it,, 69;
spherical, 302; strong (C, 1), 34. or H, 181;
of type U, 333; uniform, 113; uniqueness of
summable trigonometric series, 352 if.,
356 if.

Summation: by parts, 3; with deleted index,
41, 69; formula, Poisson's, 68 if., 70

Sums: Ces&ro, of order a, 78; partial, 49, 82, 302
Sunouchi, G., 334
Supporting line, 21
Sutton, O. G., 333
Symmetric derivative, 22; approximate, 324;

first 22. 99; generalized r-th (de Is Vallee
Poussin ), 59, 331 (1) ; second, 22, 319; upper,
lower, 23, 99

Symmetric neighbourhood, 199, 318
Symmetric partial sums, 2
Symmetric perfect set, 196, 240
Symmetry: points of. 233 (1.10); principle (of

Schwarz), 388 n.
Systtem(a): closed, 127; complete, normal,

orthogonal, 5; orthonormal, 5. with respect
to d w (x), 8: trigonometric, 7

Sz. Nagy, B., 376-8
Szasz, 0., 251 (2), 380
Szego, G., 73 (24), 124 (2), 125 (8, 13), 375,

378, 381, 331

Tamarkin, J. D., 315 (8), 378 f., 381, 332, 335
Tauber, theorem, 81
Tauberian theorems, 78 (1.26), 79 (1.27), 81

(1.38), 376 (1), 380 (V, 8)
Taylor, S. J., 332
Tchebyshev abscissa, 6; interpolation, 331 (7)
Termwise differentiation, integration, 40 if.

Ternary set, Cantor, 196, 235, 250 (3), 3L8
Tests for convergence: Dini, 52, 66; Dini-

Lipschitz, 63, 66, 303; Dirichlet-Jordan, 57,
66; Lebesgue, 65, 66; Pringsheim, 52

Theorems: Abel. 4; Banach-Steinhaus, 165;
Bary, 349, 382 (3); Bernstein. 240, 244
(4.2), 11, 276; Cantor-Lebesgue, 316;
Caratheodory, 140; Cauchy, 75; Chaundy and
Jolliffe, 182 (1.3); decomposition, 275
(7.22), 73 (4.2); Denjoy, 308 n.; Denjoy-
Lusin, 232; equiconvergence, 289; Faber,
192 (2.31), 36 (8.6); Fatou, 99, 100 (7.8),
101 (7.9); Fatou-Riesz, 338; Fejer, 89, 290
(10.6), 24 (6.12); Gronwall, 132 (7.5);
Hadamard, 208; Hardy, 20 (9.16), 78, 160
(8.18); Hardy-Littlewood, 30, 63 (10- 7), 286
(8.6), 293 (10.14), 380 (V, 6), 109, 127 if.,
128; Hausdorff-Young, 101; Holly, 137;
Jackson, 115 (13.6), 117 (13-14); Kolmo-
gorov, 305, 310, 376 (12); Kronecker, 20,
149; Kuttner, 175 (5.1); Lebesgue, 84
(10.8), 90, 305; Littlewood, 81; Littlewood
and Paley, 166 (2.1), 167 (2.5), 170 (2.21);
Marcinkiewicz, 129, 308, 28 (7.5), 112, 170
(3.2), 232 (4.14); Menbov, 348, 382 (10),
178 (5.14); Menbov-Paley, 189; Menliov-
Radernacher, 193; Nikolsky, 154 (8.35);
Offord, 291 (10.3); Paley, 121; Paley-
Wiener, 272; Plancherel, 250; Plesaner, 203
(1.10); Pyatetaki-Shapiro, 346 (6.6); Rajoh-
man, 331; Riemann, first, second, 319 f.;
Riemann, mapping, 290; Riemann-Lebee-
gue, 45; F. Riesz, 102; F. Riesz and M.
Riesz, 285 (8.2, 8.3); Riesz-Fischer, 127;
M. Riesz, 94, 253, 255 (2.21), 368; Riesz-
Thorin, 95; Rogosinaki, 112 ff.; Salem, 225;
Schwarz, 99 (6.18); Sidon, 247 (6.1);
Stein, E., 100 (1.39); Tauber, 81; Tauberian,
78 (1.26), 79 (1.27), 81 (1.38), 378 (1), 380
(V, 8); three line, 94; Titchmarsh, 375 (3),
83 (5.15); Toeplitz, 74 (1.2); Verblunsky,
104 (2.18); Weierstrass, 90; Weyl. 89
(13.7); Wiener-Levy, 245 ff.; W. H. Young,
36 (1.5), 37 (1.15), 59 (8.9), 159 (8.15);
Zaleweseer, 43 (3.3)

Third arithmetic mean 110 (10.2)
Thorin, G. 0., 332; Riesz-Thorin, theorem,

93 if., 95
Three-fine theorem, 94
Titchmarsh, E. C., 295 (4). 296 (6), 375, 377 f.,

381, 332, 334 f.; theorems, 375 (3), 83 (5.15)
Toeplitz, 0.: conditions, 74, 376 (1); forms.

378 (9); theorem, 74 (1.2)
Tomic, J., 229 (10), 378 f.
Tonelli, L., 335
Torus, 312
Transformations, 184, see also Operations;

Abel, 3; characteristic of, 168 (9.17); group
of, 169
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Transforms : Fourier, 8, 246 ff. ; Fourier-
Stieltjes, 258 ff.; Hilbert, 243; Mellin, 253

Translates of a set, 165
Transue, W.. 378
Trapezoidal function, 10
Triangle inequality, 162
Triangular: function, 10; matrix, 74; neigh-

bourhood, 199, 318
Trigonometric: inequalities, 2, 91, 71 (12), 234,

265 f.; integrals, 244, 278 ff. ; interpolation,
I if., 331; polynomials, 1, approximation by,
114 if., beet approximation using, 115,
deviation, 114

Trigonometric series, 1; absolute convergence
of, 232 ff. ; coefficients, 1; conjugate, 1;
constant term of a, 91; formal multiplication
of, 330 if., 337 ff. ; and Fourier integrals,
263 if., 289 ff.; parts: real. imaginary, of a
power series, 1; of power series type, 3;
Riemann theory of, 316 ff. ; special, 182 ff. ;
symmetric partial sum of, 2; uniqueness of
representation by, 325 ff.; uniqueness of
summable, 352 if., 366 if.

Truncated function, 166
Tumarkin, G. C., 334
Turin, P., 376, 331
Type: of functions: exponential, 272, mono-

tonic, 64; linear operators of type (r, a), 95;
operations of strong, weak, type (r, s), 111;
sequence of type ,(P. Q), 176; series of
power series type, 3; sets of type N, N,,
236; summability of type U, 333

Ulyanov, P. L., 381
Uniform convergence of Fourier-Lagrange

coefficients 15; of conjugate Fourier series,
268 (6.14); of Fourier series, 12 (6-3); of
integrated Fourier series, 59 (8.7); of
monotone series 182 (1-3); at a point, 58

Uniformly: absolutely continuous, 143;
bounded, 90 (3.7); equiconvergent, 53;
equisummable, 364, in the wider sense, 366
(9-13); integrable R, 15; semi-convergent
from below, 174; smooth, 320; summable,
113

Uniqueness, sets of, 344 ff.; Abel, 362; prob-
lems of, 318, 291 ff. ; for summable series,
383 (7); in the wide sense, 160 (18)

Uniqueness for sununable series, 352 if., 356 if.
Unit circle 1, 199; harmonic functions on,

258 f.; power aeries diverging on, 383 (5)
Unit 315
Unitary transformation, 169
Univalent function, 290
Upper: bound, 67 n., least essential, 18, 94;

second derivative, 23; symmetric derivative,
23

de Is Vallee-Pousein, Ch. J., 327 n., 361 n.,
376 f., 382, 55 (1), 331, 336; derivative, 59

Value, principal, of an integral, 51
Van der Corput, see Corput, J. G. van der
Variables: independent random, 380 (8);

several, 300; see also Several variables
Variation: power series of bounded, 285 ff.;

sequence of bounded, 4
Varying function, slowly, 186
Vectors, normal sequence of, 346
Verblunsky, S., 372 (14), 382 f., 332 f.;

theorem, 104
Vijayaraghavan, T., 375

Walsh. J. L., 376; functions, 34
Wang, F. T., 334
Waraszkiewicz, Z., 380
Warachawski, S., 381
Weak norm, 11l
Weak type (r, a), 111
Weierstraes, K., 115; functions, 47, 206, 376

(I1, 4), 379 (4, 6), 138; theorem, 90
Weight, dw, 7
Weias, G., 377 f., 332, 334
Weiss, Mary, 379, 382, 333
Weyl, H., 251, 376, 378, 333; fractional

integral, 140; theorem, 69 (13-7)
Wb.te interval, 194
W'de sense, mete of uniqueness in the, 160 (18)
Wider sense, equiconverge in the, 53
W/ielandt, H., 376
Wiener, N., 180 (12), 230 (21), 376, 377, 380,

298, 333-5; Paley-Wiener theorem, 272 ff.;
Wiener and Levy, theorems, 245 if.

Wilton, J. R., 379
Wintner, A., 229 (9), 230 (21), 333
Wolf, F., 383, 335

Yano, S., 332
Young, G. C., 377 f.
Young, L. C., 332
Young, W. H., 73, 375-8, 382, 332; func-

tions, 16, 25, complementary, 16; inequality,
16, 25; theorems, 36 (1.5), 37 (1-15), 59
(8-9), 159 (8-15), Hausdorff-Young, 101

Zaanen, A. C., 378
Zalcwasser, Z., 375 f., 381; theorem, 43 (3-3)
Zemansky, M., 180 (5), 377
Zarantonello, E. H., 331
Zeller, K., 382 f.
Zermelo, E.. 344
Zygmund, A., 371 (9), 372 (16), 375-83, 156 f.,

331-5



This latest issue of Zygmund's classic treatise includes a foreword by Robert
Fefferman of the University of Chicago. Professor Fefferman describes
Zygmund's mathematical development, his contemporaries and, of course, the
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Zygmund's work has influenced contemporary mathematics.

Professor Zygmund's Trigonometric Series, first published in Warsaw in
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