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Preface

This Festschrift had its origins in a conference called SimonFest held at Caltech,
March 27-31, 2006, but it is not a Proceedings volume in the usual sense. Barry
Simon requested that both his birthday conference and this Festschrift concentrate
not so much on what the speaker or writer has done recently, but instead on reviews
of the state of the art, with a focus on recent developments and open problems.
While the number of speakers at Simonfest was originally limited by the number
of hour slots in a full week, the contributions to this Festschrift contain a few
additionally selected reviews. In the end, the bulk of the articles in this Festschrift
are of this state of the art survey form with a few that instead review Barry's
contributions to a particular area.

In Part 1, the focus is on the areas of Quantum Field Theory, Statistical Me-
chanics, Nonrelativistic Two-Body and N-Body Quantum Systems, Resonances,
Electric and Magnetic Fields, and Semiclassical Limit. Here in Part 2, the focus is
on the areas of Random and Ergodic Schrodinger Operators, Singular Continuous
Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory.

For a detailed preface, including a short biography of Barry Simon, we refer
the reader to Part 1 of this two-volume Festschrift.

We are grateful to Sergei Gelfand, Christine Thivierge, and the staff at AMS
for their support throughout the preparations of this Festschrift. We also thank all
authors for their contributions and the referees for their invaluable assistance.

We sincerely thank the following sponsors of SimonFest for their financial
support: Caltech's Center for the Mathematics of Information (CMI); Caltech's
Division of Physics, Mathematics, and Astronomy; International Association of
Mathematical Physics (IAMP); International Union of Pure and Applied Physics
(IUPAP); U.S. National Science Foundation (NSF).

Percy Deift
Cherie Galvez
Fritz Gesztesy

Peter Perry
Wilhelm Schlag

October 2006
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A New Approach to Spectral Gap Problems

Jean Bourgain

To Barry

ABSTRACT. Based on purely analytical methods, we exhibit new families of
expanders in SL2(p) (p prime) and SU(2), contributing to conjectures of
Lubotzky and Sarnak. This is a report on joint work with Gamburd.
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1. Introduction
Given an undirected d-regular graph G and a subset X of V, the expansion of

X,c(X), is defined to be the ratio a(X)1\1X1, where a(X) = {y E c: distance
(y, X) = 1}. The expansion coefficient of a graph G is defined as follows:

c(C) = inf{c(X) I IXI < 21cI}.

A family of d-regular graphs Gn,d forms a family of C-expanders if there is a fixed
positive constant C, such that

liminf C(C,a,d) > C.n-co (1.1)

The adjacency matrix of!;, A(c), is the 1!91 x 1!91 matrix, with rows and columns
indexed by vertices of !;, such that the x, y entry is 1 if and only if x and y are ad-
jacent and 0 otherwise. Using the discrete Cheeger-Buser inequality, the condition

2000 Mathematics Subject Classification. 22E45, 42Axx, 541115, 81Q30.
Key words and phrases. Hecke operators, sphere,rotations, spectrum.
The author was supported in part by NSF grant DMS-0401277 and a Sloan Foundation

Fellowship.
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500 J. BOURGAIN

(1.1) can be rewritten in terms of the second largest eigenvalue of the adjacency
matrix A(C) as follows:

lim sup )I (A,,d) < d. (1.2)
n-oc

Given a finite group G with a symmetric set of generators S, the Cayley graph
g(G, S) is a graph which has elements of G as vertices and which has an edge from
x to y if and only if x = ay for some a E S. Let S be a set of elements in SL(2,7Z).
If (S), the group generated by S, is a finite index subgroup of SL(2, Z), Selberg's
theorem [17] implies that 9(SL2(]Fp), Sp) (where Sp is a natural projection of S
modulo p) from a family of expanders as p ---> oc. A basic problem, posed by
Lubotzky [13, 14] and Lubotzky and Weiss [15], is whether Cayley graphs of
SL2(Fp) are expanders with respect to other generating sets.

In [9] it is proved that if S is a set of elements in SL(2, Z) such that (S) is a
subgroup of SL(2, Z), whose Hausdorff dimension of the limit set is greater than
6 then 9(SL2(]Fp), Sp) form a family of expanders.

In [2] we prove that Cayley graphs of SL2(p) are expanders with respect to
projection of fixed elements in SL2 (Z) generating a nonelementary subgroup (that
is, a subgroup whose limit set consists of more than two points), and with respect
to elements chosen at random in SL2(p).

The question of the spectral gap for finitely generated subgroups of SU(2) is
motivated in part by the problem, posed by Ruziewicz in 1921, of whether Lebesgue
measure on the n-sphere is the unique finitely additive rotation-invariant measure
defined on the Lebesgue subsets; it is also of interest in connection with problems
in quantum computation [7]. As is well-known, the existence of a finitely generated
subgroup with a spectral gap implies the affirmative answer. For n = 1 the answer
is negative, using essentially the amenability of SO(2). For n > 3 the affirmative
answer was obtained in 1980-1981 by Margulis and Sullivan, who used Kazhdan's
property (T). In 1984 Drinfeld established the affirmative answer in the most
difficult case of n = 2 by providing the existence of an element in the group ring of
SU(2) which has a spectral gap.

Drinfeld's method used some sophisticated machinery from the theory of au-
tomorphic representations (in particular, Deligne's solution of the Ramanujan con-
jectures.) In [10] a new robust method establishing that certain elements z in
the group ring of SU(2) have a spectral gap was presented, and consequently the
spectral gap property was proven to hold for many subgroups defined via integral
Hamilton quaternions.

In [3] we prove the spectral gap property for free subgroups of SU(2) generated
by elements satisfying a noncommutative diophantine property, in particular, for
free subgroups generated by elements with algebraic entries. Our method, following
the approach in [10], first exploits the trace formula to reduce the question of the
spectral gap to estimating from above the number of returns to a small neighbor-
hood of identity. In [10] the required upper bound was obtained by reduction to
an appropriate arithmetic problem. The novelty of our approach is to derive the
required upper bound by utilizing the tools of additive combinatorics.
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2. Results

First consider the expander problem in SL2(p). Our first result resolves the
question completely for projections of fixed elements in SL(2, Z).

THEOREM 1. Let S be a set of elements in SL(2,Z). Then g(SL2(lFP), SP)
form a family of expanders if and only if (S) is nonelementary, that is, the limit
set of (S) consists of more than two points (equivalently, (S) does not contain a
solvable subgroup of finite index).

Our second result resolves the question for random Cayley graphs of SL2(IFp).
(Given a group G, a random 2k-regular Cayley graph of G is the Cayley graph
C(G, o, U o,-1) where or is a set of k elements from G, selected independently and
uniformly at random.)

THEOREM 2. For any k > 2, random Cayley graphs of SL2 (IFp) on k generators
are expanders.

Theorems 1 and 2 are consequences of the following quantitative result (recall
that the girth of a graph is the length of a shortest cycle).

THEOREM 3. Let S be a symmetric set in SL2(1Fp) and assume

girth(g(SL2(1Fp), S)) > clogp, c > 0

an arbitrary given constant. Then the expansion coefficient c(9(SL2(1Fp), S)) >
c1 (c) > 0 (for p sufficiently large).

Next, we discuss our results for SU(2). Let us first recall the notion of `dio-
phantine elements' introduced in [10].

DEFINITION. Fork > 2, we say that 91, 92, ... 9k E G are diophantine (or
satisfy a noncommutative diophantine condition) if there is D = D(gl, ... , gk) > 0
such that for any m > 1 and a word Rm in 91, 92, ... , gk of length m with R,,,, +e,
we have

HHR, + ell > D-m. (2.1)

Here
[ca d

= lal2 + b12 + Ic12 + 1d12.

Note that for g E G, we have

11g± e112 = 2 Itrace (g) + 21. (2.2)

THEOREM 4. Let {g1i ... , AI be a set of elements in SU(2) generating a free
group and satisfying a noncommutative diophantine property. Then

z9l,...,9k = 91 + gi
1 + ... + 9k + 9k 1 (2.3)

has a spectral gap.

The following corollary is an immediate consequence of Theorem 4 and Propo-
sition 4.3 in [10] establishing that elements with algebraic entries are diophantine.

COROLLARY 5 . I f {91, ... , gk} are elements with algebraic entries (that is,
91, , gk E G n M2((Q)) generating a free group, then z9i,,,,,9k has a spectral gap.
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3. Methods

The proof of Theorem 3 consists of two crucial ingredients. The first one
is the fact that nontrivial eigenvalues of g(SL2(Fp), S) must appear with high
multiplicity. This follows from a result going back to Frobenius, asserting that
the smallest dimension of a nontrivial irreducible representation of SL2(Fp) is p2
which is large compared to the size of the group (which is of order p3). The second
crucial ingredient is an upper bound on the number of short closed geodesics, or,
equivalently, the number of returns to identity for random walks of length of order
log IGI.

The idea of obtaining spectral gap results by exploiting high multiplicity to-
gether with the upper bound on the number of short closed geodesics is due to
Sarnak and Xue [16]; it was subsequently applied in [9]. In these works the upper
bound was achieved by reduction to an appropriate diophantine problem. The nov-
elty of our approach is to derive the upper bound by utilizing the tools of additive
combinatorics. In particular, we make crucial use of the noncommutative version of
the Balog-Szemeredi-Gowers lemma, obtained by Tao [18, 19], and of the result of
Helfgott [11] asserting that subsets of SL2(Fp) grow rapidly under multiplication.
Helfgott's paper [11], which served as a starting point and an inspiration for our
work, builds crucially on sum-product estimates in finite fields due to Bourgain,
Glibichuk and Konyagin [4] and Bourgain, Katz and Tao [5]. We state the result

PROPOSITION 6 ([4, 5]). For all e > 0, there is 6 > 0 such that if A C 1Fp
(prime), 1 < JAI < pi-E, then

IA + Al + IA.AI > cIAl1+6.

The structure of the proof of Theorem 4 is very similar to Theorem 3. As
mentioned, the trace formula is used the same way as in [10] to reduce the gap
problem to estimating the number of returns to a 6-neighborhood of the identity.
A bound on these returns follows from an estimate on the convolution powers
IIv(P) * P6112 where v = 2k 5-1(6gs + 6gs 1) and P6 with B(1, 6) = {x E
SU(2)1 JJx - 111 < S}. That estimate itself results from a `product theorem' for
subsets of SU(2) in a similar vein as Helfgott's [11] (both the statement and the
argument). But in the present case, the formulations for a compact group require
`measure' and `metrical entropy' rather than `cardinality' in the finite case. The
most significant ingredient at this stage of the proof is the metrical counterpart of
the finite fields sum-product theorem from [5]. The relevant property is a slight
variant of the `discretized ring conjecture' from [12], proven in [1]. The statement
is as follows:

PROPOSITION 7. For all 0 < o, < 1 and s; > 0, there is e > 0 such that the
following holds. Let b > 0 be a small number and A C [-1, 1] a union of size-6
intervals satisfying Al J= Si-a and maxa IA n B(a, p)I < pr- JAI for all 6 < p < SE.
Then

I A + Al + I A.AJ > bi °-E. (3.1)
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4. Further Remarks

1. Proofs of the above mentioned results appear in [2, 3].

2. If we fix S C SL2(Z) generating a free group, it is reasonable to expect
that c(c(SL2(Zq), S)) > 8(S) > 0, Zq = Z/q7G, for all positive integers q, coprime
to some finite set (depending on S) of integers. This follows from Theorem 3 if q
is prime. Without entering into details, the same basic scheme may be applied in
general. The sum-product theorem in Fp needs to be substituted here by the corre-
sponding result in Zq (which is necessarily more restrictive for composite q). These
results are presently available (and were developed for slightly different purposes).
Precise statements and details will appear shortly.

3. Apart from the Ruziewicz problem and the Solovay-Kitaev algorithm, Theo-
rem 4 and Corollary 5 are also relevant to a number of other problems. For instance,
an affirmative solution is obtained to the question considered in [8] on the uniform
distribution of the orientations in the quaquaversal tilings of X83, introduced in [6].

4. Theorem 3 has extensions to the case when p is not prime, for instance, to
square free moduli q. These have further applications to number theory (combined
with the Selberg sieve) that won't be discussed here.

5. It is likely similar methods will also apply to SLn for n > 2, but this awaits
certain further developments.
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Strictly Ergodic Subshifts and Associated Operators

David Damanik

Dedicated to Barry Simon on the occasion of his 60th birthday

ABSTRACT. We consider ergodic families of Schrodinger operators over base
dynamics given by strictly ergodic subshifts on finite alphabets. It is expected
that the majority of these operators have purely singular continuous spectrum
supported on a Cantor set of zero Lebesgue measure. These properties have
indeed been established for large classes of operators of this type over the
course of the last twenty years. We review the mechanisms leading to these
results and briefly discuss analogues for CMV matrices.
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2. Strictly Ergodic Subshifts
3. Associated Schrodinger Operators and Basic Results
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8. CMV Matrices Associated with Subshifts
9. Concluding Remarks
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1. Introduction

When I was a student in the mid-1990's at the Johann Wolfgang Goethe Uni-
versitat in Frankfurt, my advisor Joachim Weidmann and his students and postdocs
would meet in his office for coffee every day and discuss mathematics and life. One
day we walked in and found a stack of preprints on the coffee table. What now must

2000 Mathematics Subject Classification. Primary 82B44, 47B80; Secondary 47B36, 81Q10.
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seem like an ancient practice was not entirely uncommon in those days: In addition
to posting preprints on the archives, people would actually send out hardcopies of
them to their peers around the world.

In this particular instance, Barry Simon had sent a series of preprints, all
dealing with singular continuous spectrum. At the time I did not know Barry
personally but was well aware of his reputation and immense research output. I
was intrigued by these preprints. After all, we had learned from various sources
(including the Reed-Simon books!) that singular continuous spectrum is sort of
a nuisance and something whose absence should be proven in as many cases as
possible. Now we were told that singular continuous spectrum is generic?

Soon after reading through the preprint series it became clear to me that my
thesis topic should have something to do with this beast: singular continuous spec-
trum. Coincidentally, only a short while later I came across a beautifully written
paper by Siito [130] that raised my interest in the Fibonacci operator. I had stud-
ied papers on the almost Mathieu operator earlier. For that operator, singular
continuous spectrum does occur, but only in very special cases, that is, for special
choices of the coupling constant, the frequency, or the phase. In the Fibonacci case,
however, singular continuous spectrum seemed to be the rule. At least there was no
sensitive dependence on the coupling constant or the frequency as I learned from
[15, 130, 131].

Another feature, which occurs in the almost Mathieu case, but only at special
coupling, seemed to be the rule for the Fibonacci operator: zero-measure spectrum.

So I set out to understand what about the Fibonacci operator was responsible
for this persistent occurrence of zero-measure singular continuous spectrum. Now,
some ten years later, I still do not really understand it. In fact, as is always the
case, the more you understand (or think you understand), the more you realize how
much else is out there, still waiting to be understood.'

Thus, this survey is meant as a snapshot of the current level of understanding
of things related to the Fibonacci operator and also as a thank-you to Barry for
having had the time and interest to devote a section or two of his OPUC book to
subshifts and the Fibonacci CMV matrix. Happy Birthday, Barry, and thank you
for being an inspiration to so many generations of mathematical physicists!

2. Strictly Ergodic Subshifts

In this section we define strictly ergodic subshifts over a finite alphabet and
discuss several examples that have been studied from many different perspectives
in a great number of papers.

2.1. Basic Definitions. We begin with the definitions of the the basic ob-
jects:

DEFINITION 2.1 (full shift). Let A be a finite set, called the alphabet. The two-
sided infinite sequences with values in A form the full shift AZ. We endow A with
the discrete topology and the full shift with the product topology.

DEFINITION 2.2 (shift transformation). The shift transformation T acts on the
full shift by [Tw]n = wn+1.

'Most recently, I have come to realize that I do not understand why the Lyapunov exponent
vanishes on the spectrum, even at large coupling. Who knows what will be next...
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DEFINITION 2.3 (subshift). A subset f of the full shift is called a subshift if it
is closed and T-invariant.

Thus, our base dynamical systems will be given by (S2, T), where 52 is a subshift
and T is the shift transformation. This is a special class of topological dynamical
systems that is interesting in its own right. Basic questions regarding them con-
cern the structure of orbits and invariant (probability) measures. The situation is
particularly simple when orbit closures and invariant measures are unique:

DEFINITION 2.4 (minimality). Let SZ be a subshift and w E Q. The orbit of w
is given by 0,,, = {T"w : n c Z}. If Ou, is dense in ci for every w E SZ, then fZ is
called minimal.

DEFINITION 2.5 (unique ergodicity). Let SZ be a subshift. A Borel measure µ
on SZ is called T-invariant if µ(T(A)) = p(A) for every Borel set A C ft 11 is called
uniquely ergodic if there is a unique T-invariant Borel probability measure on Q.

By compactness of SZ, the set of T-invariant Borel probability measure on 52
is non-empty. It is also convex and the extreme points are exactly the ergodic
measures, that is, probability measures for which T(A) = A implies that either
µ(A) = 0 or µ(A) = 1. Thus, a subshift is uniquely ergodic precisely when there is
a unique ergodic measure on it.

We will focus our main attention on subshifts having both of these properties.
For convenience, one often combines these two notions into one:

DEFINITION 2.6 (strict ergodicity). A subshift fZ is called strictly ergodic if it
is both minimal and uniquely ergodic.

2.2. Examples of Strictly Ergodic Subshifts. Let us list some classes
of strictly ergodic subshifts that have been studied by a variety of authors and
from many different perspectives (e.g., symbolic dynamics, number theory, spectral
theory, operator algebras, etc.) in the past.

2.2.1. Subshifts Generated by Sequences. Here we discuss a convenient way of
defining a subshift starting from a sequence s E AZ. Since AZ is compact, O. has
a non-empty set of accumulation points, denoted by c,g. It is readily seen that c9
is closed and T-invariant. Thus, we call ci. the subshift generated by s. Naturally,
we seek conditions on s that imply that SZ3 is minimal or uniquely ergodic.

Every word w (also called block or string) of the form w = Sm ... s,,,.+n_1 with
m c Z and n E 7G+ = {1, 2,3,...1 is called a subword of s (of length n, denoted by
w I). We denote the set of all subwords of s of length n by W9 (n) and let

W9 = U W.(n).
n>1

If w c W., (n), let ... < m_1 < 0 < mo < m1 < ... be the integers m for
which sm.... s,,,.+n_1 = w. The sequence s is called recurrent if Mn -+ foo as
n -+ ±oo for every w E W. A recurrent sequence s is called uniformly recurrent
if (mj+l - mj)jEZ is bounded for every w E W9. Finally, a uniformly recurrent
sequence s is called linearly recurrent if there is a constant C < oc such that for
every w E W87 the gaps mj+l - mj are bounded by CIwj.

We say that w c WS occurs ins with a uniform frequency if there is d8 (w) > 0
such that, for every k E Z,

ds (w) = lim 1 I {mi};EZ n [k, k + n) l ,
n-.oo n
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and the convergence is uniform in k.
For results concerning the minimality and unique ergodicity of the subshift

f29 generated by a sequence s, we recommend the book by Queffelec [120]; see in
particular Section IV.2. Let us recall the main findings.

PROPOSITION 2.7. Ifs is uniformly recurrent, then Sts is minimal. Conversely,
if 0 is minimal, then every w E 0 is uniformly recurrent. Moreover, )'V = W112
for every U)1, w2 E ft

The last statement permits us to define a set W0 for any minimal subshift 1
so that W0 = W, for every w E Q.

PROPOSITION 2.8. Let s be recurrent. Then, SZs is uniquely ergodic if and only
if each subword of s occurs with a uniform frequency.

As a consequence, 1L is strictly ergodic if and only if each subword w of s
occurs with a uniform frequency ds (w) > 0.

An interesting class of strictly ergodic subshifts is given by those subshifts that
are generated by linearly recurrent sequences [65, 104]:

PROPOSITION 2.9. If s is linearly recurrent, then Sts is strictly ergodic.

2.2.2. Sturmian Sequences. Suppose s is a uniformly recurrent sequence. We
saw above that Sts is a minimal subshift and all elements of Sts have the same set
of subwords, Ws, = Ws. Let us denote the cardinality of W8(n) by ps(n). The
map 7L+ --. Z+, n p,, (n) is called the complexity function of s (also called factor,
block or subword complexity function).

It is clear that a periodic sequence gives rise to a bounded complexity function.
It is less straightforward that every non-periodic sequence gives rise to a complexity
function that grows at least linearly. This fact is a consequence of the following
celebrated theorem due to Hedlund and Morse [116]:

THEOREM 2.10. Ifs is recurrent, then the following statements are equivalent:
(i) s is periodic, that is, there exists k such that s n = s,,,.+k for every m E Z.

(ii) ps is bounded, that is, there exists p such that ps (n) < p for every n E Z+.
(iii) There exists no E Z+ such that p, (no) < no.

PROOF. The implications (i) = (ii) and (ii) (iii) are obvious, so we only
need to show (iii) = (i).

Let Rs (n) be the directed graph with ps (n) vertices and ps (n + 1) edges which
is defined as follows. Every subword w E Ws (n) corresponds to a vertex of Rs (n).
Every w E Ws (n + 1) generates an edge of Rs (n) as follows. Write t' = axb, where
a, b c A and x is a (possibly empty) string. Then draw an edge from the vertex ax
to the vertex xb.

We may assume that A has cardinality at least two since otherwise the theorem
is trivial. Thus, p, (1) > 2 > 1. Obviously, ps is non-decreasing. Thus, by assump-
tion (iii), there must be 1 < n1 < no such that ps(nl) = ps(nl + 1). Consider the
graph R8(n1). Since s is recurrent, there must be a directed path from w1 to w2 for
every pair W1, W2 E W5(nl). On the other hand, R5(nl) has the same number of
vertices and edges. It follows that Rs (nl) is a simple cycle and hence s is periodic
of period ps(nl).

The graph Rs (n) introduced in the proof above is called the Rauzy graph asso-
ciated with s and n. It is an important tool for studying (so-called) combinatorics
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on words. This short proof of the Hedlund-Morse Theorem is just one of its many
applications.

COROLLARY 2.11. If s is recurrent and not periodic, then ps(n) > n + 1 for
every n E Z+.

This raises the question whether aperiodic sequences of minimal complexity
exist.

DEFINITION 2.12. A sequence s is called Sturmian if it is recurrent and satisfies
ps(n) = n + 1 for every n c Z+.

Remarks. (a) There are non-recurrent sequences s with complexity ps (n) = n + 1.
For example, sn = bn,0. The subshifts generated by such sequences are trivial and
we therefore restrict our attention to recurrent sequences.
(b) We have seen that growth strictly between bounded and linear is impossible
for a complexity function. It is an interesting open problem to characterize the
increasing functions from Z+ to Z+ that arise as complexity functions.

Note that a Sturmian sequence is necessarily defined on a two-symbol alphabet
A. Without loss of generality, we restrict our attention to A = {0, 1}. The following
result gives an explicit characterization of all Sturmian sequences with respect to
this normalization; compare [113, Theorem 2.1.13].

THEOREM 2.13. A sequence s E {0, 1}Z is Sturmian if and only if there are
0 E (0, 1) irrational and 0 E [0, 1) such that either

sn. = X[1-e,1) (nO + 0) or sn = X(1-e,1] (nO + ) (1)

for all n c Z.

Remark. In (1), we consider the 1-periodic extension of the function
(resp., X(1-e,1](')) on [0,1).

Each sequence of the form (1) generates a subshift. The following theorem
shows that the resulting subshift only depends on 0. A proof of this result may be
found, for example, in the appendix of [44].

THEOREM 2.14. Assume 0 E (0, 1) is irrational, E [0, 1), and sn _
X[1-e,1) (n0 + 0). Then the subshift generated by s is given by

SZs = {n --4 X[1_e I) (nO + ) : E [0, 1) } U {n H X(1_e 1] (n0 + [0, 1)} .

Moreover, SZs is strictly ergodic.

Let us call a subshift Sturmian if it is generated by a Sturmian sequence. We
see from the previous theorem that there is a one-to-one correspondence between
irrational numbers 0 and Sturmian subshifts. We call 0 the slope of the subshift.

Example (Fibonacci case). The Sturmian subshift corresponding to the inverse of
the golden mean,

B=-
2 '

is called the Fibonacci subshift and its elements are called Fibonacci sequences.

An important property of Sturmian sequences is their hierarchical, or S-adic,
structure. That is, there is a natural level of hierarchies such that on each level,
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there is a unique decomposition of the sequence into blocks of two types. The
starting level is just the decomposition into individual symbols. Then, one may
pass from one level to the next by a set of rules that is determined by the coefficients
in the continued fraction expansion of the slope 0.

Let
1

0 = 1 (2)

a1 +
1

a2 + a3+...
be the continued fraction expansion of 0 with uniquely determined ak E Z+. Trun-
cation of this expansion after k steps yields rational numbers pk/qk that obey

Po = 0, P1 = 1, Pk = akPk-1 + Pk-2, (3)

qo = 1, ql = al, qk = akgk-1 + qk-2 (4)

These rational numbers are known to be best approximants to 0. See Khinchin [94]
for background on continued fraction expansions.

We define words (wk)kEz over the alphabet {0, 1} as follows:

wo = 0, w1 = 0a1-11, wk+1 = Wkk+lwk_1 for k > 1. (5)

THEOREM 2.15. Let S2 be a Sturmian subshift with slope 0 and let the words
wk be defined by (2) and (5). Then, for every k E Z+, each w E 11 has a unique
partition, called the k-partition of w, into blocks of the form Wk or Wk-1. In this
partition, blocks of type wk occur with multiplicity ak+1 or ak+1 + 1 and blocks of
type Wk-1 occur with multiplicity one.

SKETCH OF PROOF. The first step is to use the fact that pk/qk are best ap-
proximants to show that the restriction of x[,-e,i) (nO) to the interval [1, qk] is given
by wk, k E 7Z+; compare [15]. The recursion (5) therefore yields a k-partition of
X[1-0'1)(n0) on [1, oo). Since every w c 1 may be obtained as an accumulation
point of shifts of this sequence, it can then be shown that a unique partition of w is
induced; see [38]. The remaining claims follow quickly from the recursion (5)

Example (Fibonacci case, continued). In the Fibonacci case, ak = 1 for every k.
Thus, both (pk) and (qk) are sequences of Fibonacci numbers (i.e., pk+1 = qk = Fk,
where F0 = Fl = 1 and Fk+1 = Fk+Fk_1 fork > 1) and the words Wk are obtained
by the simple rule

wo = 0, w1 = 1 , wk = wk-lwk_2 fork > 2. (6)

Thus, the sequence (Wk)kEZ+ is given by 1, 10, 101, 10110, 10110101,..., which
may also be obtained by iterating the rule

1 F--! 10, 0 F--) 1,

starting with the symbol 1.

(7)

For the proofs omitted in this subsection and much more information on Stur-
mian sequences and subshifts, we refer the reader to [16, 44, 113, 117].
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2.2.3. Codings of Rotations. Theorem 2.13 shows that Sturmian sequences are
obtained by coding an irrational rotation of the torus according to a partition of
the circle into two half-open intervals. It is natural to generalize this and consider
codings of rotations with respect to a more general partition of the circle. Thus,
let [0, 1) = Il U ... U I, be a partition into l half-open intervals. Choosing numbers
Al i ... , A1, we consider the sequences

1

s,,, _ E xl,(nO+0).
j=1

(8)

Subshifts generated by sequences of this form will be said to be associated with
codings of rotations.

THEOREM 2.16. Let 0 E (0, 1) be irrational and 0 E [0,1). If s is of the
form (8), then ""S is strictly ergodic. Moreover, the complexity function satisfies
p, (n) = an + b for every n > no and suitable integers a, b, no.

See [77] for a proof of strict ergodicity and [1] for a proof of the complexity
statement. In fact, the integers a, b, no can be described explicitly; see [1, Theo-
rem 10].

2.2.4. Arnoux-Rauzy and Episturmian Subshifts. Let us consider a minimal
subshift Q over the alphabet A,,, = {0, 1, 2, ... , m - 1}, where m > 2. A word
w E W0 is called right-special (resp., left-special) if there are distinct symbols
a, b E A,,, such that wa, wb E Wo (resp., aw, bw E W0). A word that is both
right-special and left-special is called bispecial. Thus, a word is right-special (resp.,
left-special) if and only if the corresponding vertex in the Rauzy graph has out-
degree (resp., in-degree) > 2.

Note that the complexity function of a Sturmian subshift obeys p(n+1)-p(n)
1 for every n, and hence for every length, there is a unique right-special factor and
a unique left-special factor, each having exactly two extensions.

Arnoux-Rauzy subshifts and episturmian subshifts relax this restriction on the
possible extensions somewhat, and they are defined as follows: A minimal subshift
SZ is called an Arnoux-Rauzy subshift if pn(1) = m and for every n E Z+, there is a
unique right-special word in W0(n) and a unique left-special word in Wo(n), both
having exactly m extensions. This implies in particular that p0 (n) = (m -1)n + 1.
Arnoux-Rauzy subshifts over A2 are exactly the Sturmian subshifts.

A minimal subshift SZ is called episturmian if Wn is closed under reversal (i.e.,
for every w = w1 ... w E W12, we have wR = w ... W1 E W0) and for every
n E Z+, there is exactly one right-special word in Wo(n).

PROPOSITION 2.17. Every Arnoux-Rauzy subshift is episturmian and every
episturmian subshift is strictly ergodic.

See [63, 88, 122, 137] for these results and more information on Arnoux-
Rauzy and episturmian subshifts.

2.2.5. Codings o f Interval Exchange Transformations. Interval exchange trans-
formations are defined as follows. Given a probability vector A = (A1, ... , Am) with
A >0for 1<i<m,let µo=0,µiAj, and Ii=[µi-1,µi) LetrESm,
the symmetric group. Then AT = (AT-1(l), ... , A,.-gy(m)) is also a probability vector
and we can form the corresponding µ2 and I.. Denote the unit interval [0, 1) by I.
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The (A, 'r) interval exchange transformation is then defined by

T : I -4 I, T(x) = x - µZ_1 + ii(i)_l for x E Ii, 1 < i < M.

It exchanges the intervals IZ according to the permutation T.
The transformation T is invertible and its inverse is given by the (AT , T-1)

interval exchange transformation.
The symbolic coding of x E I is w7 (x) = i if T'(x) E Ii. This induces a subshift

over the alphabet A = {1, ... , m}: QA,T = {w(x) : x E I}. Every Sturmian subshift
can be described by the exchange of two intervals.

Keane [90] proved that if the orbits of the discontinuities pi of T are all infinite
and pairwise distinct, then T is minimal. In this case, the coding is one-to-one and
the subshift is minimal and aperiodic. This holds in particular if r is irreducible
and A is irrational. Here, T is called irreducible if T({1, . . . , k}) ({1, . . . , k}) for
every k < m and A is called irrational if the Ai are rationally independent.

Keane also conjectured that all minimal interval exchange transformations give
rise to a uniquely ergodic system. This was disproved by Keynes and Newton [92]
using five intervals, and then by Keane [91] using four intervals (the smallest pos-
sible number). The conjecture was therefore modified in [91] and then ultimately
proven by Masur [114], Veech [135], and Boshernitzan [19]: For every irreducible
T E S,,, and for Lebesgue almost every A, the subshift SZa,T is uniquely ergodic.

2.2.6. Substitution Sequences. All the previous examples were generalizations
of Sturmian sequences. We now discuss a class of examples that generalize a certain
aspect of the Fibonacci sequence

sn = X[1-e,o) (n0), 0= f2 1

We saw above (see (6) and its discussion) that this sequence, restricted to the right
half line, is obtained by iterating the map (7). That is,

has (sn)n>1 as its limit. In other words, (si)n>1 is invariant under the substitution
rule (7).

DEFINITION 2.18 (substitution). Denote the set of words over the alphabet A
by A*. A map S : A ---> A* is called a substitution. The naturally induced maps on
A* and AZ+ are denoted by S as well.

Examples. (a) Fibonacci: 1 H 10, OF--> 1
(b) Thue-Morse: 1 -+ 10, 0 -+ 01
(c) Period doubling: 1 10, 0 H 11
(d) Rudin-Shapiro: 1 12, 2 F--> 13, 3 --+ 42, 4 i--> 43

DEFINITION 2.19 (substitution sequence). Let S be a substitution. A sequence
s E AZ+ is called a substitution sequence if it is a fixed point of S.

If S(a) begins with the symbol a and has length at least two, it follows that
ISn (a) I --> oo as n - oo and Sn (a) has Sn-1(a) as a prefix. Thus, the limit of Sn (a)
as n - oo defines a substitution sequence s. In the examples above, we obtain the
following substitution sequences.

(a) Fibonacci: SF = 1011010110110.. .

(b) Thue-Morse: sT1M = 100101100110... and sTOM = 0110100110010110.. .



STRICTLY ERGODIC SUBSHIFTS AND ASSOCIATED OPERATORS 513

(c) Period doubling: SPD = 101110101011101110...
(d) Rudin-Shapiro: sRls = 1213124212134313... and sRS = 4342431343421242.. .

We want to associate a subshift 52s with a substitution sequence s. Since the
iteration of S on a suitable symbol a naturally defines a one-sided sequence s, we
have to alter the definition of 52s used above slightly. One possible way is to extend
s to a two-sided sequences arbitrarily and then define

52s = {w E Az : w = T' 9 for some sequence nj -> co}.

A different way is to define S23 to be the set of all w's with W, C W3. Below we
will restrict our attention to so-called primitive substitutions and for them, these
two definitions are equivalent.

To ensure that 523 is strictly ergodic, we need to impose some conditions on S.
A very popular sufficient condition is primitivity.

DEFINITION 2.20. A substitution S is called primitive if there is k E Z+ such
that for every pair a, b c A, Sk(a) contains the symbol b.

It is easy to check that our four main examples are primitive. Moreover, if S
is primitive, then every power of S is primitive. Thus, even if S(a) does not begin
with a for any symbol a E A, we may replace S by a suitable Stet and then find such
an a, which in turn yields a substitution sequence associated with S'm by iteration.

THEOREM 2.21. Suppose S is primitive and s is an associated substitution
sequence. Then, s is linearly recurrent. Consequently, Q., is strictly ergodic.

See [55, 66]. Linear recurrence clearly also implies that ps(n) = O(n). Fixed
points of non-primitive substitutions may have quadratic complexity. However,
there are non-primitive substitutions that have fixed points which are linearly re-
current and hence define strictly ergodic subshifts; see [45] for a characterization
of linearly recurrent substitution generated subshifts.

2.2.7. Subshifts with Positive Topological Entropy. All the examples discussed
so far have linearly bounded complexity. One may wonder if strict ergodicity places
an upper bound on the growth of the complexity function. Here we want to mention
the existence of strictly ergodic subshifts that have a very fast growing complexity
function. In fact, it is possible to have growth that is arbitrarily close to the
maximum possible one on a logarithmic scale.

Given a sequence s over an alphabet A, Al C> 2, its (topological) entropy is
given by

hs = lim 1 log ps (n).n-oo n
The existence of the limit follows from the fact that n ---> logps(n) is subadditive.
Moreover,

0<hs<logJAI,
where I I denotes cardinality.

The following was shown by Hahn and Katznelson [75]:

THEOREM 2.22. (a) Ifs is a uniformly recurrent sequence over the alphabet A,
then hs < log IAI.
(b) For every b E (0,1), there are alphabets AU) and sequences sU) over A(i),
j c Z+, such that JAWI --> oo as j - oo, hs(;) > log [IAU) (1 - S)], and every
523(; is strictly ergodic.
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3. Associated Schrodinger Operators and Basic Results

In this section we associate Schrodinger operators with a subshift S2 and a
sampling function f mapping S2 to the real numbers. In subsequent sections we
will study spectral and dynamical properties of these operators.

Let 52 be a strictly ergodic subshift with invariant measure p and let f : SZ - l1
be continuous. Then, for every w E S2, we define a potential Vw : Z - R by
V,,, (n) = f (TTw) and a bounded operator Hw acting on P2 (Z) by

(n) = 0(n + 1) + 0(n - 1) + Vw (n)0(n).

Example. The most common choice for f is f (w) = g(wo) with some g : A -> R.
This is a special case of a locally constant function that is completely determined by
the values of wn for n's from a finite window around the origin, that is, f is called
locally constant if it is of the form f (w) = h(w_M ... WN) for suitable integers
M, N > 0 and h : AN+M+1 --> R. Clearly, every locally constant f is continuous.

The family {Hw}wE0 is an ergodic family of discrete one-dimensional
Schrodinger operators in the sense of Carmona and Lacroix [24]. By the gen-
eral theory it follows that the spectrum and the spectral type of H, are p-almost
surely w-independent [24, Sect. V.2]:

THEOREM 3.1. There exist sets lb C 11, E, Epp, Esc, Eac C R such that p(SZo) _
1 and

o(Hu,) = E (9)

01pp(Hw) = Epp (10)
asc(Hw) = Esc (11)

Qac(Hw) = Eac (12)

for every w E fto.

Here, a(H), Qpp(H), o'sc(H), 0ac(H) denote the spectrum, the closure of the
set of eigenvalues, the singular continuous spectrum and the absolutely continuous
spectrum of the operator H, respectively.

Since SZ is minimal and f is continuous, a simple argument involving strong ap-
proximation shows that (9) even holds everywhere, rather than almost everywhere:

THEOREM 3.2. For every w E 0, a(HH) = E.

PROOF. By symmetry it suffices to show that for every pair w1i w2 E S2,
a(H,1) C_ a(Hw2). Due to minimality, there exists a sequence (nj)j>1 such that
T'.,W2 -4 w1 as j --> oc. By continuity of f, HT-,,, converges strongly to H 1 as
j -> oo. Thus,

a(Hw1) C U 0`(HT'n,w2) = o(Hw2).
i>1

Here, the first step follows by strong convergence and the second step is a conse-
quence of the fact that each of the operators HT-;,,,2 is unitarily equivalent to H12
and hence has the same spectrum.

Far more subtle is the result that (12) also holds everywhere:

THEOREM 3.3. For every w E Il, oac (Hw) = Eac
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For strictly ergodic models, such as the ones considered here, there are two
proofs of Theorem 3.3 in the literature. It was shown, based on unique ergodicity,
by Kotani in [102]. A proof based on minimality was given by Last and Simon in
[106].

A map A E C(1, SL(2, R)) induces an SL(2, R)-cocycle over T as follows:

A: 52 x R2 -> Q x R2, (w, v) " (Tw, A(w)v).

Note that when we iterate this map n times, we get

A' (w, v) = (T"w, An(w)v),

where A"(w) = A(T"-lw) . . . A(w). We are interested in the asymptotic behavior
of the norm of A" (w) as n -4 oo. The multiplicative ergodic theorem ensures the
existence of yA > 0, called the Lyapunov exponent, such that

-/A = l M n flog IA"(w)II dp(w)

= inf 1 flogAn(w)Id(w)
">I n

lim 1 log jA"(w) II for µ-a-e. w."- oo n
In the study of the operators H,, the following cocycles are relevant:

Af,E(w) = (E 1 (w)

0

)
where f is as above and E is a real number, called the energy. We regard f as
fixed and write -y(E) instead of yAf,E to indicate that our main interest is in the
mapping E F--> y(E). Let

2={EER:y(E)=0}.
Note that we leave the dependence on 1 and f implicit.

These cocycles are important in the study of H, because Af,E is the transfer
matrix for the associated difference equation. That is, a sequence u solves

u(n + 1) + u(n - 1) + V4J(n)u(n) = Eu(n) (13)

if and only if it solves

u(n) - Af,E u(0)
u(n - 1) " u(-1)

as is readily verified.

4. Absence of Absolutely Continuous Spectrum

Let S2 be a strictly ergodic subshift and f : SZ -p locally constant. It follows
that the resulting potentials V, take on only finitely many values. In this section
we study the absolutely continuous spectrum of H,, equal to Ear for every w E SZ
by Theorem 3.3. In 1982, Kotani made one of the deepest and most celebrated
contributions to the theory of ergodic Schrodinger operators by showing that Eac
is completely determined by the Lyapunov exponent, or rather the set S. Namely,
his results, together with earlier ones by Ishii and Pastur, show that Eac is given by
the essential closure of S. In 1989, Kotani found surprisingly general consequences
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of his theory in the case of potentials taking on finitely many values. We will review
these results below.

By assumption, the potentials V, take values in a fixed finite subset B of JR.
Thus, they can be regarded as elements of Bz, equipped with product topology.
Let v be the measure on BZ which is the push-forward of y under the mapping

Recall that the support of v, denoted by supp v, is the complement of the largest
open set U with v(U) = 0. Let

(suppv)+ _ {VIZ+ : V E suppv}
0

(supp v)_ = {VIZ- : V E supp v},

where Z = {0, 1, 2, ...} and Z- = {... , -3, -2, -1}.

DEFINITION 4.1. The measure v is called deterministic if every V+ E (supp v) +
comes from a unique V E supp v and every V_ E (supp v)_ comes from a unique
V E supp v.

Consequently, if v is deterministic, there is a bijection C : (suppv)_ ->
(suppv)+ such that for every V E suppv, VIZ+ = C(VIz-) and VIZ- = C-'(Vlz±).

DEFINITION 4.2. The measure v is called topologically deterministic if it is
deterministic and the map C is a homeomorphism.

Thus, when v is topologically deterministic, we can continuously recover one
half line from the other for elements of supp v.

Let us only state the part of Kotani theory that is of immediate interest to us
here:

THEOREM 4.3. (a) If Z has zero Lebesgue measure, then Eac is empty.
(b) If 2 has positive Lebesgue measure, then v is topologically deterministic.

This theorem holds in greater generality; see [100, 101, 102, 125]. The
underlying dynamical system (SZ, T, µ) is only required to be measurable and ergodic
and the set 13 can be any compact subset of JR. Part (a) is a particular consequence
of the Ishii-Kotani-Pastur identity

-essEac=2,
where the essential closure of a set S C JR is given by

Sss={EER:Leb((E-e,E+e)nS)>0forevery e>0}.
The following result was proven by Kotani in 1989 [101]. Here it is crucial that

the set B is finite.

THEOREM 4.4. If v is topologically deterministic, then supp v is finite. Conse-
quently, all potentials in supp v are periodic.

Combining Theorems 4.3 and 4.4 we arrive at the following corollary.

COROLLARY 4.5. If SZ and f are such that supp v contains an aperiodic element,
then 2 has zero Lebesgue measure and Eac is empty.
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Note that by minimality, the existence of one aperiodic element is equivalent to
all elements being aperiodic. This completely settles the issue of existence/purity of
absolutely continuous spectrum. In the periodic case, the spectrum of H, is purely
absolutely continuous for every w E Q, and in the aperiodic case, the spectrum of
H, is purely singular for every w c 0.

5. Zero-Measure Spectrum

Suppose throughout this section that 1 is strictly ergodic, f : S2 -p ]18 is locally
constant, and the resulting potentials V, are aperiodic.2 This section deals with
the Lebesgue measure of the set E, which is the common spectrum of the operators
H,, w E 0. It is widely expected that E always has zero Lebesgue measure. This
is supported by positive results for large classes of subshifts and functions. We
present two approaches to zero-measure spectrum, one based on trace map dynam-
ics and sub-exponential upper bounds for jAf"(w)jj for energies in the spectrum,
and another one based on uniform convergence of _1 log 11 to -y(E) for all
energies. Both approaches have in common that they establish the identity

E=Z. (14)

Zero-measure spectrum then follows immediately from Corollary 4.5.

5.1. Trace Map Dynamics. Zero-measure spectrum follows once one proves

ECZ. (15)

Note, however, that the Lyapunov exponent is always positive away from the spec-
trum. Thus, 2 C E, and (15) is in fact equivalent to (14).

A trace map is a dynamical system that may be associated with a family {H }
under suitable circumstances. It is given by the iteration of a map T : ll8k

Rk. Iteration of this map on some energy-dependent initial vector, yE, will then
describe the evolution of a certain sequence of transfer matrix traces. Typically,
these iterates will diverge rather quickly. The stable set, Bm, is defined to be the
set of energies for which T'VE does not diverge quickly. The inclusion (15) is then
established in a two-step procedure:

ECB,CZ. (16)

Again, by the remark above, this establishes equality and hence

E=B,,, =Z.
For the sake of clarity of the main ideas, we first discuss the trace-map approach

for the Fibonacci subshift S1F and f : SZF -> JR given by f (w) = g(wo), g(0) = 0,
g(1) = A > 0. See [25, 98, 118, 130, 131] for the original literature concerning
this special case.

Given the partition result, Theorem 2.15, and the recursion (6), it is natural
to decompose transfer matrix products into factors of the form Mk(E), where

1 -A
M-1(E) (0 1), Mo(E) =

(E -1
0 )

and

Mk+l(E) = Mk_1(E)Mk(E), for k > 0.

(17)

(18)

2Even when we make explicit assumptions on 0 and f, aperiodicity of the potentials will
always be assumed implicitly; for example, in Theorem 5.5 and Corollary 5.8.
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PROPOSITION 5.1. Let xk = xk (E) = z TrMk (E). Then,

Xk+2 = 2xk+lxk xk_1 for k E Z+

and

(19)

V
xk+1 + x + xk-1 - 2xk+lxkxk_1 = 1 +

4
for k E Zo . (20)

PROOF. The recursion (19) follows readily from (18). Using (19), one checks
that the left-hand side of (20) is independent of k. Evaluation for k = 0 then yields
the right-hand side. See [98, 118, 130] for more details.

The recursion (19) is called the Fibonacci trace map. The xk's may be obtained
by the iteration of the map T : 1183 R3, (x, y, z) H (xy - z, x, y) on the initial
vector ((E - .A)/2, E/2, 1).

PROPOSITION 5.2. The sequence (xk)k>-1 is unbounded if and only if

Ixko-1I <<- 1, Ixko I > 1, Ixko+1 I > 1 (21)

for some ko > 0. In this case, the ko is unique, and we have

Ixk+2I > Ixk+lxk I > 1 for k > k0 (22)

and

I xk I > CFk-ko fork > k0 (23)

and some C > 1. If (xk)k>-1 is bounded, then

Ixkl < 1 + 2 for every k. (24)

PROOF. Suppose first that (21) holds for some k0 > 0. Then, by (19),

Ixko+2l Ixko+lxko I + (Ixko+lxko I - Ixko-l I) > Ixko+lxko I > 1.

By induction, we get (22), and also that the k0 is unique. Taking log's, we see that
log IxkI grows faster than a Fibonacci sequence for k > k0i which gives (23).

Conversely, suppose that (21) fails for every k0 > 0. Consider a value of k for
which xkl > 1. Since x_1 = 1, it follows that Ixk_1I < 1 and Ixk+1I < 1. Thus, the
invariant (20) shows that

A2) 1/2

Ixkl Ixk+lxk-1I + (Ixk+1xk1l2 - xk+l - xk-1 + 1 + 4

=Ixk+lxk-1I + ((1 - x2+1)(1 - x2_1) +2 1/2

which implies that the sequence (xk)k>_1 is bounded and obeys (24).

The dichotomy described in Proposition 5.2 motivates the following definition:

Boo _ { E E ll8 : Ixkl < 1 + 2 for every k } . (25)

This set provides the link between the spectrum and the set of energies for which
the Lyapunov exponent vanishes.

THEOREM 5.3. Let 52 = QF be the Fibonacci subshift and let f : 0 - ]R be
given by f (w) = g(wo), g(0) = 0, g(1) = A > 0. Then, E = B,,. = Z and E has
zero Lebesgue measure.
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PROOF. We show the two inclusions in (16). Let Uk = {E : xkl < 1}. On
the one hand, Uk is the spectrum of an Fk-periodic Schrodinger operator Hk. It is
not hard to see that Hk - H strongly, where H is the Schrodinger operator with
potential V(n) = )'X[1_o,1)(nO) and hence E is contained in the closure of Uk>k o'k
for every k. On the other hand, Proposition 5.2 shows that Qk+1 U Uk+2 C Uk U Uk+1
and Bo = nk vk U Qk+1. Thus,

E C I I U ak = n Qk U crk+1 = Boo.
k k>k k

This is the first inclusion in (16). The second inclusion follows once we can show
that for every E E B,,, we have that log jMTMj < n, where the implicit constant
depends only on A. From the matrix recursion (18) and the Cayley-Hamilton
Theorem, we obtain

Mk+1 = Mk 1MkMk 1 = Mk-1(2xkMk - 2xkMk_1 - Mk 12.

If E E B,,, then 21xkI < 2+A, and hence we obtain by induction that IIMkII < Ck.
Combined with the partition result, Theorem 2.15, this yields the claim since the
Fk grow exponentially.

The same strategy works in the Sturmian case, as shown by Bellissard et al.
[15], although the analysis is technically more involved. Because of (5), we now
consider instead of (18) the matrices defined by the recursion

Mk+1(E) = Mk-1(E)Mk(E)"+1,
where the ak's are the coefficients in the continued fraction expansion (2) of 9. This
recursion again gives rise to a trace map for xk = 1TrMk (E) which involves Cheby-
shev polynomials. These traces obey the invariant (20) and the exact analogue of
Proposition 5.2 holds. After these properties are established, the proof may be
completed as above. Namely, B,,, is again defined by (25) and the same line of
reasoning yields the two inclusions in (16). We can therefore state the following
result:

THEOREM 5.4. Let SZ be a Sturmian subshift with irrational slope 0 E (0, 1)
and let f : 52 - R be given by f (w) = g(wo), g(0) = 0, g(1) = A > 0. Then,
E = B, = 2 and E has zero Lebesgue measure.

We see that every operator family associated with a Sturmian subshift admits
a trace map and an analysis of this dynamical system allows one to prove the
zero-measure property.

Another class of operators for which a trace map always exists and may be used
to prove zero-measure spectrum is given by those that are generated by a primitive
substitution. The existence of a trace map is even more natural in this case and
not hard to verify; see, for example, [3, 4, 5, 99, 119] for general results and
[8, 10, 124] for trace maps with an invariant. However, its analysis is more involved
and has been completed only in 2002 by Liu et al. [111], leading to Theorem 5.5
below, after a number of earlier works had established partial results [13, 14, 22].
Bellissard et al., on the other hand, had proved their Sturmian result already in
1989-shortly after Kotani made his crucial observation leading to Corollary 4.5.

THEOREM 5.5. Let Q be a subshift generated by a primitive substitution S : A -
A* and let f : S2 -> ]I8 be given by f (w) = g(wo) for some function g : A - R. Then,
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the associated trace map admits a stable set, for which we have E = B, = Z.
Consequently, E has zero Lebesgue measure.

5.2. Uniform Hyperbolicity. Recall that the Lyapunov exponent associated
with the Schrodinger cocycle Af,E obeys

-y(E) = lim 1 log JAf,E(Tn-1W) ... Af,E(w)11 (26)n--.oo n,

for p-almost every w E Q.

DEFINITION 5.6 (uniformity). The cocycle Af,E is called uniform if the con-
vergence in (26) holds for every w E SZ and is uniform in w. It is called uniformly
hyperbolic if it is uniform and 'y(E) > 0. Define

U = {E E R : Af,E is uniformly hyperbolic }.

Uniform hyperbolicity of Af,E is equivalent to E belonging to the resolvent set
as shown by Lenz [108] (see also Johnson [86]):

THEOREM 5.7. III \ E = U.

Recall that we assumed at the beginning of this section that the potentials V,,,
are aperiodic. Thus, combining Corollary 4.5 and Theorem 5.7, we arrive at the
following corollary.

COROLLARY 5.8. If Af,E is uniform for every E E R, then E = Z and E has
zero Lebesgue measure.

We thus seek a sufficient condition on S2 and f such that Af,E is uniform for
every E E R, which holds for as many cases of interest as possible. Such a condition
was recently found by Damanik and Lenz in [46]. In [48] it was then shown by the
same authors that this condition holds for the majority of the models discussed in
Section 2.

DEFINITION 5.9 (condition (B)). Let SZ be a strictly ergodic subshift with unique
T-invariant measure p. It satisfies the Boshernitzan condition (B) if

min n p ([w] )> 0. (27)lim sup
(wEWn(n)n-oc

Remarks. (a) [w] denotes the cylinder set

[w] = {w E Q : wl ... colw, = w}.

(b) It suffices to assume that 0 is minimal and there exists some T-invariant measure
p with (27). Then, Q is necessarily uniquely ergodic.
(c) The condition (27) was introduced by Boshernitzan in [20]. His main purpose
was to exhibit a useful sufficient condition for unique ergodicity. The criterion
proved to be particularly useful in the context of interval exchange transformations
[19, 136], where unique ergodicity holds almost always, but not always [91, 114,
135].

It was shown by Damanik and Lenz that condition (B) implies uniformity for
all energies and hence zero-measure spectrum [46].

THEOREM 5.10. If S2 satisfies (B), then Af,E is uniform for every E E R.



STRICTLY ERGODIC SUBSHIFTS AND ASSOCIATED OPERATORS 521

Remarks. (a) The Boshernitzan condition holds for almost all of the subshifts
discussed in Section 2. For example, it holds for every Sturmian subshift, almost
every subshift generated by a coding of a rotation with respect to a two-interval
partition, a dense set of subshifts associated with general codings of rotations,
almost every subshift associated with an interval exchange transformation, almost
every episturmian subshift, and every linearly recurrent subshift; see [48].3
(b) There was earlier work by Lenz who proved uniformity for all energies assuming
a stronger condition, called (PW) for positive weights [107]. Essentially, (PW)
requires (27) with lim sup replaced by lim inf. The condition (PW) holds for all
linearly recurrent subshifts but it fails, for example, for almost every Sturmian
subshift.
(c) Lenz in turn was preceded and inspired by Hof [77] who proved uniform existence
of the Lyapunov exponents for Schrodinger operators associated with primitive
substitutions. Extensions of [77] to linearly recurrent systems, including higher-
dimensional ones, were found by Damanik and Lenz [40].

In particular, all zero-measure spectrum results obtained by the trace map ap-
proach also follow from Theorem 5.10. Moreover, the applications of Theorem 5.10
cover operator families that are unlikely to be amenable to the trace map approach.
However, as we will see later, the trace map approach yields additional information
that is crucial in a study of detailed spectral and dynamical properties. Thus, it is
worthwhile to carry out an analysis of the trace map whenever possible.

5.3. The Hausdorff Dimension of the Spectrum. Once one knows that
the spectrum has zero Lebesgue measure it is a natural question if anything can
be said about its Hausdorff dimension. There is very important unpublished work
by Raymond [121] who proved in the Fibonacci setting of Theorem 5.3 that the
Hausdorff dimension is strictly smaller than one for A large enough (A > 5 is
sufficient) and it converges to zero as A --+ oo. Strictly positive lower bounds for the
Hausdorff dimension of the spectrum at all couplings A follow from the Hausdorff
continuity results of [29, 83], to be discussed in Section 7. Several aspects of
Raymond's work were used and extended in a number of papers [35, 51, 53, 95,
112]. In particular, Liu and Wen carried out a detailed analysis of the Hausdorff
dimension of the spectrum in the general Sturmian case in the spirit of Raymond's
approach; see [112].

6. Absence of Point Spectrum

We have seen that two of the three properties that are expected to hold in great
generality for the operators discussed in this paper hold either always (absence of
absolutely continuous spectrum) or almost always (zero-measure spectrum). In this
section we turn to the third property that is expected to be the rule-the absence
of point spectrum. As with zero-measure spectrum, no counterexamples are known
and there are many positive results that have been obtained by essentially two
different methods. Both methods rely on local symmetries of the potential. The
existence of square-summable eigenfunctions is excluded by showing that these
local symmetries are reflected in the solutions of the difference equation (13). Since

3Here, notions like "dense" or "almost all" are with respect to the natural parameters of the
class of models in question. We refer the reader to [48] for detailed statements of these applications
of Theorem 5.10.
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there are exactly two types of symmetries in one dimension, the effective criteria for
absence of eigenvalues that implement this general idea therefore rely on translation
and reflection symmetries, respectively. In the following, we explain these two
methods and their range of applicability.

6.1. Local Repetitions. In 1976, Gordon showed how to use the Cayley-
Hamilton theorem to derive quantitative solution estimates from local repetitions
in the potential [71]. The first major application of this observation was in the
context of the almost Mathieu operator: For super-critical coupling and Liouville
frequencies, there is purely singular continuous spectrum for all phases, as shown
by Avron and Simon in 1982 [6].4 The first application of direct relevance to
this survey was obtained by Delyon and Petritis [58] in 1986 who proved absence
of eigenvalues for certain codings of rotations, including most Sturmian models.
Further applications will be mentioned below.

Gordon's Lemma is a deterministic criterion and may be applied to a fixed
potential V : Z --j R. Analogous to the discussion in Section 3, we define transfer
matrices An = T,,-, . To, where

T3EV(7) -1
1 0

Then, a sequence u solves

u(n + 1) + u(n - 1) + V(n)u(n) = Eu(n) (28)

if and only if it solves U(n) = AE U(0), where

U(7) =
u(7)

u(j-1)
LEMMA 6.1. Suppose the potential V obeys V (m +p) = V (m), 0 < m < p - 1.

Then,

max{IIU(2p)II, IIU(p)II} ? 2max{ITrAP I, 1} IIU(0)II

PROOF. This is immediate from the Cayley-Hamilton Theorem, applied to the
matrix AE and the vector (u(0), u(-1))T.

For obvious reasons, we call this criterion the two-block Gordon Lemma. A
slight variation of the argument gives the following (three-block) version of Gordon's
Lemma.

LEMMA 6.2. Suppose the potential V obeys V(m+p) = V(m), -p < m < p-1.
Then,

max{IIU(2p)II,IIU(p)II,IIU(-p)II}> 2.
Remark. The original criterion from [71] uses four blocks. For the application
to the almost Mathieu operator, this is sufficient; but for Sturmian models, for
example, the improvements above are indeed needed, as we will see below. The
two-block version can be found in Siito's paper [130] and the three-block version
was proved in [58] by Delyon and Petritis.

The two-block version is especially useful in situations where a trace map exists
and we have bounds on trace map orbits for energies in the spectrum. Note that

4As a consequence, positive Lyapunov exponents do not in general imply spectral localization.
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the two-block version gives a stronger conclusion. This will be crucial in the next
section when we discuss continuity properties of spectral measures with respect to
Hausdorff measures in the context of quantum dynamics.

6.2. Palindromes. Gordon-type criteria give quantitative estimates for solu-
tions of (28) in the sense that repetitions in the potential are reflected in solutions,
albeit in a weak sense. One would hope that local reflection symmetries in the
potential give similar information. Unfortunately, such a result has not been found
yet. However, it is possible to exclude square-summable solutions in this way by an
indirect argument. Put slightly simplified, if a solution is square-summable, then
local reflection symmetries are mirrored by solutions and these solution symmetries
in turn prevent the solution from being square-summable.

The original criterion for absence of eigenvalues in this context is due to Jito-
mirskaya and Simon [85] and it was developed in the context of the almost Mathieu
operator to prove, just as the result by Avron and Simon did, an unexpected occur-
rence of singular continuous spectrum. An adaptation of the Jitomirskaya-Simon
method to the subshift context can be found in a paper by Hof et al. [78]. Let us
state their result:5

LEMMA 6.3. Let V : Z -> R be given. There is a constant B, depending only
on J VJJ,,, with the following property: if there are nj --> oo and lj with B'`3 /lj -+ 0
as j -+ oo such that V is symmetric about nj on an interval of length Ii centered at
nj for every j, then the Schrodinger operator H with potential V has empty point
spectrum.

SKETCH OF PROOF. Suppose that V satisfies the assumptions of the lemma.
Assume that u is a square-summable solution of (28), normalized so that lull2 = 1.
Fix some j and reflect u about nj. Call the reflected sequence u(j). Since the
potential is reflection-symmetric on an interval of length 13 about nj, the Wronskian
of u and u(j) is constant on this interval. By lIu112 = 1, it is pointwise bounded
in this interval by 2/1j. From this, it follows that u and u(i) are close (up to a
sign) near nj. Now apply transfer matrices and compare u and u() near zero. The
assumption B'2 /lj -+ 0 then implies that, for j large, u and u(i) are very close near
zero. In other words, u is bounded away from zero near 2nd for all large j. This
contradicts u E £2 (Z).

Thus, eigenvalues can be excluded if the potential contains infinitely many
suitably located palindromes. Here, a palindrome is a word that is the same when
read backwards. Sequences obeying the assumption of Lemma 6.3 are called strongly
palindromic in [78].

Hof et al. also prove the following general result for subshifts:

PROPOSITION 6.4. Suppose 1 is an aperiodic minimal subshift. If W0 con-
tains infinitely many palindromes, then the set of strongly palindromic w's in S2 is
uncountably infinite.

In any event, since the set Cn _ {w E SZ : o'pp(H,) = 0} is a G6 set as shown by
Simon [126] (see also Choksi and Nadkarni [27] and Lenz and Stollmann [109]),
it is a dense G6 set as soon as it is non-empty by minimality of St and unitary
equivalence of H, and HT,.

5There is also a half-line version, which is the palindrome analogue of Lemma 6.1; see [36].
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Thus, when excluding eigenvalues we are interested in three kinds of results. We
say that eigenvalues are generically absent if C0 is a dense G5 set. To prove generic
absence of eigenvalues it suffices to treat one w c Q, as explained in the previous
paragraph. Absence of eigenvalues holds almost surely if µ(C0) = 1. To prove
almost sure absence of eigenvalues one only has to show t(Co) > 0 by ergodicity
and T-invariance of CO. Finally, absence of eigenvalues is said to hold uniformly if
CH=Q.

6.3. Applications. Let us now turn to applications of the two methods just
described. We emphasize that absence of eigenvalues is expected to hold in great
generality and no counterexamples are known.

As in Section 5, things are completely understood in the Sturmian case and
absence of eigenvalues holds uniformly.

THEOREM 6.5. Let Q be a Sturmian subshift with irrational slope 0 E (0, 1) and
let f : SZ --+ R be given by f (w) = g(wo), g(0) = 0, g(l) = A > 0. Then, H, has
empty point spectrum for every w E Q.

SKETCH OF PROOF. Given any A > 0 and w E Q, absence of point spectrum
follows if Lemma 6.1 can be applied to V( for infinitely many values of p. Con-
sidering only p's of the form qk, where the qk's are associated with 0 via (4), the
trace bounds established in Theorem 5.4 show that we can focus our attention on
the existence of infinitely many two-block structures aligned at the origin. Using
Theorem 2.15, a case-by-case analysis through the various levels of the hierarchy
detects these structures and completes the proof.

Remarks. (a) For details, see [37, 38]. In fact, the argument above has to be
extended slightly for 0's with lim sup ak = 2. To deal with these exceptional cases,
one also has to consider p's of the form qk + qk-1
(b) Here is a list of earlier partial results for Sturmian models: Delyon and Petritis
proved absence of eigenvalues almost surely for every A > 0 and Lebesgue almost
every 0 [58]. Their proof employs Lemma 6.2. Using Lemma 6.1, Siit6 proved ab-
sence of eigenvalues for A > 0, 0 = (vlr5- - 1)/2, and 0 = 0 [130], and hence generic
absence of eigenvalues in the Fibonacci case. His proof and result were extended
to all irrational 0's by Bellissard et al. [15].6 Hof et al. proved generic absence of
eigenvalues for every A > 0 and every 0 using Lemma 6.3 [78]. Kaminaga then
showed an almost sure result for every A > 0 and every 0 [89]. His proof is based
on Lemma 6.2 and refines the arguments of Delyon and Petritis.
(c) If most of the continued fraction coefficients are small, eigenvalues cannot be
excluded using a four-block Gordon Lemma. This applies in particular in the Fi-
bonacci case where ak - 1. The reason for this is that there simply are no four-block
structures in the potential. See [41, 42, 87, 134] for papers dealing with local rep-
etitions in Sturmian sequences.
(d) The palindrome method is very useful to prove generic results. However, it
cannot be used to prove almost sure or uniform results for linearly recurrent sub-
shifts (e.g., subshifts generated by primitive substitutions). Namely, for these sub-
shifts, the strongly palindromic elements form a set of zero µ-measure as shown by
Damanik and Zare [55].

6They do not state the result explicitly in [15], but given their analysis of the trace map and
the structure of the potential, it follows as in [130].
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Let us now turn to subshifts generated by codings of rotations. The key papers
were mentioned above [58, 78, 89].

THEOREM 6.6. Suppose SZ is the subshift generated by a sequence of the form
(8) with irrational 9 E (0, 1), some 0 E [0, 1), and a partition on the circle into 1
half-open intervals. Let f : S2 -> li be given by f (w) = g(wo) with some non-constant
function g. Suppose that the continued fraction coefficients of 0 satisfy

lim sup ak > 21. (29)
k--.oo

Then, H, has empty point spectrum for IL-almost every w E Q.

Remarks. (a) For every 1 E Z+, the condition (29) holds for Lebesgue almost
every 0. In fact, almost every 0 has unbounded continued fraction coefficients; see
[94].
(b) The proof of Theorem 6.6, given in [58, 89], is based on Lemma 6.2.
(c) Hof et al. prove a generic result using Lemma 6.3 for every 0 provided that the
partition of the circle has a certain symmetry property, which is always satisfied in
the case l = 2 [78].
(d) It is possible to prove a result similar to Theorem 6.6 for a locally constant f. In
this case, the number 21 in (29) has to be replaced by a larger integer, determined
by the size of the window f (w) depends upon. Still, this gives almost sure absence
of eigenvalues for almost every 0.

A large number of papers deal with the eigenvalue problem for Schrodinger
operators generated by primitive substitutions; for example, [7, 14, 22, 30, 31,
32, 34, 59, 78].7 We first describe general results that can be obtained using the
two general methods we discussed and then turn to some specific examples, where
more can be said.

We start with an application of Lemma 6.2. Fix some strictly ergodic subshift
Il and define, for w E W0, the index of w to be

ind(w) = sup{r E Q : wT E W0}.

Here, wT denotes the word (xy)mx, where m E Z+, w = xy, and r = m + xj/jwj.
The index of S2 is given by

ind(1l) = sup{ind(w) : w c W0} E [1, oo].

Then, the following result was shown in [32] using three-block Gordon.

THEOREM 6.7. Suppose St is generated by a primitive substitution and ind(Q) >
3. Let f : Il --> R be given by f (w) = g(wo) with some non-constant function
g : A --+ R. Then, Hu, has empty point spectrum for ,u-almost every w E Q.

Remarks. (a) See [31] for a weaker result, assuming ind(1) > 4.
(b) The result extends to the case of a locally constant f.
(c) Consider the case of the period doubling substitution. Since SPD =
101110101011101110..., we see that ind(1l) > ind(10) > 3.5 > 3. Thus, Theo-
rem 6.7 implies almost sure absence of eigenvalues, recovering the main result of
[30].

7There are also papers dealing with Schrodinger operators associated with non-primitive
substitutions [45, 61, 62, 110]. The subshifts considered in these papers are, however, linearly
recurrent and hence strictly ergodic, so that the theory is quite similar.
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A substitution belongs to class P if there is a palindrome p and, for every
a c A, a palindrome qa such that S(a) = pqa. Here, p is allowed to be the empty
word and, if p is not empty, qa may be the empty word. Clearly, if a subshift is
generated by a class P substitution, it contains arbitrarily long palindromes. Thus,
by Proposition 6.4, it contains uncountably many strongly palindromic elements.
The following result from [78] is therefore an immediate consequence.

THEOREM 6.8. Suppose ) is generated by a primitive substitution S that belongs
to class P. Let f : S2 --* ll be given by f (w) = g(wo) with some non-constant function
g : A - R. Then, eigenvalues are generically absent.

Notice that the Fibonacci, period doubling, and Thue-Morse subshifts are gen-
erated by class P substitutions. See [78] for more examples. The Rudin-Shapiro
subshift, on the other hand, is not generated by a class P substitution. In fact, it
does not contain arbitrarily long palindromes [2, 7].

We mentioned earlier that the proof of Theorem 6.8 cannot give a stronger
result since the set of strongly palindromic sequences is always of zero measure for
substitution subshifts [55]. Moreover, it was shown in [32] that the three-block
Gordon argument cannot prove more than an almost everywhere statement in the
sense that for every minimal aperiodic subshift SZ, there exists an element w E SZ
such that w does not have the infinitely many three block structures needed for an
application of Lemma 6.2. Thus, proofs of uniform results should use Lemma 6.1 in
a crucial way. Theorem 6.5 shows that a uniform result is known in the Fibonacci
case, for example, and Lemma 6.1 along with trace map bounds was indeed the key
to the proof of this theorem.

Another example for which a uniform result is known is given by the period
doubling substitution [34]. The trace map bounds are weaker than in the Fibonacci
case, but a combination of two-block and three-block arguments was shown to work.
Further applications of this idea can be found in [110].

The other two examples from Section 2, the Thue-Morse and Rudin-Shapiro
substitutions, are not as well understood as Fibonacci and period doubling. Almost
sure or uniform absence of eigenvalues for these cases are open, though expected.
Generic results can be found in [59, 103].

The eigenvalue problem in the context of the other examples mentioned in
Section 2 has been studied only in a small number of papers. For Arnoux-Rauzy
subshifts, see [54]; and for interval exchange transformations, see [60].

7. Quantum Dynamics

In this section we focus on the time-dependent Schrodinger equation

49iat = H V), 0(0) ='o, (30)

where H is a Schrodinger operator in £2(Z) with a potential V : Z --- IR, typically
from a strictly ergodic subshift, and 00 E £2(Z). By the spectral theorem, (30) is
solved by O(t) = e-itHOO. Thus, the question we want to study is the following:
Given some potential V and some initial state V50 E £2(Z), what can we say about
e-itHOO for large times t?

7.1. Spreading of Wavepackets. Since b0 is square-summable, it is in some
sense localized near the origin. For simplicity, one often considers the special case
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00 = 50-the delta-function at the origin. With time, ''(t) will in general spread
out in space. Our goal is to measure this spreading of the wavepacket and relate
spreading rates to properties of the potential. As a general rule of thumb, spreading
rates decrease with increased randomness of the potential. We will make this more
explicit below.

A popular way of measuring the spreading of wavepackets is the following. For
p > 0, define

(IXI0)(T) _ InIra(n,T),
n

where
2

( ) =
J

o0
2t/T I ( -itH1,bo

e ) I2a n T e- e Sam, dt.
0

(31)

(32)

Clearly, the faster (JXJ,o)(T) grows, the faster e-itH,,o spreads out, at least aver-

aged in time.8 One typically wants to obtain power-law bounds on (IXI6o)(T) and
hence it is natural to define the following quantities: For p > 0, define the upper
(resp., lower) transport exponent Qo (p) by

10(p) = limsu
log(IXI o)(7)

N
T-.,,. p log T

Both functions p -+ / 3 0 (p) are nondecreasing and obey 0 < 3 0 (p) < 100 (p) < 1.

For periodic V, 01 (p) - 1 (ballistic transport); while for random V, Quo (p) 000
(a weak version of dynamical localization-stronger results are known). For V's that
are intermediate between periodic and random, and in particular Sturmian V's, it
is expected that the transport exponents take values between 0 and 1.

7.2. Spectral Measures and Subordinacy Theory. By the spectral theo-
rem, (e-ithibo 00) = f e" dp,,o (E), where µpo is the spectral measure associated
with H and z/io. Thus, it is natural to investigate quantum dynamical questions
by relating them to properties of the spectral measure corresponding to the initial
state. This approach is classical and the Riemann-Lebesgue Lemma and Wiener's
Theorem may be interpreted as statements in quantum dynamics. The RAGE the-
orem establishes basic dynamical results in terms of the standard decomposition of
the Hilbert space into pure point, singular continuous, and absolutely continuous
subspaces. We refer the reader to Last's well-written article [105] for a review of
these early results.

The results just mentioned are very satisfactory for initial states whose spectral
measure has an absolutely continuous component. This is, to some extent, also true
for pure point measures. However, if the measure is purely singular continuous, it
is desirable to obtain results that go beyond Wiener's Theorem and the RAGE
theorem.

Last also addressed this issue in [105] and proposed a decomposition of spec-
tral measures with respect to Hausdorff measures. This was motivated by earlier
results of Guarneri [72] and Combes [28] who proved dynamical lower bounds for

8Taking time averages is natural since the operators of interest in this paper have purely sin-
gular continuous spectrum; compare Wiener's Theorem. While Wiener's Theorem would suggest
taking a Cesaro time average, the Abelian time average we choose is more convenient for technical
purposes. The transport exponents are the same for both ways of time averaging.
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initial states with uniformly Holder continuous spectral measures. By approxima-
tion with uniformly Holder continuous measures, Last proved in [105] that these
bounds extend to measures that are absolutely continuous with respect to a suitable
Hausdorff measure:

THEOREM 7.1. If u has a non-trivial component that is absolutely continuous
with respect to the a-dimensional Hausdorff measure ha on R, then

13 0 (p) > a for every p > 0. (33)

Remarks. (a) Here, ha is defined by

ha(S) = lim inf '.I C"6-+0 6-covers

where S C II8 is a Borel set and a 6-cover is a countable collection of intervals I,,,,
of length bounded by d such that the union of these intervals contains the set in
question. Note that h' coincides with Lebesgue measure and h° is the counting
measure.
(b) For further developments of quantum dynamical lower bounds in terms of con-
tinuity or dimensionality properties of spectral measures, see [11, 12, 73, 74].
(c) The result and its proof have natural analogues in higher dimensions; see [105].

While a bound like (33) is nice, it needs to be complemented by effective meth-
ods for verifying the input to Theorem 7.1. In the context of one-dimensional
Schrodinger operators, it is always extremely useful to connect a problem at hand
to properties of solutions to the difference equation (28). The classical decomposi-
tion of spectral measures can be studied via subordinacy theory as shown by Gilbert
and Pearson [69]; see also [68, 93]. Subordinacy theory has proved to be one of the
major tools in one-dimensional spectral theory and many important results have
been obtained with its help. Jitomirskaya and Last were able to refine subordinacy
theory to the extent that Hausdorff-dimensional spectral issues can be investigated
in terms of solution behavior [81, 82, 83]. The key result is the Jitomirskaya-Last
inequality, which explicitly relates the Borel transform of the spectral measure to
solutions in the half-line setting [82, Theorem 1.1].

Using the maximum modulus principle together with the Jitomirskaya-Last
inequality, Damanik et al. then proved the following result for operators on the line
[371:

THEOREM 7.2. Suppose E C IIl is a bounded set and there are constants y1, rye
such that for each E E E, every solution u of (28) with Ju(-1)12+Iu(0)12 = 1 obeys
the estimate

L 112
C1(E)L71 <

E
Ju(n) 12

I < C2(E)L72 (34)
(n=1 /

for L > 0 sufficiently large and suitable constants C1(E), C2 (E). Let a =
2y1/(y1 + y2). Then, for any O° E 22(Z), the spectral measure for the pair (H, 1p0)
is absolutely continuous with respect to h' on E. In particular, the bound (33) holds
for every non-trivial initial state whose spectral measure is supported in E.

This shows that suitable bounds for solutions of (28) imply statements on
Hausdorff-dimensional spectral properties, which in turn yield quantum dynamical
lower bounds. There is an extension to multi-dimensional Schrodinger operators
by Kiselev and Last [96].
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Two remarks are in order. First, while there are some important applications
of the method just presented, proving the required solution estimates is often quite
involved. The number of known applications is therefore still relatively small. Sec-
ond, dynamical bounds in terms of Hausdorff-dimensional properties are strictly
one-sided. It is not possible to prove dynamical upper bounds purely in terms of
dimensional properties. There are a number of examples that demonstrate this phe-
nomenon. For example, modifications of the super-critical almost Mathieu operator
lead to spectrally localized operators with almost ballistic transport [57, 67]. An-
other important example that is spectrally, but not dynamically, localized is given
by the random dimer model [56, 84].

7.3. Plancherel Theorem. There is another approach to dynamical bounds
that is also based on solution (or rather, transfer matrix) estimates, which relates
dynamics to integrals over Lebesgue measure, as opposed to integrals over the
spectral measure. Compared with the approach discussed above, it has two main
advantages: One can prove both upper and lower bounds in this way, and the proof
of a lower bound is so soft that it applies to a greater number of models.

The key to this approach is a formula due to Kato, which follows quickly from
the Plancherel Theorem:

LEMMA 7.3.

e-2t/T I (e-itH
o, 6n) 12 dt = J I ((H - E - T)-l oo, on) 12

dE. (35)c'o27r 10"o
o

PROOF. Consider the function

F(t) =
{et/T(e_itHo5) t > 0,

0 t<0
Using the spectral theorem, it is readily verified that the Fourier transform of
F obeys F(-E) = i((H - E - T) Io,bn). Thus, (35) follows if we apply the
Plancherel theorem to F.

For simplicity, let us consider the case o = (0. Note that

u(n) = ((H - E - i/T) Ibo, an)
solves the difference equation (28) (with E replaced by E + i/T) away from the
origin and can therefore be studied by means of transfer matrices! In particular,
we may infer a bound from below in terms of II-I. Thus, upper bounds on
transfer matrix norms are of interest.

llTHEOREM 7.4. Suppose that the transfer matrices obey the bound 11AEll
Clnla for every n y 0, some fixed energy E E R and suitable constants C, a. Then,

_ 1 1+8a
b0 (p) 1+2a p + Zap

for every p > 0.

Remarks. (a) This is the one-energy version of a more general result due to
Damanik and Tcheremchantsev [51]. See [50] for extensions of [51] and supple-
mentary material and [67] for related work.
(b) An interesting application of Theorem 7.4 (and its proof) to the random dimer
model may be found in the paper [84] by Jitomirskaya et al., which confirms a
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prediction of Dunlap et al. [64].
(c) There is also a version of Theorem 7.4 for more general initial states 00 [49].
(d) The idea of the proof of Theorem 7.4 is simple. A Gronwall-type perturbation
argument derives upper bounds on JJAn Jj for E close to E and n not too large. The
right-hand side of (35) may then be estimated from below by integrating only over a
small neighborhood of E, where u is controlled by the upper bound on the transfer
matrix. The bound for 0bo (p) then follows by rather straightforward arguments.
(e) The paper [52] (using some ideas from [133]) shows that a combination of the
two approaches may sometimes (e.g., in the Fibonacci case) give better bounds.
(f) Killip et al. used (35) to prove dynamical upper bounds for the slow part of the
wavepacket [95]. Their work inspired the use of (35) in [51].

Since (35) is an identity, rather than an inequality, it can be used to bound
a(n, T) from both below and above. Clearly, proving an upper bound is more
involved and will require assumptions that are global in the energy. It was shown
by Damanik and Tcheremchantsev that the following assumption on transfer matrix
growth is sufficient to allow one to infer an upper bound for the transport exponents
[53] :

THEOREM 7.5. Let K > 4 be such that a(H) C_ [-K+ 1, K - 1]. Suppose that,
for some C E (0, oo) and a E (0, 1), we have

x

and

-x \1<n<CT,Max

fK
max

x 1<-n<CT°

1
112

T
/

dE = O(T--) (36)

AE+T
n

2

I 1 dE = O(T m) (37)

for every rn > 1. Then, ,C3 o (p) < a for every p > 0.

7.4. Applications. Let us discuss the applications of these general methods
to Schrodinger operators with potentials from strictly ergodic subshifts.

We begin with the Fibonacci case. In fact, every approach to quantum dynam-
ical bounds has been tested on this example and there are many papers proving
dynamical results for it; for example, [29, 35, 37, 51, 52, 53, 83, 95].

Upper bounds for transfer matrices were established by Iochum and Testard
[80] who proved, for zero phase, that the norms of the transfer matrices grow
no faster than a power law for every energy in the spectrum. The power can be
chosen uniformly on the spectrum and depends only on the sampling function f.
Notice that this improves on the statement that the Lyapunov exponent vanishes
on the spectrum. An extension to Sturmian subshifts whose slope has (essentially)
bounded continued fraction coefficients was obtained by lochum et al. [79]. Note
that upper bounds for transfer matrix norms yield the input to Theorem 7.4 and
one half of the input to Theorem 7.2. The other half of the input to Theorem 7.2,
lower bounds for solutions, was obtained in [29, 83]. The proof of these bounds
uses the bound for the trace map for energies from the spectrum, Gordon's two-
block lemma, and a mass-reproduction technique based on cyclic permutations of
repeated blocks.9

9Using partitions (cf. Theorem 2.15), these solution estimates described in this paragraph
can be shown for all elements of the subshift [37, 39].
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THEOREM 7.6. Let V (n) _ AX[l-o,l) (n0), where 0 = (v - 1)/2 and A > 0.
Then,

P+2'c p<2a+1,
bo (p) > (p 1)(a+ c+1/2) (38)

'a+1 P> 2a+ I.
where is is an absolute constant (ic 0.0126) and a x log A.

Remarks. (a) In the form stated, the result is from [52]. The bound (38) is the
best known dynamical lower bound for the Fibonacci operator and is a culmination
of the sequence of works [29, 37, 51, 83, 95] leading up to [52].
(b) When we write a x log A, we mean that a is a positive A-dependent quantity
that satisfies C1 log A < a < C2 log A for positive constants C1, C2 and all large A.
See [52] for the explicit dependence of a on A.

To apply Theorem 7.5 to the Fibonacci operator, one has to prove the estimates
(36) and (37). This was done in [53]. Let us describe the main idea. Clearly, to
prove the desired lower bounds for transfer matrix norms, it suffices to prove lower
bounds for transfer matrix traces. We know a way to establish such lower bounds:
Lemma 5.2. Since all relevant energies in (36) and (37) are non-real, we know that
the trace map will eventually enter the escape region described in Lemma 5.2. The
point is to control the number of iterates it takes for this to occur. To this end,
define the complex analogue of the set Qk from Section 5 by

cr ={zEC:jxk(z)j <1}.
Notice that the xk's are polynomials and hence defined for all complex z. As before,
being in the complement of two consecutive is a sufficient condition for escape
at an explicit rate; compare Lemma 5.2, whose proof extends to complex energies.
It is therefore useful to bound the imaginary width of these sets from above. This
will give an upper bound on the number of iterates it takes at a given energy to
enter the escape region. For A sufficiently large, the connected components of oc
can be studied with the help of Koebe's Distortion Theorem; see [53] for details.
The resulting dynamical upper bound has the same asymptotics for large A as the
lower bound above:

THEOREM 7.7. Let V (n) = AX[1-0,I) (n6), where 0 = (/ - 1)/2 and A > 8.
Then,

,3 0 (p) < a for every p > 0,

where a E (0,1) and a x (log.)-1.

In particular, for the Fibonacci operator with A > 8, all transport exponents
{i3 o(p)}v>o are strictly between zero and one.

The dynamical lower bounds have been established for more general models;
see [29, 37, 43, 49, 50, 51]. On the other hand, Theorem 7.7 is the only explicit
result of this kind, but as mentioned in [53], the ideas of [35] should permit one to
extend this theorem to more general slopes and all elements of the subshift.

8. CMV Matrices Associated with Subshifts

Given a strictly ergodic subshift 52 and a continuous/locally constant function
f : SZ -> D, we can define a,, (w) = f (Tnw) for n E Z and w E Q. Let Cu, be
the CMV matrix associated with Verblunsky coefficients {an(w)}n>o and E,, the
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extended CMV matrix associated with Verblunsky coefficients {an(w)}nEZ. That
is, with p,, (W) _ (1 - Jan(w)J)-1/2, C, is given by

ao(w) &I(w)PO(w) PI(w)PO(w) 0 0

Po(w) -a1(w)0,o(w) -P1(w)0,o(w) 0 0

0 &2(w)P1(w) -a2(w)a1(w) a3(w)P2(w) P3(w)P2(w)
0 P2(w)P1(w) -P2(w)a1(w) -a3(w)a2(w) -P3(w)a2(w)
0 0 0 04(w)P3(w) -514(w)03(w)

and E,,, is the analogous two-sided infinite matrix. See [127, 128] for more infor-
mation on CMV and extended CMV matrices.

For these unitary operators in e2, we can ask questions similar to the ones
considered above in the context of Schrodinger operators. That is, is the spectrum of
zero Lebesgue measure, are spectral measures purely singular continuous, etc. Since
we are dealing with ergodic models, it is more natural to consider the whole-line
situation. On the other hand, from the point of view of orthogonal polynomials on
the unit circle, the half-line situation is more relevant. The zero-measure property
is independent of the setting, whereas the spectral type for half-line models is
almost always (i.e., when the "boundary condition" is varied) pure point as soon
as zero-measure spectrum is established. The latter statement follows quickly from
spectral averaging; compare [128, Theorem 10.2.2]. Thus, the key problem for
CMV matrices associated with subshifts is proving zero-measure spectrum. In fact,
Simon conjectured the following; see [128, Conjecture 12.8.2].

Simon's Subshift Conjecture. Suppose A is a subset of D, the subshift 1 is
minimal and aperiodic and let f : SZ -> D, f (w) = w(0). Then, E has zero Lebesgue
measure.

Here, E is the common spectrum of the operators E,, w c Q. Equivalently, it
is the common essential spectrum of C, w E ft

Simon proved the zero-measure property for the Fibonacci case by means of
the trace map approach [128, Section 12.8]. Since the approach based on the
Boshernitzan condition has a wider scope in the Schrodinger case, it is natural to
try and extend it to the CMV case. This was done by Damanik and Lenz in [47]
where the following result was shown.

THEOREM 8.1. Suppose the subshift 1 is aperiodic and satisfies the Bosher-
nitzan condition. Let f : 1 -> D be locally constant. Then, E has zero Lebesgue
measure.

This proves Simon's Subshift Conjecture for a large number of models since we
saw above that many of the prominent aperiodic subshifts satisfy the Boshernitzan
condition.

Regarding the spectral type, it should not be hard to extend the material from
Section 6 to the CMV case. This will imply purely singular continuous spectrum
for E,., for many subshifts SZ and many (generic, almost all, all) w E Q. However, as
was noted above, the Aleksandrov measures associated with C, will almost surely
be pure point whenever Theorem 8.1 applies.
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Quantum dynamics, on the other hand, is less natural in the CMV case than in
the Schrodinger case, and has not really been studied.1° Most of the ideas leading
to the results presented in Section 7 should have CMV counterparts. In particular,
it should be possible to prove absolute continuity of spectral measures with respect
to suitable Hausdorff measures for extended CMV matrices over Fibonacci-like
subshifts.

9. Concluding Remarks

The material presented in this survey is motivated by and closely related to
the theory of quasicrystals; compare, for example, [9, 115]. More specifically, the
surveys [33, 132] deal with the Fibonacci operator and its generalizations and
the interested reader may find references to the original physics literature in those
papers.

Regarding future research in this field, it would be interesting to see how far
one can take the philosophy that potentials taking finitely many values preclude
localization phenomena. Since the Bernoulli Anderson model is localized [23], this
cannot hold in full generality. On the other hand, Gordon potentials are much
more prevalent in the subshift case than in the uniformly almost periodic case.
Moreover, for smooth quasi-periodic potentials, it is expected that the Lyapunov
exponent is positive at all energies if the coupling is large enough. This is known for
trigonometric potentials [76], analytic potentials [21, 70, 129], and Gevrey poten-
tials [97]. See also [17, 26] for recent results in the C' category. These potentials
should be contrasted with those coming from quasi-periodic subshifts satisfying the
Boshernitzan condition. The Boshernitzan condition is independent of the coupling
constant and yields vanishing Lyapunov exponent throughout the spectrum. Since
it is satisfied on a dense set of sampling (step-)functions, upper-semicontinuity ar-
guments allow one to derive surprising phenomena that hold generically in the CO
category [18].

To shed some light on this, it should be helpful to analyze more examples. That
is, take one of the popular base transformations of the torus (e.g., shifts, skew-
shifts, or expanding maps) and define an ergodic family of potentials by choosing a
sampling function on the torus that takes finitely many values. These models, with
the exception of rotations of the circle, are not well understood! There is a serious
issue about the competition between the flat pieces of the sampling function and
the randomness properties of the base transformation (expressed, e.g., in terms of
mixing properties). For example, take a 1-periodic step function f and consider
V (n) = Af (2'w), A > 0, w E [0, 1). Is it true that the Lyapunov exponent is
positive? For all A's or all large A's? For all energies or all but finitely many?
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1. Introduction

Schrodinger operators with ergodic potentials have enjoyed quite some popu-
larity for several decades now. This is in no small part due to Barry Simon's con-
tributions to the field, through research articles on the one hand, but also through
survey articles and his way of putting his personal stamp on results and conjectures
on the other hand. Ergodic Schrodinger operators continue to be dear to him as
seven of the fifteen Schrodinger operator problems he singles out in [60] for further
investigation in the 21st century deal with them. Moreover, the immense activity
in the area of ergodic Schrodinger operators is reflected by the fact that the ratio
7/15 improves to 3/4 when it comes to the problems from that list that have been
solved so far. One may say that this is due to the uneven distribution of difficulty
among these fifteen problems, but this is balanced by the fact that of the remaining
four ergodic problems at least three are very hard and that further progress should
be expected on some of the remaining non-ergodic problems.

In the area of ergodic Schrodinger operators there are several powerful meth-
ods (e.g., fractional moment) and analyses (multi-scale) but few theories (Kotani).
What appears to be wordplay wants to express the fact that Kotani theory is distin-
guished from the other greats by its immensely general scope. It really is a theory
that applies to the class of all ergodic operators and it is central in many ways. In
addition, Kotani theory has played a crucial role in the solution of two of the four
recently solved 21st century problems.

Our goal here is to present the core parts of Kotani theory with more or less
complete proofs and to discuss several recent applications of the theory to a number
of concrete classes of models for which, whenever possible, we at least outline the
main ideas that go into the proofs of the results we mention.

Suppose (0, p) is a probability measure space, T : SZ -+ Il is an invertible
ergodic transformation, and f : S2 R is bounded and measurable. We define
potentials,

V4, (n) = f (T"w), w E Q, n E Z,

and the corresponding discrete Schrodinger operators in £2(Z),

[H,,, V)] (n) = 0 (n + 1) + 0(n - 1) + V,,, (n),o (n). (1)

We will call {H, },Eq an ergodic family of Schrodinger operators.

Examples. (a) Quasi-periodic potentials: 1 = Td = I[8d/Zd, p is the normalized
Lebesgue measure on Td, and Tw = w + a is some ergodic shift (i.e., 1, al) ... , ad
are rationally independent).1

(b) Potentials defined by the skew shift: 1 = T2, p is the normalized Lebesgue
measure on T2, and T(wi, W2) = (w1 + w2, w2 + a) for some irrational a.

'What we call quasi-periodic here is more general than the notion of quasi-periodicity as
defined in [7], for example, where a quasi-periodic potential is almost periodic with a finitely
generated frequency module. In particular, a quasi-periodic potential as defined here is not neces-
sarily almost periodic, that is, the translates of a given quasi-periodic potential are not necessarily
precompact in 2°° (Z). We allow discontinuous sampling functions f here because we want to
include Fibonacci-type potentials.
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(c) Potentials defined by the doubling map: 0 = T,µ is the normalized Lebesgue
measure on 7C, and Tw = 2w.2

(d) Potentials defined by the left shift: 0 = IZ, where I is a compact subset of I[8,
it = PZ, where F is a Borel probability measure on I, and [Tw] (n) = w(n + 1).

The following pair of results, proven in [50, 56], shows that for ergodic families
of Schrodinger operators, the spectrum and the spectral type are deterministic in
the sense that they are constant p-almost surely.

THEOREM 1 (Pastur 1980). There exists a set E C I[8 such that for it-almost
every w, o,(H,) = E.

THEOREM 2 (Kunz-Souillard 1980). There are sets Eac, Esc, Epp C ][8 such
that for p-almost every w, u. (H,,,) = E., E {ac, sc, pp}.

Thus, in the spectral analysis of a given ergodic family of Schrodinger operators,
a fundamental problem is the identification of the sets E, Eac, Esc, and Epp.

The almost sure spectrum, E, is completely described by the integrated density
of states as shown by Avron and Simon [9]. Denote the restriction of II to [0, N-1]
with Dirichlet boundary conditions by H( N). For w E S2 and N > 1, define measures
dkL,N by placing uniformly distributed point masses at the eigenvalues (1) <

< (N) of that is,
Nf f (E) N f (E(N) (n)).
n=1

Then, it can be shown that for p-almost every w E S2, the measures dk,,N converge
weakly to a non-random measure dk, called the density of states measure, as N
oo. The function k defined by

k(E) = f (E') dk(E')

is called the integrated density of states. It is not hard to show that

f f (E) dk(E) = IE ((oo, f (Hw)bo)) (2)

for bounded measurable f . Here, E(.) denotes integration with respect to the
measure it, that is, E(g) = f g(w) da(w) Thus, the density of states measure is
given by an average of the spectral measures associated with Hu, and 80. The
T-invariance of it then implies the following result:

THEOREM 3 (Avron-Simon 1983). The almost sure spectrum is given by the
points of increase of k, that is, E = supp(dk).

There is a similarly general description of the set Eac in terms of the Lyapunov
exponent. Let E E C and

AE(w) = I E-f(w)
1

0 (3)

2Strictly speaking, this example does not fall within our general framework as T is not
invertible, but potentials of this kind have been studied in several works and it is possible to
tweak the model a little to fit it in the framework above.
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Define the Lyapunov exponent y(E) by

y(E) = lim 1 E (log jjAn (w)Ij) ,
n-.oo n

where An (w) = AE(Tn-Iw) . AE(w).
The integrated density of states and the Lyapunov exponent are related by the

Thouless formula (see, e.g., [23, Theorem 9.20]), which reads

'Y (E) = J log IE - E'I dk(E'). (4)

The significance of the transfer matrices AE (w) is that a sequence u solves the
difference equation

u(n + 1) + u(n - 1) + V,J(n)u(n) = Eu(n)

if and only if

Cunn 1) = An (w) Cu Ol)

for every n. Since det AE(w) = 1, we always have -y(E) > 0. Let us define

Z = {E : y(E) = 0}.

By general principles, Z C E.
For a subset S of R, the essential closure of S is given by

(5)

SSS={EEll :Leb(Sn(E-e,E+e))>0foreverye>0}

Then, the following theorem combines results from [37, 43, 56].3

THEOREM 4 (Ishii 1973, Pastur 1980, Kotani 1984). The almost sure absolutely
continuous spectrum is given by the essential closure of the set of energies for which
the Lyapunov exponent vanishes, that is, Eac = 2"'.

While there is an analog of Theorem 3 for higher-dimensional ergodic
Schrodinger operators, Theorem 4 is, by its very nature, a strictly one-dimensional
result. It is one of the great challenges for researchers in the area of ergodic
Schrodinger operators to develop effective tools for the study of the absolutely
continuous spectrum in higher dimensions. That said, Theorem 4 holds in virtu-
ally all one-dimensional and quasi-one-dimensional situations: see Kotani [43] for
continuous one-dimensional Schrodinger operators (see also Kirsch [41] for a useful
extension), Minami [54] for generalized Sturm-Liouville operators, Kotani-Simon
[49] for discrete and continuous Schrodinger operators with matrix-valued poten-
tials, and Geronimo [31] and Geronimo-Teplyaev [32] for orthogonal polynomials
on the unit circle.

3To be more precise, the discrete version of the Kotani half of this result here can be found
in the paper [59] by Simon and the work of Ishii and Pastur was preceded by closely related work
by Casher and Lebowitz [19].
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2. The Description of the AC Spectrum

In this section we discuss the main ideas that go into the proof of Theorem 4.
The proof naturally breaks up into the proof of two inclusions.

The inclusion "C" was proved by Ishii and Pastur. The other inclusion was
proved by Kotani and is a much deeper result. In fact, the proof of the Ishii-
Pastur half of the result we give below is based on more modern techniques and
shows that this half is really an immediate consequence of the general theory of
one-dimensional Schrodinger operators.

There are at least three different proofs of the Ishii-Pastur half of Theorem 4
in the literature. One of them uses the existence of generalized eigenfunctions;
compare Cycon et al. [23]. The second one, due to Deift and Simon [30], is close
in spirit to, and uses techniques from, Kotani's proof of the other half of the result.
Finally, there are two somewhat related proofs given by Buschmann [18] and Last
and Simon [51], which are both either directly or indirectly based on a result
of Gilbert and Pearson that describes a support of the singular spectrum of a
Schrodinger operator with fixed (non-random) potential in terms of subordinate
solutions. We will follow the argument from Buschmann's paper below.

We first recall a central result from Gilbert and Pearson's subordinacy theory
[33, 34]. Consider the discrete Schrodinger operator H in £2(Z) with potential V
and solutions of the difference equation

u(n + 1) + u(n - 1) + V(n)u(n) = Eu(n). (6)

A non-zero solution u of (6) is called subordinate at foo if for every linearly inde-
pendent solution u of (6), we have

EN-1
1

l

u(fn) 2 - 0 as N -> oo.
En"-0 lu(±n)l2

Let

S = {E E lR : (6) has solutions u+ and u_ such that u+ is subordinate at ± oo}.

Then, S has zero weight with respect to the absolutely continuous part of any
spectral measure, that is,

p(ac) (S) = 0. (7)

PROOF OF THE ISHII-PASTUR HALF OF THEOREM 4. Note that when y(E)
> 0, Oseledec's theorem [55] says that for almost every w, there are solutions
u+(E, w) and u_ (E, w) of (5) such that u f (E, w) is exponentially decaying, and
hence subordinate, at ±oo. Applying Fubini's theorem, we see that for p-almost
every w, the set of E E R \ Z for which the property just described fails, has
zero Lebesgue measure. In other words, for these w's, R \ Z C_ Su, up to a set of
zero Lebesgue measure. Since sets of zero Lebesgue measure have zero weight with
respect to the absolutely continuous part of any spectral measure, we obtain from
(7) that for p-almost every w,

P(ac) (R \ Z) = 0.

This shows that for p-almost every w, aac (H,,) C iSS

Let us now turn to the Kotani half of Theorem 4. Kotani worked in the
continuum setting. Carrying his results over to the discrete case is not entirely
straightforward and it was worked out by Simon [59] whose proof we give below.
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Given z E C+ = {z c C : sz > 0} and w c 52, there are (up to a multiplicative
constant) unique solutions u+ (n, w) of

u(n + 1) + u(n - 1) + Vu,(n)u(n) = zu(n) (8)

such that u± is square-summable at +oo. (Take u± (n, w) = (6n, (H, -z)-1bi) near
±oo to show existence; uniqueness follows from constancy of the Wronskian.) Note
that u+ (0, w) 0 for otherwise z would be a non-real eigenvalue of a self-adjoint
half-line operator. Thus, we can define

m (z w)=- u+(±1, w)
M ' ut (0, w)

Clearly,

m}(z T nw)--uf(n±1,w)
u±(n,w)

By Oseledec's theorem, we have for µ-almost every w,

By (10),

lim 1 logn-oo n
u± (n, w)
u+(0, w)

= --Y(z)

n-1

log
(n'w)

_ E logIm±(z,T±mw)I
u f (O, w) M_a

and hence Birkhoff's ergodic theorem implies

1E(log jmt (z, w) 1) = -'y(z)

PROPOSITION 2.1. We have that

(9)

(10)

IE (log C1 + Sz = 2ry(z).
am± (z, w)

I I

PROOF. By the difference equation (8) that u± obeys,

m±(z,Tnw) = Vu,(n) - z - (12)

Taking imaginary parts,

smf(z,w) = -sz - s ([m±(z,T_lw)]-1)
Dividing by sm+(z, w),

_ sz s ([mf(z,T+1w)] 1)
1 9sm±(z,w) `lm+(z,w)

Taking the logarithm,

log I+ 9
sz 1 = log (-s ([m+(z,TT lw)]-1)) - log (sm+(z, w))s\ m± (z, w) J

m±(z T 1 ) ' \
= log

mf (z, 7''Flw) 12
log (sm+(z, w))

Taking expectations and using invariance,

IE Clog I+
sm+(z, w))

E

(log

(9rn±(z
l m+( ,T

lw)1)) -log (sm+(z, w)) J

_ -21E(log jm+(z,w)1) /
= 2y(z),
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where we used (11) in the last step.

Denote

b(z, w) = m+ (z, w) + m_ (z, w) + z - V, (0).

545

PROPOSITION 2.2. We have

1 _ ay(z)
b(z, w)

PROOF. It follows from (12) that

u_(l,w)
u--- (0 ,w)

=m-(z,w)+z-Vw(0). (13)

It is not hard to check that for n < m,

G, (n, m; z) (bn, (Hw - z) '6m) _ ) u-(n, w)u+(m, w) (14)
u+(1, W) U- (0, w) - u- (1, w)u+(0, w)

From (9), (13), and (14), we get

-G,(0, 0; z)-1 = m+(z, w) + m_ (z, w) + z - V,(0) = b(z, w). (15)

The definition of G, (n, m; z) gives

Thus,

1E(Gu,(0, 0; z)) = f E' z dk(E'). (16)

IE Cs I 1 I I =
b(z, w)

-s]E (G, (0, O; z))

_ -s J E' 1 z dk(E')

flogz_E'Idk(E')

__ _ a'Y(z)
8(sz)'

where we used (15), (16), and the Thouless formula (4).

Denote

n±(z,w) = sm±(z,w) + 2 z.

PROPOSITION 2.3. We have that

E (',w)
< 2y(z)n±(zsz

and

[+ +' , [(n+ - n_)2 + ($?b)2]
< 4 -y (Z) _ -9-y(z)

lb12 - [ sz 8(sz)]

(17)

(18)
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PROOF. For x > 0, consider the function A(x) = log(1 + x) i+ 22 . Clearly,

A(0) = 0 and A' (x) = I+ i
+

2 q> 0. Therefore,

log (1 + x) > 1 X for all x > 0.
2

Thus,

(19)

1 sz
nmt (z,wi

Y_z 1 + Jm

<1 ]E(log(1+ sz\ \ m+(z,w)sz s
2y(z)
sz

which is (17). We used (19) in the third step and Proposition 2.1 in the last step.
Notice that n+ (z, w) + n_ (z, w) = sb(z, w). Thus, the integrand on the left-

hand side of (18) is equal to

+ [(n+ + n )2 - 4n+n_ + nJ
bI2 - 4n+n_]

n[I
=bl2 Jb12

1 1 n++n_
= n+ + n 4 Jb12

1 1 C1\
= n + n_ +4s

b

The bound (18) now follows from (17) and Proposition 2.2. 11

PROOF OF THE KOTANI HALF OF THEOREM 4. The Thouless formula (4)
says that

'Y (Z) = J log Iz - E'l dk(E') = RJ log(z - E') dk(E')

and hence -y(z) is the real part of a function whose derivative is a Borel transform
(namely, of the measure dk). By general properties of the Borel transform, it follows
that the limit y'(E+i0) exists for Lebesgue almost every E E R and, in particular,
for almost every E E Z. For these E, we have that

ry(E + iE) - ry(E + ie) - -y(E) 19-/
20)El k)= li

E o e
m ( , (+im e- 0 E10 a(sz)

and, in particular, the limit is finite. Thus, by (17),

1
limsouplE sm+(E+ie,w) < 00

for almost every E E Z. Since m± are Borel transforms as well (of the spectral
measures associated with half-line restrictions of Hu,), we also have that, for every
w E f2, m+(E + i0, w) exists for Lebesgue almost every E E R, and hence, for



A SURVEY OF KOTANI THEORY 547

almost every E, m+ (E + i0, w) exists for almost every w. Combining the last two
observations with Fatou's lemma, we find that

1 ()
E sjm,f(E+i0,w)) < o0 21

for almost every E in Z. So, for almost every w c 52 and E E 2, sm+(E+i0, w) > 0.
On the other hand, m+(E+iE,w)+m_(E+iE,w)+E+iE-V,(0) has a finite

limit for almost every w c 52 and E E Z.
Hence, (15) shows that 0 < sG, (0, 0; E + i0) < oo for almost every w E SZ and

E E i, which implies the result.

Denote the measure associated with the Herglotz function G, (0, 0; z) by v,,,,
that is,

G, (0, 0; z) _
dv, (E)
E-z

The results above imply the following for µ-almost every w:

v(ac) (E) = 0 for Lebesgue almost every E E ][8 \ 2,
v(ac) (E) > 0 for Lebesgue almost every E E Z.

Here, v(ac)(E) denotes the density of the absolutely continuous part of v,. Write
k(ac)(E) for the density of the absolutely continuous part of the density of states
measure.

There is a direct relation between these densities [47]:

THEOREM 5 (Kotani 1997). For almost every E E 2,

k(ac)(E) = lE (v(ac)(E)) . (22)

PROOF. The inequality ">>" in (22) follows from (2) (i.e., the density of states
measure is the average of the measures v,) and the fact that the average of ab-
solutely continuous measures is absolutely continuous.

To prove the opposite inequality, we first note that for almost every E E S,
(16), (20), and Cauchy-Riemann imply

k(ac) (E) =
1

lim
1'(E + ie)

7r 610 E
(23)

Because of (20), (21), and Fatou's lemma, (18) implies that for almost every
pair (E, w) E 2 x52,

am+(E+i0,w) = am_(E+i0,w) (24)

and

Rm+(E+i0,w)+Rm_(E+iO,w)+E-V,,(0) = 0. (25)
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Thus, for almost every (E, w) E 2 x fl,

v(ac) (E) _

it m+(E+i0,w)+m_(E+i0,w)+E-V (0)
1 r -1
7rs2iam+(E+i0,w)

1 1

_ -s

1 sG4, (0, 0; E + i0)
7r

1 -1

27r sm+ (E + iO, w)

Let PE be the Poisson kernel for the upper half-plane, that is,

PE(E)=1
it E2 + E2 .

Write

CE(E)=LPE_E'E'

and

(26)

P, (E, E') = PE(E - E')CE(E) 1.

Then, by (26) and Jensen's inequality, we obtain for almost every (E, w) E Z x 0,

fv(a`)(E')PE(E-E')dE' > I I,(ac)(E')PE(E-E')dE'

1

fz (m+(E+iO,w)) PE(E-E')dE'

=CE(E)fz (m+(E'+iO,w)) PE(E E')dE'

1 1

CE(E) Jz(27r03m+(E'+iO,w) PE(E,E)dE
)-1

I

> CE(E) 2 f (2
1

7r 3m+ (E'
1

+ i0, w)
PE(E - E') dE'

CE(E)2 1

21r am+(E + iE, w)

Thus, for almost every E E S,

and hence

E (v(ac)(E')) P,(E - E') dE' > CE(E)2
lE (m+(E1+ie,w))- 27r

]E (v(ac) (E)) > 1 lim sup ]E I 1 I (27)
27r Elo `gym+(E + iE, w)

since CE (E) < 1 and CE (E) -+ 1 as E 10.
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Using (23), Proposition 2.1, the inequality log(1 + x) < x for x > 0, and then
(27), we find that

k(ac) (E) = 1 lim
ry(E + iE)

7r EjO E(log
/

Ilim 1 El1+
7r EjO 2E \

E

sm+(E+iE,w)))

< 1 lim sup EE I 1 )
27r CIO sm f (E + iE, w)

< lE (L(ac) (E))

concluding the proof of "<" in (22). 0
COROLLARY 1. The spectrum is almost surely purely absolutely continuous if

and only if the integrated density of states is absolutely continuous and the Lyapunov
exponent vanishes almost everywhere with respect to the density of states measure.

There is a different approach to purely absolutely continuous spectrum as
pointed out by Yoram Last (unpublished):4 Using a result of Deift and Simon [30,
Theorem 7.1], one can show that there is a set R C_ Z such that Leb(Z \ R) = 0
and R has zero singular spectral measure for every w E 1 due to the absence of
subordinate solutions.

The spectrum naturally breaks up into the two components Z and E \ Z. It is
known that either set can support singular continuous spectrum as demonstrated
by the almost Mathieu operator at critical and super-critical coupling. However,
as we have seen, E \ Z does not support any absolutely continuous part of the
spectral measures. Trivially, Anderson localization is impossible in Z. However, it
is tempting to expect even more:

PROBLEM 1. Prove or disprove that for all ergodic families, the operators Hu
have no eigenvalues in Z.

If the answer is affirmative, this will in particular imply the absence of eigen-
values in a number of special cases, such as the operators considered in Section 6
and the critical almost Mathieu operator.5

3. The Induced Measure and Its Topological Support

Fix a compact subset R of R. Endow RZ with product topology, which makes
it a compact metric space. If V E Rz, we define the functions m± by

m (z)==

where u± solves
u(n + 1) + u(n - 1) + V(n)u(n) = zu(n) (28)

and is 22 at ±oo.
Denote Z+ _ {1, 2, 3, ...} and Z_ = {0, -1, -2,...). It is well known that

the maps M± : V4 = VIz± H mf are one-one and continuous with respect to

4The author is grateful to Barry Simon for bringing this to his attention.
5For this particular model, this would provide an alternative to the proof based on self-duality

and zero-measure spectrum.
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uniform convergence on compacta on the m-function side. The m-functions m±
are Herglotz functions, they have boundary values almost everywhere on the real
axis, and they are completely determined by their boundary values on any set of
positive Lebesgue measure.

We will be interested in those V for which the functions m+, m_ obey identities
like (24) and (25), that is,

m_ (E + i0) = -m+ (E + i0) (29)

for a rich set of energies. Thus, for a set Z C I[8, we let

D(Z) _ {V E Rz : mf associated with V obey (29) for a.e. E E .Z}.

On Rz, define the shift transformation [S(V)](n) = V(n + 1).

LEMMA 3.1. Suppose that Z C I[8 has positive Lebesgue measure. Then:
(a) D(Z) is S-invariant and closed in Rz.
(b) For V E D(Z), denote the restrictions to Z± by V±. Then V_ determines V+
uniquely among elements of D(Z) and vice versa.
(c) If there exist V('), V E D(Z) such that Vim) -- V_ pointwise, then V+m) -- V+
pointwise.

PROOF. (a) If u1, u2 denote the solutions of (28) that obey ui (0) = u2(1) = 1
and ui (1) = U2(0) = 0, then we can write (note that we may normalize u± by
u+(0) = 1)

u+(n) = ui(n) T m+(z)u2(n).
Let us denote the m-functions associated with S(V) by m+. Clearly,

m± (z)
ui(2) F mf(z)u2(2)

U1 (1) + m+(z)u2(1)

Since the uj (m) are polynomials in z with real coefficients, this shows that

m_ (E + i0) = -m+ (E + i0)

for almost every E E 2 and hence D(Z) is S-invariant. It follows from the conti-
nuity of the maps Mt that D(Z) is closed. (For a proof that the identity between
the boundary values of the associated m-functions is preserved after taking limits,
see [44, Lemma 5] and [45, Lemma 7.4].)
(b) V_ determines m_ and then (29) determines the boundary values of m+ on a
set of positive Lebesgue measure. By general properties of Herglotz functions, this
determines m+ (and hence V+) completely. By the same argument, V+ determines
V.
(c) By compactness, there is a subsequence of {V(m)} that converges pointwise,
that is, there is V such that V(1k) _, V as k oo. By part (a), V E D(S).
By assumption, V_ = V_. Thus, by part (b), V+ = V+, and hence V = V.
Consequently, V(mk) -p V+ pointwise. In fact, we claim that V(m) -p V+ pointwise.
Otherwise, we could reverse the argument (i.e., go from right to left) and show that
V(mk) 74 V_ for some other subsequence.

We will now derive two important consequences of Lemma 3.1: the absence
of absolutely continuous spectrum for topologically non-deterministic families and
the support theorem. To do so, we will consider the push-forward v of µ on the
sequence space and its topological support.
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More precisely, given an ergodic dynamical system (Q, µ, T) and a measurable
bounded sampling function f : 52 -+ Tl defining potentials V.(n) = f (T"w) as
before, we associate the following dynamical system (RE, v, S): R is a compact
set that contains the range of f, v is the Borel measure on RE induced by µ via
4)(w) = V, (i.e., v(A) = µ( 1(A))) and S is the shift transformation on Rz
introduced above. Recall that the topological support of v, supp v, is given by the
intersection of all compact sets B C Rz with v(B) = 1. Clearly, supp v is closed
and S-invariant.

THEOREM 6 (Kotani 19896). Let (Q, µ, T, f) and (RZ, dv, S) be as just de-
scribed. Assume that the set

Z = {EEl[8:ry(E)=0}
has positive Lebesgue measure. Then,
(a) Each V E supp v is determined completely by V_ (resp., V+).
(b) If we let

(supp v)± = {VV : V E supp v},
then the mappings

E± : (supp v) f E) VV _- VT E (supp v) (30)

are continuous with respect to pointwise convergence.

PROOF. (a) By our earlier results, we know that D(Z) is compact and has full
v-measure. Thus, supp v C D(Z) and the assertion follows from Lemma 3.1(b).

(b) This follows from Lemma 3.1(c).

We say that (Q, µ, T, f) is topologically deterministic if there exist continuous
mappings E+ : (supp v)+ -> (supp v)+ that are formal inverses of one another and
obey V# E supp v for every V_ E (supp v) -, where

#
(n)

V_ (n) n < 0,
V _

E_(V_)(n) n > 1.

This also implies V* E supp v for every V+ E (supp v) +, where

V+ (n) n > 1,
V#(n)

E+(V+)(n) n < 0.

Otherwise, (Q, µ, T, f) is topologically non-deterministic.

COROLLARY 2. If (Q, µ, T, f) is topologically non-deterministic, then Eac = 0.

Our next application of Lemma 3.1 is the so-called support theorem; compare
[44]. For a Borel measure v on Rz, let Eac(v) C l[8 denote the almost sure absolutely
continuous spectrum, that is, aa, (A+V) = Eac (v) for v-almost every V. If v comes
from (1, µ, T, f ), then Ear (v) coincides with the set Eac introduced earlier. The
support theorem says that Eac(v) is monotonically decreasing in the support of v.

THEOREM 7 (Kotani 1985). For every V E supp v, we have Qac(I + V) 2_
Eac (v). In particular, supp v1 C supp v2 implies that Eac(vl) 2 Eac(v2).

6The result appears explicitly in the 1989 paper [46]. The main ingredients of the proof,
however, were found earlier [44, 45].
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PROOF. We know that supp v C D(Z) = {V E Rz : m+ associated with V
obey (29) for a.e. E E Z}. Bearing in mind the Riccati equation (13), a calculation
like the one in (26) therefore shows that for every V E supp v, the Green function
associated with the operator A + V obeys sG(0, 0; E + i0) > 0 for almost every
E E Z. This implies less C aac(A + V) and hence the result by Theorem 4.

A different proof can be found in Last-Simon [51, Sect. 6]. Here is a typical
application of the support theorem:

COROLLARY 3. Let Per, be the set of V E supp v that are periodic, that is,
S'V = V for some p c Z+. Then,

Eac(U) C n Q(0 + V).
V EPer

If there are sufficiently many gaps in the spectra of these periodic operators,
one can show in this way that Eae(v) is empty.

Corollaries 2 and 3 have been used in a variety of scenarios to prove the absence
of absolutely continuous spectrum. In fact, while the Kotani half of Theorem 4
concerns the presence of absolutely continuous spectrum on 2, it could be argued
that the criteria for the absence of absolutely continuous spectrum that are by-
products of the theory have been applied more often. To a certain extent, this is
due to the fact that the majority of the ergodic families of Schrodinger operators are
expected to have no absolutely continuous spectrum. The following "conjecture" is
tempting because it is supported by a plethora of results, both on the positive side
and on the negative side. It has been verbally suggested by Yoram Last and it has
appeared explicitly in print in several places, including [39, 48].

PROBLEM 2. Show that Leb (Z) > 0 implies almost periodicity, that is, the
closure in .2°°(7Z) of the set of translates of V,, is compact.

Namely, the presence of (purely) absolutely continuous spectrum is known for
all periodic potentials, many limit-periodic potentials,7 and some quasi-periodic
potentials (that are all uniformly almost periodic). On the other hand, the absence
of absolutely continuous spectrum is known for large classes of non-almost periodic
ergodic potentials. We will see some instances of the latter statement below. Nev-
ertheless, proving this conjecture is presumably very hard and it would already be
interesting to find further specific results that support the conjecture. For exam-
ple, it is an open (and seemingly hard) problem to prove the absence of absolutely
continuous spectrum for potentials defined by the skew shift.

We close this section with a problem concerning strips. As was mentioned at the
end of the Introduction, Kotani and Simon developed the analog of Kotani theory
for discrete and continuous Schrodinger operators with matrix-valued potentials in
their 1988 paper [49]. This framework includes in particular discrete Schrodinger
operators on strips. That is, operators of the form 0 + V( on £2 (7G x {1, . . . , L}),
where A is again given by the summation over nearest neighbors. Transfer ma-
trices are now 2L x 2L and, modulo symmetry, there are L Lyapunov exponents,
ryL (E) > -IL -I (E) > > -yl (E) _> 0. For the general matrix-valued situation,
they proved that the largest Lyapunov exponent is positive for almost every energy

7A sequence V is limit-periodic if there are periodic sequences V(') such that 11V -
0m)]100 0 as m oo. See, for example, Avron-Simon [7], Chulaevsky [20], Chulaevsky-
Molchanov [21], and Pastur-Tkachenko [58].
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if the potential is non-deterministic. This result cannot be improved in this general
setting. However, it is reasonable to expect that for strips, the following result
should hold.

PROBLEM 3. Prove that for non-deterministic Schrodinger operators on a strip,
all Lyapunov exponents are non-zero for Lebesgue almost all energies.

4. Potentials Generated by the Doubling Map

In this section we discuss potentials defined over the doubling map, that is,
Example (c) from the Introduction. The underlying dynamical system is strongly
mixing, and one would hope that the spectral theory of the associated operators is
akin to that of the Anderson model, where the potentials are generated by inde-
pendent, identically distributed random variables. Alas, by dropping independence,
one loses the availability of most tools that have proven useful in the study of the
Anderson model.

While localization is expected for Schrodinger operators with potentials over
the doubling map, it has not been shown to hold in reasonable generality. There
are only two localization results in the literature, and each of them is to some
extent unsatisfactory. The first result was found by Bourgain and Schlag [17],
who proved localization at small coupling and away from small intervals about the
energies ±2 and 0. Both assumptions seem unnatural. The other result is due to
Damanik and Killip [26], who proved localization for essentially all f but only for
Lebesgue almost every boundary condition at the origin (recall that we are dealing
with operators in £2 (Z+)). A result holding for fixed boundary condition would of
course be more desirable. To this end, Damanik and Killip were at least able to
show the absence of absolutely continuous spectrum for fixed boundary condition
in complete generality. These results are indeed immediate consequences of Kotani
theory and spectral averaging, and we give the short proofs below for the reader's
convenience.

The first step in a localization proof for a one-dimensional Schrodinger operator
is typically a proof of positive Lyapunov exponents for many energies. For the
Anderson model, this can be done for all energies using Fdrstenberg's theorem or
for Lebesgue almost all energies using Kotani theory. At small coupling there is
also a perturbative approach due to Pastur and Figotin [57]. The extension of the
approach based on Fiirstenberg's theorem to potentials generated by the doubling
map is not obvious; see, however, [4]. The perturbative approach extends quite
nicely as shown by Chulaevsky and Spencer [22]. Their results form the basis for
the proof of the partial localization result in [17]. Finally, the approach based on
Kotani theory also extends, as we will now explain.

THEOREM 8 (Damanik-Killip 2005). Suppose that f E L°°(T) is non-constant
and V,, (n) = f(2nw) for n > 1. Then, the Lyapunov exponent -y(E) is positive
for Lebesgue almost every E E R and the absolutely continuous spectrum of the
operator H, in £2(Z+) is empty for Lebesgue almost every w E T.

PROOF. Since the proof of this result is so short, we reproduce it here in its
entirety. The first step is to conjugate the doubling map T to a symbolic shift
via the binary expansion. Let SZ+ = {0, 1}Z+ and define D : SZ+ -> T by D(w) =
>°°1 wn2-n . The shift transformation, S : SZ+ -> fl+, is given by (Sw)F = wn,+1
Clearly,DoS=ToD.
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Next we introduce a family of whole-line operators as follows. Let 0 = {0,1}Z
and define, for w E 0, the operator

[Hc,0] (n) = 0(n + 1) + 1) + VW (n)q(n)

in £2(Z), where

f [D({w.,, W.+1, w.+2, ...})].
The family is non-deterministic since VC, restricted to Z+ only depends
on {wn}n>1 and hence, by non-constancy of f, we cannot determine the values of
,;,(n) for n < 0 uniquely from the knowledge of Vc,(n) for n > 1. It follows from
Corollary 2 that the Lyapunov exponent for {Hw}&Eo is almost everywhere positive
and aa,c(Hc,) is empty for almost every i E fZ with respect to the (',')-Bernoulli
measure on 0.

Finally, let us consider the restrictions of H, to £2(Z+), that is, let H =
E*H, JE, where E : £2 (7z+) -> £2 (Z) is the natural embedding. Observe that H =
H, , where w = D({1,&2,2, ...}). This immediately implies the statement on
the positivity of the Lyapunov exponent for the family {H }u,ET. As finite-rank
perturbations preserve absolutely continuous spectrum, Qa,c(H,) C_ o-ac(HG,) for
every W E f2. This proves that aac (Hw) = 0 for almost every D E Il.

Given 0 E (-7r/2,7r/2), let H«) denote the operator which acts on £2(Z+) as
in (1), but with b(0) given by cos(0)0(0) + sin(0)0(1) = 0. Thus, the original
operator (with a Dirichlet boundary condition) corresponds to = 0. Theorem 8
implies the following result for this family of operators:

COROLLARY 4. Suppose that f is measurable, bounded, and non-constant.
Then, for almost every 0 E (-ir/2,ir/2) and almost every w E T, the operator
HC in Q2 (Z+) with potential V,(n) = f (2nw) has pure point spectrum and all
eigenfunctions decay exponentially at infinity.

PROOF. This is standard and follows quickly from spectral averaging; see, for
example, (57, Theorem 13.4] or [61, Section 12.3].

For a localization proof without the need for spectral averaging, it will be
necessary to prove the positivity of the Lyapunov exponent for a larger set of
energies. Sufficient, for example, is positivity away from a discrete set of exceptional
energies. For moderately small coupling, such a result will be contained in [4]. The
problem for other values of the coupling constant is still open.

PROBLEM 4. Find a class of functions f E L°°(T) such that for every A 0,
the Lyapunov exponent associated with the potentials V,,, (n) = Af (2'nw) is positive
away from a (A-dependent) discrete set of energies.

In connection with this problem, important obstructions have been found by
Bochi [10] and Bochi and Viana [11]. Namely, positivity of y(E) away from a dis-
crete set will fail generically in C(T) (this result holds for rather general underlying
dynamics) and hence the Holder continuity assumptions made in [4] and [22] are
natural.

In some sense a large value of A alone should ensure the positivity of the Lya-
punov exponent. This is indeed the basis of several results for quasi-periodic poten-
tials or potentials generated by the skew shift. For hyperbolic base transformations
such as the doubling map, however, there is a competition between two different
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kinds of hyperbolic behavior that presents problems that have not been solved
yet. Moreover, in the large coupling regime, it would be especially interesting to
prove uniform (in energy) lower bounds on the Lyapunov exponents along with the
natural log .A asymptotics.

PROBLEM 5. Find a class of functions f E L°° (T) such that for every A >
Ao(g), the Lyapunov exponent associated with the potentials V. (n) = Af (2n w) obeys
infE'y(E) > clog A for some suitable positive constant c.

In this context it should be noted that Herman's subharmonicity proof for
trigonometric polynomials over ergodic shifts on the torus [36], works in the case
of the doubling map.8 It seems much less clear, however, how to carry over the
Sorets-Spencer proof for real-analytic f [62] from the case of irrational rotations
of the circle to the case of the doubling map, let alone the proof of Bourgain for
real-analytic functions over ergodic shifts on higher-dimensional tori [14].

For SL(2, ll) cocycles over the doubling map that are not of Schrodinger form
(i.e., with a general SL(2, R) matrix replacing (3)), Young has developed a method
for proving positive Lyapunov exponents "at large coupling" that works in the C1
category [64]. Her method does not immediately apply to Schrodinger cocycles,
but it would be interesting to find a suitable extension.

PROBLEM 6. Modify Young's method and apply it to Schrodinger cocycles.

5. Absence of AC Spectrum for Rough Potentials

It is in some way surprising that a rough sampling function f can make the
resulting potentials non-deterministic. Traditionally, non-determinism had been
thought of as a feature induced by the underlying dynamics. In particular, quasi-
periodic potentials (in the generalized sense considered in this paper, which allows
discontinuous f's) had for a long time been considered deterministic. The situation
changed with an important observation by Kotani in his short 1989 paper [46].

He proved the following very general result:

THEOREM 9 (Kotani 1989). Suppose that (Q, T, p) is ergodic, f : SZ --+ R
takes finitely many values, and the resulting potentials V, are µ-almost surely not
periodic. Then, Leb (Z) = 0 and therefore E,,° = 0.

In particular, operators with quasi-periodic potentials of the form
N

V,,(n) = A ym.x[a,,,-l,am) (ncx + w),
m-1

where 0 = ao < a1 < < aN_1 < aN = 1, 71, ... , lN E R (taking at least two
values) and A jk 0, have no absolutely continuous spectrum. Note that this result
holds for all non-zero couplings and hence it is particularly surprising for small
values of A. We will have more to say about these potentials in the next section.

The family M}IET does not seem to be non-deterministic in an intuitive sense
as w is uniquely determined by the sequence V Iz_ . However, the family becomes
non-deterministic when we pass to the closed topological support of the induced
measure on {aryl, ... , ayN}z. Then we will indeed find two distinct sequences

8The author is grateful to Kristian Bjerklov for pointing this out.
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that belong to the support of the induced measure, whose restrictions to Z_ coin-
cide. This fact will become more transparent when we discuss Theorem 10 below.
Kotani's proof proceeded in a slightly different way: he proved that there can be
no continuous mapping from the left half-line to the right half-line.

PROOF OF THEOREM 9. As above we denote the push-forward of p under the
map w F- V, by v. It suffices to show that Leb (Z) > 0 implies that supp v is finite
since then all elements of supp v are periodic.

By the continuity of the maps E+ from (30) and the fact that Ran f is finite,
there is a finite M such that the knowledge of V(-M),..., V (-I) determines V (O)
uniquely for V E supp v. Now shift and iterate! It follows that V (-M), ... , V (-1)
completely determine {V (n) : n > 0} and hence supp v has cardinality at most
(# Ran f )m.

Consider the case where 1 is a compact metric space, T is a homeomorphism,
and p is an ergodic Borel probability measure. This covers most, if not all, applica-
tions of interest. In this scenario, Damanik and Killip realized in [27] that the finite
range of f is not essential. What is important, however, is that f is discontinuous
at some point wo c Q. One can then use this point of discontinuity to actually
"construct" two elements of supp v that coincide on a half-line.

We say that l E R is an essential limit of f at wo if there exists a sequence {Ilk}
of sets each of positive measure such that for any sequence {wk} with wk E SZk, both
wk -> wo and f (wk) -` 1. If f has more than one essential limit at wo, we say that
f is essentially discontinuous at this point.

THEOREM 10 (Damanik-Killip 2005). Suppose 1 is a compact metric space,
T : S2 -+ S2 a homeomorphism, and p an ergodic Borel probability measure. If there
is an wo E fl such that f is essentially discontinuous at wo but continuous at all
points T"wo, n < 0, then Eac = 0.

PROOF. We again denote the induced measure by v. For each essential limit l of
f at wo, we will find V E supp v with V (0) = 1. By assumption and construction,
V (n) is independent of 1 for every n < 0. This shows Leb (2) = 0 and hence
Eac=0.

Let l be an essential limit of f at wo and let {Ilk} be a sequence of sets which
exhibits the fact that l is an essential limit of f. Since each has positive u-measure,
we can find points wk E S1k so that V k is in supp v; indeed, this is the case for
almost every point in 11k.

As wk - wo and f is continuous at each of the points T''wo, n < 0, it follows
that Vk (n) -> V,0 (n) for each n < 0. Moreover, since f (wk) converges to 1, we also
have V,,, (0) -+ 1. We can guarantee convergence of V,k (n) for n > 0 by passing to
a subsequence because Rz is compact. Let us denote this limit potential by U. As
each V4Jk lies in supp v, so does V ; moreover, V (0) = l and V (n) = V,,, (n) for each
n<0.

Here is an illustration of this result and a strengthening of the derived conse-
quence:

COROLLARY 5. Suppose fI = T, µ is normalized Lebesgue measure, and Tw =
w + a for some irrational a. If f has a single (non-removable) discontinuity at wo,
then for all w E [0, 1), the operator HLJ has no absolutely continuous spectrum.
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PROOF. Let us say that 1 is a limiting value of f at wo if there is a sequence
{wk} in T \ {wo} such that wk - wo and f (wk) - 1. As f has a non-removable
discontinuity at wo, it has more than one limiting value at this point. Moreover,
since f is continuous away from wo, any limiting value is also an essential limit
since we can choose each 1 k to be a suitably small interval around wk.

This shows that f has an essential discontinuity at wo. As the orbit of wo
never returns to this point, f is continuous at each point T'wo, n 0. Therefore,
Theorem 10 is applicable and shows that H, has no absolutely continuous spectrum
for Lebesgue-almost every w E [0, 1).

It remains to show that the absolutely continuous spectrum of H4J is empty for
all w c R/7G. We begin by fixing wl such that H, has no absolutely continuous
spectrum and such that the orbit of wI does not meet wo; almost all wI have these
properties.

Given an arbitrary w E R/Z, we may choose a sequence of integers {nti} so that
T'' (w) --) wI. As f is continuous on the orbit of wl, the potentials associated to
T'' (w) converge pointwise to V4 . By a result of Last and Simon [51], the absolutely
continuous spectrum cannot shrink under pointwise approximation using translates
of a single potential. Thus, the operator with potential V, cannot have absolutely
continuous spectrum. This concludes the proof.

These results are particularly interesting in connection with Problem 2.
Quasi-periodic potentials (as defined in this paper) are almost periodic if and only
if f is continuous. Thus, proving the absence of absolutely continuous spectrum
for quasi-periodic potentials with discontinuous f's is a way of providing further
support for the conjecture that Ea,, 0 implies almost periodicity.

Let us now turn to the case of continuous sampling functions f. The proof
of Theorem 10 certainly breaks down and it is not clear where some sort of non-
determinism should come from in the quasi-periodic case, for example. Of course,
absence of absolutely continuous spectrum does not hold for a general continuous
f . Thus, the following result from [2] is somewhat surprising:

THEOREM 11 (Avila-Damanik 2005). Suppose S2 is a compact metric space, T :
SZ -> SZ a homeomorphism, and y a non-atomic ergodic Borel probability measure.
Then, there is a residual set of functions f in C(12) such that Ea,c (f) = 0.

Recall that a subset of C(1l) is called residual if it contains a countable inter-
section of dense open sets. A residual set is locally uncountable.

One would expect some absolutely continuous spectrum for weak perturbations
with sufficiently nice potentials; especially in the one-frequency quasi-periodic case.
More precisely, if f is nice enough, then A + of (na + w) should have some/purely
absolutely continuous spectrum for JA sufficiently small. It is known that real-
analyticity is sufficiently "nice enough" [15] (when a is Diophantine), but it was
expected that this assumption is much too strong and could possibly be replaced
by mere continuity. The proof of Theorem 11 can easily be adapted to yield the
following result, also contained in [2], which shows that continuity of the sampling
function is not sufficient to ensure the existence of absolutely continuous spectrum
for weakly coupled quasi-periodic potentials.

THEOREM 12 (Avila-Damanik 2005). Suppose SZ is a compact metric space, T :
S2 -> 0 a homeomorphism, and p a non-atomic ergodic Borel probability measure.
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Then, there is a residual set of functions f in C(1l) such that Eac (\ f) = 0 for
almost every .A > 0.

PROOF. We only sketch the proofs of Theorems 11 and 12. The key technical
issue is to establish that the maps

(L'(fi) n BT(L°°(1)), II I11) 118, f - Leb(Z(f)) (31)

and

'(SZ) n Br(L°°(1l)), R, f F A Leb(Z(Af)) dk (32)
fo

(L

are upper semi-continuous. Here, A > 0, Br(L°°(cl) = f f E L°°(Q) : JJf lI. < r},
and Z(f) denotes the set of energies for which the Lyapunov exponent associated
with (1 , T, µ, f) vanishes.

Upper semi-continuity of the map (31) can be shown using the fact that -y
is harmonic in the upper half-plane and subharmonic on the real line; see [2] for
details. Fatou's Lemma then implies upper semi-continuity of (32).

For b > 0, define

M6 = If E C(11) : Leb(Z(f )) < b}.

By the upper semi-continuity statement above, M6 is open. By approximation
with discontinuous functions and upper semi-continuity again, we see that M6 is
also dense.

It follows that

If EC(S2):Ea°(f)=0}={f EC(SZ):Leb(Z(f))=0}= nMs
6>0

is residual and Theorem 11 follows. Given upper semi-continuity of (32), the proof
of Theorem 12 is analogous.

While continuous functions can be approximated in the Co norm by discontinu-
ous functions, this does not work in the CE norm for any e > 0. Thus, the proof just
given does not extend to Holder classes. It would be interesting to explore possible
extensions of the results themselves; thus motivating the following problem.

PROBLEM 7. Prove or disprove statements like the ones in Theorems 11 and
12 for Holder classes CE(1), e > 0.

6. Uniform Lyapunov Exponents and Zero-Measure Spectrum

The Kotani result for potentials taking finitely many values, Theorem 9, is
central to the study of one-dimensional quasi-crystal models. The main results in
this area have been reviewed in [24, 25, 63]. In this section we will therefore
focus on recent progress and discuss why zero-measure spectrum is a consequence
of Kotani theory when there is uniform convergence to the Lyapunov exponent.

One-dimensional quasi-crystals are typically modelled by sequences over a finite
alphabet which are aperiodic but which have very strong long-range order prop-
erties. An important class of examples is given by one-frequency quasi-periodic
potentials with step functions as sampling functions. That is, the potentials are of
the form

N

V, (n) = A E 'YmX[am-,,am) (no + w), (33)
m=1
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where 0 = ao < aI < < aN = 1 is a partition of the unit circle, A,'YI...... N are
real numbers, a is irrational, and w E T. We obtain aperiodic potentials if A $ 0
and {yi...... N} has cardinality at least two. We will assume these conditions
throughout this section.

One of the properties that has been established for many quasi-crystal models
is zero-measure spectrum. By general principles, this implies that the spectrum is
a Cantor set because it cannot contain isolated points. Given the Kotani result,
Leb (2) = 0, the natural way of proving this is via the identity E = S.

THEOREM 13 (Damanik-Lenz 2006). Suppose the potentials are of the form
(33) and in addition all discontinuity points {a,,,,} C T are rational. Then, the
Lyapunov exponent vanishes identically on the spectrum, that is, E = 2. As a
consequence, the spectrum is a Cantor set of zero Lebesgue measure.

PROOF. We only sketch the main ideas. More details can be found in [28, 29].
Denote

U'H = {E : 1 log I An (w)II , y(E) > 0 uniformly in w}
Then, by Lenz [52] (see also Johnson [40]), UR = C \ E. In particular,

E = Z U NU7-1,

where
NU7-1={E: y(E) >0 and EVUH1.

The result follows once AIU7-l = 0 is established. Thus, given E with -I(E) > 0, we
need to show that

n
log AE (w)I - 'y(E) uniformly in w.

Uniform convergence along a special subsequence, nk -+ oc, can be shown using
results from Boshernitzan [13] and Lenz [53]. Namely, the assumption that all a,,,,
are rational implies that there is a sequence of integers nk - oc such that for each
k, all words of length nk that occur in the potentials V,,, do so with comparable
frequencies. That is, there is a uniform C > 0 such that for every k,

min liminf 1#{j:1<j<J, VV,(j)...V,,,(j+nk-1)=w}> C (34)
Iwl=nk,W occurs J-oo J - nk

uniformly in w [13]. Using this result, one can then use ideas from [53] to show
that k log 11A,'k(w)II --> -y(E) ask -* oc, uniformly in w.

Finally, the avalanche principle of Goldstein and Schlag [35] allows one to
interpolate and prove the desired uniform convergence of -1 log I1A,E (w) 11 to -I(E) as
n-+oo.

The rationality assumption in Theorem 13 holds on a dense set of parameters,
which makes it suitable for an approximation of a continuous sampling function by
a sequence of step functions. Some consequences that may be drawn from this can
be found in Bjerklov et al. [12]. On the other hand, the assumption is certainly
not necessary and more general results than the one presented here can be found
in [29]. It would be nice if the assumption could be removed altogether:

PROBLEM 8. Prove zero-measure spectrum for all finite partitions of the circle,
that is, remove the rationality assumption from Theorem 13.

It should be mentioned, however, that the proof sketched above will not work
in this generality. The approach is based on the Boshernitzan condition (34), and
it was shown in [29] that this condition fails for certain parameter values.

From a mathematical point of view, the following problem is natural:
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PROBLEM 9. Study multi-frequency analogs. That is, for a finite partition
Td = J1 U U JN and the operators with potential

N

V, (n) = A 7'mxJ,,,. (no, + w),
m=1

what is the measure of the spectrum and what is the spectral type?

These potentials are not directly motivated by quasi-crystal theory but they
form an interesting class that may again prove useful in the understanding of the
phenomena that arise for continuous sampling functions. Moreover, very little is
understood about the associated operators apart from the general Kotani result,
which says that there is never any absolutely continuous spectrum. It is unclear,
however, whether there can be any point spectrum, for example.

7. Purely AC Spectrum for the Subcritical AMO

In this final section, we describe the (to the best of our knowledge) first ap-
plication of Corollary 1. In his 1997 paper, Kotani writes that at the time Kotani
theory was developed, "it was not clear whether we could know the pure absolute
continuity ... only from the IDS, but this corollary has answered this question af-
firmatively."

The application we will present involves the almost Mathieu operator

[H,,O] (n) _ ,O(n + 1) + b(n - 1) + 2A cos(27r(na + w))z/'(n),

that is, the Schrodinger operator with one-frequency quasi-periodic potential asso-
ciated with the sampling function f (w) = 2A cos(2irw). This operator is known to
exhibit a metal-insulator transition at JAI = 1, that is, for almost every a, the al-
most sure spectral type is purely absolutely continuous for JAI < 1, purely singular
continuous for IAA = 1, and pure point (with exponentially decaying eigenfunctions)
for JAI > 1. See Jitomirskaya [38] for this result and its history. For IAI > 1, one in-
deed has to exclude a zero-measure set of frequencies a since it was shown by Avron
and Simon, using Gordon's lemma, that for Liouville a, there are no eigenvalues
[8, 9]. For JAI < 1, it has long been expected that the results above extend to all
irrational frequencies. For JAI = 1, the issue was resolved by Avila and Krikorian
[6]. The question of what happens for JA < 1 was addressed by Problem 6 in [60].

Since Bourgain and Jitomirskaya showed in [16] that the Lyapunov exponent
associated with the almost Mathieu operator obeys -y(E) = max{0, log IAI} for
every E E E for all irrational frequencies a, the problem reduces to a study of
the integrated density of states, that is, to a proof of its absolute continuity. The
following result was shown in [3] and it completely settles this regularity issue for
the integrated density of states.

THEOREM 14 (Avila-Damanik 2006). The integrated density of states of the
almost Mathieu operator is absolutely continuous if and only if JAI 54 1.

Combining this result with the one from [16] just quoted, along with Corol-
lary 1, we obtain almost surely purely absolutely continuous spectrum for the sub-
critical (i.e., JAI < 1) almost Mathieu operator:

COROLLARY 6. If JAI < 1, then Esing = 0.
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Subsequently, Avila even extended this result and proved purely absolutely
continuous spectrum for JAI < 1, a irrational, and every w [1].

PROBLEM 10. Extend the results of this section to more general f E L°°('IC);
for example, real-analytic f 's.

It was shown by Bourgain and Jitomirskaya that for Diophantine frequency a
and analytic f, Esing (A f) = 0 for A sufficiently small [15]. An extension of this
result to all w is contained in [5]. The proofs probably break down for Liouville
frequencies (for this, one needs to extend the method based on Gordon's lemma to
matrices that are not banded, but which do have exponential of diagonal decay).
Thus, it seems natural to attack the problem for Liouville frequencies in the same
way as above.
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ABSTRACT. We review recent advances in the spectral theory of Schrodinger
operators with decaying potentials. The area has seen spectacular progress in
the past few years, stimulated by several conjectures stated by Barry Simon
starting at the 1994 International Congress on Mathematical Physics in Paris.
The one-dimensional picture is now fairly complete, and provides many striking
spectral examples. The multidimensional picture is still far from clear and
may require deep original ideas for further progress. It might hold the keys for
better understanding of a wide range of spectral and dynamical phenomena
for Schrodinger operators in higher dimensions.
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1. Introduction

Schrodinger operators with decaying potentials are used to study the behavior
of a charged particle in a local electric field. The operator is defined by

Hv = -A+V(x) (1.1)

on L2(I[8d); in one dimension it is common to consider the operator on a half-axis
with some self-adjoint boundary condition at zero. The spectral and dynamical
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effects that we are interested in are those depending on the rate of decay of the
potential rather than its singularities, so we will often freely assume that V is
bounded. If the decay of the potential is sufficiently fast (short range), one ex-
pects scattering motion. The corresponding results have been rigorously proved
by Weidmann [76] in one dimension (where short-range case means that the po-
tential is in L1(I[8)) and by Agmon [1] in higher dimensions (where the natural
short range class is defined by jV(x)j < C(1 + xj)-1-E). These results established
pure absolute continuity of the spectrum on the positive semi-axis and asymptotic
completeness of the wave operators. There has been a significant amount of work
on longer range potentials with additional symbol-like conditions (see e.g. [60] for
further references), or oscillating potentials of specific Wigner-von Neumann type
structure (see e.g. [3, 24, 78] for further references). However, until the 1990s,
there had been very limited progress on understanding slowly decaying potentials
with no additional assumptions on behavior of derivatives. The short range or clas-
sical WKB methods did not seem to apply in this case, and the possible spectral
properties remained a mystery. The celebrated Wigner-von Neumann example [77]
provides a potential V(x) behaving like 8 sin(2x)/x+O(x-2 ) as x --> oo and leading
to an imbedded eigenvalue E = 1, thus showing that surprising things can happen
once the potential is not short range. On the other hand, the work of Kotani and
Ushiroya [42] implied that for potentials decaying at power rate slower than x-',
a < 1/2, the spectrum may become purely singular, and thus the scattering picture
may be completely destroyed. There was a clear gap in the decay rates where very
little information on the possible spectral properties was available. In recent years,
there has been significant progress in the area, largely stimulated by Barry Simon's
research and ideas. At the ICMP in Paris in 1994, Simon posed a problem of under-
standing the spectral properties of Schrodinger operators with potentials satisfying
IV(x)l < C(1 + xj)-', 1 > a > 1/2. Later, at the 2000 ICMP in London [71],
he compiled a list of fifteen problems in Schrodinger operators "for the twenty-first
century". Two of the problems on the list concern long range potentials.

While there remain many open questions, the recent effort to improve under-
standing of the long range potentials led to many high quality mathematical works.
Fruitful new links between the spectral theory of Schrodinger operators and orthog-
onal polynomials as well as Fourier analysis have been discovered and exploited.
Surprising examples of intricate spectral properties have been produced. Advances
have been made towards a better understanding of effects possible in higher di-
mensions. In this review, we try to survey recent results in this vital area, as well
as underline most active current directions and questions of interest. In the sec-
ond section we discuss the one-dimensional case, where the picture is much more
detailed and complete. The third section is devoted to a number of interesting spec-
tral and dynamical examples, typically one-dimensional, but easily extendable to
any dimension by spherically symmetric construction. We briefly mention certain
relations to Dirac operators, Jacobi matrices and polynomials orthogonal on the
unit circle (OPUC) in the fourth section. In the last section, we consider the higher
dimensional case, where the main question-known as Barry Simon's conjecture-is
still open and is at the focus of current research.

Most of this work is a compilation and review of known results. There are,
however, three nuggets that are new to the best of our knowledge. In Section 3, we
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provide a new proof of Theorem 3.1, the construction of an example with a dense
set of imbedded eigenvalues. In Section 5, Theorem 5.2 and Theorem 6.2 are new.

2. The One-Dimensional Case

The initial progress in understanding slowly decaying potentials started from
particular cases, such as random and sparse. Both of these classes have been treated
in a single framework by Simon in a joint paper with Last and Kiselev [40]; random
decaying potentials in the discrete setting had been pioneered by Simon in a joint
work with Delyon and Souillard [14]. Let HV be a half-line Schrodinger operator,
and fix some boundary condition at the origin. Let us call V (x) a Pearson potential
if V (x) = /ten a,W (x - xn), where an -i 0, xn/xn_I -- oo as n -> oo, and
WW E C0 00M.

THEOREM 2.1. Let V (x) be a Pearson potential. If En a , < oo, the spectrum
of HV on (0, oo) is purely absolutely continuous. If En a2 = oo, the spectrum of
HV on (0, oo) is purely singular continuous.

This result [40] generalizes the original work of Pearson [58], who essentially
proved Theorem 2.1 under the assumption that xn grow sufficiently fast (with no
explicit estimate). See also [61] for related results. In a sense, Pearson's theorem
was the first indication of a clear spectral transition at p = 2 when the potential
is viewed in LP scale. A similar picture is true for the random potentials. Let
V(x) = n-"an(w)W(x - n), where W E C000(0,1) and an(w) are random i.i.d.
variables with mean zero and compactly supported probability density function.

THEOREM 2.2. If a > 1/2, then the spectrum of HV on the positive half-axis
is purely absolutely continuous with probability one. If a < 1/2, the spectrum on
(0, oo) is pure point with probability one. If a = 1/2, the spectrum is a mixture of
pure point and singular continuous spectrum with probability one.

See [40] for more details in the a = 1/2 case, as well as for the proof of a
more general theorem. The first result of the type of Theorem 2.2 is due to Delyon,
Simon and Souillard [14], who handled the discrete case. In the continuous setting,
Kotani and Ushiroya [42] proved a version of Theorem 2.2 for a slightly different
model.

Theorems 2.1 and 2.2 show a transition which is reminiscent of some classical
results on almost everywhere convergence and divergence of Fourier series. Ran-
dom Fourier series also converge or diverge at almost every point with probability
one depending on whether the coefficients are square summable (see, e.g. [32]). A
similar result holds for the lacunary Fourier series (see, e.g. [81] for further refer-
ences). This analogy is not accidental. Indeed, the spectral properties are related
to the behavior of solutions of the Schrodinger equation. Although the precise link
between solutions and local (in energy) properties of spectral measure is given by
the subordinacy condition discovered by Gilbert and Pearson [26], boundedness of
the solutions is typically associated with the absolutely continuous spectrum. In
particular, it has been shown by Behncke [4], Stolz [74] and Simon [70] that if all
solutions of the equation -u" + V(x)u = Eu are bounded for each E in a set S
of positive Lebesgue measure, then the absolutely continuous part of the spectral
measure gives positive weight to S, and the singular part of the spectral measure
does not give any weight to S. Establishing the boundedness of the solutions, on
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the other hand, can be thought of as a nonlinear analog of proving the conver-
gence of Fourier series, at least for the potentials in L2(TR). To clarify this idea,
it is convenient to introduce the generalized Prufer transform, a very useful tool
for studying the solutions in one dimension. We will very roughly sketch the idea
behind Theorems 2.1 and 2.2 following [40].

Let u(x, k) be a solution of the eigenfunction equation

-u" + V(x)u = k2u. (2.1)

The modified Prufer variables are introduced by

u'(x, k) = kR(x, k) cos 0(x, k); u(x, k) = R(x, k) sin O(x, k). (2.2)

The variables R(x, k) and O(x, k) satisfy

(log R(x,k)2)'= V (x) sin 20 (x, k) (2.3)

O(x, k)' = k - 1 V (x) (sin 0)2. (2.4)

Fix some point x0 far enough, and set 0(xo) = 00, R(xo) = R0. From (2.4), we see
that

0(x) =
Oo+k(x-xo)-Vx) (sin(k(x-xo)+Oo))2+0(V2) = Oo+k(x-xo)+b0+0(V2)

(2.5)
Then

sin 20(x, k) = sin (20o + 2k(x - x0)) + 2 cos (200 + 2k(x - x0)) b0 + O(V2).

From (2.5) and the equation (2.3) for the amplitude, we find
d

dx
(log(R2(x)) = tl +t2 +O(V3), (2.6)

where
2

tl = Vix)
sin(2(Oo + k(x - xo))) - 2k2) I

J V (y) dy ) cos(2(Oo + k(x - xo))),

and

x0

x l2

=
1 d

yt2
4k2 dx LfVc05200+k_x0di

0

In both the random and sparse cases, we obtain the asymptotic behavior of R(x) by
summing up contributions from finite intervals. In the random case, these intervals
correspond to the independent random parts of the potential, while in the sparse
case, R(x) remains unchanged between the neighboring bumps, and we only have
to add the contributions of the bumps. In both cases, for different reasons, the
contributions of the tl terms can be controlled and are finite (with probability
one in the random case). For random potentials, one uses the linearity of terms
entering tI in V and the independence of different contributions; the argument is
then similar to the Fourier transform case and gives convergence as far as V E L2
by the Kolmogorov three series theorem. We note that for the second term in t1,
one actually has to use a bit more subtle reasoning, also taking into account the
oscillations in energy. In the sparse case, one uses the fact that contributions from
different steps are oscillating in k with very different frequency due to the large
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distance between x, and xn,+I. Again, the argument is related to the techniques
used to study the lacunary Fourier series. On the other hand, the sum of t2 terms
is finite if V E L2, leading to the boundedness of the solutions and absolutely
continuous spectrum. If V is not L2, the sum of t2 terms diverges and can be
shown to dominate the other terms due to lack of sign cancellations.

The question of whether the absolutely continuous spectrum is preserved for
general L2 potentials remained open longer. The initial progress in this direction
focused on proving boundedness of solutions for almost every energy. There are
many examples, starting from the celebrated Wigner and von Neumann [77] con-
struction of an imbedded eigenvalue, which show that spectrum does not have to
be purely absolutely continuous if V V LI, and imbedded singular spectrum may
occur. We will discuss some of these examples in Section 3. Thus there can be
exceptional energies with decaying and growing solutions. Again, one can think of
a parallel with the Fourier transform, where the integral fN ezk2g(x) dx may di-
verge for some energies if g E L2. It was conjectured by Luzin early in the twentieth
century that nevertheless the integral converges for a.e. k. The question turned out
to be difficult, and required an extremely subtle analysis by Carleson to be solved
positively in 1955 in a famous paper [7]. If g E LP with p < 2, the problem is
significantly simpler, and had been solved by Zygmund in 1928 [80] (see also Men-
shov [51] and Paley [57] for the discrete case). As the equation (2.3) suggests, the
problem of boundedness of solutions to the Schrodinger equation may be viewed as
a question about a.e. convergence of a nonlinear Fourier transform. Research in this
direction started from work of Christ, Kiselev, Molchanov and Remling on power
decaying potentials [36, 37, 52, 8, 62]. An elegant and simple paper by Deift and
Killip [15] used a completely different idea, sum rules, to prove the sharp result,
the preservation of the absolutely continuous spectrum for L2 potentials. The two
approaches can be regarded as complementary: the study of solutions gives more
precise information about the operator and dynamics, but has so far been unable
to handle the borderline case p = 2. The sum-rule methods give the sharp result
on the nature of the spectrum, but less information about the nature of the eigen-
functions and dynamical properties. We will briefly sketch the most current results
in both areas, starting with the solutions approach.

Let Hv be the whole-line Schrodinger operator. Recall that the modified wave
operators are defined by

Sl,ng = L2 - lim (2.7)
t- T00

where the operator e-'W(-ias,t) acts as a multiplier on the Fourier transform of g.
Let

2kt

W(k, t) = k2t + Z f V(s) ds. (2.8)

The following theorem was proved in [9].

THEOREM 2.3. Assume that V E LP, p < 2. Then for a. e. k, there exist solu-
tions u± (x, k) of the eigenfunction equation (2.1) such that

u± (x, k) = eikz y', fa V(y) dy(1 + 0(1)) (2.9)

as x -> ±oo. Moreover, the modified wave operators (2.7) exist.
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Assume, in addition, that V(x)ixl" E L' for some p < 2 and -y > 0. Then the
Hausdorff dimension of the set of k where (2.9) fails cannot exceed 1 - -yp' (where
p' is the Holder conjugate exponent to p)

The asymptotic behavior in (2.9) as well as the phase in (2.7) coincide with
the WKB asymptotic behavior, which has been known for a long time for poten-
tials satisfying additional conditions on the derivatives. The main novelty of (2.7)
is that no such condition is imposed. Note that if the integral f N V (s) ds con-
verges, the asymptotic behavior of u± becomes identical to the solutions of the
unperturbed equation, and modified wave operators can be replaced by the usual
Moller wave operators. The proof of Theorem 2.3 proceeds by deriving an ex-
plicit series representation for the solutions u± via an iterative procedure. The
terms in the series may diverge for some values of k, but converge almost every-
where. The first term in the series is a generalization of the Fourier transform,
fN exp(ikx -

k
fo V (y) dy)V(x) dx. The main difficulty in the proof comes from

proving the estimates for the multilinear higher order terms such that the series can
be summed up for a.e. k. The estimate (2.9) implies that all solutions of (2.1) are
bounded for a.e. k if V C LP, p < 2, and can be thought of as a nonlinear version
of Zygmund's result for the Fourier transform. The question of whether (2.9) holds
and whether the modified operators exist for V C L2 is still open, and appears to be
very hard, especially the a.e. boundedness of the eigenfunctions. Indeed, proving
(2.9) would be the nonlinear analog of the Carleson theorem. Moreover, Muscalu,
Tao and Thiele showed [55] that the method of [9] has no chance of succeeding
when p = 2 (since some terms in the multilinear series expansion may diverge on
a set of positive measure). The techniques behind Theorem 2.3 have been used to
prove related results on slowly varying potentials (with derivatives in LP, p < 2)
and perturbations of Stark operators. See [10, 11] for more details.

The sum rules approach to proving absolute continuity of the spectrum was
pioneered by Deift and Killip and led to an explosion of activity in the area
and many impressive new results. Assume that V (x) C Co (lR). Let us con-
sider the solution f (x, k) of (2.1) such that f (x, k) = exp(ikx) when x is to the
right of the support of V. Then, for x to the left of the support of V, we have
f (x, k) = a(k) exp(ikx) + b(k) exp(-ikx). The solution f (x, k) is called the Jost
solution, and f (0, k) the Jost function. The coefficient t(k) = a-1(k) is the trans-
mission coefficient in classical scattering theory. Denote by Ej the eigenvalues of
the operator HV. The following identity is well known (see e.g. [25]):

00 /00J
(log I a(k) I )k2 dk +

27r
I E; 13/2

= 8 J
V 2 (x) dx. (2.10)

-00 2 -00

The identity can be proved, for example, by a contour integration in the complex
upper half-plane of an asymptotic expansion in k-1 of the integral equation one
can write for f (x, k). There is a whole hierarchy of formulas (sum rules) similar
to (2.10). This fact is related to the role that the inverse scattering transform for
Schrodinger operators plays in understanding the KdV dynamics. The expressions
involving V (x) which appear on the right hand side in such sum rules are the KdV
invariants. The inequalities of type (2.10) have been applied in the past to derive
bounds on the moments of the eigenvalues of HV (Lieb-Thirring inequalities). Deift
and Killip realized that the coefficient a(k) is directly linked to the spectral measure
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of HV. Building a sequence of compact support approximations to V(x), and then
passing to the limit, one essentially derives a lower bound on the entropy of the
absolutely continuous part of the spectral measure:

J log p'(A)dA > -oo,
I

where dµ(.\) is the spectral measure and I is an arbitrary bounded subinterval of
R+. This proves

THEOREM 2.4. For any V E L2, the essential support of the absolutely contin-
uous spectrum of the operator HV coincides with the half-axis (0, oo). That is, the
absolutely continuous part of the spectral measure µa,c gives positive weight to any
set S C (0, oo) of the positive Lebesgue measure.

Killip [33] later proved a strengthened version of Theorem 2.4, also applicable
to potentials from L3 given additional assumptions on the Fourier transform, and
to Stark operators. The key advance in [33] is a local in energy version of (2.10),
which is more flexible and useful in different situations. The important fact ex-
ploited in [33] is that the Jost function is actually the perturbation determinant
of the Schrodinger operator. That yields a natural path to obtaining estimates
necessary to control the boundary behavior of the Jost function. The square of the
inverse of the Jost function, on the other hand, is proportional to the density of the
spectral measure (see (5.5) for a similar higher dimensional relation). Therefore,
the estimates on the Jost function have deep spectral consequences.

The results of [15] have been extended to slowly varying potentials with higher
order derivative in L2 by Molchanov, Novitski and Vainberg [53], using the higher
order KdV invariants. Some improvements were made in [17] where the asymptot-
ical methods for ODE were used.

In the discrete setting, the application of sum rules led Killip and Simon [34] to
a beautiful result giving a complete description of the spectral measures of Jacobi
matrices which are Hilbert-Schmidt perturbations of a free Jacobi matrix. Further
extensions to slower decaying perturbations of Jacobi matrices and Schrodinger
operators have been obtained in different works by Laptev, Naboko, Rybkin and
Safronov, [45, 46, 66, 67]. Recently, Killip and Simon [35] proved a continuous
version of their Jacobi matrix theorem, giving a precise description of spectral
measures that can occur for Schrodinger operators with L2 potentials. We will
further discuss their result in the following section.

Certain extensions of the sum rules method have also been applied to higher
dimensional problems, and will be discussed in Section 5.

We complete this section with a somewhat philosophical remark. The technique
of the Deift-Killip proof (and its developments) has a certain air of magic about
it. After all, it is based on an identity, sum rule (2.10), a rarity in analysis. Recall
the classical von Neumann-Kuroda theorem, which says that given an arbitrary
self-adjoint operator A, one can find an operator Y with arbitrary small Hilbert-
Schmidt norm (or any Schatten-von Neumann class norm weaker than trace class)
such that A + Y has pure point spectrum. Theorem 2.4 says that the situation is
very different if one restricts perturbations to potentials in the case of A = Ho. The
result is so clear cut that one has to wonder if there is a general, operator theory
type of result which, for a given A with absolutely continuous spectrum, describes
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classes of perturbations which would be less efficient in diagonalizing it. Such a
more general understanding could prove useful in other situations, but currently is
completely missing.

3. Striking Examples

Apart from the general results described in the previous section, there are
fairly explicit descriptions of decaying potentials leading to quite amazing spectral
properties. The examples we discuss here deal with imbedded singular spectrum.
Although all the examples we mention are constructed in one dimension, in most
cases it is not difficult to extend them to an arbitrary dimension using spherically
symmetric potentials. The grandfather of all such examples is a Wigner-von Neu-
mann example of a potential which has oscillatory asymptotic behavior at infinity,
V (x) = 8 sin 2x/x + O(x-2), and leads to an imbedded eigenvalue at E = 1. The
imbedded singular spectrum for decaying potentials is the resonance phenomenon,
and requires oscillation in the potential, similarly to the divergence of Fourier series
or integrals. It is also inherently unstable-for example, for a.e. boundary condition
in the half-line case there is no imbedded singular spectrum. The first examples we
are going to discuss are due to Naboko [56] and Simon [69], who provided different
constructions for potentials leading to a similar phenomenon.

THEOREM 3.1. For any positive monotone increasing function h(x) --> oo, there
h(xexist potentials satisfying IV(x) 1< +I

)I such that the half-line operator Hv (with,
say, Dirichlet boundary condition) has dense point spectrum in (0, oo).

If IV(x) l < I+IXI , the eigenvalues E1i ... , En, ... of Hv lying in (0, oo) must
satisfy En En < oo.

The last statement of Theorem 3.1 was proved in [40].
The construction of Naboko used the first order system representation of the

Schrodinger equation, and had a restriction that the square roots of eigenvalues in
(0, oo) had to be rationally independent. Simon's construction can be used to obtain
any dense countable set of eigenvalues in (0, oo). The idea of the latter construction
is, roughly, given a set of momenta k1, ... , kn, ... , take

sin(2knx + On)
V (X) = W (X) + E X(=n,") (x)Bn xn

Here xn, Bn and 3n have to be chosen appropriately, and W(x) is a compactly
supported potential whose job is to make sure that the L2 eigenfunctions at En
satisfy the right boundary condition at zero. Thus, basically, the potential is a sum
of resonant pieces on all frequencies where the eigenvalues are planned. To explain
the argument better, we will outline a third construction of such an example, which
in our view is technically the simplest one to implement. We will only sketch the
proof; the details are left to the interested reader.

PROOF OF THEOREM 3.1. Without loss of generality, we assume that h(x)
does not grow too fast, say lh(x)l < x14 Recall the Priifer variables R(x,k),
O(x, k) and equations (2.4), (2.3) they satisfy. For x < x1, x1 to be determined
later, let

V(x) _ -2(1 + H) sin 20(x, k1). (3.1)
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Here ki is the first eigenvalue from the list we are trying to arrange. Note that the
seeming conflict between defining V in terms of 0 and 0 in (2.4) in terms of V is
resolved by plugging (3.1) into (2.4), solving the resulting nonlinear equation for
0(x, k1), and defining V(x) as in (3.1). Now if V is defined according to (3.1) on
the whole half-axis, one can see, using (2.3), (2.4) and integration by parts, that

log(R(x, kl)2) _ - y h(y) dy + O(1).
Jo o 2ki(1 + lyl)

Because of our assumptions on h(x), R(x, k1) is going to be square integrable.
Now we define our potential V (x) by

00

h(V (x) = - x)
2i(1 + xJ)

(x) sin 20(x, kj). (3.2)
j-I

Each x, > xn_1 is chosen inductively, so that the following condition is satisfied:
for any j < n,

sup'>xn J n 1 +) sin20(y, k,) sin 20(y, kj) dy < 1. (3.3)
YID

Using (2.4) and integration by parts, it is easy to see that on each step, the condition
(3.3) will be satisfied for all sufficiently large x,,,. A calculation using (2.4), (2.3),
and integration by parts then shows that R(x, k.) is square integrable for each n.
From (3.2) it also follows that V(x) < h(x)l(1 + xJ).

Examples with imbedded singular continuous spectrum are significantly harder
to construct. The main difficulty is that while to establish point spectrum one
just needs make sure that the L2 norm of the solution is finite, it is not quite
clear what one needs to control to prove the existence of the singular continuous
component of the spectral measure. At the ICMP Congress in London, Simon [71]
posed the problem of finding a decaying potential leading to imbedded singular
continuous spectrum. The first progress in this direction was due to Remling and
Kriecherbauer [63, 44]. In particular, they constructed fairly explicit examples
of potentials satisfying IV(x)l < C(1 + lxl)-«, a > 1/2, such that the Hausdorff
dimension of the set of singular energies where the WKB asymptotic behavior (2.9)
fails is equal to 2(1 - a). This is sharp according to Theorem 2.3 (and earlier work
of Remling [64] on power decaying potentials). The set of singular energies is the
natural candidate to support the singular continuous part of the measure, but the
actual presence of the singular continuous part of the measure remained open.

The first breakthrough came in a work of Denisov [18] where the following was
proved

THEOREM 3.2. There exist potentials V E L2 such that the operator Hv has
imbedded singular continuous spectrum in (0, oo).

The method was inspired by some ideas in approximation theory (see the next
section) and by inverse spectral theory. The classical inverse spectral theory results
(see e.g. [49, 50]) imply that one can find potentials corresponding to spectral
measures with an imbedded singular continuous component. The standard proce-
dure, however, does not guarantee a decaying potential. In the meantime, one can
develop an inverse spectral theory type of construction where one also controls the
L2 norm of the potentials corresponding to certain approximations of the desired
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spectral measure, in the limit obtaining the L2 potential. The key control of the
L2 norm appears essentially from the sum rule used by Deift and Killip. The con-
struction in [18] employed some estimates for the Krein systems, a certain system
of first order differential equations. The amazing aspect of the construction is the
great flexibility on how the singular part of the spectral measure may look. Later,
in [23], it was proved that the imbedded singular continuous spectrum can occur
for faster decaying potentials, namely, if

J.

CO

q2(t) dt < C(1 + X)-1+D+E

then the spectral measure can have a singular continuous component of exact di-
mension D.

Killip and Simon [34] realized that the idea of [18] is not tied to the Krein
systems. They proved a comprehensive theorem, providing a complete charac-
terization of the spectral measures of Jacobi matrices which are Hilbert-Schmidt
perturbations of the free matrix. This theorem should be regarded as an ana-
log of the celebrated Szego theorem for polynomials orthogonal on the unit cir-
cle [75, 73]. Recently, they also extended their result to the continuous case,
where it reads as follows [35]. Denote dp(E) the spectral measure of Hv, set
dpo(E) = 7r-1X[o,00)(E)v6E_dE, and define a signed measure v(k) on (1, oo) by

f f(k2)kdv(k) = f f(E)[dp(E) - dpo(E)]
7r

Given a (signed) Borel measure v, define

Msv(k) = supo<L<12L I vI ([k - L, k + L]).

Denote by da/dv the Radon-Nikodym derivative of y with respect to cr.

THEOREM 3.3. A positive measure p on R is the spectral measure associated to
a V E L2 (R+) if and only if
(i) supp(dp) _ [0, oc) U {E, }j__1 with El < E2 < < 0 and Ej ---> 0 if N = oo.
(ii)

flog
/ )21

1 +
M v(k)

k2 dk < 00

EjI3/2 < 00

00

1

J log
114 d p

+

2

+ 4 dPo E dE < oo.
Po P

0

The theorem shows explicitly that the singular part of the spectral measure
corresponding to an L2 potential can be pretty much anything on the positive
half-axis, as far as a certain normalization condition (3.4) is satisfied.

The last example that we would like to mention provides the sharp rate of
decay for which the imbedded singular continuous spectrum may appear [38].
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THEOREM 3.4. For any positive monotone increasing function h(x) , oc, there
exist potentials satisfying IV(x)l <

+h
I

)l such that the half-line operator Hv (with,
say, Dirichlet boundary condition) has imbedded singular continuous spectrum. The
potential V (x) can be chosen so that the Moller wave operators exist, but are not
asymptotically complete due to the presence of the singular continuous spectrum.

On the other hand, if IV (x) l < 1 CyJ , the singular continuous spectrum of Hv
is empty.

The proof is based on building a sequence of approximating potentials Vn which
have, respectively, 2n imbedded eigenvalues Ejn, approaching a Cantor set. The
key is to obtain uniform control of the norms of the corresponding eigenfunctions,
JIu(x Ejn) 112 < C2 n. Such an estimate allows one to control the weights the spectral
measure assigns to each eigenvalue, and to pass to the limit obtaining a nontrivial
singular continuous component. The estimate of the norms of the eigenfunctions is
difficult and is proved using the Priifer transform, and a Splitting Lemma allowing
one to obtain two imbedded eigenvalues from one. This lemma is based on a model
nonlinear dynamical system providing an elementary block of construction.

4. Dirac Operators, Krein Systems, Jacobi Matrices, and OPUC

It was understood a long time ago that the spectral theory of one-dimensional
differential operators (Schrodinger, Dirac, canonical systems) has a lot in common
with the classical theory of polynomials orthogonal on the real line. These poly-
nomials are eigenfunctions of the Jacobi matrix, also quite a classical object in
analysis. So, naturally, to understand the problems for differential operators one
might first study analogous problems for the discrete version. Unfortunately, Jacobi
matrices are not so easy to study either. That difficulty was encountered by many
famous analysts (such as Szego) and the answer was found in the theory of polyno-
mials orthogonal on the unit circle. It turns out that for many questions (especially
in scattering theory) that is a more natural and basic object to study. Then many
results and ideas can be implemented for Jacobi matrices. For differential opera-
tors, the situation is similar. In many cases, instead of a Schrodinger operator, it
makes sense to consider a Dirac operator and for good reason. Already in 1955,
Krein [43] gave an outline of the construction that led to the theory of continuous
analogs of polynomials orthogonal on the circle. Instead of complex polynomials,
one has the functions of exponential type that satisfy the corresponding system of
differential equations (the Krein system)

P'(r, A) = iAP(r, A) - A(r)P* (r, A), P(0, A) = 1, (4.1)
P; (r, A) _ -A(r)P(r, A), P* (0, A) = 1.

Although more complicated than the OPUC case, the corresponding theory can
be developed. It turns out that the Krein systems happen to be in one-to-one
correspondence with the canonical Dirac operators:

D [ f2
]

= [

-d/d-1-

a d/db- a ] [ f2 f2(0) = 0. (4.2)

In fact, a(r) = 2IRA(2r), b(r) = 2sA(2r).
In his pioneering paper [43], Krein states the following
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THEOREM 4.1. If a(r), b(r) E LZ(R+), then o,,,, (D) = R. Also,
00

Ino,'(A)

J 1 + A2
> -oo

-00

where a is the spectral measure for Dirac operator.

This result is actually the corollary of the analogous statement for Krein sys-
tems. Just as OPUC are related to Jacobi matrices, Krein systems and Dirac
operators generate Schrodinger operators. Assume that b(r) = 0 and a(r) is ab-
solutely continuous. Taking the square of the operator D, we obtain the 2 x 2
diagonal matrix with Schrodinger operators on the diagonal. They have potentials
ql(2) = a2 f a' and certain boundary conditions. That clearly can be used to reduce
the study of Schrodinger operators to the problems in the Krein systems theory.
Indeed, assume that the potential q in a Schrodinger operator decays at infinity,
say, q E LP(1R+),p < no. Add the large constant y to the operator and consider
one of the corresponding Riccati equations, say:

q+y=a2+ a'.
We try to find a solution in the form a = +,a. Then,

and a decaying solution µ can be found by the contraction principle for the corre-
sponding integral equation as long as -y is large enough. It will also be in LP(II$+).
Since adding a constant -y does not change the spectral types, the study of a
Schrodinger operator with a decaying potential is essentially equivalent to the study
of a Dirac operator (and so a Krein system) with b = 0, a = +,a where -y is
a constant and µ decays at infinity in essentially the same way as the Schrodinger
potential does [16, 17].

We already mentioned the problem of proving the existence of wave operators
for L2 potentials in the second section. In [21], it was proved that for the Dirac op-
erator, wave operators do exist if a, b E L2. The proof bypasses the question about
a.e. in energy behavior of the eigenfunctions, and employs instead integral esti-
mates. The key difference between the Dirac and Schrodinger cases is different free
evolution. One manifestation of this difference is the fact that no WKB correction
is needed in the definition of wave operators; the usual Moller wave operators exist
for L2 perturbations of the Dirac operator. Nevertheless, the result may indicate
that the L2 wave operator question for Schrodinger operators is easier to resolve
than the question of the asymptotic behavior (2.9).

The study of Dirac operators is often more streamlined than that of Schrodinger
operators in both one-dimensional and multidimensional cases (see the next sec-
tion), but it already poses significant technical difficulties whose resolution is far
from obvious and has proved to be very fruitful for the subject in general.

5. The Multidimensional Case

As opposed to the one-dimensional theory, the spectral properties of Schrodinger
operators with slowly decaying potentials in higher dimensions are much less un-
derstood. Early efforts focused on the short range case, IV(x)l < C(1 + lxD)-'-E,

culminating in the proof by Agmon [1] of the existence and asymptotic completeness
of wave operators in this case. In the long range case, Hormander [29] considered
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a class of symbol-like potentials, proving existence and completeness of wave op-
erators. For a review of these results and other early literature, see [60, 79]. For
potentials with less regular derivatives, the conjecture by Simon [71] states that the
absolutely continuous spectrum of the operator Hv should fill the entire positive
half-axis if

J V2(x)(1 + IxI)-d+ I dx < oo. (5.1)
Rd

To avoid problems with the definition of the corresponding self-adjoint operator
(that might appear for dimension high enough because of the local singularity of
potential), we also assume that V belongs to, say, a Kato class: V E Kd(IRd) [13].

Recall that there exist potentials W (r) in one dimension which satisfy IW (r) I <
Cr-1/2 and lead to purely singular spectrum [42, 40]. By taking a spherically
symmetric potential V(x) = W(JxJ), one can obtain multidimensional examples
showing that (5.1) is sharp in many natural scales of spaces. Notice also that
the potential satisfying (5.1) does not have to decay at infinity pointwise in all
directions: it can even grow along some of them. Nevertheless, it does decay in the
average and that makes the conjecture plausible.

Motivated by Simon's conjecture, much of the recent research focused on long
range potentials with either no additional conditions on the derivatives, or with
weaker conditions than in the classical Hormander work. The solutions method so
far had little success in higher dimensions. There are results linking the behavior
of solutions and spectrum which work in higher dimensions, such as, for example,
the following theorem proved in [39]. In higher dimensional problems, there is no
canonical spectral measure, and the spectral multiplicity can be infinite. Given any
function 0 E L2(ll d), denote µO the spectral measure of Hv corresponding to 0,
that is, a unique finite Borel measure such that (f (Hv)O, 0) = f f (E)dµ"(E) for
all continuous f with compact support.

THEOREM 5.1. Assume that the potential V is bounded from below. Suppose
that there exists a solution u(x, E) of the generalized eigenfunction equation (Hv -
E)u(x, E) = 0 such that

liminf R-1 lu(x, E) 12 dx < oo. (5.2)
R-oc J

JxJ<R

Fix some q(x) E C°°(11) such that

J
0(x)u(x, E) dx 0.

Then we have

Rd

lim sup
µO(E-6,E+6)

> 0. (5.3)
a-o 26

Notice that if (5.3) holds on some set S of positive Lebesgue measure, this
implies that the usual Lebesgue derivative of µO is positive a.e. on S, and so the
presence of the absolutely continuous spectrum. The condition (5.2) corresponds
to the power decay IxI(I-d)/2 just as spherical wave solutions decay for the free
Laplacian. One may ask how precise this condition is: perhaps the existence of
just bounded solutions on a set S of positive Lebesgue measure is sufficient for the
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presence of the absolutely continuous spectrum? It turns out that, in general, the
condition (5.2) cannot be relaxed.

THEOREM 5.2. There exists a potential V such that for any o, > 0, there exists
an energy interval IQ with the following properties:

For a. c. E E II, there exists a solution u(x, E) of the generalized eigen-
function equation satisfying u(x, E)J < C(E)(1 + IxI)a+(I-d)12
The spectrum on I, is purely singular.

One way to prove Theorem 5.2 is to use one-dimensional random decaying
potentials with JxI-1/2 rate of decay. The results of [42] or [40] show that the
spectrum is singular almost surely, and the eigenfunctions decay at a power rate.
Taking spherically symmetric potentials of this type in higher dimensions, it is not
difficult to see that one gets examples proving Theorem 5.2.

The link between the behavior of solutions and spectral measures has been
made even more general, sharp and abstract in [12]. However, the difficulty is that
obtaining enough information about solutions in problems of interest is hard: there
seems to be no good PDE analog for the ODE perturbation techniques which can
be used to understand the solutions in one dimension. On the other hand, the
sum rules in higher dimensions typically involve spaces of potentials which are far
from the conjectured class (5.1). Some important progress, however, has been made
using the one-dimensional ideas [20, 19, 22, 47, 48, 59, 68]. After reviewing these
results, we will discuss random decaying potentials in higher dimensions [5, 6, 65]
as well as quickly mention some interesting recent progress on a new class of short
range potentials [31] and imbedded eigenvalues [30].

The OPUC, the Krein systems, and the Dirac operators with matrix-valued
and even operator-valued coefficients have been studied relatively well. The matrix-
valued case can give some clues to the understanding of partial differential equa-
tions. Indeed, writing up, say, the Schrodinger operator in the spherical coordinates,
one obtains the one-dimensional Schrodinger operator with an operator-valued po-
tential. The difficulty is that this potential V is not bounded since it involves
a Laplace-Beltrami operator on the unit sphere. Also V(r1) and V(r2) do not
commute for different values of r.

Consider the three-dimensional Dirac operator with the following type of inter-
actions

D = -ia V + V (x),3.
Here

0 of 0 1 _ 0 i 1 0aj-
Q 0 1 0 2=(i 0 a3=(0 -1)

Matrices Qj are called the Pauli matrices and

1 0 0 0

0 1 0 0

a 0 0 -1 0

0 0 0 -1

Then the multidimensional analog of Theorem 4.1 says [20] that if V (x) E L°° and
the estimate (5.1) holds then aac(D) = R. Thus the multidimensional result for
the Dirac operator is quite satisfactory, and the Dirac analog of Simon's conjecture
(5.1) holds. We will sketch the ideas behind this result later. For the Schrodinger
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operator, we first state the following interesting result by Safronov [68]. Let us
denote by B, the ball of radius r centered at the origin.

THEOREM 5.3. Let d > 3 and suppose V E L00(Rd) is such that V (x) -* 0
as x -> oo. Assume also that V (x) E Ld+I (R) and for some positive 8 > 0, the
Fourier transform of V satisfies VO E L2(Bb). Then, aa,,(H) = fg+

Note that the Ld+I condition corresponds to the lxl-d+dl power decay. There
are several methods to obtain this kind of result. The first one, developed by
Laptev, Naboko and Safronov [45], is based on writing the operator in the spher-
ical coordinates. Then one takes the Feshbach projection corresponding to the
first harmonic and studies the corresponding one-dimensional Schrodinger opera-
tor with nonlocal operator-valued potential. Instead of trace equality one can get
an inequality only which still is enough to conclude the presence of a.c. spectrum.
On the other hand, instead of dealing with Feshbach projections, one can carefully
study the matrix-valued Dirac or Schrodinger operator and obtain the estimates
on the entropy of the spectral measure independent of the size of the matrix [20].
Then, an analogous estimate can be obtained for the corresponding PDE.

Another approach allows one to work directly with PDE [19]. It consists of the
following observation. Consider, for example, the three-dimensional Schrodinger
operator with compactly supported potential. Taking 0 E L°° with compact sup-
port, we introduce u(x, k) = (H - k2)-10 with k c C+, Rk > 0. Then, clearly,
u(x, k) has the following asymptotic behavior at infinity:

u(x, k) _
exp(ikr)

r
(Ao(k, 0) + o(1)), r = xJ, 0 = x/r.

The amplitude A, (k, 0) can be regarded as an analytic operator on L2 (E), where
E is the unit sphere. For the potential V with compact support, it is continuous
up to each boundary point k > 0 and the following factorization identity holds [79]

p'' (E) = k7r-111 Am(k, 0)1122(E), E = k2 > 0. (5.5)

Loosely speaking, the density of the spectral measure for any vector 0 can be
factorized on the positive interval via the boundary value of some analytic operator-
valued function defined in an adjacent domain in C+. Therefore, one can try to
consider the general potential V, establish existence of Ao(k, 0) for all k c C+, R k >
0 with some (probably rather crude) bounds on the boundary behavior near the real
line. Then the analyticity will be enough to conclude the necessary estimate on the
entropy of the spectral measure, similarly to the one-dimensional considerations.
Here is the general result.

THEOREM 5.4. Consider a potential V E L°°(ll ). Let Vn(x) = V(x)Xlxl<n
be its truncation and Ao,n(k, 0), the corresponding amplitude. Consider an inter-
val 0 < a < k < b. Assume that for ko = (a + b)/2 + ia, o > 0, we have an
estimate JJA,,,,(ko, 0)11L2(E) > 8 > 0 uniformly inn and II AO,n(T + ie, 0AL2(E) <
C exp(e-7), -y > 0 uniformly in n, T E [a, b], 0 < e < 2o,. Then the spectral measure
of the function 0 has an a. c. component whose support contains an interval [a2, b2].

The situation is reminiscent of one in the Nevanlinna theory in the classical
analysis when the analyticity and rough bounds close to the boundary are enough
to say a lot about the function. Thus the whole difficulty here is to obtain the
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necessary bounds for the particular PDE. That turns out to be a tricky task but
doable in some cases. For example, the following theorem was proved in [19].

THEOREM 5.5. Let Q(x) be a C'(R3) vector-field in If83 and

`w(x) < 1+X105+e' Id1VQ(x) < 1+IXI0.5+e' Vi(x) < 1+xII+eE>0.

Then, H = -A + div Q + VI has an a. c. spectrum that fills IR+.

This theorem is a multidimensional analog of the following result in dimension
one [16]: if V = a'+ V, where VI E Ll(R+), a E W21 (I[8+), then the a.c. spectrum of
a one-dimensional Schrodinger operator with potential V covers the positive half-
line. The proof involves Theorem 5.4, and is based on the uniform estimates for
the Green's function on complex energies. The PDE approach used to prove The-
orem 5.5 succeeds because it allows one to not deal with negative eigenvalues and
the corresponding Lieb-Thirring inequalities often arising in the sum rule approach
(see also [33]).

Although rather elaborate, the conditions on the potential from Theorem 5.5
are not very difficult to check. Essentially, they mean that in addition to decay, one
has to have certain oscillation of potential. This condition is related, although not
identical, to the condition on the Fourier transform in Theorem 5.3. For example,
an application to random potentials is possible. Consider the following model. Take
a smooth function f (x) with the support inside the unit ball. Consider

Vo(x) _ E aj f (x - xj)
j EZ+

where the points xj are scattered in I[83 such that Ixk - xl I > 2, k j4 1, and aj -p 0
in a way that I Vo (x) I < C/ (1 + l x i o.5+e) Let us now "randomize" Vo as follows:

V(x) = E ajej f (x - xj), (5.6)
jEZ+

where j are real-valued, bounded, independent random variables with even distri-
bution.

THEOREM 5.6. For V given by (5.6), we have aa,c(-A+ V) = IEB+ almost surely.

It turns out that for dimension high enough, these slowly decaying random
potentials fall into the class considered in Theorem 5.5. We note that a similar
model has been considered by Bourgain [5, 6] in the discrete setting, and will be
discussed below. Theorem 5.6 and Bourgain's results suggest very strongly that
Simon's conjecture (5.1) is true at least in a certain "almost sure" sense (however,
the assumption that the random variables are mean zero is crucial for the proofs).

The method used in [19] was also applied by Perelman in the following situation
[59]:

THEOREM 5.7. For d = 3, oa,c(-A + V) = R+ as long as

IV(x)I + IxllV'V(x)I < C/(1 + xlo.S+E) E > 0

where V means the angular component of the gradient.
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Here the oscillation is arbitrary in the radial variable and slow in the angular
variable. In this case, the Green function has a WKB-type correction which can be
explicitly computed (and has essentially one-dimensional, integration along a ray,
form). The notion of the amplitude AO(k, 0) can be modified accordingly and the
needed estimates on the boundary behavior can be obtained.

We now return to random decaying potentials and discuss recent developments
in more detail. It is natural to tackle slowly decaying random potentials if one tries
to approach one of the most important open problems in mathematical quantum
mechanics: the existence of extended states in the Anderson model in higher di-
mensions. Important progress in understanding random slowly decaying potentials
is due to Bourgain [5, 6]. Consider a random lattice Schrodinger operator on Z2:
Ho,, = A+ V,, where A is the usual discrete Laplacian and V, is a random potential

Vw = wnvn

with IvnJ < CInI-P, p > 1/2. The random variables wn are Bernoulli or normalized
Gaussian (and, in particular, are mean zero). Then,

THEOREM 5.8 ([5]). Fix rr > 0 and denote I = {EI r < JET < 4 - r}. Assume
that p > 1/2, and supnwnIInI-P < /c. Then for is < r,(p, r) and for w outside a set
of small measure (which tends to zero as is ---> 0) we have
1. H, has purely absolutely continuous spectrum on I
2. Denoting Eo(I), the spectral projections for A, the wave operators W.(H, A)Eo(I)
exist and are complete.

Using the fact that the absolutely continuous spectrum and the existence of
the wave operators are stable under finitely supported perturbations, one readily
obtains absolute continuity and existence of wave operators almost surely for po-
tentials satisfying Ivnl < CInI-P. The method can also be extended effortlessly to
dimensions d > 2.

Bourgain's approach is based on a careful analysis of the Born approximation
series for the resolvent. In summation, each of the terms [Ro(z)V]SRo(z) is con-
sidered. Then a dyadic decomposition of V is introduced: V = 13 VX23<1 1<2,+1
In the end, the analysis is reduced to getting multilinear bounds for the resulting
terms. An interesting (and novel in this context) ingredient of the proof is the
smart use of a certain entropy bound (the so-called "dual to Sudakov" inequality).
Later [6] this approach was further developed to deal with different situations, such
as LP and slower power decaying potentials. The main result of [6] for the slower
power decay is the almost sure existence of a bounded, not tending to zero solution
at a single energy. This, however, is not yet sufficient for any spectral conclusions.
The problem of handling the random decay with the coefficient p even a little less
than 1/2 remains an interesting open question. So far, all attempts to deal with
this case were not successful.

In another paper on random decaying potentials [65], Rodnianski and Schlag
showed existence of modified wave operators for the model with the slow random
decay and additional assumptions ensuring slow variation of the derivatives. The
standard techniques of scattering theory, but also with averaging over the random-
ness, are employed. This allows them to prove scattering with weaker assumptions
than in the standard Hormander's case.

Another case for which scattering can be established is the Schrodinger operator
on the strip [22]. One can show the presence of the a.c. part of the spectrum using
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the following general result. Assume that we are given two operators Hl and H2
that both act in the same Hilbert space H. Take H in the following form:

H = I V H2J . (5.7)

THEOREM 5.9. Let H1, H2 be two bounded self-adjoint operators in the Hilbert
space H. Assume that Qess(H2) C_ [b,+oo] and [a, b] C oa,c(Hi), (a < b). Then, for
any Hilbert-Schmidt V, (V E J2), we have that [a, b] C with H given by
(5.7).

This theorem can be effectively applied to study the Schrodinger operator on
the strip. Indeed, let

L = -A + Q(x, y),
considered on the strip H = {x > 0, 0 < y < 7r}, and impose Dirichlet conditions on
the boundary of H. Consider the matrix representation of L. For f (x, y) E L2(II),

00

f (x, y) _ \l .,r
E sin(ny)fn(x), fn (x) = l _ / f (x, y) sin(ny)dy
n=1

and L can be written as follows
d2

dx2 + Q11 (X) +
L=

Q12 (x)

d2
Q21(x) dx2 + Q22 (x) + 4

Qlj(.x) = 2 J Q(x, y) sin(ly) sin(jy)dy

0

Assume supo<y<,r I Q(x, Y) I E L2 (R+) f1 L°° (ll +). Since Qll (x) E L2 (R+), we can
use [15, 54] and Theorem 5.9 to show the presence of a.c. spectrum.

We now turn to the results on the (generalized) short range potentials and
imbedded eigenvalues in R . Recently, new short range type results have been
obtained for the multidimensional Schrodinger operator with potential from LP and
more general classes [27, 31]. The main goal was to establish limiting absorption
estimates for the resolvent acting in certain Banach spaces, which are more detailed
and precise than Agmon's classical results. The standard techniques developed
in the works of Agmon can be improved if one uses the Stein-Tomas restriction
theorem. Here is one of the results in that direction [31]:

THEOREM 5.10. Assume that V is such that

Mq (V) (x) E Ld+l)/2 (Rd)

where

Mqf = f If(x+y)Igdy
yl<1/2

and q = d/2 if d > 3, q > 1 if d = 2. Then, the following is true for the operator
H = -A+V:
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The set of nonzero eigenvalues is discrete with the only possible accumu-
lation point at zero. Each nonzero eigenvalue has finite multiplicity.
o (H) = 0, and aa,c (H) = IIg+
The wave operators 1F (H, Ho) exist and are complete.

The actual result is a bit stronger. The authors of [31] present the whole class
of "admissible" perturbations for which their method works, including some first
order differential operators.

Another direction in which there has been significant recent progress concerns
imbedded eigenvalues. The following result, in particular, has been proved by
Ionescu and Jerison [30].

THEOREM 5.11. Let V (x) E Ld/2 (R) and for d = 2 we also assume V (x) E
Llo,(&2), r > 1. Then, H = -A + V does not have positive eigenvalues.

The paper [30] actually contains a more general result, which allows for slower
decay of the potential if its singularities are weaker. The method relies on the
Carleman inequality of special type.

Surprisingly, [30] also provides an example of potential V satisfying

V(x)1 <C(Ixl1+x2+...+xd) 1 (5.9)

for which a positive eigenvalue appears (the multidimensional analog of Wigner-von
Neumann potential). From the point of view of physical intuition, the existence
of an imbedded eigenvalue for such a potential may seem strange. Indeed, one
would expect that tunneling in the directions X 2 ,-- . , xd of fast decay should make
the bound state impossible. Yet, Wigner-von Neumann type oscillation and slow
Coulomb decay in just one direction turn out to be sufficient. The corresponding
eigenfunction decays rather slowly but enough to be from L2. We note that the
potential satisfying (5.9) just misses L(d+I)/2(Rd). Quite recently, Koch and Tataru
[41] improved Theorem 5.11 and showed the absence of imbedded eigenvalues for
the optimal L(d+1)/2(R d) case. They also considered various long range potentials
and more general elliptic operators.

6. The Bethe Lattice
A great example of how the one-dimensional technique works for the multidi-

mensional problem is the case of scattering on the Bethe lattice [22]. The step-
by-step sum rules used by Simon to study Jacobi matrices [72] can be adjusted to
that case. Let us consider this model. Take the Cayley tree (Bethe lattice) B and
the discrete Laplacian on it

(Hou),, = E uti.
1i-n1=1

Assume, for simplicity, that the degree at each point (the number of neighbors) is
equal to 3. It is well known that o-(Ho) = [-2\/, 2v] and the spectrum is purely
absolutely continuous. Let H = Ho + V, where V is a potential. Consider any
vertex 0. It is connected to its neighbors by three edges. Delete one edge together
with the corresponding part of the tree stemming from it. What is left will be called

p. The degree of 0 within BO is equal to 2. The solution to Simon's conjecture
in this case is given by the following theorem. We denote by the symbol co(JB) the
functional space of sequences decaying at infinity on
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THEOREM 6.1. If v E £°°(1) f1 co(3o) and

°°

n=0 xE13o,Ix-Oj=n

then

[-2vf2-,2Y2] = Qac(HI Bo) C o,ac(H).

The idea of the proof of Theorem 6.1 is based on [72]. This result is sharp in
the following sense. Take V(x) : IV(x)l < Cjx - 01-Y. Then for any y > 0.5, the
condition of the theorem is satisfied (just like in R'). In the meantime, one can
find the spherically symmetric V with slower decay 0 < y < 0.5, such that there
will be no absolutely continuous spectrum at all.

An important role in the proof is played by the well-known recursive relation
for ((HI5o - z)-15o, So), where 5o is the discrete delta-function at the point 0.
In particular, one can derive the following important and physically meaningful
identity

2f 2f

J 8 - A2ln[po(A)]dA > - 8 - A2 In (P,0,(\) 2 µoz(A))dA - V2(0)

-2 / -2v/-2
(6.2)

where po1(2) correspond to the densities of the spectral measures at points 01(2)
on the trees obtained from BO by throwing away the point 0 along with the cor-
responding two edges. Using inequality (x + y)/2 > xy and iterating (6.2), one
proves Theorem 6.1. Formula (6.2) says, in particular, that no matter what happens
along one branch of the tree, the scattering is possible through the other branch. It
is also clear that the presence of some "bad" points in the tree (say, points where
we have no control over the potential) should not destroy the scattering as long as
these points are rather "sparse". What is an accurate measurement of this sparse-
ness? We suggest the following improvement of Theorem 6.1. Consider the tree lBo
with potential V having finite support, that is, V(x) = 0 for Ix - 01 > R. Consider
all paths running from the origin 0 to infinity without self-intersections. Using
dyadic decomposition of the real numbers on the interval [0, 1], we can assign to
each path the real number in the natural way. That is one way of coding the points
at infinity. In principle, this map F is not a bijection, e.g. sequences (1, 0, 0, ...) and
(0,1,1.... ) represent the same real number 0.5 but different paths. Fortunately,
these numbers have Lebesgue measure zero and will be of no importance for us.
Let us define the following functions

00

0(t) = E V 2(xn)
n=1

where xn are all vertices of the path representing the point t E [0, 1]. Since the
support of V is within the ball of radius R, function 0(t) is constant on dyadic
intervals [j2-R, (j+1)2-R), j = 0, 1, ... , 2R-1. Notice that F, not being a bijection,
causes no trouble in defining 0(t).

Define the probability measure with density w(A) = (47r)-1(8 - A2)1/2 on
[-2", 2V], and po = co(A)[w(A)]-1, a relative density of the spectral measure
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at the point O. Define
2vv

so = J lnpo(A)w(A)dA.

-2vf2

Consider the probability space obtained by assigning to each path the same weight
(i.e., as we go from 0 to infinity, we toss the coin at any vertex and move to one
of the neighbors farther from 0 depending on the result). Our goal is to prove the
following

THEOREM 6.2. For any V bounded on l1$o, the following inequality is true

( [_v2(x)]}
/1' /

exp so > S ex= J exp I -(t) dt (6.3)
l _1 \

where the expectation is taken with respect to all paths {xn} going from 0 to infin-
ity without self-intersections. In particular, if the r.h.s. of (6.3) is positive, then
[-2V, 2/] C oac(H)

PROOF. Assume that V has finite support. The estimate (6.2) can be rewritten
as

2/ 2f

f lnpo(A)w(A)da> J
In(Po1(A)2Po2(A))w(A)da-V2(0)/4.

(6.4)

-2vr2 -2vr2 \
Now, we will use Young's inequality

XP ye-+->xy;x,y?0,1<p<oo,p I+q 1=1
p q

in (6.4) to obtain

so > p-Iso, +q-Iso2 +p-llnp+q-Ilnq - ln2 - V2(O)/4. (6.5)

Considering so, and sot to be fixed parameters and maximizing the r.h.s. over
p E [1, oo], we get the following inequality

so > In exp sot + exp sot - V2(0)/4 (6.6)
2

with optimal p* = 1 + exp(so2 - sol ). Iterate (6.6) until we leave the support
of V. Thus, we get (6.3). Consider now the general case of bounded V. Define
the truncation of V to the ball of radius n: Vn(x) = V(x)x{Ix-oj<n} For the
corresponding soul , we use (6.3), take n oo and apply to the l.h.s. a standard
by now argument on the semicontinuity of the entropy ([34], p. 293). Notice that
the functions 0(n) (t) are nonnegative and increasing in n for each t (this is why
0(t) is always well defined). Therefore, we get (6.3) from the theorem on monotone
convergence.

Using Jensen's inequality, we obtain
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COROLLARY 6.3. Assume that A is any subset of [0, 1] of positive Lebesgue
measure and 0(t) E L'(A), then

so > -41AI f 0(t)dt +In JAI.
A

In particular, [-2f, 2f] C oa,c(H).

It is interesting that the set A does not have to have some special topological
structure, say, to be an interval like in the standard scattering theory [2].

There remain many interesting and important open problems regarding the
multidimensional slowly decaying potentials. Simon's conjecture (5.1) remains
open, and new ideas are clearly needed to make progress. Improving our under-
standing of random slowly decaying potentials is another quite challenging direc-
tion. Other difficult and intriguing open questions involve multidimensional sparse
potentials, the appearance of imbedded singular continuous spectrum, and decay-
ing potentials with additional structural assumptions. This vital area is bound to
challenge and inspire mathematicians for years to come.
Acknowledgements. S. D. is supported in part by an Alfred P. Sloan Research
Fellowship and NSF grant DMS-0500177. A. K. is supported in part by an Alfred
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ABSTRACT. In this article we review some recent developments in the theory
of Schrodinger operators with quasi-periodic potentials on the discrete line.
We focus in particular on the work by the authors on the formation of a dense
set of gaps in the spectrum of such operators with general analytic potentials,
provided the Lyapunov exponent is positive.
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1. Introduction
In this brief review/ we consider the class of operators defined as

(HoO) (n) = -0.+1 - Wn-1 + AV (O + nw)?Pn

with n E Z and w c T Diophantine or, in the continuum,

(HeV)(x) = -0"(x) + AV (O + xw)0(x)

(1)

(2)

with x E R and w E Ti', v > 2, Diophantine. In both cases we shall assume that V is
a real-analytic function on a suitable torus. An important special case is the almost
Mathieu operator (also known as Harper's operator) for which V(O) = cos(27rO).
Although these operators Ho depend on a parameter, it is a basic fact that their
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spectrum o(H0) and its spectral parts, i.e., the absolutely continuous (a.c.), singular
continuous (s.c.), and pure point (p.p.) parts, are deterministic. This means that
there are fixed compact sets which equal these respective parts of the spectrum for
a.e. 0. In the case of (1) this follows from the ergodic theorem and the identity
HTO = U-1 o Ho o U, where TO = 0 + w mod Z and U is the left shift.

We now recall some of the advances in this field:
Dinaburg-Sinai (1975): For (2) and a large set of large energies, there
are Bloch-Floquet waves 00,E(x) = ae,E(x)eik(e,E)x where ao,E is quasi-
periodic, He'PO,E = EgP0,E Their argument is perturbative off the peri-
odic case and they use KAM and Floquet theory.
Avron-Simon, Craig-Simon (1981-1984): Discovered some of the most
basic general properties of Schrodinger operators with almost periodic po-
tentials. For example, they established purely s.c. spectrum for Liouville
rotation numbers and the existence of Cantor spectrum for limit-periodic
potentials. Furthermore, they gave a rigorous derivation of the Thouless
formula which provides a relation between the Lyapunov exponent L(E)
and the integrated density fof states k(E), viz.,

L(E) =
J

log JE - E'l dk(E').

Here the Lyapunov exponent is defined to be
r1

L(E) = lim N-1 J log II MN (B, w, E) I I dO
N-.oo 0

where

j=N
(3)

and the IDS is defined as the limiting distribution of the eigenvalues, viz.,

k(E)
rv 2N+1#{j E}

where ESN) (x, w) are the eigenvalues of H[_N,N] (x, w). They observed
that the IDS is log-Holder continuous as a consequence of the Thouless
formula. They also gave an exact argument for Aubry duality for the
almost Mathieu case.
Johnson-Moser (1982) and Herman (1983): Introduced a rotation number
a(A) := limx-,. x-1 arg(0+iq')(x, A) for solutions of H9 A) = A o(-, A)
with H9 as in (2) (or more generally, with almost periodic potential). They
also proved continuity of a and related the intervals of constancy of a to
gaps in the spectrum; more precisely, the value of 2a(A) belongs to the
frequency module of the almost periodic potential. Moreover, a is the
same as the IDS k(E) up to a factor of -7r.
Avron-van Mouche-Simon (1990): For the almost Mathieu case and in
the limit over periodic approximants, they established that Ja(HB)I =
14 - 21 A I I if I A I :A 2. Last then obtained the full theorem without the limit
over periodic approximants and also for JA = 2. Thus, for that case he
showed that the spectrum has measure zero. In particular, the spectrum
is nowhere dense.

1 [AV(T30) - E -11
MN (0, w, E) H 1 0 J
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Eliasson (1992): Again for the case of (2), Floquet-Bloch solutions exist
for a.e. large E and a(H9) is purely a.c.. More precisely, he established
reducibility: the Schrodinger cocycle is conjugate to a constant one for
a.e. energy. Moreover, for generic potential the spectrum is a Cantor set.
Jitomirskaya, Last, Simon (1994, 1997): Showed that the p.p. and s.c.
parts of the spectrum are not constant; rather, only a.e. constant, see
above. Moreover, the a.c. part is constant in the phase 0 (this also due
to Kotani; see the following bullet). There is an open conjecture due to
Simon that the union of the s.c. and p.p. spectrum is constant.
Kotani (1984-1997): Showed that the closure of the set of positivity of
the Lyapunov exponent equals the essential support of the a.c. part of the
spectral measure of an ergodic operator (2) (Simon extended these results
to the discrete case (1))-thus proving the converse of the Ishii-Pastur
theorem. Furthermore, Kotani introduced a natural notion of "determi-
nacy" of a ergodic potential V,, and showed that the Lyapunov exponent
is always positive (and thus there is no a.c. spectrum) unless V,, is de-
terministic in his sense. This body of techniques, which is based on the
Weyl-Titchmarsh m-function, has become known as "Kotani theory."
Gordon-Jitomirskaya-Last-Simon (1997): Refined the JAI = 2 analysis
for the almost Mathieu operator and established purely s.c. spectrum.
Krikorian and Avila-Krikorian (2000-2004): Recent work on reducibility;
they established a dichotomy between nonuniform hyperbolicity (i.e., con-
tinuous Oseledts splitting) and reducibility for quasi-periodic Schrodinger
cocycles with analytic potentials; their results hold for a.e. W and a.e. en-
ergy. They obtain further that for the almost Mathieu operator with
JAI = 2 and Diophantine w, the spectrum is measure zero and purely s.c.
for a.e. phase. This completes the analysis of Last (see above).

An important question about the operator class (1) and (2) concerns Anderson
localization (AL). This means that the spectrum is pure point with exponentially
decreasing eigenfunctions.

Frohlich-Spencer-Wittwer, Sinai (late 1980s): Established (AL) for cosine-
like potentials and large disorder. Their arguments are perturbative, treat-
ing the operators as perturbations of the multiplication operator given by
the potential.
Jitomirskaya (1999): For almost Mathieu, JAI > 2, as well as Diophantine
w, proved (AL). By a lower bound on the Lyapunov exponent due to
Avron-Simon, as well as Herman, JAI > 2 implies that infE L(E) > 0.
Moreover, by Aubry duality and the Ishii-Pastur theorem, this fails when
I Al < 2. Hence, this result shows that (AL) holds precisely when L(E) > 0
for all energies.
Bourgain, Goldstein (2000): Established (AL) for analytic potentials, pos-
itive Lyapunov exponents, and almost all w. They introduced large devi-
ation theorems and the use of semi-algebraic sets (for the elimination of
double resonances) into this field.

Finally, we turn to another important question, namely: When is the spec-
trum a Cantor set? This simply means that it is nowhere dense (a more refined
version of this statement is whether all gaps allowed by the gap labeling theorem
are open). So far, this question had apparently only been considered for the almost
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Mathieu case. We now list a series of results that answer this question affirmatively
in the almost Mathieu case.

Belliss ard- Simon (1982): For a dense Gb set of A, w.
Choi-Elliott-Yui (1990): Liouville case, JAI = 2 using methods of C*
algebras; their proof also applies to all A 0.

Puig (2003): JAI 2, w Diophantine. His argument proceeds by contra-
diction. He shows that eigenvalues of H with phase 0 are necessarily the
endpoints of open gaps.
Avila-Jitomirskaya (2005): For JAI 54 0, bridge the gap between the Liou-
ville and Diophantine cases. Thus, they show that whenever the potential
is nonperiodic (i.e., for irrational w) there is a dense set of gaps. Thus,
they provide a solution of the so-called Ten Martini problem. As in Puig's
argument, the proof again proceeds by contradiction.
The case J.\ = 2 is covered by the previous reference, but had also been
settled earlier by Last and Avila-Krikorian (see above).

2. The IDS and Cantor Spectrum for General Potentials

We now discuss some recent work by the authors. We will in general emphasize
ideas over technical correctness. For a review which is much more technical by
design, we refer to reader to [29]. However, this reference does not contain any
material about gaps. Rather, it reviews the long paper [27] which develops the
machinery needed for the formation of gaps in [28]. This paper is intended as an
exposition of the main ideas needed to pass from [27] to [28].

We remark that unless indicated otherwise, Diophantine henceforth means that,
for all n > 1,

11nw11 >
c

n(log n) a

with c > 0 and a > 1. The following is proved in [26, 27, 28].

THEOREM 1. Consider (1) with A = 1. Let V : T ---+ R be analytic and suppose
that

infL(E,w)>0.
E,w

Then the following properties hold:
(1) If w is Diophantine, then the IDS is Holder continuous. If V is in a small

L°° neighborhood of a trigonometric polynomial of degree k, then the IDS
is Holder (2k + e)-1-continuous for all e > 0.

(2) For a.e. w, the following holds: Off a set of Hausdorff dimension zero the
IDS is Lipschitz continuous.

(3) For a.e. w, the IDS is absolutely continuous.
(4) For a. e. w, the spectrum is a Cantor set.

Further results include:
estimates on the distribution of the zeros of

det (H[-N,N] (z, w) - E)

in the z-plane

a quantitative separation property of the eigenvalues of H[_N,N] (z, w)
a constructive, finite-volume mechanism for the development of Anderson
localization



ON THE FORMATION OF GAPS 595

a constructive finite-volume mechanism for the formation of gaps based
on resonances

We now give an example of some finite-volume statements which imply, and are
finer than, the corresponding statements concerning the IDS in the previous theo-
rem; they are obtained in [27] and address the problem of bounding the expected
number of eigenvalues at a finite scale falling into a small interval.

THEOREM 2. Let ESN) (x, w) be the eigenvalues of H[_N,N] (x, w). Then

For any rl > N-I+b b > 0, and w Diophantine, there is the following
bound on the expected number of eigenvalues falling into small intervals:
for arbitrary E, r, > 0 and large N,

/I

J #{j : jEj(N)(x,w)-El <rl}dx<Nrlk "
0

where k is the degree of the underlying trigonometric polynomial.
Let e > 0 be arbitrary but fixed. If w V 1(E), E ¢ &4, (E), then

/I

J
#{j : (x, w) - El < rl} dx < exp((log e-I)A) Nrl

0

where 1cl(e)I +sup, VQ(e) ISu WI < E.

According to Yakov Sinai, "Anderson localization is a game of resonances".

A resonance here means the following: Let A, A' C 7G be intervals, typically of
comparable length and separated by more than their length. Then the Hamiltonians
HA (x, w) and HAS (x, w) are said to be in resonance provided their spectra are very
close.

In order for this concept to be useful, it needs to be quantified. Note that for
any A, one can of course find A' = A+k (a translate) for which the distance between
the spectra of HA(x, w) and HAS (x, w) is arbitrarily small. This follows simply from
recurrence of the rotation map. Therefore, the point will be to apply this definition
inside a fixed box A0 of a given size and then look for (much) smaller A, A' C A0
which produce resonances (where the notion of distance between the spectra needs
to be adjusted to the length of Ao-typically << JAoI-C with C large). Of particular
importance is to keep track of how many smaller intervals A' there are for a given
A C A0 which produce resonances with A and also satisfy dist(A', A) >> CAI. If there
is exactly one such A', then one speaks of a double resonance, otherwise of triple or
higher order resonance. It is particularly important to eliminate the occurrence of
such higher order resonances for Sinai [47], Frohlich-Spencer-Wittwer [23], Bour-
gain [7], as well as the authors' argument for gap formation [28]. In the former
three references this is accomplished perturbatively, by assuming that the potential
has no more than two monotonicity intervals; in [28] we proceed nonperturbatively
and no assumption other than analyticity is made on the potential in order to
prevent triple resonances it is necessary to eliminate some small set of w and E
(this process of elimination is essentially the one of Chan [12]).

We remark that it is also customary to speak of eigenfunctions of HA(x, W)
and HAS (x, w) to be in resonance. This simply means that these eigenfunctions
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correspond to close eigenvalues. At the larger scale, such eigenfunctions "merge"
to form a two-humped eigenfunction of HA,, (x, w), cf. Figure 9.

To illustrate this concept, let us recall the KAM-type scheme used in Frohlich-
Spencer-Wittwer's as well as Sinai's perturbative approach to localization. In it,
one starts off with singletons A, A': consider the 2 x 2 matrix

rV (x) A-A(x) = L A-1 V (x + w)

where V(xo) = V(xo + w) and V'(xo) < 0, V' (xo + w) > 0. Its eigenvalues E± (x)
for x close to x0 form two branches with

E±(xo) = V(xo) + A-1.

Figure 1 shows how the two separate branches of the potential (which are the
diagonal entries of A(x)) separate when they yield the eigenvalues of A(x). The
dashed line is supposed to have length exactly equal to w. The projections of the
intersection points of this dashed line with the graphs are xo and xo+w, respectively.

If V has two monotonicity intervals and w is Diophantine, then it is easy to see
that this 2 x 2 block determines the invertibility of the N x N Hamiltonian close
to x0 provided A is large (however, this largeness depends on N). More precisely,
it follows from the Feshbach formula that

det (HN (x, w) - E)

AV(x)-E -1 0 . ... 0

-1 AV(x+w)-E -1 0 0

0 ............... 0 -1 AV(x + (N - 1)w) - El
= F(x, A, E) det A(x)

where F(x, A, E) 0 for all x close to x0. It turns out that this fact can be
considered as the 0-order step in a KAM scheme. To pass to bigger scales one
again uses the Feshbach formula using the previous scale as the information needed
to invert the larger blocks.

FIGURE 1. A double resonance
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Sinai (1987) and Frohlich-Spencer -Wittwer (1990) carried out versions of this
scheme. Later, Bourgain (2001) obtained in this way Holder a - e continuity of
the IDS for cosine-like potentials and large disorder. The point of the exponent a
here is the following: the obstruction to invertibility of a finite volume Hamiltonian
always arises in the form of a second order polynomial. In the proof of Theorems 1
and 2, which are of course nonperturbative, it will also be of crucial importance
to obtain such fixed-degree control. Note that the degree of these polynomial will
vary with the degree k of the potential (for k = 1, it will again be quadratic and
more generally, be of degree 2k; hence the Holder exponent (2k)-1 of the IDS). To
extract these polynomials of fixed degree we use a Weierstrass preparation theorem.
Finally, we note that in the free case the IDS is no better than Holder 2-continuous
at the edges of the spectrum.

3. A Finite-Volume Mechanism for Anderson Localization

Because of the self-adjointness of H and the analyticity of V, the solutions of

0 = det (H[1,N] (x, w) - E) .

are real-analytic functions (which we refer to as Rellich functions)

E, (x, w) < E2 (x, w) < ... < EN (x, w)

One cannot have equality here since the eigenvalues of the Dirichlet problem are
simple. Figure 2 displays the graphs of such Rellich functions for the periodic
Mathieu operator with periodic boundary conditions. The interval is [1, N = 12]
where the latter number arises as denominator of a convergent of w = V'2-. In
Figure 3 the same is plotted for the almost Mathieu operator with w = f and
Dirichlet conditions at the boundary. Although the graphs appear to intersect at
many points, they actually separate at these points, as can be seen in a much finer
resolution. Finally, Figure 4 shows the Rellich functions for a potential given by a
third degree polynomial again with the same w but the next larger denominator in
the sequence of convergents.

At this point it seems natural to ask some basic quantitative questions:
What is the width of the strip around R to which Ej (z, w) can be analyt-
ically continued?
What is the size of the separation between the Ej (x, w)?
What is a reasonable lower bound on the absolute values of the slopes of
the Ej (x, w) away from critical points?

The answer turns out to be e-`' provided w E T \ 1 N, Ej (x, w) V EN (w). Here
1 N, EN(w) have small measure and complexity (the latter refers to the number of
connected components a set needs to have to cover EN(w) without increasing the
measure significantly by a multiplicative constant, say). More precisely, we have
the bounds

ISZNI < exp(-(logN)2A), compl(SZN) < exp((logN)A)

and similarly for EN(w). Note that these bounds reflect that the "bad sets" have
Hausdorff dimension zero.

Central to the separation of the Ej (x, w) is a finite-volume understanding of
(AL), which we now describe: Let H[_N,N] (x, w) = Ezb with 110112 = 1. We seek
a window A0 C [-N, N] so that IVGIIt2(A(,) = 0.999, say, and A0I << NE. Consider
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Rellich functions, almost Mathieu, periodic case, N= 12

FIGURE 2. Rellich functions in the periodic case

all intervals A C [-N, N] with IAA = n - (log N)°: there exists such an interval A
so that with fA(x, w, E) = det(HA(x, w) - E),

log IfA(x, w, E)I < I AIL(w, E) - IA1 2 .

Rellich functions, almost Mathieu, Dirichlet BC, N= 12

FIGURE 3. Rellich functions in the aperiodic case I
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Otherwise each Green's function GA(x, w, E) would exhibit exponential off-
diagonal decay. Indeed, by Cramer's rule,

1 _ f[-N,k] (e(x), w, E) j f[m+I,N] (e(x), w, E) I
(H[ N, N] (x w) - E) (k m)

I f [-N,N] (e(x), w, E) I

In [27] the following uniform upper bounds are proved:

log I f[_N,k] (e(x), w, E) I + log f[m+1,N] (e(x), w, E) I < 2NL(w, E) + (log N)A1

for any x E T. Therefore,

(H[_N,N] (x w - E)-1 11 < N 2
exp (2NL(w, E) + (log N)A)

I f[-N,N] (e(x), w, E)

for any x E T. Moreover, one obtains the aforementioned off-diagonal decay in this
way. This latter property, however, would force to be very small everywhere in
contradiction to the fact that 110112 = 1.

Rellich functions, V of 3rd degree, N= 29

FIGURE 4. Rellich functions in the aperiodic case II

We shall now outline three main points related to the phenomenon of Anderson
localization and the property of separation of the eigenvalues:

Point 1: By eliminating bad w and E (i.e., w ¢ S1N, E V EN(w)) we can
ensure that

log I fA, (x, w, E) I > IA'IL(w,E)-IA'I2 (4)

for all A'I - JAI, dist(A', A) > N. This will be obtained by means of a
reduction to a statement about close zeros of two determinants; see below.
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Point 2: From the avalanche principle (see Lemma 1 below), conclude
that (with L(E, w) > -y > 0)

I b(n)I < exp (- -ydist (n, Ao) + NE).

This step can be considered to be in the spirit of the multi-scale analysis
of Frohlich-Spencer, albeit with the avalanche principle instead of the
resolvent identity.
Point 3: Suppose

H[-N,N] (x, w)b = EV), H[-N,N] (x, w) = E

with 0<IE-EI<e-N6,and wVQN,E,E0
EN(w). Then provided e << d,

110 -0II2 < IE -
EIeNE

« 1.

Clearly, this is a contradiction to 0 1 / (note that this step requires
self-adjointness of the Hamiltonian). So

.IE - EI > e-N"

This step requires knowing that (4) holds, not just localization; in fact, we
need to use that 0(n) = µ(x, w, E) f[-N,n_1] (x, w, E) for all -N < n < N.
It is not surprising that 0 and are close if E and k are close; indeed, this
can be thought of as continuity in E or differentiability in E. Of course,
the differentiation has to be carried out on determinants of a smaller scale
and not the large-scale determinants. This is achieved by means of the
avalanche principle and the fact that the small-scale Hamiltonians are not
in resonance with those inside the window of localization.

We now recall the Avalanche Principle (AP) from [26] and [27]. It is a purely
deterministic statement.

LEMMA 1 (Avalanche Principle). Let A1, ... , An, be 2 x 2 matrices whose de-
terminants satisfy

max det Aj I <1.
1<j<n

Suppose that

min IIAj II > p > n
1<j<n

max [log IIAj+1II + log Aj log IIAj+1Aj <
2

logs .
1<j<n

Then
n-1 n-1

log 11 A. ... . A111 + E log IIAj 11 - E log IIAj+1Aj II
7=2 7=1

with some absolute constant C.

<Cn

-
µ

4. Elimination of Bad Phases and Energies

We now return to Point 1 from above in an attempt to explain some of the
underlying issues, especially the need for elimination of bad w and E. In order to
obtain our window of localization, we need to exclude resonances. The latter here
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refers to the situation where for some energy E there exists a phase x0 for which
we have two small determinants:

log I fA(xo, w, E) J < JAIL(w, E) - JAI z
(5)

log l fA, (xo, w, E)J < I A'I L(w, E) - A'I
where A, A' C [-N, N], dist(A, A') >> IAI = JA'J = n. This can of course happen;
indeed, if we formally "eliminate" the phase x from these inequalities, then we
obtain a condition on (w, E) that describes a set of bad parameters that need to be
removed. Using large deviation theorems for the determinants (see (9) below), as
well as Jensen's formula (7) from complex analysis, one can show that (5) implies

the following: there exist Z1, z2 with I z1 - z21 + > 3 I Imzj I < e-n 4 and

f[l,n] (zl, w, E) = f[1,n] (z2 + tw, w, E) = 0. (6)

Hence, we are required to exclude close zeros of two such determinants which we
do by means of the method of resultants (we will return to this issue below). We
now recall Jensen's formula from complex analysis1: if f is analytic on Iz - zo I < r,
then

1

f log If (zo + re27,0) J d0 = log I f (z0) I + log (7)r zo
0 Cj (C)=0

In order to use this to pass from (5) to (6) we simply need to show that the sum

on the right-hand side cannot vanish for r = e-n' ; or, in other words, that the
difference

1f log 1f[l,n] (xo + re27rze w, E) I dO - log I f[l,n] (x0, w, E) 0.

0

In view of (5) this is accomplished by showing that with e-n < r < n-1, the
integral satisfies

flog I f[l,n](xo +re2"Z0,w, E) I dO = nL(E,w) +O((logn)C) log r
0

This in turn follows from the following estimate, which we call large deviation
theorem (LDT) for the determinants; see [27]:

I {x E T : log I f[l,n] (x + iy, w, E) J < nL(w, E) - h} I < e-ch/(log

n)c
(8)

uniformly in El < C and IyI < n-1. Figure 5 illustrates this bound for the case
of log II MN(x, w, E) 11 instead of the determinant, with MN as in (3), N = 100 and
V = cos. The picture displays the self-similar nature of this function together
with its subharmonic features: there are large deviations in the direction of small
values, but for large values the function looks relatively "flat." We remark that the
(LDT) for MN goes back to [9] and [26], whereas the case of the determinant was
established in [27].

'We use this device in [27] repeatedly. However, since it is hard to work with a fixed zo we
are forced to average over this point as well; this is the origin of the double Jensen averages in
that paper. Here, however, it suffices to freeze zo. See also the review [29] for these matters.
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Logarithm of norm of N=100 Monodromy matrix, almost Mathieu
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0.1 0.2 0.3 0.4 0.5

FIGURE 5. The logarithm of a monodromy matrix

By the John-Nirenberg inequality (see Garnett [25]), the bound (8) is equiva-
lent with the statements that

11 log + iy, w, E) j IIBMO < (log n)C

and

(9)

flogf[lfl(x+iy,wE)Idx = nL(E, w) + (log n)° (10)

0

where (10) is uniform in jyj < n-1. We remark that these estimates imply that

sup log IfA' (x, w, E) < nL(w, E) + (log n)° (11)
xET

via the sub-mean property of subharmonic functions. Another immediate conse-
quence via Jensen's formula is the following bound

#{C E D(xo, n-1) : f[1,.] ((, w, E) = 0} < (log n)° (12)

for all x0, E and Diophantine w. These four facts (9)-(12) are basic to our entire
analysis; see [27] and [29]. We remark that the large deviation estimate, and thus
the BMO bound (9), are a reflection of that fact that the zeros of f[1,n] w, E) are
uniformly distributed.

To see this, consider the following classical result of Erdos-Turan: Let {t,j jN 1 C
T be a collection of N points on the circle. Consider the polynomial

N

P(z) = fl(z - (j)-
j=1
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Almost Mathieu lambda=4 qs= 70 E= 0 066667 Zeros of the determinant

08
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04F

0.2 :

-0.2r-

-0.41-

-0.6 F

-0.8 F

-0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.6 1

FIGURE 6. Zeros I

Then

where

sup IP(z)l < eT II log IP(e(.))IIIBMO ,., DN({(j}) < -IIN-r
z ET

DN({(j})=SUpI#{7 : (jEI mod1}-NIII

is the usual discrepancy. There is the following analogue for subharmonic functions:
Let u : A -> ll be subharmonic with T C A C C an annulus of width 1, say. Then
the Riesz representation theorem (see Levin [43]) yields that

u(z) = fiogiz - SI dµ(C) + h(z)

with p > 0 and h harmonic. Suppose µ((C) < N. Then the analogue of the result
of Erdos-Turan is the following:

Ilu(e(.))IIBMO C N[sup u(e(x)) - (u)] .

xET

However, this is insufficient for our purposes (it is inconsistent in the sense that
the supremum bound (11) does not imply the BMO bound (9)). Luckily, it can be
improved (see Bourgain-Goldstein-Schlag [10] and [8, 29]): Write u-(u) = uo+ul
on T. Then

Ilu(e(.))IIBMO ; 1U011- + NIIuiIII

It is easy to check that this bound is consistent with our estimates.
In order to obtain the estimates for the determinants which we just described,

we need to reveal their "almost-invariance" under the shift. This can be done by
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FIGURE 7. Zeros II

1 1.5

means of a "factorization of the determinant" via the avalanche principle. Indeed,
write

1rfly (xOw, E) 00] _ f 61 00]
1 [V (Tj 1) - E OlJ l

L J L j=N
1

_ fl Ak (x, w, E)
k=n

where each Ak is the product of about (log N)° many factors. One needs to use the
large deviation theorems for the determinants and monodromies on the small scale
to conclude that the conditions of the avalanche principle hold. This requires the
removal of a set of phases x E 7 of measure < exp(-(log N)B). For the remaining
good phases we conclude that:

n-1 n-1

log I fN(x, w, E) = - E log IIAj II + E log IIAj+IA; II +
O(N-1000).

7=2 9=1

Note that this resembles an ergodic average since most of the Aj can be chosen
to be shifts in the phase of a fixed one. This is what we mean by "self-similar
structure" of the determinants IN. In Figures 6 and 7, we display two sets of zeros
of the determinants in the almost Mathieu case. The first one is for an energy in
the spectrum, whereas the second is for an energy outside of the spectrum. Observe
that the zeros look approximately evenly distributed with the exception of a few
"errant" ones. Loosely speaking, these are related to nonlocalized states in the
same way that the "errant" segments of Rellich graphs crossing what appears to be
a gap in Figures 3 and 4 correspond to nonlocalized states (see the gap containing
energies [-2, -1]U[l, 2] in Figure 3 as well as that around energy E = 3 in Figure 4).
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Recall that we have only discussed so far how to pass from (5) to (6) but not
how to exclude the latter. As indicated above, for this we need to eliminate close
zeros. The following is proved in [27]:

LEMMA 2. There exists Q,, C T, I11, < e n 10 so that for all w V SZn,
c 1

t > e(l0 ) there exists En,t,w C C, Fn,t,, j < e-n to so that

f[l,n] (zl, w, E) = f[l,n] (z2 + tw, w, E) = 0 I z1 - z2I > -n l

inf dist(spec(H[l,n] (x,w)) \ En,t,w,spec(H[l,n] (x + tw,w))) > e-n'
xET

This is only one of several statements one can prove in this direction; more
precisely, the powers of n can be lowered to nE with e > 0 arbitrary. Further, we
remark that one can also remove x instead of E by a Wegner estimate; see [27] and
[29]. Finally, and crucially, we are also able to bound the complexity of the bad
sets SZn and En,t,,,.

For the proof, we need to use the resultant of two polynomials f (z), g(z). It is
defined as

Res(f, g) = 11 (zi - (k)
7,k

where f (zj) = 0, g((,) = 0. One can show that it is a polynomial in the coefficients
of f, g (see [39]). Suppose

f (z, w, E) = z' + ai_1(w, E)z"-1 + + al (w, E)z + ao(w, E)

g(z, w, E) = zµ + bµ_1(w, E)zN'-1 + + bl(w, E)z + bo(w, E)

with aj, bk analytic in w, E. It follows that Res is also analytic in w, E. This allows
one to use analytical methods to estimate Res from below, at least for most w, E.
Clearly, if we are able to bound the resultant from below, then we are also able to
give a quantitative estimate on the separation of the zeros. Figure 8 depicts the
algebraic curve Res(w, E) = 0 in the (w, E)-plane. For most values of w there will
be only finitely many E-values on this curve, but we need to remove those w for
which there is a "flank"; this refers to the vertical or near vertical segments of the
curve that would lead to a large set in energy for which the resultant is too small.

On a more technical, albeit crucial, point we remark that we cannot use resul-
tants on the full determinants because of their large degree. Rather, we apply the
Weierstrass preparation theorem on f[l,n] (z, w, E) before applying the resultants lo-
cally in w: the factors which we pull out have very small degree = (log nn)G because
of the control over zeros provided by (12). For more on this topic, see [27] or [29].

We now list some important consequences of the finite-volume Anderson local-
ization and the quantitative separation of the eigenvalues:

Use a Sard-type argument to conclude that the slopes of the Rellich func-
tions E(N) (x, w) off a bad energy set EN (w) are bounded below by e-'vb in
absolute value. The Sard theorem is needed to remove the critical values
of the Rellich functions. Particular care needs to be taken concerning the
complexity of the resulting set of energies. Of course, it is essentially used
in [27] that the Rellich functions are solutions of algebraic equations of
controlled degrees.
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FIGURE 8. Zero set of the resultant

Use (AL) to obtain almost shift-invariance of the Rellich graphs. Provided
E " (x, w) V £N (w) and for most choices of m E [-N, N], there exists 2
such that

IE(N)(x,W) -E(N)(x+mW,W)I < e-N2.

This follows from the following fact: if H(_N,N] (x, w)) = Ez/i with 0
localized, then z/i(n+m) is almost an eigenfunction of H[_N,N] (x+mw, w).
This self-similarity of the Rellich graphs is basic to the formation of gaps.
Gaps (in some finite volume) are formed by the interaction of two local-
ized eigenfunctions with separate supports but close eigenvalues; more-
over, their respective Rellich graph segments should have opposite slopes.
The following figure describes this schematically. The separate bumps on
the left (which depict eigenfunctions on a smaller scale) combine to form
an eigenfunction on a larger scale. The curves below depict the Rellich
graphs of the two small-scale eigenfunctions which then produce the sep-
arated arcs on the right as Rellich graphs of the larger scale (cf. Figure 1)
in that regard. An exact way of formulating this requires the notion of
a double resonance. Roughly speaking, this means that there are exactly
two windows of localization in our finite-volume scheme of Anderson lo-
calization. To avoid a third or more windows requires elimination of triple
resonances as in Chan [12].

We say that (x0, E0) is a point of double resonance for H[_N N] (x0, w) provided
there exist Al = [Ni, Nl ], A2 = [N2, N2"] as shown in Figure 10 so that for j = 1, 2,
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FIGURE 9. A schematic description of a double resonance

and with p = e-NE

spec HAS (xo, w) f1 (Eo - p, E0 + p) = {Eo }

#{z E D(e(xo), p) : fA, (z, w, Eo) = 0} = 1

where IA1 I - IA21 - N2E and which are separated from the boundaries of [-N, N].
Finally, we need to avoid triple or higher order resonances: for all A C [-N, N]
separated from Al U A2 by an amount >> N2E, we have

spec HA(xo, w) n (E0 - p, E0 + p) _ 0.

The importance of this notion of a point of double resonance lies with the fact
that it captures the nonperturbative essence of Figure 1. Recall that there we
were able to extract a second degree polynomial from the characteristic polynomial
of a finite-volume Hamiltonian, i.e., from the determinant w, E). This was
done perturbatively by means of the Feshbach formula. Here we have to proceed
differently-in fact, this extraction of a quadratic factor is accomplished by means
of (a quantitative version of) the Weierstrass preparation theorem.

More precisely, if (xo, E0) is a point of double resonance, then one can show by
means of the (AP) (see "factorization of a determinant" from above) that for all
x E I:= (xo - p, xo + p) there are exactly two zeros in both the z and E variables
locally around the points we are considering:

# [spec H[-N,N] (x, w) n (Eo - p, Eo + p)] = 2
(13)

#{z c D(e(xo), p) : fN(z, w, E0) = 0} = 2

and the corresponding Rellich functions are separated (without any E removal!):

E+ (x, w) - E- (x, w) > e-Nb V X E I.
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FIGURE 10. The eigenfunction corresponding to a double resonance

It is obviously essential here that we are not forced to eliminate the energy E,
as otherwise we would be eliminating the gap which we are trying to construct.
The fact that we can obtain separation of the eigenvalues here without eliminating
an interval around E relies on the properties of a double resonance; the features
needed to obtain the separation property have been included in the definition,
see the discussion of Point 3 above. To obtain the zero count (13), we use the
avalanche principle (see the "factorization of a determinant" from above) and the
Jensen formula. Heuristically, this is a variant of the obvious fact that the number
of zeros of any polynomial is the sum of the numbers of the zeros of all factors
in a factorization of the polynomial. Here we of course do not have an exact
factorization, but only an additive one for the logarithm that holds for most phases
and up to a small error. But since the Jensen formula is based on averages and
the number of zeros is integer valued, we can afford to make small errors-they
produce small errors after averaging and do not affect the zero count.

Finally, in view of Figures 1 and 9, we require that the Rellich functions of
the two small-scale windows AI and A2 which attain the energy E have slopes of
opposite signs. The appearance of such slopes is a consequence of the 1-periodicity
of the continuous Rellich graphs and the fact that we are working a priori on
intervals of energies on which the slopes of the Rellich functions do not vanish.
Hence, it is important to realize that our construction does involve the elimination
of energies and can thus, in its present form, not capture something that occurs on
the entire spectrum (in particular, the argument in [28] shows that the gaps are
dense but not much more beyond that).

If we do have graph segments of opposite slopes as in Figure 9, then we do get
much more, namely, the desired gap between the branches E+ as in Figure 1 and
Figure 9:

minE+(x) > maxE-(x) (14)
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To see this, we need to be able to show that locally in z the determinant of the large
scale at energy E behaves like a quadratic polynomial; the same is needed also in
the E variable. As mentioned before, we use the Weierstrass preparation theorem
to extract these quadratic polynomials based on the zero count (13).

As mentioned above, the definition of a double resonance point is tailored to
our needs in the sense that it produces the exact zero count of two, and thus allows
for the Weierstrass preparation argument. The question arises how to find points of
double resonance-obviously, they are essential for our gap construction. The fact
that there have to be at least two small-scale Hamiltonians which are in resonance is
relatively simple and can basically be deduced from the Rellich graphs at the small
scale. Much trickier is to ensure that there cannot be more than two resonances-
this requires the elimination of w via an implicit function type argument. For
this we crucially need to have some information on the nondegeneracy of certain
derivatives, which itself is a consequence of the quantitative nonvanishing of the
slopes of the Rellich graphs; recall that we remove energies for this purpose. The
elimination of triple resonances employed in [28] is a variant of that introduced by
Chan [12].

Returning to (14), we have finally arrived at a gap between two large-scale
Rellich functions locally around x0; we call this construct a pre-gap. Using (AL)
we can now move this pre-gap around in x by shifting the phase. This is due to the
aforementioned "self-similarity" or "almost shift-invariance" of the Rellich graphs.

It remains to show that this pre-gap is not destroyed when passing to larger
scales. Among other things, we need to insure that the energies which we remove
at the next scale N are much smaller in measure than the size of any pre-gap at a
previous scale N; however, the latter is at least

e-N28,
whereas the former is at most

exp (-(log N)°). Hence, we define scales N3 = exp(N6' 1) with 61 > 0 sufficiently
small. This ensures that we can safely remove "bad" energies of scale Ns+I inside
the pre-gap at scale Ns. We can therefore repeat the pre-gap construction at scale
Ns+1 inside the pre-gap of the previous scale provided, of course, Rellich graphs of
scale Ns+i enter that pre-gap (the case where they do not is easier).

It remains to show that this process has to terminate, i.e., one needs to find
a mechanism that will ensure that after some number of steps, no more pre-gaps
can form inside a pre-gap of the previous scale. At that point the pre-gap will
become a gap of the infinite-volume operator. It turns out that a pre-gap cannot
be filled in more than k times if the underlying potential function V has degree
k. This involves a counting argument involving complex zeros. The point there is
that every pre-gap at scale NS and locally around (xo, E0) corresponds to a pair of
complex zeros of

det(H[-N,,N,] (z, w) - Eo)

in the z variable. This pair of zeros lies off the unit circle and close to the point
e(xo). Moreover, their separation from the circle is basically proportional to the
size of the gap. By the aforementioned shifting procedure of pre-gaps (which is
based on the almost shift-invariance of the Rellich graphs and finite-volume (AL)),
each such pair generates almost NS further pairs. If there was a sequence of con-
secutive scales producing pre-gaps, then one can show that this would lead to an
accumulation of zeros which ultimately violates some degree considerations. This
process is somewhat involved and we refer the reader to Lemma 2.24 and Section 9
of [28].
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ABSTRACT. We review several topics related to two most popular ergodic fam-
ilies: the Anderson model and quasiperiodic Schrodinger operators.
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1. Introduction

The title refers to a chapter (volume?) in [175] in the same way that [174]
refers to [173]. (See [174] for the story behind this.) The original ambition was for
this relation/ analogy to be reflected in the content, but it had to be significantly
downscaled. So I will concentrate almost entirely on only two models still with no
attempt at being comprehensive-and will focus on selected advances in the past
ten years or so.

Writing this review has made it particularly obvious to me how much Barry
Simon has influenced this subject, both through his fundamental contributions and
review articles that have defined the area and then served as a standard reference
for 20+ years, but even more importantly, by throwing his weight behind the area,
and particularly through bravely formulating and popularizing various problems
and (sometimes wrong) conjectures. As a result, while Barry has not had many
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students of his own working in this field, it's fair to say that he has been largely
responsible for attracting a lot of new talent to this area.

Let (S2,µ) be a probability measure space, and Tj, j E Zd, be an ergodic
measure-preserving action of Zd on Q. Discrete Schrodinger operators with ergodic
potentials are operators acting on Q2(Zd) and defined by

HA=A+AV (1)

where A is the lattice tight-binding Laplacian

0(n, m)
1, dist(n, m) = 1
0, otherwise

and V (n, m) = VnJ(n, m) is a potential given by V, = f (T,,O), 0 E SZ, where
f : S2 - IR. In certain cases A may also be replaced by a long-range Laplacian
L(n, m) = L(n-m) with L(n) ---> 0 sufficiently fast. We will also define a continuum
analogue later.

The most intensively studied cases in both the physics and mathematical
physics literature are those of random V ( V,, are i.i.d.r.v.'s), called the Anderson
model and quasiperiodic V (T, : T6

---
'.6 defined by T 0 = 0 + 1 niwi, n =

(n1i ... , nd) E Zd, where wi E Tb are incommensurate and where we will assume f
to have some regularity.) This article is devoted to some recent advances in these
two models. The questions of interest are the nature and structure of the spectrum,
behavior of the eigenfunctions, and the quantum dynamics: properties of the time
evolution'yt = eit"Wo of an initially localized wave packet To.

There are many open problems related to these two models, and we mention
some in this paper. We do not claim that the problems we list with numbers are the
most important ones. In fact, we discuss extensively but do not list separately the
two most important outstanding problems: localization for the Anderson model on
Z2 and extended states for the Anderson model with d > 2, as these problems, being
already so famous, do not need further popularizing. Nor do we even mention (other
than in this sentence) another outstanding question: continuity of the integrated
density of states in the continuum (see [171]). There are also other major problems
not touched upon. The problems we do list have a common feature that, given
recent advances, they all seem to be more within reach than they were in the
past-yet they all remain significant challenges.

Finally, our title may be particularly misleading as we leave out almost the
entire discussion of the general theory of ergodic operators, most notably Kotani
theory ([140, 143, 167, 69, 141, 144]) and also the regularity of the integrated
density of states issues ([61, 74]). The classical results mentioned above can mostly
be found in several books on the subject (e.g., [62] where they play a prominent
role ) but there also have been some interesting applications of Kotani theory lately
([64, 16, 17]). Nor do we discuss at all other ergodic potentials that have been
studied successfully and where there are many remaining challenges, e.g., limit-
periodic operators (e.g., [23]), skew shifts (e.g., [87, 44]), the Maryland model
(e.g., [163, 168]), hyperbodic dynamics (e.g., [57, 50]) or subshifts (see [63] in
this Festschrift for a review).

While this is a review article, there are some statements here that have not
previously appeared in the literature, for instance, an example presented as Theo-
rem 2.
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Operators with ergodic potentials always have spectra (and pure point spectra,
understood as closures of the set of eigenvalues) constant for a.e. realization of the
potential. The same is true for singular continuous spectra understood as closures
of corresponding supports. The individual eigenvalues (singular measure supports)
however depend very sensitively on the phase. Moreover, the pure point spectrum
of operators with ergodic potentials never contains isolated eigenvalues, so pure
point spectrum in such models is dense in a certain perfect set. (See, e.g., [62] for
all those classical facts that go back to [160, 146, 127, 24].) An easy example
of an operator with dense pure point spectrum is H,, which is operator (1) with
A-1 = 0, or pure diagonal. It has a complete set of eigenfunctions, characteristic
functions of lattice points, with eigenvalues Vj. HA may be viewed as a perturbation
of H, for small A-1, and from this point of view it is natural to expect that the
localization will persist for small values of A-'. One explanation for this intuition is
that if, in general, in the regime of localization we consider quantum dynamics of a
wave packet with a finite number of excited eigenmodes, then the quantum motion
will be quasiperiodic on the torus determined by these modes. The general KAM
philosophy implies that under small perturbations the tori should persist, only
getting modified slightly, which in turn should imply localization for the perturbed
model. However, this, of course, cannot be true in such generality, even if (M, µ, T)
is an ergodic system with M sufficiently rich (e.g., [29] or [63] in this Festschrift).
Localization can be destroyed for arbitrarily small A-1 by the resonances that are
too strong. Even when the result is correct, since Vj are dense, small denominators
(Vi -Vi)-1 make any perturbation theory difficult, traditionally requiring intricate
KAM-type schemes.

One might expect that Ha with A small can be treated as a perturbation of
Ho = A, and therefore have absolutely continuous spectrum. It is not the case
though for random potentials in d = 1, where Anderson localization holds for all A.
The same is expected for random potentials in d = 2 (but not higher). Moreover, in
the one-dimensional case there is strong evidence (numerical, analytical, as well as
rigorous) that even models with very mild stochasticity in the underlying dynamics
(and sufficiently nice sampling functions) have point spectrum for all values of A,
like in the random case (e.g., 17 = Af (n°c + 0), for any o, > 1; see [87]). While
for nonintegral a, such potentials are not generally ergodic, this still illustrates the
point. At the same time, for quasiperiodic potentials one can in many cases show
absolutely continuous spectrum for A small as well as pure point spectrum for A
large (see below), and therefore there is a metal-insulator transition in the coupling
constant. It is an interesting question whether quasiperiodic potentials are the only
ones with metal-insulator transition in 1D. Absolutely continuous spectrum in 1D
requires a potential to be nondeterministic [143]; moreover, in all known examples
(e.g., [23]), potentials are almost periodic.

PROBLEM 1. Does absolutely continuous spectrum for a 1D ergodic potential
imply almost periodicity of the potential?

This was established under some additional assumptions (see e.g., [12]) but the
problem as stated does not seem unreasonable.
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2. Random Schrodinger Operators a.k.a. Anderson-type Models

In 1958 Anderson [11] proposed to explain the observed transport properties of
electrons in solids and, as a corollary, the observed finite conductivity of metals at
room temperatures in a single-electron model by the presence of random impurities
in a crystal. According to [11], "at sufficiently low densities transport does not
take place; the exact wave functions are localized in a small region of space"-
the phenomenon that was dubbed Anderson localization (dynamical or spectral,
depending on what part of the above statement was emphasized).

The main model here is that of an electron-gas of Fermions with a one-particle
Hamiltonian. The one-electron model of a crystal with impurities (a.k.a. the An-
derson model) is operator (1) on Zd with V, being the i.i.d.r.v.`s. The following
picture represents the state of current beliefs about this model: for large couplings
the large fluctuations of the potential dominate leading to Anderson localization.
The same happens for all energies near the edges of the spectrum (or edges of the
bands), with the corresponding states localized in the regions of such fluctuations.
The same also happens in one and two dimensions for all energies. However, in three
or more dimensions at small couplings and away from the edges of the spectrum
the kinetic term dominates the fluctuations of the potential leading to so-called
extended states. Thus one expects a metal-insulator transition from the extended
states to the localized states regime. The spectral interpretation of this picture is
that one expects pure point spectrum with exponentially decaying eigenfunctions
in the localization (insulator) regime, and absolutely continuous spectrum in the
extended states (metallic) regime. Dynamically, one expects absence of transport
in the insulator range and diffusive transport in the metallic regime.

A similar situation is expected for the continuum analogue where

H=-A+V4, (2)

on L2(Wi), and a typical example of the potential is V, (x) = Veer-+EiE7Ga wiu(x -
i) where wi are i.i.d.r.v.'s and u is a certain bump function. Here one expects
localization near the bottom of the spectrum/interior band edges, and extended
states for high energies in three or more dimensions.

More precisely, the expected picture is that in all regimes there is a ballistic
transport up to times of order A-2. This is expected in the metallic (small coupling
for d > 3) regime, with the diffusive transport appearing at larger times, but also
even in the localization regime, where there is no transport at all in the infinite
time-scale. Moreover, for d = 2, it is expected that this ballistic regime is followed
by the diffusive transport up to times of order e ' 2, and only after that should the
localization effects become pronounced. This picture has recently been partially
confirmed in the work of Erdos, Salmhofer, and Yau [83, 84] who established
ballistic transport up to times of order A-2, and diffusive transport up to the times
of order A-2-6, b > 0, for a certain Anderson-type model in 1[83. Their approach to
prove diffusive transport seems to be potentially extendable up to times of order
A-4, but there are some essential difficulties for going beyond that limit.

We will review the recent rigorous results related to the metal-insulator tran-
sition for the Anderson model and corresponding methods. We do not review here
other related topics such as, e.g., the regularity of the integrated density of states
(see [176, 129] for d = 1 results and, e.g., [60] for d > 1) where there has been a
lot of progress, as well as many other important issues.
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2.1. Localization. The one-dimensional case is very well understood, with
first proofs of localization going back to the pioneering work of Goldsheid, Molcha-
nov, and Pastur [102]. However, even here some unexpected aspects keep getting
discovered. The final result is the following

THEOREM 1. If d = 1, then for any nontrivial distribution of V ,,'s there is
dynamical localization for all A.

This theorem was first proved in [52], with a dynamical enhancement given in
[68] (see Section 2.1.5 for more history/discussion). For the multidimensional case,
where localization is established for various models under the assumption of either
a high disorder or energies near the boundaries of the spectrum of the unperturbed
operator, there are now two competing methods: multiscale analysis and fractional
moments.

2.1.1. Multiscale analysis. Multiscale analysis was the first one historically,
preceding fractional moments by some ten years. It was originally developed by
Frohlich and Spencer [91] as a probabilistic KAM-type scheme that involved a
definition and detailed study of the geometry and combinatorics of singular (res-
onant) sets. In fact, what is proved in [91] is what is now called the single en-
ergy estimate for the Green's function. With probability one, the Green's function
G,,(x, y; z) = z)-'(x, y) decays exponentially in the distance JIx - y1l, for
X, y E Zd. That is, there exist finite constants Co > 0, and -y(E) > 0, so that

sup JG,(x, y; E + iE) I < Coe-7(E) IIx-yll (3)
6>0

with probability one.
The argument of [91] required absolute continuity of the distribution; see be-

low. Estimate (3) is not sufficient to obtain localization because the zero measure
exceptional set can depend on energy. Several methods have been developed to
obtain localization out of such single energy estimates, and they can be divided
into two categories:

(1) Spectral averaging [177, 73] (building on some ideas of [51, 142]; see also
[117] where those ideas seem to have appeared for the first time, and [58]
for the continuum);

(2) Energy interval multiscale analysis a.k.a. energy elimination [89, 78].

Spectral averaging, in any form, is based on rank one perturbations and thus re-
quires absolute continuity of the joint distribution.

The multiscale analysis proceeds by inductively passing from smaller to larger
finite-volume scales. The technique borrows ideas from statistical mechanics (in
fact, it was first developed for the study of the Kosterlitz-Thouless transition [90,
139] and only later adapted to the analysis of localization) and is based on treating
the infinite-volume system as the thermodynamic limit of finite-volume ones. It
has been significantly simplified, further developed, extended to the continuum,
and applied to many situations, [113, 181, 78, 58, 134, 128, 184, 183] being
a very incomplete list. The latest and most powerful version, bootstrap multiscale
analysis, is developed in [96]. All the proofs of the single energy estimate (or energy
interval analysis), however, require two important building blocks:

(1) the initial length-scale estimate
(2) the Wegner estimate.
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The Hamiltonian for the finite-volume system HA is obtained by restricting H
to A C Zd with some self-adjoint boundary conditions.

Let AL(k) be a cube in Zd of side length L centered at k E Zd. For M > 0 and
E E 1Z, we say a cube AL (k) is (rn, E)-regular if the Green's function GAL (k) (i, j; E)
for HAL (k) satisfies the bound

IGAL (k) (k 1; E) I < e-,m.L/2 (4)

for all l E aAL(k). For a fixed realization w, this bound indicates that the energy
E is not too close to the discrete spectrum of HAL (k) . This estimate has to hold
for some initial length scale as an input, which allows one to obtain a sequence
of estimates of this type for the increasing sequence of scales. Since singular (i.e.,
nonregular) blocks will appear with some probability in a larger block, one needs
also an a priori estimate on the Green's function of those. It is called a Wegner
estimate. It is an estimate on the expectation of the spacing of the eigenvalues of
HAL(k). A local, random Hamiltonian HA satisfies a Wegner estimate at energy E
if there are positive exponents 0 < a < 1 and 1 < /3 < no, and a constant CW > 0,
so that for i > 0 small enough,

lP{dist(u(HA), E) < q j < Cw?70'IAIQ. (5)

This is one possible form of the Wegner estimate; the proofs of exponential local-
ization work with a much weaker form as well. The original form is in [190], with
many later enhancements. For the continuum, it was first proved by Kotani-Simon
[145] and improved in [58].

The initial length-scale estimate in the continuum is stated in terms of appro-
priate bounds on the operator norm of the resolvent of the local Hamiltonian HA.
One of the main practical advances of [96] is a clean form of the initial length-scale
hypothesis, both for the discrete and continuum cases. Namely, in [96] the resol-
vent is required to decay only polynomially with respect to the length L with the
probability that is independent of the length scale L. This was crucial for some
important recent advances described below.

Germinet and Klein [97] also give finite-volume criteria for localization in the
continuum. These are explicit conditions, depending on the various parameters
of the model, for starting the bootstrap multiscale analysis. These explicit finite-
volume criteria yield localization in situations where the crucial quantities of the
model that enter the multiscale analysis (the constant in Wegner's estimate, and
the constant in the Simon-Lieb-type inequality needed to relate resolvents at dif-
ferent scales in the continuum) depend on the parameters of the model (e.g., the
disorder parameter, the energy where localization is to be proven, the strength of
the magnetic field).

2.1.2. Method of fractional moments. An alternative method for proving local-
ization was found by Aizenman and Molchanov [7]. It is much simpler than the
multiscale analysis in the lattice case. The key feature is that it allows one to obtain
various statements on localization from single length-scale estimates (or a sequence
of constructive finite-volume criteria [8]). Also, it gives a natural meaning to the
notion of localization length scale often used in physics: it is the minimum scale
for which the estimate on the fractional power of the Green's function holds. The
method uses the subharmonicity properties of the Green's function and proceeds to
estimate the expectation of the fractional (s < 1) moments of the Green's function
directly. The fractional moment is needed to compensate for the singularity of the
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distribution function of the Green's function. The main result of the method is
that for any 0 < s < 1, there exists a constant C. > 0 so that for certain energies
there is a finite constant 'y(E) > 0 so that

IE{IGw(i,j;E)IS} < C.,-S7(E)ui-III. (6)

The difference equation for the Green's function can be rewritten as

(tip,, - E)Q,(i,j; E) = ai_j + E G, ('i,j; E). (7)
k;lk-iI=1

A simple important fact is that the dependency of G on the coupling constant at
one site can be isolated by writing G using the resolvent formula as

G, (i, j; E) = A/(Ak + B). (8)

Taking the sth power of (7) and the expectation with respect to the random variable
Ak (W), one obtains

lE{I.k(W) + aEls/IAk(W) + BIS}. (9)

For absolutely continuous probability measures, one can prove that there exists a
constant DS > 0 so that

lE{Il\k(W) + aEls/Iak(W) + BIS} > D5 E{1/jAk(W) + BIS}. (10)

The resulting formula is the expression of the subharmonicity of the Green's func-
tion and can be used to derive the boundedness of the expectation of the sth mo-
ment. As seen from the above discussion, absolute continuity of the probability
distribution is quite crucial here.

As discussed in [6], estimate (6) has several interesting corollaries. First, the
dynamical localization in the range of energies for which (6) holds is obtained
essentially automatically. The form of dynamical localization implied by (6) is as
follows. Suppose that (6) holds on an interval I C R. Let 01 be a real-valued
function with support in I. There exist finite constants A > 0 and p > 0 so that

IE{sup(xIe-'Hwt0I(H,,)Iy)} < (11)
tE1

for all x, y E Zd. Note that even the most sophisticated multiscale analysis only
leads to subexponential bounds here.

Another interesting consequence of the fractional moment bound is the result
of Minami [157], extending earlier work of Molchanov [158] on the 1D case, on
the energy-level statistics for the Anderson model on a lattice. Let {ES(A)} be
the eigenvalues of the random Hamiltonian H, restricted to the box A. Consider
the rescaled eigenvalues e (A; E) = I A I (Ej (A) - E) near an energy E. Minami
proved that if the fractional moment of the Green's function at energies near E is
exponentially bounded, as in (6), and if the density of states p(E) exists at energy
E, then the random point process on R given by the sequence (A; E) } converges
weakly to the stationary Poisson process on R with intensity p(E) as A -> Rd. This
is interpreted as energy-level repulsion in that the energy levels do not exhibit any
correlation as the volume of the system increases.

Aizenman et al. [5] have extended the fractional moment method to Schrodinger
operators on Rd with a certain class of Anderson-type potentials. This was a
very important development as the method originally seemed to be intrinsically
discrete. The main difficulty was that while in the discrete case changing a term
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at one site is only a rank one perturbation, in the continuum a change in each
of the random variables leads to a perturbation of infinite rank. In [5] the finite-
rank perturbation theory was replaced by the use of the Birman-Schwinger kernel.
While in the discrete case the fact that changing one parameter leads to only a
rank one perturbation is roughly manifested in the property that the number of
eigenvalues of a finite box problem that are smaller than a given energy E, the
"spectral shift" changes by no more than one upon any change of one parameter, in
the continuum case the same quantity is not uniformly bounded. This is overcome
in [5] by showing that for random potentials the "spectral shift" is necessarily of
finite mean. However, there are many technical difficulties involved, and as a result
the continuum version is hardly simpler than a multiscale analysis proof. Also,
Minami's result does not seem to easily extend, although this seems to be less of a
problem with the continuum version of fractional moments than with the extension
of other estimates used by Minami.

PROBLEM 2. Prove Poisson statistics for continuum models in d > 2 in the
localization regime.

2.1.3. Initial length-scale estimates. While the Wegner estimate, given some
regularity of the probability distribution, usually holds for all energies, the initial
length-scale estimate of multiscale analysis is the one that is energy/model depen-
dent. As should be clear from the previous section, the fractional moments method
also requires a bound that holds at a finite scale as a starting point. In the one-
dimensional and quasi-one-dimensional (strip) cases, bounds of such form follow
from random matrix theory [52, 131] for any coupling. For large couplings in any
dimension, it is a very simple bound, but the resulting estimate is probably rather
crude and far from being optimal. The case of small couplings (weak disorder) has
been studied in [4, 136, 189]. The first quantitative results on the size of the
localization region inside the unperturbed band are due to Wang [189] who used
the supersymmetric formalism. The best result in this direction belongs to Klopp
[136] who used the Lifshitz tails bound on the integrated density of states to obtain
the initial scale estimate. Let H", = Ho + AV", be a random Schrodinger opera-
tor with an Anderson-type potential. Let E denote the deterministic spectrum.
Let us assume that inf E = 0. If .A > 0 is a measure of the disorder, then Klopp
proved that the region of localization extends at least as far as Al+"E{V, } into the
deterministic spectrum E.

The Lifshitz tail estimate (e.g., [138]) allows one to estimate the probability
that a finite-volume Hamiltonian contains no spectrum at all in a certain energy
interval, through a statement of the form

]E{Q(HA) n [0, E] 54 0} < CIAIN(E), (12)

showing that the probability of small eigenvalues for the finite-volume operator
is exponentially small in the energy. This gives an initial length-scale estimate
(with the same probability) by the Combes-Thomas argument that then implies
exponential decay of the Green's function for corresponding realizations.

Once the initial scale estimate is obtained, one can use either the finite-volume
criteria for localization [8] in order to obtain strong estimates on the decay of the
Green's function, or the multiscale analysis.
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In dimension two, the proof of localization by either method can, as discussed
above, be fully reduced to an initial length-scale estimate that is where the chal-
lenge lies, unless a completely new method emerges. The current methods do not
capture the specificity of d = 2.

2.1.4. Dynamical localization. Dynamical localization, i.e., a nonspread of ini-
tially localized wave packet, is usually defined mathematically as a suitable decay of
the matrix elements of the time evolution operator e-iHt, or boundedness in time
of the moments of the position operator, e.g., as in (13) (many different definitions
of varying degrees of strength are now available). Pure point spectrum is implied
by the dynamical localization; this is the subject of the celebrated RAGE (Ruelle-
Amrein-Georgescu-Enss) theorem (see, e.g., [62]), so the latter is a stronger notion.
In [70], del Rio, Jitomirskaya, Last, and Simon constructed a potential such that
operator H on 22 (Z) has a complete set of exponentially decaying eigenfunctions
(with same rate of decay) However, for any 6 > 0, JIxe-ithgoll2/t2-6 is unbounded
as t -+ +oc, where Ixe-itH6oll2 = (e-itH6o x2e-itI 6o). Note that by a classical
result of Simon [169], lIxe-itH6oMI2 (that can grow at most ballistically, i.e., as t2)
grows necessarily subballistically in case of pure point spectrum.

Other examples with the same property were later constructed in [26, 95]. This
example has shown that the result of [169] is optimal and that mere "exponential
localization" of eigenfunctions need not have any consequences for the dynamics.
This as well as some other theorems in [70] have shown the importance of proving
the dynamical localization, which, since then, has become a common point of view.

For the Anderson model in the regime of localization, dynamical localization
is easiest to obtain directly by the method of the fractional moments [4]. For the
one-dimensional case, dynamical localization was also obtained in [72] and, in a
restricted form, in [155].

De Bievre and Germinet [68] proved that the von Dreifus-Klein version of
multiscale analysis implies certain uniformity in the decay of the eigenfunctions
that, by [70], leads to dynamical localization. As a consequence, they proved
dynamical localization for random Schrodinger operators on the lattice and the
continuum where the statement takes the following form. For an energy interval
I C 1[8 in the localization region, and for any q > 0 and wave function i,b with
compact support, we have

,,/,II < oo, (13)sup IIxJ1EI(H,,
)e-itH,,,4

t

with probability one. Damanik and Stollmann [66] extended the analysis in [68] to
prove partial strong dynamical localization (i.e., they prove (13) for the expectation
of the LHS for all q < qo for some qo < oo). Germinet and Klein [96] used a
generalized eigenfunction expansion to exploit the bootstrap multiscale analysis,
instead of resorting to centers of localization as in [68, 66], and obtained the
subexponential decay of any order of (11) and strong dynamical localization in the
Hilbert-Schmidt norm. For the deterministic ergodic potentials (see Section 3.3),
dynamical upgrades of existing localization proofs have also been made. It was
shown in [94] that strong dynamical localization (13) holds for the almost Mathieu
operator throughout the regime of localization as in [118] (the earliest result in
this direction was in [121]). While proved in [94] with a slightly more restrictive
condition on the frequency, this holds as stated by a result of [48]. Bourgain-
Jitomirskaya [46] showed that dynamical localization can be obtained by an upgrade
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of the Bourgain-Goldstein method [43], and therefore holds wherever this method
applies.

All the results above, plus the artificial character of examples in [70, 26, 95],
may leave an impression that pure point spectrum cannot coexist with nontrivial
transport in physically relevant models. It is not the case though as demonstrated
by the example of random polymer models. A random polymer model is a 1D Jacobi
matrix randomly composed of two finite building blocks. The best known example
is a dimer model, where the random potential takes only two values, but these
potential values always come in neighboring pairs (dimers). The dimer model was
studied by Dunlap, Wu, and Phillips [79] who argued and showed numerically that
the second moment of the position operator X on the lattice grows superdiffusively
under the dynamics: (01X2(Q ) Ct312 for a localized initial state V and any
typical dimer configuration.

This phenomenon, however, was considered controversial by physicists (see,
e.g., [154]), as the common perception was that randomness in 1D always leads
to strong localization. Indeed, random polymer models always have exponential
localization. (See [68] for the dimer model; for other models, the method of [65]
applies. Both essentially stem from [52].) Critical energies (which exist for the
dimer model and many other, but not all, polymers) are defined as energies at
which transfer-matrices over polymer blocks are elliptic and commute (leading to
perfect transmission, but only at these discrete energies). For spectral projections
on compact sets outside the critical energies, strong dynamical localization holds
[68, 65]. In [123] it was shown that for random polymer models with at least one
critical energy there is nontrivial transport:

1 CET9-I/2-E,
T

any e > 0, for a.e. configuration. The result, in particular, applies to the dimer
model, for which the last inequality with q = 2 gives precisely the bound in [79],
therefore confirming their findings. This shows that the distinction between spectral
and dynamical localization should indeed be made.

2.1.5. Anderson models with singular probability distributions. As should be
clear from the above discussion, both known methods for the proof of localization
have absolute continuity of the underlying probability distribution as a major re-
quirement, as both are based in one way or another, on rank one perturbations.
Thus singular distributions, e.g., Bernoulli, when the random variables are allowed
to take only two values, represent an important challenge. In the one-dimensional
case localization was proved for such models by Carmona, Klein, and Martinelli
[52] using the Furstenberg-Lepage theory of products of random matrices. A dif-
ferent proof, using supersymmetry, was given later by [166] (see also [65] for the
continuum model with Bernoulli distribution). For the multidimensional case, [52]
contains a Wegner estimate for probability measures that are Holder continuous, in
the lattice, and Stollmann [183] extended this result to the continuum. However,
none of this is close to being applicable to the Bernoulli distribution, and proving
localization for multidimensional Bernoulli-Anderson models is widely regarded as
a very significant problem in the area.

A major breakthrough came recently with a work of Bourgain-Kenig [49] where
they study a continuous analogue of the Bernoulli-Anderson model: the operator
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(2) on Rd with potential

V,(n) A 0(n - m)w,,,, (14)

MEZd

where 0 is a smooth compactly supported function.
The result of [49] is localization near the bottom of the spectrum for a.e. real-

ization. The general framework of the method of [49] is multiscale analysis. How-
ever, it required many completely new ingredients. Most importantly, the Wegner
lemma, which has been a necessary starting point for any multiscale analysis, is not
a priori available here and had to be proved inductively as a part of the multiscale
scheme. To obtain the usual Wegner lemma for models with absolutely continuous
(or Holder) distributions, it suffices to consider variations of only one parameter.
For the Bernoulli case, it is clear that variations of many parameters are needed.
The corresponding measure estimates were obtained in [49] by introducing the con-
cept of "free sites" : these are scale-dependent sets such that for each element, the
value of the corresponding random variable can vary from 0 to 1 without affecting
the estimates on the Green's function on that scale.

For the Wegner-type estimate, one then needs a lower bound on the variation of
an eigenvalue produced by the variation of the parameter at each site to quantita-
tively ensure that one can move the eigenvalues by such variations. This is resolved
in [49] for the continuum model by a refined version of the unique continuation
principle: a quantitative formulation of the fact that eigenfunctions cannot vanish
locally. The probabilistic estimates then come through the use of Sperner's lemma
for boolean functions.

Finally, while these new ideas allow one to obtain a single energy estimate on
the Green's function, this is not yet sufficient to obtain localization. The reason
is that the spectral averaging method (e.g., Simon-Wolff) is not available here as
it again requires continuity of the distribution, and the energy-interval multiscale
analysis cannot work here either because the probabilistic estimate for the single-
energy bound is too weak for that. In fact, the weakness of this estimate is due
to the form of the unique continuation principle, and it is argued in [49] that this
form is essentially optimal, in general, because of Meshkov's example. Thus, this
does not seem to be improvable within the same circle of ideas. As a result, a
completely new method is designed in [49] to obtain localization out of a single
energy estimate, without the use of spectral averaging, adding therefore a third
method to the two described in Section 2.1.1. The method, while very delicate in
the Bernoulli case because of the weak probabilistic bounds in the single energy
estimate, becomes relatively simple if combined with, for example, the original
Frohlich-Spencer bound.

A precursor to [49] was in a somewhat earlier work by Bourgain [39] where he
studied a correlated multidimensional Anderson-Bernoulli model: a potential of the
form (14) with exponentially decaying (but also exponentially bounded away from
zero at infinity) 0. While many important ingredients of [49] already appear in [39],
the nonvanishing of 0 was crucially important there in order to obtain lower bounds
on eigenfunctions in a relatively simple way, without using the unique continuation
principle, and leading to better probabilistic bounds, which in turn allowed for a
conventional proof of localization at the end.
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Most of this method can be adapted to the discrete Bernoulli-Anderson model,
except for the unique continuation principle type result. It turns out that on the
lattice eigenfunctions can vanish locally. Thus no reasonable analogue of the unique
continuation holds. Let SZ = {(x, y) E 7L2 : Ix - yI > 1} C Z2. Then we have the
following simple

THEOREM 2. For any v E P00(1), there exist w E t,(Zd) with w IQ = v
such that A0 = wo has a solution with 0(0) = 1 and O(x) = 0 for x E Q.

PROOF. For a > 0 we set w(x, x) = 0 and w(2n, 2n + 1) = a, w(2n + 1, 2n) _
-a. Then 0 with O(x, x) = 1, 0(2n, 2n + 1) a, 0(2n ± 1, 2n) = a, q(m, n) _
0, (m, n) E Il, is a solution.

A similar statement obviously holds for Zd. This takes away a crucial piece of
the argument of [49] if applied to Zd, thus proving localization for the Bernoulli-
Anderson model remains more than a merely technical challenge.

PROBLEM 3. Prove localization for the Bernoulli-Anderson model on Zd for
d > 1 and either at high disorder or near the edges of the spectrum of the free
Laplacian.

Poisson model. The Poisson model is a model of random placement (rather
than strength) of impurities. For a fixed countable set X C Rd, we consider an
operator

Hx := -/X +Vx on L2(lP ), where (15)

Vx(x) := u(x - (). (16)
(EX

Here u is some function (e.g., smooth, nonnegative, with compact support) and
u(x - () is the potential created by the impurity placed at (. The Poisson model
is the family of operators Hx where X is modelled by a Poisson point process
on Rd with density g > 0. This means that the number of points in each Borel
subset of Lebesgue measure m has Poisson distribution with mean gm and the
numbers of points of X in Ai are independent random variables for any finite
disjoint collection Ai C R . Vx is an ergodic potential with respect to translations
in Rd. This is another example of a model where random variables with densities
are not available to perform the spectral averaging or obtain an a priori Wegner-
type lemma, thus presenting a serious challenge. The Poisson Hamiltonian has
Lifshitz tails-an indication of localization at the bottom of the spectrum [77, 53,
161, 135, 137, 182], but this problem has been open for many years other than in
d = 1 where localization was established by Stolz [185], using a specially designed
spectral averaging technique that, however, did not extend to higher dimensions.
It turns out that the ideas and techniques of [49] are adaptable (albeit with some
nontrivial technical difficulties) to the multidimensional Poisson model as well. This
was shown in a recent work by Germinet, Klein, and Hislop [93] where they prove
a.e. dynamical localization for Hx at the bottom of the spectrum: for E < Eo(g),
or alternatively, at high disorder: for g < go(Eo) and all 0 < E < Eo.

2.2. Multidimensional Case: Extended States. It is strongly believed
by physicists that in dimensions three and higher, the Anderson model has some
interval of energy (high energy in the continuous case, near the spectrum of the
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free Laplacian at small coupling in the lattice case) ET characterized by the fact
that states with energy localized in ET propagate out of any compact set in Rd (or
Zd) almost surely. The phenomenon is loosely defined as extended states.

The physicists' explanation of this for d > 3 is based on their formulation of
the problem as a nonlinear sigma model [80]. For the two-dimensional case, the
corresponding /3-function is believed to be nonnegative and monotone increasing.
This indicates the absence of a phase transition as a function of the parameter
that is a measure of the disorder. In dimension three, a mechanism of spontaneous
symmetry breaking should lead to the occurrence of extended states.

One of the most important problems in the area is to prove a spectral or
transport statement that would indicate those "extended states" for the Anderson
model. (The problem is so widely known and acknowledged that I don't even list
it as a separate problem.) While a number of conjectures have been made, it is not
even entirely clear what mathematical statement one should expect.

The general belief is that there should be a region of purely absolutely con-
tinuous spectrum, with diffusive transport. So far, there are no existence results,
neither on the spectral nor on the dynamical side. The results related to this re-
gion can be divided into two categories: the ones that prove extended states type
effects for other related models, and the ones that are of conditional nature, which
prove some properties of this elusive extended states region, without proving that
it exists.

2.2.1. Properties of the extended states region. There are three remarkable
results in this direction, on both spectral (due to Jaksic-Last) and dynamical
(Germinet-Klein) sides:

THEOREM 3. (1) The absolutely continuous spectrum of an Anderson model
must be pure [114].

(2) The singular spectrum must be simple [116].

Both statements actually do not require ergodicity, only some independence,
thus they apply as well to decaying models with some randomness. At present,
they do require a discrete setting. The second statement extends a theme (and, in
some sense, methods) started by Simon in his famous(ly) short note [170] where
he proved simplicity of the point spectrum in the regime of Anderson localization
in the discrete case. Simplicity of singular spectrum is also known for general 1D
operators [126, 101]; see also Simon [172] for a very simple proof.

The second statement is relevant to the topic "extended states region" in two
ways. First, it gives a property of the possible singular continuous spectrum there.
Second, it gives an extremely tempting idea for a proof of absolutely continuous
spectrum: it reduces the problem to establishing noncyclicity of a certain vector.

On the dynamical side, it was shown in [98] that if there is a region (consisting
of at least one point) where localization in a certain strong sense does not hold,
then necessarily there is some transport. Namely, Germinet and Klein introduce
the local transport exponent roughly defined as the power of growth of expectations
of high moments of the position operator with respect to time, and show that in
absence of strong localization (where it is equal to zero) it is necessarily at least
1/2d. This result is obtained by showing that transport slower than that is sufficient
to start the bootstrap multiscale analysis [96], which then implies strong dynamical
localization in the Hilbert-Schmidt norm. Note that existence of an ca-continuous
component in the spectrum would imply a bound of the form a/d [150] but this
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only goes in one direction, so a lower bound on the transport exponent can in
principle coexist with pure point spectrum.

2.3. Other Models. The only model with i.i.d.r.v. potential where extended
states were established is the Bethe lattice, B. It is an infinite connected graph with
no closed loops and a fixed degree, k, at each vertex. The Anderson Hamiltonian
on the Bethe lattice is given by (2) with Z replaced by B. This is still an ergodic
operator [3] and the spectrum is easily computable to be u(HA) = a(0) + A supp p
with probability one, where the spectrum of the free Laplacian o ,(A) is equal to
[-v, vlrk-]. This model was proposed in the physics literature [1, 2] as a model
where an approximation for the study of localization becomes exact [1]. It was also
argued in [1] that localization breaks down at an energy that converges to k21 in

the limit A -+ 0. A perturbative argument [156] showed that outside [-v/-k-, v/k-],
the density of states and conductance vanish to all orders of perturbation theory.
The existing rigorous results [7, 4, 130, 9, 88] seem to support the fact that there
may be two transitions for this model.

THEOREM 4. For sufficiently small A, there are 0 < e(A) < < k21 < Q(A)

with e(A) -4' and f(A) --> k21 as A --> 0 such that
(1) HA has pure point spectrum and dynamical localization in ±[t(A), oo) [7,

4].
(2) Ha has purely absolutely continuous spectrum with ballistic behavior in

[-e(A), e(A)] [130, 9, 88].

The requirement for the localization part is the absolute continuity of the com-
mon distribution of the random variables, while for the extended states part, only
finiteness of the second moment is needed.

The absolutely continuous spectrum was originally established by Klein by
writing the expected value of the square of the modulus of the diagonal element
of the Green's function as the fixed point of a certain nonlinear equation in su-
persymmetric variables. The result then follows by the implicit function theorem
in the appropriate Banach space from the properties of the free Laplacian. How-
ever, writing of this nonlinear equation requires the loopless character of the graph.
Thus the fact that the Bethe lattice, while in a sense infinitely dimensional, is also
in some sense quasi-one-dimensional. This method does not seem to be transpos-
able to the Zd-at least no progress has been made in this direction in over ten
years since [130] appeared. Two alternative, somewhat simpler, proofs appeared
recently in [9, 88]. The result in [9] is also made more general, allowing periodic
background, and weakly correlated randomness instead of independence (see also
[10] for a result on a related model with a different type of randomness). While
the methods of [9, 88] are completely different from that of [130] as well as from
each other, they both exploit the quasi-one-dimensionality and thus do not seem
to be transposable to Zd either.

The bound k21 appears in [4] as the edge of the £1 spectrum of the free Lapla-
cian on the Bethe lattice. It is an extremely intriguing question: What happens
between e(A) and f(A)? It seems natural to conjecture singular continuous spec-
trum, but it is also natural in a loose analogy with random surfaces [115] or decay-
ing potentials (see [75] in this Festschrift) to conjecture that £1 phenomena must
prevail up to the f2 threshold, so there must be localization up to near the edge of
the £2 spectrum.
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A.

PROBLEM 4. Describe the nature of the spectrum of Ha in kZi] for small

Random Landau Hamiltonians. A random Landau Hamiltonian is an op-
erator

HB,A,W HB + AV,,, (17)

on L2(]R2) where HB is the free Landau Hamiltonian

HB = (-iV - A)2 (18)

where the vector potential A is given by A = 2 (x2, -x1), B > 0 is the strength of
the magnetic field, and V ,(x) = wiu(x - i) is a random potential. Here wi
are i.i.d.r.v.'s with an absolutely continuous common distribution, and u is a certain
bump function. This is a Z2 ergodic family of operators. The spectrum of the free
Landau Hamiltonian consists of the set of so-called Landau levels: B,,, = (2n -
1)B, that are all infinitely degenerate eigenvalues. Random Landau Hamiltonians
describe a two-dimensional electron in a conductor with impurities and in a constant
magnetic field perpendicular to the plane of the conductor. It is a model that has
been linked with the quantum Hall effect. Physics results [153, 108] expect bands
of extended states near the Landau levels separated by regions of localization and/or
gaps.

At the same time, Thouless [186] argued that this extended states region may
actually consist of singular continuous spectrum or even just one energy with an
extended state. Localization at the edges of the bands for this model has been
well understood [59, 188, 97]. Using the idea that the Hall conductance is con-
stant in the gaps and jumps from one integer value to another across the Landau
levels, Bellissard, van Elst, and Schulz-Baldes [28] (see also [6] for another deriva-
tion) showed (for the discrete version of this model) the existence of energies where
a certain localization length diverges -a manifestation of extended states. More
recently, Germinet, Klein, and Schenker, well equipped with [98], took this idea
further to show that under certain conditions on the bump function and distribu-
tion, there is a nontrivial transport (i.e., dynamical delocalization) in each Landau
band [99]-a strong manifestation of "extended states." However, the exact nature
of these extended states, even as simple a question as whether the effect is due to
a band or a single energy as in [123], remains elusive.

PROBLEM 5. What is the nature of the metal-insulator transition for random
Landau Hamiltonians? Is there any nonpoint/absolutely continuous spectrum?

Extended states were also established for several other Anderson-type models,
such as random decaying potentials (see [75] for a review), sparse random potentials
(e.g., [159]) or random surfaces (e.g., [115]), the models that are quite remarkable
by the wealth of results in their own right. However, the nature of the "extended
states" in all cases where it was established and understood seems to be different
from what is expected for the Anderson model.

3. Quasiperiodic Operators

As discussed at the beginning, quasiperiodic potentials provide the only known
model where the metal-insulator transition is well pronounced. Because of limited
space, we will only discuss the discrete setting here (which is the one coming from
physics), although there were some remarkable advances in the continuous setting
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as well, e.g., a series of papers by Fedotov and Klopp (see [85, 86]). Neither the
multiscale analysis (at least in the form devised for the Anderson model) nor the
fractional moments method, works for quasiperiodic potentials as, among other
reasons, quasiperiodicity does not allow for nice perturbations. The situation here
is more difficult and the theory is far less developed than for the random case. With
a few exceptions, the results are confined to the one-dimensional setting, and also
the case of one frequency (b = 1) has been much better understood than that of
higher frequencies.

The exotic phenomena, such as metal-insulator transitions, thick point spec-
trum, singular continuous, and Cantor spectrum abound in this family. However,
there are several remarkable general results that make the theory of quasiperiodic
operators a bit nicer than that of general ergodic operators.

THEOREM 5. For any quasiperiodic potential:
(1) The spectrum is the same for all phases 0 [24].
(2) For d = 1 the absolutely continuous spectrum is the same for all phases 0

[152, 144].

For general ergodic operators, both statements are only true for a.e. 0. The
point and singular continuous parts (that are constant a.e.) can depend sensitively
on 0 [124]. However, there is no evidence of such sensitive dependence if they are
combined together

PROBLEM 6. Is singular spectrum the same for all phases 0?

All the existing evidence points to a positive answer, which is also conjectured
by Simon. There is, however, a remarkable analogy between phases for quasiperi-
odic operators and rank one perturbations, which may be suggestive of a negative
answer to Problem 6. But it is possible that this analogy is not relevant here. It is
supported though by another general fact:

THEOREM 6. The supports of singular parts of spectral measure are mutually
disjoint for a. e. 0.

This theorem appears in this form in [107], but it is essentially contained in
Deift-Simon [69]. Another intriguing question in the same direction is whether
Theorem 6 and the second statement of Theorem 5 hold for d > 1.

It is probably fair to say that much of the "hard analysis" of quasiperiodic
operators has first been developed around the almost Mathieu operator, which is

HA,,,,e = A + Av(B + nw) (19)

acting on £2(Z), with v : T -+ T; v(0) = cos(27rO), a model coming from physics.
Several KAM-type approaches, starting with the pioneering work of Dinaburg-
Sinai [76], were developed in the eighties and nineties for this or similar models in
both large and small coupling regimes. Of those, the most robust and detailed is
the reducibilty result of Eliasson [81] that settled the (perturbative) case of small
couplings for sufficiently regular potentials.

The common feature of these perturbative results in the quasiperiodic setting
is that they provide no explicit estimates on how large (or small) the parameter
A should be and, more importantly, A clearly depends on w at least through the
constants in the Diophantine characterization of w. Thus for any given A one cannot
obtain a result for a.e. w.
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In contrast, the recently developed nonperturbative methods allow effective (in
many cases even optimal) and, most importantly, independent of w, estimates on
A. The latter property (uniform in w estimates on A) has often been taken as a
definition of a nonperturbative result despite the fact that many such results require
a certain degree of smallness.

The nonperturbative methods for localization are also quite different from the
perturbative ones in that they do not employ multiscale schemes: usually only a few
(from one to three) sufficiently large scales are involved, do not use the eigenvalue
parametrization, and rely instead on direct estimates of the Green's function. They
are also significantly less involved, technically. One may think that in these latter
respects they resemble the Aizenman-Molchanov method for random localization.
It is, however, a superficial similarity as, on the technical side, they are still closer to
and do borrow certain ideas from the multiscale analysis proofs of localization. On
the other hand, all the existing nonperturbative methods (and therefore results)
critically use (almost) analyticity while perturbative results (particularly for the
large coupling) often require less regularity.

3.1. Cocycles and Lyapunov Exponents. In the one-dimensional case,
many spectral questions can be recast in the dynamical language through the use
of transfer matrices. For simplicity we will give the definitions only for the qua-
siperiodic case here, although they work with obvious adjustments for the general
ergodic case as well. A solution Hu = Eu satisfies A(0 + nw) (un" 1) = (" un 1) where

A(x) = S.,E(x) = I E 1 (x) 1 I (20)

is the transfer matrix that can be viewed as a cocycle. A cocycle (w, A) in general
is defined by w E Il and an analytic map A : IR/7G -> SL (2, R). It is viewed as a
linear skew-product (x, w) --> (x + w, A(x) w), x E JR/7G, w E I[82

We say that two analytic cocycles (w, A(i) ), i = 1, 2, are analytically conjugate
if there exists an analytic map B : IR/2Z - SL(2, II8) such that

A(2) (x) = B(x + w)AM (x)B(x)-l. (21)

The dynamical properties of cocycles are preserved by conjugacies.
For cocycles such that A : R/Z -4 SL(2, II8) is homotopic to the identity, one

can define the fibered rotation number by

p(w, A) = J Odp mod Z (22)

where 0 is a lift of A and p is a measure on II8/7G x I[8/7G invariant with respect to
T : (x, y) H (x + w, y +'b(x, y)) and projecting over Lebesgue measure on the first
coordinate [125, 111]. For Schrodinger cocycles (20), the rotation number admits
a determination in [0, 2]. It is linked to the integrated density of states by

NA,, (E) = 1 - 2pa,, (E) E [0, 1]. (23)

Here N is the usual integrated density of states for irrational w and the integral of
the density of states over different 0 for w c Q; see [24, 125].

The Lyapunov exponent is defined by

lim 1 J In JJAn(x)JJdx, (24)
n
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so L(w, A) > 0. It is invariant under conjugacy.
The Lyapunov exponent and the integrated density of states are linked through

the Thouless formula (see [24]),

L(E) = finE - E'IdN(E'). (25)

Positivity of the Lyapunov exponent is equivalent to hyperbolicity of the cor-
responding cocycle. Uniform hyperbolicity corresponds to E in the resolvent set,
and nonuniform hyperbolicity to E in the spectrum [125].

3.2. Positivity of Lyapunov Exponents. In the physics literature, positiv-
ity of the Lyapunov exponent is often taken as an implicit definition of localization,
and the Lyapunov exponent is often called the inverse localization length.

If Lyapunov exponents are positive for all E E R, there is no absolutely con-
tinuous component in the spectrum for all 0 (see, e.g., [62] for this result known
as the Pastur-Ishii theorem). Positivity of Lyapunov exponents, however, does not
imply localization or exponential decay of eigenfunctions (in particular, not for the
Liouville w nor for the resonant 0 E T6).

To a large extent, nonperturbative methods, at least in their original form, stem
from estimates involving the Lyapunov exponents and exploiting their positivity.

The general theme of the results on positivity of L, as suggested by perturbation
arguments, is that the Lyapunov exponents are positive for large A. This subject has
had a rich history. The positivity was given several proofs, and all originally seemed
to have a rather limited extendability. In particular, a proof by Herman [111]
exploiting the subharmonicity, applied to trigonometric polynomials v. Herman's
lower bound was in terms of the highest coefficient of the trigonometric polynomial
and therefore this did not easily extend to the real analytic case. All the subsequent
proofs, however, were also based on subharmonicity. Sorets-Spencer [179] proved
that for nonconstant real analytic potentials v on T (b = 1), one has L > z In A
for A > A(v) and all irrational w. Another proof was given in [43], where this was
also extended to the multifrequency case (b > 1) with, however, the estimate on A
dependent on the Diophantine condition on w. Finally, Bourgain [41] proved that
Lyapunov exponents are continuous in w at every incommensurate w (for b > 1; for
b = 1 this was previously established in [48]), and that led to the following theorem
which to date is the strongest result in this general context [41]:

THEOREM 7. Let v be a nonconstant real analytic function on T6, and H be
given by (1). Then, for A > A(v), we have L > 1 In A for all E and all incommen-
surate vectors w.

For b = 1, this has been extended to potentials belonging to a Gevrey class
[132]. In the perturbative setting, i.e., with results holding for A > A(v, w) or for w
in a set of measure going to zero as A --> oo, positive Lyapunov exponents are known
for b = 1 and v E C2 with v of cos-type (in a certain sense) [178, 92]. Removing the
cos-type condition in the smooth category has been a subject of significant efforts
and presents a serious challenge in nonuniformly hyperbolic dynamics. Bjerklov
[32] established positivity of Lyapunov exponents for energies outside a set of small
(going to zero as A -> oc) measure. Chan [54] proved a perturbative result on
positivity for all energies for typical (in a certain sense) C3 potentials. On the
other hand, generic continuous potentials have zero Lyapunov exponents generically
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on the spectrum (see [33, 16]), and the results on discontinuity of the Lyapunov
exponents [34] suggest that the same may be the case in C'.

3.3. Corollaries of Positive Lyapunov Exponents. As with the KAM
methods, the almost Mathieu operator was the first model where the positivity
of Lyapunov exponents was effectively exploited as the localization result of [118]
used only positivity of the Lyapunov exponents (and no other properties of the
coupling constant) as an ingredient.

The method in [118], while so far the only nonperturbative available allowing
precise arithmetic conditions, uses some specific properties of the cosine. It ex-
tends to certain other situations, e.g., quasiperiodic operators arising from Bloch
electrons in a perpendicular magnetic field, where the lattice is triangular or has
next-nearest neighbor interactions [119]. However, it does not extend easily to the
multifrequency or even general analytic potentials.

A much more robust method was developed by Bourgain-Goldstein [43] which
allowed them to obtain a measure-theoretic version of the localization result for the
general real analytic as well as the multifrequency case. Note that essentially no
results were previously available for the multifrequency case, even perturbative.

THEOREM 8. Let v be nonconstant real analytic on T6 and H given by (12).
Suppose L(E, w) > 0 for all E E [El, E2] and a.e. w E 7b. Then for any 0, H has
Anderson localization in [El, E2] for a. e. w.

Combining this with Theorem 7, Bourgain [41] obtained that for A > A(v), H as
above satisfies Anderson localization for a.e. w. Theorem 8 was recently extended
by S. Klein to potentials belonging to certain Gevrey classes [132]. One very
important ingredient of this method is the theory of semi-algebraic sets that allows
one to obtain polynomial algebraic complexity bounds for certain "exceptional"
sets. Combined with measure estimates coming from the large deviation analysis
of n In MM,, (0) (using subharmonic function theory and involving approximate
Lyapunov exponents), this theory provides necessary information on the geometric
structure of those exceptional sets. Such algebraic complexity bounds also exist for
the almost Mathieu operator and are actually sharp, albeit trivial, in this case due
to the specific nature of the cosine.

Further corollaries of positive Lyapunov exponents for analytic sampling func-
tions f and b = 1 are summarized in the following theorem:

THEOREM 9. If v is analytic and L(E, w) > 0 for all w E I[8\Q, E, then

For a.e. w, the spectrum is a Cantor set [105].
For all w, 0, the spectral measures have zero Hausdorff dimension ([122]
contains this result for trigonometric polynomials).
For all w, 0, the lower transport exponents are equal to zero ([67] contains
this result for trigonometric polynomials).
For Diophantine w and all 0, the upper transport exponents are equal to
zero ([67] contains this result for trigonometric polynomials).
For w satisfying a strong Diophantine condition, jqwjj > TIq for some
C, A, the integrated density of states (and the Lyapunov exponent as a
function of energy) is Holder continuous [103] and absolutely continuous
[104].
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(6) For Diophantine w, spectral gaps are almost Lipshitz (i.e., a logarithmic
correction) continuous in frequency [120].

(7) The measure of the spectrum is continuous in frequency [120].

Here, the upper and lower transport exponents refer to roughly the upper and
lower (in time) power-law growth rates for the moments of the position operator.
Lower exponent being zero corresponds to a very slow growth along a sequence of
scales (which for Liouville w may coexist with almost ballistic growth along another
subsequence [150]) and upper being zero corresponds to "almost" dynamical local-
ization (as far as power laws of growth are concerned), coexisting in some cases
with singular continuous spectrum.

All the statements can be made local in energy and frequency in a natural
way. The theorems combined in Theorem 9 are of widely varying levels of diffi-
culty/depth. Some weaker statements are available for b > 1 [103] or v belonging
to certain Gevrey classes [132]. The Holder exponent can be estimated by _L - 6
for f being in a small C°° neighborhood of a trigonometric polynomial of degree
k [104], with an estimate becoming almost precise (z - e) for the almost Math-
ieu case (where a precise result is actually available but through the analysis of
the dual regime; see Section 3.7.1). The argument of [105] uses some ideas of
Sinai [178] who proved Cantor spectrum for cos-type potentials in the perturbative
regime. [105] establishes quantitative estimates on separation of eigenvalues using
techniques developed in [104]. Those techniques in turn extend the ones devel-
oped in [103]: sharp large deviation estimates for the norms [103] and elements
[104] of the transfer matrix and the avalanche principle. The latter is a general
fact about SL(2, IR) matrices that roughly allows one to propagate norm estimates
for the large products, provided no two nearest neighbors "almost cancel" each
other. This appeared implicitly in [191] and was made explicit and developed into
a powerful method to study regularity properties of the Lyapunov exponents in
[103].

A Diophantine-type condition is certainly necessary for Statements 4 [150]
and 5 [40]. It is also expected to be necessary for Statement 6 (with only 2-H6lder
regularity holding in general). It is not entirely clear whether it is necessary for the
Cantor spectrum.

3.4. Almost Mathieu Operator and Simon's Problems. The almost
Mathieu operator is the central quasiperiodic model, mainly due to being the one
coming from physics and attracting continued interest there. It first appeared in
the work of Peierls [162] and arises as related, in two different ways, to a two-
dimensional electron subject to a perpendicular magnetic field [109, 165]. It plays
a central role in the Thouless et al. theory of the integer quantum Hall effect [187].
Also, it seems to represent most of the nontrivial properties expected to be encoun-
tered in the more general case. On the other hand, it has a very special feature:
the duality (essentially a Fourier) transform (see Section 3.7.1) maps Ha to H4/a,
hence A = 2 is the self-dual (also called critical) point. The development of the
rigorous theory of this model (and of general quasiperiodic operators along with it)
was strongly motivated by the numerical study of Hofstadter in 1976, the famous
Hofstadter's butterfly [112], and was guided for a long time by two conjectures for-
mulated by Aubry and Andre in [13] and heavily popularized in several of Simon's
articles in the early eighties. One conjecture was on the metal-insulator transition
at A = 2 and the other one on the exact equality for the measure of the spectrum.
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The related history up to early 2005 is presented in [151]. More recently, the devel-
opments were centered around "Simon's problems" : three almost Mathieu related
problems formulated in [171]. Two of these problems at the time of their formula-
tion were unresolved only for zero measure sets of parameters, and including those
problems in the list of fifteen highlighted the fact that it is starting to be perceived
as more and more a "number-theory"-type problem where recent advances have
made it possible to seek very precise information for all values of parameters.

Measure of the spectrum. This problem was the first to be fully resolved.

THEOREM 10. The measure of the spectrum of HA,,,e is equal to 14 - 2IAII
for all irrational w and all A.

That was exactly the original Aubry-Andre conjecture [13]. Note that for
irrational w, the spectrum as a set is independent of 0 [24]. This theorem was
proved for a.e. w in [147, 1481. It was extended to complementary sets of full
measure in [120] for noncritical A and in [21] for the critical coupling (the latter
alone was a subject of Problem 5 in [171]). The results for the critical point
[148, 21] are certainly the most delicate here.

Metal-insulator transition. One remarkable feature of the almost Mathieu
operator is that the Lyapunov exponents on the spectrum can be computed exactly:

THEOREM 11 ([48]). Let A > 0, w E R \ Q. For every E E Ea " La,, (E) _
max{lnA, 0}.

Therefore, a transition from zero to positive Lyapunov exponents on the spec-
trum happens at A = 2. This statement itself was actually one of the first rigorous
facts proven for this model, with different proofs based on either the subharmonic-
ity [111] or the duality [13, 24] (see Section 3.7.1 for more details). The original
Aubry-Andre conjecture [13], based on this transition for the Lyapunov exponents
and supported by the duality considerations, was that the spectrum is purely ab-
solutely continuous for A < 2 and pure point for A > 2, without worrying about
possible arithmetic issues, nor about the critical value A = 2. It turned out to be
true in the subcritical regime and true a.e. in the supercritical case.

THEOREM 12. The almost Mathieu operator has
(1) purely absolutely continuous spectrum for A < 2 and all w, 0.
(2) purely singular continuous spectrum for A = 2, all w and a.e. 0.
(3) pure point spectrum for A > 2, Diophantine w and a. e. 0.

The first statement with "purely" replaced by "a lot of" was known since [147]
(for a.e. 0, and a.e. w including Liouville numbers; it was subsequently enhanced
in [100]), and was quite a surprise at the time. It was then established as stated
but for Diophantine w and a.e. 0 in [118] (using [107]). Extending it to all w, 0 has
been considered a challenge-so much so that it was formulated as Problem 6 in
[171]. It was solved only very recently with partial advances in [20] (Diophantine
w and all 0) and [17] (Liouville w and a.e. 0) and the final solution by Avila in [15].

The second statement was known for (explicitly defined) a.e. W [107], combining
the duality theorem of [107] and [148]. It also followed by duality from the measure
of the spectrum theorem of [21] for a complementary full measure set of w. The
a.e. 0 part is probably an artifact of the duality proof. By Theorem 10, there is no
absolutely continuous spectrum. There are also no eigenfunctions belonging to 21
[71]. Still one has an open
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PROBLEM 7. Prove that there are no eigenvalues for A = 2.

The third statement of Theorem 12 is due to [118], where a.e. 0 is described
through an explicit arithmetic condition, so called nonresonant property; in partic-
ular, this set contains 0. The theorem cannot be improved from "a.e." to "every"-
neither in frequency nor in phase because of

THEOREM 13. HA,,,g has purely singular continuous spectrum for A > 2,
Liouville w, and all 0 or all w and a certain (arithmetically defined) dense G6 of U.

This theorem is a combination of [106, 24] (Liouville case) and [124] (all
w case). Thus there is a very delicate dependence on the arithmetics of both w
and 0 in the positive Lyapunov exponent regime. The recent advances, however,
make it reasonable to expect that it may be possible to fully describe the spectral
properties of H depending on w, 0. For a.e. 0 the answer should depend on the
relation between A and w through the exponential rate of approximation of w by
the rationals. Namely, let p,,,/q,,, be the approximants of w E I[8 \ Q. Let

,Q(w) = lim sup
In q,+,

(26)
qn

PROBLEM 8. 1. Show that for a. e. 0 the spectrum is pure point with eigenfunc-
tions decaying at a rate In 2 - 0 for A > 2eO.

2. Show that for 2 < A < 2e3 the spectrum is purely singular continuous for all
0.

The first statement is proved (without the statement on the rate of decay) in
[19] for A > 2e L96 0, and the second one follows immediately from Gordon's lemma
[106] and the exact formula for the Lyapunov exponent [48] for 2 < A < 2eQ/2. It is
reasonable, however, to expect the conjecture above to hold. It is harder to predict
what should happen for the critical case A = 20; it is possible that the transition
there would go deeper, depending on the finer properties of approximation of w. It
is also possible to make natural conjectures for the remaining zero measure set of
0 depending on the exponential rate of growth of resonance strength.

Ten Martini Problem. If w = p/q is rational, it is well known that the
spectrum consists of the union of q intervals possibly touching at endpoints. In
the case of irrational w, the spectrum (which then does not depend on 0) has been
conjectured for a long time to be a Cantor set for all A 54 0 [25]. To prove this
conjecture has been dubbed the Ten Martini Problem by Barry Simon, after an
offer of Kac in 1981; see Problem 4 in [171]. Note that for the critical point A = 2,
the result follows automatically from the zero measure of the spectrum statement.

In 1984 Bellissard and Simon [30] proved the conjecture for generic pairs of
(A, w). In 1987 Sinai [178] proved Cantor spectrum for a.e. W in the perturbative
regime: for A = A(w) sufficiently large or small. In 1989 Helffer-Sjostrand proved
Cantor spectrum for the critical value A = 2 and an explicitly defined generic
set of w [110]. Most developments in the nineties were related to the following
observation. For w = p/q, the spectrum of Ha,L,,e can have at most q - 1 gaps. It
turns out that all these gaps are open, except for the middle one for even q (see,
e.g., [55]). Choi, Eliott, and Yui obtained, in fact, an exponential lower bound
on the size of the individual gaps, from which they deduced Cantor spectrum for
Liouville (exponentially well approximated by the rationals) w [55]. In 1994 Last,
using certain estimates of Avron, van Mouche, and Simon [22], proved zero measure
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Cantor spectrum for a..e. w (for an explicit set that intersects with but does not
contain the set in [110]) and \ = 1 [148].

A major breakthrough came recently with an influx of ideas coming from dy-
namical systems. Puig, using Aubry duality [13] and localization for 0 = 0 and
A > 2 [118], proved Cantor spectrum for Diophantine w and any noncritical A
[164]. At about the same time, Avila and Krikorian proved zero measure Cantor
spectrum for A = 2 and w satisfying a certain Diophantine condition, therefore ex-
tending the result of Last to all irrational w [21]. The solution of the Ten Martini
Problem as originally stated was finally given in [19]:

THEOREM 14 ([19]). The spectrum of the almost Mathieu operator is a Can-
tor set for all irrational w and for all A # 0.

Cantor structure of the spectrum for the Diophatine w [164] follows from lo-
calization for the phase 0 = 0, with corresponding eigenvalues being the boundaries
of noncollapsed gaps. The key idea here is that for energies dual to eigenval-
ues of H,,o, corresponding to localized eigenfunctions, the rotation number of the
transfer-matrix cocycle is of the form kw(modZ). Thus they are the ends of the
gaps (possibly collapsed). However, a collapsed gap in this case would correspond
to reducibilty of the system to the identity which can be shown to contradict the
simplicity of pure point spectrum for the dual model. Since those energies form a
dense subset of the spectrum, the result follows.

The argument of [164] relies on two small denominator problems (one needed
for the proof of localization and another for the solution of a cohomological equa-
tion), thus it cannot be extended beyond a certain Diophantine condition. The
argument of [55] for the Liouville side also has obvious technical limitations.
That left open, even after pushing the existing approaches to absolute technical
limits, the values of parameters belonging to the arithmetically critical region:

2e-20 < A < 2e20 where localization is not expected to hold at the gap edges
yet where w is not close enough to the rationals to guarantee, by simple approx-
imation, a noncollapse of small gaps (that are known to be present). The key to
treating the critical region was an analytic extension of Kotani theory [19], showing
that m-functions, that by the Kotani theory can be analytically extended through
an interval with zero Lyapunov exponents, are also analytic in phase. That allowed
one, under the assumption of no Cantor spectrum, to obtain much stronger, unre-
alistically good, estimates on the modulus of continuity (in the Hausdorff topology)
of the spectrum as a function of the frequency, for the Liouville side. For the Dio-
phantine side, it allowed one to effectively bring the problem down to the question
of reducibility of the cocycle of rotations, which is a much simpler small denomi-
nator problem. See [18] for an account of ideas in the proof of [19]. This analytic
extension of Kotani theory was further developed by Avila in [14], where it was
used to show density of positive Lyapunov exponents for analytic quasiperiodic
SL(2, R) cocycles over arbitrary irrational rotations of Tb.

3.5. Multidimensional Case: d > 1. As mentioned above, there are very
few results in the multidimensional lattice case (d > 1). Essentially, the only
result that existed before the recent developments was a perturbative theorem-
an extension by Chulaevsky-Dinaburg [56] of Sinai's method [178] to the case of
operator (1) on t2 (7Gd) with V = Av(n w), w c Rd, where v is a cos-type function
on T. This also holds nonperturbatively for any real-analytic v (see [40]). Note
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that since b = 1, this avoids most serious difficulties and is therefore significantly
simpler than the general multidimensional case. We therefore have:

THEOREM 15. For any e > 0, there is A(v, e), and for A > .\(v, e), SZ(A, v) C
Td with mes(SZ) < e, so that for w V 0, operator (1) with VV,, as above has Anderson
localization.

This should be confronted with the following theorem of Bourgain [38, 40]:

THEOREM 16. Let d = 2 and v(O) = cos 27r9 in H = Ha,, defined as above.
Then for any A the measure of w s. t. H, has some continuous spectrum is positive.

Therefore, for large A there will be both w with complete localization as well
as those with at least some continuous spectrum. This shows that nonperturbative
results do not hold in general in the multidimensional case! Perturbative results,
however, had been obtained; see the next section.

A similar (in fact, dual) situation is observed for one-dimensional multifre-
quency (d = 1; b > 1) case at small disorder. One has, by duality:

THEOREM 17. Let H be given by (19) with 0, w E Tb and v real analytic on
Tb. Then for any e > 0, there is A(v, e) s.t. for A < A(v, e) there is SZ(A, v) C Tb
with mes(1l) < e so that for w V SZ, H has purely absolutely continuous spectrum.

And also

THEOREM 18. Let d = 1, b = 2, and v be a trigonometric polynomial on TZ

with a nondegenerate maximum. Then for any A measure of w s.t. Ha,, has some
point spectrum, dense in a set of positive measure, is positive.

Therefore, unlike the b = 1 case (see Theorem 21), nonperturbative results do
not hold for absolutely continuous spectrum at small disorder.

3.6. Perturbative Localization. The key perturbative localization results
are [178, 92, 82], and some extensions. [178] and [92] do not use analytic meth-
ods and thus the results establish localization under just the C2 (plus a cos-type)
condition, something unmatched by the nonperturbative methods. Sinai's theorem
also establishes Cantor spectrum under the same C2 cos-type condition. Eliasson's
result works for general Gevrey-class potentials.

While the previous section demonstrates the limitations of the nonperturbative
results, the nonperturbative methods have been applied to significantly simplify the
proofs and obtain new perturbative results that previously had been completely
beyond reach.

Many such applications that are outside the scope of this article are described
in [40]. In particular, new results on the construction of quasiperiodic solutions in
Melnikov problems and nonlinear PDE's, obtained by using certain ideas developed
for nonperturbative quasiperiodic localization (e.g., the theory of semi-algebraic
sets) are presented there. Other results in this group contain localization for the
skew-shift model [44], almost periodicity for the quantum kicked rotor model [36,
40], and localization for potentials in higher Gevrey classes [132].

The main goal in a nonperturbative method is to obtain exponential off-
diagonal decay for the matrix elements of the Green's function of box-restricted
operators along with subexponential bounds on the distance from the spectrum of
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such box-restrictions to a given energy. From that result one can obtain localiza-
tion through elimination of energy via an argument involving complexity bounds
on semi-algebraic sets (see [40]).

A nonperturbative way to achieve the desired Green's function estimates uses
Cramer's rule to represent the matrix elements of the resolvent. Then, in the one-
dimensional (in space) case, it is often possible to obtain the estimates from the
positivity of Lyapunov exponents: uniformly for the numerator, and from large
deviation bounds for the subharmonic functions for the denominator. This is done
in one step for a sufficiently large scale (see Section 3.3.)

A perturbative way consists of establishing the desired estimates in a multiscale
scheme: namely, the estimates are proved outside a set of parameters of (subex-
ponentially) decaying (in the size of the box) measure. Moreover, this set should
be shown to have a semi-algebraic description, in order to make possible sublinear
upper bounds on the number of times a trajectory of a given phase (under the un-
derlying rotation or other ergodic transformation of the torus) hits the "forbidden"
set. This, plus certain subharmonic function arguments, allows passage to a larger
scale through a repeated use of the resolvent identity.

An application that is most relevant to the current article is localization for a
"true" d > 1 situation. The best currently available result is the following recent
theorem [42]:

THEOREM 19. Let d = b and let v be real analytic on Td such that for all
i = 1, ... , d and (01....

) ei-1, Bi+1 i ... , 9d) E T d-1, the map

Bi H v(01i...,Bi,...) Bd)

is a nonconstant function of U. E T. Then for any E > 0, there is .\(v, E) s.t. for
.\ > A(v, E), there is Q(.\, v) C Td with mes(1l) < E so that for w Q operator (1)
with Vn = .v(n1w1i... , ndwd) has Anderson (and dynamical) localization.

This result was obtained previously, for d = 2 only in [45]. There were some
serious purely arithmetic difficulties that prevented an extension of this result to
higher dimensions. In the previous results on localization, there were two major
steps: estimates on the Green's function for a fixed energy and elimination of energy.
The main difficulty in the multidimensional case lies in establishing the sublinear
bound, described above, that enters in the first step. It is for this bound that
an arithmetic condition on w was needed. The condition used was to guarantee
that the number of (nl, n2) E [1, N]2 such that (n1w1i n2w2) (mod Z2) E S is
bounded from above by N`' for some w < 1, uniformly for all semi-algebraic sets S
of degree D, with D/ = o(,) and with the measure of all horizontal and vertical
sections S., satisfying log mesSx = 0009 n, ). This condition roughly means that
too many points close to an algebraic curve of a bounded degree would force it to
oscillate more than it should. Such a statement is essentially two-dimensional and
not extendable to d > 3. In Theorem 19, Bourgain circumvents it by using from the
beginning the theory of semi-algebraic sets to eliminate energy and the translation
variable to get conditions on w (that depend on the potential) already in the first
step.

3.7. Small Coupling. Only the one-dimensional case is well understood. The
first application of KAM in this setting is due to Dinaburg-Sinai [69]. The most
comprehensive perturbative result belongs to Eliasson [81]
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THEOREM 20 ([81]). For Diophantine w and V : Td -- R analytic in the
strip of width r, there exist e = e(r, w) such that for IV I < e and a. e. E the cor-
responding cocycle is analytically reducible. The spectrum of H is purely absolutely
continuous for all 0.

The dependence of c on w is through the constants in the Diophantine class.
The set of E is characterized by the rotation number of the cocycle being either
Diophantine or rational with respect to w. For other energies in the spectrum, Elias-
son's theorem gives at most linear growth of the norms of the transfer-matrices
(sublinear in the case of the irrational rotational number). While Eliasson's the-
orem was proved for the continuous setting, the discrete version as above follows
similarly. Also, what comes from Eliasson's method is a more general statement
on arbitrary (not necessarily Schrodinger) analytic quasiperiodic cocycles that are
close to constant cocycles.

3.7.1. Nonperturbative results. For Schrodinger operators with analytic poten-
tial and b = d = 1, a nonperturbative method based on duality (in one way or
another) and localization for the dual (generally long range) model is now avail-
able. Let 7-l = L2 (([0, 27r), dO/2ir) x Z). The duality transform is a unitary operator
U : 7-1 -f 7-l defined by (U0) (,q, m) = q(m, rl + irwm). We then define H = U-1HU
where by H we understand the direct integral in 0 of H,,B. It is shown in [107]
that for H of the form (19) with v E P2, the pure point spectrum for a.e. 0 for H
implies absolutely continuous spectrum for a.e. 0 for H. For the almost Mathieu
operator Ha = H4/a, leading to the duality property for the almost Mathieu family.
For other potentials, H is usually long range, thus the methods of proving local-
ization that are based on the Lyapunov exponents do not work. A non-Lyapunov
exponent based method for such one- (and quasi-one-) dimensional models was de-
veloped in [47]. This method studies large deviations for the quantities of the form
1n In I det(H - E)AI and uses path-determinant expansion for the matrix elements
of the resolvent. For the cosine potential, many ideas of [118] apply (see [47]). As
a result one obtains

THEOREM 21. Let H be an operator (19), where v is real analytic on T and
w is Diophantine. Then, for A < A(v), H has purely absolutely continuous spectrum
for a. e. 0.

We note that an analogue of this theorem does not hold in the multifrequency
case (see Section 3.5).

A certain measure-theoretic version of it, allowing nonlocal Laplacians but lead-
ing only to continuous spectrum, is also available; see [40]. The same ideas allow
extension of quasiperiodic localization results to the strip of arbitrary dimension
[46].

An important feature of these nonperturbative results [118, 47] is that the
duality theorem of [107] is used as a black box, and all the analysis is performed
for the dual model H = H,,,(,,,e defined on P2 (Z)

(Hu)n = > ukun_k + 2 cos(27rO + nw)un, (27)

where f)k are the Fourier coefficients of v(x) = >,vke2aikx. The existence of an ex-
ponentially decaying eigenfunction with eigenvalue E for some 0 for the dual model
corresponds to reducibility for the original cocycle at E. While localization (and re-
ducibility) fail generically (even in the perturbative regime), it turns out that for all
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energies and nonperturbatively small couplings, one can establish so-called almost
localization for the dual model, which means exponential decay away from a sparse
sequence of resonances [20]. The main advantage of the cosine potential in (27) is
that it leads to the sequence of resonances (finite for a.e. 0 but infinite for a dense
G6 of 0) being the same for all energies, while for other potentials resonances may
depend on energy which leads to the need for the elimination of energy techniques.
These almost localization estimates can be used to extend Eliasson's result to the
nonperturbative setting, with the optimal smallness requirement in the case of the
almost Mathieu operator.

We will say that a cocycle is almost reducible if it is analytically conjugate to a
cocycle in Eliasson's perturbative regime. The dynamical properties and thus spec-
tral consequences that hold in this regime should then follow for almost reducible
cocycles and associated operators. It is shown in [20] that almost localization es-
timates for H lead to almost reducibility for the cocycle associated with H, and
thus such almost reducibility can be established for all energies, which allows for
making very precise spectral conclusions. The idea of reducing the nonperturbative
regime to the perturbative one was already realized by Avila and Krikorian [21] for
a.e. E in the spectrum throughout the regime of zero Lyapunov exponents. The
analysis of [21] cannot work, however, for all energies, particularly for the gap edges
which are responsible for some important effects. It should be mentioned, however,
that the dynamical estimates of [20] allow to obtain the spectral and dynamical
consequences directly by nonperturbative analysis, without referring to Eliasson's
theorem. Thus, in particular, a larger range of Diophantine frequencies can be
covered.

This nonperturbative analysis leads to the following

THEOREM 22 ([20]). Under the conditions of Theorem 21 and for the same
value of .\(v), we have

1. The integrated density of states is 1-Holder.
2. The spectral measures are absolutely continuous for all phases.

For the almost Mathieu case, v = cos, the value of A(v) is optimal: A (v) = 2.
The first statement was recently obtained by Ben Hadj Amor in Eliasson's

perturbative regime [31]. Other results on this topic include [35] where e

regularity was obtained for the almost Mathieu operator in the perturbative regime,
and [104] where

z
- e regularity was shown throughout the noncritical regime for

the almost Mathieu operator under a strong Diophantine condition. Goldstein and
Schlag [103, 104] also obtained regularity for analytic v in the regime of positive
Lyapunov exponents but at the expense of a worse Holder constant (see Theorem
9 and the discussion after it).

The first statement of Theorem 22 is optimal in several ways. Under the con-
ditions of the theorem, there are square-root singularities for the integrated density
of states at the gap edges, so 2-H6lder cannot be improved. It is easy to see that
for a fixed JAI > 0 and generic w, the integrated density of states is not Holder, and
Bourgain [40] showed that for v = cos and Al = 1 even a fairly mild Diophantine
condition is not enough to guarantee Holder continuity.

The second statement holds for the almost Mathieu operator without a Dio-
phantine condition on frequency (see Theorem 12, [15]). It therefore is natural to
conjecture
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PROBLEM 9. Prove that for A < A(v), the spectral measures are absolutely
continuous for all phases and all irrational frequencies.

It is known [149] that for even v E C3/2+E there is a large absolutely continuous
component for a set of w that is of full measure and includes all non-Diophantine w.
For even analytic v, this can be combined with Theorem 22 to obtain the existence
statement for all w. However, nothing is known for non-even v, nor about purity
other than in the almost Mathieu case.

The analysis of [20] also provides a strengthening of the Ten Martini Problem:
a solution of the so-called Dry Ten Martini Problem for the case of Diophantine
frequencies.

The gap labeling theorem (see [27]) states that the integrated density of states
takes values of the form kw + m mod Z on each gap in the spectrum. The Dry Ten
Martini Problem is to show that all gaps predicted by the gap labeling theorem
are actually open in the case of the almost Mathieu operator. It was obtained for
Liouville w [55], as well as for Diophantine w in perturbative regime, A > A(w)
([164], based on [82]). We have

THEOREM 23. The dry version of the Ten Martini Problem holds for Dio-
phantine w, A # -2,0,2.

This leaves open the question for a regime intermediate between Diophantine
and Liouville frequencies (which is arithmetically critical, as argued in [19]) as well
as the critical value of A = 2 and all frequencies.

PROBLEM 10. Prove the Dry Ten Martini Problem for all values of parameters.

This would also have some interesting implications for potentials of the form
cos(wnT) with 1 < T < 2 [152].
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Another important differential equation is the heat or diffusion equation

a
at0 =-Ho. (1.2)

In order to investigate either of these equations, it is extremely useful to know as
much as possible about the operator H and its spectrum. In general the Schrodinger
operator H is of the form

H=Ho+V.
The free operator Ho represents the kinetic energy of the particle. In the absence
of magnetic fields, it is given by the Laplacian

d a2
Ho = - A

=
- E 2

V=1
ax v

The potential V encoding the forces F(x) = -VV(x) is acting as a multiplication
operator in the Hilbert space L2(W ).

Occasionally, we will replace Ho with the operator Ho (B) which contains a
homogeneous magnetic field. For d = 2 Ho(B), B > 0, is given by

_ a 1 1

H0(B) =
(iax

2Bx2)

2

+ (ax2
a

+ 2Bx1)
2

In contrast to Ho(B = 0), the spectrum of Ho(B) for B > 0 is a countable set
a(Ho(B)) = {(2n + 1)B; n c N}. The energies En = (2n + 1) are eigenvalues of
Ho(B) of infinite multiplicity, called the Landau levels.

1.2. Random Potentials. First-order physical modeling often assumes an
ideal background, e.g., a homogeneous material without any impurities. For ex-
ample, in ideal crystals the atoms or nuclei are supposed to be distributed on a
periodic lattice (say the lattice Zd) in a completely regular way. We assume that a
particle (electron) at the point x E Rd feels a potential of the form q f (x - i) due
to an atom (or ion or nucleus) located at the point i E Zd. We call the function
f the single site potential. The coupling constant q represents the charge of the
particle at the lattice point i. So, in a regular crystal, the particle is exposed to a
total potential

V(x) = E q f (x - i). (1.3)
iEZZd

The potential V in (1.3) is periodic with respect to the lattice Zd, i.e., V(x - i) =
V (x) for all x E Rd and i E Z . The mathematical theory of Schrodinger operators
with periodic potentials is well developed (see, e.g., [35, 112, 150]). It is based on a
thorough analysis of the symmetry properties of periodic operators. The spectrum
of periodic Schrodinger operators has a band structure and the spectrum is purely
absolutely continuous, i.e.,

00

a(H) = U [an, bn] with an < bn < an+1) (1.4)
n=o

asing(H) = 0, Q(H) = aac(H). (1.5)
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The real world is not ideal. Solids occur in nature in various forms. Sometimes they
are (almost) totally ordered, sometimes they are more or less completely disordered.
For a mathematical modelling of disordered solids two ingredients are essential: the
spatial homogeneity in the mean and the disappearance of long range correlations.
In full generality these properties are studied in the theory of ergodic operators.
This class of operators contains, e.g., quasicrystals and can also be related to ran-
dom matrices. In this publication we will be concerned with random Schrodinger
operators.

The most popular and best understood model of a disordered solid is the alloy-
type Schrodinger operator. It models a mixture of different atoms located at lattice
positions. The type of atom at the lattice point i is assumed to be random. These
particles are represented by randomly distributed coupling constants qi encoding
the different charges. The total potential is given by

V,,, (x) = E qi(w) f (x - i). (1.6)
2EZd

When talking about the alloy-type model, we will mean (1.6) with the following
assumptions:

(1) The single site potential f is bounded, non-negative and strictly positive
on an open set.

(2) f satisfies f (x) < C (1 + I xl)-(d+6) for some C and e > 0.
(3) The random variables qi are independent and identically distributed ran-

dom variables on a probability space (Q, .P,1?).
(4) The common probability distribution of the qi is denoted by Po. Its sup-

port supp Po is compact and contains at least two points.
Assumption (1) can be considerably relaxed. For example, for most of the following
results one may allow local singularities for f. By assuming (1) we avoid technical
difficulties which may obscure the main argument. More details on weaker condi-
tions can be found in the papers cited. Assumption (2) ensures that the sum in
(1.6) is convergent. The compactness of suppPo is convenient but not always nec-
essary and in some especially marked situations we consider also unbounded single
site distributions. However, for many of our results we need that the qj (and hence
supp Po) are bounded below. The physical model suggests that supp Po consists of
finitely many points only (the possible charges). However, for many mathematical
results it is necessary (or at least convenient) to suppose that Po has a (bounded)
density g, i.e., Po = g(.\) dA.

One might argue that such an assumption is acceptable as a purely technical
one. On the other hand one could argue the problem is not understood as long as
it is impossible to handle the physically relevant case of finitely many values.

A simplified version of the alloy-type Schrodinger operator above is the (dis-
crete) Anderson model. Here the Hilbert space is the sequence space $2(7Zd) instead
of L2 (Wi) and the free operator Ho is replaced by the discrete analogue of the Lapla-
cian. This is the finite-difference operator

(hou)(n) = - E (u(m) - u(n)). (1.7)
Im.-n1=1

Above we set Inj = Ed 1 Intil on Zd. The potential is a multiplication operator
V = V, on £2(7Gd) with V,(i) independent, identically distributed, and the total
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Hamiltonian is defined by h = ho +Vw. We will call this setting the "discrete case"
in contrast to Schrodinger operators on L2 (R') which we refer to as the "continuous
case."

The most frequently used and most important approach to model amorphous
material like glass or rubber defines the random locations of the atoms by a Poisson
random measure. This random point measure can be characterized by the number
nA = 1. (A) of random points in the set A. We assume that the random variables
nA and nB are independent for disjoint (measurable) sets A, B and P (nA = k) _
JAlk- e-JAJ (JAI denotes the Lebesgue measure of A). With this notation we may
write the Poisson potential for an amorphous solid as

q.f(x-) d(r). (1.8)V. (x) = f

To model thin disordered layers, we also consider random potentials which are
concentrated along a hypersurface in Rd (or Zd). For example, we are going to
consider "surface" alloy potentials. To define such a potential let us write Rd =
Rd. x Rd2 then

Vw(x1, x2) = qi, (w)f (xl - i1i x2)
ii EZd1

is a random potential which is concentrated along the hypersurface Rdl in ](8d. In
addition, there may be a random or periodic background potential on Rd.

Most of the theorems we are going to discuss can be proved for rather general
single site potentials f and probability distributions P0 of the qi. For example, most
of the time we can allow some local singularities of f. To simplify the following
discussion, we will assume in this paper the conditions defined in the context of the
alloy-type potential.

The above random operators are examples of "ergodic operators." This class
of operators includes not only most random operators but also periodic and almost
periodic operators. Most of the results of Section 2 and part of Section 4 can be
shown for general ergodic operators. We refer to [148, 15, 27, 119, 166] and [68]
for a discussion of this general context.

1.3. The Concept of the Integrated Density of States. The (integrated)
density of states is a concept of fundamental importance in condensed matter
physics. It measures the "number of energy levels per unit volume" near (resp.
below) a given energy.

Typical systems arising in solid state physics have periodic or ergodic poten-
tials. Consequently, the spectrum of the corresponding Hamiltonian is not discrete.
Therefore, we cannot just count the eigenvalues below E or within an interval
[El, E2]. On the other hand, the number of electrons in such a system, which ex-
tends to infinity, ought to be infinite. For these two reasons, the Pauli exclusion
principle does not make immediate sense. (How do we distribute infinitely many
electrons on a continuum of spectral energies?)

However, there may be a chance to make sense out of the Pauli principle by
first restricting the system to a finite volume A. Inside A there should be only
finitely many electrons, in fact, we may assume that the number of electrons in a
given A is proportional to the volume JAI of this set.
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If P is a finite-dimensional orthogonal projection, then tr(P) is the dimension
of its range. If P(_,,,,,EI is the spectral projection of a random Schrodinger operator
(which as a rule has infinite-dimensional range) and if AL is a cube of side length
L around the origin, then we may call tr(XALP(_.,E]) the restriction Of P(-,,,E] to
the cube AL. Above XA is the characteristic function of the set A. Thus, we may
try to define the integrated density of states as

N(E) Lim IALI
tr (XALP(-.,E]). (1.9)

Of course, we have to prove that the limit in (1.9) does exist and is not trivial. We
will deal with these questions in Section 2.

There is another way to define the integrated density of states which turns
out to be equivalent to (1.9): We restrict the operator H4J to the Hilbert space
L2(A). To obtain a self adjoint operator we have to impose boundary conditions
at c7A, e.g., Dirichlet or Neumann boundary conditions. We call the corresponding
operators HD and Hn , respectively. These operators have compact resolvents, i.e.,
their spectra are purely discrete. We denote by

EI(HD) < E2(HD) < E3(HD)... (1.10)

the eigenvalues of HD (and analogously for Hg) in increasing order, where eigenval-
ues are repeated according to their multiplicity. The eigenvalue counting function
of an operator A with purely discrete spectrum is defined by

N(A, E) = #{ n I E, (A) < E} = tr (P(_,,E](A)).

Analogously to (1.9), we can therefore define

ND(E) li N(HD E

(1.11)

, )m
LI

1
tr (P= li (HD)) (1 12(_.,E]m

L--.oo IAL I

and similarly for Neumann boundary conditions,

. )

NN(E) = lim 1 N(HN E),

IALI

= lit 1
t (P (HD)) (1 13

L--.oo
r .(_. E]

IALI
. )

This procedure to define the integrated density of states makes sense only if N, ND
and NN all exist and agree.

This is, indeed, the case. We will see in the sequel that each of these definitions
has its own technical advantage. The integrated density of states N is basic for
studying the physical (in particular the thermodynamical) properties of disordered
systems. tFrom a mathematical point of view, the properties of N are interesting
in their own respect. Moreover, properties of N constitute an essential input to
prove localization properties of the system.

It is the aim of this review to discuss some of the problems and results connected
with the integrated density of states. In Section 2 we sketch the proof of the
existence of the integrated density of states and discuss some fundamental questions
concerning the probabilistic and the functional analytic approach. In Section 3
we study the behavior of the integrated density of states at the boundary of the



654 W. KIRSCH AND B. METZGER

spectrum. In the last section we discuss some basic ideas concerning the regularity
of the integrated density of states.

Acknowledgements. It is a pleasure to thank many colleagues for fruitful collab-
orations and stimulating discussions on the subject. There are too many to name
them here. We also would like to stress the fact that the selection of topics within
our subject and the way of presenting them is due to our very personal preferences.
We have most certainly left out important topics and works. This is to be blamed
on our ignorance and the limitation of time and space.

We would like to thank Jessica Langner and Riccardo Catalano for their skillful
typing and careful proofreading of the manuscript.

2. The Density of States Measure: Existence

2.1. Introduction and Historical Remarks. The first existence proofs for
the integrated density of states go back at least to Pastur. See [145] for an early
review of the subject.

There are a couple of methods to prove the existence of the integrated density
of states. One of them, invented and used by Pastur, is based on the Laplace
transform of the integrated density of states and of its approximants. For this
method, one proves the convergence of the Laplace transform and uses the fact
that convergence of the Laplace transform implies the vague convergence of the
underlying measures.

To prove the convergence of the Laplace transforms, it is useful to express
the Laplace transform of the finite-volume quantities using the Feynman-Kac-
representation of the Schrodinger semigroup e-'H. Feynman-Kac and Laplace
transform methods are also used to prove the equivalence of the definitions of the
integrated density of states (1.9) and (1.12), (1.13) with either Neumann or Dirich-
let (or more general) boundary conditions (see, e.g., Pastur [145] or [74, 34, 68]).
The definition of the integrated density of states via (1.9) was used by Avron and
Simon in the context of almost periodic potentials [3]. They also proved that the
spectrum of the operator coincides with the growth points of the integrated density
of states. In Section 2.2 we will follow this approach to prove the existence of the
integrated density of states.

One of the virtues of the definition of the integrated density of states via bound-
ary conditions (1.12) and (1.13) is the fact that they allow lower and upper bounds
of N "for free." In fact, one way to examine the behavior of N at the bottom (or
top = oo) of the spectrum is based on this approach. We will discuss this approach
in Section 2.3 and the estimates based on it in Section 3.

As a rule, quantitative estimates on the effect of introducing boundary con-
ditions are hard to obtain. For example, if one investigates the behavior of N at
internal spectral edges it seems extremely difficult to control the perturbation of
eigenvalues due to boundary conditions. Klopp [97] proposed an approximation
of the random potential by periodic ones with growing period. This way we lose
monotonicity which is at the heart of the Neumann-Dirichlet approach. Instead one
can prove that the approximation is exponentially fast thus gaining good estimates
of the remainder.

Finally, we would like to mention that one can also define the integrated den-
sity of states via Krein's spectral shift function. This reasoning is well known in
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scattering theory (see, e.g., [9, 180]). In connection with random Schrodinger op-
erators, the spectral shift function was first used by Simon [159] to investigate
spectral averaging. Kostrykin and Schrader [106] applied this technique to prove
the existence of the integrated density of states and the density of surface states.
This method turns out to be useful also to investigate regularity properties of the
integrated density of states [107].

The results of this section are true not only for the specific random potentials
discussed in Section 1, but rather for general ergodic operators. In fact, the proofs
carry over to this general setting in most cases. We refer to the survey [68] for
details.

2.2. The Existence of the Integrated Density of States. In this section
we prove the existence of the integrated density of states as defined in (1.9). To do
so, we need little more than Birkhoff's ergodic theorem (see, e.g., [113]). Below,
as in the rest of this paper, we denote by IE the expectation with respect to the
probability measure P.

PROPOSITION 2.1. If cp is a bounded measurable function of compact support,
then

lim
BALI

tr (W(Hw)XAL) = E (tr (XAIW(Hw)XA1)) (2.1)
L-oc

for P-almost all w.

PROOF. Define Ei = tr (cp(H,,,)XA1(i)). t;i is an ergodic sequence of random
variables. Hence, Birkhoff's ergodic theorem implies that

IAL tr(Sp(HW)XAL) = IALI l,i
ZEAL

converges to its expectation value.

The right-hand side of (2.1) as well as IALI-1 tr (cp(HH) XAL) are positive linear
functionals on the bounded, continuous functions. They define positive measures v
and VL by

f cp(A)dv(A) = E( (tr

and

-iR
,p (A) dvL (A) =IALI tr(cp(Hw)XAL )

Equation (2.1) suggests that the measures vL might converge to the limit measure
v as L --+ oo in the sense of vague convergence of measures. The problem is (2.1)
holds only for fixed cp on a set Q. of full probability; respectively (2.1) holds for all
cp for w E n, SZw. However, this is an uncountable intersection of sets of probability
one. The problem is solved by approximating Co(TR) by a countable, dense subset.

THEOREM 2.2. The measures vL converge vaguely to the measure v P-almost
surely, i.e., there is a set i1o of probability one, such that

f cp(A)dvL(A) --j f cp(A)dv(A) (2.2)

for all cp E Co(]R), the set of continuous functions with compact support, and all
wEno.
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DEFINITION 2.3. The non-random probability measure v is called the density
of states measure. The distribution function N of v, defined by

N(E) = v(] - oo, E]),

is known as the integrated density of states.

Using Theorem 2.2 it is not hard to see:

PROPOSITION 2.4 ([3]). supp(v) = E [= a(H,) a.s.].

2.3. Existence via Dirichlet-Neumann-Bracketing. Our first approach
to define the density of states measure was based on the additivity of tr(cp(HH,)XAL )
and the ergodic theorem by Birkhoff. This very naturally fits in the concept of self-
averaged quantities from physics.

However, for some part of the further analysis, an alternative approach-the
Dirichlet-Neumann bracketing-is more suitable. Let (H,)N and (H,,,)D be the
restrictions of H, to L2 (A) with Neumann and Dirichlet boundary conditions. See,
e.g., [150] for an appropriate definition of these boundary conditions via quadratic
forms. Furthermore, we define (for X = N or D, and E E R)

NA (E) := N((H,,,)n , E) = tr(X(-.,EI (HWn )). (2.3)

Our aim is to consider the limits

NX (E) = urn I 1 N X (E). (2.4)

The quantities ND and NA as defined in (2.3) are distribution functions of point
measures of and v1 concentrated in the eigenvalues of HD and HA N, i.e.,

Nn (E) = vn ((-oo, E]). (2.5)

The convergence in (2.4) is meant as the vague convergence of the corresponding
measures or, what is the same, as the pointwise convergence of the distribution
function -I- NN at all continuity points of the limit.

Let us first look at -I- ND (E). The random field Nf is not additive in A,
so that we cannot use Birkhoff's ergodic theorem. However, ND is superadditive,
in the sense that Nf (E) > ND (E) + NDz(E) whenever A = AI U A2 with
(A1)° fl (A2)° = 0. (M° denotes the interior of the set M.) Similarly, Nn is
subadditive, i.e., -N" is superadditive.

THEOREM 2.5. ND is superadditive and NA is subadditive. More precisely, if
A = Al U A2 and (AI)° f1 (A2)° = 0 then

ND (E) + N° (E) < ND (E) < ND (E) < N (E) + N (E).

Fortunately, there are sub- and superadditive versions of the ergodic theorem,
going back at least to Kingman [66]. The situation here is ideal for the superadditive
ergodic theorem by Akcoglu and Krengel [2]. Indeed, one can prove that (for fixed
E) the processes ND (E) and NN (E) are superadditive and subadditive random
fields in the sense of [2] respectively (see [74, 111]). This yields the following
result.
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THEOREM 2.6 ([74]). The limits

ND (E) = lim N(Hf A, E)
L-oo IALI

and

NN(E) = lim
L-.oo

N(H A, E)
ALI

exist P-almost surely. Moreover,

657

NN (E) = inf
n

lE (N(H AL ' E)).
L

The functions NX are increasing functions. However, it is not clear whether
they are right continuous. To obtain distribution functions, we define NX by making
the NX right continuous

ND (E) = inf ND (E')
E'>E

(2.6)

NN(E) = inf NN (E').
E'>E

(2.7)

Note that NX and NX disagree at most on a countable set. Since ND are NN are
distribution functions, they define measures by

vD ((a, b]) = ND (b) - ND (a) (2.8)

1/N ((a, b]) = NN(b) - NN(a). (2.9)

From Theorem 2.6 we obtain the following corollary, which we will use to
investigate the asymptotic behavior of the integrated density of states (e.g., for
small E).

COROLLARY 2.7. For any A,

JAI
1E (N(HHnL) E )) < ND (E) < NN(E)

IAA
IF (N(Hwn , E))

Our physical intuition would lead to the hope that N(E) = ND(E) = NN (E)
since, after all, the introduction of boundary conditions was a mathematical artifact
that should not play any role for the final physically meaningful quantity. This is,
in fact, true under fairly weak conditions (see [145, 74, 34] and references given
there).

THEOREM 2.8. The distribution functions N(E), ND(E) and NN(E) agree.

Theorem 2.8 follows from Theorem 2.10 in the next section. An alternative
proof for the Anderson model can be found in the review [70]. Theorem 2.8 implies
a fortiori that the quantities IAL ND (E) and IAL ND (E) converge to the same
limit, except for a countable set of energies E. The exceptional points, if any, are
the discontinuity points of N. We will discuss continuity (and, more generally,
regularity) properties of N in Section 4.
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2.4. A Feynman-Kac Representation for N. In this section we will con-
sider the Laplace transform of the integrated density of states (both N(E) and
NX (E)). The Laplace transform of a measure v with distribution function F is
defined by

v(t) = F(t) := J e--t dv(A) =
J

e-At dF(A). (2.10)

There is a very useful representation of the Laplace transform of N (and of NX )
via the Feynman-Kac formula. Using this representation one can show that N and
NX are, indeed, the same quantities. Moreover, the Feynman-Kac-representation
of N is very useful to compute the asymptotic behavior of N for small or large
energies.

The key ingredients of the representation formula for N(t) are the Brownian
motion, the Brownian bridge and the Feynman-Kac-formula. For material about
these concepts, we refer to Reed-Simon [149, 150] and Simon [154].

By P"' we denote the measure underlying a Brownian bridge starting in theO'X

point x E Rd at time 0 and ending at time t in the point y. lEt"Y denotes integrationO'X

over P "Y. A Brownian bridge is a Brownian motion b conditioned on b(t) = y. Note
that Po' is not a probability measure. lF 'Y has total mass p(t, x, y) where p denotes
the probability kernel of the Brownian motion.

THEOREM 2.9 (Feynman-Kac formula). If V E L pC,unif (][8d) for p = 2 if d < 3,
p > d/2 if d > 3, then e-tH has a jointly continuous integral kernel given by

e-tH(x y) (2.11)

e f0 v(b(s)) dsdpo,x(b)

The integration here is over paths b(.) E C([0, t]).

We remind the reader that we always assume bounded potentials so that the
conditions in Theorem 2.9 are satisfied. In the context of the density of states, we
are interested in a Feynman-Kac formula for Hamiltonians on bounded domains.
Let us denote by 1 the set of all paths staying inside A up to time t, i.e.,

b(s)EAforall0<s<t}.
Then e-'HD is simply given by restricting the integration in (2.11) to the set 11k,
e.g.,

e-tHA
(x y) = IEO, (e fa v(b(s)) dsXp, )
1 A

A proof can be found in Simon [154] and Aizenman-Simon [1]. There is also a
Feynman-Kac formula for Neumann boundary conditions (see [74] and references
given there).

Now we are able to state the probabilistic representation of the density of states
measure in terms of Brownian motion.

THEOREM 2.10. The Laplace transforms of N(E), ND (E) and NN (E) agree
and are given by

N(t) = ND(t) = NN(t) = E X E o(e-fo V(b(s))ds). (2.12)
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For a detailed proof see, e.g., [68] and references there. The first step in
the proof is to check that the right-hand side of (2.12) is finite for all t > 0.
Interchanging the expectation values with respect to random potential and the
Brownian motion, this follows from Jensen's inequality.

The second step of the proof is to compare (2.12) and the Laplace transforms
of the approximating density of states measure vL and vD. To prove the theorem
one has to estimate the hitting probability of the boundary of A for a Brownian
motion starting and ending far away from the boundary. Using standard facts of
Brownian motion, this tends to 0 in the limit CAI , oo.

Once we know that the Laplace transforms of N, ND and NN agree, it follows
from the uniqueness of the Laplace transform that N, ND and Nn' agree themselves
(see, e.g., [40]).

2.5. The Density of Surface States. We would like to define a density of
states measure for surface potentials as well. Suppose we have a surface potential
of the form

V,f(xi, x2) _ qi1 (w)f (x1 - 21,x2)
it EZdl

where, as above, x E W' is written as x = (XI, x2) with xI E Rd1 x2 E Rd2. In ad-
dition to the surface potential, there may be a random or periodic potential Vb(x),
which we call the "bulk" potential. The bulk potential should be stationary and
ergodic with respect to shifts Tj parallel to the surface. Stationarity perpendicular
to the surface is not required in the following.

This allows "interfaces" in the following sense: Let dl = d - 1, so the surface
has codimension one. Thus it forms the interface between the upper half space
V+ _ {x; x2 > 0} and the lower half space V. The bulk potential Vb may then
be defined by Vb(x) = V1 (X) for x2 > 0 and = V2(x) for x2 < 0. Here VI and V2
are random or periodic potentials on Rd. We set H6 = Ho + V, which we call the
"bulk operator" and H, = Hb + V, .

We could try to define a density of states measure in the same way as in (2.1),
i.e., look at

lim tr(co(HW)XA,)

It is not hard to see that this limit exists and equals

(2.13)

]E (tr (XA1 cP(Hb)XA1 )) . (2.14)

In other words, (2.13) gives the density of states measure for the bulk operator.
After all, this is not really surprising. The normalization with the volume term Ld
is obviously destroying any influence of the surface potential.

So it sounds reasonable to choose a surface term like Ld1 as normalization and
to consider

i m Ldl tr(co(HW)XAL ). (2.15)

However, Definition (2.15) gives a finite result only when supp p fl cr(H') = 0.
To define the density of surface states also inside the spectrum of the bulk

operator, we therefore set

vs(P) = lim d tr ((co(H,,,) - c7(Hb))XAL). (2.16)
L--.oo L 1
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Of course, it is not obvious at all that the limit (2.16) exists. In [36, 37] the
authors proved that the limit exists for functions cp E Co (R). Hence the density
of surface states is defined as a distribution. The order of this distribution is at
most 3. Observe that, in contrast to the density of states, the limit in (2.16) is
not necessarily positive for positive cp due to the subtraction term. In fact, in the
discrete case it is not hard to see that the total integral of the density of states,
i.e., v5(1), is zero. Therefore, we cannot conclude that the density of surface states
is a (positive) measure.

Kostrykin and Schrader [106, 107] proved that the density of surface states
distribution is actually the derivative of a measurable locally integrable function.
They do not prove that this function is of bounded variation, thus leaving the
possibility that vs is not given by a measure. See also the papers [16, 17] by
Chahrour for regularity properties of the density of surface states on the lattice.

Outside the spectrum of Hb, the distribution vs is positive, so that the density
of surface states is a measure there. In [87] it was proven that below the "bulk"
spectrum a(Hb) the density of surface states can also be defined by using (Neumann
or Dirichlet) boundary conditions. We expect this to be wrong inside the bulk
spectrum.

3. Lifshitz Tails

3.1. The Problem. For a periodic potential V the integrated density of states
N(E) behaves near the bottom E0 of the spectrum a(Ho + V) like

N(E) - C(E - Eo)d/2. (3.1)

This can be shown by explicit calculation for V - 0 and was proved for general
periodic potentials in [81].

On the basis of physical arguments Lifshitz [117, 118] predicted a completely
different behavior for disordered systems, namely,

N(E) ,., CI e-C2(E-Eo)-d"2 (3.2)

as E \ E0 > -oo. This behavior of N(E) is called Lifshitz behavior or Lifshitz
tails. The reason for this peculiar behavior is a collective phenomenon. To simplify
the following heuristic argument, let us assume that V( > 0 and E0 = 0. To find an
eigenvalue smaller than E, the potential V", has to be small on a rather large region
in space. In fact, to have an eigenvalue at small E > 0, the uncertainty principle
(i.e., the kinetic energy) forces the potential to be smaller than E on a set whose
volume is of the order E-d/2. That V", is small on a large set is a typical "large
deviations event" which is very rare-in fact, its probability is exponentially small
in terms of the volume of the set, i.e., its probability is of the order

e-C2 E-d/2
(3.3)

which is precisely the behavior (3.2) predicted by Lifshitz. It is the aim of this
section to discuss the Lifshitz behavior (3.2) of the integrated density of states as
well as its extensions and limitations.

The first proof of Lifshitz behavior (for the Poisson model (1.8)) was given by
Donsker and Varadhan [33]. They estimated the Laplace transform N(t) for t 00
using the Feynman-Kac representation on N (see Section 2.4). Their estimate relied
on an investigation of the "Wiener sausage" and the machinery of large deviations
for Markov processes developed by these authors. To obtain information about
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the behavior of N(E) for E \, 0 = E0 from the large t behavior of N(t) one uses
Tauberian theorems [8, 11]. This technique was already used by Pastur [145, 6]
and developed in [142, 44] and recently in [125].

Donsker and Varadhan [33] needed in their proof of (3.2) that the single site
potential f decays faster than (1 + I xl)-(d+2). They asked whether this condition
is necessary for the result (Lifshitz tails) or just necessary for their proof. It was
Pastur ([146]) who observed that, in fact, the Lifshitz asymptotic is qualitatively
changed if f has long range tails, i.e., if f (x) - C(1+ lxl)-a for a < d+2. Observe
that a > d is necessary for the mere existence of Va,. Pastur proved the behavior

d

N(E) ,,, C1 e-C2(E-Eo) .-d (3.4)

as E \ E0 for d < a < d + 2. We call this behavior Pastur tails. For a disordered
system with constant magnetic field in dimension d = 2, Pastur tails (3.4) were
found for all a > d = 2 in [10].

These results and more observations of the last several years indicate that the
asymptotics of the integrated density of states even at the bottom of the spectrum is
more complicated than expected. To be more precise and following the terminology
of [148], we can distinguish two qualitatively different behaviors in the low energy
asymptotics of the integrated density of states. For short range potentials and "fat"
single site distributions, the asymptotics of N(E) is determined by the quantum
kinetic energy as predicted by Lifshitz. Hence it is called quantum asymptotics
or quantum regime. On the other hand, for long range potentials or "thin" single
site distributions, the leading asymptotics of the integrated density of states is
determined by the potential, i.e., by classical effects. This situation is called the
classical regime.

We will discuss these phenomena in this section. We start with the short range
case (quantum regime). The proof of Lifshitz tails we present here is based on
spectral theoretic arguments close to Lifshitz's original heuristics (see Section 3.2).

We then discuss the long range case (classical regime) (Section 3.3) to some
extent, including recent results [86] of single site potentials with anisotropic decay
resulting in a mixed classical-quantum regime (Section 3.4).

Classical and quantum behavior of the integrated density of states and the
transition between the two regimes is best understood for the Anderson model.
The approach of [125] combines spectral theoretic and path integral methods. We
will present this in Section 3.5.

Lifshitz predicted the behavior (3.1) and (3.2) not only at the bottom of the
spectrum but also for any band edge of the spectrum. To distinguish these two
cases, we will speak of internal Lifshitz tails in the latter case. Investigating Lifshitz
behavior at internal band edges turns out to be much more complicated than at the
bottom of the spectrum. In fact, already the investigation of periodic potentials
at internal band edges is extremely complicated. We will discuss internal Lifshitz
tails (following [97, 104, 105]) in Section 3.6.

Finally, we will look at random Schrodinger operators with magnetic fields in
Section 3.8.

3.2. Lifshitz Tails: Quantum Case.
3.2.1. Statement of the main result. The aim of this subsection is a proof of

Lifshitz behavior close to his original heuristics and without heavy machinery. We
will prove the quantum asymptotics in (3.2) for short range single site potentials
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and "fat" single site distributions. We will make no attempt to reach high generality
but rather emphasize the strategy of the proof.

As before, we consider random alloy-type potentials of the form

V. (x) = L qi (w) f (x - i). (3.5)
iCZd

We assume that the random variables qi are independent and identically distributed
with a common probability distribution Po. We suppose that the support of Po is
compact and contains at least two points.

As always, we also suppose that the single site potential f is non-negative,
bounded and decays at infinity as fast as I xI-(d+E) The technique we are going to
present allows us to treat local singularities of f. (We refer to [80, 86] for details.)

To ensure Lifshitz tails in the sense of (3.2), we need two conditions:
Assumption 1: Define qnin = inf supp(Po). We assume that

Po ([gmin, gmin + E)) > C EN (3.6)

for some C, N and all E > 0 small.
Condition (3.6) means that the distribution P0 is "fat" at the bottom of its

support. Note that this condition is, in particular, satisfied if P0 has an atom at
gmin, i.e., if Po({gmin}) > 0.

The second condition we need is precisely the "short range" condition already
encountered by Donsker and Varadhan [33].
Assumption 2:

f (X) < C (1 + I xi)-(d+2).

We are ready to formulate the main result of this subsection.

THEOREM 3.1. If Assumptions (1) and (2) are satisfied, we have

(3.7)

lim
ln(-lnN(E)) d

- 3 8
E\,Eo

-
ln(E - Eo) 2

( )
.

Observe that equation (3.8) is a weak form of Lifshitz's original conjecture
(3.2). In their work [33], Donsker and Varadhan proved the stronger form for the
Poisson potential

In N(E)
E\,6 E-d/2 -Cd (3.9)

where Cd is a (computable) positive constant.
Both the short range condition (Assumption 2) and the fatness condition (As-

sumption 1) turn out to be necessary for the above result, as we will see later. For
example, if the single site potential f decays substantially slower than required in
the short range condition the integrated density of states decays faster than in the
(3.8).

We define the Lifshitz exponent -y by

=
ln(-1n N(E))

y E\Eo ln(E - Eo) (3.10)

whenever this limit exists. With this notation we may rephrase (3.8) as -y = - d/2.
The Lifshitz exponent for periodic potentials is 0.
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3.2.2. Strategy of the proof. The proof of Theorem 3.1 consists of an upper and
a lower bound. The next subsection will provide us with the tools we need for these
bounds.

It will turn out that the bounds are easier and more natural for positive random
potentials. Therefore, we will split the random potential in a periodic and a positive
random part

V,, (x) = > gmin f(x i) + > (qi(
iEZ" iEZd

)-gmin).f(x-i)

= Vpe1(x) + ,,,(x). (3.11)

We will subsume the periodic potential under the kinetic energy and denote the
positive random potential V, in a slight abuse of notation again by V,,. Thus we
have

H1 with periodic "background" potential Vp,, and

E qi(
jEZd

f(x - i) (3.13)

where the independent qj > 0 have a common probability distribution P0 with
0 = inf (suppPo).

For the upper bound below, we need information about the two lowest eigen-
values of H1 restricted to a box. If Vper - 0, these eigenvalues can be computed ex-
plicitly. However, if Veer jt 0, we need a careful analysis of periodic operators. This
was done in [81] and [129]. Here we restrict ourselves to the case Veer - 0, avoid-
ing some technical complications. Note that this implies Eo = inf (Q(H,)) = 0.
We refer the reader to the papers [80] and [129] for the general case. We also
remark that [86] contains an extension of the approach presented here that works
for Poisson potentials and various other potentials as well.

3.2.3. The Dirichlet-Neumann bracketing. The first step in the proof is to
bound the integrated density of states from above and from below using the Dirichlet-
Neumann bracketing as in Corollary 2.7. We have

JALI E (N(H2AL, E)) < N(E) < JALI
E (N(H AL, E)). (3.14)

The side length L of the cube AL will be chosen later in an E-dependent way when
we send E to E0. We estimate the right-hand side of (3.14) by

IE(N(H AL, E) _ fN(H'ALE) d P

= J N(H AL,E) d P + f N(HWAL,E) dP
El (HW AL )<E E1(Hw AL )>E

P (El (H AL) < E) N(H0 , E ).

With N(Ho N
, E) < (Cl + C2E)d12JAI following from Weyl asymptotics, we get

for 0 < E < 1 the estimate

AL P (El(HDAL) < E) 5 N(E) < CP (E1(H AL) < E). (3.15)
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The problem now is to find upper and lower bounds such that after taking the double
logarithm, the left- and the right-hand side of (3.15) coincide asymptotically. In
general the upper bounds are more difficult than the lower bounds. To prove the
lower bound we only have to "guess" a good test function, whereas for the upper
bounds, one has to prove that all eigenfunctions for energies in [0, E) roughly behave
the same way.

It is an astonishing fact that the lower bound from (3.15) in all known cases
leads to the asymptotically correct behavior of the integrated density of states, a
fact emphasized by Pastur.

3.2.4. The lower bound. For simplicity we restrict ourselves to single site po-
tentials f with supp f c Az so that f ( - i) and f ( - j) do not overlap for i j.
The necessary changes for the general case will become clear when we discuss long
range potentials f.

By the Neumann-Dirichlet bracketing in (3.15), we have for arbitrary L and
any 0 E D(OD) with IRbHIL2(AL) = 1,

N(E) ? IALI-1I (El(HwDL) < E)

IALI-1F ((, Hw b)L2(AL) < E) . (3.16)

A natural choice of 0 for (3.16) seems to be the ground state 00 of -AD , V)0(x)

IALI 2. Unfortunately, this function does not obey Dirichlet boundary conditions
and is therefore not admissible for (3.16).

This problem can be circumvented by multiplying zb0 by a function which is
zero at the boundary of A0. To do so, let us take x E C°° (Rd), suppx C A1,
x(x) = 1 on AZ and 0 < x(x) < 1. We set XL(x) = x(i) and PL(x) = XL(x)'o(x).
Then bL E D(OD), IIOLII > z and

(OL, HW'YL) < (Wo, H,,o) + CL-2

(x)dx+CL2.= IALI-1

'AL V

Note that the "error term" L-2 is due to the influence of the kinetic energy (a
second-order differential operator). Inserting in (3.16) we get

N(E) > IALI-1 ]ED (AL'II-J E - CL-2 1
L ///

\

> IALI-1 F(IALI-1 II f III E qi(w) < E -
CL_2

). (3.17)
TEAL ///

In principle, we can choose L as we like. However, if E < CL-2 estimate (3.17)
becomes useless. So it seems reasonable to choose L = OE-12 and we obtain

(3.17) > IALI-I P(IALI-1 1] qi(w) < CE)
iEAL //

IALI-1 IP (qo < CE)Ld
d

> CIE-2 (CE)E 2 .`s' °2
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Thus we conclude

lim
ln(-ln(N(E))) > -d

(3.18)
E\,O in E 2

3.2.5. The upper bound. The strategy to prove the upper bounds of IP (El (H '
WAL

)

< E) in (3.15) can be divided in two parts. The first step is to find a lower bound
for E1 (HD ) in such a way that it is possible to control the influence of the random

L
potential. This is done by an application of Temple's inequality. The second step
is to balance between the size of AL and the probability of a random potential such
that most of the potential values are small.

We start by stating Temple's inequality for the reader's convenience. A proof
can be found, e.g., in [150].

THEOREM 3.2 (Temple's inequality). Suppose H is a self-adjoint operator,
bounded below which has discrete spectrum and denote by En (H), n = 1, 2, .. .
its eigenvalues (in increasing order, counting multiplicity). If µ < E2(H) and

E D (H) with 110 11 = 1 satisfying (0, H 0) < p, then

El (H) ? ( HO) - (0, H2 0) - (,G,
HO) 2

µ- (0, H0)

To apply Temple's inequality, we set E2(-A ) := it < E2(H,,, ). Note that
by direct computation, El 0 = E0 and E2 (-0 ) L-2. These facts
require a careful analysis if there is a periodic background potential as in (3.11)
and (3.12); see [81].

Next we need a good approximation 0 of the ground state of This is
done by choosing 0 to be the ground state of -ANAL , which is intuitively close to
the correct ground state for small E. The function 0 is given by V)(x) = I AL 1-1/2.

To apply Temple's inequality we have to ensure that with the above choice,
H z()) < p Pt c L-2. We force this to happen by changing the coupling constants

qj to qi = min (qi(w), aL-2) with a suitable a > 0, small enough. If H denotes
the corresponding operator, we have E1 (H) > E1(H). An application of Temple's
inequality to H and an elementary calculation yield the following lemma.

LEMMA 3.3.

El(H",n ) >
2

I1 (3.19)
iEAL

A consequence of the lemma above is the intuitively convincing estimate

P(El(HwNAL) <E) <IID (-)_ E 4i(w) <2E (3.20)
LiEAL

<IIDI Ld E qi(w)<2EI. (3.21)
iI-<L/2

The expression (3.21) for E small very much resembles a large deviation probability
which would lead to a bound exponentially small in the volume term Ld. At first
sight, Cramer's theorem, a result of the theory of large deviation, seems to be
applicable (see, e.g., [31, 32, 58]).

However, there is a complication here: To obtain a large deviation event in
(3.21) we need that E(4j) < E. Thus, if we set L = L(E) = QE-1/2 with 8 > 0
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small, the event (3.21) is, indeed, a large deviation event and we obtain the following
bound.

LEMMA 3.4.

P n
qi (W) < E < Cl e- O2 Ld

L I iEAL

for E close enough to zero and L < 3 E-1/2.

Combining the results above, (3.15) and (3.20), we have proven

N(E) < ClC2E d/2.

3.2.6. Final remarks. The idea of using Neumann-Dirichlet bracketing to prove
Lifshitz tails first appeared in [77]. It was carried over to the discrete Anderson
model by Simon [156] who streamlined it at the same time. The proof was ex-
tended to more general alloy-type potentials by Kirsch and Simon [80], who still
needed reflection symmetry of f. Mezincescu [129] modified the upper bound by
introducing other boundary conditions to get rid of this extra assumption. We refer
to [86] for a rather general proof using these techniques.

3.3. Long Range Single Site Potentials: A "Classical" Case. In this
section we turn to an example of classical behavior of the integrated density of
states near 0 = inf(a(H,)), in the sense of Section 3.1, namely, to long range single
site potential f .

The upper bound on N(E) is easier than for the short range case. While there
is a subtle interplay between the kinetic energy and the potential in the short range
case (f (x) < lxI-(d+2)) it is the potential energy alone that determines the leading
behavior of N(E) (E \. 0) in the long range case.

Assumption: In this section we suppose that

(1 +
I
xl)Q < f (x) < (I +cxl)a (3.22)

THEOREM 3.5. Assume (3.6). If (3.22) holds for an a with d < a < d + 2,
then

hm
In (- In N(E)) d

E\Eo lnE a-d (3.23)

In the terminology of (3.10), Theorem 3.5 states that the Lifshitz exponent for
the long range case (a < d + 2) is d/(a - d).

PROOF. To simplify the argument, we assume as in the short range case, there
is no periodic background potential and grain = 0. Consequently, Eo = 0. We start
with the upper bound and estimate

c
( NE"1 HAl) > Al qj (x+ lilY,

iEzd
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Hence

N(E) <Ci P(EI(HN) <E)
C2

< CI P qi (1 + Ii) < E
2EZd

L <E
lil<L

< CI P Ld qi < C3ELc-d

lil<L

We choose L = c E- al dd (3 small). Hence

(3.24)

(3.24) < CI lE
Ld

qi <
lil<L

If j3 < z ]E(qo), standard large deviation theory gives

P (Ld qi < rjl < e-CLd = e CE
1\ IiiII<L

We turn to the lower bound. As in the proof of the lower bound (3.17) in the
previous section,

\
N

AL
Vw(x)dx < E - CL-2

1 P1 Eqi 1 f f(x-i)dx<E-CL-2
ALI iEZd ALI AL

I.

Due to the long range tails of f, we cannot ignore the summands with Iil large.
Instead, we estimate

E qi 1 f(x-i)dx
iEzd IALI AL

1<
A qi f f (y) dy + L, qj

A f f (x - i) dx
L lil<2L liI >2L I

L L

where qmax

C3 1
qi+gmax f(x-2)dx,

< A2Ll ail-<2L it->2L IALI AL

= sup(suppPo), P0 being the distribution of the qj. We estimate

x - i)dx < C4 J 1 dx
1

f(IALI AL i,>2L IALI AL x - iI1:
jiL

< C5 E 1

Ii

>L Iila

1
< C6 La-d'
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Thus we obtain

N(E) > JAL
P

\ n2L
qi <_ C7E - C8L-2 - C9L(.-d)). (3.25)

PiI<2L

As the derivation shows, the L-2 term comes from manipulating the kinetic energy,
while the L-(,,-d) term is due to the potential energy. Note that for a > d+2, the
term L-2 (kinetic energy contribution) dominates in (3.25). In this case we can
therefore redo the estimates of Section 3.2.4 and obtain a lower bound as we got
there. However, for a < d + 2, the term L-(,-d) wins out in (3.25). Remember,
this term is due to the potential energy distribution. We obtain

N(E) > ALIPCA2Lj qj <C7E-CIoL-(a d) ).
il<2L

This time, E has to be bigger than L-(a-d); more precisely, E > CI1L-(a-d)

Hence L = C1 2E- . 1 d so

N(E) > In1I P (qi = 0 for HiH < 2L)

> 1 e-C13LdIALl

-dC1sE -d> C14E°-d e

3.4. Anisotropic Single Site Potentials. Recently, Theorems 3.1 and 3.5
were generalized to single site potentials f decaying in an anisotropic way at infinity
([86]). Let us write x E Rd = Rd1 x Rd, as x = (X1, X2), xI E Rd1, X2 E Rd2 and
suppose that

1xlIa1 + Jx2Ia2
f (x) :5 xiV + Jx21a2

for Ixi i, ix21 > 1, and define V, in the usual way

V (x) = E qif (x - i).
iEZd

(3.26)

(3.27)

Let us define -yi = ! and'y = 71+'y2. Then the sum in (3.27) converges (absolutely)
if ry<1.

In [86] the authors prove that there is Lifshitz behavior of N(E) for potential
as in (3.26) and (3.27) in the sense that the Lifshitz exponent q, defined by

lim
_ In I ln(N(E))

77 E\Eo In E

exists (Eo = inf v(H,,,)). q depends on the exponents ai, of course. If both

1'1 < dI and 72 <
d2

1-'y 2 1-ry 2

we obtain the "quantum" exponent:

(3.28)

dq=-2.
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Observe that (3.28) reduce to the condition a < d + 2 for the isotropic case
al = a2 = a. If

71 >
d2

and 1 - >
1

7 2

we are in the "classical" case both in the dI- and d2-directions. Then

rl=-I_,y
The third case

1-ry - 2
71 < dI

and
72

>
d2

7

1 - -y 2

(3.29)

(3.30)

is new compared to the isotropic case. It is, in a sense, a mixed quantum-classical
case. The Lifshitz exponent is given by

dI _ 72
q

2 1- 7
We note that the dl-direction and the d2-direction "influence each other" in a rather
sophisticated way. In [86] these results are proved for alloy-type potentials as well
as for Poisson (and related) models. We summarize:

THEOREM 3.6 ([86]). Suppose (3.6) and (3.26) hold. Set yi = di/ai and
y = 7' +'y2. Then the Lifshitz exponent 77 is given by

77 =-max{ 2,1Yj
1-max

22,1Y2 (3.31)
l

3.5. Path Integral Methods and the Transition Between Quantum
and Classical Regime with Respect to the Single Site Measure. We start
this section with two observations which indicate that the asymptotic behavior of
the integrated density of states depends qualitatively on the distribution Po of the
qi

Let us first assume that the "fatness" condition (3.6) is satisfied in the strongest
form, namely, inf supp(Po) = 0 and P(qo = 0) = a > 0. An inspection of the proofs
in Section 3.2 shows that for this case we have actually proven

In N(E)
lim inf > -Ci (3.32),(E - Eo)-d/2 -

In N(E)
lim sup < -C2 (3.33)(E - Eo)-d/2 -

with CI, C2 > 0. If instead P(qo = 0) = 0 (but still P(qo > c) > Be') the lower
bound requires a logarithmic correction

In N(E)
lim inf _> -CI. (3.34)

I(E - Eo)-d/2 1 ln(E - Eo)
The second observation concerns unbounded single site measures Po. In [98] it is
proved that both the classical and the quantum regime can occur for the discrete,
unbounded Anderson model and more general matrix operators. Depending on the
single site measure, collective phenomena may occur similar to those we encountered
above. In other situations, the single site measure alone determines the behavior
of the integrated density of states.



670 W. KIRSCH AND B. METZGER

It seems difficult to understand the mechanisms causing the transition from
quantum to classical regime with respect to the single site measure by using the
spectral analytic approach close to Lifshitz's original intuition.

The first approach to prove Lifshitz tails is based on the Donsker-Varadhan
technique (see also Section 3.1). This method to compute the Laplace transform of
the integrated density of states in the limit t --> oo is a far-reaching generalization
of the Laplace method known from classical analysis. The starting point is the path
integral representation

N(t) = IF, x IE0'0[e-fo u-(b(s))ds]

The Donsker-Varadhan technique is based on a large deviation principle satisfied
by the product probability measure dIE x dPo;o combining the random potential
and the Brownian motion. In an informal sense, it makes it possible to quantize
the asymptotic probability of a Brownian particle to stay most of its lifetime in a
pocket with a favorable configuration of potential values. Using the large deviation
principle, one can balance between favorable configurations and their small prob-
ability by applying Varadhan's lemma. Last but not least, given the large time
asymptotics of the Laplace transform N(t), one can reconstruct the Lifshitz tail
behavior using Tauber theory.

The Donsker-Varadhan technique was worked out by Nakao [142] for the Pois-
son model with f > 0. He proved

In N(E)
E\,O

E_d/2 -Cd

where Cd is a (computable) positive constant. In the 1990's Lifshitz asymptotics
became a starting point for stochastic analysis of diffusion in random media. We
mention the work of Sznitman (see, e.g, [167, 168, 169, 170]) in the continuous
case, especially for Poisson potentials, and in the discrete context the moment
analysis for the so-called parabolic Anderson model (PAM) (see, e.g., [7, 48, 49,
50]). Here Brownian motion has to be replaced by the continuous time Markov
chain generated by the discrete Laplacian.

The phenomenology described at the beginning of this subsection was also
observed in the moment analysis of the parabolic Anderson model starting in [48].
As we will see, the case of the double exponential distribution discussed in [49]
can be interpreted as the borderline between the quantum and the classical regime.
The paper [7] clarified the discrepancy between the lower and the upper bounds
in (3.32), (3.33) and (3.34). Still, a general principle explaining the transition
from quantum to classical regime with respect to the single site measure was not
formulated.

We want to systemize the phenomenology discussed above in the following
theorem taken from [125]. To combine the bounded and the unbounded case, we
assume that the cumulant generating function is finite, e.g.,

G(t) := log E (exp(-tV,,(0))) < oo (3.35)

for all t > 0. Furthermore, we apply the Legendre transformation to define the rate
function

I(E) := sup[Et - G(t)] (3.36)
t>0
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and for t, A > 0, we set

S(A, t) := (At)-'G(At) - t-1G(t). (3.37)

Informally the scale function S(A, t) measures the change of the cumulant generating
function after resealing the time.

THEOREM 3.7. We consider the discrete Anderson tight binding operator h, _
ho + V, and set E0 = inf a(hO. Suppose G(t) < oo for all t > 0. Then we
distinguish the following four cases:
(i) Let S(.\, t) - c (AP - 1)tP with c, p > 0. Then the IDS behaves in the limit
E - E0 = -oo like

log(N(E)) = -I (E + 2d + o(1))(1 + o(1)).

(ii) In the case S(.\, t) - c log(A) with p = 0 and c > 0, we have in the limit
E--4Eo=-oo,

-KI(E + C2) (1 + o(1)) < log(N(E)) < -I(E + C1)(1 + o(1))

with K > 0,

CI = -2 sine (2 c-1/2 + 1+ 4 c log (c)

and

C2 = K(d) min L-c + c log(c-1), max L1 - 4 exp(-Kc),
a (d)11

(iii) In the case S(A, t) - c (1 - AP)tP with -1 < p < 0 and c > 0, the IDS behaves
in the limit E \ E0 = 0 like

-KIE-1/2(d-2p-1(p+I))(1 + o(1)) < log(N(E))

< _K2E-1/2(d-2p-1(p+l)) (1 + o(1)).

(iv) In the case S(A, t) - -c (At)-' log(t) with c > 0, we have in the limit E
Eo=0,

-K1E-d/2log(E)(1 + o(1)) < log(N(E))

< -K2E -d/2 log(E)(1 + o(1)).

The scaling assumption S(A, t) - c (AP-1)tP with c, p > 0 in the first case corre-
sponds to "fat" unbounded single site distributions; the behavior of the integrated
density of states is classical. The second case represents the double exponential
case, while in the third situation the single site distribution is bounded, but very
thin. The fourth case corresponds to relatively fat single site distributions studied
in [74].

Although, by now, there are results covering a lot of possible single site distri-
butions, there seems to be no systematic approach known to explain this phenom-
enology. Furthermore there exists two relatively different approaches as discussed
above. A first step to combine the functional analytic and the path integral ap-
proach as well as to systemize the known results with respect to the single site
distribution seem to be [125, 126]. In contrast to the direct analysis of the opera-
tor H, in Section 3.2, but in analogy to the path integral methods, one is interested
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in the large time behavior of the semigroup exp(-hu,t). The Lifshitz asymptotics
follows by an application of (modified) Tauber theorems [127].

The first step of the argument in [125] is to restrict hu, to a (time-dependent)
box A = At (0) by introducing discrete Dirichlet boundary conditions and to ap-
proximate E[exp(-h,t) (0, 0)] in the limit t - oo by

E sup exp (-t [(p[ho p) + (f I (3.38)
P E Mi (A)

Here El (h A) = inf a(hW) is the principal eigenvalue of hA and Ml (A) is the set
of probability measures on A. Equation (3.38) is a consequence of the min-max
principle and the nonnegativity of the ground state. It is the starting point to find
upper and lower bounds of the Laplace transform of the IDS.

To illustrate the central effect explaining the transition from the quantum me-
chanical to the classical regime, we want to sketch the very elementary proof of the
lower bounds starting from (3.38). The first step is to interchange the expectation
value and the supremum

I

VP-) + (f I V (w) I]E [exp(-El (hi)t)] = E sup exp (-t [(p[ho
pEM1(A) J

> sup exp (-t (f I ho /)) F [exp (- E
P(x)V

(X)t)
JpEM1(A) xEA

= sup exp( -t f) + 1] G(P(x)t) I. (3.39)
pEM1(A) \ xEA /

The second step is to define a subset D C Ml (A) of relatively uniform probability
distributions concentrated on a subvolume of A. With the side length L of A, we
set 1 < l < L and Al := {x E Zd : xj .. ) < l}. The ground state of the discrete
Laplacian ho ` restricted to A, with Dirichlet boundary conditions is given by

01: Ac - [0, oc), (3.40)

d 21/2 x7r(
c (sin) ) (3.41)11 l+1l+1-I

and the corresponding principal eigenvalue of ho ` is

A

71

E (h ,) =2d(1-cos ) 42)(3l t l+ 1
The subset D C MI (A) is then defined by

.

D:={02 :1<1<L}. (3.43)

Restricting the estimate (3.39) to D, we get

E (exp (-t El (hw)) )

> exp (G(t) + t

> exp (G(t) + t

sup I E P(x)S(P(x)' t)/
pEM1(A) ( xEA

sup (-(f Ih0 VP) + Y P(x)S(P(x), t)/
pcD xEA
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Using the definition of S(., t), the convexity of the cumulant generating function
G(t) and the Jensen inequality, we can estimate for p E Ml (A,) c M1(A),

E p(x)S(p(x), t) _ E P(X)
G(p(x)t) - G(t)

xEA xEAi
p(x)t t

(i_d= t-lld E G(p(x)t)) - t-1G(t)
xEA,

\
> t-1ldG(l-dt p(x)// I - t 1G(t)

xEA,

_ G(l-dt) G(t)
1-dt t

= S(l-d, t).

So the uniform distribution on Al minimizes >xEAP(x)S(p(x),t) with respect to
the variation over p E M1(Al). We have

E (exp (-t El (HD(w)))) > exp I G(t)+t sup C-4dsin2 (T
1 I +S(l-d, t)//

<1<L 2 1+1/\ 1<1<L(-
and the only remaining problem is to maximize

-4dt sine (2
l { 1) + tS(l-d, t)

C (l-dP - 1)t?+l p > 0
2 (7r 1 -cdt log(l) p = 0- -4dt sin

2 1+1) + C (1 - l-dP)tP+l -1 < p < 0
-C Id log(t)

with respect to 1. The exponent of the time tin the scaling expression is responsible
for the occurrence of the classical or the quantum regime. In the case p > 0, the
scaling term increases faster in t than the linear time dependence in the diffusion
term. Consequently, the maximum will be asymptotically l = 1. This corresponds
to the classical regime. In the case -1 < p < 0 as well as in the fourth situation, the
scaling term is sublinear and the diffusion term is dominating. Like in Section 3.2,
a collective behavior of potential values is necessary and we are in the quantum
regime. In the case p = 0, the diffusion and the scaling term are both linear in
time. So the optimal peak size depends strongly on the constants. This is the
borderline between the classical and the quantum regime. It corresponds to the
double exponential distribution.

The upper bounds are much more complicated. It is not possible to interchange
the supremum and the expectation with respect to the random potential. Moreover,
we have to to estimate (3.38) for all p E Ml (A). The first problem is solvable by
a variant of the ordinary Laplace method. The second problem is attacked using
the convexity of the cumulant generating function G(t) and ideas from spectral
geometry. For details, we refer to [125] and [126].

3.6. Internal Band Edges. Lifshitz predicted the "Lifshitz behavior" not
only for the bottom of the spectrum but also for other band edges. We refer to this
phenomenon as "internal Lifshitz tails." Internal Lifshitz tails have been proven for
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the Anderson model by Mezincescu [128] and Simon [157]. Their proofs apparently
cannot be translated to the continuum case. In fact, the band edges of the Anderson
model which they can handle are those coming from gaps in supp Po together with
the boundedness of the kinetic energy. (To be more precise: Since for the Anderson
model, II ho II < 4d and ho > 0, there are gaps in the spectrum whenever there are
gaps in supp PO of length exceeding 4d).

One can also handle the case of a point interaction potential in one dimension,
a problem which essentially reduces to a lattice problem. Formally this potential
is given by

Vu, _>gi6(x-i)
where b is the Dirac- "function." This potential is also known as the random Kronig-
Penney model. It turns out in this case that the lower edges do and the upper
edges (for qi > 0) do not show Lifshitz behavior but polynomial behavior of N as
for periodic potentials [79]. This is due to the fact that the upper edges are "stable
boundaries" in the sense of [148]. The case of general one-dimensional alloy-type
potentials was treated in [130].

The multidimensional case is by far more difficult. The reason is mainly that
periodic potentials are much less well understood in higher dimensions. For exam-
ple, it is not true in general that bands are parabolic, as is the case for d = 1 and
for the ground state band in arbitrary dimension.

The paper [97] marks a breakthrough in this topic. Klopp uses the method of
approximation by periodic potentials. Compared to Dirichlet-Neumann bracketing,
one loses monotonicity, a property which was very useful above. However, Klopp
manages to prove an exponential convergence rate for the periodic approximations.

As mentioned above, not so much is known about the behavior of the band
functions (of the periodic operators) at internal band edges. In fact, Klopp has
to make assumptions on the behavior of the integrated density of states for the
periodic operator.

Like Lifshitz tails at the bottom of the spectrum internal Lifshitz tails can be
used as an input for a localization proof [175].

We consider an alloy-type potential with a continuous single site potential f >
0, not identically equal to 0, with decay

f (x) < C (1 + I x (d+2+E)(3.44)
The random coupling constants are independent and have a common probability
distribution P0 with gmir, = inf suppPo. We set Veer = EjeZd groin f (x - i) and
denote the integrated density of states of Hpe1 = Ho + Veer by Npe7(E). Further-
more, we suppose that E_ is a lower band edge of Hpe71 i.e., E_ E Q(HpeL), but

It is reasonable to assume that generically NpeL behaves like (E - E_ )d/2, for
E \, E_, as it would for a unique parabolic band. In fact, this behavior is known in
one dimension and for the bottom of the spectrum in arbitrary dimension. However,
it is not clear that this is true in general, even not generically (see, however, [103]).

Thus, we have to assume such a behavior of NpeL:

Assumption: Suppose E_ is a lower band edge of Hper. We assume that

lim
In (Nper(E) - Nper(E'-)) _ -d (3.45)

E\,E_ In(E-E_) 2
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Under this assumption, the main result of [97] is:

THEOREM 3.8 (Klopp). If assumption (3.45) holds, then

In (- In (N(E) N(E_))) d

E1\E_ In (E E_) = 2 ' (3.46)

For the case d 2, one has more information about the periodic operators
[105]. In particular, there is always exponential decay of the integrated density of
states at band edges. We refer to the review [100] for an introduction and further
results.

3.7. Lifshitz Tails for Surface Potentials. In this section we consider sur-
face potentials of the form

V,,,'(xi i x2) _ E gi1(w).f (xl - i1, x2) (3.47)
Z1 EZd1

and suppose we have some spectrum below 0. This is the case if gmin = inf supp Po
is negative enough. Note that for d2 < 2, there is negative spectrum as soon as
gmin is negative. For d2 > 3, there is a threshold -y > 0 such that the spectrum
starts at 0 if gmin > --y and there is negative spectrum if gmin < -'y

We are going to investigate Lifshitz tails for surface potentials with E0 < 0.
Below the bulk spectrum (which starts at 0), the density of surface states is positive,
hence a measure. We may therefore define the integrated density of surface states
N,5 (E) to be the corresponding distribution function.

As before, we decompose the potential into a non-random background potential
and a positive random potential

V,,,'(xl, X2) _ E qi1 (w).f (x1 - il, x2)
i1EZd1

E gmin f (x1 - i1, x2) + (q2, - gmin) f (xl - il, x2)
i1eZd1 i1E7d1

= VSP (x) + (x). (3.48)

The Neumann-Dirichlet bracketing technique goes through for this case as soon as
we have sufficient knowledge about the background operator Hl = Ho + V. Since
we want E0 < 0 -which makes the bottom of the spectrum "surface spectrum"-
there is no case VSP = 0 here. Moreover, the background potential VSP is only
periodic for the d1-directions, but decays perpendicular to them.

The analysis of those partially periodic potentials and the Lifshitz estimates
for surface potentials were done in [87] for the continuous case. We assume that

Po([gmin,gmin+e)) > CiEN

and

0 < A X1, x2) < fo (1 + xl I)-(d1+2).

We also assume that f (xl, x2) decays uniformly in x2-directions. Then we have:

THEOREM 3.9. If E0 < 0, then

In ( - In(N.(E))) dl (3.49)
lim

E'\,Eo In(E - Eo) 2
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There is also an analogous theorem for long range f. The paper [72] proves
Lifshitz tails for surface potentials in the discrete setting by fairly different tech-
niques. This paper also contains an analysis at the energy E = 0, i.e., for surface
corrections to the bulk Lifshitz tails.

3.8. Lifshitz Tails for Random Landau Hamiltonians. We turn to the
density of states for operators of the form

H,,= Ho(B) +Vu,

with a constant magnetic field B > 0 and a non-negative random potential V,. (For
a careful definition of the density of states and some basics, see [62, 63, 178].)

We discuss the two-dimensional case first. The Landau Hamiltonian Ho(B) is
given by

8 1 2 8 1 2

Ho(B) = 28x 2Bx2) + (28x2 + 2Bx1)
.

I

Ho(B) has a pure point spectrum for B 0 and d = 2. In fact, the eigenvalues are
given by the "Landau levels" (2n + 1)B; n c N and all Landau levels are infinitely
degenerate. One possible choice of the ground state is

B _BIX12
00(x)=-e

7r
(3.50)

which will play a major role below. For V, we take a Poisson potential or an alloy-
type potential with groin = 0. In this case, the bottom E0 of the spectrum of H,
is given by the lowest Landau level, which is B. In [10] the authors proved for the
Poisson model the following result.

THEOREM 3.10. If B :,4 0 and

(1 +xI)a <
1(x)

< (1 +xD '
(3.51)

the Lifshitz exponent 7) for Ho (B) + Vu,, is given by

172-a d-a
2 d

(3.52)

for all a > d.

This means that, according to our classification above, we are always in the
classical case for d = 2 and constant magnetic field.

PROOF. We sketch the lower bound only and restrict ourselves to the alloy-type
case. As usual we have to estimate

F(El(HwD) < Eo +E)

from below. This time we have a ground state V)o for Ho (B) which is L2. We modify
I'o near the boundary of AL to make it satisfy Dirichlet boundary conditions. Due
to the (super-)exponential decay of 00, the error we make is of the order (at most)
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e Co L
2

. Thus
/ f 2

P(El (H' AAL) < E,, +E) > P I J V4, (X) 10,, 12dx < E - e co L

> P
J V,(x)dx < C1E - e-c2 L 2

_ (*) .

At this point we can literally repeat the estimates in the proof of Theorem 3.5 and
obtain in analogy to (3.25)

(*) 2 P(
1

1: Qi <C1E - C2e-cL2 - C3L- dl) . (3.53)
A2LI i1<2L

The only difference to the previous case is the error term due to the kinetic energy.
In Theorem 3.5 it was of the order L-2 causing the different behavior for a > d + 2
and a < d. In (3.53) the error term is exponentially small, thus being negligible
with respect to the potential term L-(,-d) for all a. Consequently, we may choose
E - L-d . By a large deviation estimate, we obtain

(3.53) > TP(9i < C'E)JA2L1

> Meft
d

= Me-CE =d
.

Theorem 3.10 implies that for compactly supported f, the integrated density
of states N(E) decays subexponentially.

Erdos [38, 39] proved that it decays, in fact, polynomially. Erdos' proof is
based on a careful estimate of the Laplace transform of N. It uses an analog of
the Feynman-Kac formula for magnetic Schrodinger operators, the Feynman-Kac-
Ito formula (see [154]). There are a couple of complications in the Feynman-Kac
expression of N due to the magnetic field. The most serious one is the fact that
the integrand is no longer positive but rather oscillating.

Erdos' proof is done for the Poisson model. Recently, Klopp and Raikov [102]
found a completely different approach based on the approximation by periodic
potentials. Their proof works for alloy-type potentials. Moreover, the latter paper
contains results for internal Lifshitz tails as well as for the case of an additional
periodic background potential.

We state Erdos' result:

THEOREM 3.11. If H, = Ho (B) + V, with a Poisson random potential V,, and
if the single site potential f > 0 has compact support, then

In N(E) _ 7r
(3.54)

E\Eo In E B

The reasoning we gave in the proof of Theorem 3.10 can be used to prove a lower
bound for Theorem 3.11 as well. In fact, the bound suggests that the borderline
between the two kinds of behavior is given by Gaussian single site potentials. This
was actually proved in [64] and [39].

We have seen in this section that random Landau Hamiltonians may have
unusual Lifshitz behavior compared to the nonmagnetic case. This originates in
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the fact that the lowest Landau band is flat, collapsing into one point. It is well
known that this never happens for (B = 0 and) periodic scalar potential (see [150]).

It is reasonable to expect that the flatness of the ground state Landau band
is removed by an additional periodic scalar potential, at least generically. If this
is true, we would certainly expect "normal" Lifshitz behavior for such operators,
including those with alloy-type potentials and gmi,, 0. There are results in this
direction in [102].

We turn to the three-dimensional case with homogeneous magnetic field. We
consider the Hamiltonian

/ \2 / 2 2

Ho(B) = (iax, - 2Bx2/ + I iaX2 + 2Bxi/ - as
\ / \\ /

32

In d = 3, the magnetic field itself introduces an anisotropy. The two space di-
mensions perpendicular to the magnetic field (xi, x2) will be denoted by x1i the
direction x3 parallel to the field by xll. If we add an anisotropic Anderson (or
Poisson) potential with a single site potential f obeying

Ix1Ia1 + xll 102 - f (x) - Ix1I'1 + xll1112 (3.55)

we will have Lifshitz behavior that resembles the results of Section 3.4, except that
in the 1-direction the behavior is always classical.

Following the conventions of Section 3.4, we define

2 171=-, 72=-
ai a2

and - y 2 . (3.56)

If f has compact support in x1-direction, we set yi = 0. To have the potential well
defined, we need y < 1.

THEOREM 3.12. The Lifshitz exponent rl for Ho (B) + V in dimension d = 3
is given by

__ 'Y1 1 72 (3.57)rl 1-y+max
2

1-y

This theorem was proven for f with compact support in [178]. The case of 72 > 2
is considered in [60] and the mixed classical-quantum case is taken from [73].

We remark that the lower bound given above (in connection with Theorem 3.10)
can be used in this case as well. As a test function in this bound, we use

To (x1, xll) ='0(x1) 00(x11) (3.58)

where 00 is the (2-d) ground state (3.50) and Oo (xll) = L-1/2 is the II-ground state.
As before To has to be cut down to zero near the boundary of the cube AL. This
gives an error term of the order e-L2 in the 1-direction and an error term of the
order L-2 in the I1-direction.

For further references about magnetic Lifshitz tails, we refer to [178] and to
[116].

There are also results on the integrated density of states and on Lifshitz tails
for random magnetic fields. We refer to the works of Ueki and Nakamura [172,
173, 174, 138, 139] and the references given there.
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3.9. Percolation Models. Recently the integrated density of states for Lapla-
cians on percolation graphs has been investigated. We consider bond percolation
on Zd with d > 2. This means that we remove bonds in the graph Zd independently
with probability 1 - p for 0 < p < 1. The resulting random graph is called the
percolation graph and is denoted by cP or simply by g.

For p small (p < pc), all connected components ("clusters") of !9p are finite
almost surely. For p > pc there is a unique infinite cluster (see, e.g., [54]).

We consider the Laplacian on this graph which is a random operator, due to
the randomness of the underlying graph. For a general discussion of percolation
Hamiltonians, we refer to [176].

Actually, there are various Laplacians on 9 due to different boundary condi-
tions. To define these operators, we start with the adjacency operator Ag defined
by the matrix elements with Ag (i, j) = 1 if I i - j I = 1, i, j E 9 and Ag = 0
otherwise. For any i c 9, we let dg (i) denote the number of sites in 9 to which
i is connected. We denote by Dg the diagonal matrix with entries dg (i) on the
diagonal. The Neumann Laplacian LG is defined by

Lg = Dg - Ag. (3.59)

The Neumann Laplacian is the intrinsic Laplacian of the graph Q. In a sense it
"ignores" the embedding of G into Zd. The Dirichlet Laplacian Lq is defined by

Lg = Dg + 2 (2d - Dg) - Ag. (3.60)

On its diagonal this operator counts the connections to neighboring sites in 9
once and the (lost) connections to sites in Zd \ g twice. It was an observation of
Simon [156] that the above operator is a good analog of the Dirichlet Laplacian for
subgraphs of Zd. See also [78] or [70] for a discussion of boundary conditions for
discrete Laplacians.

Both for LG and for L', a integrated density of states can be defined in analogy
to Theorem 2.2. We call them N; (E) and Ng (E), respectively.

Since there are infinitely many clusters containing just one point, the Neumann
Laplacian Lq has an eigenvalue of infinite multiplicity at the bottom E = 0 of its
spectrum. This causes the integrated density of states to jump at that energy.
Hence

vg ({0}) = NNg (0) - NG (0-) = Nq (0) j4 0.

THEOREM 3.13. (1) If p < pc, we have

E N) - g (0In (- in (Ng ( ))) 1- -
lim (3.61)
E\O ln(E) 2

(2) If p > pc, we have

lim
In (NG (E) - Ng (0)) - d

(3.62)
E\O ln(E) 2

(3) For arbitrary 0 < p < 1, we have

In (- In Nq (E)) d
lim 3.63)
E\,O ln(E) 2
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Part (1) of this theorem, as well as part (3) for p < pc, was proven in [78]; part
(2) and part (3) are taken from [133].

The perhaps surprising behavior of Nq (E) for p < pc is due to the fact that
long one-dimensional chains dominate. They lead to small eigenvalues for the Neu-
mann Laplacian since they "don't know" they are actually in Zd. For the Dirichlet
Laplacians these one-dimensional chains have rather high eigenvalues due to the
additional diagonal term. In fact, they dominate the scene at E = 4d, the top of
the spectrum. This can be seen by a symmetry argument.

Part (2) of the theorem comes from the fact that for p > pc the leading behavior
of Nq comes from the infinite cluster. In a sense, the infinite cluster looks rather d-
dimensional. The proof in [133] of this part relies on a celebrated paper by Barlow
[5].

4. Regularity of the Integrated Density of States

4.1. Introduction. In this final section we discuss regularity properties of the
integrated density of states. So far we have seen that the density of states measure
v is a positive Borel measure with a distribution function N(E).

Of course, the name integrated density of states suggests that v (resp. N)
should have a density n(E) in the sense

n(E') dE', (4.1)N(E) = f
' < E

v([a, b]) = f n(E') dE'. (4.2)
[Q,6]

We will, indeed, prove this for the Anderson model under certain assumptions on
P0, the probability distribution of the random potential. The continuous case is
more complicated. For this case we will state only some key results and refer the
reader to the literature. A good account is the review article by Veselic [177].
However, we remark that there are important developments after this survey; we
mention especially the recent preprint [20].

We will see that the integrated density of states does not always have a density.
We will therefore also look at weaker regularity properties of N. We are especially
interested in the question whether the function N is continuous, which is the same
as v({E}) = 0 for all E. It turns out that this is always the case for the Anderson
model. However, for the continuous case, no such result is known.

4.2. Continuity of the Integrated Density of States. The results of this
section are valid for general ergodic operators on £2(Zd). Analogous results for

d have not been proven so far. The most general result in this context is the
following theorem proved by Craig and Simon [25] in a somewhat stronger form
(see Theorem 4.3).

THEOREM 4.1 ([25, 30]). Let {V,,,(n): n E Zd} be an ergodic stationary real
valued random potential satisfying

E[log(1 + IVw(0)I] < oc. (4.3)

Then the integrated density of states of the Anderson operator h, = ho + V, is a
continuous function, i.e., v({A}) = 0 for all A E R.
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This result can be proven with an elementary argument by Delyon and Souillard
[30, 27] using a kind of "unique continuation" property of discrete Schrodinger
operators. We use this idea in the proof of the following lemma to show that
no eigenspace can be sufficiently degenerated to produce a jump of the integrated
density of states.

Let us denote by the projection-valued spectral measure of H, i.e.,
IH(A) = XA(H); in particular, µH({A}) is the projector onto the eigenspace of
H with respect to A.

LEMMA 4.2. We have

dim (XALRanPh. ({A})) < CLa-1

PROOF. The set

AL2) = { i c AL I max I i I = L or max I i, J = L - 1
v=l,...,d v=l,...,d

consists of the two outermost layers of AL. A solution u of h",u = Au is uniquely
determined inside AL by its values on So, the dimension of XAL (Ranµh, ({A}))

is at most the number of points in AL(2) El

With the lemma, we can prove the theorem.

PROOF OF THE THEOREM. By Proposition 2.1 and Theorem 2.2, we have

v({A}) = i (2L + 1)d tr (XAL µh ({A})). (4.4)
L-oo

If fi is an orthonormal basis of XAL (Ran Ph.({A})) and gi an orthonormal ba-
sis of (XAL(Ran Ph.({A})))1 we have, noting that XAL(Ran Ph, ({Al)) is finite-
dimensional,

tr (XAL / hw ({Al)) _ E(fi, XAL µhw ({A})fi)
iEI

< dim ( XAL (Ran P h. ({A}))) (4.5)

< C Ld-1 (4.6)

hence (4.4) converges to zero and v({A}) = 0.

In [25] Craig and Simon prove a stronger result than just continuity:

THEOREM 4.3 (Craig-Simon). Under the assumptions of Theorem 4.1, the in-
tegrated density of states is locally log-Holder continuous, e.g., for any positive r
there exists a finite constant C, such that

IN(S) - N(a')I < C
1

T IlogIA- A'I

for JAI <r and IA - A'I < 1.

The theorem of Craig and Simon is based on the Thouless formula for a strip in
Zd. For the Thouless formula in the one-dimensional setting, we refer to the next
subsection.
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4.3. Regularity of the DOS in Dimension One. There are very powerful
techniques to study the Schrodinger equation and its discrete analog in dimension
one which are unfortunately restricted to dimension one exclusively. Such tech-
niques have been successfully applied to random operators as well to investigate
the integrated density of states.

At the heart of most of these techniques lies the reformulation of the eigenvalue
equation of a second-order equation into an initial value problem for a system of
first-order equations. Specifically, let us look at the eigenvalue equation

h,,, = -u(n + 1) - u(n - 1) + (V,(n) - E)u(n) = 0. (4.8)

We define

U(n) =
(u(n+1))

and

An (E) _ (V" (n) - E 01)

The function u(n) is a solution of (4.8) if and only if

U(n + 1) = An+1(E)U(n)

for all n c Z. With the transfer matrix
n

'Pn (E) fj Az (E)
i=1

the solution of (4.8) to the right initial condition

U(0)
=

(uU (1)

(0))
can be expressed by

U(n) = 4bn(E)U(0).
Similarly, it is possible to define the solution to the left. The spectral theory of
the operator h,,, is encoded in the matrices An(E) (or (Dn(E)). Note that these
matrices belong to the group SL(2, R). Thus it should not come as a surprise that
harmonic analysis on SL(2, ll8), in explicit or implicit form, plays a major role in
the analysis of h,.

The asymptotic behavior of the eigensolutions of h = h0 + V is reflected by the
Lyapunov exponent given by

y(E) := Nlim00ln 14Dn(E)II. (4.9)

This definition of the Lyapunov exponent is well defined by Fiirstenberg's theorem
([46], see also [27]). The link between the Lyapunov exponent and the integrated
density of states is expressed in the Thouless formula

-y (E) = J log I E - E'l dN(E'). (4.10)

This formula from physics ([56, 171]) was made rigorous in [3]. A simplified proof
can be found in [26] or [27].

The Thouless formula and the obvious fact that -y(E) is non-negative imply
that the integrated density of states N is log-Holder continuous (in one dimension).
This was observed by Craig and Simon in [26]. The proof by the same authors
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of the multidimensional analog uses a version of the Thouless formula for strips in
higher dimensions [25].

As mentioned in the previous section, these results hold for general ergodic
potentials on Zd, they are (at least) close to optimal in this generality (see also our
discussion below).

However, if we assume that the V,, (n) are independent (and identically dis-
tributed) much more can be said about the regularity of the integrated density of
states. In the next section, we discuss Lifshitz continuity in the multidimensional
case under assumptions on the distribution Po of the random variable V,(0). In
the one-dimensional case we discuss here, we have a fairly complete picture about
the regularity of N. For simplicity we assume that supp P0 is compact.

DEFINITION 4.4. We call a function f on II8 Holder continuous of order a if

If (x) - f (y)1 <- C Ix - yIC'.

THEOREM 4.5. Let h = ho + V be a discrete random Schrodinger operator
in dimension one. Assume V is a sequence of independent, identically distributed
random variables, such that their distribution P0 has compact support. Then the
integrated density of states N of h is Holder continuous of some order a > 0.

This theorem is due to [114]. The simple case of the discrete Laplacian ho (i.e.,
V = 0) shows that one cannot expect more than Holder continuity in general. For
ho the integrated density of states N is merely Holder continuous of order 1 at the
band edges. The derivative of N, which is called the density of states, diverges at
E = ±2. This behavior is known as van Hove singularities. The Lifshitz behavior
of the integrated density of states seems to suggest that N is smoother at the band
edges for a truly random V.

One can expect that more regularity for Po implies more regularity for N. In
fact, Simon and Taylor [161] proved that already a little regularity of Po implies
that N is C°°. To state their result, we need the following definition of a Sobolev
space:

DEFINITION 4.6. We say that a function f E LP belongs to LP if the Fourier
transform f satisfies: There is a function g E LP such that g(k) = (1+IkIZ)a/2f (k)
is an LP-function.

It is not hard to see that the characteristic function xl of a finite interval I is
in L' for a <

2
(see [161]).

THEOREM 4.7. Let h = ho + V be a discrete random Schrodinger operator
in dimension one. Assume V is a sequence of independent, identically distributed
random variables. If the distribution P0 of V,,(0) has a density g with compact
support and such that g c L' for some a > 0, then N E C.

If we do not assume any regularity of P0, Theorem 4.5 is the best result we can
hope for. To see this, let us look at a Bernoulli distribution for P0. We set

Po=PSa+(1-p)6b. (4.11)

Halperin [55] proved, with some points of rigor clarified by Simon and Taylor [161],
that:
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THEOREM 4.8. Assume that the V,(n) are independent with identical distribu-
tions Po as in (4.11) with 0 < p < 2. Then the integrated density of states is not
Holder continuous of any order a larger than

a =
2 log(1 -p)

° arccosh(1 + 2 b -

If N is Lifshitz continuous (Holder continuous of order a = 1), then N has
a bounded density n, i.e., N(E) = f . n(.\) d.X and vice versa. If N is Holder
continuous of (strict) order a < 1, then N may still have a density which then
has to be unbounded. So, Theorem 4.8 does not rule out that the density of
states measure v is absolutely continuous. However, it is true that v has a singular
continuous component if I b - aI is large.

THEOREM 4.9. If P0 is Bernoulli (as in (4.11)) and 0 < p < 1, then the density
of states measure v has a singular continuous component if lb - al is large.

This theorem was proved in [14] following ideas from [161]. The paper [14]
contains the first proof of Anderson localization for the one-dimensional Bernoulli
model. The proof of a singular continuous component of N is based on this knowl-
edge. The article [122] continues these investigations and proves that for lb - al
large, the density of states measure is even purely singular continuous.

For further results concerning the regularity of the DOS of random Schrodinger
operators and its discrete analog in dimension one see [12, 28, 13, 88, 90, 91,
92, 93, 94, 120, 153].

As the operators with i.i.d. potentials, almost periodic operators belong to the
class of ergodic operators. In a sense these two types of operators form the extreme
cases within the class of ergodic operators. There are recent results on regularity
of the integrated density of states for one-dimensional almost periodic operators by
Goldstein and Schlag [51, 53]. We refer to the review [52] for details.

4.4. The Wegner Estimates: Discrete Case. One motivation in physics
to study the integrated density of states was the hope to use it as an indicator
for different spectral types. The aim was to distinguish pure point spectrum and
continuous spectrum at the mobility edge. In some sense the conjectures discussed
were inconsistent. Some expected a divergent density of states at the mobility edge,
while others assumed a vanishing density of states.

In 1981 Wegner [179] put an end to this discussion by proving upper and lower
bounds of the density of states in the discrete setting of the Anderson model. These
estimates imply the density of states neither vanishes nor explodes at a mobility
edge (or anywhere else).

Wegner's result (more precisely, his upper bound) soon became a corner piece
in the proofs of Anderson localization by the multiscale analysis method and it still
is. To formulate Wegner's result, we introduce boundary conditions on the lattice.
The simplest boundary condition on the lattice is defining hA through its matrix
elements:

hA(i,j) = h,,,(i,j) (4.12)

whenever both i and j belong to A. For a discussion of boundary condition on Q2,
see Simon [156] or the review [70].

We define

NA(E) = #{ n I E,-, (hA) < E} = tr (P(-,,,,,E] (hA)) . (4.13)
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THEOREM 4.10 (Wegner-estimate). Suppose the measure Po has a bounded den-
sity g, (i.e., Po(A) = fAg(A)da, Ilgll,, < oo), then

IE(NA(E + E) - NA(E - E)) < 2 I Ig(I. IAI E. (4.14)

REMARK 4.11. The assumption that P0 has a density cannot be dropped. We
have seen at the end of Section 4.3 that the integrated density of states has a singular
continuous component if P0 is a (certain) Bernoulli distribution.

Before we discuss this estimate, we note two important consequences. The first
concerns the regularity of the density of states.

COROLLARY 4.12. Under the assumption of Theorem 4.10, the integrated den-
sity of states is absolutely continuous with a bounded density n(E).

PROOF.

N(E + e) - N(E - e) = lim 1 IE(NA (E + E) - NA (E - E))
Al-.o AlI<
CE by Theorem 4.10.

Thus N(E) = f . n(A) dA. We call n(A) the density of states. Sometimes,
N also is called the density of states which, we admit, is an abuse of language.
The second consequence of Theorem 4.10 is a key ingredient in proving Anderson
localization.

COROLLARY 4.13. Under the assumptions of Theorem 4.10, we have for any
E and A,

P(dist(E, o(hA)) < E) < CEIAI. (4.15)

PROOF. By the Chebyshev inequality, we get

IE(dist(E, E) = P(NA(E + E) - NA(E - e) > 1)
<E(NA(E+E) -NA(E-e))
< CEIAI by Theorem 4.10.

The first step in the proof of Theorem 4.10 is to average the eigenvalues inside
the interval (E - e, E + e) with respect to the random potential. To do this we
consider the eigenvalues E , (hA) as functions of the arguments Vi = V,(i) with
i c A, i.e., E, (h4^,) = E,, (Vi, i E A). The resulting estimate is summarized in the
following lemma.

LEMMA 4.14. With E > 0 let o be a non-decreasing C°°-function with o(A) = 1
for A > E, o(A) = 0 for A < -E and 0 < o(A) < 1. Then

E+2e
N(hW, E + E) - N(h^, E - E) tro(h ({[ t})

jcA E-2e
aVj

Now we are in a position to interchange the expectation of the random potential
and the energy integral. Since the random variables V, (i) are independent and have
the common distribution dP0(Vi), the expectation IE is just integration with respect
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to the product of these distributions. Hence

E(NA(E+e)-NA(E-E))
E+2e a

< IE(
jEA

tr (o(h"({V }) -f 2E aVj

E

E+2E

= f dr7 fl f g(Vi)dV aV tro(h.({Vi}) - 77)

-2e jEAiEA a
E+2e

< gIlf df f g(V)dVfbdv:vtrQ(h({Vi})_17)

E 2jEA iEA, a
E+2E

dri> II jg(u) dui
E-2e jEAiEA, i0j

{tr o(hw ({V }Vi=6) - 77) - tr o(h. ({V }V'=a) - q)} .

Above, a, b are such that suppg C [a, b]. The notation {V }V,=6 means the family
{V }ieA with V = V for i # j and Vj = b. The problem is now to estimate the
trace difference. In the discrete context of the Anderson model, the variation of a
potential value at one site is a rank one perturbation.

LEMMA 4.15. Let A be a self-adjoint operator bounded below with purely dis-
crete spectrum E0 < El < ... (where the eigenvalues are repeated according to
multiplicity). If B is a symmetric positive rank one operator, then A = A + B has
eigenvalue En with En < E7 < En+1.

Given the lemma, we now continue the proof of the theorem. We set A =
HA({V }Vi=a) and A = HA({V }Vj-6). Obviously, their difference is a (positive)
rank one operator

tr o(A -r7) - tr o(A -rl) = E(P(En -rl) - o(En -7l))

< E(o(En+1 - 77) - o(En -q))

< sup o(\) - o(µ)
A,µ

= 1. (4.16)

We conclude the proof of Wegner's estimate by proving Lemma 4.15:

PROOF. B = c lh >< hl with c > 0, i.e., B cp = c (h, cp) h for some h. By the
min-max principle (see [150]),

En = sup inf (cp, Acp) + c I (cp, h) I2

sup inf (,p, Acp)
-i,h

< sup inf (cp, Acp)

11,P11=1

= En+1 (4.17)
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Wegner's estimate is intimately connected with a method called "spectral av-
eraging." Roughly speaking, spectral averaging says that taking expectation with
respect to random parameters will make the spectral measure absolutely continuous.
Here is a typical example which comes from the theory of rank one perturbations,
see Simon [158] and references given there.

To formulate this result, we take a bounded operator h on P(Zd) and set
hc. = h + a S; for any fixed j E Zd. Note that the multiplication operator 6j is
a rank one perturbation of h. We denote by mc, the (projection valued) spectral
measure of hc, and set µc, (A) = (Sj,ma(A) Si). We obtain

THEOREM 4.16 (Spectral averaging).

J d µc, (E) dee = dE, (4.18)

i. e.,

f Cf f (E) d p. (E)) da = J f (E) dE

for all integrable f.

Wegner's estimate follows from the spectral averaging result (see [158]).
Spectral averaging was introduced in the theory of random operators by Kotani

[109] who used it to prove Anderson localization. He used random boundary condi-
tions in dimension one, but soon Kotani's trick was also used to prove localization
in higher-dimensional systems. However, Kotani was not the first to prove a spec-
tral averaging formula. Such a formula was known in the Russian literature earlier,
e.g., to Javrjan [65] who proved it for "random" boundary conditions. Spectral av-
eraging also plays a prominent role for continuous Schrodinger operators; see [21]
and references given there.

4.5. Regularity in the Continuous Case. To prove a Wegner estimate for
the continuous case is considerably harder than for the discrete case. In fact, only
the alloy-type model and a few other cases can be treated so far (for these cases
see [21] and [41]). For the alloy-type model, one can carry over Wegner's original
proof ([69]).

However, the finite rank estimate (Lemma 4.15) cannot be transferred directly
to the continuum (see [67]). Thus a direct analog of Wegner's approach only gives

IE(NA(E+ E) - NA(E - e)) < CIAlze . (4.19)

The estimate (4.19) obviously gives no information on the regularity of N. However,
it suffices as input to multiscale analysis to prove Anderson localization (this was
observed in [121]).

The first to prove a Wegner bound with the "correct" volume dependence were
Kotani and Simon in [110]. They required the single site potential f to be the
characteristic function of the unit cube. Later Combes and Hislop [18] relaxed this
condition.

Meanwhile, there is a large number of results on "generalized" Wegner estimates
of the form

IE(NA(E + e) - NA(E - e)) < CIAIke". (4.20)

For k = 1, they imply Holder continuity of the integrated density of states with
Holder exponent a.
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We refer to the excellent survey by Veselic [177] on the subject which describes
the development until 2004. In addition, we mention the papers [4, 19, 23, 22,
24, 57, 59, 61, 82, 106, 107, 108] for further reading.

Very recently, Combes, Hislop and Klopp [20] published a result which includes
(and improves) virtually all previous results.

THEOREM 4.17. Let qi be independent random variables with a common dis-
tribution P0 of compact support. Let f be a non-negative single site potential of
compact support. Then

(1) If Po is Holder continuous with Holder exponent a, then N is Holder
continuous with the same exponent.

(2) If Po is Lifshitz continuous, then N is Lifshitz continuous as well. In this
case N has a bounded density.

The authors of [20] actually prove a more general theorem allowing the random
variables to be dependent and including a magnetic field.

4.6. Beyond the Density of States: Level Statistics. One may look at
the energy statistics of a disordered system on a smaller scale than we do for the
integrated density of states. This subject is common in the theory of random
matrices since the days of Wigner and Dyson (see, e.g., [124] or [29]), but is still
in its infancy for random Schrodinger operators.

Suppose we have a random Schrodinger operator H which we restrict to a cube
AL by appropriate boundary conditions. We call the resulting operator HAL. For a
fixed cube AL, the operator HAL has roughly JALI energy levels around an energy
E. So we may say that the averaged level spacing near E is 1

.
We now look at

the eigenvalues around E under a microscope zooming the averaged level spacing
to 1. The keyword is "unfolding of the spectrum." By this we mean we look at the
measure

IL([a,b])=#(n;Ell(HAL)E IE +J a,E+JALIJJ. (4.21)

It is reasonable to ask whether there is a limit of µL when L goes to infinity.
Moreover, if such a limit exists, what are the properties of the limit measure µ?

Molchanov [132] proved the existence of this limit for a one-dimensional model
in the continuum. Minami [131] investigated the multidimensional discrete case
in the regime of Anderson localization. Observe that we have localization for all
energies for Molchanov's model.

We discuss Minami's case (Molchanov's case being similar). In the following
we give merely a rough sketch of Minami's result, leaving out many details-even
assumptions and precise statements. A complete discussion is far beyond the scope
of this paper. We urge the reader to look at the paper [131] to get a complete
picture.

Let us suppose we have an integrated density of states N which has a bounded
density n, i.e., N(E) = f n(A) dA. For energies near the bottom of the spectrum,
Minami shows that µL is asymptotically a Poisson measure of intensity n(E). This
implies that for a < b,

n(E)k(b - a)k _n(E)(b-a)
IP (AL([a,b] =k))

k!
(4.22)
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Moreover, the random variables µL (A1), ... , µL(A,,,) are approximately indepen-
dent.

In an informal (but provable) sense, this means that the eigenvalues near E
look like independent random variables with a uniform distribution. Especially we
have

P([L([a, b] = 1)) n(E)(b - a) -n(E)(b-a),

P(AL([a, b] = 2)) :;
n(E)2(b - a)2 -n(E)(b-a)

2

and consequently one may prove

P(AL([-x/2,x/2]) < 2

(4.23)

(4.24)

22
AL([-x/2, x12]) < 1) (n( ()E)x)l2 ,, n(E) x.

This says in a rough way that the differences of energy levels near E have a prob-
ability density which is strictly positive near 0. In physics terminology, there is no
level repulsion.

One expects that this is not the case in the energy region of extended states. So
far nobody has proven the existence of extended states for the Anderson model. A
fortiori, nobody has proven level repulsion in this case. However, level repulsion is
well established for the classical Wigner-Dyson ensembles of random matrix theory
([124, 29]).
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1. Introduction

"General wisdom used to say that Schrodinger operators should
have absolutely continuous spectrum plus some discrete point
spectrum, while singular continuous spectrum is a pathology
that should not occur in examples with V bounded."

The above quote starts Section 10.4 of the 1987 book "Schrodinger Operators"
by Cycon, Froese, Kirsch and Simon [15]. A few lines below, it further states:
"Another correction to the `general picture' is that point spectrum may be dense
in some region of the spectrum rather than being a discrete set." These statements
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are made as background to the introduction of yet a third exotic spectral phenom-
enon, which is the occurrence of Cantor spectrum, and to the characterization of
absolutely continuous spectrum associated with Cantor spectrum as recurrent.

The book [15] is mostly a summary of a summer school course that Simon gave
in 1982. Section 10.4 mainly discusses ideas that were introduced in the seminal
1981 Avron-Simon paper "Transient and recurrent spectrum" [3] along with some
relevant results of Avron-Simon [5], Bellissard-Simon [11], and Chulaevsky [13].
In particular, the above quotations echo similar statements previously made in [3].

For insight regarding the "general wisdom" of the time, it may be illuminating
to look at the 1978 fourth (and last) volume of "Methods of Modern Mathematical
Physics" by Reed and Simon [49]. This volume is called "Analysis of Operators"
and its Section XIII.6 starts with the following statement: "Spectral analysis of
an operator A concentrates on identifying the five sets aess(A), adisc(A), 0ac(A),
crs;ng(A), opp(A)." This section is called "The absence of singular continuous spec-
trum I" and it is followed by similarly titled sections up to "The absence of singular
continuous spectrum IV." These "absence of singular continuous spectrum" sections
occupy roughly 16% of the volume and point at the main role played by singular
continuous spectrum in pre-1978 spectral theory: It was a non-occurring phenom-
enon which complicated life by requiring some effort to prove it did not occur.

The Avron-Simon paper [3] posed a significant challenge to the "general wis-
dom" of its time. First, it extended the above "five sets" by defining four new spec-
tral types (recurrent absolutely continuous, transient absolutely continuous, thick
pure point and thin pure point). Second, it made the prediction that what they
called "extraordinary" spectra (and we call here exotic spectra) "will become more
and more commonly encountered than one might have thought!" Indeed, Avron-
Simon point out this prediction as a potential objection to their choice of the term
"extraordinary." The fact that their prediction materialized so fully is why we
decided to reject their proposed terminology and adopt "exotic spectra" instead.

The historical background concerning exotic spectra which preceded [3] con-
sisted of several fairly isolated results. In particular, one should mention the 1977
Goldsheid-Molchanov-Pastur [25] proof of Anderson localization [1] (namely, the
occurrence of pure point spectrum with eigenvalues dense in an interval) in a ran-
dom Schrodinger operator. They considered a continuous one-dimensional operator
of the form -A + V on L2(R) with a certain type of random potential V.

Even earlier, the Ishii-Pastur theorem (see [15]) indicated that some random
one-dimensional Schrodinger operators have no absolutely continuous spectrum in
spite of their spectrum being an interval (which says they must have either thick
point spectrum or singular continuous spectrum or both). Anderson localization
for discrete Schrodinger operators with i.i.d.r.v. potentials was proven in 1980 by
Kunz-Souillard [43]. Another notable result of the era is Pearson's seminal 1978
paper [47], which gave an explicit construction of a one-dimensional Schrodinger
operator having purely singular continuous spectrum.

[3] was essentially part of a series of papers concerned mostly with almost
periodic Schrodinger operators that Simon wrote with several coauthors in the
early 1980's [4, 3, 5, 6, 7, 11, 14, 16, 55, 56]. These works were predated by
the 1975 paper of Dinaburg-Sinai [20], which established absolutely continuous
spectrum for some almost periodic Schrodinger operators, and by several papers of
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Shubin (see [53]). They were paralleled by a number of works by other authors
(e.g., [9, 10, 12, 13, 21, 22, 37, 38, 46, 52]).

The phenomenon of sudden broad interest in almost periodic Schrodinger op-
erators has been named the "almost periodic flu" by Simon and is very nicely
presented in his review paper [54], which is itself often called "the almost peri-
odic flu paper." [3] seems to have been primarily motivated by the Avron-Simon
discovery [5] of Cantor absolutely continuous spectrum for certain almost periodic
Schrodinger operators, but, while other papers in the series were focused purely on
almost periodic, or very similar, potentials, [3] took a more general perspective: It
looked at the potential implications of the new spectral phenomenon to quantum
mechanics, identified natural mathematical structures which arise in this context
and, most notably, identified the connection between the newly discovered spectral
phenomenon for almost periodic operators and the prior findings of Goldsheid-
Molchanov-Pastur [25] and Pearson [47]. We thus believe that it is [3], more than
any other single work, that marks the beginning of a new era in spectral analysis:
the era of exotic spectra.

We note that by classical inverse spectral theory, one should actually expect
the full spectral richness allowed by measure theory to find its way into Schrodinger
operators. In particular, we have

THEOREM 1.1 (Gel'fand-Levitan [24]). Given any finite Borel measure v on
[a, b] C l[8, there exists a continuous half-line Schrodinger operator for which the
spectral measure coincides with v on [a, b].

Thus, one could argue that the "general wisdom" expecting only "absolutely
continuous spectrum plus some discrete point spectrum" was never really justified.
Indeed, in looking back, it seems to be very much the consequence of mathemat-
ical physicists concentrating their attention on operators arising from atomic and
molecular physics, mathematical problems associated with scattering experiments,
periodic problems, etc., namely, on problems which happen to have such spectra.

The exotic spectra era can thus be at least partially attributed to mathemati-
cal physicists starting to look into some rich problems of modern condensed matter
physics which yield rich spectral phenomena. Indeed, several developments in con-
densed matter physics in the early 1980's contributed to the growing interest in
almost periodic Schrodinger operators and exotic spectra. The 1980 discovery of
the integer quantum Hall effect by von Klitzing [40] (for which he got the Nobel
Prize in 1985), led to a beautiful theory by Thouless, Kohmoto, Nightingale and
den Nijs [66], which explains the quantization of charge transport in this effect as
connected with certain topological invariants. Central to their theory is the use of
the almost Mathieu operator as a model for Bloch electrons in a magnetic field (in
which case the frequency a is proportional to the magnetic flux; see below).

Another strong source of interest in almost periodic problems came from
the 1984 discovery of quasicrystals by Shechtman et al. [48], as almost periodic
Schrodinger operators provide elementary models for electronic properties in such
media. Yet another motivating development occurred in the context of quantum
chaos theory, notably in works of Fishman, Grempel, and Prange [23, 30, 31], as
discrete one-dimensional Schrodinger operators with rich potentials (and, in par-
ticular, almost periodic ones) appeared in studies of dynamics of some elementary
quantum models and, in particular, in studies aimed towards distinguishing quan-
tum from classical dynamics in chaotic systems.
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Interestingly, while the above developments in physics certainly contributed to
broader interest in problems connected with exotic spectra, the timeline doesn't
point to a simple scenario of mathematical physicists following the footsteps of
physicists. Anderson localization was discovered in 1958 [1] and has been an active
field of research by condensed matter physicists throughout the 1960's and 1970's,
yet the Goldsheid-Molchanov-Pastur paper [25] came only in 1977. On the other
hand, the "almost periodic flu" was in full motion before the above developments
in physics that made it all the more interesting.

It is also interesting to note that Pearson's example [47] of a one-dimensional
Schrodinger operator having purely singular continuous spectrum isn't directly con-
nected with anything that has been of much interest to physics. The same is true
for quite a few other models that have been considered in the context of exotic spec-
tra. Thus, it appears that at least some of the exotic spectra era is associated with
the willingness of spectral analysts, largely headed by Simon, to look at problems
that are interesting from a mathematical perspective and to loosen some of the ties
with physics. The fact that the "almost periodic flu" was very soon followed by
discoveries that made it more interesting from a physics perspective than what one
might have initially thought is an intriguing historical sidelight.

Another important phase in the field of exotic spectra came with Simon's "sin-
gular continuous spectrum revolution" which started around 1994. The core of this
revolution has been the realization that singular continuous spectrum is a much
more common phenomenon than what was previously thought and that it is, in
fact, a generic phenomenon for broad classes of operators. In particular, the rev-
olution supplied numerous new examples for operators with singular continuous
spectrum. The revolution started with the three papers [19, 36, 61] by Simon
and coauthors, along with Gordon's work [27, 28], which independently obtained
roughly the same results as [19] a little earlier (also see the announcement paper
[17], which summarizes the central findings of [19, 36, 61]). These papers soon
inspired many more works by Simon and coauthors, as well as by others.

Alongside the central theme of identifying more and more operators with sin-
gular continuous spectrum, some of the focus (e.g., in [18, 44]) has also been on
improving the understanding of singular continuous spectrum itself, namely, on is-
sues such as the implications of such spectra to dynamical properties of quantum
systems, natural ways of distinguishing different types of singular continuous spec-
trum, etc. While the main spike of the revolution can be timed, roughly, to the
1994-1996 period, related work continued throughout the 1990's and continues to
this day.

Simon's work in the area of exotic spectra occupies roughly fifty-five research
papers written in the 1981-1999 period. They make up a vast collection of results,
and this article makes no attempt to achieve any sort of systematic coverage of
all this work. Instead, we focus on a relatively small subset of these results, which
tend to emphasize certain aspects of Simon's work and/or to fit in certain historical
contexts. Many of Simon's important contributions to the subject have been left
out.

The rest of this paper is organized as follows. In Section 2 we discuss the
almost periodic flu, in Section 3 we review some of Simon's central contributions to
thick point spectrum and in Section 4 we discuss the singular continuous spectrum
revolution.
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2. The Almost Periodic Flu

Simon's 1982 review paper [54] starts with the following:
"In many years, flu sweeps the world. The actual strain varies
from year to year; some years it has been Hong Kong flu, some
years swine flu. In 1981, it was the almost periodic flu!"

The paper then moves to counting specific contributions by Avron and Simon
[4, 3, 5, 6, 7], Bellissard and Testard [12], Bellissard et al. [9], Chulaevsky [13],
Johnson [37], Moser [46], Johnson and Moser [38], and Sarnak [52].

This colorful opening led to the phenomenon of sudden broad interest in almost
periodic Schrodinger operators becoming known as the "almost periodic flu" and
to [54] becoming known as the "almost periodic flu paper." The flu paper came in
the midst of the actual flu season and was closely followed by additional important
developments such as Kotani theory [41, 55] and the paper by Deift-Simon [16]
that built upon it.

The first of Simon's flu season papers was the Avron-Simon paper [3], which
has already been mentioned above. The central theme of this paper has been to
extend the scope of spectral analysis by making the following definitions of new
spectral types. Given a self-adjoint operator A on a separable Hilbert space f and

E 7-l, we denote by j the spectral measure for A and 0. It is the unique Borel
measure on R obeying

(',, f (A)')) = Jf(x)d(x)
for any bounded Borel function f. We further denote by µp the Fourier transform
of pp, namely,

µlp (t) =
Jet1dji.(x)

Avron-Simon [3] defined the transient subspace, 7-ltac, by

7ttac={ Ii ,ELl},
where -. denotes closure. This should be be compared with the well-known fact that
the absolutely continuous subspace, 7Iac, obeys 71ac = {Vi I µ,0 E L2} . Since /,(t)2
coincides with the quantum mechanical survival probability of b, ftac is a closed
subspace of 7-lac which is made of vectors that have the fastest escape rate from their
original position under the Schrodinger time evolution. The recurrent subspace, 7-lr,
is then defined by 7-1r = fl , and the recurrent absolutely continuous subspace,
lrac, by Rrac = 7{tc f17-lac. Corresponding spectra are defined by atac(A) = o-(A I
ltac) and arac(A) = a(A [ Rrac). atac is called transient absolutely continuous
spectrum and arac is called recurrent absolutely continuous spectrum.

Avron-Simon showed that 7{tac = Pe1Hac, where Pei is the spectral projection
on the essential interior of the essential support of the absolutely continuous part
of the spectral measure class of A. This implies that the absolutely continuous
spectrum of the free Laplacian (on L2 (W-) or t2 (Zd)) and of similar problems such
as periodic Schrodinger operators and atomic Hamiltonians is purely transient. If,
however, A has nowhere dense spectrum, then atac = 0, and so any absolutely
continuous spectrum of operators having Cantor spectrum is purely recurrent.

[3] also provided the following distinction between thin and thick point spec-
trum (app denotes the closure of the set of eigenvalues): A E app is said to be in
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the thin point spectrum if (A - c, A + e) n Qpp is countable for some c > 0. A is said
to be in the thick point spectrum if (A - c, A + E) n ap, is uncountable for every
e > 0. Avron-Simon showed that the thin point spectrum is countable and the
thick point spectrum is a perfect set (namely, a closed set with no isolated points)
which is empty if and only if vPP is countable.

Additional central flu season results by Simon and coauthors included the fol-
lowing:

The Avron-Simon paper [5] studied one-dimensional Schrodinger operators
with limit periodic potentials, namely, potentials which are norm-limits of peri-
odic potentials. A typical example (for the continuous Schrodinger operator case)
is V (x) = 1 aj cos(x/23) with 1 Jaj I < oo. They considered the space of all
such potentials with the 2°° (namely, operator norm) topology and proved that for
a dense G6 set of such potentials the spectrum must be a Cantor set. Moreover, for
a dense set, the spectrum must be both a Cantor set and purely absolutely contin-
uous and it is thus purely recurrent absolutely continuous. Similar results also hold
for some subsets of limit periodic potentials. We note that roughly the same results
were independently obtained around the same time by Chulaevsky [13] and that a
partial result (Cantor spectrum for a dense set) was also independently obtained
by Moser [46].

The Avron-Simon paper [6] studied the almost Mathieu operator, which is the
discrete Schrodinger operator HA,a,e on £2(Z) given by

(HA,.,oV))(n) = ib(n + 1) + b(n - 1) + A cos(27ran + 0)0(n) .

They showed, by utilizing a result of Gordon [26], that if JAI > 2 and a is a
Liouville number (namely, an irrational for which there is a sequence of rationals
obeying I a - pn /qn I < n-Q^) then HA,,,,,0 has purely singular continuous spectrum
for Lebesgue a.e. 0. This provided a second concrete example (after Pearson's [47])
for a Schrodinger operator with purely singular continuous spectrum.

The Avron-Simon paper [7] and Craig-Simon paper [14] focused on the general
theory of almost periodic Schrodinger operators and particularly on the spectrum,
Lyapunov exponent and density of states. These papers prove many fundamental
results (some of which were also independently obtained by others around the same
time). Among the results are a rigorous proof of the Thouless formula y(E) =
f in JE-E'J dk(E'), which connects the Lyapunov exponent y(E) with the density of
states dk(E), subharmonicity of the Lyapunov exponent and log-Holder continuity
of the density of states. [7] also had some results for the almost Mathieu operator,
including a rigorous version of the Aubry duality [2] saying that for irrational a,
a(a, A) = (A/2)o (a, 4/A), where c (a, A) is the spectrum of HA,a,e (it is independent
of 0).

The Bellissard-Simon paper [11] provided the first rigorous result concerning
Cantor spectrum for the almost Mathieu operator. They showed that a(a, A) is a
Cantor set for a dense G6 set of pairs (a, A). (It is known by now that the spectrum
of HA,a,g is a Cantor set whenever a is irrational, as first conjectured in 1964 by
Azbel [8].)

The Deift-Simon paper [16] built on Kotani theory [41], a version of which for
discrete Schrodinger operators has been worked out by Simon in [55]. The Deift-
Simon paper obtained several fundamental results for ergodic one-dimensional
Schrodinger operators, most of which concern the absolutely continuous spec-
trum and its essential support, which, by Kotani theory, coincides with the set
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{E I 'y(E) = 0}. One of their results is the remarkable inequality (we give the ver-
sions of the results for discrete Schrodinger operators)

dk 1

dE {E I -y(E)=01 2lr sin(7rk)

which says that the restriction of dE to the set {E 17(E) = 0} is bounded from
below by the value of aE for the free Laplacian at corresponding values of the
integrated density of states. It also implies

{EIHy(E)=0}I <4,

where I denotes Lebesgue measure. Another result is the averaged boundedness
of absolutely continuous spectrum eigenfunctions, more explicitly, the existence, for
Lebesgue a.e. E E {E I y(E) = 0}, of two linearly independent solutions of of the
corresponding Schrodinger equation, each of which is the complex conjugate of the
other, normalized to have Wronskian -2i and obeying

Li L Iuf(n)I2 < 2irdE .

n=1

Yet another result of [16] is the mutual singularity of the singular parts of spectral
measures for different realizations of an ergodic potential.

The paper which can be naturally considered as Simon's last flu season paper is
[56], which studies the Maryland model. This is the discrete Schrodinger operator
HA,a,e on 22 (Z) given by

(HA,.,eo)(n) = P(n + 1) + 0(n - 1) + A tan(7ran + 0)0(n) .

The same name is also used for the multidimensional analog on 22 (Zd) of this opera-
tor. HA,a,e was discovered by Fishman-Grempel-Prange [23, 30] (in the University
of Maryland, from which it got its name) and has the remarkable property of being
roughly precisely solvable. It exhibits singular continuous spectrum if a is a Liou-
ville number and thick pure point spectrum (the spectrum as a set equals I[8 for
any irrational a) with precisely computable eigenvalues if a is an irrational with
typical Diophantine properties. The point spectrum result extends also to the mul-
tidimensional case. [56] extended and made rigorous some of the original results of
the Maryland team. Similar work was done independently around the same time
by Figotin-Pastur [21].

Aside from Simon being the leading worker on almost periodic spectral theory
around the flu season (in terms of having the largest volume of results), he also had
great impact on the field in terms of drawing the map for future progress. The flu
paper [54] had a list of thirteen open problems and conjectures, of which five were
devoted to the almost Mathieu operator and the rest were more general. Some of
these were also repeated in Simon's 1984 "Fifteen problems in mathematical physics"
paper [57]. These problems helped to inspire a considerable amount of ongoing work
in the 24 years that passed since [54]. The community of contributors to the field
has been quite diverse, ranging from well-established world-class mathematicians
to young entrants who were in various stages between starting kindergarten to
finishing high school when [54] was written.

While probably no period since the spike of the flu season in 1981-1982 matched
the level of almost periodic activity of that time, the overall progress made since
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then is quite vast. In particular, most of the original open problems of [54] are
solved by now (although certainly not all of them). Some of the conjectures turned
out to be false! Considerable progress in the field continues as we write.

3. Thick Point Spectrum

Thick point spectrum tends to largely coincide with the phenomenon of Ander-
son localization [1]. The most central family of operators for which this phenom-
enon has been studied consists of various random multidimensional Schrodinger
operators (with or without magnetic fields). Anderson's paper [1] gave some free-
dom regarding what may be rightfully called "the Anderson model." For simplicity
of exposition, we use the name Anderson model for the (semi-concrete) random
operator H, on B2(Zd) given by

H", = A+ E An(w)On, an
nEZd

where the )n (w)'s are independent, identically distributed random variables
(i.i.d.r.v.) with uniform distribution in an interval and {bl}nEZd is the natural
basis of £2(Zd). Various variants and analogs have also been considered, including
variants with different distributions, analogous continuous Schrodinger operators
on L2(Rd), discrete operators with more than just next-near neighbor interactions,
etc. While all of the results discussed below for "the Anderson model" are valid
for more general families of random operators, the precise range of validity tends
to be different for different results. We will thus keep things simple by discussing
results almost exclusively for the above semi-concrete H. We say that an Ander-
son model operator H. is "strongly coupled" if the interval over which the .\n(w)'s
are distributed is "large."

Anderson localization has been the first exotic spectral phenomenon to be dis-
covered (both by physicists and in terms of proving rigorous mathematical results)
and also the one which has drawn the most attention (the largest number of work-
ers and papers) over the years. In a sense, one can say that the field of exotic
spectra has been largely dominated by Anderson localization. Unlike almost peri-
odic Schrodinger operators and the singular continuous spectrum revolution that
we discuss in the next section, where the current state of those fields would be hard
to imagine without Simon's crucial contributions, Simon's involvement in studies
of Anderson localization was relatively minor and it is likely that the current state
of the field would have been similar to what it is even without him. Nevertheless,
Simon had quite a few papers and results involving point spectrum and Anderson
localization and some of them are very important. The purpose of this section is
to point out a small subset of these results.

Probably the most famous of Simon's contributions to Anderson localization is
the 1986 Simon-Wolff criterion obtained by Simon-Wolff in [65]. It says that an
Anderson model Hamiltonian H, has only point spectrum in an energy interval I,
for a.e. w, if and only if

1 (6n,(H",-E-i0)-1So)12 <00
nEZd

for a.e. w and Lebesgue a.e. E E I. For this to hold, the distribution of the .\n(w)'s
need not be uniform in an interval, but it does need to be absolutely continuous
with respect to the Lebesgue measure. The Simon-Wolff criterion thus reduces
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the problem of establishing Anderson localization to proving appropriate square
summability of resolvent matrix elements. This provides considerable simplification
to many proofs of Anderson localization, and the Simon-Wolff criterion continues
to play an important role in many settings of proving Anderson localization.

Another notable result is the absence of ballistic motion for point spectrum
proven by Simon in [58]. It says that if H is a discrete Schrodinger operator on
$2(7Zd), X2 is the squared position operator on this space, namely,
n2z/i(n), and H has only point spectrum, then for any vector 0 in the domain of
X1,

2 (t/ eiHtX2e-iHtV/,) 0
t

as t -> 00. This shows that operators with purely point spectrum cannot induce
ballistic propagation of initially localized wavepackets. (Note that ballistic mo-
tion is always an upper bound on the propagation rate of wavepackets for discrete
Schrodinger operators, regardless of spectral properties.) [58] also obtained similar
results for continuous Schrodinger operators on L2(1Rd), as long as the potential is
sufficiently close to being bounded from below.

Yet another notable result was given in Simon's paper [60] on cyclic vectors in
the Anderson model. This paper established that for the Anderson model H,, with
probability one, each of the 5, vectors is a cyclic vector for the restriction of H, to
its pure point subspace. In particular, this says that the b, vectors are cyclic vectors
for H, whenever it has only point spectrum and that all of the point spectrum of H,
must be simple (namely, the probability of Hu, having any degenerate eigenvalues
is zero).

The final set of results we discuss in this section is from the work of del Rio-
Jitomirskaya-Last-Simon [18]. They have shown, by constructing an explicit ex-
ample, that from the fact that a Schrodinger operator has only point spectrum with
exponentially localized eigenvectors, one cannot conclude anything for the growth
rate of (0, eiHtX2e-iHt,)) beyond the absence of strict ballistic motion as discussed
above. That is, for such an operator one can still have

lim sup 1 ( 0 , 00
t_00 t2-E

for any E > 0. Since the Anderson model is known to exhibit dynamical localization
(namely, (0, eiH,,,tX2e-tH-tY )) is bounded with probability one), this called for
extending the understanding of its precise spectral characteristics. To achieve this
goal, [18] introduced the following definitions: A self-adjoint operator A on Q2 (Zd)

is said to have SULE (Semi-Uniformly Localized Eigenvectors) if it has only point
spectrum and there exists a constant -y > 0 such that for any b > 0, there exists a
constant C(b) > 0, such that for any eigenvectors of A one can find n(s) E 7Ld,
so that

10k, s) I < ((b)ebjn(s)j-ryik-ncs>i

for all k E 7Ld. A is said to exhibit SUDL (Semi-Uniform Dynamical Localization)
if there exists a constant ' 5> 0, such that for any b > 0, there exists a constant
C(b) > 0, so that

lim sup 10n, e-i1Ade) I < C(b)eblel-7ln-el.

t

[18] proved that SULE implies SUDL and that SUDL, along with simple spectrum,
implies SULE. In particular, for operators on £2 (Zd) with simple spectrum, SULE
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SUDL. It also proved that a sufficiently strongly coupled Anderson model H,
exhibits SUDL and thus it also has SULE. Some additional results of [18] are
discussed in Section 4 below.

4. The Singular Continuous Spectrum Revolution

Simon's singular continuous spectrum revolution started around 1994, when he
discovered that singular continuous spectrum is a much more common phenomenon
than what was previously thought, and proved results establishing it as a topologi-
cally generic phenomenon for many classes of operators. The initial results inspired
much more work by Simon and coauthors, as well as by others, and within a few
years the landscape concerning operators with singular continuous spectrum was
drastically changed.

The most notable paper of the revolution is probably Simon's paper [61], which
is sometimes called "the Wonderland paper," following how Simon named one of
its central theorems. This paper focused on general self-adjoint operators and its
central results provide conditions for topological families of operators to exhibit
singular continuous spectrum for dense Gb sets. The most central theorem of [61]
is probably the following:

THEOREM 4.1 (Simon's Wonderland theorem). Let X be a complete metric
space of self-adjoint operators in which convergence implies strong resolvent con-
vergence. Suppose
(a) {A A has purely absolutely continuous spectrum} is dense in X;
(b) {A A has purely point spectrum} is dense in X.
Then for a dense Gb set of A's, A has only singular continuous spectrum.

An illuminating corollary of Theorem 4.1 is that in a natural topological sense,
a generic strongly coupled Anderson model operator has only singular continuous
spectrum (as opposed to having only point spectrum with probability one). More
precisely, if the exact same set of potentials of the Anderson model is considered
with the natural product topology rather than as a probability space, then for a
dense Gb set of potentials in this topology, the corresponding operator has only
singular continuous spectrum.

Another notable paper is the del Rio-Makarov-Simon paper [19], which studied
the genericity of singular continuous spectrum in the context of rank one perturba-
tions (see [59]). Its central result, which was also independently obtained a little
earlier by Gordon [27, 28], is the following:

THEOREM 4.2. Let A be a self-adjoint operator with a cyclic vector V. Suppose
[a, b] c a(A) and Qac(A) f1 [a, b] = 0. Then for a dense Gb set of ) 's, A + )'(V, )cp

has purely singular continuous spectrum on (a, b).

An important corollary of Theorem 4.2 (which also uses the cyclicity of bn vec-
tors in the Anderson model discussed in Section 3) is that if one considers a typical
realization of the strongly coupled Anderson model H, which has only point spec-
trum, and continuously changes the value of the potential at a single point of Zd,
then for a dense Gb set of potential values at this point, the corresponding operator
has only singular continuous spectrum. In particular, this says that the phenome-
non of Anderson localization is extremely unstable, since the point spectrum can be
converted into singular continuous spectrum by making arbitrarily small changes
to the value of the potential at a single point.
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The third paper of the trio which started the revolution is the Jitomirskaya-
Simon paper [36], which studied genericity of singular continuous spectrum in the
almost periodic context. They proved the following:

THEOREM 4.3. For JAI > 2 and any irrational a, there is a dense Gb set of 0's
for which the almost Mathieu operator on £2(Z), given by

(HA,a,o )(n) = V) (n + 1) + 0(n - 1) + A cos(27ran + 0) b(n) ,

has only singular continuous spectrum.

Theorem 4.3 can be considered as an almost periodic analog of Theorem 4.2,
since there are many other similarities between making rank one perturbations and
changing realizations within the hull of one-dimensional almost periodic potentials.
We note that the actual central result of [36] ensured the absence of eigenvalues,
for an appropriate Gb set in the hull, for any even almost periodic potential. The
application to the almost Mathieu operator with JAI > 2 is done in order to ensure
the absence of absolutely continuous spectrum.

Another major paper of the revolution was the del Rio-Jitomirskaya-Last-
Simon paper [18]. Some of its results were already discussed in Section 3. A
central role in [18] was played by the fact that singular continuous spectra can be
naturally decomposed into many spectral sub-types by using Hausdorff measures
and dimensions. The measure-theoretic foundations for such decompositions go
back at least to the works of Rogers-Taylor [50, 51] and they were introduced
into spectral theory by Last [44], who was impacted by the singular continuous
spectrum revolution along with Guarneri's seminal papers on quantum dynamics
[32, 33] and Avron-Simon [3].

Recall that for any subset S of ][8 and a c [0, 1], the a-dimensional Hausdorff
measure, h', is given by

cc

h'(S)-lim inf EIb,la,
6-+0 S-covers

v=1

where a 6-cover is a cover of S by a countable collection of intervals, S C U"° 1 b,,,

such that for each v the length of b is at most b. ha is an outer measure on ][8
whose restriction to Borel sets is a Borel measure. hl coincides with the Lebesgue
measure and h° is the counting measure, such that the family {ha 0 < a < 1} can
be viewed as a way of continuously interpolating between the counting measure
and the Lebesgue measure. Given any nonempty set S C R, there exists a unique
a(S) E [0, 1], called the Hausdorff dimension of S, such that ha(S) = 0 for any
a>a(S), andha(S)=ooforanya<a(S).

The following basic notions and facts stem from the Rogers-Taylor theory [50,
51]: Given a, a measure p is called a-continuous (ac) if µ(S) = 0 for every set S
with ha (S) = 0. It is called a-singular (as) if it is supported on some set S with
ha (S) = 0. µ is said to be one-dimensional (od) if it is a-continuous for every a < 1.
It is said to be zero-dimensional (zd) if it is a-singular for every a > 0. A measure
p is said to have exact dimension a if, for every E > 0, it is both (a - E)-continuous
and (a + E)-singular. Given a (positive, finite) measure p and a c [0, 1], one defines

Da (x) = lim sun
µ((x - E, X + E))

Fi e-0 (2E)a
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and T,,,, {x I Dµ (x) = oo}. The restriction p(T n ) - pas is a-singular, and
p((ll \ T.) n ) - p.c is ca-continuous. Thus, each measure decomposes uniquely
into an ca-continuous part and an ca-singular part: p = pay + pas.

Consider now a separable Hilbert space 71 and a self-adjoint operator H. By let-
ting f,,,c - {0 1 pb is a-continuous} and 7-lc,s - {z' 1 p) is a-singular}, one obtains
a decomposition f = 7-lac ® Has, of f into mutually orthogonal closed subspaces
which are invariant under H. The a-continuous spectrum (a,,c) and a-singular
spectrum (Q,,s) are then naturally defined as the spectra of the restrictions of H to
the corresponding subspaces. Thus, the standard spectral theoretical scheme which
uses the Lebesgue decomposition of a Borel measure into absolutely-continuous,
singular-continuous, and pure-point parts can be extended to include further de-
compositions with respect to Hausdorff measures. As described in [44], the full
picture is richer, and for every dimension a c (0, 1), there is a natural unique de-
composition (of finite Borel measures and thus also of 7-1) into five parts: one below
the dimension a, one above it, and three within it-of which the middle one is
absolutely-continuous with respect to V.

A major focus in [18] was rank one perturbations and attempting to understand
the above discussed instability of Anderson localization under such small pertur-
bations. While [18] showed that it is fully possible for a rank one perturbation
to change the spectral type all the way from point spectrum to one-dimensional
spectrum, it also established some spectral semi-stability for the Anderson model
(in fact, for any self-adjoint operator on £2(Z'') that has SULE).

Explicitly, [18] showed that the singular continuous spectrum which is obtained
in the Anderson model by changing the value of the potential at a single point
must be purely zero-dimensional (namely, the spectral measures are supported on
a set of zero Hausdorff dimension). This implies that if one focuses on the spectral
dimension rather than on distinguishing point spectrum from continuous spectrum,
the situation appears to be stable, since changing the value of the potential at a
single point never changes the fact that the spectrum is zero-dimensional. This
semi-stability result was given two proofs in [18]. One obtained it directly as a
spectral result, while the other deduced it (using results of [44]) as a corollary of a
dynamical result controlling the growth rate of (zt , eiHtX2e-iHt l.). That is, while

eiHtX2e-iHt,) cannot be bounded if H has continuous
spectrum,

[18] shows
that if H is obtained from an operator with SULE by changing the value of the
potential at a single point, then (0, eiHtX2e-2Ht,b) cannot grow with t faster than
logarithmically.

Another interesting result in [18] is the fact that if an ergodic operator on
£2(Zd) has what they called ULE (Uniformly Localized Eigenvectors), which means
that all its eigenvectors can be fitted by shifting under a single exponential envelope,
then this localization property is stable and there cannot be any potential in the
support of the corresponding ergodic measure for which the spectrum is continuous.
Thus, while the occurrence of singular continuous spectrum in the Anderson model
is a zero-probability event, it is nevertheless saying something important about
the probabilistic problem: With probability one, the Anderson model doesn't have
ULE (and so its localization properties cannot be much stronger than SULE).

Another interesting paper of the revolution was Simon's paper [63], which stud-
ied, among other things, singular continuous spectrum of one-dimensional sparse
barrier potentials. These include, in particular, the potential used by Pearson [47]
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to construct the first explicit example with purely singular continuous spectrum.
[63] proves that whenever such potentials are sufficiently sparse, the corresponding
spectrum must be purely one-dimensional (namely, the spectral measure gives no
weight to sets of Hausdorff dimension less than one). This roughly says that the
singular continuous spectrum in Pearson's example [47] is one-dimensional. This
should be contrasted with results of Last [44] and Jitomirskaya-Last [35] saying
that all of the singular continuous spectrum which occurs for the almost Math-
ieu operator with coupling JAI > 2 is purely zero-dimensional (this is roughly an
almost periodic analog of the above discussed semi-stability result of [18] for the
Anderson model). Thus, while the first concrete example of a Schrodinger operator
with purely singular continuous spectrum had purely one-dimensional spectrum,
the second example (of Avron-Simon [6]) had zero-dimensional spectrum.

To briefly mention a few more of Simon's revolution era results: Hof-Knill-
Simon [34] established purely singular continuous spectrum for generic subsets
in several families of discrete one-dimensional Schrodinger operators with poten-
tials taking finitely many values. Simon-Stolz [64] established singular continuous
spectrum for sufficiently sparse one-dimensional barrier potentials with growing
barriers. Simon [62] proved the generic occurrence of purely singular continuous
spectrum for certain topological families of graph Laplacians and Laplace-Beltrami
operators. Gordon-Jitomirskaya-Last-Simon [29] established a new version of the
Aubry duality for the almost Mathieu operator and proved that at the critical cou-
pling Jai = 2, it has purely singular continuous spectrum for Lebesgue a.e. pair
a, B.

Last-Simon [45] obtained some fundamental results for spectral analysis of
one-dimensional Schrodinger operators, which yielded new proofs for many known
results as well as important new results. Their results include characterizations
of the absolutely continuous spectrum in terms of the behavior of eigenfunctions
and transfer matrices, from which they also deduce that the absolutely continuous
spectrum must be contained in the intersection of absolutely continuous spectra
of a natural family of limiting operators. Among the applications of these results
are a proof that the absolutely continuous spectrum of almost periodic Schrodinger
operators is constant everywhere on the hull (which was also independently obtained
around the same time by Kotani [42]), and the absence of absolutely continuous
spectrum for strongly coupled (namely, any JAI > 2) discrete potentials of the form
V (n) = A cos(nO) with any 3 > 1.

Kiselev-Last-Simon [39] used modified Priifer and EFGP transforms to study
one-dimensional Schrodinger operators with decaying potentials. Among their re-
sults is a variant of Pearson's result [47] yielding purely singular continuous spec-
trum for suitable decaying sparse barrier potentials. They also obtain singular
continuous spectrum with precisely computable fractional spectral Hausdorff di-
mensions for certain random decaying potentials.

References
[1] P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109 (1958),

1492-1505
[2] S. Aubry and G. Andre, Analyticity breaking and Anderson localization in incommensurate

lattices, Ann. Israel Phys. Soc. 3 (1980), 133-164
[3] J. Avron and B. Simon, Transient and recurrent spectrum, J. Funct. Anal. 43 (1981), 1-31



710 Y. LAST

[4] J. Avron and B. Simon, Almost periodic Hill's equation and the Tangs of Saturn, Phys. Rev.
Lett. 46 (1981), 1166-1168

[5] J. Avron and B. Simon, Almost periodic Schrodinger operators, I. Limit periodic potentials,
Commun. Math. Phys. 82 (1982), 101-120

[6] J. Avron and B. Simon, Singular continuous spectrum for a class of almost periodic Jacobi
matrices, Bull. Amer. Math. Soc. 6 (1982), 81-85

[7] J. Avron and B. Simon, Almost periodic Schrodinger operators, II. The integrated density
of states, Duke Math. J. 50 (1983), 369-391

[8] M. Ya. Azbel, Energy spectrum of a conduction electron in a magnetic field, Sov. Phys.
JETP 19 (1964), 634-645

[9] J. Bellissard, A. Formoso, R. Lima, and D. Testard, Quasi-periodic interaction with a metal-
insulator-transition, Phys. Rev. B 26 (1982), 3024-3030

[10] J. Bellissard, R. Lima, and D. Testard, A metal-insulator transition for the almost Mathieu
model, Commun. Math. Phys. 88 (1983), 207-234

[11] J. Bellissard and B. Simon, Cantor spectrum for the almost Mathieu equation, J. Funct.
Anal. 48 (1982), 408-419

[12] J. Bellissard and D. Testard, preprint, 1980
[13] V. Chulaevsky, Perturbations of a Schrodinger operator with periodic potential, (Russian)

Uspekhi Mat. Nauk 36 (1981), 203-204
[14] W. Craig and B. Simon, Subharmonicity of the Lyaponov index, Duke Math. J. 50 (1983),

551-560
[15] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrodinger Operators with Application

to Quantum Mechanics and Global Geometry, Springer, Berlin, Heidelberg, 1987
[16] P. Deift and B. Simon, Almost periodic Schrdinger operators, III. The absolutely continuous

spectrum in one dimension, Commun. Math. Phys. 90 (1983), 389-411
[17] R. del Rio, S. Jitomirskaya, N. Makarov, and B. Simon, Singular continuous spectrum is

generic, Bull. Amer. Math. Soc. 31 (1994), 208-212
[18] R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous

spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization, J. d'Analyse
Math. 69 (1996), 153-200

[19] R. del Rio, N. Makarov, and B. Simon, Operators with singular continuous spectrum: II.
Rank one operators, Commun. Math. Phys. 165 (1994), 59-67

[20] E. Dinaburg and Ya. Sinai, The one-dimensional Schrodinger equation with a quasi-periodic
potential, Funct. Anal. Appl. 9 (1975), 279-289

[21] A. Figotin and L. Pastur, An exactly solvable model of a multidimensional incommensurate
structure, Commun. Math. Phys. 95 (1984), 401-425

[22] A. Figotin and L. Pastur, The positivity of Lyapunov exponent and absence of the absolutely
continuous spectrum for the almost-Mathieu equation, J. Math. Phys. 25 (1984), 774-777

[23] S. Fishman, D. R. Grempel, and R. E. Prange, Chaos, quantum recurrences, and Anderson
localization, Phys. Rev. Lett. 49 (1982), 509-512

[24] I. M. Gel'fand and B. M. Levitan, On the determination of a differential equation from its
spectral function, (Russian) Izv. Akad. Nauk SSR. Ser. Mat. 15 (1951), 309-360; English
transl. in Amer. Math. Soc. Transl. Ser. 2 1 (1955), 253-304

[25] I. Goldsheid, S. Molchanov, and L. Pastur, A pure point spectrum of the stochastic one-
dimensional Schrodinger equation, Funct. Anal. Appl. 11 (1977), 1-10

[26] A. Gordon, On the point spectrum of one-dimensional Schrodinger operators, Usp. Math.
Nauk 31 (1976), 257-258

[27] A. Ya. Gordon, Exceptional values of the boundary phase for the Schrodinger equation on
the semi-axis, (Russian) Uspekhi Mat. Nauk 47 (1992), 211-212; English transl. in Russian
Math. Surveys 47 (1992), 260-261

[28] A. Ya. Gordon, Pure point spectrum under 1-parameter perturbations and instability of
Anderson localization, Commun. Math. Phys. 164 (1994), 489-505

[29] A. Gordon, S. Jitomirskaya, Y. Last, and B. Simon, Duality and singular continuous spec-
trum in the almost Mathieu equation, Acta Math. 178 (1997), 169-183

[30] D. R. Grempel, S. Fishman, and R. E. Prange, Localization in an incommensurate potential:
An exactly solvable model, Phys. Rev. Lett. 49 (1982), 833-836

[31] D. R. Grempel and R. E. Prange, Quantum dynamics of a nonintegrable system, Phys. Rev.
A 29 (1984), 1639-1647



EXOTIC SPECTRA 711

[32] I. Guarneri, Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett.
10 (1989), 95-100

[33] I. Guarneri, On an estimate concerning quantum diffusion in the presence of a fractal
spectrum, Europhys. Lett. 21 (1993), 729-733

[34] A. Hof, O. Knill, and B. Simon, Singular continuous spectrum for palindromic Schrddinger
operators, Commun. Math. Phys. 174 (1995), 149-159

[35] S. Jitomirskaya and Y. Last, Power law subordinacy and singular spectra, II. Line operators,
Commun. Math. Phys. 211 (2000), 643-658

[36] S. Jitomirskaya and B. Simon, Operators with singular continuous spectrum, III. Almost
periodic Schrddinger operators, Commun. Math. Phys. 165 (1994), 201-205

[37] R. Johnson, preprints, 1980
[38] R. Johnson and J. Moser, The rotation number for almost periodic potentials, Commun.

Math. Phys. 84 (1982), 403-438
[39] A. Kiselev, Y. Last, and B. Simon, Modified Prefer and EFGP transforms and the spectral

analysis of one-dimensional Schrddinger operators, Commun. Math. Phys. 194 (1998), 1-45
[40] K. von Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of

the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45 (1980),
494-497

[41] S. Kotani, Ljaponov indices determine absolutely continuous spectra of stationary one-
dimensional Schrddinger operators, in Stochastic Analysis (edited by K. Ito), pp. 225-248,
North-Holland, Amsterdam, 1984

[42] S. Kotani, Generalized Floquet theory for stationary Schrddinger operators in one dimen-
sion, Chaos, Solitons & Fractals 8 (1997), 1817-1854

[43] H. Kunz and B. Souillard, Sur le spectre des operateurs aux differences finies aleatoires,
Commun. Math. Phys. 78 (1980), 201-246

[44] Y. Last, Quantum dynamics and decompositions of singular continuous spectra, J. Funct.
Anal. 142 (1996), 406-445

[45] Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spec-
trum of one-dimensional Schrddinger operators, Invent. Math. 135 (1999), 329-367

[46] J. Moser, An example of a Schrddinger equation with almost periodic potential and nowhere
dense spectrum, Comment. Math. Hely. 56 (1981), 198-224

[47] D. B. Pearson, Singular continuous measures in scattering theory, Commun. Math. Phys.
60 (1978), 13-36

[48] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orien-
tational order and no translational symmetry, Phys. Rev. Lett. 53 (1984), 1951-1953

[49] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Opera-
tors, Academic Press, New York, 1978

[50] C. A. Rogers and S. J. Taylor, The analysis of additive set functions in Euclidean space,
Acta Math. 101 (1959), 273-302

[51] C. A. Rogers and S. J. Taylor, Additive set functions in Euclidean space. II, Acta Math.
109 (1963), 207-240

[52] P. Sarnak, Spectral behavior of quasiperiodic potentials, Commun. Math. Phys. 84 (1982),
377-401

[53] M. A. Shubin, Spectral theory and the index of elliptic operators with almost-periodic coef-
ficients, (Russian) Uspekhi Mat. Nauk 34 (1979), 95-135

[54] B. Simon, Almost periodic Schrddinger operators: A review, Adv. Appl. Math. 3 (1982),
463-490

[55] B. Simon, Kotani theory for one dimensional stochastic Jacobi matrices, Commun. Math.
Phys. 89 (1983), 227-234

[56] B. Simon, Almost periodic Schrddinger operators, IV. The Maryland model, Ann. Phys.
159 (1985), 157-183

[57] B. Simon, Fifteen problems in mathematical physics, in Perspectives in Mathematics. An-
niversary of Oberwolfach 1984 (edited by W. Jkger, J. Moser, and R. Remmert), pp. 423-454,
Birkhauser, Basel, 1984

[58] B. Simon, Absence of ballistic motion, Commun. Math. Phys. 134 (1990), 209-212
[59] B. Simon, Spectral analysis and rank one perturbations and applications, CRM Lecture

Notes Vol. 8 (J. Feldman, R. Froese, L. Rosen, eds.), pp. 109-149, Amer. Math. Soc.,
Providence, RI, 1995; reprinted in B. Simon, Trace Ideals and Their Applications, second



712 Y. LAST

edition, Mathematical Surveys and Monographs, Vol. 120, American Mathematical Society,
Providence, RI, 2005

[60] B. Simon, Cyclic vectors in the Anderson model, Rev. Math. Phys. 6 (1994), 1183-1185
[61] B. Simon, Operators with singular continuous spectrum: I. General operators, Ann. of Math.

141 (1995), 131-145
[62] B. Simon, Operators with singular continuous spectrum, VI. Graph Laplacians and Laplace-

Beltrami operators, Proc. Amer. Math. Soc. 124 (1996), 1177-1182
[63] B. Simon, Operators with singular continuous spectrum, VII. Examples with borderline time

decay, Commun. Math. Phys. 176 (1996), 713-722
[64] B. Simon and G. Stolz, Operators with singular continuous spectrum, V. Sparse potentials,

Proc. Amer. Math. Soc. 124 (1996), 2073-2080
[65] B. Simon and T. Wolff, Singular continuous spectrum under rank one perturbations and

localization for random Hamiltonians, Commun. Pure Appl. Math. 39 (1986), 75-90
[66] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conduc-

tance in a two-dimensional periodic potential, Phys. Rev. Lett. 49 (1982), 405-408

INSTITUTE OF MATHEMATICS, THE HEBREW UNIVERSITY, 91904 JERUSALEM, ISRAEL
E-mail address: y1ast0math.huji.ac.ii



Orthogonal Polynomials,
Inverse Spectral Theory





Proceedings of Symposia in Pure Mathematics
Volume 76.2, 2007

Riemann-Hilbert Methods in the
Theory of Orthogonal Polynomials

Percy Deift

To Barry Simon, on his 60th birthday,
mathematician extraordinaire, teacher and friend

ABSTRACT. In this paper we describe various applications of the Riemann-
Hilbert method to the theory of orthogonal polynomials on the line and on the
circle.

CONTENTS

1. Introduction
2. Applications of (R, v) and (S', v): Identities, Equations and Formulae
3. Applications of (R, v) and (S', v): Asymptotics
4. Related Areas
References

1. Introduction

In this paper dtt denotes either a Borel measure on R with finite moments

L (1)

or a finite Borel measure on the unit circle S1

< oo. (2)

l

In addition, unless stated explicitly otherwise, we will always assume that dµ is a
nontrivial probability measure, i.e. supp(dp) is infinite and the integral of d12 is 1.

Let
pn(x)knXn+... , kn>0, n=0,1,2,... (3)

2000 Mathematics Subject Classification. 42C05, 30E05, 30E20, 35Q15.
Key words and phrases. Riemann-Hilbert problems, orthogonal polynomials, steepest-

descent method.

715



716 P. DEIFT

0n(z) = r.nzn + ... , ,n > 0 , n = 0, 1, 2.... (4)

denote the orthonormal polynomials (OP's) with respect to dp on IR and Si respec-
tively (see [60]),

JR
pn(x)pmn(x)dM(x) = f On(ei°) o.n.(exe)dp(0) = 6n,,n,

l
n, m > 0. (5)

The fact that dµ is nontrivial implies, in particular, that the pn's and the on's,
exist and are unique for all n > 0.

As is well known, the pn's satisfy a three-term recurrence relation

bn-1Pn-1(x) + anpn (x) + bnpn+1(x) = XPn (x) , n > 0 (6)

where
anER, bn>0, n>0 (7)

and b_1 - 0. Similarly the On's satisfy the Szego recurrence relation

1 - lanl2 On+1(z) = zOn(z) - dnOn* (z) , n > 0 (8)

where
anEC, lanl<1, n>0

and for any polynomial q(z) of degree n,
(9)

q*(z) - zn q(1/2) (10)

denotes the so-called reverse polynomial. Following [59], we call the an's Verblunsky
coefficients. A simple computation shows that

an = - 1 On+1(0) , n > 0 . (11)
kn+1

On JR we define the (n + 1) x (n + 1) Hankel determinant

Dn = det (JR xj+kdµ(x) I , n > 0 , (12)
/ O<j,k<n

and on S1 we similarly define the (n + 1) x (n\+ 1) Toeplitz determinant

On = det e-i(j-k)O dµ(6) I , n >0. (13)
/ O<j,k<n

The determinants Dn and On are closely related to the OP's {pn}, {Can} respec-
tively. Indeed, one has (see, e.g., [60])

Dn-1 = 2
Dn

kn On-1 = 2 , n > 1 .

On
(14)

Given dµ, the study of the algebraic and asymptotic properties of the quantities

an, bn, pnx), kn, an, cbn(z), Icn

and also
Dn and An,

constitutes the core of the classical theory of orthogonal polynomials.
The three-term relation (6) can be re-written in the form

LP(z) = zp(z) , p(z) = (po(z),p1(z),p2(z).... )T , (15)
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where L is an infinite Jacobi matrix, i.e. L is symmetric and tridiagonal

ao bo
bo a1 b1 0

L=
b1 a2 .

(16)

0

with bi > 0, i > 0. In the case that da has compact support on ][8, the operator L
is bounded on

z u = (U01 U11 ...)T lui 2 < 00100
i=0

Let

F : {dµ on I[8 : supp(dp) compact} -> {bounded Jacobi matrices on f2 }

denote the map taking dµ r-a L. Conversely, if L is a bounded Jacobi matrix then,
in particular, L is self-adjoint, and we let da denote the spectral measure associated
with L in the cyclic subspace generated by L and e°i where e° = (1,0,0 .0,.. .)T E 22
Thus

(eo,L1eo)=f, E C\](17)
and it follows further that dp has compact support. Let

F : {bounded Jacobi matrices on f2 } -> {dµ on R : supp(dp) compact}

denote the map taking L to dµ. The basic fact of the matter (see, for example, [1],
[58], and also [25]) is that F and F are inverse to each other, FoF = id, FoF = id.
From this point of view the (classical) orthogonal polynomial problem is the inverse
spectral component of a spectral/inverse spectral problem. If the support of da is
not compact, then the situation is similar, but the relation between dp and L is
more complicated because L is now an unbounded operator and we must distinguish
between different self-adjoint extensions of L (see [1, 58] for more details).

In the case of measures dp on the unit circle, the role of the Jacobi matrices is
played by so-called CMV matrices C (see [59]). Such matrices C are unitary in £2
and pentadiagonal, and have the form

C = LM (18)

where L and M are block diagonal

L = diag(eoi 02, 64, ...) , M = diag(1, O1, 03, ...) (19)

with

Here

and

ajj < 1 ,

j > 0 . (20)

j > 0 (21)

Pi = 1 - Ia3I2 (22)

CMV matrices are named for Cantero, Moral and Velazquez [20], but in fact they
appeared earlier in the literature (see, in particular, [67]). Let

0: {dµ on S'} -> {CMV matrices}
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denote the map taking dp - C, the CMV matrix constructed from the Verblunsky
coefficients cad = o,(du), j > 0, of dµ, according to (18), (19) and (20). Conversely,
given a CMV matrix C, let dp be the spectral measure associated with C in the
cyclic subspace generated by C, C* = C-1 and eo. Let

: {CMV matrices} - {dp on S'}

denote the map taking C to dµ. Then, as above (see [59]), 0 and are inverse to
each other, and we see again that the classical orthogonal polynomial problem on
S1 is the inverse spectral component of a spectral/inverse spectral problem.

The techniques used to analyze the direct spectral maps, F and , are generally
very different from the techniques used to analyze the inverse spectral maps, F or
V%, though sometimes there is some overlap (see, e.g., [31]). It is also interesting to
note that in the solution of integrable systems, one needs knowledge of both F and
F (or and %). For example, the Toda lattice induces a flow Lo " L = L(t) on
Jacobi matrices Q43])

dL _
dt - B(L)L - LB(L)

L(t=0)=Lo
where

L=

ao bo 0

bo a1 b1

b1 a2

0

B(L) =

0 bo 0
-bo 0 b1

-b1 0

0

(23)

and the solution of (23) is given by the following well-known procedure ([56]):

Lo - dpo = F(Lo) -, d/2t(A) =
e2atdµo(f)

- L(t) = F(dyt)
fR e2xtd/2o(x)

The analysis of P and has benefited greatly from the powerful developments that
have taken place over many years in the spectral theory of Schrodinger operators
and their discrete analogs, reaching, over the last twenty years or so, and in the case
of one dimension, a state of great precision. Here Barry Simon and his school have
played a decisive role, and we refer the reader to [59], in particular, Part 2. The
systematic analysis of F begins with the classic memoir of Stieltjes 1894-1895. Up
till that point, a great deal of information had been obtained concerning particular
polynomials, such as Legendre polynomials, Jacobi polynomials, Hermite polyno-
mials, etc., but a unified point of view based on the orthogonality relation (5) had
not yet emerged. The analysis of zb began in 1920, when Szego initiated the sys-
tematic study of polynomials orthogonal with respect to a measure on S', as in (5).
Szego's work in turn has led to many remarkable developments by researchers from
all over the world, particularly the former USSR, Europe and the USA. We refer
the reader to Simon's book [59], where these developments are discussed in great
detail together with many fascinating anecdotes concerning their discovery. Start-
ing in the early 1950's with the celebrated work of Gel'fand and Levitan, various
techniques were developed to recover one-dimensional Schrodinger operators from
their spectral measures. In the 1970's, techniques based on the inverse-Schrodinger
method (see [21] and [43]) started to play a role in the analysis of F and V.
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FIGURE 1. The contour E

The goal of this paper is to describe one of these techniques, which is different
from the techniques in [21] or [43], and which has proved extremely fruitful, viz., the
Riemann-Hilbert (RH) method, also referred to as the Riemann-Hilbert Problem
(RHP). The scope of the paper is limited to describing results for F and 0 obtained
by RHP. Some of the results that we describe are quite standard and are included
only for purposes of illustration. Other results, particularly asymptotic results, have
been obtained, so far, only through RH methods. For a full up-to-date discussion
of what is known about F and 0, including the seminal contributions of Golinskii,
Ismail, Khrushchev, Lubinsky, Nevai, Rakhmanov, Saff, Totik and many others, we
again refer the reader to [58] and [59].

To begin, let E be an oriented contour in the complex plane C (see Figure 1).
By convention, if we move along the contour in the direction of the orientation,
the (+)-side (resp. (-)-side) of the contour lies to the left (resp. right) (see again
Figure 1). A k x k jump matrix v on E is a mapping from E -> Gt(k, C) such that
v, v-1 E L°°(E). We say that an £ x k-valued matrix function m(z) is a solution of
the RHP (E, v) if

(a) m(z) is analytic in G\E
(b) m+(z) = m_(z)v(z), z E E, where m+(z) = lim m(z')

z - z,zE(±)-side
If in addition t? = k and

(c) m(z) - I as z -+ oo,
we say that m is a solution of the normalized RHP (E, v).

Many technical issues arise. For example, in what sense do the limits m+ exist?
In what sense does m(z) --> I in (c)? How should one understand (b) at points of
self-intersection in E? Under what assumptions on E and v does a solution m(z)
exist? And if we normalize as in (c), is the solution unique? We will not consider
such issues here and in the text that follows, and we simply refer the reader to
[22] and the references therein for a general discussion of RHP's (see also [41] for
more recent information, and [10] for a discussion of points of self-intersections).
In this paper we will consider almost exclusively problems with solutions m(z)
that are analytic in C\E and continuous up to the boundary and at z = oo. For
such solutions, the limits in (b) and (c) are taken pointwise. Furthermore, for the
problems we consider, the solution of the normalized RHP will always exist and be
unique.
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At the analytical level, a normalized RHP is equivalent to a problem for coupled
singular integral equations on E. This is seen as follows.

Let Cr denote the Cauchy operator on E,

CEh(z) _ / h(s) ds
z E C\E (24)

s - z 27ri
with boundary values

(CIE h) (z) = lim (CEh)(z') , z E E . (25)
-zZ' C

(+) -side

Under reasonable conditions on E, C±E E L(LP(E), the bounded operators from
LP (E) -> LP(E), for any 1 < p < oo, and we have the relation

CE-C=1. (26)

Let
v(z) _ (v_(z))-IV+(z) , z E E (27)

be any pointwise factorization of v where

v±, (v±)-' E L°°(E) . (28)

Set
w+=v+-I, w_=I-v_

(29)
w = (W+, W-)

and define the singular integral operator on E

CCh - C+(hw_) + C"-(hw+)

for row k-vectors h. As w+ E L°°(E), Cw E L(LP(E)), 1 <
addition that

(30)

oo. Suppose inp<

w+ELP(E) for some 1<p<oo, (31)

and consider the equation for a k x k-matrix function µ

(1-CC)/2=I (32)

in I + LP(E), or more precisely,

(1 - C,)v = CCI = C+w_ +Crw+ E LP(E) (33)

where
µ=I+v, vELP. (34)

If a solution I + v of (32)-(34) exists, set

m(z) = I + CE (µ(w+ + w_))(z). (35)

Then a simple calculation shows that m+ = uv±, and hence m+ = m_v, and as
m(z) -> I as z -> oo, we see that (35) gives a solution of the normalized RHP
(E, v). Thus the normalized RHP (E, v) reduces to the analysis of the singular
integral equations (32).

The connection between the OP problem and the RHP is due to Fokas, Its and
Kitaev [44]. Let

P,,,= p,,, =x' +... , n>0
,,

denote the monic orthogonal polynomials associated with a measure

(36)

dp(x) = w(x)dx, w(x) > 0 (37)
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absolutely continuous with respect to Lebesgue measure on R, with x-lw(x) E
H1(]R), the first Sobolev space, for all j > 0. Let E = I[8, oriented from -oo
to +co, and equipped with jump matrix

v=v(x)= I W (lx) -oo<x<oo. (38)

Finally, for any n > 0, let X(-) _ (I -( ))1<i,j<2 solve the RHP (R, v)

X(n) (z) analytic in C\R

X(n) (z) = X (n) (z)v(z) , z E R

normalized so that

X (n) (z) (
Z-n 0

I > I as z -> oo .

Then ([44], in addition see [25]) direct computation shows that

X(n)(z) - (-27ri k(1PP,,-1(z) -27ri k(1C(P(z)1w)(z))

where C = C'R denotes the Cauchy operator on E = R. In particular,

Pa (z) = X (11n) (z) .

0)nFurthermore, if X(n) denotes the residue of
C

I at infinity,

(39)

(40)

(41)

X(n)(z) z0
I =I+Xz +O(z I,2

then

k 2 1 (n)
n-1 = - 27ri (X1 )21 (42)

and in the notation of (6)

Also by (14) and (42),

an = (X(n,))11 _ (X(n+1))11

bn-1 =

(43)

(44)

Dn-1 _ 1 ( (n+1))
(45)

Dn 27ri
X1 21

Thus all the basic quantities of interest in the OP problem can be read off from the
solution X(n) of the RHP (lR, v) above.

On the unit circle, the situation is similar. Let

4'. On =zn n>0 (46)

denote the monic orthogonal polynomials associated with a measure

dµ(0) = w(0) 20 (47)
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absolutely continuous with respect to Lebesgue measure on S' with w(9) E H1 (S'),
w(O) = w(9 + 27r). Fix n > 0 and let E = S1, oriented counterclockwise. Equip S'
with the jump matrix

_ v(9) _ C 1 w(9)z
0 1

z=era (48)v=
and let Y(n) _ (1 )1<ij<2 solve the RHP (S', v)

y(n) (z) analytic in C \ S1 (49)
Y+n1(z) = Y, n) (z)v(9) , z = ei0 E S' (50)

normalized so that

YN (z)
zn

I 0 -p I as z --+ oo . (51)

Then again (cf. [4]) direct computation shows that

Y(n)(z)
__ (

4Dn(z) C(Dn w/Sn)(z)
-Kn-l4bn-1(z) -r2_ C(,Dn-1 w/Sn)(z)

where C = CS' denotes the Cauchy operator on S' and Vn_1 is the
nomial as in (10). In particular,

4 n (z) = YII (z)

and hence by (11),

Also

and hence

an-1 = -Y1(i )(z = 0)

Kn-1 = `21
(z = 0)

(52)

reverse poly-

(53)

(54)

(55)

An-2 = -y(l )(z = 0).
(56)On-1

Again we see that all basic quantities in the OP problem on the circle are expressed
in terms of the solution y(n) of the RHP (S', v).

The outline of the paper is as follows. In Section 2 we show how to use the
RHP's (1R, v) and (Sl, v) above to derive various identities, equations and formulae
for the OP problem. In Section 3 we describe the application of the steepest de-
scent method of Deift-Zhou for RHP's to asymptotic problems for OP's. Finally,
in Section 4 we describe the application of RH ideas to areas related to the OP
problem, such as random matrix theory, multi-orthogonal polynomials, orthogonal
Laurent polynomials, and the rarefaction problem for the Toda lattice.
Technical Remark. In most of the paper we will be considering probability
measures with some degree of smoothness as in (37) and (47) above. For such
weights we then use the RHP's to derive, in particular, various identities such as
(6), (8), (85), etc. If dp(x) is an arbitrary probability measure on I[8 with finite
moments, or dµ(9) is a probability measure on Sl, we can approximate dp(x) and
dµ(9) appropriately with smooth measures dµ,(x) and dµ,(9) respectively: For
such measures (6), (8), (85), etc., are true, and letting e 10 we conclude that these
identities are true, as they should be, for all measures dµ(x) and dµ(9) as above.
Similar considerations apply at many points in the paper and we leave the details
to the interested reader.
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2. Applications of ([8, v) and (S', v): Identities, Equations and Formulae

The applications of Riemann-Hilbert techniques to OP's are principally of two
types:

(a) algebraic
(b) asymptotic.

Under (a), the goal is to derive identities, equations and useful formulae for the
OP problems. Under (b), the goal is to determine the asymptotic behavior of the
OP's p,,, P., I as n -> oo: Here one considers the case where the weight w(x)
is independent of n, as well as the case where w(x) depends on n in a prescribed
fashion (see (106) below). We consider (a) in this section, and (b) in the next.

Regarding (a), there is a general methodology, which may be traced all the
way back to the original work of Gel'fand and Levitan, and which may be stated
loosely as follows: If the jump matrix for a RHP is independent of a parameter,
then differentiation with respect to that parameter (or taking differences in the
discrete case) leads to an equation/identity.

We illustrate this methodology, which may be viewed as the analog for RHP's
of the celebrated theorem of Noether on conserved quantities for dynamical sys-
tems, first in the case of the defocusing Nonlinear Schrodinger Equation (NLS). In
1975 Shabat observed that the inverse scattering problem for the one-dimensional
Schrodinger equation could be rephrased as a RHP. Because of the connection
between Schrodinger operators and the Korteweg-de Vries (KdV) equation, this
meant that KdV, and by extension all 1 + 1-dimensional integrable systems, could
be solved by a RHP. In the case of defocusing NLS, Shabat's observation amounts
to the following (see, e.g., [41]). Let q(x, t) be the solution of NLS on the line

f iqt + qx. - 2Ig12q = 0 (57)
q(x,t = 0) = qo(x)

where qo(x) -> 0 sufficiently rapidly as I x I -> oc. Just as KdV is associated with the
Schrodinger operator, NLS is associated with a first order, two-by-two scattering
problem

!=i3+(_ -oo<x<o (58)

where a3 = (0) is the thirdPauli matrix. Let r = r(z) be the reflection
coefficient for (58) with q = q0. The map R : q r is the analog for NLS of the
OP maps F and q. Now, for fixed x and t, let m = m(z; x, t) be the solution of the
normalized RHP (R, v,,t) where R is oriented from -oo to +oo and

v:'t(z) - (1 rela(x)

2 1

z E R. (59)
6 = xz - tz2

Let ml (x, t) be the residue of m at z = oo,

\
m(z;x t)=I+m1(z't)+O(z I

Then

q(x,t) = -i(mi(x,t))I2 (60)
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How does one prove (60)? At the functorial level, R is really a map from the
category of differential operators to the category of RHP's,

L(q) '-'q '-'r '-'v..,,,

where L(q) = ia3d_ + ( °Q o ), and so the key question becomes: "How is the
differential operator encoded into the formalism of RHP's?"

To answer this question, observe that

'% = 'cL (z; x, t) - m(z). x, t)ez 2 13 (61)

solves the RHP
O(z; x, t) analytic on cC\R

(1-IT(Z)12 r(Z) )0+ _ 0_ -T(Z) 1 , z

where the jump matrix is now independent of x and t. Differentiating with respect
to x, we obtain

-r(z) 1
(0X+

1- Ir(z)I2 r(z)
from which it follows that T 4'x4'-1 has no jump across R, and hence is entire.
But as z - oo,

I 2z
1T=mxm- +m2o3m

=iz2 +A+O (z

for some constant matrix A. By Liouville, we must then have T = iz2 + A or

'/' iz13
2

0 + AO. (62)

Simple symmetry considerations imply that A is of the form (4 0), and hence we
recover the differential equation (58). Differentiating the O-RHP with respect to t
yields similarly an equation of the form

Ot = BO (63)

for some explicit matrix B = B(z, q, qx). Cross-differentiating (62) and (63),
(0x)t = (b )1, then yields the NLS equation (57). It is in this way in general
that identities and differential relationships are encoded into the RHP.

To apply the above methodology to OP's, consider the solution X(n) of the
RHP (R, v) above. Observing that X('+') satisfies the same jump relation as X(')
across R, we conclude as before that T - X (n+1) (X (n))-1 is entire. But

T = X (n+1)(z)(X (n)(z))-1

[(i+= +D ()) z(n+1)3 (I Z3

\
2/1 2/

= z (0 0 I + X(n+I) (0
0) - (0 0) X

(n) + O (1)
zand again by Liouville we conclude that

X(n+1) (z) =
(z

(1 0 ) + X (n+1)
( 1 0) 1 0 )xn)xm(Z)

(64)0 0 1 0 0 0 0 1
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from which the three-term recurrence relation (6) now follows by a simple compu-
tation. Moreover, if we replace the weight w(x) with wt(x) = fR ezstw(sods then

W(.) (z; t) - X (n) (z; t)e(tz+9(t))0'3 , g(t) _ -1 1n f e2stw(s)ds (65)
x

solves the RHP ([8, v) with jump matrix v = (o independent of t. Differenti-
ating with respect to t, we obtain as above a differential equation for WW

dtW(n) = ((z + g)0'3 + Xin)Q3 - U3X1n))W(n).

Using I' to denote the shift operator, I'W(n) = W(n+1) equation (64) takes the
form

rW(n) = (z (0 0) + Xin+l)
(0 0) - (0 )x)w.

(66)

Cross-"differentiating" (65) and (66), dtrW(n) = Pddtn', one is led immediately
to the Toda flow (23).

In another direction, if w(x) = e-v(r), V (X) = ymx2m + ..., ym > 0, then
U(n) X(n)e2I'(x)13 satisfies a jump relation across R with jump matrix v = (o 1),
which is independent of z, and by the above general methodology this leads to a
differential equation for U(n) with respect to z, d dz - = DU(n), for some explicit
D. Cross "differentiation", AU(n) F ddz , then leads to so-called "string equa-
tions" for the recurrence coefficients an, bn.

Applying the above methodology to the RHP (S', v) for OP's on the unit circle,
we obtain, in particular, simple and direct proofs of Szego recurrence, Geronimus'
Theorem on the Schur iterates, and the Pinter-Nevai formula (see [59], and below).
Indeed, let y(n) solve the RHP (Sl, v) above. Then one observes that V(n)
y(n+1) (o o) satisfies the same jump relation as across S1,

V(n) = V(n)
1 wz-n

+ 0 1

)'

and hence V(n)(Y(n))-1 is entire. As before, this leads to an equation for V(n) and
Y(n), which takes the form

Y(n+l) (1 0)
= V (n) z + do bn ) y(n) (67)

0 z an 1

for suitable constants tin, bn, cn. Furthermore (det Y(n))+ = (det Y(n))_ det v =
(det Y(n))-, and so det y(n) is entire. But det y(n) = det (y(n) (z-1 o )) -+ 1
as z -f oo, and hence det y(n) - 1. Taking determinants of both sides of (67), we
find the relation

do = bnan. (68)

From the first column of (67) we obtain the relations

4bn+l = (z + dn)4in - Kn-lbn4n-1
2 * 2 +cn4)n - l6n_l'Dn-l

Eliminating 4in-1, we obtain the Szego recurrence relation (8)

(69)

(70)

4)n+1 = ZDn - (Yn(D,t (71)
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with On replaced by fin, and with Verblunsky coefficient

zban = Knn
Letting z --> oo in (70), we find

2Cn = KnCYn-1

and hence by (68)
an = anan_1 . (74)

Now consider the second column in (67). Setting

rn = C(4'nws-n) , to = (75)

and using (72), (73) and (74), we obtain as in (69) and (70)

zrn+l = (z + anan-1)rn - an rn-1
Iz

tn_1 (76)rn /
-zrlntn = knan_lrn - rvn.-1tn-1 (77)

Eliminating tn_1 as we eliminated above, (76) and (77) reduce to

rn+l = rn - antn (78)

ztn+l = -anrn + to . (79)

Defining

fn - tn/rn
and using (78) and (79), we obtain the recurrence relation

zfn+1 =
n - an

, n > 0.1-anf n
In particular, for z = 0, we see that

an = fn(0) (82)

and so (81) can be written in the form

zfn+l =
fn - fn (0)

n > 0. (83)
1 - fn(O)fn

(72)

(73)

(80)

(81)

Finally, observe that

fo(z) _

t (' 1 1-0 ds r dµ(O)
0 _ S s-z 27ris _ S1 s-z

r ((' '?o ds (('' dµ(0)
0 fv s-z27ri JSl s s-z

(84)

where dp(0) = w(6)
d9

Geronimus' Theorem (see [59]) states the following: Let

F(z) _ s + z dl2(O)fl s - z

z -1be the Caratheodory function for dp and let fschur -- z F(z )+1 be the associated
Schur function. Let (fn)n>o solve the recurrence relation (83) with fnln=o = fschnr
Then

fn(0) = an n>0
where {an}n>o are the Verblunsky coefficients for dµ.
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However, a simple computation shows that fschur is precisely fo in (84): Hence,
using the general methodology for RHP's as above, we have proved Geronimus'
Theorem. Moreover, we have the following formula for the Schur iterates:

to fS 2s sz dp(9)
fn (Z) _ - _ n.S-n+l

> 0 (85)
Tn

fsl S-Z dµ(B)

which reduces simply, using (3.2.52) and (2.2.53) [59], to Golinskii's formula ([59],
Thm. 3.2.7).

Finally we note from [59], (1.3.79), together with the simple identity f S z d1i =

1+z f, that

fn
fSchurBn-1 - An-1 (Bn-1 - zAn-1) f An

zBn-1 - ZA,`n-1fSchur (zB,`n-1 - An-1) f s +A* _1

where An-1i Bn_1 are the Wall polynomials. But from (85), we obtain

zn fSl
(4n(s)s- 3-4n(z)z-n)dp(B)

+ 41* (z) f
ds

fn (Z) =
zn fs

(4'n(S)S-s-Dn(Z)Z-

)sdµ(9) + 4n(z) f sds e)

Comparing with (86) we obtain

-D (z) = Bn-1 - zAn-1

or equivalently

(86)

(87)

ODn(z) = zB,,-1 - A* -1 (88)

which is the Pinter-Nevai formula (see [59]) relating the OP's to the Wall polyno-
mials.

In addition to the formulae and identities obtained above for OP's using the
RHP's (R, v) and (S', v), one can, using RHP's closely related to (R, v) and (S', v),
derive formulae for Toeplitz and Hankel determinants, or more precisely "relative"
Toeplitz and Hankel determinants, that are particularly useful for asymptotic analy-
sis. The asymptotic analysis of Toeplitz and Hankel determinants, dating back at
least to the work of Szego in 1915, is of considerable, and continuing, mathematical
and physical interest, and we refer the reader to [9, 42] and the references therein
for more information and recent results. The "relative" determinant formulae are
as follows.

Let w1(x),w2(x) > 0 be two weights on ]I8 and let Dn(wiw2), Dn(w2) be the
Hankel determinants associated with the measures w1(x)w2 (x)dx and w2 (x)dx re-
spectively. (Here we do not require wiw2dx and w2dx to be probability measures.)
Then

- f dt J Rt (x) (1nwt(x)) dx (89)In DD((w2))
1

o

where wt = 1 - t + tw1(x), 0 < t < 1, and Rt is expressed in terms of the solution
Xtn+1)

_ ((X(tn+1))ij)1<i,j<2 of the RHP (R,vt(x)) in (39) with

vt(x) _ 1 wt(x)1 2(x)

/

as follows:

Rt(x) ((Xtn+1))11 (X (n+1))z1 - (Xtn+1)' (Xtn+1))z1) wtwz . (90)
11
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Similarly, if wi(9), W2(9) > 0 are two weights on S', with associated Toeplitz
determinants A,,,(wlw2), A,(w2) respectively, then

InOn(wlw2) _
R( 9) d Inwt(0)dO (91)Ildtf dt 27r

where Lot (0) = 1 - t + twl(O), 0 < t < 1, and Rt(O) is expressed in terms of the
solution Yt(n+l) _ ((Yt(n+i))ij)i<i,j<2 of the RHP (S', vt(9)) in (50) with

1 wt(O)W2(9)z-(n+1)
vt(0) 0 1 , Z= eie,

as follows:

Rt(0) _ Yt(n+1))II(yt(n+1))21 -
(Yt(n+1))u(Yt(n+1))21)

wzn2 (92)

where I = dz
The functions Rt(x), Rt(O) have the interpretation as 1-point functions

Rt(x) = (n + 1)
J

dp(x, xi, x27 ... , xn) (93)
x. ca,1 <i <n

Rt(O) = (n + 1) dp(0,01i...,On) (94)

9 ES',1<i<n
for the random particle ensembles (see [55]) with distributions

n

di (xo, x1, ... , xn) = (1/Za) II (xi - xj)2 11(0tW2)(xj)dxodxl ... dxn (95)
O<j<k<n j=0

and
n

dµ(80, B1, ... , 0.) = (1/Zsi) H Ie203 - exek

1

2
H(wtW2)(Oj)dOodOl... d9n (96)

O<i<j<n j=o

where ZIR, Zsi are normalization constants.
Note that on S' we can set w2 = 1, so that An(W2) = 1 and (91) gives us a

formula, first derived in [24], purely for An(wl). In the non-compact situation on
R, this clearly cannot be done and we must always work with relative determinants
as in (89).

Formulae (89) and (91) are due to Deift [26], and may be proved by generalizing
the proof of (91) given in [24] for the case w2 = 1. A key ingredient in the proof is
the notion of an integrable operator: If E is an oriented contour in C, we say that
an operator K acting on LP(E), 1 < p < oo, is integrable if it has a kernel of the
form

K(zz,) _
E

f E j, k < Q. Special examples of integrable
operators appeared in the 1960's in the work of McCoy, Tracy and others, and
elements of the general theory were discovered by Sakhnovich in the late 60's, but
the full general theory of such operators is due to Its, Izegin, Korepin and Slavnov
[45] in 1990. Integrable operators have many useful properties (see, e.g., [24]). In
particular, if K is integrable as in (97) above, then so is (1 - K)-1 - 1,

(1 - K)-1 = 1 + >'=I Fj(z)Gj(z')
z - z'
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for suitable Fj, Gk, 1 < j, k < 1. Furthermore, quite remarkably, the functions
F = (F1,. .. , F1)T, G = (GI, ... , G1)T can be computed in terms of the solution
of a canonical, auxiliary RHP. Indeed, define the jump matrix v = I - 2irifgT
on E, where f = (fi, ... , fl)T , g = (gi , . . .

, gl )T , and assume for simplicity that
(z)gj (z) = 0, z E E. Then, if m solves the normalized RHP (E v) we have

F=mff and G=(m±) Ig. (98)

The proofs of (89) and (91) proceed by expressing the relative determinants Dn(wlw2)Dn(w2)
on W1"2) in terms of Fredholm determinants of integrable operators K,

An (LJ2)

lndet(1 - K) _ f-lndet(1_tK)
fI

dt-J Jtr 1 K)
0 1-tK

and then using (98) to express (1 - tK)-'K = ((1 - tK)-I - 1)/t in terms of the
solution of the auxiliary RHP associated to tK. We shall say more about (89) and
(91) in what follows.

3. Applications of (][8, v) and (S', v): Asymptotics

In this section we consider the asymptotics of OP's, denoted (b) in Section 2.
In Section 2, the goal was to show how a variety of identities, equations and for-
mulae, mostly classical and well-known, follow from a single, basic methodology in
RHP's. Here the goal is to describe new results on the asymptotics of OP's that fol-
low from the RH method, utilizing in particular the non-linear, non-commutative,
steepest descent method introduced in [38] in 1993. Although much was known
(see [60]) about the detailed asymptotic behavior of classical OP's, like Hermite,
Laguerre, Jacobi polynomials, etc., both on and off the contour of orthogonality,
little was known about the detailed asymptotics of OP's with respect to general
weights. The main tool that makes possible the detailed analysis of the asymp-
totics of classical OP's is the existence of integral representations for these poly-
nomials, to which the classical method of steepest descent can be applied (see,
e.g., [60, Section 8.71]). For general weights, one may view the RHP's (R, v(x))
and (S1, v(6)) as non-commutative analogs of these integral representations, with
the non-commutative steepest descent method now playing the role of the classical
steepest descent method.

We now describe the steepest descent method for RHP's in broad outline.
(Unfortunately, we do not have sufficient space in this article to describe the method
in detail.) In the case of NLS (cf. (59) and (60)), we write the solution q(x, t) of
the Cauchy problem for NLS as a functional f, say, of the data reie,

q(x, t) = f(reie). (99)

From (35) and (60) we see that

\
f (rez°) = fR a(S; x, t)(w+ - w_) ds

\ 27r/ 12

(100)
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Using the factorization

10 1

1 re2B) 1 ( 1
t J l -re-B 10

(cf. (27)), so that

we obtain

(101)

_ iB

w+ Ore-0 0
w

0 0 T e
(102)

q(x,t)= (f((i_c1I)(w++w_)ds I (103)
2,7r I2

For r "small," we have

q(x, t) = (f((I+ "small") (w/J
27r I2

= J
r(s)ei(XS-t92) d + "small"

R 27r

indicating that the classical steepest descent method can be applied as t --> 00.
However, when r is no longer "small," we see from the non-linear dependence of
q(x, t) on r in (103), and from the matrix nature of the problem, that a non-linear,
non-commutative version of the steepest descent method is required, and this is
the kind of method that was introduced in [38]. In the classical steepest descent
method, the integral localizes as t --> oc to a small neighborhood of the stationary
phase point(s), 0'(zo) = 0, zo = x/2t in the case of NLS, and an explicit asymptotic
formula for the solution is then obtained by evaluating a Gaussian integral: in the
fully non-linear case (see [39] [41]) the RHP (R, vx,t) localizes to a RHP in the
neighborhood of the stationary phase point zo = x/2t, and an asymptotic form for
the solution

q(x,t)" 1
a(zo)ei(tzo-Q(zo)int) (104)ti/2

is then obtained by solving this local RHP explicitly (in terms of parabolic cylin-
der functions, as it turns out). The asymptotic form (104) was first obtained by
Zakharov and Manakov [68] by other means. In situations where there is more
than one stationary phase point, for example, for MKdV, where 0 = xz + 4tz3 with
stationary phase points +z0 = f -x/12t, the long-time behavior of solutions of
MKdV (see [38]) is a superposition of NLS-like contributions from +zo and -zo, as
long as these points remain separated, i.e., t' > c > 0. However, in the space-time
region where -x/12t ---f 0, and hence +z0 --* -zo, one is in a non-linear "caustic"
region which is manifested by the solution taking the form of a self-similar oscilla-

tion, q(x,t) - (3t)1/3u(x/(3t)1/3), where u is a solution of the Painleve II equation

u"(t) = to + 2n3 (see [38]).
Up till this point, the RH asymptotic theory proceeded as a non-linear analog

of the classical steepest descent method in which all the phenomena that arose
could be viewed as non-linear counterparts of phenomena that had already arisen
in the linear, scalar situation. However, with the analysis of the collisionless shock
region for KdV (see [36, 40]), and the analysis of the asymptotic behavior of solu-
tions of the Painleve II equation, it began to be clear that there were phenomena
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a',**.. b,

FiGURE 2. The contour E

a> bJ

inherent in the non-linear steepest descent method that had no analog in the clas-
sical situation. Most importantly, it became clear that instead of stationary phase
points, one could have "stationary phase lines" in which case all the points on some
interval in C contributed equally to the asymptotic behavior of the solution of the
problem. Moreover, in place of modulated linear oscillations as in (104), one would
now have genuinely non-linear oscillations described in terms of Jacobi's sn and cn
functions, etc. A systematic extension of the steepest descent method to allow for
such "stationary phase lines" and genuinely non-linear oscillations was presented
by Deift, Venakides and Zhou [37] in the context of their work on the zero dis-
persion problem. Soon thereafter, using the methods in [37] together with recent
developments in the theory of logarithmic potentials with external fields (see [57],
and also [32]), the authors in [34] derived so-called Plancherel-Rotach asymptotics
for OP's with measures of the form

e-''(x)dx, V(x) = yx2m + bx2m-1 +... ,> 0, (105)

and in [33], for measures of the form

e-" Q(x)dx, Q(x)/ In IxI ---> +oo as IxI --+ oo, (106)

where Q(x) is real analytic on R. As described in [34] one obtains as n -+ 00 precise
pointwise asymptotics for the OP's Pn(z) for all z E C, as well as detailed asymp-
totics for an, bn, ryn and the zeros of pn(z). In the special case e-n(x4-tx2)dx, Bleher
and Its [12] obtained asymptotics for the associated OP's using RH techniques and
a mixture of steepest descent/isomonodromy ideas.

In broad outline the method proceeds as follows. For weights as above
one first scales x -+ xn1/2m so that e-v(x) --, a-nv (x), where Vn(x) = ,yx2m +

x2m-1 + Next, one considers the so-called equilibrium measure dµeq for
the logarithmic potential problem associated with OP's (see [57]). By [32], for
weights a-nv (x) or a-nQ(x) as above, dµeQ is supported on a finite union of disjoint
intervals U 1(ai,bi), J < oo (in the case e-nv (x), J = 1). Next one introduces
the so-called "g" function, g(z) - ff ln(z - s)dµeq(s) - In z as z oo. Along with
dµeQi the logarithmic potential problem also produces a Lagrange multiplier t, and
we set X (n) e 2t Q3 X `n) (z) e- 2` Q3 . One observes that X(n) now solves a
normalized RHP (R, v) for some explicit jump matrix v. In the key step, the RHP
for X (n) is now deformed to a RHP on a contour t of the form shown in Figure
2. By the properties of g(z), or more properly, the properties of dµeq, it turns out
that as n --> oo, v, the jump matrix for the deformed RHP on t, converges

v(z) --> I (107)

exponentially for all z E E\ U 1 [ai, b2]. Thus as n -+ oo, the RHP reduces to a
limiting RHP on the union of intervals U 1 [ai, bi]. On each of the intervals (ai, bi),
v(z) has the simple form ( 01 0) and this limiting RHP can be solved explicitly
in terms of the function theory on the hyper-elliptic Riemann surface obtained
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by gluing together two copies of C\ U 1 (ai, bi) in the standard way. However,
the convergence rate in (107) is not uniform, becoming slower and slower as z
approaches the end points ai, bi. The natural topology for RHP's is convergence
for the coefficients of v in LP f1 L°°(E) (cf. (30)/(33)), and the lack of uniform
convergence in (107) constitutes the major technical difficulty in implementing the
steepest descent method as described above. We refer the reader to [33, 34] for
more details.

We now consider the relative determinant formulae (89) and (91) and their
associated RHP's (IR, vt(x)) and (S', vt(0)) respectively. The celebrated strong
Szego limit theorem, in the definitive form due to Ibragimov (see [59] for many
proofs and much historical discussion) states that if dp(O) = e-v(B)21r, and V(O)

00

has Fourier coefficients { Vk } satisfying E k I Vk 12 < oo, then as n -> oo
k=1

00

In An(e-v) = (n + 1)Vo + E klVk12 +0(1) . (108)
k=1

In addition to the many proofs in [59], (108) can also be proved, under certain addi-
tional smoothness assumptions on V (O), by applying the steepest descent method to
the RHP's (S', vt(0)), 0 < t < 1. The situation is simpler than in [33, 34], but the
argument in this situation is particularly illustrative of the emergence of a "station-
ary phase line"; details are given in [24]. There is also a version of the strong Szego
limit theorem for block Toeplitz determinants (see [64, 65], and also [18] for more
recent results). In the block Toeplitz case, the analog of (108) contains a certain
Fredholm determinant which is difficult to evaluate in elementary terms. In certain
cases the method in [24] extends to the block Toeplitz case and, quite surprisingly,
the term corresponding to this Fredholm determinant is evaluated automatically
(see [46]).

In [7] (see also [8]) the authors state the following analog of the Szego strong
limit theorem for the case of Hankel matrices. Let w2 = e_

E
and let w1 (x) > 0

have the property that w1 (x) -4 1 sufficiently rapidly as Ix ---> oc. Then as n ---> oo,

DD(ww22) = 2(n+1) fIn In w1 x dx + k k dk + o(l)()
47r

l
(109)

where i(k) = a f (In w1(x))e-ik'dx. Using (89), this result can also be proved
([27]) using the steepest descent method, not only for w2 = e-x2, but also for more
general weights, w2 = e-v(x), V (X) = yx2m +..., -y > 0, as above.

Riemann-Hilbert techniques and the RH method are useful not only for as-
ymptotic evaluation, but also for estimation. For example, let w(0) E L°°(S1) be
a bounded weight on S' with Fourier coefficients wk = Er e-ikew(0) 2L, k E Z.
Let ((T(w))jk) k=o = (wj_k) -=o denote the Toeplitz matrix associated with w
acting on ez = {u = (uo, u1i...) : E' o

Iukl2 < oo}, and let ((T,,(w))jk)k=o =
(wi_k)7,k=o denote the leading (n + 1) x (n + 1) section of T(w). If w is in the
Wiener space W° = {w : Ej' _00 kwj I < oo} with w(0) > 0, then, by a well-known
theorem of Krein, (T(w))-1 exists as a bounded operator in £2 . The question is
the following: How closely does (T,,(w)) -1 approximate (T (w)) -1 for n large? Let
v = (vk)kEz be a Beurling weight (see, e.g., [59]): Thus vk > 1, vk = v_k and
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vj+k < vjvk for all j, k E Z. In particular, ((1 + IkI))kEZ, f > 0, and (ealkl)kEz,
a > 0, are Beurling weights. Define the Beurling class

W = SW E Ll(Sl) : Evj wjI < 00 .
11

jEZ

Clearly W C W° for any Beurling weight v. Let w E W, for some v and assume in
addition, for simplicity, that the weights increase on Z+, i.e., vi < vk for 0 < j < k.
Then the following is true [35]: for n sufficiently large and 0 < j, k < n,

(Tn(w))j - (T(w))j1 < min(vfl+l_k, vn+l_j) (110)

for some constant c, (w). Thus for 0 < j, k < n, is a good approximation
to apart from the lower right corner j - k - n. This estimate is a
generalization of an earlier estimate due essentially to Widom (see [19] for references
and further discussion). The proof of (110) in [35] uses RH techniques in an
essential way closely related to the proof of (86). The paper also contains other
results for orthogonal polynomials on the unit circle, including a new RH proof of
the reverse statement in Baxter's theorem (cf. [59]). Interestingly, the Borodin-
Okounkov operator [15], or more properly, the Borodin-Okounkov-Case-Geronimo
operator, which has emerged recently as a powerful tool in the analysis of Toeplitz
determinants, arises naturally in the analysis in [35].

The steepest descent method for varying weights w(x) = e-nQ(x) in [33] can
also be applied to orthogonal polynomials on the unit circle with varying weights
w(O) = e-nQ(1). For example, in their analysis of the length In = ln(7r) of the longest
increasing subsequence of a random permutation 7r on n letters, the authors in [4]
prove that

(111)lim Prob I
In

n1 < t) = F2 (t)

where F2 (t) is the Tracy-Widom distribution function for the largest eigenvalue
of a random matrix from the Gaussian Unitary Ensemble. The proof of (111) in
[4] reduces, by a formula of Gessel, to the analysis of the Toeplitz determinant
An-1 (es Cos e) where s = (n + 1) (1 - -2,7,-(n+-,)27-,) as n --i oo, and where t is the
same as in (111). As indicated above, the method of [4] is modeled on the RH
steepest descent method in [33]. The same RH problem with weight es cos a on
S1 also appears in the work of Baik and Rains [6] in their analysis of monotone
subsequences of involutions.

The steepest descent method for OP's {On} on the unit circle can also be
used to obtain detailed information on the zeros of the lion's as n -+ oo (see [52]).
In a further development, the authors of [53] have introduced an extension of the
steepest descent method to non-analytic weights, obtaining in particular new results
for the zeros of OP's on the unit circle for such weights.

Throughout this paper we have restricted our attention to measures that are
smooth as in (37) and (47). The OP problem for general measures dµ is then an-
alyzed (cf. Technical Remark above) by approximating the measure appropriately
by smooth measures djz, and then taking the limit as E -+ 0. This approach works
well for the derivation of equations, formulae, etc., but for asymptotic questions
one clearly needs a different approach. Recently, remarkable connections have been
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discovered ([47]) between various combinatorial problems-random growth mod-
els, random word problems, tiling problems-and certain polynomials orthogonal
with respect to discrete measures. The polynomials that arise include the classical
Meixner, Charlier, Krawtchouk and Hahn polynomials (see [60]). Related discover-
ies have also been made in the representation of the infinite dimensional symmetric
and unitary groups [16, 17]. The Meixner, Charlier and Krawtchouk polynomials
all have convenient integral representations (see [60]) and their asymptotic behavior
can be read off using the classical method of steepest descent. This is unfortunately
not the case for the Hahn polynomials (such polynomials are needed in particular
to describe the tiling of hexagons by rhombi). It turns out, however, that discrete
OP problems can be rephrased in terms of a discrete RHP, which is an analogue of
the continuous case, and which was introduced by Borodin, along with a theory of
discrete integrable operators, in [14].

In a significant further development of the non-linear steepest descent method,
the authors in [5] extended the method to a wide class of discrete RHP's which
includes the discrete RHP for the Hahn polynomials (as well as the other three
discrete OP systems mentioned above). The relevant limit here is when the order
of the OP's pr,, becomes large and simultaneously the spacing between the points in
the measures goes to zero at a prescribed rate (see [5]). In this way the authors are
able to analyze the Hahn polynomials asymptotically, proving en route a conjecture
of Johansson in [47] that for hexagonal tiling, the so-called "arctic circle" of [23]
exhibits Tracy-Widom fluctuations as in (111) above. In [17] the authors also
consider an asymptotic problem for Hahn polynomials using a discrete RHP, but
the relevant limit is different from that in [5].

Many researchers are currently involved in the application of RH techniques
to the theory of OP's. In addition to those mentioned above, the list includes
Chen, Claeys, Kapaev, Kitaev, Kuijlaars, van Assche and Vanlessen, amongst many
others. Because of space limitations, however, we unfortunately cannot describe
their work in any detail, and we must refer the reader to the literature.

4. Related Areas

In this final section we will describe, very briefly, various areas related to OP's
in which the RH method plays a role.

We first consider random matrix theory (RMT), which has been a major source
of questions and challenges to OP theorists for over forty years (see, e.g., [55] and
[25]). The situation is as follows. A Unitary Ensemble (UE) is an ensemble of
N x N Hermitian matrices {M = M* } with probability distribution

PN(M)dM= _1e-trW(M)dM (112)

where

dM denotes Lebesgue measure on the algebraically independent elements
of M.
W(x) is a real-valued function that goes to +oo as xJ --> oo. The case
W(x) = x2 gives rise to the Gaussian Unitary Ensemble (GUE).
ZN is a normalization coefficient.

"Unitary" refers to the fact that the distribution (112) is invariant under
unitary conjugation, M -* UMU*, U unitary. The Universality Conjecture for
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UE's (see [55] and [25]) states, in particular, the following: Given W, if JN =
CN + sN (-t, t) is a suitably centered and scaled interval in R, then as N -p 00,
P(JN) = Prob(M : M has no eigenvalues in JN) converges to a universal limit in-
dependent of W,

Nlii m P(JN) = det (1 - St) (113)

where St is the trace class operator with kernel St(x, y) = sin r x- ) acting in
L2(-t, t). The specific form of the weight e-w(') dx is reflected only in the precise
values of cN and SN. OP's enter the picture because of the celebrated result of
Gaudin and Mehta (see [55]) that if B C IR is a Borel set, then

Prob(M : Mhas no eigenvalues in B) = det(1 - KN,B) (114)

where KN,B is the finite rank operator with kernel

N-1

KN(x,y) _ pj(x)pj(y)e zW(x)e-'W(Y)
j=0

(115)

acting on L2 (B), and {pj } j>o are the orthonormal polynomials (3) with respect
to the weight e-w(') dx. Hence the question of proving universality as in (113)
becomes a question of deriving the appropriate asymptotics for OP's, and this is the
main scientific content of [34, 33, 251 and [12]. Of course, if the weight e-N'(x) dx
is classical, e.g., W (x) = x2, and the asymptotics of the associated polynomials
{pj } j>o can be derived from an integral representation, then universality for these
ensembles can be proved without recourse to the RH steepest descent method, and
this has been done by various authors (see [34, 33] for references to the literature).

Orthogonal ensembles (OE's) of N x N real symmetric matrices {M = M =
MT } and Symplectic Ensembles (SE's) of 2N x 2N Hermitian self-dual matrices
{M = M*, JMJT = MT}, where J = diag(T...... ), T = (°1 0) , equipped with
invariant weights analogous to (112), are more difficult to analyze. Firstly, in the
place of determinantal expressions as in (114), one obtains Pfaffians (see [55] for
classical ensembles, [61] for the general case)

Prob(M : Mhas no eigenvalues inB) = (det(1 - KN,B))112, (116)

and, moreover, the operators kN,B are now 2 x 2 matrix operators with kernels
(KN,ij (x, Y))i<i,j<2, x, y E B. In contrast to (115), these kernels are most naturally
expressed in terms of certain skew-orthogonal polynomials (see [55]), but for gen-
eral weights e-H'(x) dx the asymptotic behavior of such polynomials is not known.
However, Widom [66] has shown that if W'/W is rational, then (KN,ij(x,y)) can
be expressed conveniently in terms of the orthonormal polynomials {pj}j>o with
respect to the weight a-w(') dx, so again, as in the unitary case, the question of
universality of OE's and SE's becomes a question of analyzing the asymptotic be-
havior of OP's. The expressions for (KN,ij(x,Y))i<i,j<2 are now more cumbersome
than (115) and significant new technical issues arise, but nevertheless, using the as-
ymptotic analysis in [34] as a basic ingredient, it is indeed possible to use Widom's
formulae in [66] to prove universality for OE's and SE's with weights of the form
e-V(x) dx, V (X) = yx2m + , y > 0. This is the content of [28] and [29].
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Biorthogonal polynomials lrk (x) = xk + , uj(y) = yj + , k, j > 0,

k(x)aj(y)evw+2'xy dxdy = 0 ifj k, (117)If
arise in the analysis of the theory of coupled random matrices. Here V (x) and
W(y) grow sufficiently rapidly as xj, yj -+ oo, and rr 0. Various RH problems
have been proposed to analyze these polynomials (see, in particular, [11, 48, 49]
and the references therein), but the analysis of the asymptotic behavior of these
RHP's is still at a preliminary stage.

For m > 2, let n = (n1, n2, ... , n,,,,,) be a vector of non-negative integers, and
let w1(x) > 0,... , w,,,,, (x) > 0 be weights on ll with finite moments. Let Inj _
Ti + + n,,,,. Multiple orthogonal polynomials (see [2]) of type I are polynomials
An(') for k = 1, 2, ... , m, deg An(;) < nk - 1 such that the function

M

Hn (x) An(") (X) Wk (X)
k=1

satisfies

fx3Hn(x)dx__ r , for j = 0, ... , Inj - 2; (118)
l 1, forj=Inj-1.

Multiple orthogonal polynomials Ln(x) of type II are monic polynomials of degree
Inj satisfying

J Ln (x)xkwj(x) dx = 0 for k = 0, ... , nj- 1, j = 1, ... , m . (119)

Multiple orthogonal polynomials were first introduced by Hermite in his proof of
the transcendence of e. In 2000, van Assche, Geronimo and Kuijlaars [62] showed
that multiple orthogonal polynomial problems of types I and II could be rephrased
as RHP's analogous to the RHP of Fokas, Its and Kitaev for ordinary OP's, and
they used these RHP's to derive various properties and relations for the multiple
OP's. In the last year or two significant progress has been made in extending and
applying the steepest descent method to RHP's which arise from multiple OP's in
special cases. We mention, in particular, [13, 3] and [51, 50] and the references
therein: In the first two papers the authors consider a random matrix ensemble
Pn, (M) dM = Z e Iv tr(2 M2 _AM) dM, with external source A, first analyzed by

N
Pastur, Brezin-Hikami, and later by Zinn-Justin. Under certain conditions on A,
they show that the ensemble can be analyzed as N -> oo in terms of a 3 x 3 RHP
to which an extension of the non-linear steepest descent method can be applied:
A new phenomenon now occurs in the analysis, which the authors term a "global
opening of lenses" (see [3]). In the second two papers the authors analyze type I
and type II Hermite-Pade approximations to the exponential function, which they
are again able to control by applying an extension of the steepest descent to a 3 x 3
RHP.

Riemann-Hilbert techniques can also be used to analyze the asymptotics of
so-called orthogonal Laurent polynomials. Such polynomials arise in the following
way. Let V (x) be a real-analytic function on R \ {0} with the property

V (X) V (X)
lim = lim = +oo .

1xI-co In Ixj 1xI-.o ln(Ixj-1)
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Orthogonalization of the ordered basis {1, z-1, z, z-2, z2, ...} with respect to the
pairing (f, g) H fx f (s)g(s)e-"(s) ds leads to the even degree and odd degree
orthonormal Laurent of nomials ((,,//, ,/, C znp Y lWm}m>0 S(n)z-n + ... + [(2n)zn,

(2n) (2n+1) -n-1 (2n+1) n (2n+1) S
l;n > 0, 02n+1(z) = -n-1 z + ... + n z , -1-1 > 0. Recently,
McLaughlin, Vartanian and Zhou (see [54] and the references therein) have used
REP-steepest descent methods to analyze the asymptotic behavior of the Laurent

(z) and their associated norming constants (2n) (2n+1)polynomials 2n z, 2n+1 n n-1
in the limit as N -> oo, N/n ---> 1. The work of McLaughlin et al. involves significant
extensions of the steepest descent method: Such extensions are needed in order to
overcome the new difficulties introduced into the problem by the singularity of the
potential V (x) at x = 0.

Finally, there are problems in which the asymptotic behavior of the system at
hand is described by OP's. This happens, in particular, in the case of the so-called
Toda rarefaction problem (see [30]). Here one considers the initial-boundary value
problem for the Toda lattice

n = xn-i-x,. - exn-xn+1 n > 1 (120)

where for some a > 0
f xn(0) = an, n > 1;
1 in(0) = 0, n > 1,

and the driving particle moves with a fixed velocity 2a

(121)

xo(t) = tat, t > 0. (122)

Making the change of variables xn -p an + yn one sees that, apart from rescaling
time, one can always assume without loss of generality that a = 0 in (121). One
may think of (120)-(122) as a cylinder of particles {xn}n>1 driven by a piston x0.
If a > 0, one has the (Toda) shock problem ([63]) and if a < 0, one has the (Toda)
rarefaction problem. In the rarefaction problem, if lal is sufficiently large (jal > 1
turns out to be the critical region), one expects that the piston will separate from
the "gas" {xn}n>1 and cavitation will occur. This is indeed what happens: if
a < -1, the authors in [30] show, using the RH steepest descent method, that as
t - oo, the solution of the Toda lattice splits into two parts, I+II. Part I models the
cavitation and Part II is an exponentially decreasing error term. Quite remarkably,
Part I is constructed from the solution of an associated OP problem, which turns
out to be the Fokas, Its, Kitaev RHP in disguise. We refer the reader to [30] for
details.
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1. Introduction

This Festschrift contribution is devoted to a survey of Barry Simon's principal
contributions to the area of inverse spectral theory for one-dimensional Schrodinger
and Jacobi operators. We decided to put the emphasis on the following five groups
of topics:
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The Dirichlet spectral deformation method

A general spectral deformation method applicable to Schrodinger, Jacobi, and
Dirac-type operators in one dimension, which can be used to insert eigenvalues into
spectral gaps of arbitrary background operators but is also an ideal technique to
construct isospectral (in fact, unitarily equivalent) sets of operators starting from
a given base operator.

Renormalized oscillation theory

Renormalized oscillation theory formulated in terms of Wronskians of appro-
priate solutions, rather than solutions themselves, applies, in particular, to energies
above the essential spectrum where real-valued solutions exhibit infinitely many
zeros and traditional eigenvalue counting methods would naively lead to oo - oo.
While not directly related to inverse spectral methods, we chose to include this
topic because of its fundamental importance to the Dirichlet spectral deformation
method.

The xi function and trace formulas for Schrodinger and Jacobi operators

The xi function, that is, essentially, the argument of the diagonal Green's func-
tion, which also takes on the role of a particular spectral shift function, is an
ideal tool to derive a hierarchy of (higher-order) trace formulas for one-dimensional
Schrodinger and Jacobi operators. The latter are the natural extensions of the
well-known trace formulas for periodic and algebro-geometric finite-band potential
coefficients to arbitrary coefficients. The xi function provides a tool for direct and
inverse spectral theory.

Uniqueness theorems in inverse spectral theorem

Starting from the Borg-Marchenko uniqueness theorem, the basic uniqueness
result for Schrodinger and Jacobi operators in terms of the Weyl-Titchmarsh m-
coefficient, a number of uniqueness results are discussed. The latter include the
Borg-type two-spectra results as well as Hochstadt-Lieberman-type results with
mixed prescribed data. In addition to these traditional inverse spectral problems,
several new types of inverse spectral problems are addressed.

Simon's new approach to inverse spectral theory

In some sense, Simon's new approach to inverse spectral theory for half-line
problems, based on a particular representation of the Weyl-Titchmarsh m-function
as a finite Laplace transform with control about the error term, can be viewed as a
continuum analog of the continued fraction approach (based on the Riccati equa-
tion) to the inverse spectral problem for semi-infinite Jacobi matrices (the actual
details, however, differ considerably). Among a variety of spectral-theoretic results,
this leads to a formulation of the half-line inverse spectral problem alternative to
that of Gel'fand and Levitan. In addition, it leads to a fundamental new result,
the local Borg-Marchenko uniqueness theorem.

Each individual section focuses on a particular paper or a group of papers to
be surveyed, representing the five items just discussed. Since this survey is fairly
long, it was our intention to write each section in such a manner that it can be read
independently.

Only self-adjoint Schrodinger and Jacobi operators are considered in this survey.
In particular, all potential coefficients V and Jacobi matrix coefficients a and b are
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assumed to be real-valued throughout this survey (although we occasionally remind
the reader of this assumption).

Certainly, this is not a survey of the state of the art of inverse spectral theory for
one-dimensional Schrodinger and Jacobi operators. Rather, it focuses exclusively on
Barry Simon's contributions to and influence exerted on the field. The bibliography,
although quite long, is far from complete and only reflects the particular purpose of
this survey. The references included are typically of two kinds: First, background
references that were used by Barry Simon and his coworkers in writing a particular
paper. Such references are distributed throughout the particular survey of one of
his papers. Second, at the end of each such survey we refer to more recent references
which complement the results of the particular paper in question.

It was in April of 1983 that Barry and I first met in person at Caltech and
started our collaboration. Barry became a mentor and then a friend, and it is fair
to say he has had a profound influence on my career since that time. Working with
Barry has been exciting and most rewarding for me. Happy Birthday, Barry, and
many more such anniversaries!

2. The Dirichlet Spectral Deformation Method

In this section we describe some of the principal results of the paper:

[100] F. Gesztesy, B. Simon, and G. Teschl, Spectral defor-
mations of one-dimensional Schrodinger operators, J. Analyse
Math. 70, 267-324 (1996).

Spectral deformations of Schrodinger operators in L2(R), isospectral and cer-
tain classes of non-isospectral ones, have attracted a lot of interest over the past
three decades due to their prominent role in connection with a variety of topics,
including the Korteweg-de Vries (KdV) hierarchy, inverse spectral problems, super-
symmetric quantum mechanical models, level comparison theorems, etc. In fact, the
construction of N-soliton solutions of the KdV hierarchy (and more generally, the
construction of solitons relative to reflectionless backgrounds) is a typical example
of a non-isospectral deformation of H = - 22 in L2 (R) since the resulting deforma-

tion H = - d zz +V acquires an additional point spectrum JAI,-, ) j } C (-oo, 0),
N E N, such that

o,(H) = o,(H) U JAI,_, AN}
abbreviating the spectrum). In the N-soliton context (ignoring the KdV time

parameter for simplicity), V is of the explicit form
_ z

V(x) = -2 dxz ln[W(x!1(x),..., g1N(x))], x E R, (2.1)

where W (f1i . . . , fN) denotes the Wronskian of fl, ... , fN and the functions Wj,
j = 1, ... , N, are given by

Ta(x) = (-1)1'+le-rjx +aje"3x, x E IR,

0 < !1 < ... < r1N, aj > 0, j = 1, ... , N.

The Wronski-type formula in (2.1) is typical also for general background potentials
and typical for the Crum-Darboux-type commutation approach [44], [48] (cf. [90]
and the references therein for general backgrounds) which underlies all standard
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spectral deformation methods for one-dimensional Schrodinger operators such as
single and double commutation, and the Dirichlet deformation method presented
in this section.

On the other hand, the solution of the inverse periodic problem and the corre-
sponding solution of the algebro-geometric quasi-periodic finite-band inverse prob-
lem for the KdV hierarchy (and certain almost-periodic limiting situations thereof)
are intimately connected with isospectral (in fact, unitary) deformations of a given
base (background) operator H = - dxz + V. Although not a complete bibliography
on applications of spectral deformations in mathematical physics, the interested
reader may consult [14], [20], [22], [28], [44], [46], [48], [59, Sect. 4.3], [60], [61],
[63], [64], [66], [68], [72], [73], [102], [74], [78], [79, App. G], [90], [100], [103],
[105], [112, Ch. 2, App. A], [132], [135], [159, Sect. 6.6], [174]-[178], [192, Chs.
3, 4], [194], [207], [216], [217], [218], [219], and the numerous references cited
therein.

The main motivation for writing [100] originated in our interest in inverse
spectral problems. As pointed out later (see Remarks 2.5-2.7), spectral deforma-
tion methods can provide crucial insights into the isospectral class of a given base
potential V, and in some cases can even determine the whole isospectral class of
such potentials. A particularly interesting open problem in inverse spectral theory
concerns the characterization of the isospectral class of potentials V with purely
discrete spectra (e.g., the harmonic oscillator V(x) = x2, cf. [32]-[36], [99], [160],
[180], [193]).

The principal result in [100], reviewed in this section (cf. Theorem 2.4 (i)), pro-
vides a complete spectral characterization of a new method of constructing isospec-
tral (in fact, unitary) deformations of general Schrodinger operators H = - d-X2 +V
in L2(R). The technique is connected to Dirichlet data, that is, to the spectrum of
the operator HD on L2((-o0, xo]) ® L2([xo, 00)) with a Dirichlet boundary condi-
tion at x0. The transformation moves a single eigenvalue of HD and perhaps flips
the half-line (i.e., (-oo, xo) to (xo, oo), or vice versa) to which the Dirichlet eigen-
value belongs. On the remainder of the spectrum, the transformation is realized by
a unitary operator.

To describe the Dirichlet deformation method (DDM) as developed in [100]
in some detail, we suppose that V E Li o (R) is real-valued and introduce the
differential expression T = - d +V (x), x E R. Assuming T to be in the limit point
case at +oo (for the general case we refer to [100]) one defines the self-adjoint base
(i.e., background) operator H in L2 (R) by

Hf =Tf, f c dom(H) = {g E L2(ll) I g, g' E ACIoc(R);Tg E L2(R)}. (2.2)

Here W(f, g)(x) = f (x) g'(x) - f'(x)g(x) denotes the Wronskian of f, g E
(the set of locally absolutely continuous functions on R). Given H and a fixed
reference point x0 E R, we introduce the associated Dirichlet operator HD in
L2(R) by

HD f =Tf, f E dom(HD) = {g E L2(R) Ig E ACioc (R) g' E ACIoc.(R\{xo});

lim g(xo + e) = 0; 7-g E L2 (ll) }.

Clearly, HD decomposes into HD = H ?
0

®H+,yo with respect to the orthog-
onal decomposition L2(ll) = L2((-o0, xo]) (D L2([xo, oo)). Moreover, for any p E
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cYd(HD)\Q(H) (ad( ), the discrete spectrum, and Qess( ), the spectrum and
essential spectrum, respectively), we introduce the Dirichlet datum

(µ, Q) E {Qd(HD)\Qd(H)} x {-,+}, (2.3)

which identifies µ as a discrete Dirichlet eigenvalue on the interval (xo, coo), that is,
µ E vd(HDxo), or E {-, +} (but excludes it from being simultaneously a Dirichlet
eigenvalue on (x0, -aoo)).

Next, we pick a fixed spectral gap (E0, E1) of H, the endpoints of which (with-
out loss of generality) belong to the spectrum of H,

(Eo, E1) C R\Q(H), Eo, E1 E a(H)

and choose a discrete eigenvalue µ of HD in the closure of that spectral gap,

µ E Qd(HD) n [Eo, E1] (2.4)

(we note there is at most one such µ since (HD - z)-1 is a rank-one perturbation
of (H - z)-1). According to (2.3), this either gives rise to a Dirichlet datum

(µ, u) E (E0, E1) x {-, +}, (2.5)

or else to a discrete eigenvalue of HD x,, and H+,xo, that is,

µ E {Eo, E1} n ad(H) n Qd(HDyo) n Qd(H ,Dxo ) (2.6)

since the eigenfunction of H associated with µ has a zero at x0. In particular, since
(HD - z)-1 is a rank-one perturbation of (H - z)-1, one infers

ess(HD) = Qess(H),

and thus, µ E {E0, E1} n Qess(H) is excluded by assumption (2.4). Hence, the case
distinctions (2.5) and (2.6) are exhaustive.

In addition to µ as in (2.4)-(2.6), we also need to introduce Ti E [E0, E1] and
Q E {-, +} as follows: Either

(µ, Q) E (E0, E1) x {-, +},

or else
µ E {Eo, El } n ad(H).

Given H, one introduces Weyl-Titchmarsh-type solutions V)±(z, x) of (T-z)V5(z) _
0 by

I'+(z, - ) E L2((R,±oc)), R E R,

lim W(V)f(z),g)(x) = 0 for all g E dom(H).xf00
If '± (z, x) exist, they are unique up to constant multiples. In particular, 0f (z, x)
exist for z E G\a0S3(H) and we can (and will) assume them to be holomorphic with
respect to z E C\Q(H) and real-valued for z E R (cf. the discussion in connection
with (3.1)).

Given 0Q(µ, x) and V)_&(µ, x), one defines

W(µ,&) (x) - { (Q .l

s (µ)) (x), µ,µE [Eo, E1], p,

l -or f
` ., (µ, x) , E (E0, E1),

and the associated Dirichlet deformation
d2

T(Ia v) = -dx2
+V(l,a)(x),
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V(µ,&)(x) = V(x) - 2{ln[W(µ,Q)(x)]} x E I , (2.7)

E [Eo, Ei], µ 34 µ or (µ, &) _ (µ, -a), h E (Eo, Ei )

As discussed in Section 3, W(µ,&) (x) 4 0, x E IEB, and hence (2.7) yields a well-
defined potential V(µ Q) E L1 JI[8).

In the remaining cases (µ, d) = (µ, a), p E [Eo, El], and p = µ E {Eo, El} fl
ad(H), we define V(µ,&) = V which represents the trivial deformation of V (i.e.,
none at all), and for notational simplicity these trivial cases are excluded in the
remainder of this section. For obvious reasons we will allude to (2.7) as the Dirichlet
deformation method in the following.

If µ E ad(H), then &_ (µ) = czb+(µ) for some c c R\{0}, showing that W(µ &) (x)
and hence, V(µ,&) (x) in (2.7) becomes independent of a or &. In this case we shall
occasionally use a more appropriate notation and write VN, and Tµ (instead of V(µ,&)
and

For later reference, we now summarize our basic assumptions on V, µ, and µ
in the following hypothesis.

HYPOTHESIS 2.1. Suppose V E Li (R) to be real-valued. In addition, we as-
sume

(Eo, Ei) C R\a(H), Eo, El E a(H),

µ E ad (HD ), (µ, a) E (Eo, El) x {-, +} or {Eo, El} fl ad(H),

(µ, v) E (Eo, El) x {-, +} or it E {E0, El} fl ad(H),

, , It E [Eo, Ei], µ µ or (µ, ) _ -a) µ E (Eo, El).

Next, introducing the following solutions of 0,

0-' (µ, x) x)I W(µ,a) (x),

Y'b x) = 4'0 x)l W(II,Q) (x), Y'o (L, x0) _ 0,

one infers

(T(µ,a) -a(lt))(x) = µ -a(µ,x), (µt))(x) _ l o(µ, x)
The Dirichlet deformation operator H(,,&) associated with T(µ a) in (2.7) is then

defined as follows:

H(,&,a)f = T(%,,s)f, f E dom(H(µ,&)) = {g E L2(ll) I g, g' E ACoc(l);

g satisfies the b.c. in (2.9);T(N,,&)g E L2(R)}. (2.8)

The boundary conditions (b.c.) alluded to in (2.8) are chosen as follows:

lim W (V)& (µ), g) (x) = 0 if T( Q) is l.c. at &oo,
X &00

(2 9).

lim W g) (x) = 0 if T(µ,Q) is l.c. at -moo.
X &00

Here we abbreviate the limit point and limit circle cases by l.p. and l.c., respectively.
As usual, the boundary condition at woo in (2.8) is omitted if T(µ Q) is l.p. at woo,
w E {-, +}.

For future reference we note that in analogy to the Dirichlet operators HD ,

Hf,xo introduced in connection with the operator H, one can also introduce the
corresponding Dirichlet operators Hµ a) moo, H(. a) + xo associated with H(µ o).
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Next, we turn to the Weyl-Titchmarsh m-functions for the Dirichlet deforma-
tion operator H(µ,&) and relate them to those of H.

Let O(z, x), O(z, x) be the standard fundamental system of solutions of (T -
z)V) (z) = 0, z c C defined by O(z, xo) = 0'(z, xo) = 0, 0'(z, xo) = 0(z, x0) = 1, z E
C, and denote by B(µ &) (z, x), (µ Q) (z, x) the analogously normalized fundamental
system of solutions of (T(µ,a) - z)V)(z) = 0, z E C, at xo. One then has

m,(z, x0) = 0' (z, xo)/0Q(z, x0), a c {-, +}, z c C\R,

where x0) denotes the Weyl-Titchmarsh m-function of H with respect to the
half-line (xo, Qoo), a c {-, +}. For the corresponding half-line Weyl-Titchmarsh
m-functions of H(µ,&) in terms of those of H, one then obtains the following result.

THEOREM 2.2. Assume Hypothesis 2.1 and z E C\ll. Let H and H(µ,&) be given
by (2.2) and (2.8), respectively, and denote by m: and rn(µ,a),+ the corresponding
m-functions associated with the half-lines (xo, +oo). Then,

-µ i -µ
m(µ,&),±(z, xo) =

z

z - µ M± (Z' xo) - z - µ m-a(µ, xo), µ µ,

xo
1\

1 1

m(µ,s),±(z, xo) = m±(z+ xo) - (f dx O(I,
X)2

I z - µ, (A, a) = (A' -Q).
00

Given the fundamental relation between m(µ a) t and rn+ in Theorem 2.2, one
can now readily derive the ensuing relation between the corresponding spectral func-
tions p(µ a) f and pf associated with the half-line Dirichlet operators HDµ a) + xo

and Ht,xo. For this and a complete spectral characterization of H(µ a) xo in terms
of Hf,xo we refer to [100].

Next we turn to the principal results of [100] including explicit computations
of the Weyl-Titchmarsh and spectral matrices of H(µ a) in terms of those of H and
a complete spectral characterization of H(µ a) and HD a) xo in terms of H and HD .

We start with the Weyl-Titchmarsh matrices for H and H(,,&). To fix notation,
we introduce the Weyl-Titchmarsh M-matrix in C2 associated with H by

M(z, xo) = (Mp,v(z, Xo))1<p,v<2 = [m-(z, xo) - m+(z,
xo)]-I

X m-(z,xo)m+(z) xo) [m-(z,xo) +m+(z,xo)]/2 z c cC ]I8

[m-(z,xo)+m+(z,xo)]/2 1
1 \

and similarly M(µ a) in connection with H(N,,a). An application of Theorem 2.2 then
yields

THEOREM 2.3. Assume Hypothesis 2.1 and z E C\R.Let H and H(p,,5) be

given by (2.3) and (2.32), respectively. Then the corresponding Weyl-Titchmarsh
matrices M and M(µ a) are related by

M(µ,a),1,1(z, xo) = z - µ Ml,l (z, xo) - 2 z - IL
M-& (A, xo)Mi,2(z, xo)

+ -,U)2
M_& (p, xo)2M2,2(z, x0),

(z-a)('z-µ)
M(A,a),1,2(z, x0) = M1,2(z, xo)) - z -

µ
m-a(µ, xo)M2,2(z, xo),
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M(µ,&),2,2(2, x0) = z

z IL

- p M2,2(z, x0), Pj4p

Given the basic connection between M(j &) and M in Theorem 2.3, one can
now proceed to derive the analogous relations between the spectral matrices p(µ,&)
and p associated with H(N,,&) and H, respectively (cf. [100] for details).

The principal spectral deformation result of [100] then reads as follows.

THEOREM 2.4. Assume Hypothesis 2.1. Then,
(i) Suppose p, i E (Eo, El). Then H(µ,Q) and H are unitarily equivalent. Moreover,
H(µ a) xo and HD, restricted to the orthogonal complements of the one-dimensional
eigenspaces corresponding to i and p, are unitarily equivalent.
(ii) Assume p E {Eo, El} n ad (H), µ E (Eo, El). Then,

a(p)(H(µ,a),xo) _ {a(p)(HD)\{p}} U { i}.

(iii) Suppose p E (Eo, El), µ E {Eo, El} n ad(H). Then,

a(p)(HA) = a(p)(H)\{µ}, a(p)(HPxo) = a(p)(HD)\{µ}, µ V a(IIDxo).

(iv) Assume p, µ E {E0i El} n ad (H), p # i. Then,

a(p)(HA) = a(p)(H)\{EOi Ell, a(p)(HDxo) =
f

a(HDxo

In cases (ii)-(iv), the corresponding pairs of operators, restricted to the obvi-
ous orthogonal complements of the eigenspaces corresponding to p and/or µ, are
unitarily equivalent. In particular,

aess,ac,sc(H(µ,&)) = aess,ac,sc(H(µ,o),xo) = aess,ac,sc(HD) = aess,ac,sc(H)

REMARK 2.5. (i) Perhaps the most important consequence of Theorem 2.4 (i),
from an inverse spectral point of view, is the fact that any finite number of de-
formations of Dirichlet data within spectral gaps of V yields a potential V in
the isospectral class of V. No further constraints on (pj,aj), (1i, aj), other than
(pj, aj), (µj, aj) E (Ej-1 i Ej) x {-, +}, (Ej-1, Ej) E R\a(H), j = 1, ... , N, N E N,
are involved.

(ii) The isospectral property (i) in Theorem 2.4, in the special case of periodic
potentials, was first proved by Finkel, Isaacson, and Trubowitz [63]. Further results
can be found in Buys and Finkel [28] and Iwasaki [132] (see also [46], [48], [174],
[175], [176], [177]). Similar constructions for Schrodinger operators on a compact
interval can be found in Poschel and Trubowitz [192, Chs. 3, 4] and Ralston and
Trubowitz [194].

(iii) Let p E (Eo, El). Then the (isospectral) Dirichlet deformation (p, a)
(p, -a) is precisely the isospectral case of the double commutation method (cf.
[74], [78], [100, App. B], [103]). It simply flips the Dirichlet eigenvalue p on the
half-line (x0, aoo) to the other half-line (x0, -aoo). In the special case where V (x)
is periodic, this procedure was first used by McKean and van Moerbeke [178].

(iv) The topology of these Dirichlet data strongly depends on the nature of
the endpoints E0, El of a particular spectral gap. For instance, in cases like the
periodic one, different spectral gaps are separated by intervals of absolutely con-
tinuous spectrum and the two intervals [E0, El] together with a E {-, +} can be
identified with a circle (upon identifying the two intervals as two rims of a cut).
Globally this then leads to a product of circles, that is, a torus. In particular, the
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Dirichlet eigenvalues in different spectral gaps can be prescribed independently of
each other. The situation is entirely different if an endpoint, say El, belongs to
the discrete spectrum of H. In this case there are two neighboring spectral gaps
(Eo, E1) and (El, E2) and the two Dirichlet eigenvalues pj E (Ej_1i Ej), j = 1, 2,
are not independent of each other. In fact, if one of pi or µ2 approaches El, then
necessarily so does the other. The topology is then not a product of circles. For
instance, a closer analysis of the case of N-soliton potentials in (2.1) then illustrates
that the appropriate coordinates parametrizing the N-soliton isospectral class are
aj c (0, oo) (compare also with positive norming constants), which results globally
in a product of open half-lines.

REMARK 2.6. In certain cases where the base (background) potential V is reflec-
tionless (see, e.g., [106]) and H is bounded from below and has no singularly contin-
uous spectrum, the isospectral class Iso(V) of V (the set of all reflectionless V's such
that a(H) = a(H)) is completely characterized by the distribution of Dirichlet (ini-
tial) data (µj+l(xo), o j+l(xo)) E [Ej, Ej+1] x {-, +}, j c J, in nontrivial spectral
gaps of H. Here xo c R is a fixed reference point and J = {0, 1, ... , N - 1}, N E N,
or j E J = No (= N U {0}) parametrizes these nontrivial spectral gaps (Ej, Ej+1) of
H (the trivial one being (-oo, inf u(H))). Prime examples of this type are periodic
potentials, algebro-geometric quasi-periodic finite-band potentials (cf. [15, Ch. 3],
[79, Ch. 1], [159, Chs. 8-12], [172, Ch. 4], [183, Ch. II]), and certain limiting
cases thereof (e.g., soliton potentials). In these cases, an iteration of the Dirichlet
deformation method, in the sense that (pj+i(xo), aj+i(xo)) -* (µj+l(xo), &j+l(xo))
within [Ej, Ej+1] x {-, +} for each j c J, independently of each other, yields an
explicit realization of the underlying isospectral class Iso(V) of reflectionless poten-
tials with base V. In the periodic case, this was first proved by Finkel, Isaacson, and
Trubowitz [63] (see also [28], [132]). More precisely, the inclusion of limiting cases
µj+l(xo) E {Ej, Ej+1} n Qess(H) requires a special argument (since it is excluded
by Hypothesis 2.1) but this can be provided in the special cases at hand.

REMARK 2.7. Another case of primary interest concerns potentials V with
purely discrete spectra bounded from below, that is,

a(H) = 9d(H) = {Ej}jEN0, -00 < E0, Ej < Ej+i, 7 E No, aess(H) = 0.

(For simplicity, one may think in terms of the harmonic oscillator V (x) = x2,
[32]-[36], [99], [160], [180], [193].) In this case, either

(µj+1(xo), aj+I (xo)) E (Ej, Ej+1) x f-, +l or µj+1(xo) = Ej+1 = N-j+2(x0),

that is, Dirichlet eigenvalues necessarily meet in pairs whenever they hit an eigen-
value of H. The following trace formula for V in terms of o(H) = {Ej}jEN.
and a(HD) = {µj(x)}jcN (with HD the Dirichlet operator associated with T =
- d2 + V (x) and a Dirichlet boundary condition at x = y), proved in [91] (cf.dx2

Section 4),
\00

V (x) = Eo + lima-' E (2e-aµi (x) - e-aEj - e-c1Ej+1 1 (2.10)
ajo I

j=1

then shows one crucial difference to the periodic-type cases mentioned previously.
Unlike in the periodic case, though, the initial Dirichlet eigenvalues µj+1(xo) cannot
be prescribed arbitrarily in the spectral gaps (Ej, Ej+1) of H. Indeed, the fact
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that the Abelian regularization in the trace formula (2.10) for V (x) converges to a
limit restricts the asymptotic distribution of pj+1(x) E [Ej, Ej+1] as j - oo. For
instance, consider V (x) = x2 -1, then E j = 2j, j E N0. The choice i (xo) = 2j -y,
ry E (0, 1), then yields for the Abelian regularization on the right-hand side of (2.10),

00

lima-1

(2e
a(Zj-ry) 2je -(23 2) = lim2[(?' - 1) +O(a)] 1 = oo.

alo
J-1

) alo 1 - e-2a

Put differently, our choice of pj (xo) = 2j - ry, y E (0, 1), was not an admissible
choice of Dirichlet eigenvalues for the (shifted) harmonic oscillator potential V (x) =
x2 -1. However, as stressed in Remark 2.5 (i), one of the fundamental consequences
of [100] concerns the fact that there is no such restriction for any finite number of
spectral gaps of H. In other words, only the tail end of the Dirichlet eigenvalues
i. +1(xo) as j -4 oo is restricted (the precise nature of this restriction being unknown
at this point), any finite number of them can be placed arbitrarily in the spectral
gaps (Ej, Ej+1) (with the obvious "crossing" restrictions at the common boundary
Ej+1 of (Ej, Ej+1) and (Ej+1i Ej}2)). The only other known restriction to date on
Dirichlet initial data (µj (xo), o (xo)) is that o (xo) = - and o (xo) = + infinitely
often, that is, both half-lines (-oc, xo) and (xo, oo) support (naturally) infinitely
many Dirichlet eigenvalues.

For various extensions of the results presented, including a careful discussion of
limit point/limit circle properties of the Dirichlet deformation operators, iterations
of DDM to insert finitely many eigenvalues in spectral gaps, applications to re-
fiectionless Schrodinger operators, general Sturm-Liouville operators in a weighted
L2-space, applications to short-range scattering theory, and a concise summary of
single and double commutation methods, we refer to [100].

More recent references: An interesting refinement of Theorem 2.4 (i), in which
a unitary operator relating and H is explicitly characterized, is due to
Schmincke [217]. DDM for one-dimensional Jacobi and Dirac-type operators has
been worked out by Teschl [238], [243, Ch. 11] (see also [104], [242]), [240].

3. Renormalized Oscillation Theory

In this section we summarize some of the principal results of the paper:
[101] F. Gesztesy, B. Simon, and G. Teschl, Zeros of the Wron-
skian and renormalized oscillation theory, Amer. J. Math. 118,
571-594 (1996).

For over a hundred and fifty years, oscillation theorems for second-order dif-
ferential equations have fascinated mathematicians. Originating with Sturm's cel-
ebrated memoir [232], extended in a variety of ways by Bocher [21] and others, a
large body of material has been accumulated since then (thorough treatments can
be found, e.g., in [42], [147], [203], [235], and the references therein). In [101] a
new wrinkle to oscillation theory was added by showing that zeros of Wronskians
can be used to count eigenvalues in situations where a naive use of oscillation the-
ory would give oc - oo (i.e., Wronskians lead to renormalized oscillation theory).
In a nutshell, we will show in this section the following result for general Sturm-
Liouville operators H in L2 ((a, b); r dx) with separated boundary conditions at a
and b: If E1,2 E R and if u1,2 solve the differential equation Huh = Ejuj, j = 1, 2
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and respectively satisfy the boundary condition on the left/right, then the dimen-
sion of the spectral projection P(Er1,E2)(H) of H equals the number of zeros of the
Wronskian of ul and u2.

The main motivation in writing [101] had its origins in attempts to provide
a general construction of isospectral potentials for one-dimensional Schrodinger
operators following previous work by Finkel, Isaacson, and Trubowitz [63] (see also
[28]) in the special case of periodic potentials. In fact, in the case of periodic
Schrodinger operators H, the nonvanishing of W (ul, u2) (x) for Floquet solutions
ul = wE1 (E1), u2 = `/ 2 (E2), E1,2 E {+, -} of Hp, for El and E2 in the same
spectral gap of H, is proved in [63]. The extension of these ideas to general one-
dimensional Schrodinger operators was done in [100] and is reviewed in Section
2 of this survey. So while [101] is not directly related to the overarching inverse
spectral theory topic of this survey, we decided to include it because of its relevance
in connection with Section 2.

To set the stage, we consider Sturm-Liouville differential expressions of the
form

(Tu)(x) = r(x)-1[-(p(x)u'(x))' + q(x)u(x)], x E (a, b), -oo < a < b < 00

where

r, p-1, q E Lioo((a b)) are real-valued and r, p > 0 a.e. on (a, b).

We shall use r to describe the formal differentiation expression and H for the
operator in L2 ((a, b); r dx) given by r with separated boundary conditions at a
and/or b.

If a (resp., b) is finite and q, p 1, r are in addition integrable near a (resp., b),
a (resp., b) is called a regular end point. T (resp., H) is called regular if both a
and b are regular. As is usual ([57, Sect. XIII.2], [182, Sect. 17], [249, Ch. 3]), we
consider the local domain

Dloc = {u E ACloo((a, b)) I pu' E ACIoc((a, b)), Tu E Li ,((a, b); r dx)},

where ACIoc((a, b)) is the set of locally absolutely continuous functions on (a, b).
General ODE theory shows that for any E E C, x0 E (a, b), and (a, 0) E C2, there
is a unique u c Dio, such that -(pu')' + qu - Eru = 0 for a.e. X E (a, b) and
(u(xo), (pu')(xo)) _ (a, 0) -

The maximal and minimal operators are defined by taking

dom(Tmax) = {u E L2 ((a, b); r dx) n Dloc ru c L2 ((a, b); r dx) },

with
Tmaxu = TU.

Tmin is the operator closure of Tmax [ Dloc n {u has compact support in (a, b)}.
Then Tmin is symmetric and Tmin = Tmax

According to Weyl's theory of self-adjoint extensions ([57, Sect. XIII.6], [182,
Sect. 18], [201, App. to X.1], [248, Section 8.4], [249, Chs. 4, 5] ), the deficiency
indices of Tmin are (0, 0) or (1, 1) or (2, 2) depending on whether it is limit point
at both, one, or neither endpoint. Moreover, the self-adjoint extensions can be
described in terms of Wronskians ([57, Sect. XIII.2], [182, Sects. 17, 18], [248,
Sect. 8.4], [249, Ch. 3]). Define

W(u1,u2)(x) = u1(x)(pu2)(x) - (pu'1)(x)u2(x).
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Then if Tmin is limit point at both ends, Tmin = Tmax = H. If Tmin is limit point
at b but not at a, for H any self-adjoint extension of Tmin, if cp_ is any function in
dom(H)\dom(Tmin), then

dom(H) = {u E dom(Tmax) I W(u, cp_)(x) -p 0 as x J a}.

Finally, if ui is limit circle at both ends, the operators H with separated boundary
conditions are those for which we can find cp± E dom(H), cp+ = 0 near a, co_ = 0
near b, and cp± E dom(H)\dom(Tmin) In that case,

dom(H)={uE D(Tmax)I W(u,co_)(x)-->0as x J, a,W(u,cp+)(x)-*0asxTb}.

Of course, if H is regular, we can just specify the boundary conditions by taking
values at a, b since by regularity any u c dom(Tmax) has u, pu' continuous on [a, b].
It follows from this analysis that

if u1,2 E dom(H), then W (ui, u2) (x) --> 0 as x - a or b.

Such operators will be called SL operators (for Sturm-Liouville, but SL includes
separated boundary conditions (if necessary)) and denoted by H.

It will be convenient to write 2_ = a, Q+ = b.
Throughout this section we will denote by 0± (z, x) E Di0 solutions of ro _

zo so that V)± (z, .) is L2 at tf and V)+(z, .) satisfies the appropriate boundary
condition at 2t in the sense that for any u E dom(H), lima-e} W (V)± (z), u) (x) = 0.
If V)t (z, .) exist, they are unique up to constant multiples. In particular, V)± (z, . )

exist for z not in the essential spectrum of H and we can assume them to be
holomorphic with respect to z in C\u(H) and real for z E R. One can choose

+(z, x) = ((H - Z)-'X(c,d))(x) for x < c and x > d, a < c < d < b (3.1)

and uniquely continue V)± (z, x) for x > c and x < d. Here (H - z)_i denotes the
resolvent of H and Xci the characteristic function of the set S2 C_ R. Clearly we can
include a finite number of isolated eigenvalues in the domain of holomorphy of 0± by
removing the corresponding poles. Moreover, to simplify notations, all solutions u
of Tu = Eu are understood to be not identically vanishing and solutions associated
with real values of the spectral parameter E are assumed to be real-valued in this
paper. Thus if E is real and in the resolvent set for H or an isolated eigenvalue, we
are guaranteed there are solutions that satisfy the boundary conditions at a or b.
If E is in the essential spectrum, it can happen that such solutions do not exist or
it may happen that they do. In Theorems 3.15 and 3.16 below, we shall explicitly
assume such solutions exist for the energies of interest. If these energies are not in
the essential spectrum, that is automatically fulfilled.

The key idea in [101] is to look at zeros of the Wronskian. That zeros of the
Wronskian are related to oscillation theory is indicated by an old paper of Leighton
[151], who noted that if uj, pu' E ACI0,((a, b)), j = 1,2 and ul and u2 have a
nonvanishing Wronskian W (ui, u2) in (a, b), then their zeros must intertwine each
other. (In fact, pu'1 must have opposite signs at consecutive zeros of u1, so by
nonvanishing of W, u2 must have opposite signs at consecutive zeros of ul as well.
Interchanging the role of ul and u2 yields strict interlacing of their zeros.) Moreover,
let El < E2 and rub = E, uj, j = 1, 2. If x0, xi are two consecutive zeros of u1,
then the number of zeros of u2 inside (xo,xi) is equal to the number of zeros of
the Wronskian W(ui, u2) plus one (cf. Theorem 3.20). Hence the Wronskian comes
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with a built-in renormalization counting the additional zeros of u2 in comparison
to u1.

We let Wo(ul, u2) be the number of zeros of the Wronskian in the open interval
(a, b) not counting multiplicities of zeros. Given El < E2, we let No (El, E2) =
dim(ran(P(E1,E2) (H))) be the dimension of the spectral projection P(E1,E2) (H) of
H.

We begin by presenting two aspects of zeros of the Wronskian which are critical
for the two halves of our proofs (i.e., for showing No > Wo and that No < WO).
First, the vanishing of the Wronskian lets us patch solutions together:

LEMMA 3.1. Suppose that V)+,j, 0_ E Di, and that V)+,j and ro+j, j = 1, 2
are in L2((c, b)) and that 0- and rrVi_ are in L2((a, c)) for all c c (a, b). Suppose,
in addition, that V)+,j, j = 1, 2 satisfy the boundary condition defining H at b (i.e.,
W(u,V)+j)(c) --> 0 as c T b for all u E dom(H)) and similarly, that 'O- satisfies the
boundary condition at a. Then,
(i) If W(O+,i, 0+,2)(c) = 0 and (0+,2(c), (p'/L4 2)(c)) j4 (0, 0), then there exists a -y
such that

71 = X[c,b)(4'+,1 -'Y''+,2) E dom(H)
and

H17 = X[c,b)(TY4,1 -'YT4'+,2)-

(ii) If W(V)+,i,0_)(c) = 0 and (0-(c), (p'' ) (c)) J (0,0), then there is a y such
that

r1 = 7X(a,c] Y'- + X(c,b) Y'+,1 E dom(H)
and

Hrl = 'yX(a,c.]T0- + X(c,b)TY'+,1.

The second aspect connects zeros of the Wronskian to Priifer variables pu, Bu
(for u, pu' continuous) defined by

u(x) = pu(x) sin(Ou(x)), (pu')(x) = p,, (x) cos(Ou(x)).

If (u(x), (pu')(x)) is never (0, 0), then pu can be chosen positive and Bu is uniquely
determined once a value of Bti,(xo) is chosen subject to the requirement that Bu be
continuous in x.

Notice that

W(ul,u2)(x) = Pul(x)Pu2(x)sin(Ou1(x) - Ou2(x))

Thus, one obtains the following results.

LEMMA 3.2. Suppose (uj, pu'3.), j = 1, 2 are never (0, 0). Then W (ui, u2)(xo)
is zero if and only if Ou, (xo) = But (xo) (mod 7r).

In linking Priifer variables to rotation numbers, an important role is played by
the observation that because of

U(X) = dt pu(t) cos(Ou(t))
fX o p(t)

Ou(xo) = 0 (mod 7r) implies [Ou(x)-0u(xo)]/(x-xo) > 0 for 0 < Ix-x0I sufficiently
small and hence for all 0 < Ix - xo I if (u, pu') $ (0, 0). (In fact, suppose x1 x0 is
the closest x such that Bu(x1) = Ou(xo) then apply the local result at xi to obtain
a contradiction.) We summarize:
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LEMMA 3.3. (i) If (u, pu') # (0, 0) then Ou(xo) = 0 (mod 7r) implies

[0..(x) - 0..(xo)]/(x - xo) > 0

for x xo. In particular, if Ou(c) E [0, 7r) and u has n zeros in (c, d), then
Bu(d - e) E (n7r, (n + 1)7r) for sufficiently small e > 0.

(ii) Let El < E2 and assume that u1,2 solve Tub = Ejuj, j = 1, 2. Let 0(x) =
But (x) - O, (x). Then A(xo) = 0 (mod 7r) implies (0(x) - A(xo))/(x - xo) > 0 for
0 < x - x0j.

REMARK 3.4. (i) Suppose r, p are continuous on (a, b). If O, (xo) = 0 (mod 7)
then 0., (x) - Bul (xo) = co(x - xo) + o(x - xo) with co > 0. If 0(xo) = 0 (mod ir)
and Bu, (xo) 4 0 (mod ir), then 0(x) - 0(xo) = cl(x - xo) + o(x - xo) with cl > 0.
If O, (xo) = 0 = A(xo) (mod 7r), then 0(x) - 0(x0) = C2 (X - x0)3 + o(x - x0)3)
with c2 > 0. Either way, 0 increases through x0. (In fact, co = p(xo)-1, cl =
(E2 - El)r(xo) sin2(Bul (xo)) and c2 = Ir(xo)p(xo)-2(E2 - E1)).

(ii) In other words, Lemma 3.3 implies that the integer parts of Bu/7r and
Du,,,/ir are increasing with respect to x E (a, b) (even though Bu and Du,,, them-
selves are not necessarily monotone in x).

(iii) Let E E [El, E2] and assume [El, E2] to be outside the essential spectrum
of H. Then, for x E (a, b) fixed,

00, f dt ±(E,t)2
dE (E' x) PPf (E, x)

proves that :FBpt (E, x) is strictly increasing with respect to E.

We continue with some preparatory results in the regular case.

LEMMA 3.5. Assume H to be a regular SL operator.
(i) Let u1,2 be eigenfunctions of H with eigenvalues El < E2 and let f be the number
of eigenvalues of H in (El, E2). Then W(ul, u2) (x) has exactly £ zeros in (a, b).
(ii) Let El < E2 be eigenvalues of H and suppose [El, E2] has f eigenvalues. Then
for e > 0 sufficiently small, W0 (1_ (El - e),+ (E2 + e)) = P.
(iii) Let E3 < E4 < E and u be any solution of Tu = Eu. Then,

Wo(?P-(E3),u) > W0('tl)-(E4),u). (3.2)

Similarly, if E3 > E4 > E and u is any solution of iru = Eu, then (3.2) holds.
(iv) Item (iii) remains true if every V'_ is replaced by a 0+.

REMARK 3.6. (i) Since (El, E2) has 2 - 2 eigenvalues, Lemma 3.5 (i) implies
that the Wronskian W(z/i_(E1), 0+(E2))(x) has 2 - 2 zeros in (a, b) and clearly it
has zeros at a and b. Essentially, Lemma 3.5 (ii) implies that replacing El by El -e
and E2 by E2 + e moves the zeros at a, b inside (a, b) to give £ - 2 + 2 = $ zeros.

(ii) Lemma 3.5 (iv) follows from Lemma 3.5 (iii) upon reflecting at some point
c E (a, b), implying an interchange of 0+ and &_.

Lemma 3.5 then implies the following result.

LEMMA 3.7. Let H be a regular SL operator and suppose El < E2. Then,

Wo(-(El), '+(E2)) > No(E1,E2).
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Using the approach of Weidmann ([249, Ch. 14]) to control some limits, one
can remove the assumption that H is regular in Lemma 3.7 as follows.

Fix functions uI, u2 E Dloo. Pick c,,, 1 a, do T b. Define Hn on L' ((c,,, d,); r dx)
by imposing the following boundary conditions on 1) E dom(HH)

W(ul,r)(Cn) = 0 = W(u2,'ij)(d,,).

On L2((a,b);rdx) = L2((a,cn);rdx) ® L2((cn,dn);rdx) ED L2((d,,,,b);rdx) take
H,,, = aI ® H,,, ED aI with a a fixed real constant. Then Weidmann proves:

LEMMA 3.8. Suppose that either H is limit point at a or that uI is a V'_ (E, x)
for some E and similarly, that either H is limit point at b or u2 is a V)+ (E', x) for
some E'. Then I-In converges to H in strong resolvent sense as n -> 00.

The idea of Weidmann's proof is that it suffices to find a core Do of H such that
for every q E Do there exists an no c N with rl c Do for n > no and Hnr7 -> Hi7 as n
tends to infinity (see [248, Theorem 9.16 (i)]). If H is limit point at both ends, take
71 E Do = {u c Dloc I supp(u) compact in (a, b)}. Otherwise, pick uI, u2 E dom(H)
with u2 = u2 near b and u2 = 0 near a and with uI = ul near a and uI = 0 near
b. Then pick rl E Do + span[ul, i12] which one can show is a core for H ([249, Ch.
14]).

Secondly, one uses the following fact:

LEMMA 3.9. Let An --> A in strong resolvent sense as n --> oo. Then,

dim(ran (P(E,iE2)(A))) < lim dim(ran(P(E,,E2)(An))).
n -oO

Combining Lemmas 3.7-3.9 then yields the following result.

THEOREM 3.10. Let EI < E2. If uI =_(EI) and either u2 =+(E2) or
Tut = E2u2 and H is limit point at b. Then,

Wo(ul,u2) > dim(ran((P(E1,E2)(H)))

Next, we indicate how the following result can be proved:

THEOREM 3.11. Let EI < E2. Let either uI =+(EI) or uI = V_(EI) and
either u2 = '+(E2) or u2 = &_(E2). Then,

Wo(ul,u2) < dim(ran(P(E,,E2) (H))). (3.3)

Let El < E2. Suppose first that uI = V)_ (EI) and u2 = iP+(E2). Let xI, ... , xn,
be zeros of W(ul,u2)(x). Suppose we can prove that dimP(E, E2)(H) > m. If
Wo(ui, u2) = m, this proves (3.3). If Wo = oo, we can take m arbitrarily large, and
again (3.3) holds. Define

x
(uI(x), x < xj, 1 < j < m
S

-Yj U2 (X), x > xj,

where yy is defined such that rlj E dom(H) by Lemma 3.1. Let

x
uI(x), x < xj, 1 < j M._yju2(x), x > xj,

If E2 is an eigenvalue of H, we define in addition 7/O = u2 = -770i xo = a and if El
is an eigenvalue of H, 7)m+1 = ul = 71m+I, xm+1 = b.
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LEMMA 3.12. (rlj, rlk) = (rlj, rlk) for all j, k, where ( , ) is the L2 ((a, b); r dx)
inner product.

Notice that by (3.2),

CH - E2 + El El
E22 2

j

This result and Lemma 3.12 imply the following lemma.

LEMMA 3.13. If rl is in the span of the rh, then

R
H-E22E1\ _'E22E11117711

Thus, dim(ran(P[E1iE2] (H))) > dim(span({%})). But ul and u2 are indepen-
dent on each interval (since their Wronskian is nonconstant) and so the rlj are
linearly independent. This proves Theorem 3.11 in the 0_ (E1), &+(E2) case. The
case ul = 0_(E1), u2 = 0_(E2) is proved similarly. The cases ul = 0+(El),
u2 = 0±(E2) can be obtained by reflection.

Next one proves the following result.

THEOREM 3.14. Let El y E2. Let Tub = Ej uj, j = 1,2, Tv2 = E2v2 with
u2 linearly independent of v2. Then the zeros of W(ul,u2) interlace the zeros of
W(ul, v2) and vice versa (in the sense that there is exactly one zero of one function
in between two zeros of the other). In particular, IW0(ul, U2) - Wo(ul, v2)1 < 1.

Theorems 3.10, 3.11, and 3.14 then yield the following two theorems, the prin-
cipal results of [101]:

THEOREM 3.15. Suppose El < E2. Let ul = _(E1) and u2 =+(E2)

Wo(ui, U2) = No(El, E2)

THEOREM 3.16. Suppose El < E2. Let ul = (El) and U2 (E2).
either

Then,

Then

Wo(ui,u2) = No(E1,E2), (3.4)

or

Wo(ui, U2) = No(E1, E2) - 1. (3.5)

If either No = 0 or H is limit point at b, then (3.4) holds.

One infers that if b is a regular point and E2 > e > El with e an eigenvalue
and IE2 - Ell is small, then (3.5) holds rather than (3.4). One also sees that if u1,2
are arbitrary solutions of rub = Ej uj, j = 1, 2, then, in general, I WO - No I < 2
(this means that if one of the quantities is infinite, the other is as well) and we note
that any of 0, +1, +2 can occur for Wo No. Especially, if either El or E2 is in
the interior of the essential spectrum of H (or dim(ran(P(E1iE2) (H))) = oo), then
Wo(ul, u2) = oo for any ul and u2 satisfying Tuy = Ejuj, j = 1, 2 (cf. Theorem
3.19).

REMARK 3.17. Of course, by reflecting about a point c E (a, b), Theorems
3.10, 3.15, and 3.16 hold for ul = 0+(E1) and u2 = 0_ (E2) (and either No = 0
or H is limit point at a in the corresponding analog of Theorem 3.16 yields (3.4))
and similarly, rue = E2u2 and H is limit point at a yields the conclusion in the
corresponding analog of Theorem 3.10.
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We add a few more results proved in [101].
By applying Theorem 3.14 twice, one concludes

THEOREM 3.18. Let El E2. Let u1i u2, v1, v2 be the linearly independent
functions with Tub = Ejuj and Tvj = Ejvj. Then,

IWO(ui,u2) - WO (V1, V2)1 < 2.

THEOREM 3.19. If dim(ran(P(E1,E2)(H))) = 00, then Wo(ul, u2) = oc for any
ul and u2 satisfying Tub = Ejuj, j = 1, 2.

THEOREM 3.20. Let El < E2. Let Tub = Ejuj, j = 1, 2. If a < xo < x1 < b
are zeros of ul or of W (ul, u2) (. ), then the number of zeros of u2 inside (xo, x1)
equals the number of zeros of W (ul, u2) (.) inside (xo, xi) plus the number of zeros
of ul inside (xo, xi) plus one.

The following result is of special interest in connection with the problem of
whether the total number of eigenvalues of H in one of its essential spectral gaps
is finite or infinite. In particular, the energies El, E2 in Theorem 7.5 below may lie
in the essential spectrum of H. For this purpose we consider an auxiliary Dirichlet
operator HD, xo E (a, b) associated with H. HD is obtained by taking the direct
sum of the restrictions HD ± of H to (a, xo) (resp., (xo, b)) with a Dirichlet bound
ary condition at xo. We emphasize that the Dirichlet boundary conditions can be
replaced by boundary conditions of the type limElo[u'(xo ± e) + Qu(xo + e)] = 0,
,3c R.

THEOREM 3.21. Let El < E2. Let Tub = Ejuj, Tsj = Ejsj, and sj(Ej, xo)
0, j = 1, 2. Then,

dim(ran(P(E1iE2)(H))) < oo if and only if Wo(ul,u2) < 00,

dim(ran(P(E1,E2)(H))) - 1 < dim(ran(P(E1,E2)(HD)))

< dim(ran(P(E1,E2)(H))) + 2,

WO (S1, S2) - 1 < dim(ran(P(E1,E2)(HD))) < Wo(S1, S2) + 1.

For an application of this circle of ideas to the notion of the density of states,
we refer to [101].

More recent references: Oscillation and renormalized oscillation theory was
also put in perspective by Simon's contribution [229] to the the Festschrift [8] in
honor of Sturm and Liouville. Renormalized oscillation theory for one-dimensional
Jacobi and Dirac-type operators was developed by Teschl [237] (see also [243, Sect.
4.3]) and [241]. For an interesting application of some of the results in [101] to
the stability theory of complete minimal surfaces, we refer to a paper by Schmidt
[215]. For additional results on oscillation theory, critical coupling constants, and
eigenvalue asymptotics, we refer to Schmidt [214].
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4. Trace Formulas for Schrodinger and Jacobi Operators:
The xi Function

In this section we summarize some of the principal results of the following
papers:

[80] F. Gesztesy, H. Holden, and B. Simon, Absolute summability
of the trace relation for certain Schrodinger operators, Commun.
Math. Phys. 168, 137-161 (1995).
[81] F. Gesztesy, H. Holden, B. Simon, and Z. Zhao, Trace
formulae and inverse spectral theory for Schrodinger operators,
Bull. Amer. Math. Soc. 29, 250-255 (1993).
[82] F. Gesztesy, H. Holden, B. Simon, and Z. Zhao, Higher or-
der trace relations for Schrodinger operators, Rev. Math. Phys.
7, 893-922 (1995).
[83] F. Gesztesy, H. Holden, B. Simon, and Z. Zhao, A trace
formula for multidimensional Schrodinger operators, J. Funct.
Anal. 141, 449-465 (1996).
[91] F. Gesztesy and B. Simon, The xi function, Acta Math.
176, 49-71 (1996).

We start with [91]. One of the principal goals in [91] was to introduce a special
function on R x R associated with one-dimensional Schrodinger operators H
(and Jacobi operators h) which led to a generalization of the known trace formula
for periodic Schrodinger operators for general potentials V and established t; as
a new tool in the spectral theory of one-dimensional Schrodinger operators and
(multi-dimensional) Jacobi operators.

To illustrate this point we recall the well-known trace formula for periodic
potentials V of period a > 0. Then, by Floquet theory (see, e.g., [58], [163],
[202] ),

a(H) = [Eo, E1] U [E2, E3] U ...
a set of bands. If V is C1(Il8), one can show that the sum of the gap sizes is finite,
that is,

00

IE2n - E2n-1I < oo. (4.1)
n=1

For fixed y, let Hy be the operator -41
22

+ V in L2([y, y + a]) with Dirichlet
boundary conditions u(y) = u(y + a) = 0. Its spectrum is discrete, that is, there
are eigenvalues {µn(y)}°O_1 with

E2n-1 < ( y ) : E2n. (4.2)

The trace formula for V then reads
00

V (y) = Eo + E[E2n + E2n-1 - 2µn(y)I. (4.3)
n=1

By (4.2), IE2n +E2n-1 - 2µn(y)I < IE2n - E2n-1I so (4.1) implies the convergence
of the sum in (4.3). An elegant direct proof of (4.3) can be found, for instance, in
[225, Sect. 26].

The earliest trace formula for Schrodinger operators was found on a finite in-
terval in 1953 by Gel'fand and Levitan [71] with later contributions by Dikii [55],
Gel'fand [69], Halberg and Kramer [113], and Gilbert and Kramer [109]. The first
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trace formula for periodic V was obtained in 1965 by Hochstadt [118], who showed
that for finite-band potentials

V (x) - V (O) = 2'[/1(O) - µn (x)]
n=1

Dubrovin [9] then proved (4.3) for finite-band potentials. The general formula (4.3)
under the hypothesis that V is periodic and in C' (R) was proved in 1975 by
Flaschka [65] and McKean and van Moerbeke [178], and later for general C3(R)
potentials by Trubowitz [246]. Formula (4.3) is a key element of the solution of
inverse spectral problems for periodic potentials [56], [65], [118], [159, Ch. 11],
[172, Sect. 4.3], [178], [179],, [246].

There have been two classes of potentials for which (4.3) has been extended.
Certain almost periodic potentials are studied in Craig [43], Levitan [158], [159,
Ch. 11], and Kotani-Krishna [141].

In 1979, Deift and Trubowitz [48] proved that if V(x) decays sufficiently rapidly
at infinity and -II + V has no negative eigenvalues, then

dX2

V (X) = 2i r.: dk k In f1 + R(k) f+ (x, k)1 (4.4)
L f- ( k) J

(where f±(x, k) are the Jost functions at energy E = k2 and R(k) is a reflection
coefficient) which can be shown to be an analog of (4.3). Previously, Venakides
[247] studied a trace formula for V, a positive smooth potential of compact support,
by writing (4.3) for the periodic potential VL(x) = >°°n=-. V (x + nL) and then
taking L to oo. He found an integral formula which is precisely (4.4) (although,
this was not identified as such in [247]).

The basic definition of depends on the theory of the Lifshits-Krein spectral
shift function [146]. If A and B are self-adjoint operators bounded from below,
that is, A > 77, B > 77 for some real i7, and so that [(A + i)-1 - (B + i)-1] is trace
class, then there exists a measurable function (A) associated with the pair (B, A)
so that

Tr[f(A) -f(B)] = - J (4.5)

for a class of functions f which are sufficiently smooth and which decay sufficiently
rapidly at infinity, and, in particular, for f (A) = e-ta for any t > 0; and so that

(A) = 0 for A < 77. (4.6)

Moreover, (4.5) and (4.6) uniquely determine (A) for a.e. A. Moreover, if
[(A + i)-1 - (B + i)-1] is rank n, then (A) j < n and if B > A, then (A) > 0.

For the rank-one case of importance in this paper, an extensive study of e can
be found in [227].

Let V be a continuous function on I[8 which is bounded from below. Let H =
2

- d.2 + V in L2 (ll) which is essentially self-adjoint on Co (If8) and let HD be the
operator on L2((-oo, x)) ED L2((x, oo)) with u(x) = 0 Dirichlet boundary conditions.
Then [(HD+i)-1 - (H+i)-1] is rank one, so there results a spectral shift function
(A, x) for the pair (HD, H) which, in particular, satisfies,

00

J0

Tr[e-ta - e-tx°] = t dAe-ta(Ax)



760 F. GESZTESY

While is defined in terms of H and HD there is a formula that only involves
H, or more precisely, the Green's function G(z, x, y) of H defined by

((H - z)-1 f) (x) = Im(z) 0.

Then by general principles, lim,10 G(A + ic, x, y) exists for a.e. A E ][8, and

(A, x) = 1 Arg(lim G(A+ie,x,x)). (4.8)
7r CIO

This is formally equivalent to formulas that Krein [146] has for l; but in a
singular setting (i.e., corresponding to an infinite coupling constant). With this
definition out of the way, we can state the general trace formula derived in [91]:

THEOREM 4.1. Suppose V is a continuous function bounded from below on R.
Let l; (A, x) be the spectral shift function for the pair (HD, H) with HD the operator
on L2((-oo, x))®L2((x, oo)) obtained from H = --42 +V in L2(R) with a Dirichlet

(H). Then
1

boundary condition at x. Let

[EO

E0 < inff o

00V (x) = li o + dA e[1 - 2(A, x)] ] . (4.9)
,,

In particular, if E dA 1 1 - 2 (A x) < oo then

dA [1 - x)].V (x) = Eo + fE,,

We note that the trace formula extends to real-valued potentials V E L1 c(R)
as long as H stays bounded from below (it then is in the limit point case at +oo).
Equation (4.9) then holds at all Lebesgue points of V and hence for a.e. x E R.

For certain almost periodic potentials, Craig [43] used a regularization similar
to the a-regularization in (4.9).

Basically, (4.9) follows from (4.7) and an asymptotic formula,

Tr[e-tx - e-tx°] =
2

[1 - tV(x) + o(t)]. (4.10)

We present a few examples next:

EXAMPLE 4.2. Pick a constant C E R such that V (x) = C for all x c R. Then
G(A, x, x) = (C - A) -1/2/2 and hence one infers that Arg(G(A, x, x)) = 0 (resp.,
7r/2) if A < C (resp., A > C). Thus, by (4.8), (A, x) = 2 on (C, oc) and (A, x) = 0
on (-oc, C). When = 2 on a subset of a(H), that set does not contribute to the
integral in (4.9) and one verifies for Eo < C,

PC
V(x) =Eo+J dA=Eo+(C-Eo) =C,

Eo

EXAMPLE 4.3. Suppose that V(x) -* oo as xj -* oo. Then H has eigenvalues
Eo < El < E2 < and HD has eigenvalues {1tj (x) c?' 1

with Ej _1 < µj (x) < Ej.
We have

x)
1, Ej _1 < A < µ9(x),

0, A < Eo or µj(x) < A < Ej.
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Thus (4.9) becomes:

11V(x) =Eo+1lim [(2e_ 1N'3(x) -e_1E3-e-1E,_1)/aJ. (4.11)
j=1

If we could take a to zero inside the sum, we would get
cc

V(x) = Eo + E [Ej + Ej_1 - 2µj (x)] (formal!) (4.12)
j=1

which is just a limit of the periodic formula (4.3) in the limit of vanishing band
widths. (4.11) is just a kind of Abelianized summation procedure applied to (4.12).

As a special case of this example, consider V(x) = xz - 1. Then Ej = 2j and
{µj (0) } is the set {2, 2, 6, 6, 10,10, 14,14, ... } of j odd eigenvalues, each doubled.
Thus (4.12) is the formal sum

-1=-2+2-2+2... (formal!)
with (4.11)

-1 = lim [(e -2a - 1)/a] [1 - e-2a + e-4a... ]

= lim [(e-2 - 1)/a] [1/(1 + e-2 )]

with a true Abelian summation.

EXAMPLE 4.4. Suppose V is periodic. Let Ej, pj (x) be the band edges and
Dirichlet eigenvalues as in (4.2) and (4.3). Then it follows from the fact that the
two Floquet solutions are complex conjugates of each other on the spectrum of H,
and the Wronskian is antisymmetric in its argument (W (f, g) _ -W (g, f )), that
g(A, x) is purely imaginary on a(H); that is, (A, x) = 2 there, so

2, E2'n, <A<E2n+1,

(A, x) = 1, E2n_1 < A < N'n(x),

10, µn (x) < A < E2n.

(This fact has also been used by Deift and Simon [47] and Kotani [140] and also
follows from the fact that g(A, x) = G(A + i0, x, x) = - [m+ (A, x) + m_ (A, x)] -1 in
terms of the Weyl-Titchmarsh m-functions.) Thus,

E
00

IE2n-Ezn_11
o n=1

is finite if (4.1) holds. In that case one can take the limit inside the integral in (4.9)
and so recover (4.3).

EXAMPLE 4.5. In [80] it is proved that if V is short-range, that is, V E H2'1(T1 ),
then, f fo dA I < oo and one can take the limit in (4.9) inside the integral.
This recovers Venakides' result [247] with an explicit form for e in terms of the
Green's function (see Theorem 4.1). Similarly, one can treat short-range pertur-
bations W of periodic background potentials V (modeling scattering off defects or
impurities, described by W, in one-dimensional solids) and "cascading" potentials,
that is, potentials approaching different spatial asymptotes sufficiently fast (cf. [80]
for details).
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Next we mention a striking inverse spectral application of the trace formula
(4.9) to a celebrated two-spectra inverse spectral theorem due to Borg [24]:

THEOREM 4.6. Let V E L1c (ll) be real-valued and periodic. Let H = - dX2 +
V be the associated self-adjoint Schrodinger operator in L2(1[8) and suppose that
o,(H) = [Eo, oo) for some Eo E R. Then

V (x) = Eo for a. e. x E

Given the trace formula (4.9) (observing the a.e. extension noted after Theorem
4.1) and using the fact that for all x E R and a.e.A > Eo, (A, x) =

z
(cf. Example

4.12), the proof of Borg's Theorem 4.6 is effectively reduced to just a one-line
argument (as was observed in [39]). In addition, the new proof permits one to
replace periodic by reflectionless potentials and hence applies to algebro-geometric
quasi-periodic (KdV) potentials and certain classes of almost periodic potentials.

Now we turn to an analog for Theorem 4.1 for Jacobi operators. This turns
out to be a special case of the following result.

THEOREM 4.7. Let A be a bounded self-adjoint operator in some complex sep-
arable Hilbert space f with a = inf cr(A), 0 = sup Q(A). Let cp E R, 1W 11R = 1 be
an arbitrary unit vector in 7-L and let l;(A) be the spectral shift function for the pair

A), where A,,. is defined by

(A,, - z) -1 = (A - z)-1 - (cp, (A - z) 1 p.

Then for any E_ < a and E+ f> /3:

JE+dAt;(A)

E+
= 2 (E+ + E-) + 2 dA [1 - 2t; (A)].

COROLLARY 4.8. Let H be a Jacobi matrix on 22(Z,), that is, for a bounded
function V on 7L",

(Hu)(n) _ u(m) + V(n)u(n), n c Z". (4.13)
In-m1=1

For r c Z", let HD be the operator on L2(7Z"\{r}) given by (4.13) with u(r) = 0
boundary conditions. Let Z;(A, r) be the spectral shift function for the pair (HD, H).
Then

E+ f E+
V(r)=E_+ J

E
= 2 (E+ + E-) + a da [1 - 2Z;(A, r)]

E_

for any E_ < inf o,(H), E+ > sup o,(H).

(4.14)

Only when v = 1 does this have an interpretation as a formula using Dirichlet
problems on the half-line.

Next, we look at some applications to absolutely continuous spectra. In partic-
ular, we will point out that (A, x) for a single fixed x E ll determines the absolutely
continuous spectrum of a one-dimensional Schrodinger or Jacobi operator. We be-
gin with a result that holds for higher-dimensional Jacobi operators as well:
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LEMMA 4.9. (i) For an arbitrary Jacobi matrix, H, on Z', UJEZ, {A E ll 0 <
(A, j) < 1} is an essential support for the absolutely continuous spectrum of H.

(ii) For a one-dimensional Schrodinger operator, H = - V bounded from
below, UxeQ{A E ll 10 < (A, x) < 1} is an essential support for the absolutely
continuous spectrum of H.

REMARK 4.10. We recall that every absolutely continuous measure, dµ, has
the form f (E) dE. S = {E E I[8 I f (E) 0} is called an essential support. Any
Borel set which differs from S by sets of zero Lebesgue measure is also called an
essential support. If A is a self-adjoint operator on 7-l and c°n, an orthonormal
basis for f, and dµ,,,, the spectral measure for the pair, A, c°n (i.e., ('pn, eisAcon.) =
fig ei,E dµn(E)) and if dµac is the absolutely continuous component of dµn with Sn
its essential support, then Un Sn is the essential support of the absolutely continuous
spectrum for A.

In one dimension though, a single x suffices:

THEOREM 4.11. For one-dimensional Schrodinger (resp., Jacobi) operators,
{A E R 10 < l;(A, x) < 1} is an essential support for the absolutely continuous
measure for any fixed x E I[8 (resp., Z).

These results are of particular interest because of their implications for a special
kind of semi-continuity of the spectrum.

DEFINITION 4.12. Let {Vn}, V be continuous potentials on I[8 (resp., on Z). We
say that Vn converges to V locally as n -* oo if and only if
(i) inf(n x)ENxa Vn(x) > -oo (R case) or sup(n,j)ENxZ I Vn(j)I < oo (Z case).
(ii) For each R < oo, supIxI<R IVn(x) - V(x)I -f 0 as n -> oo.

LEMMA 4.13. If Vn -> V locally as n -* oo and Hn, H are the corresponding
Schrodinger operators (resp., Jacobi matrices), then (Hn - z)-I -* (H - z)-1
strongly for Im z 0 as n -> oo.

THEOREM 4.14. If Vn --+ V locally as n -+ oo and en (A, x), l;(A, x) are the
corresponding xi functions for fixed x, then WA, x) dA converges to Z; (A, x) d,1 weakly
in the sense that for any f E L1(IR; dA)fdAf(A)e(Ax),

fdAf(A)n(A) as n oo.

DEFINITION 4.15. For any H, let ISac (H) I denote the Lebesgue measure of the
essential support of the absolutely continuous spectrum of H.

THEOREM 4.16 (For one-dimensional Schrodinger or Jacobi operators). Sup-
pose Vn -+ V locally as n -* oo and each Vn is periodic. Then for any interval
(a, b) c

I(a,b)nSacl lim I(a,b)nSac(Hn)I.

We note that the periods of Vn need not be fixed; indeed, almost periodic
potentials are allowed.

EXAMPLE 4.17. Let an be a sequence of rationals and c = limn-00 can. Let
Hn be the Jacobi matrix with potential Acos(27ran+6) for A, 0 fixed. Then [2] have
shown for JAI < 2, Sn I > 4-21A1. It follows from Theorem 4.16 that I S I > 4 - 2I A I
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providing a new proof (and a strengthening) of a result of Last [148]. At present
much more is known about this example and the interested reader may want to
consult the survey by Last [149] for additional results.

EXAMPLE 4.18. Let be a sequence with s = E,°°=1 2m aml < 2.
Let V (n) am am cos(2irn/2m), a limit periodic potential on Z. Let h be the
corresponding Jacobi matrix, then one can show that laac(h)I > 2(2 - s).

Next we very briefly turn to higher-order trace formulas derived in [82] obtained
by higher-order expansions in (4.10) as t 1 0. For simplicity we now assume that
V E C°° (R) is bounded from below. Then (4.10) can be extended to

00

Tr[etHD - e-tx]
tlo I

Sj (x)t' x E R.
j=o

Similarly, one has,
00

Tr[(HD - z)-1 - (H - z)-1] rj (x)z-j 1zl-00

j=0

ro(x) = 1/2, r1(x) = V(x)/2, x c R

and one can show that

s7(x) =
(-1)i+1(A-1rj(x), j E N U {0}.

In particular, rj (x) and sj (x) are the celebrated KdV invariants (up to inessential
numerical factors). They can be computed recursively (see, e.g., [82]). The higher-
order analogs of (4.9) then read

1
so(x) _ -2,

sj(x)

=
(_ Ij+l

2
EOj + j

tlo

/E°°
dA e-tAAj-1 f 2 - (A, x)] j c N` , x E

and similarly using a resolvent rather than a heat kernel regularization,

( z2 z)2 [Z (A, x)],ri(x) = 1 V(x) = E° + lim JE'o d.
2 2 Z--i°°

r x= j+
lim dA+1 . r ) x c N` x E R.7 (X) 2 i°o fEo (A z z)j+l j(- )j 1 12 - ( )J 1 j

In the special periodic case, the corresponding extension of (4.3) then reads

2(-1)j+lj! sj(x) = 2rj(x) = Eo + E[EE,n-1 + E2, - 2p.(x)j], j E N, x E R.00

n.=1

The latter formulas were originally found in [65] and [178].
We also note that the use of the Dirichlet boundary boundary condition u(x) _

0 and hence the choice of the Dirichlet operator HD in connection with (4.7) can
be replaced by any self-adjoint boundary condition of the type u'(x+) +Qu(x+) =
0, /3 E R, and the corresponding Schrodinger operator HQ in L2((-o0, x))
L2((x, oo)). This is worked out in detail in [82].
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Additional results on trace formulas for Schrodinger operators were presented
in [75], [76], [77], [86], [88].

More recent references: Important extensions of the trace formula (4.9), in-
cluding the case of Schrodinger operators unbounded from below, were discussed
by Rybkin [208], [209]. Further discussions of the trace formula (4.14) for Jacobi
operators can be found in [94] and Teschl [239], [243, Ch. 6]. An extension of
Corollary 4.8 to Schrodinger operators on a countable set was discussed by Shirai
[223].

Removal of the resolvent regularization limit in the above trace formula for
rI (resp., V) under optimal conditions on V has been studied by Rybkin [209],
[211] (the latter reference offers necessary and sufficient conditions for absolute
summability of the trace formula).

A certain multi-dimensional variant of these trace formulas, inspired by work
of Lax [150], was established in [83] (see also [76]).

Matrix-valued extensions of the trace formula for Schrodinger, Dirac-type, and
Jacobi matrices, as well as Borg and Hochstadt-type theorems were studied in [16],
[37], [38], [39], [40], [77], and [89].

Trace formulas and an ensuing general Borg-type theorem for CMV opera-
tors (i.e., in connection with orthogonal polynomials on the unit circle, cf. [229])
appeared in [107].

An application of c-function ideas to obtain Weyl-type asymptotics using
function regularizations of determinants of certain operators on complete Riemann-
ian manifolds can be found in Carron [29].

Theorem 4.11 was used in [85] to solve an inverse spectral problem for Jacobi
matrices and most recently in [106] in connection with proving purely absolutely
continuous spectrum of a class of reflectionless Schrodinger operators with homo-
geneous spectrum. It has also recently been discussed in [53, Sect. 1.5].

5. Various Uniqueness Theorems in Inverse Spectral Theory

In this section we summarize some of the principal results of the following
papers:

[50] R. del Rio, F. Gesztesy, and B. Simon, Inverse spectral
analysis with partial information on the potential, III. Updat-
ing boundary conditions, Intl. Math. Research Notices 1997,
No. 15, 751-758.
[51] R. del Rio, F. Gesztesy, and B. Simon, Corrections and
Addendum to "Inverse spectral analysis with partial information
on the potential, III. Updating boundary conditions", Intl. Math.
Research Notices 1999, No. 11, 623-625.
[92] F. Gesztesy and B. Simon, Uniqueness theorems in in-
verse spectral theory for one-dimensional Schrodinger operators,
Trans. Amer. Math. Soc. 348, 349-373 (1996).
[93] F. Gesztesy and B. Simon, Inverse spectral analysis with
partial information on the potential, I. The case of an a.c. com-
ponent in the spectrum, Helv. Phys. Acta 70, 66-71, 1997.
[94] F. Gesztesy and B. Simon, m-functions and inverse spectral
analysis for finite and semi-infinite Jacobi matrices, J. Analyse
Math. 73, 267-297 (1997).
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[95] F. Gesztesy and B. Simon, On the determination of a po-
tential from three spectra, in Differential Operators and Spectral
Theory, V. Buslaev, M. Solomyak, and D. Yafaev (eds.), Amer.
Math. Soc. Transl. Ser. 2, 189, 85-92 (1999).
[96] F. Gesztesy and B. Simon, Inverse spectral analysis with
partial information on the potential, 77. The case of discrete spec-
trum, Trans. Amer. Math. Soc. 352, 2765-2787 (2000).

One can argue that inverse spectral theory, especially, the case of uniqueness
theorems in inverse spectral theory, started with the paper by Ambarzumian [7] in
1929 and was turned into a full-fledged discipline by the seminal 1946 paper by Borg
[24]. Ambarzumian proved the special uniqueness theorem that if the eigenvalues of
a Schrodinger operator - z + V in L2([0, 7r]) with Neumann boundary conditions

dX2
at the endpoints x = 0 and x = 7r coincide with the sequence of numbers n2,
n = 0, 1, 2, ... , then V = 0 a.e. on [0, 7r]. This result is very special. Indeed,
Borg showed that for more general boundary conditions, one set of eigenvalues,
in general (i.e., in the absence of symmetries of V), is insufficient to determine V
uniquely. Moreover, he described in great detail when two spectra guarantee unique
determination of the potential V. In this section we will discuss Borg's celebrated
two-spectra uniqueness result and many of its extension due to Gasymov, Hald,
Hochstadt, Levitan, Lieberman, Marchenko, and Simon and collaborators.

We start with paper [92]. It contains a variety of new uniqueness theorems for
potentials V in one-dimensional Schrodinger operators --A + V on R and on the

dX2
half-line R+ = [0, oo) in terms of appropriate spectral shift functions introduced in
a series of papers describing new trace formulas for V on R [80], [81], [82], [91] and
on I[8+ [76]. In particular, it contains a generalization of a well-known uniqueness
theorem of Borg and Marchenko for Schrodinger operators on the half-line with
purely discrete spectra to arbitrary spectral types and a new uniqueness result for
Schrodinger operators with confining potentials on the entire real line.

Turning to the half-line case first, we recall one of the principal uniqueness
results proved in [92], which extends a well-known theorem of Borg [25] and
Marchenko [171] in the special case of purely discrete spectra to arbitrary spectral
types. We suppose

V E L1([0,R]) for all R > 0, V real-valued, (5.1)

and introduce the differential expression

2

T+' dx2 +V(x), x > 0,

for simplicity assuming that T is in the limit point case at oo. (We refer to [92]
for a general treatment that includes the limit circle case.) Associated with T+ one
introduces the following self-adjoint operator H+,, in L2(IR+).

H+,af = T+.f, a c [0, ir),

f c dom(H+,a) = {g E L2 (R+) I g, g' E AC([0, R]) for all R > 0; (5.2)

sin(a)g'(0+) + cos(a)g(0+) = 0; T+g c- L2(l+)}.

Then H+,a has uniform spectral multiplicity one.
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Next we introduce the fundamental system 0,,, (z, x), Ba(z, x), z E C, of solu-
tions of T+,O(z, x) = zO(z, x), x > 0, satisfying

0a (z, 0) = -0' (z, 0) sin(a), 0' (z, 0) = Ba(z, 0) = cot (a)

such that W(0,(z), 0,(z)) = 1. Furthermore, let 0+,,, (z, x), z c C\R be the unique
solution of 7-O(z) _ O(z) which satisfies

0+,a(z, .) E L2(R+), sin(a)O+,a(z, 0+) + 0+) = 1.
0+,a is of the form

'5+",(z, x) = 0.(z, x) + m+,a(z)4'a(z, x)
with m+,a (z) the half-line Weyl-Titchmarsh m-function. Being a Herglotz function
(i.e., an analytic function in the open upper-half plane that maps the latter to
itself)), m+,a(z) has the following representation in terms of a positive measure
dp+,a,

a+,a + fR 1 - aaz 11+aT dP+,a(A), a E [0, 7r),m+,0, =
cot (a) + fx(A - z)-1dP+,a(A), a E (0,n).

The basic uniqueness criterion for Schrodinger operators on the half-line [0, oo),
due to Marchenko [171], that we shall rely on repeatedly in the following, can be
stated as follows.

THEOREM 5.1. Suppose al, a2 E [0,7r), al a2 and define H+,j,a,, m+,j,a,,
P+,.7,,, associated with the differential expressions r dX2 + Vj (x), x >_ 0, where
Vj, j = 1, 2 satisfy assumption (5.1). Then the following three assertions are equiv-
alent:
(Z) m+,1,a1 (z) = m+,2,a2 (z), Z E C.
(22) P+,1,a1((-oc, A]) = P+,2,a2 ((-oo, A]), A E R.
(iii) a1 = a2 and Vl (x) = V2(x) for a. e. x > 0.

Next we relate Green's functions for different boundary conditions at x = 0.

LEMMA 5.2. Let aj E [0, 7r), j = 1, 2, x, x' E R+, and z E C\{o,(H+,al) U
0'(H+,a2)}. Then,

x1)xG (z x) - G (z x 'b+,a1 z, x)'b+,a1(z, x )
,+,a2 , ,,+,a1 cot(a2 - a1) + m+,.1 (z)'

G+,02 (z, 0, 0) _ 1

G+,a1 (z, 0, 0) (,31 - /32) sine (al) [cot(a2 - al) + M+,,,, (Z)]

= (131 -,Q2) sin2(a2)[cot(a2 - al) - m+,a2(z)], /3j = cot(aj), j = 1, 2

n'[(H+,a2 - z)-1 - (H+,a1 - z)-1] = - d ln[cot(a2 - al) + M+,,,,, (Z)]

= d ln[cot(a2 - al) - m+,a2 (z)].

Since m+,a(z) is a Herglotz function, we may now introduce spectral shift
function [27] Sa1,a2 (A) for the pair (H+,a2, H+,a1) via the exponential Herglotz
representation of m+,a(z) (cf. [12])

cot(a2 - al) + m+,a1 (z) = exp( Re[ln(cot(a2 - al) + m+,a1(i))]
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1+f - -Az 1+A2 «,,«2(A)dA 0<a1<a2<7r,zE \1(8.

This is extended to all al, a2 E [0, 7r) by

«,« (A) = 0, «2,«1(A) = (A) for a.e. A E R.

Next we summarize a few properties of
G11,112 (A).

LEMMA 5.3. (i) Suppose 0 < a1 < a2 < 7r. Then for a.e. A E R,

lim 7r-1Im{ln[cot(a2 - al) + m+,«1(A+ iE)]},
610

«i «2 (A) - - 7r 1Im{ln[cot(a2 - al) - m+,«2 (A + ic)]},

lim 7r-lIm{ln [ 1
(a+ic,o,o)1 }

610 sin(«i) (A+ic,0,0)

(For a1 = 0, G+,«1(A + ic, 0, 0)/ sin(a1) has to be replaced by -1 in the last
expression.) Moreover,

0 < G«1,112(A) < 1 a.e.

(ii) Let aj c [0, -7r), 1 < j < 3. Then the "chain rule"

«i,«3 (A) = S.,,«2 (A) + G12,«3 (A)

holds for a. e. A E R.

(iii) For all a1i a2 E [0, 7r),

11,112 E L'(R; (1 + A2) 1 dA).

(iv) Assume al, a2 E [0,,7r), a1 a2. Then,

S«1,-2 E L1(1l ; (1 + IAI)-1dA) if and only if a1i a2 E (0, 7r).

(v) For all 01, a2 E [0, 7r),

dA«l,«2 (A)
Tr[(H+,«2 -

z)-1 - (H+,«1 - z)-1] _ -
Joe (A - z)-2

We note that «1,«2 (A) (for 01, 02 E (0,,7r)) has been introduced by Javrjan
[133], [134]. In particular, he proved Lemma 5.2 (iii) and Lemma 5.3 (v) in the
non-Dirichlet cases where 0 < a1i a2 < 7r.

Given these preliminaries, we are now able to state the main uniqueness result
for half-line Schrodinger operators of [92].

THEOREM 5.4. Suppose Vj satisfy assumption (5.1) and define H+ «, , j, $ _
1, 2, associated with the differential expressions -rj = - Vj (x), x > 0, j = 1, 2,
where aj,t c [0, ir), $ = 1, 2, and we suppose 0 < a1,1 < a1,2 < ir, 0 < a2,1 <
a2,2 < 7r. In addition, let t;j,«, 1,«, 21 j = 1, 2 be the spectral shift function for the
pairCC (H+,j,«,1, H+,,32). Then the following two assertions are equivalent:
(2) 6,a2,i,Q2,2(A) for a.e. \ E R.
(ii) a1,1 = a2,1, a1,2 = a2,2, and V1(x) = V2(x) for a.e. x > 0.

As a corollary, one obtains a well-known uniqueness result originally due to
Borg [25, Theorem 1] and Marchenko [171, Theorem 2.3.2] (see also [161]).
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COROLLARY 5.5. Define Tj, H+,j,, , a E [0, 7r) as in Theorem 5.4. Assume in
addition that H+,I,a1 and H+,2,a2 have purely discrete spectra for some (and hence
for all) aj E [0, 7rr), that is,

aess(H+,j,aj = 0 for some aj c [0, 7r), j = 1, 2.

Then the following two assertions are equivalent:
(2) a(H+,lal,l) = a(H+,2,az,1) (H+,I,al,z) = o(H+,2,a2,2), aj,1 E [0,7r), j,t
1, 2, sin(ai,I - ai,2) 54 0.
(ii) a1,1 = a2,1, a1,2 = a2,2, and VI(x) = V2(x) for a.e. x > 0.

Roughly speaking, Corollary 5.5 implies that two sets of purely discrete spectra
Q(H+,al), a(H+,a2) associated with distinct boundary conditions at x = 0 (but a
fixed boundary condition (if any) at +oo), that is, sin(a2 - al) : 0, uniquely
determine V a.e. The first main result in [92], Theorem 5.4, removes all a priori
spectral hypotheses and shows that the spectral shift function l;,,,, (A) for the
pair (H+,-21 H+,1,11) with distinct boundary conditions at x = 0, sin(a2 - al)
0, uniquely determines V a.e. This illustrates that Theorem 5.4 is the natural
generalization of Borg's and Marchenko's theorems from the discrete spectrum case
to arbitrary spectral types.

Now we turn to uniqueness results for Schrodinger operators on the whole real
line. We shall rely on the notation r, 0, 6a, 2/J±,a, m±,a, dp+,a, which are defined
in complete analogy to the half-line case (with x c R), and we shall assume

V E L (R), V real-valued. (5.3)o

Following [82], we introduce, in addition, the following family of self-adjoint oper-
ators HO in L2 (1l),

Hy f =rf, /3ERUfool, yeR,
dom(H") {g E L2(R I g, g' E AC([y,+R]) for all R > 0; g'(y+) +/3g(yf) = 0;

lim W(ff(z±),g)(R) = 0; 7-g E L2(R)}.
R-. ±00

Thus HD := H9° (resp., Hy := Hy) corresponds to the Schrodinger operator
with an additional Dirichlet (resp., Neumann) boundary condition at y. In obvious
notation, HO

y
decomposes into the direct sum of half-line operators

HO
y = Ha,9 ® H+o,y

with respect to L2(ll) = L2((-o0, y]) (D L2([y, 00)). In particular, HQ ,9 equals H+,,,
for /3 = cot(a) (and y = 0)) in our notation (5.2) and, as done in Sections 2 and 4,
the reference point y will be added as a subscript to obtain Ba,y(z,x), 0a,y(z,x),
/)±,a,y (z, x), m±,a,y (z), MM,9 (z), etc.

Next, we recall a few results from [82]. With G(z, x, x') and Gy (z, x, x') the
Green's functions of H and HO, , one obtains (for z e C\{o-(Hy°) U Q(H)})

GO z x, x') = G(z, x x') - (l3 + 82)G(z, x, y)(/3 + a1)G(z, y, x')
y(

(Q+01)(t3+02)G(z,y,y)
/3ER,zEC\{a(Hy)Uo,(H)},

GD (z, x, x') = G(z, x, x') - G(z, y, y)-IG(z, x, y)G(z, y, x').
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Here we abbreviated

a1G(z, y, x') = 8xG(z, x, x')I x=y, a2(G, z, x, y) = ax,G(z, x, x')I x'=y,

a1a2G(z, y, y) = axDx,G(z, x, x') I x-y-x', etc.

81G(z, y, x) = 82G(z, x, y), x y
As a consequence,

Tr[(HC - z)-1 - (H - z)-'] _ - dz ln[(/3+ a1) (Q + (92)G(z, y, y)], OCR,

Tr[(H°° - z)-1 - (H - z)-1] = -dz ln[G(z, y, y)]

In analogy to the Herglotz property of G(z, y, y), (/3 + a1)((3 + a2)G(z, y, y) is
also Herglotz for each y E R. Hence, both admit exponential representations of the
form

( fdA
l

c. E R, 0 < (A, y) < 1 a.e.,

e°° (A, y) = 7r-1Im{ln[G(A + ic, y, y)]/} for a.e. A E IR,

+81)()3 +a2)G(z,y,y)=exp(cp+ J d , \ z - + A2 (A, y)+1]},

cQER, ,3ER, L

1'13 (A, y) = 7r-11m{ln[(,3 + a1) ((3 + a2)G(A + i , y, y)] } - 1, OCR

for each y E R. Moreover,

Tr[(Hy - z)-1 - (H - z)-1] _ - J dA (A - z)-21;Q(A, y), (3 E R U {oo}.

Applying the basic uniqueness criterion for Schrodinger operators to both half-
lines (-oo, y] and [y, oo) then yields the following principal characterization result
for Schrodinger operators on J first proved in [92].

THEOREM 5.6. Let 131,132 E R U {oo}, 01 (32, and x0 E R. Then the following
assertions hold:
(i) Ql (A, xo) and 102 (A, x0) for a. e. A E R uniquely determine V (x) for a. e. x E R
if the pair ((31i (32) differs from (0, oo), (oo, 0).

(ii) If (/1i (32) = (0, oo) or (oo, 0), assume in addition thati is in the limit point case
at +oo and -oo. Then °°(A, x0) and 1=0(A, x0) for a.e. A E R uniquely determine
V a. e. up to reflection symmetry with respect to x0i that is, both V (x), V (2x0 - x)
for a.e. x E IR correspond to 1;°°(A, x0) and l;° (A, x0) for a.e. A E R.

COROLLARY 5.7. Suppose r is in the limit point case at +oo and -oo and let
0 E R U {oo} and x0 E R. Then 1'Q(A,x0) for a.e. A E R uniquely determines V(x)
for a.e. x E JR if and only if V is reflection symmetric with respect to x0, that is,
V(2x0 - x) = V(x) a.e.

In view of Corollary 5.5, it seems appropriate to formulate Theorem 5.6 in the
special case of purely discrete spectra.
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COROLLARY 5.8. Suppose H (and hence H13 for all y E JR, /.3 E R U fool) has
purely discrete spectrum, that is, oess(H) _ 0 and let 01, /32 E IR U {oo}, 01 02,
and x0 E R.

(i) o-(H), o-(Hpo ), j = 1, 2 uniquely determine V a. e. if the pair (/31,/32) differs
from (0, oo) and (oo, 0).

(ii) If (/31i /32) = (0, oo) or (oo, 0), assume in addition that 'r is in the limit point case
at +oo and -oo. Then o-(H), o-(Hfo0), and Q(H°e) uniquely determine Va. e. up to
reflection symmetry with respect to x0, that is, both V (x) and f/ (x) = V (2x0 -x) for
a.e. x E R correspond to o,(H) = v(H), cr(Hfoo) and o-(H°e) = o,(H°o).

z
Here, in obvious notation, H, H°o correspond to T = -

zZ

+ V (x), x E R.

(iii) Suppose T is in the limit point case at +oo and -oo and let 3 E JR U {oo}.
Then a(H) and o,(Hp) uniquely determine V a.e. if and only if V is reflection
symmetric with respect to x0.

(iv) Suppose that V is reflection symmetric with respect to x0 and that T is nonoscil-
latory at +oo and -oo. Then V is uniquely determined a. e. by o (H) in the sense
that V is the only potential symmetric with respect to x0 with spectrum u(H).

Of course, Corollary 5.8 (iii) is implied by the result of Borg [5] and Marchenko
[32] (see Corollary 5.5 with a1 = 0, a2 = 7r/2).

Thus far, we dealt exclusively with c-functions and spectra in connection with
uniqueness theorems. A variety of further uniqueness results can be obtained
by invoking alternative information such as the left/right distribution of Ap(x0)
(i.e., whether AQ(x0) is an eigenvalue of HR,x0 in L2((-oo,x0]) or of HQ xe in
L2([x0i oo))) and/or associated norming constants. For details we refer to the dis-
cussion in [92].

More recent references: Uniqueness theorems related to Theorem 5.4 in the
short-range case with spectral shift data replaced by scattering data were studied
by Aktosun and Weder [5], [6]. Analogs of Corollaries 5.5 and 5.8 (i) for Jacobi
operators were derived by Teschl [239].

Next we focus on [96], which discussed results where the discrete spectrum
(or partial information on the discrete spectrum) and partial information on the
potential V of a one-dimensional Schrodinger operator H = -- + q determines

dX2
the potential completely. Included are theorems for finite intervals and for the
whole line. In particular, a new type of inverse spectral problem involving fractions
of the eigenvalues of H on a finite interval and knowledge of V over a corresponding
fraction of the interval was posed and solved in [96]. The methods employed in
[96] rest on Weyl-Titchmarsh m-function techniques starting with the basic Borg-
Marchenko uniqueness result (cf. Theorems 5.15 and 5.16) and densities of zeros of
a class of entire functions since the m-functions are meromorphic functions in this
context.

In 1978, Hochstadt and Lieberman [123] proved the following remarkable the-
orem:
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THEOREM 5.9. Let h0 E R, h1 E R U {oo} and assume Vi, V2 E L' ((0,1)) to be
real-valued. Consider the Schrodinger operators H1, H2 in L2([0, 1]) given by

_ d2
HJ

dx2
+VJ,

with the boundary conditions

u'(0) + hou(0) = 0,

u'(1) + hlu(1) = 0.

Let a(Hj) = {A,} be the (necessarily simple) spectra of Hj, j = 1, 2. Suppose that
V1 = V2 a.e. on [0, 2] and that Ai,n = A2,n for all n. Then V1 = V2 a.e. on [0, 1].

Here, in obvious notation, h1 = oo in (5.4) singles out the Dirichlet boundary
condition u(1) = 0.

For each e > 0, there are simple examples where Vl = V2 on [0, (2) - e] and
a(Hl) = o-(H2) but V1 j4 V2. (Choose h0 = -hl, Vi(x) = 0 for x c (0, (2)-e]U[2,1]
and nonzero on ((2) - e, 1), and V2(x) = V1(1 - x). See also Theorem I' in the
appendix of [234].)

Later refinements of Theorem 5.9 in [115], [234] (see also the summary in
[233]) showed that the boundary condition for H1 and H2 at x = 1 need not be
assumed a priori to be the same, and that if V is continuous, then one only needs
A1,n ='"2,m(n) for all values of n but one. The same boundary condition for H1
and H2 at x = 0, however, is crucial for Theorem 1.1 to hold (see [115], [49]).

Moreover, analogs of Theorem 5.9 for certain Schrodinger operators are con-
sidered in [136] (see also [192, Ch. 4]). Reconstruction techniques for V in this
context are discussed in [206].

Our purpose in [96] was to provide a new approach to Theorem 5.9 that we
felt was more transparent and, moreover, capable of vast generalizations. To state
our generalizations, we will introduce a shorthand notation to paraphrase Theorem
5.9 by saying "V on [0, 2] and the eigenvalues of H uniquely determine V." This
is just a shorthand notation for saying V1 = V2 a.e. if the obvious conditions hold.

Unless explicitly stated otherwise, all potentials V, V1, and V2 will be real-valued
and in L1([0,1]) for the remainder of this paper. Moreover, to avoid too many case
distinctions we shall assume h0i h1 E R in (5.4). In particular, for h0, h1 E R. we
index the corresponding eigenvalues An of H by n E No = N U {0}. The case of
Dirichlet boundary conditions, where h0 = oo and/or h1 = oo, has been dealt with
in detail in [96, Appendix A].

Here is a summary of the generalizations proved for Schrodinger operators on
[0,1] in [96]:

THEOREM 5.10. Let H = - +V in L2 ([0,1]) with boundary conditions (5.4)
and h0, h1 E R. Suppose V is C2" (((2) _E' (2) + e)) for some k = 0, 1, ... and for
some e > 0. Then V on [0, 2], h0, and all the eigenvalues of H except for (k + 1)
uniquely determine hl and V on all of [0, 1].

REMARK 5.11. (i). The case k = 0 in Theorem 5.10 is due to Hald [115].

(ii) In the non-shorthand form of this theorem (cf. the paragraphs preceding
Theorem 5.10), we mean that both V1 and V2 are C2k near x = 2.
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(iii) One need not know which eigenvalues are missing. Since the eigenvalues
asymptotically satisfy

/1
A,, = (7rn)2 + 2(hi - ho) + J dx V (x) + o(1) as n - oo,

0

given a set of candidates for the spectrum, one can tell how many are missing.
(iv) For the sake of completeness we mention the precise definition of H in

L2([0, 1]) for real-valued V E L1([0, 1]) and boundary condition parameters ho, h1 E
R U {oo} in (1.1):

d2
H

dx2
+ V,

dom(H) = {g E L2([0,1]) g, g' E AC([0, 1]); (-g" + Vg) E L2([0,1]); (5.5)

9'(0) + ho9(0) = 0, 9'(1) + hlg(1) = 01,

where AC([0, 1]) denotes the set of absolutely continuous functions on [0, 1] and
h,0 = oo represents the Dirichlet boundary condition g(xo) = 0 for xo E {0, 1} in

(5.5).

By means of explicit examples, it has been shown in Section 3 of [96], that
Theorem 5.10 is optimal in the sense that if V is only assumed to be C2k-1 near
x = 2 for some k > 1, then it is not uniquely determined by V [0, 2] and all the
eigenvalues but (k + 1).

Theorem 5.10 works because the condition that V is C2k near x = 2 gives us
partial information about V on [2, 1]; indeed, we know the values of

V(2), V1(2),...,V(2k)(1)

computed on [2, 1] since one can compute them on [0, 2]. This suggests that know-
ing V on more than [0, 2] should let one dispense with a finite density of eigenvalues.
That this is indeed the case is the content of the following theorem. (We denote by
#{... } the cardinality of the set {. . }.)

THEOREM 5.12. Let H = -4 +V in L2([0, 1]) with boundary conditions (5.4)
dX2

and ho, h1 E R. Then V on [0, (1 + a)/2] for some a E (0, 1), ho, and a subset
S C a(H) of all the eigenvalues o ,(H) of H satisfying

#{.\ E S I A < )o} > (1 - a)#{A E a(H) I A < Ao} + (a/2) (5.6)

for all sufficiently large Ao E R, uniquely determine h1 and V on all of [0, 1].

REMARK 5.13. (i) As a typical example, knowing slightly more than half the
eigenvalues and knowing V on [0, 3] determines V uniquely on all of [0, 1]. To the
best of our knowledge, Theorem 5.12 introduced and solved a new type of inverse
spectral problem.

(ii) As in the case a = 0, one has an extension of the same type as Theorem 5.10.
Explicitly, if V is assumed to be C2k near x = (1 + a)/2, we only need

#{A E SIA<Ao}> (1-a)#{AEa(H)I A<Ao}+(a/2)-(k+1)
instead of (5.6).

One can also derive results about problems on all of
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THEOREM 5.14. Suppose that V E Ll I(II) satisfies the following two condi-
tions:
(i) V (X) > CIx12+E - D for some C, E, D > 0.
(ii) V (-x) > V (X) x > 0.

[ + V in L2(]I8) uniquely determineThen V on 0, oo) and the spectrum of dxH
z2

V on all of R.

Hochstadt-Lieberman [123] used the details of the inverse spectral theory in
their proof. In a sense, we only used in [96] the main uniqueness theorem of that
theory due to Marchenko [171], which we now describe. For V E L'([a, b]) real-
valued, -oo < a < b < cc, consider -u" + Vu = zu with the boundary condition

u'(b) + hbu(b) = 0 (5.7)

at x = b. Let u+(z, x) denote the solution of this equation, normalized, say, by
u+(z, b) = 1. The m+-function is then defined by

( ) = ( ,
)

(5 8)z, am+ u+ z
a

.

Similarly, given a boundary condition at x = a,

u'(a) + hau(a) = 0, (5.9)

we define the solution u_ (z, x) of -u" + Vu = zu normalized by u_ (z, a) = 1 and
then define

m_ (z, b) = u_ (z' b) (5.10)
u_ (z, b)

In our present context where -oc < a < b < oo, m+ are even meromorphic on C.
Moreover,

Im (z) > 0 implies Im(m_ (z, b)) < 0, Im(m+(z, a)) > 0.

Marchenko's [171] fundamental uniqueness theorem of inverse spectral theory
then reads as follows:

THEOREM 5.15. m+(z, a) uniquely determines hb as well as V a.e. on [a, b].

If V E L ' . ([a, oo)) is real-valued (with la l < co) and - dX2 + V is in the
limit point case at infinity, one can still define a unique m+(z, a) function but
now for Im(z) 54 0 rather than all z E C. For such z, there is a unique function
u+(z, ) which is L2 at infinity (unique up to an overall scale factor which drops
out of m+ (z, a) defined by (5.8)). Again, one has the following uniqueness result
independently proved by Borg [25] and Marchenko [171].

THEOREM 5.16. m+ (z, a) uniquely determines V a.e. on [a, oo).

It is useful to have m_ (z, b) because of the following basic fact:

THEOREM 5.17. Let H = -
2

d2X + V be a Schrodinger operator in L2([a, b])
with boundary conditions (5.7) and (5.9) and let G(z, x, y) be the integral kernel of
(H - z)-1. Suppose c E (a, b) and let m+(z, c) be the corresponding m+-function
for [c, b] and m_ (z, c) the m_ -function for [a, c]. Then

G(z c c) =
1

(5.11)
M_ (z, c) - m+(z, c)
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Theorems 5.15 and 5.16 are deep facts; Theorem 5.17 is an elementary calcu-
lation following from the explicit formula for the integral kernel of (H - z)-',

G(z, x, y) =
u_ (z, min(x, y))u+(z, max(x, y))

W (u- (z), u+(z)) (x)

where as usual W(f, g)(x) = f'(x)g(x) - f (x) g'(x) denotes the Wronskian of f and
g. An analog of Theorem 5.17 holds in case [a, b] is replaced by (-oo, oo).

We can now describe the strategy of our proofs of Theorems 5.9-5.14. G(z, c, c)
has poles at the eigenvalues of H (this is not quite true; see below), so by (5.11),
at eigenvalues A,, of H:

m+(A , c) = m-(A , c). (5.12)

If we know V on a left partial interval [a, c] and we know some eigenvalue A, then
we know m- (z, c) exactly; so by (5.12), we know the value of m+(A, c) at the point
A,,. Below we indicate when knowing the values of f (A,,) of an analytic function of
the type of the m-functions uniquely determines f (z). If m+(z, c) is determined,
then by Theorem 5.15, V is determined on [a, b] and so is hb.

So the logic of the argument for a theorem like Theorem 5.9 is the following:
(i) V on [0, a ] and h0 determine m- (z, by direct spectral theory.

(ii) The A,, and (5.12) determine m+(A,, 2), and then by suitable theorems in
complex analysis, m+(z, 2) is uniquely determined for all z.

(iii) m+(z, 2) uniquely determines V (a.e.) on [2, 1] and hl by inverse spectral
theory.

It is clear from this approach why h0 is required and hl is free in the context
of Theorem 5.9 (see [49] for examples where hl and V [0, 2] do not determine V);
without h0 we cannot compute m- (z, 2) and so start the process.

As indicated before (5.12), G(z, c, c) may not have a pole at an eigenvalue A,
of H. It will if u, (c) j4 0, but if u, (c) = 0, then G(z, c, c) = 0 rather than oo.
Here u,,, denotes the eigenfunction of H associated with the (necessarily simple)
eigenvalue A,. Nevertheless, (5.12) holds at points where u, (c) = 0 since then
u_(c) = u+(c) = 0, and so both sides of (5.12) are infinite. (In spite of (5.12),
m- - m+ is also infinite at z = A, and so G(A, c, c) = 0.) We summarize this
discussion next:

THEOREM 5.18. For any c E (a, b), (5.12) holds at any eigenvalue A, of H[a b]
(with the possibility of both sides of (5.12) being infinite).

More recent references: A new inverse nodal problem was reduced to Theo-
rem 5.12 by Yang [251]. A substantial generalization of Theorem 5.14, replacing
condition (i) by H being bounded from below with purely discrete spectrum, was
proved by Khodakovsky [137], [138]. He also found other variants of Theorem 5.14.

We end our survey of [96] by briefly indicating the uniqueness theorems for
entire functions needed in the proofs of Theorems 5.9-5.14. In discussing extensions
of Hochstadt's discrete (finite matrix) version [122] of the Hochstadt-Lieberman
theorem in [94], we made use of the following simple lemma which is an elementary
consequence of the fact that any polynomial of degree d with d + 1 zeros must be
the zero polynomial:
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LEMMA 5.19. Suppose fl = P1/Q1 and f2 = P2/Q2 are two rational fractions
where the polynomials satisfy deg(Pi) = deg(P2) and deg(Q1) = deg(Q2). Suppose
that d = deg(Pi) + deg(Q1) and that fl(zn,) = f2(zn,) for d + 1 distinct points

d+1{zn}n=1 E C. Then f1 = f2.

In the context of [96], one is interested in entire functions of the form

f(z)=CH 1- z

n=0
n (5.13)

where 0 < xo < x1 < is a suitable sequence of positive numbers which are the
zeros of f and C is some complex constant.

Given a sequence {xn}°°=o of positive reals, we define

N(t) _#{n c N U {0} I xn < t}.

We recall the following basic theorem (see, e.g., [152, Ch. I], [173, Sects. 11.48,
11.49]):

THEOREM 5.20. Fix 0 < p0 < 1. Then:
(i) If {xn}°°_o is a sequence of positive reals with

xn P < oo for all p > poi (5.14)
n=0

then the product in (5.13) defines an entire function f with

If (z)I < C1 exp(C21zlP) for all p > po. (5.15)

(ii) Conversely, if f is an entire function satisfying (5.15) with all its (complex)
zeros on (0, oo), then its zeros {xn}°°=o satisfy (5.14), and f has the canonical prod-
uct expansion (5.13).

Moreover, (5.14) holds if and only if

N(t) < CItI P for all p > p0. (5.16)

Given this theorem, we single out the following definition.

DEFINITION 5.21. A function f is called of m-type if and only if f is an entire
function satisfying (5.15) (of order 0 < p < 1 in the usual definition) with all the
zeros off on (0, oo).

Our choice of "m-type" in Definition 5.21 comes from the fact that in many
cases we discuss in this paper, the m-function is a ratio of functions of m-type. By
Theorem 5.20, f in Definition 5.21 has the form (5.13) and N(t), which we will
denote as Nf(t), satisfies (5.16).

LEMMA 5.22. Let f be a function of m-type. Then there exists a 0 < p < 1
and a sequence {Rk}k' 1, Rk --+ oo as k -> oo, so that

inf{If (z)I I IzI = Rk} > Cl exp(-C2Rk).

LEMMA 5.23. Let F be an entire function that satisfies the following two con-
ditions:
(i) suplZl=Rk IF(z)I _< C1 exp(C2Rk) for some 0 < p < 1, C1, C2 > 0, and some
sequence Rk -4 oo as k --+ oo.
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(ii) limJxJ-oo,xER IF(ix) I = 0.
Then F -_ 0.

Lemmas 5.22 and 5.23 finally yield the following result.

THEOREM 5.24. Let fl, f2i g be three functions of m-type so that the following
two conditions hold:
(i) fi(z) = f2(z) at any point z with g(z) = 0.
(ii) For all sufficiently large t,

max(Nfl (t), Nf2 (t)) < N9 (t) - 1.

Then, fi = f2.

Refinements of the results of [96] can be found in [50], [51]. Here we just
mention the following facts.

THEOREM 5.25. Let Hi (ho), H2 (ho) be associated with two potentials V1, V2
on [0, 1] and two potentially distinct boundary conditions hill, hill E R at x = 1.
Suppose that {(An, honl)}WEND is a sequence of pairs with A0 < Al < -* oo and

h0(n) E RU{oo} so that both H1(honl) and H2(h0(nl) have eigenvalues at An. Suppose
that

(An - i 7r2n2)+
4 < 00
n2n=0

holds. Then Vi = V2 a. e. on [0, 1] and hill = hill .

This implies Borg's celebrated two-spectra uniqueness result [24] (see also,
[154], [161], [159, Ch. 3], [171]):

COROLLARY 5.26. Fix holl, hoe) E R. Then all the eigenvalues of H(hoil) and
all the eigenvalues of H(ho2l ), save one, uniquely determine V a. e. on [0, 1].

It also implies the following amusing result:

COROLLARY 5.27. Let hoil, ho2l, ho3) E R and denote by ij = the

spectra of H(hojl ), j = 1, 2, 3. Assume S; C off, j = 1, 2, 3 and suppose that for all
sufficiently large Ao > 0 one has

A
A

Then V is uniquely determined a.e. on [0, 1].

In particular, two-thirds of three spectra determine V.

More recent references: Further refinements of Corollary 5.27, involving N spec-
tra, were proved by Horvath [124] (he also studies the corresponding analog for a
Dirac-type operator). Optimal and nearly optimal conditions for a set of eigenval-
ues to determine the potential in terms of closedness properties of the exponential
system corresponding to the known eigenvalues (implying Theorem 5.25 and a gen-
eralization thereof) were also derived by Horvath [125]. For an interesting half-line
problem related to this circle of ideas we also refer to Horvath [126]. A variant
of Theorem 5.25 was discussed by Ramm [197], [198]. Hochstadt-Lieberman-type
problems for Schrodinger operators including a reconstruction algorithm have been
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presented by L. Sakhnovich. The analog of the two-spectra result, Corollary 5.26,
including a reconstruction algorithm, for a class of singular potentials has been
discussed by Hryniv and Mykytyuk [127], [129] (see also [131]). They also studied
Hochstadt-Lieberman-type results for such a class of singular potentials in [130].
Hochstadt-Lieberman-type results for a class of Dirac-type operators relevant to the
AKNS system were published by del Rio and Grebert [52]. Borg- and Hochstadt-
Lieberman-type inverse problems for systems including matrix-valued Schrodinger
and Dirac-type equations, were studied in depth by M. Malamud [164]-[167]. He
also studied Borg-type theorems for nth-order scalar equations [168]. Borg- and
Hochstadt-Lieberman-type inverse problems for matrix-valued Schrodinger opera-
tors were also studied by Shen [220]. He also considered Borg-type inverse problems
for Schrodinger operators with weights [221].

Additional results on determining the potential uniquely from spectra associ-
ated to three intervals of the type [0, 1], [0, a], and [a, 1) for some a E (0, 1) (and
similarly for whole-line problems with purely discrete spectra) can be found in [95].
This has been inspired by work of Pivovrachik [184], who also addressed the recon-
struction algorithm from three spectra in the symmetric case a = 1/2 (see also [185],
[188], [189]). He also considered the analogous Sturm-Liouville problem applicable
to a smooth inhomogeneous partially damped string in [186] and extended some
of these results to Sturm-Liouville equations on graphs in [187], [190]. Unique-
ness and characterization problems for a class of singular Sturm-Liouville problems
associated with three spectra were studied by Hryniv and Mykytyuk [128]. The
reconstruction of a finite Jacobi matrix from three of its spectra was presented by
Michor and Teschl [181].

These results are related to two other papers: In [94], we considered, among
other topics, analogs of Theorems 5.9 and 5.12 for finite tri-diagonal (Jacobi) ma-
trices, extending a result in [122]. The approach there is very similar to the current
one except that the somewhat subtle theorems on zeros of entire functions in this
paper are replaced by the elementary fact that a polynomial of degree at most N
with N + 1 zeros must be identically zero. In [93], we considered results related
to Theorem 5.14 in that for Schrodinger operators on (-oo, co), "spectral" infor-
mation plus the potential on one of the half-lines determine the potential on all of
(-oo, oo). In that paper, we considered situations where there are scattering states
for some set of energies and the "spectral" data are given by a reflection coefficient
on a set of positive Lebesgue measure in the a.c. spectrum of H. The approach is
not as close to this paper as is [94], but m-function techniques (see also [92]) are
critical in all three papers.

More recent references: For additional results on inverse scattering with partial
information on the potential we refer to Aktosun and Papanicolaou [2], Aktosun
and Sacks [3], Aktosun and Weder [4], and the references therein.

* * *

We conclude this section by briefly describing some of the results in [94], where
inverse spectral analysis for finite and semi-infinite Jacobi operators H was studied.
While discussing a variety of topics (including trace formulas), we also provided a
new proof of a result of Hochstadt [122] and its extension, which can be viewed as
the discrete analog of the Hochstadt and Lieberman result in [123]. Moreover, we
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solved the inverse spectral problem for (b, , (H - z)-lbn) in the case of finite Jacobi
matrices. As mentioned earlier, the tools we apply are grounded in m-function
techniques.

Explicitly, [94] studied finite N x N matrices of the form:

H=

bl al 0 0

al b2 a2 0

0 a2 b3 a3

0 aN-1 bNJ

and the semi-infinite analog H defined on

t2 (N)
= S u = (u(1), u(2), ...) E lu(n) 12 < oo

l n=1 )))

given by

(Hu)(n) = anu(n + 1) + bnu(n) + an_lu(n - 1), n > 2,-
alu(2) + blu(1), n = 1.

In both cases, we assume an, bn E R with an > 0. To avoid inessential technical
complications, we will only consider the case where supn[janj + Ibnl] < oo in which
case H is a map from e2 to £2 and defines a bounded self-adjoint operator. In the
semi-infinite case, we will set N = oo. It will also be useful to consider the b's and
a's as a single sequence bl, al, b2, a2.... = c1, C2, ... , that is,

e2n-1 = bn, C2n = an, n E N.

Concerning the recovery of a finite Jacobi matrix from parts of the matrix
and additional spectral information (i.e., mixed data), Hochstadt [122] proved the
following remarkable theorem.

THEOREM 5.28. Let N E N. Suppose that cN+1, ... , c2N-1 are known, as well
as the eigenvalues A1, ... , AN o f H. Then C 1 ,- .. , cN are uniquely determined.

The discrete Hochstadt-Lieberman-type theorem proved in [94] reads as fol-
lows.

THEOREM 5.29. Suppose that 1 < j < N and c 3 , . . . , c2N-1 are known, as
well as j of the eigenvalues. Then c1,.. . , cj are uniquely determined.

We emphasize that one need not know which of the j eigenvalues one has.
Borg [24] proved the celebrated theorem that the spectra for two boundary

conditions of a bounded interval regular Schrodinger operator uniquely determine
the potential. Later refinements (see, e.g., [25], [120], [153], [154], [161], [171])
imply that they even determine the two boundary conditions.

Next, we consider analogs of this result for a finite Jacobi matrix. Such analogs
were first considered by Hochstadt [119], [121] (see also [23], [67], [110], [111],
[114], [122]). The results below are adaptations of known results for the continuum
or the semi-infinite case, but the ability to determine parameters by counting sheds
light on facts like the one that the lowest eigenvalue in the Borg result is not needed
under certain circumstances.
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Given H, an N x N Jacobi matrix, one defines H(b) to be the Jacobi matrix
where all a's and b's are the same as H, except b1 is replaced by b1 + b, that is,

H(b) = H + b(61, A.

THEOREM 5.30. The eigenvalues A1, ... , AN of H, together with b and N - 1
eigenvalues A(b)1, ... , A(b)N_1 of H(b), determine H uniquely.

Again it is irrelevant which N - 1 eigenvalues of the N eigenvalues of H(b) are
known.

THEOREM 5.31. The eigenvalues A],. .. , AN of H, together with the N eigen-
values A(b)1,. .. , A(b)N of some H(b) (with b unknown), determine H and b.

REMARK 5.32. Since
N

b = Tr(H(b) - H) = 1:(A(b)j - Aj),
j=1

we can a priori deduce b from the A(b)'s and A's and so deduce Theorem 5.31 from
Theorem 5.30. We note that the parameter counting works out. In Theorem 5.30,
2n-1 eigenvalues determine 2n-1 parameters; and in Theorem 5.31, 2n eigenvalues
determine 2n parameters.

The basic inverse spectral theorem for finite Jacobi matrices shows that ((S1, (H-
z)-18i) determines H uniquely. In [94] we considered N E N, 1 < n < N, and asked
whether (6,,, (H - z)-'Jn) determines H uniquely. For notational convenience, we
occasionally allude to G(z, n, n) as the n, n Green's function in the remainder of
this section. The n = 1 result can be summarized via:

THEOREM 5.33. (81i (H - z)-181) has the form EN 1 aj (Aj - z)-1 with Al <
N 1 aj = 1 and each aj > 0. Every such sum arises as the 1, 1 Green's< AN, .

function of an H and of exactly one such H.

For general n, define n = min(n, N + 1- n). Then the following theorems were
proved in [94]:

THEOREM 5.34. (an, (H - z)-tan) has the form Ek 1 aj (A j - z)-1 with k one
of N,N-1,...,N-n+l and Al <... <Ak, 1 and each a3 > 0. Every
such sum arises as the n, n Green's function of at least one H.

THEOREM 5.35. If k = N, then precisely (Nn--11) operators H yield the given
n, n Green's function.

THEOREM 5.36. If k < N, then infinitely many Jacobi matrices H yield the
given n, n Green's function. Indeed, the inverse spectral family is then a collection
of (k 1) (n--11--NN+k

N-k ) dmanifolds, each of ,Jdimension N - k and diffeomorphic--k disjoint
to an (N - k)-dimensional open ball.

More recent references: Additional geometric information in connection with
Theorem 5.36 and a version for off-diagonal Green's functions were studied by
Gibson [108]. Borg- and discrete Hochstadt-Lieberman-type results for generalized
(i.e., certain tri-diagonal block) Jacobi matrices were studied by Derevyagin [54]
(see also Shieh [222]). The case of non-self-adjoint Jacobi matrices with a rank-
one imaginary part, and an extension of Hochstadt-Lieberman-type results to this
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situation was recently discussed by Arlinskii and Tsekanovskii [11]. An extension of
results of Hochstadt [121] to the case of normal matrices was found by S. Malamud
[169]. A detailed treatment of two-spectra inverse problems of semi-infinite Jacobi
operators, including reconstruction, has recently been presented by Silva and Weder
[224].

6. The Crown Jewel: Simon's New Approach
to Inverse Spectral Theory

In this section we summarize some of the principal results of the following
papers:

[228] B. Simon, A new approach to inverse spectral theory, I.
Fundamental formalism, Ann. Math. 150, 1029-1057 (1999).
[97] F. Gesztesy and B. Simon, A new approach to inverse spec-
tral theory, II. General real potentials and the connection to the
spectral measure, Ann. Math. 152, 593-643 (2000).
[200] A. Ramm and B. Simon, A new approach to inverse spec-
tral theory, III. Short range potentials, J. Analyse Math. 80,
319-334 (2000).
[98] F. Gesztesy and B. Simon, On local Borg-Marchenko unique-
ness results, Commun. Math. Phys. 211, 273-287 (2000).

As the heading of this section suggests, we are approaching the pinnacle of
Barry Simon's contributions to inverse scattering theory thus far: In his spectac-
ular paper [228], he single-handedly developed a new approach to inverse spectral
theory for Schrodinger operators on a half-line, by starting from a particular rep-
resentation of the Weyl-Titchmarsh m-function as a finite Laplace-type transform
with control over the error term. In addition to establishing this feat, it also led to
a completely unexpected uniqueness result for Weyl-Titchmarsh functions, what is
now called the local Borg-Marchenko uniqueness theorem, but which really should
have been named Simon's local uniqueness theorem. The inverse spectral approach
for Schrodinger operators on a half-line (including a reconstruction algorithm for
the potential) originated with the celebrated paper [70] by Gel'fand and Levitan
in 1951 and an independent approach by Krein [142] in the same year, followed by
a seminal contribution [171] by Marchenko in 1952. The Borg-Marchenko unique-
ness result was first published by Marchenko [170] in 1950 but Borg apparently
had it in 1949 and it was independently published by Borg [25] and again by
Marchenko [171] in 1952. Both results, the uniqueness theorem and the Gel'fand-
Levitan (reconstruction) formalism, remained pillars of the inverse spectral theory
that withstood any reformulation or improvement for nearly fifty years. Hence it
was an incredible achievement by Barry Simon to have changed the inverse spectral
landscape by offering such a reformulation of inverse spectral theory and in the very
same paper [228] to have been able to substantially improve the Borg-Marchenko
uniqueness theorem from a global to a local version.

We start by highlighting the approach in Simon's paper [228] and then switch
to a more detailed treatment of some aspects of the theory by borrowing from [97].

Inverse spectral methods have been actively studied in the past years both
via their relevance in a variety of applications and due to their connection with
integrable evolution equations such as the KdV equation. In this section, however,
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we will not deal with the full-line inverse spectral approach relevant to integrable
equations but exclusively focus on inverse spectral theory for half-line Schrodinger
operators. In this particular context, a major role is played by the Gel'fand-Levitan
equations [70] (see also, [30, Chs. 3, 4], [31], [143], [144], [145], [159, Ch. 2], [171],
[172, Ch. 2], [182, Ch. VIII], [204], [236], [244]). The goal in Simon's paper [228]
was to present a new approach to their basic results. In particular, he introduced a
new basic object, the A-function (see (6.20) below), the remarkable equation (6.23)
it satisfies, and illustrated its fundamental importance with several new results
including improved asymptotic expansions of the Weyl-Titchmarsh m-function in
the high-energy regime and the local uniqueness result.

To present some of these new results, we will first describe the major players
in this game. One is concerned with self-adjoint differential operators on either
L2([0, b]) with b < no, or L2([0, oo)) associated with differential expressions of the
form

d2
- dx2 + V (x), x E (0, b).

If b is finite, we suppose

and place a boundary condition

/b

J
dxIV(x)l <oo

0

U '(b) + hu(b) = 0 (6.2)

at b, where h E RU fool with h = no shorthand for the Dirichlet boundary condition
u(b) = 0. If b = no, we suppose

py+1
J dx I V (x) I < oo for all y> 0

y

and
y+1

sup dx max(V(x), 0) < oo. (6.3)
fyy>0

Under condition (6.3), it is known that (6.1) is limit point at infinity [201, App. to
Sect. X.1]. In addition, a fixed self-adjoint boundary condition at x = 0 is assumed
when talking about the self-adjoint operator associated with (6.1).

In either case, for each z c C\ [,3, oo) with -Q sufficiently large, there is a unique
solution (up to an overall constant), u(z, x), of -u" +Vu = zu which satisfies (6.2)
at b if b < no or which is L2 at no if b = no. The principal m-function m(z) is
defined by

m(z) = u'(z, 0)
u(z, 0)

If we replace b by bi = b - xo with xo E (0, b) and let V (s) = V(xo + s) for
s E (0, b1), we get a new m-function we will denote by m(z, xo). It is given by

m(z, x) =
U, (z,

X

m(z, x) satisfies the Riccati-type equation

dx m(z, x) = V (X) - z - m2(z, x).
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Obviously, m(z, x) depends only on V on (x, b) (and on h if b < oc). A basic
result of the inverse spectral theory says that the converse is true as was shown
independently by Borg [25] and Marchenko [171] in 1952:

THEOREM 6.1. m uniquely determines V. Explicitly, if Vj are potentials with
corresponding m-functions mj, j = 1, 2, and ml = m2i then Vi = V2 a.e. (including
hi = h2)

In 1999, Simon [228] spectacularly improved this to obtain a local version of
the Borg-Marchenko uniqueness result as follows:

THEOREM 6.2. If (Vi, bi, hi), (V2, b2, h2) are two potentials and a < min(bl, b2)
and if

Vi (x) = V2 (x) on (0, a), (6.5)

then as is -+ oo,
mi(_K2) - m2(_ic2) = 0(e-2r-a).

Conversely, if (6.6) holds, then (6.5) holds.

In (6.6), we use the symbol O defined by

f = O(g) as x - xo (where lim g(x) = 0)
x-.xo

if and only if lim f(x)1 = 0 for all e > 0.
X-*xo

lg(x)Ii-E

From a results point of view, this local version of the Borg-Marchenko unique-
ness theorem was the most significant new result in Simon's paper [228], but a
major thrust of this paper was the new set of methods introduced which led to a
new approach of the inverse spectral problem. Theorem 6.2 implies that V is deter-
mined by the asymptotics of m(-ice) as K - oo. One can also read off differences
of the boundary condition from these asymptotics. Moreover, the following result
is proved in [228]:

THEOREM 6.3. Let (Vi, bi, hi), (V2i b2, h2) be two potentials and suppose that

bi = b2 - b < oc, Ihi I + Ih2l < oo, Vi(x) = V2(x) on (0,b). (6.7)

Then

lim e26ilml(-r2) - m2(-k2)I = 4(hi - h2). (6.8)

Conversely, if (6.8) holds for some b < oo with a limit in (0, oo), then (6.7) holds.00

To understand Simon's new approach, it is useful to recall briefly the two
approaches to the inverse problem for Jacobi matrices on £2(N0) [19, Ch. VII],
[94], [231]:

b0 a0 0

A - a0 bi
ai

0 ai b2

with aj > 0, bj C R. Here the m-function is just (b0i (A-z)-'S0) = m(z) and, more
generally, mn(z) = (Sn, (A(n) -z)-16n) with A(n) on f2({n, n+1, ... }) obtained by
truncating the first n rows and n columns of A. Here do is the Kronecker vector,
that is, the vector with 1 in slot n and 0 in other slots. The fundamental theorem
in this case is that m(z) - mo(z) determines the bn's and an's.
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mn(z) satisfies an analog of the Riccati equation (6.4):

22 1b) 6 9a mn(z) .n - z -mn+1(z = ( . )

One solution of the inverse problem is to turn (6.9) around to see that

mn(z)-1 = -z + bn - (6.10)

which, first of all, implies that as z -4 00, mn(z) = -z-1+O(z-2), so (6.10) implies
mn(z)-1 =-z+bn+a2z-1+O(z-2). (6.11)

Thus, (6.11) for n = 0 yields bo and a0 and so ml (z) by (6.9), and then an obvious
induction yields successive bk, ak, and mk+l (z).

A second solution involves orthogonal polynomials. Let Pn (z) be the eigensolu-
tions of the formal (A-z)Pn = 0 with boundary conditions P_1(z) = 0, Po(z) = 1.
Explicitly,

Pn+1(z) = an' [(z - bn)Pn(z)] - an-1Pn-1. (6.12)

Let dp be the spectral measure for A and vector 6o so that

dp(A)m(z) Jl A-z. (6.13)

Then one can show that

f dp(A) Pn(A)P,n.(A) = 5n,.,n, n, m E No. (6.14)

Thus, Pn(z) is a polynomial of degree n with positive leading coefficients de-
termined by (6.14). These orthonormal polynomials are determined via Gram-
Schmidt from p and by (6.13) from m. Once one has the polynomials Fn, one can
determine the a's and b's from equation (6.12).

Of course, these approaches via Riccati equation and orthogonal polynomials
are not completely disjoint. The Riccati solution gives the an's and bn's as continued
fractions and the connection between continued fractions and orthogonal polyno-
mials played a fundamental role in Stieltjes' work [231] on the moment problem in
1895.

The Gel'fand-Levitan approach to the continuum case (cf. [70], [159, Ch. 2],
[171], [172, Ch. 2]) is a direct analog of this orthogonal polynomial case. One looks
at solutions U(k, x) of

-U"(k,x) +V(x)U(k,x) = k2U(k,x) (6.15)

satisfying U(k, 0) = 1, U'(k, 0) = ik, and proves that they satisfy a representation
x

U(k x) = eikx + f dy K(x, y)e2ky, (6.16)
X

the analog of Pn (z) = czn+ lower order. One defines s(k,x) = (2ik)-1 [U(k, x) -
U(-k, x) ] which satisfies (6.15) with s(k, 0+) = 0, s'(k, 0+) = 1.

The spectral measure dp associated to m(z) by

dp(A) = (27r)-1 im[Im(m(A + ie)) d.1]

satisfies

f dp(k2) s(k, x)s(k, y) = 6(x - y), (6.17)
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at least formally. (6.16) and (6.17) yield an integral equation for K depending only
on dp and then once one has K, one can find U and hence V via (6.15) (or via
another relation between K and V).

The principal goal in [228] was to present a new approach to the continuum
case, that is, an analog of the Riccati equation approach to the discrete inverse
problem. The simple idea for this is attractive but has a difficulty to overcome.
m(z, x) determines V (x), at least if V is continuous by the known asymptotics
([45], [210]):

m(-k2, x) = -r 2(,X)
+ I). (6.18)

We can therefore think of (6.4) with V defined by (6.18) as an evolution equation
for m. The idea is that using a suitable underlying space and uniqueness theorem
for solutions of differential equations, (6.4) should uniquely determine m for all
positive x, and hence V(x) by (6.18).

To understand the difficulty, consider a potential V (x) on the whole real line.
There are then functions u+ (z, x) defined for z c C\ [0, oo) which are L2 at ±oo
and two rn-functions m+(z, x) = u± (z, x)/u±(z, x). Both satisfy (6.4), yet M+ (z, 0)
determines and is determined by V on (0, oo) while m_ (z, 0) has the same relation
to V on (-oc, 0). Put differently, m+ (z, 0) determines m+ (z, x) for x > 0 but not
at all for x < 0. m_ is the reverse. So uniqueness for (6.4) is one-sided and either
side is possible! That this does not make the scheme hopeless is connected with
the fact that m_ does not satisfy (6.18), but rather

m_(-/c2,x) _ + 2(X) +of#c '). (6.19)

We will see the one-sidedness of the solvability is intimately connected with the
sign of the leading ±k term in (6.18) and (6.19).

The key object in this new approach is a function A(a) defined for a c (0, b)
related to m by

ja
m(-ic2) = _K - da A(a)e-tan + O(e-2ak) (6.20)

as , -* oo. We have written A(a) as a function of a single variable but we will
allow similar dependence on other variables. Since m(-ic2, x) is also an m-function,
(6.20) has an analog with a function A(a, x).

By uniqueness of inverse Laplace transforms (see [228, Appendix 2, Theorem
A.2.2]), (6.20) and m near -oo uniquely determine A(ce).

Not only will (6.20) hold but, in a sense, A(a) is close to V(a). Explicitly, one
can prove the following result:

THEOREM 6.4. Let m be the m-function of the potential V. Then there is a
function A E L' Q0, b]) if b < oo and A E L'([0, a]) for all a < oo if b = no so that
(6.20) holds for any a < b with a < oo. A(a) only depends on V(y) for y E [0, a].
Moreover, A(a) = V(a) + E(a) where E(a) is continuous and satisfies

E(a)I <-
(fa)2(fa)Restoring

the x-dependence, we see that A(a, x) = V (a + x) + E(a, x) where

lim sup JE(a,x)I =0
c'10 O<x<a
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for any a > 0, so
li o A(a, x) = V (x), (6.21)

where this holds in general in the L'-sense. If V is continuous, (6.21) holds point-
wise. In general, (6.21) will hold at any point of right Lebesgue continuity of V.

Because E is continuous, A determines any discontinuities or singularities of
V. More is true. If V is Ck, then E is Ck+2 in a, and so A determines kth-order
kinks in V. Much more is true and one can also prove the following result:

THEOREM 6.5. V on [0, a] is only a function of A on [0, a]. Explicitly, if
V1, V2 are two potentials, let A1, A2 be their A-functions. If a < bl, a < b2, and
A, (a) = A2 (a) for a E [0, a], then Vl (x) = V2 (x) for x E [0, a].

Theorems 6.4 and 6.5 imply Theorem 6.2.
As noted, the singularities of V come from singularities of A. A boundary

condition is a kind of singularity, so one might hope that boundary conditions
correspond to very singular A. In essence, we will see that this is the case-there
are delta-function and delta-prime singularities at a = b. Explicitly, one can prove
the following result:

THEOREM 6.6. Let m be the m-function for a potential V with b < oo. Then
for a < 2b,

m(-i 2) = _r, -
ja

da A(a)e 2-Alice 2- Ble2+ 6(e2), (6.22)

where the following facts hold:
(a) If h = oo, then A, = 2, B, = -2 fo V (y) dy.
(b) If I hI < oo, then A, = -2, B, = 2[2h + fo V(y) dy].

This implies Theorem 6.3.
The reconstruction theorem, Theorem 6.5, depends on the differential equation

that A(a, x) satisfies. Remarkably, V drops out of the translation of (6.4) to the
equation for A:

,9A (oz, x) - aA(a, x)
+ f dpi A(0, x)A(a - 3 x). (6.23)

ax as
If V is C', the equation holds in classical sense. For general V, it holds in a

variety of weaker senses. Either way, A(a, 0) for a c [0, a] determines A(a, x) for
all x, a with a > 0 and 0 < x + a < a. (6.21) then determines V (x) for x E [0, a).
That is the essence from which uniqueness comes. We will return to this circle of
ideas later on when discussing Simon's approach to the inverse spectral problem in
detail.

Now we switch to [97] and take a closer look at some of the concepts introduced
in [228]. In particular, we continue the study of the A-amplitude associated to
half-line Schrodinger operators, - 4 + V in L2([0,b)), b < oo. A is related to the
Weyl-Titchmarsh m-function via m(-k2) = -r - fo da A(a)e-2cK, +O(e-(2a-e)w)

for all e > 0. Three main issues will be discussed:

First, we describe how to extend the theory to general V in L'([O, a]) for all
a > 0, including V's which are limit circle at infinity.
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Second, the following relation between the A-amplitude and the spectral measure
P:

00

A(ce) = 2
J_ 00

dp(\) A-' sin(2c V ),

will be discussed. (Since the integral is divergent, this formula has to be properly
interpreted.)

Third, a Laplace transform representation for m without error term in the case
b < oo will be presented.

We consider Schrodinger operators

d

dx2
+ V (6.24)

in L2([0, b)) for 0 < b < oo or b = oo and real-valued locally integrable V. There
are essentially four distinct cases.

Case 1. b < oo. We suppose V E LI([0, b]). We then pick h c R U {oo} and add
the boundary condition at b

u'(b_) + hu(b_) = 0, (6.25)

where h = oo is shorthand for the Dirichlet boundary condition u(b_) = 0.
For Cases 2-4, b = oo and

a
dx IV (x) I < oo for all a < oo.1 6.26)

0

Case 2. V is "essentially" bounded from below in the sense that
(ja+l

sup dx max(-V(x), 0)< 00.
a>O

(6.27)

Examples include V (x) = c(x + 1)0 for c > 0 and all,3 E R or V (x) = -c(x + 1)Q
for all c>0and/3<0.
Case 3. (6.27) fails but (6.24) is limit point at oo (see, e.g., [41, Ch. 9], [201, Sect.
X.1] for a discussion of limit point/limit circle), that is, for each z E C+ = {z E
C I Im(z) > 0},

-u" + Vu = zu (6.28)

has a unique solution, up to a multiplicative constant, which is L2 at oo. An
example is V(x) =-c(x+1)Q for c > 0 and0</3<2.

Case 4. (6.24) is limit circle at infinity, that is, every solution of (6.28) is L2([0, oo))
at infinity if z E C+. We then pick a boundary condition by choosing a nonzero
solution uo of (6.28) for z = i. Other functions u satisfying the associated boundary
condition at infinity then are supposed to satisfy

liW(uo, u)(x) = lI m[uo(x)u'(x) - uo(x)u(x)] = 0. (6.29)
X 00

Examples include V (x) = -c(x + 1)0 for c > 0 and ,C3 > 2.

The Weyl-Titchmarsh m-function, m(z), is defined for z c C+ as follows. Fix
z E C+. Let u(x, z) be a nonzero solution of (6.28) which satisfies the boundary
condition at b. In Case 1, that means u satisfies (6.25); in Case 4, it satisfies (6.29);
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and in Cases 2-3, it satisfies fR Iu(z, x) j 2 dx < oo for some (and hence for all)
R > 0. Then,

U, (z, 0+)
M(Z)

u(z, 0+)
and, more generally,

m(z, x) = '(z'u

m(z, x) satisfies the Riccati equation (with m' = am/ax),

m'(z, x) = V(x) - z - m(z, x)2.

(6.30)

(6.31)

(6.32)

m is an analytic function of z for z c C+, and the following properties hold:

Case 1. m is meromorphic in C with a discrete set Al < A2 < of poles on
(and none on (-oo, A1)).
Case 2. For some 3 E R, m has an analytic continuation to C\[0, oo) with m real
on (-oo, 0).
Case 3. In general, m cannot be continued beyond C+ (there exist V's where m
has a dense set of polar singularities on IR).
Case 4. m is meromorphic in C with a discrete set of poles (and zeros) on R with
limit points at both +oo and -oo.

Moreover
if z c C+ then m(z, x) E C+,

so m admits the Herglotz representation,

m(z) = Re( (i)) + d (A) [ 1 RC 6 33m p
z 1 + A2 ] 'AJ

,z E \ ( . )

where p is a positive measure called the spectral measure, which satisfies

dp(A)
346< oo,

R 1
+ AI2

dp(A) = w-lim 1 Im(m(A + ie)) dA,

( ).

(6.35)
Elo 7r

where w-lim is meant in distributional sense.
All these properties of m are well known (see, e.g. [162, Ch. 2]).

In (6.33), the constant Re(m(i)) is determined by the result of Everitt [62] that
for each E > 0,

m(-rc2) = -rc + o(1) as jr.1 --+ oo with - 2 + e < arg(rc) < -E < 0. (6.36)

Atkinson [13] improved (6.36) to read,
jao

m(-rc2) _ -+ dot V ()e2+ o(i1) (6.37)

again as Ircj -+ oo with - z + E < arg(rc) < -e < 0 (actually, he allows arg(rc) ---* 0
as Ircj --f oo as long as Re(rc) > 0 and Im(rc) > -exp(-Dlrc1) for suitable D). In
(6.37), a0 is any fixed a0 > 0.

One of the main results in [97] was to go way beyond the two leading orders
in (6.37).
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THEOREM 6.7. There exists a function A(a) for a c [0, b) so that A E L1([0, a])
for all a < b and

(-lc2) = dA()e2+ O(e2) (6.38)fm

as Iicj -> oe with - 2 + e < arg(ic) < -e < 0. Here we say f = O(g) if g -> 0 and
for all e > 0, (9) g1E -> 0 as jrj -> oe. Moreover, A - q is continuous and

I V(x)Jexp(f dxIV(x)l/ I. (6.39)(A-q)(a) < [dx
10c, 0

This result was proved in Cases 1 and 2 in [228]. The proof of this result if
one only assumes (6.26) (i.e., in Cases 3 and 4) has been provided in [97].

Actually, in [228], (6.38) was proved in Cases 1 and 2 for is real with jic1 --> oo.
The proof in [97], assuming only condition (6.26), includes Case 2 in the general
n-region arg(ic) E (--7' + e, -e) and, as can be shown, the proof also holds in this
region for Case 1.

REMARK 6.8. At first sight, it may appear that Theorem 6.7, as stated, does
not imply the is real result of [228], but if the spectral measure p of (6.33) has
supp(p) C_ [a, oo) for some a E R, (6.38) extends to all is in I arg(r,) < 2 - e,
Inj > a + 1. To see this, one notes by (6.33) that m'(z) is bounded away from
[a, oo) so one has the a priori bound jm(z) I < Cjzj in the region Re(z) < a - 1.
This bound and a Phragmen-Lindelof argument let one extend (6.38) to the real is
axis.

The following is a basic result from [228]:

THEOREM 6.9 (Theorem 2.1 of [228]). Let V E L1([0, oo)). Then there exists
a function A on (0, oo) so that A - V is continuous and satisfies (6.39) such that
for Re(ic) > JJVMM1/2,

00

m(-/c2) = -16 - J da A(a)e-2ak. (6.40)
0

REMARK 6.10. In [228], this is only stated for is real with is > JIV111/2, but
11(6.39) implies that A(a) - V (a) < V 1 exp(a II V I11) so the right-hand side of

(6.40) converges to an analytic function in Re(ic) > JJ V 111 /2. Since m(z) is analytic
in C\[a, oo) for suitable a, we have equality in {rc c C I Re(ic) > JJ V 1M 1/2} by
analyticity.

Theorem 6.7 in all cases follows from Theorem 6.9 and the following result
which was proved in [97]:

THEOREM 6.11. Let V1, V2 be potentials defined on (0, bj) with bj > a for
j = 1, 2. Suppose that V1 = V2 on [0, a]. Then in the region arg(ic) E (- 2 +e, -e),

K0, we have that

lml(-IG2) -m2(-k2)j

CE,b depends only on e, 8, and supo<x<a (ff +b dy IV; (y) 1), where 8 > 0 is
any number so that a + 8 < bj, j = 1, 2.
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REMARK 6.12. (i) An important consequence of Theorem 6.11 is that if V1 (x) =
V2 (x) for x c [0, a], then Al (a) = A2 (a) for a E [0, a]. Thus, A(a) is only a function
of V on [0, a]. (We emphasize that, conversely, one can show that also V(x) is only
a function of A on [0, x].)

(ii) This implies Theorem 6.7 by taking V1 = V and V2 = VX[O,a] and using
Theorem 6.9 on V2.

(iii) The actual proof implies (6.41) on a larger region than arg(ic) E (- 2 +
e, -e). Basically, one needs Im(r,) > -C1 exp(-C2 jr.1) as Re(r,) --4 00.

The basic connection between the spectral measure dp and the A-amplitude
established in [97] says

00

A(a) _ -2
1-00

dp(\)) 2 sin(2af ). (6.42)

However, the integral in (6.42) is not convergent. Indeed, the asymptotics (6.36)
imply that fR dp(.A) -. 2R 2 so (6.42) is never absolutely convergent. Thus, (6.42)
has to be suitably interpreted.

We will indicate how to demonstrate (6.42) as a distributional relation, smeared
in a on both sides by a function f E Co ((0, oc)). This holds for all V's in Cases 1-4.
Finally, we will discuss an Abelianized version of (6.42), namely,

00

A(a) = -2lim J dp(A) e-EXA- 2 sin(2a\) (6.43)
CIO 00

at any point, a, of Lebesgue continuity for V. (6.43) is proved only for a restricted
class of V's including Cases 1 and 2 and those V's satisfying

V (X) > -Cx2, x > R

for some R > 0, C > 0, which are always in the limit point case at infinity.
Subsequently, we will use (6.43) as the point of departure for relating A(a) to
scattering data.

In order to prove (6.42) for finite b, one needs to analyze the finite b case ex-
tending (6.38) to all a, including a = oc (by allowing A to have 6 and 6' singularities
at multiples of b). This was originally done in [228] for is real and positive and
a < oo. We now need results in the entire region Re(ic) > Ko. Explicitly, the
following was proved in [97] :

THEOREM 6.13. In Case 1, there are An, Bn for n = 1, 2, ... , and a function
A(a) on (0, oo) with

JO

IAn1 <C, BnI <Cn,

da IA(a)1 < Cexp(Kolal) so that for Re(ic) > ZKo:
a

00
00 00

m(-rc2) _ -/6 - E Anlce-2n6n - E Bne 2k6n - doe
A(a)e-2cm

n=1 n=1 0

(6.42) can be used to obtain a priori bounds on f oR dp(A) as R -p oe.

Now we turn to more details, and start by illustrating how to use the Riccati
equation and a priori control on mj to obtain exponentially small estimates on
m1 - m2.
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LEMMA 6.14. Let m1i m2 be two absolutely continuous functions on [a, b] so
that for some Q E Ll([a,b]),

ml (x) = Q(x) - mj (x)2, j = 1, 2, x E (a, b). (6.44)

Then

b

[ml (a) - m2 (a)] _ [ml (b) - m2 (b)] exp J. dy [ml (y) + m2 (Y)]
a

As an immediate corollary, one obtains the following result (which implies The-
orem 6.11):

THEOREM 6.15. Let mj (-ic2, x) be functions defined for x c [a, b] and is E K
some region of C. Suppose that for each k in K, mj is absolutely continuous in x
and satisfies (note that V is the same for m1 and m2),

2, x) = V (x) + c2 - mj (-C2, x)2,m, (-6 j = 1, 2.

Suppose C is such that for each x E [a, b] and Ic E K,

lmj (-/c2, x) + Icl < C, j = 1, 2, (6.45)

then

I ml (-ic2, a) - m2(-ic2, a) I < 2C exp[-2(b - a) [Re(k) - Q. (6.46)

Theorem 6.15 places importance on a priori bounds of the form (6.45). Fortu-
nately, by modifying ideas of Atkinson [13], we can obtain estimates of this form
as long as Im(/c) is bounded away from zero.

Atkinson's method allows one to estimate m(-,c2) + i in two steps. We will
fix some a < b finite and define mo(-k2) by solving

mo(-k2 x) = V(x) + /c2 - mo(-1c2, x)2, (6.47a)

mo(-/c2, a) = -k (6.47b)

and then setting

mo(-tc2) := mo(-IC2, 0+) (6.47c)

One then proves the following result.

LEMMA 6.16. There is a C > 0 depending only on V and a universal constant
E > 0 so that if Re(n) > C and Im(ic) :0, then

lm(-I£2) - mo(-t2)I < E I,I2 e-2aRe(k). (6.48)
(r,) I

In fact, one can take

C = max (a_lln(6), 4 pa
dx IV(x) I) E = 3.2-12 2

J0 5

LEMMA 6.17. There exist constants D1 and D2 (depending only on a and V),
so that for Re(ic) > D1, I,cmo(-r 2) + < D2.
Indeed, one can take

D1 = D2 = 2 J
a dx V(x)1.

0
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These lemmas together with Theorem 6.9 yield the following explicit form of
Theorem 6.11.

THEOREM 6.18. Let V1i V2 be defined on (0, bj) with bj > a for j = 1, 2.
Suppose that Vi = V2 on [0, a]. Pick 8 so that a + b < min(bi, b2) and let rl =
supo<x<a;j=1,2(f' dyIVj (y) J). Then if Re(ic) > max(4r),8-iln(6)) and Im(ic)
0, one obtains

lmi(-k2) - m2(-t2)i < 2g(r,) exp(-2a[Re(rc) - g(n)]),

where
864 l,l2 -2bRe(n)9(n) = 2ij + 5 e

IIm(ic)I

REMARK 6.19. (i) To obtain Theorem 6.11, we need only note that in the
region arg(,c) E (-11 + e, -e), jrj > Ko, g is bounded.

(ii) We need not require that arg(ic) < -e to obtain g bounded. It suffices, for
example, that Re(,c) > jIm(n)j > e-O'R,(k) for some a < 28.

(iii) For g to be bounded, we need not require that arg(ic) > - z +e. It suffices
that jIm(r,)j > Re(ic) > aln[JIm(r,)I] for some a > (28)-i. Unfortunately, this does
not include the region Im(-/c2) = c, Re(-/62) -- oo, where Re(r,) goes to zero as

nj-1. However, as Re(-rc2) -> oo, we only need that lIm(-ic2)I > 2ajicjln(jicj).

Next, we turn to finite b representations with no errors: Theorem 6.9 implies
that if b = oo and V E L'([0, oo)), then (6.40) holds, a Laplace transform represen-
tation for m without errors. It is, of course, of direct interest that such a formula
holds, but we are especially interested in a particular consequence of it-namely,
that it implies that the formula (6.38) with error holds in the region Re(rc) > Ko
with error uniformly bounded in Im(ic); that is, one proves the following result:

THEOREM 6.20. If V E L1([0, oo)) and Re(ic) > JIVII 1/2, then for all a > 0:

/'a
J da A(a)e-2a"

0

2 allvlll
[V1 +

JIVIIi]
e-2aRe(r.). (6.49)

The principal goal is to prove an analog of this result in the case b < oo. To
do so, we will need to first prove an analog of (6.40) in case b < ac-something of
interest in its own right. The idea will be to mimic the proof of Theorem 2 from
[228] but use the finite b, V(°) (x) = 0, x > 0 Green's function where [228] used
the infinite b Green's function. The basic idea is simple, but the arithmetic is a bit
involved.

We will start with the h = oo case. Three functions for V(°) (x) = 0, x > 0 are
significant. First, the kernel of the resolvent (-d52 +ic2)-i with u(0+) = u(b_) = 0
boundary conditions. By an elementary calculation (see, e.g., [228, Sect. 5]), it has
the form

() 2 <)G(-rx y) [ele2kb ] , (6.50)

with x< = min(x, y), x> = max(x, y).
The second function is

008G(0) e-kx - e-r.(2b-x)
(6.51)x) = lim ay oo (-ic2, x, y) = 1 - e-2Kb
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and finally (notice that ho).(-0,0+) = 1 and 'oho). satisfies the equations
and b(-/c2, b-) = 0):

(0) 2 (0)/ 2 is + ice-2ab

mh=,.. (-IL ) _ IJh=oo (-l6 , 0+) - 1 - e-2reb

In (6.52), prime means d/dx.
Now fix V E C0 ((0, b)). The pair of formulas

(6.52)

d2 1 d2 \ 1
d2

1 n

dx2
+ V + r,2) = E

n=O

(-1)n (-dx2 + K2 I V
(_dx2

+ k2) J

and

m(-IC2) = lira
192G(-ice,

x, y)
x<y; yl0 axay

yields the following expansion for the m-function of -d 2 + V with u(b_) = 0
boundary conditions.

LEMMA 6.21. Let V E Co ((0, b)), b < oo. Then

00m(-r,2) = E Mn(-rc2; V),
n=0

where

and for n > 2,

(6.53)

Mo(-ic2;V) = mh0)2), (6.54)
b

M1(-,c2; V) f V (-?c2, x)2 dx, (6.55)
0

b b

Mme,(-ic2;V) = (-1)nf dxl... fo d
0

"
n-1

X 0).(-r2,x1), ho).(-Ic2,xn) fl
j=1

(6.56)

The precise region of convergence is unimportant since one can expand regions
by analytic continuation. For now, we note it certainly converges in the region is
real with ice > I V I I -

Writing each term in (6.53) as a Laplace transform then yields the following
result:

THEOREM 6.22 (Theorem 6.13 for h = oo). Let b < oo, h = oc, and V E
L1([0, b]). Then for Re(ic) > II V11 1/2, we have that

m(-ic2) = -ic - Ajice-2kbj - Bje-2,bj - daA(a)e-2,k (6.57)

j=1 j=1 0

where
b

Aj = 2, Bj = -2j fo dxV(x), j E N,
0

IA(a) -A, (a) I <
(2a+b)(2a+2b)

IIVII2 exp(aIIVIII)

00 00
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with Al given by

Al (a) _
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JV(a), 0<a<b,
(n + 1)V(a - nb) + nq((n + 1)b - a), nb < a < (n + 1)b, n c N.

In particular, for all a c (0, b),

f do, IA(a)I _ C(b,IIV1I1)(1+a2)eXp(aMIVIII).
0

This implies the following estimate:

COROLLARY 6.23. If V E L'([0, oo)) and Re(r.) 2IIVIIi + e, then for all
a E (0, b), b < oo, we have that

m(-c2) + K+
f a

daA(a)e-2a" < C(a, e)e-2aRe(k),

where C(a, e) depends only on a and a (and I I V II1) but not on Im(k).

Next, we turn to the case h E R. Then (6.50)-(6.52) become

Gh0) (-r2, x, y) =
sinh(kx<) 00) (-K2, X>),

r, h

"/p(0) 2 x
e-k'

+ ((h, n)e-,c(2b-x) lY h (- ) - [ 1 + ((h, k)e-2bk

S(h, K)e-2kbm -IC -k + 2k0)( 2) _ ,h I + Kb

where
k

((h,
- h) - + h

This then leads to the following result:

(6.58)

(6.59)

(6.60)

(6.61)

THEOREM 6.24 (Theorem 6.13 for general h E R). Let b < oo, IhI < oo, and
V E L' ([0, b]). Then for Re(,c) > z D1 [II VIII + lhi + b-1 + 1] for a suitable universal
constant D1, (6.57) holds, where

b

Aj = 2(-1)3, Bj = 2(-1)j+lj [2h+ f dxV(x)], (6.62)
0

IA(a) - V(a) 1 <_ iiVii1 eXp(o IIVII1) (6.63)

if Ial < b, and for any a > 0,fD(b, IIVII1, h) exp(Dla(IIVII1 + hI + b+ 1)). (6.64)

Hence, one obtains the following estimate:

COROLLARY 6.25. Fix b < oc, V E Ll([0,b]), and I h I < oo. Fix a < b. Then
there exist positive constants C and K0 so that for all complex rc with Re(r,) > K0,

a

m(-k2) + k + f da A(a)e-2ak < Ce-2ak.

0



INVERSE SPECTRAL THEORY 795

Next we return to the relation between A and p and discuss a first distributional
form of this relation: Our primary goal in the following is to discuss a formula which
formally says that

00

14(a)--2 J
dp(A) A-' sin(2av'-A), (6.65)

where for A < 0, we define

A-2' sin(2a%)
2a, if A = 0,

= 1(-A) sinh(2a/T, if A < 0.

In a certain sense which will become clear, the left-hand side of (6.65) should be
A(a) - A(-a) + 8' (a).

To understand (6.65) at a formal level, note the basic formulas,

A(a)e-2a",dam(-t 2) = -,c - 10"o

m(-Ic2) = Re(m(i)) + dp(A) I - A ] ,

A+0 1+A2
and

(6.66)

(6.67)

(A + /62)-1 = 2 J 00 da A z sin(2a )e 2a" (6.68)
0

which is an elementary integral if is > 0 and A > 0. Plug (6.68) into (6.67), for-
mally interchange the order of integrations, and (6.66) should only hold if (6.65)
does. However, a closer examination of this procedure reveals that the interchange
of the order of integrations is not justified and indeed (6.65) is not true as a simple
integral since, fR dp(A) R- - R12 which implies that (6.65) is not absolutely con-

00 37r

vergent. We will even see later that the integral sometimes fails to be conditionally
convergent.

Our primary method for understanding (6.65) is as a distributional statement,
that is, it will hold when smeared in a for a in (0, b). We discuss this next if
V E L'([0, oo)) or if b < oo. Later it will be extended to all V (i.e., all Cases 1-4)
by a limiting argument. Subsequently, we will study (6.65) as a pointwise statement,
where the integral is defined as an Abelian limit.

Suppose b < oo orb = oo and V E L' ([0, b)). Fix a < b and f E Coo" ((0, a)).
Define jma(-12) (6.69)

for Re(16) > 0. Fix ro real and let

9(y, no, a) := ma(-(Ko + iy)2),
with 160, a as real parameters and y c R a variable. As usual, define the Fourier
transform by (initially for smooth functions and then by duality for tempered dis-
tributions [201, Ch. IX] )

F(k) 27r JIB
dye-2kyF(y), E(k) =

27<
f dy eikyF(y). (6.70)

Then by (6.69),

(k, ko, a) 27r no6(k) - 27r 8'(k) - 2 e-kwoA (k)
2X(0,2a) (k). (6.71)
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Thus, since f (0+) = f'(0+) = 0, in fact, f has support away from 0 and a,
ja 2

a
da A(ce)f (a) = - J doe g (2a, no, a)e2a o f27r

o

da g(a,.o,a)ea"of
1

2a

(2127r o

_ -
1

dyg(y, no, a)E(y, no), (6.72)
27r ,

where we have used the unitarity of - and

1

/2a a

P (Y' moo) = J da f
l 2/ 2 f da f(a). (6.73)

27r 2=7 o

Notice that
(y, tco)I Ce2(a-E)"0(1 + IY12) 1 (6.74)

since f is smooth and supported in (0, a - e) for some e > 0.
By Theorem 6.20 and Corollary 6.25,

Ima(-(ico + iy)2) - m(-(to + iy)2)I Ce-2ako (6.75)

for large rco, uniformly in y. From (6.72), (6.74), and (6.75), one concludes the
following fact:

LEMMA 6.26. Let f E Co

[_2

((0, a

f
)) with 0 < a < b and V E L'([0, b)). Then

Jo
da A(a) f (a) = lim dy m(-(tco + )2)

ja

da e2o+if(a)1 .

7r J
(6.76)

As a function of y, for ,o fixed, the alpha integral is O((1 + y2)-N) for all N
because f is C°°. Now define

mR(-rl 2 - CR + dp(A) (6.77
J<R A+r,2 )

where CR is chosen so that r"nR R m. Because dPfR < oo, the convergencei+a
is uniform in y for Ko fixed and sufficiently large. Thus, in (6.76) we can replace00

m by mR and take a limit (first R -- oo and then ico T oo). Since f (0+) = 0,
the f dy CR da-integrand is zero. Moreover, we can now interchange the dy da and

ntegrals. The result is thatdp(A) i

fdaA()f(a) = lim lfm f dp(A)
ko? R-00 <R

(6.78)a 1 dy e2aiy
x

[fda
e2ak°f (a)

7r j (io + iy)2 + A] I
the case at hand, dp is bounded below, say A > -Ko. As long as we take
> Ko, the poles of (no + iy)2 + A occur in the upper half-plane

yf =iro+V.
Closing the contour in the upper plane, we find that if A > -Ko,

1 dy e2ai
2e-2ako

sin(2aA)
7r a (ico + iy)2 + A

In

no
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Thus (6.78) becomes

L
da A(a) f (a) _ -2 lim lim f dp(A)

'coToo R-oo < R

a

Jo

a da f (a)
sin(2avl-A)

vrA

no has dropped out and the a integral is bounded by C(1 + A2)-1, so one can take
+x < oo. One is therefore led to the following result.the limit as R -i oo since fI JP a

THEOREM 6.27. Let f E Co ((0, a)) with a < b and either b < oo or V E
L1([0, oo)) with b = oo. Then

L
a da A(a)f (a) = -2 J dp(A)

fa
da f (a)

sin( X)
(6.79)

vrA

One can strengthen this in two ways. First, one wants to allow a > b if b < 00.
As long as A is interpreted as a distribution with 5 and 5' functions at a = nb, this
is easy. One also wants to allow f to have a nonzero derivative at a = 0. The net
result is described in the next theorem:

THEOREM 6.28. Let f E Co (R) with f (-a) _ - f (a), a E I8 and either b < 00
or V E L1([0, oo)) with b = oo. Then

-2 J dp(A)
sin(2aA) /°°

da f (a) = J da A(a) f (a)
00 VA- I

where A is the distribution

A(a) = X(o,oo) (a)A(a) - X(-.,o) (a)A(-a) + 6'(a)

if b = oo and

A(a) = X(°,.) (a)A(a) - X(-.,o) (a)A(-a) + 5'(a)
00

(6.80)

(6.81a)

+ Bj [5(a - 2bj) - 5(a + 2bj)]
j=1
00

+ E
2

Aj [5'(a - 2bj) + 5'(a + 2bj)] (6.81b)
j-I

if b < oo, where A;, B. are h dependent and given in Theorems 6.22 and 6.24.

Next we change the subject temporarily and turn to bounds on fo R dp(\)
which are of independent interest: As we will see, (6.36) implies asymptotic results
on fR dp(.\), and (6.65) will show that f °00 oo for all b > 0 and
more. It follows from (6.67) that

d p
I i = > 0m(m( a))

2
a2 ,a J

A
a .

Thus, Everitt's result (6.36) implies that

lim al dp(A) = 2f 2.
A2 + a2aco
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Standard Tauberian arguments (see, e.g., in [225, Sect. 111.10], which in this case
shows that on even functions R2 dp(\/R)

R
00(27r)-1IAI 2 d.\) then imply the fol-

lowing result:

THEOREM 6.29.
fR

lim R-2 J dp(A) = 2 .

R-oo R
(6.82)

REMARK 6.30. (i) This holds in all cases (1-4) we consider here, including
some with supp(dp) unbounded below.

(ii) Since one can show that f 'O. dp is bounded, one can replace ER R by fR in
(6.82).

Next, we recall the following a priori bound that follows from Lemmas 6.16 and
6.17:

LEMMA 6.31. Let dp be the spectral measure for a Schrodinger operator in Cases
1-4. Fix a < b. Then there is a constant Ca depending only on a and f dy IV(y)
so that

f d+ A) <
Ca. (6.83)

The goal is to bound f °. e2«/ dp(\) for any a < b and to find an explicit
bound in terms of sup0<x<«+1 [-V(y)] when that sup is finite. As a preliminary,
we need the following result from the standard limit circle theory [41, Sect. 9.4].

LEMMA 6.32. Let b = oo and let dp be the spectral measure for some Schrodinger
operator in Cases 2-4. Let dpR,h be the spectral measure for the problem with
b = R < oc, h and potential equal to V (x) for x < R. Then there exists h(R) so
that

dpR,h(R)
R__o

dp,

when smeared with any function f of compact support. In particular, if f > 0, then

fdPRh(R)(\)f(\).f dp(A) f (A) < RI:1 Z00

This result implies that we need only obtain bounds for b < oo (where we have
already proved (6.79)).

LEMMA 6.33. If pi has support in [-E0, oo), EO >f 0, then

0 d)f0 -
00

e7 dpi (A) < e-r`° (1 + Eo) J 1+(A2 . (6.84)

Lemmas 6.31, 6.32, and 6.33 imply the following result.

THEOREM 6.34. Let p be the spectral measure for some Schrodinger operator
in Cases 2-4. Let

( «0+1

E(ao):_-inf{ f
I. 0

cp E Co ((0, ao + 1)),

/ «0+1 l
J dx cp(x)12 < 11.

0
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Then for all b > 0 and ao > 0,
0

aob J
e2(1-b)`0 dp(A) < [Cl (1 + ao) + C2 (1 + E(ao)2)e2(a0+1) E(go)

where C1, C2 only depend on fo dx IV (x) 1. In particular,

f
0

eB dp(A) < 00

(6.85)

(6.86)

for allB<00.

As a special case, suppose V(x) > -C(x + 1)2. Then E(ao) > -C(ao + 2)2
and we see that

/m

0

eB\ dp(A) < D1e°2B2. (6.87)

This implies the next result.

THEOREM 6.35. If dp is the spectral measure for a potential which satisfies

V (X) > -Cx2, x > R

for some R > 0, C > 0, then for e > 0 sufficiently small,

(6.88)

f0 e-CA dp(A) < oo. (6.89)
00

If in addition V E L1([0,oo)), then the corresponding Schrodinger operator is
bounded from below and hence dp has compact support on (-oo, 0]. This fact will
be useful later in the scattering-theoretic context.

The estimate (6.86), in the case of non-Dirichlet boundary conditions at x = 0+,
appears to be due to Marchenko [171]. Since it is a fundamental ingredient in the
inverse spectral problem, it generated considerable attention; see, for instance, [70],
[155], [156], [157], [161], [171], [172, Sect. 2.4]. The case of a Dirichlet boundary
at x = 0+ was studied in detail by Levitan [157]. These authors, in addition
to studying the spectral asymptotics of p(A) as A . -oo, were also particularly
interested in the asymptotics of p(A) as A ? oo and established Theorem 6.29. In
the latter context, we also refer to Bennewitz [17], Harris [116], and the literature
cited therein. In contrast to these activities, we were not able to find estimates of
the type (6.85) (which implies (6.86)) and (6.89) in the literature.

At this point one can return to the relation between A and p and discuss a
second distributional form of this relation which extends Theorem 6.27 to all four
cases.

THEOREM 6.36. Let f E Co ((0, oo)) and suppose b = oo. Assume V satisfies
(6.26) and let dp be the associated spectral measure and A the associated A-function.
Then (6.80) and (6.81) hold.

Next we establish a third relation between A and p and turn to Abelian limits:
For f E Co (R), define for A E R,

Q(f)(.A) = f0" da f
(a)sin(2 )

(6.90)
00 V1rA-
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and then

00= f:daAf (6.92)

Relations (6.80) and (6.81) show that for f E Co (I!8), the two expressions (6.91)
and (6.92) define the same T (f ). This was proved for odd f's but both integrals
vanish for even f's. Now one wants to use (6.91) to extend to a large class of f,
but needs to exercise some care not to use (6.92), except for f Co (I!8).

Q(f) can be defined as long as f satisfies

I f(a)I < Cke-kkal, a E R (6.93)

for all k > 0. In particular, a simple calculation shows that

f(a) = (7re)-z [e-(a a0)2implies Q(f)(A) = sin(2 ) e-E,\. (6.94)

We use f (a, ao, e) for the function f in (6.94).
For A > 0, repeated integrations by parts show that

3

IQ(f)(A)I < C(1 + A2)-1 {fMi + da , (6.95)
1]

where II1 represents the L1(R)-norm. Moreover, essentially by repeating the
calculation that led to (6.94), one sees that for A < 0,

I Q(f)(A)I < Ce6I\ Il
e+a2/Ef II.. (6.96)

One then concludes the following result.

LEMMA 6.37. If fx(1+A2)-1 dp(A) < oo (always true!) and f °, a-'0)` dp(A) <
oc (see Theorem 6.35 and the remark following its proof), then using (6.91), T( )
can be extended to functions f E C3(IR) that satisfy eat/e0 f E L°°(R) for some
E0 > 0 and d-3 E L1(ll ), and moreover,

IT(f)I < C I
d3f
da3 + Ilea21e0f ll. ] := CIIIfIIIEO

1

(6.97)

Next, fix ao and Eo > 0 so that f °. e E0A dp(A) < oo. If 0 < E < eo, f (a, ao, E)

satisfies
I
I If I1Ieo < oo so we can define T(f ). Fix g c Co (IR) with g 1 on

(-2a0,2a0). Then I1f(.,ao,e)(1 -g)II1eo --f 0 as E j.0. So

limT(f(.,ao,e)) =limT(gf(.,ao,e)).
el0 ejo

For g f , we can use the expression (6.92). f is approximately 6(a - ao) so standard
estimates show that if ao is a point of Lebesgue continuity of A(a), then

00r
J da f (a, ao, E)g(a)A(a) 1 A(ao)

-00

Since A - q is continuous, points of Lebesgue continuity of A exactly are points of
Lebesgue continuity of V. Thus, one obtains the following theorem.

dp(A)Q(f)(A) (6.91)T(f) _ -2J
x
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THEOREM 6.38. Suppose either b < oo and V E L1([0, b]) or b = oo, and then
either V E L'([0,oo)) or V E L'([0, a]) for all a> 0 and

V (X) > -Cx2, x > R

for some R > 0, C > 0. Let ao E (0, b) and be a point of Lebesgue continuity of V.

Then

A(ao) _ -2lim J dp(A) e E
sin(2 )

(6.98)

Finally, we specialize (6.98) to the scattering-theoretic setting. Assuming V E
L1([0, oc); (1 + x) dx), the corresponding Jost solution f (z, x) is defined by

f (z, x) = ex`G x - J C dx'
sin(f (x - x'))f V(x') f (z, x'), Im(V/z) > 0, (6.99)

and the corresponding Jost function, F(/ ), and scattering matrix, S(A), A > 0,
then read

F(/) = f (z, 0+), (6.100)

S(A) = F(1)/F(V ), A > 0. (6.101)

The spectrum of the Schrodinger operator H in L2([0, oo)) associated with the
differential expression - d2 + V (x) and a Dirichlet boundary condition at x = 0+
(cf. (6.128) for precise details) is simple and of the type

Q(H) = {-ic < 0}jEJ U [0, oo).

Here J is a finite (possibly empty) index set, rcj > 0, j E J, and the essential
spectrum is purely absolutely continuous. The corresponding spectral measure
explicitly reads

dig (A) -
it 1IF(VA )I-2./dA, A > 0,

EjEJ cj6(A+ rc?) dA, A < 0,

where

Cj =IIW(-ic, .)1122, j EJ

(6.102)

(6.103)

are the norming constants associated with the eigenvalues A3 = -rcj < 0. Here the
regular solution cp(z, x) of -'""(z, x)+[V(x)-z]0(z, x) = 0 (defined by cp(z, 0+) = 0,
W'(z, 0+) = 1) and f (z, x) in (6.99) are linearly dependent precisely for z = rcj

j E J.
Since

2 i ( r)

exp(- PJd
A

jEJ

00o

I ,

where P fo denotes the principal value symbol and 6(A) the corresponding scat-
tering phase shift, that is, S(A) = exp(2i6(A)), 6(A) -* 0, the scattering data

ATco

{-rcj,C7}jEJ U {S(A)1a>0

uniquely determine the spectral measure (6.102) and hence A(a). Inserting (6.102)
into (6.98) then yields the following expression for A(a) in terms of scattering data.
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THEOREM 6.39. Suppose that V E L1([0, oo); (1 + x)dx). Then

A(a) _ -2 E cj r,,-.1 sinh(2arj )
jEJ / (6.104)

-
E10 0

at points a > 0 of Lebesgue continuity of V.

REMARK 6.40. In great generality F(k)I --+ 1 as k -+ oc, so one cannot take
the limit in e inside the integral in (6.104). In general, though, one can can replace

)H-2 by 1) X(A) and ask if one can take a limit there. As
long as V is C2 ((0, oo)) with V" E L1([0, oo) ), it is not hard to see that as .\ -> 00

X(A) V(0) + O(.-2).

Thus, if V (O) = 0, then

A(a) _ -2 cjr,., 1 sinh(2arj)
'EJ

f (6.105)

- 27r-1
J

dA (F()2 - 1)
0

The integral in (6.105) is only conditionally convergent if V(0) # 0.

We note that in the present case, where V E L1([0, oo); (1 + x) dx), the repre-
sentation (6.40) of the m-function in terms of the A(a)-amplitude was considered
in a paper by Ramm [195] (see also [196, pp. 288-291]).

We add a few more remarks in the scattering-theoretic setting. Assuming
V E L'([O, oc); (1 + x) dx), one sees that

IF(k)I k= 1 + o(k-1) (6.106)

(cf. [31, eq. 11.4.13] and apply the Riemann-Lebesgue lemma; actually, one only
needs V E L1([0, oc)) for the asymptotic results on F(k) as k T oo but we will ignore
this refinement in the following). A comparison of (6.106) and (6.104) then clearly
demonstrates the necessity of an Abelian limit in (6.104). Even replacing dp in
(6.98) by da = dp-dp(°), that is, effectively replacing IF(v)I-2 by [IF(VA- )I-2-1]

in (6.104), still does not necessarily produce an absolutely convergent integral in
(6.104).

The latter situation changes upon increasing the smoothness properties of V
since, for example, assuming V E L1([0, oo); (1 + x) dx), V' E L1([0, oo)), yields

I F(k)I -2 - 1 k-
0(k -2)

00

as detailed high-energy considerations (cf. [87]) reveal. Indeed, if V" E L'([0,o0)),
then the integral one gets is absolutely convergent if and only if V(0) = 0.

As a final issue related to the representation (6.65), we discuss the issue of
bounds on A when IV (x) I < Cx2. One has two general bounds on A: the estimate
of [228] (see (6.39)),

2

JA(a) - V (a) I < [ I dy I V (y) I ] exp [a f dy IV (y) 1] , (6.107)
0 0
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and the estimate in Theorem 6.42,

A(a)I <
-y(e) h(2ary(a)), (6.108)

where 1-y(a) I = supo<x<a I V (x) I I/2 and is the modified Bessel function of
order one (cf., e.g., [1], Ch. 9). Since ([1], p. 375)

0 < I, (X) < ex, x > 0, (6.109)

one concludes that
IA(a)I < V li e2-,/-Ca2 (6.110)

if I V (x) I < Cx2.
We continue with a discussion of the case of constant V:

EXAMPLE 6.41. If b = oo and V (x) = Vo, x > 0, then if Vo > 0,

(a) = V
I/2 l2AJI (2aV61 (6.111)

where JI is the Bessel function of order one (cf., e.g., [1], Ch. 9); and if Vo < 0,
(-V)1/2

A(a) _ 0 I1(2a(-Vo)I/2), (6.112)

with I I the corresponding modified Bessel function.

This example is important because of the following monotonicity property:

THEOREM 6.42. Let IVI(x)I < V2 (x) on [0, a] with a < min(b1, b2). Then,

JAI (a) I < -A2 (a) on [0, a].

In particular, for any V satisfying supo<x<a I V (x) I < oo, one obtains

A(a) I <
ry(a) II (2ary(a)), (6.113)

where

-f(a) = sup (IV(x)I1/2).
o<x<a

(6.114)

In particular, (6.109) implies

A(a)I <
a-1,Y(a)e2ctry(a)

and if V is bounded,

(6.115)

2exp(2ajIVII1/2). (6.116)IA(a)I <a 1IIVII /00 00

For a small, (6.115) is a poor estimate and one should use (6.107) which implies

that IA(a) < I I V I I. + a2 I I V 1 2 e
. 2 1 1 v 1100 .

This lets one prove the following result:

THEOREM 6.43. Let h = oo and V E L°°([0, oo)). Suppose ice > IVIIOC Then

m(-rk2) = -K- J
00

da A(a)e-2a" (6.117)
0

(with an absolutely convergent integral and no error term).

REMARK 6.44. We recall (cf. (6.40)) that the representation (6.117) also holds
with A E L1([0, a]) for all a > 0 and as an absolutely convergent integral for
Re(r) > II V III/2 if V E L1([0, oo)). This fact will be used below.
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The case of Bargmann potentials has been worked out in [97, Sect. 11] and
explicit formulas for the A-function have been obtained.

We end this survey of [97] and [228] by recalling the major thrust of [228]-the
connection between A and the inverse spectral theory. Namely, there is an A(a, x)
function associated to m(z, x) by

fdaA(ax)e_2akx) + O(e2) (6.118)

for a < b - x. This, of course, follows from Theorem 6.7 by translating the origin.
The point is that A satisfies the simple differential equation in distributional sense

r7x
(a, x) =

as
(a, x) + JdA(a - 0, x) A(O, x). (6.119)

This is proved in [228] for V E L'([0, a]) (and some other V's) and so holds in
the generality of [97] since Theorem 6.11 implies A(a, x) for a + x < a is only a
function of V(y) for y E [0, a].

Moreover, by (6.39), one has

lao IA(a, x) - V(a + x)I = 0 (6.120)

uniformly in x on compact subsets of the real line, so by the uniqueness theorem
for solutions of (6.119) (proved in [228]), A on [0, a] determines V on [0, a].

In the limit circle case, there is an additional issue to discuss. Namely, that
m(z, x = 0) determines the boundary condition at oo. This is because, as we
just discussed, m determines A which determines V on [0, oo). m(z, 0+) and V
determine m(z, x) by the Riccati equation. Once we know m, we can recover
u(i, x) = exp (fo m(i, y) dy), and so the particular solution that defined the bound-
ary condition at oo.

Thus, the inverse spectral theory aspects of the framework easily extend to the
general case of potentials considered in [97].

To turn this into an inverse spectral approach alternative to and fully equiv-
alent to that of Gel'fand and Levitan, one needs to settle necessary and sufficient
conditions for solvability of the differential equation (6.119) in terms of an initial
condition A(a, 0+) = A0 (a), that is, in terms of properties of A0. This final step
was accomplished by Remling [205] and we briefly describe its major elements next.

Remling's first result is of local nature and determines a necessary and sufficient
condition on A to be the A-function of a potential V. Assuming V E L1([0, b]) for
all b > 0, he introduces the set

Ab = {A E L' ([0, b]) I A real-valued, I + ICA > 0}, (6.121)

where

b(ICAf)(a) = J do K(a, C3)f (d), a c [0, b], f E L2([0, b]),
0

/lal/2
K(a, 0) _ [O(a - Q) - q5(a + l3)]/2, c(a) = J

dy A(y), a, 0 E [0, b].
0

Based on his reformulation of the Gel'fand-Levitan approach in terms of de
Branges spaces in [204], Remling obtained the following characterization of A-
functions:
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THEOREM 6.45. Ab is precisely the set of A-functions in
ja

m(-Yv2) = -K - da A(a)e2+ O(e2) for all a < b.

Equivalently, given A0 E L'([0, b]), there exists a potential V E L1([0, b]) such that
A0 is the A-function of V if and only if A0 E Ab.

(We recall that all potentials V in this survey are assumed to be real-valued.)
As a second result, Remling also proved in [205] that the positivity condition

in (6.121) is necessary and sufficient to solve (6.119) on Ob = {(a, x) E R2 1 a E
[0, b - x], x c [0, b]} given an initial condition A(., 0+) = A0 E L1([0, b]). The
potential V can then be read off from

V(x) = A(0+, x) for x c [0, b]. (6.122)

Necessity of this positivity condition had been established independently by Keel
and Simon (unpublished). To make this precise, it pays to slightly rewrite (6.119)
as follows: Let

B(a, x) = A(a - x, x) - Ao(a), (a, x) E Ob, (6.123)

where

Ob={(a,x) ER210<x<a<b}.
Then (6.119) together with the initial condition A(., 0+) = A0 E L1([0, b]) becomes

B(a, x) = fo dy f df3 [B(y + 8, y) + Ao(y +,8)] [B(a - y) + Ao(a - /3)]
0

B(a, 0+) = 0, (a, x) E Ob. (6.124)

If A is actually the A-function of a potential, then B E C(Ob) by [228, Theorem
2.1]. Remling [205] then proves the following result:

THEOREM 6.46. Suppose Ao E L1([0, b]). Then (6.124) has a solution B E
C(Ab) if and only if A0 E Ab.

This brings Simon's inverse approach to full circle and one can envision the fol-
lowing two scenarios. First, Simon's inverse A-function approach, as complemented
by Remling [205]:

by (6.124) by (6.123)
A0 E Ab ) B(a, x), (a, x) E Ob , A(a, x), (a, x) E Ob

by (6.122)
V = A(0+, ) E L1([0, b]). (6.125)

Second, denote by R the set of spectral functions p associated with self-adjoint
half-line Schrodinger operators with a Dirichlet boundary condition at x = 0 and a
self-adjoint boundary condition (6.29) at infinity (if any, i.e., if (6.24) is in the limit
circle case at oo). For characterizations of R we refer, for instance, to [161], [159,
Ch. 2], [172, Ch. 2]. Then combining (6.125) with (6.80) yields Simon's inverse
spectral approach as an alternative to that by Gel'fand and Levitan:
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PER by(6.80) AoEAb for allb>0
by (6.124) , B(a, x), (a, x) E Ob for all b > 0

by (6.123)
A(a, x), (a, x) E Ab for all b > 0

by (6.122) 1
V = A(0+, .) E L ([O, b]) for all b > 0.

(6.126)

More recent references: Local solvability and a necessary condition for global
solvability of the A-equation (6.119) were recently discussed by Zhang [252], [253].
Connections between the A-amplitude and the scattering transform for Schrodinger
operators on the real line have been discussed by Hitrik [117].

Next we briefly quote the main results by Ramm and Simon [200]. The primary
goal in this paper was to study A as an interesting object in its own right and, in
particular, using ideas implicit in Ramm [195] to obtain detailed information on the
behavior of A(a) as a --f oo when V decays sufficiently fast as x ---> oo. Indeed, for
potentials decaying rapidly enough, Ramm [195] stated the representation (6.117)
(actually, (6.40)), but no proof was given (nor was there any connection of the
function A to the inverse problem for V). In [195] the inverse problem of finding
the potential from the knowledge of the m-function has been solved for short-range
potentials. A more detailed discussion of the result in [195] can be found in [198],
[199].

Throughout [200] it is assumed that

f(i + x) dx IV(x)I < oo (6.127)

and the Dirichlet-type Schrodinger operator H in L2([0, oo)) defined by

H f = -f" + V f, f E dom(H) = {u E L2([0, oo)) 1 u, u' E AC10 ([0, b])
(6.128)

for all b > 0; u(0+) = 0; (-g" + Vg) E L2([0, oo))}

is considered.
More generally, for n c No, B < 0 and f > 0, the space CB,e of all functions q

with n - 1 classical derivatives and q(') E L1([0, oo)) so that

00
J (1 + x)e e-Bx dx q (x) < 00

0

for j = 0, 1, ... , n. Thus, (6.127) says V E CB--oo'e-1

Under condition (6.127), general principles (see, e.g., [172, Ch. 3]) imply that
for all n E C with Re(n) > 0, there is a unique solution F(rc, x) of - f"+V f = -c2 f
normalized so that F(rc, x) = e-"(1 + o(1)) as x -> oo. We set F(rc) := F(ic, 0+).
Except for the change of variables is = -ik, F(rc, x) and F(rc) are the standard Jost
solution and Jost function. Both F(rc, x) and F(rc) are analytic with respect to is
in {rc E C I Re (r,) > 0}. If V E CB,t for any n, f and B < 0, then F(rc, x) and F(rc)
have analytic continuations into the region Re(rc) > B/2.

The following is easy to see and well known (cf. [172, Ch. 3]):
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(1) The zeros of F in {rc E C I Re(rc) > 0} occur precisely at those points rcj
with -rcj an eigenvalue of the operator H and each such zero is simple.

(2) F has no zeros in Jr. E C I Re(rc) = 0, is 0}.

(3) If F(0) = 0 and V E CB-0 'P=2 then F is C' and F'(0) 0. If F(0) = 0,
we say that H has a zero energy resonance.

If F can be analytically continued to {rc E C I Re(rc) > B/2} for B < 0, then
zeros of F in Jr, E C I Re(rc) < 0} are called resonances of H. They occur in complex
conjugate pairs (since F is real on the real axis). If F'(rco) 54 0 at a zero no, we
say that no is a simple resonance. Resonances need not be simple if Re(no) < 0
although they are generically simple.

The result stated in [195] can be phrased as follows:

THEOREM 6.47. Suppose that V satisfies (6.127) (i.e., it lies in Cn_0B o eI
'

and that H does not have a zero energy resonance. Let {-rcj} 1 be the negative
eigenvalues of H with rcj > 0. Then

J
A(a) E Bj e2""3 + g(a), (6.129)

j=I
where g c L1([0,oo)). In particular, if H has no eigenvalues and no zero energy
resonance (e.g., if V > 0), then A E L1([0, oo)).

REMARK 6.48. (i) The result stated in [195] assumes implicitly that there is
no zero energy resonance. Details can be found in [198].

(ii) If A E L1([0,oo)), then the representation (6.117) (resp., (6.40)) can be
analytically continued to the entire region Re(rc) > 0.

(iii) If uj is the eigenfunction of H corresponding to the eigenvalue -rc?, nor-
malized by Iuj112 = 1, then

= - I
(0+) I2Bj
rcj

This follows from (6.104) and the fact that
J

dp(A)
(_00'

0) _ ui (0+) I26(A + r';) dA.
j=1

To handle zero energy resonances of H, one needs an extra two powers of decay
(just as (6.28) says more or less that IV(x)I is bounded by O(x-2-E), the condition
in the next theorem says that IV(x)I is more or less 0(x-4-E)):

THEOREM 6.49. Let V E Ca -_o
o e=s SuPpose that H has a zero energy reso-

nancenance and negative eigenvalues at with rcj > 0. Then
J

A(a) = Bo + E Bj e2ai3 + g(a), (6.130)
j=1

where g E L1([0, oo)).

These results are special cases of the following theorem:

THEOREM 6.50. Let V E CB=o'e where $ > 1 and, if H has a zero energy reso-
nance, then 2 > 3. Then (6.129) (resp., (6.130) if there is a zero energy resonance)
holds, where g E CB=0'e-1 (resp., CB=o,e-s)
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Finally, for B < 0, the following result was proved in [200]:

THEOREM 6.51. Let V E CB' t-0 with B < 0. Let j3 E (B, 0) and let {-K2}
with rj > 0 be the negative eigenvalues of H, {Aj }M 1 with Aj < 0 the real reso-
nances (a.k.a. anti-bound states) of H, and {µj +ivj}N 1 the complex resonances
of H with h < µj < 0 and vj > 0. Suppose each resonance is simple. Then for
suitable {Bj } 1, {Cj }M 1, {Dj } 1, {Bj one obtains

J M N
A(a) = E Bj e2aw,, + Cj e2aa, + E Dj e2F1, a COS(2vj a + O) + 9(a),

j=1 j=1 j=1

where g E CV=O. In particular, if H has no negative eigenvalues, the rate of decay
of A is determined by the resonance with the least negative value of A or µ.

We conclude this section with a brief look at the principal results in [98].
= -dLet Hj X2 + Vj, Vj E L1([0, b]) for all b > 0, Vj real-valued, j = 1, 2,

be two self-adjoint operators in L2([0, oo)) with a Dirichlet boundary condition at
x = 0+. Let mj (z), z E C\IR be the Weyl-Titchmarsh m-functions associated
with Hj, j = 1, 2. The main purpose of [98] was to provide a short proof of
the following local uniqueness theorem in the spectral theory of one-dimensional
Schrodinger operators, originally obtained by Simon [228], but under slightly more
general assumptions than in [228].

We summarize the principal results of [98] as follows:

THEOREM 6.52. (i) Let a > 0, 0 < e < it/2 and suppose that

I M1 (Z) - m2(z)I = O(e-21m(z1/2)a)
I=I - oo

along the ray arg(z) _ 7r - E. Then

Vl (x) = V2 (x) for a. e. x c [0, a].

(ii) Conversely, let arg(z) E (e, -7r - E) for some 0 < e < 7r and suppose a > 0. If

Vl (x) = V2 (x) for a. e. x c [0, a],

then

Im1(z) -m2(z)I = O(e_21m(zli2)a). (6.131)
IZI-.oo

(iii) In addition, suppose that Hj, j = 1, 2, are bounded from below. Then (6.131)
extends to all arg(z) E (e, 7r].

COROLLARY 6.53. Let 0 < E < it/2 and suppose that for all a > 0,

m1 (z) - m2(z)I
ZI=00

O(e-21m(z1/2)a)

along the ray arg(z) = 7r - E. Then

Vl (x) = V2 (x) for a. e. x E [0, oo).
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Theorem 6.52 and Corollary 6.53 follow by combining some of the Riccati equa-
tion methods in [97] with properties of transformation operators (cf. [172, Sect.
3.1]) and a uniqueness theorem for finite Laplace transforms [228, Lemma A.2.1].

In particular, Corollary 6.53 represents a considerable strengthening of the
original Borg-Marchenko uniqueness result [25], [170], [171]:

THEOREM 6.54. Suppose

mI(z) = m2(z), z E cC\R,

then
Vi (x) = V2 (x) for a. e. x c [0, oo).

REMARK 6.55. (i) Marchenko [170] first published Theorem 6.54 in 1950.
His extensive treatise on spectral theory of one-dimensional Schrodinger operators
[171], repeating the proof of his uniqueness theorem, then appeared in 1952, which
also marked the appearance of Borg's proof of the uniqueness theorem [25] (appar-
ently, based on his lecture at the 11th Scandinavian Congress of Mathematicians
held at Trondheim, Norway, in 1949).

We emphasize that Borg and Marchenko also treat the general case of non-
Dirichlet boundary conditions at x = 0+ (see also item (vi) below). Moreover,
Marchenko simultaneously discussed the half-line and finite interval case (cf. item
(vii) below).

(ii) As pointed out by Levitan [159] in his Notes to Chapter 2, Borg and
Marchenko were actually preceded by Tikhonov [245] in 1949, who proved a special
case of Theorem 6.54 in connection with the string equation (and hence under
certain additional hypotheses on Vj).

(iii) Since Weyl-Titchmarsh functions m are uniquely related to the spectral
measure dp of H by the standard Herglotz representation theorem, (6.33), The-
orem 6.54 is equivalent to the following statement: Denote by dpi the spectral
measures of Hj, j = 1, 2. Then

dpl = dp2 implies VI = V2 a.e. on [0, oo).

In fact, Marchenko took the spectral measures dpi as his point of departure while
Borg focused on the Weyl-Titchmarsh functions mj.

(iv) The Borg-Marchenko uniqueness result, Theorem 6.54 (but not the strength-
ened version, Corollary 6.53), under the additional condition of short-range poten-
tials Vj satisfying Vj E LI([0, oo); (1 + x) dx), j = 1, 2, can also be proved using
Property C, a device used by Ramm [197], [198] in a variety of uniqueness results.

(v) The ray arg(z) = 7r - e, 0 < e < 7r/2 chosen in Theorem 6.52 (i) and
Corollary 6.53 is of no particular importance. A limit taken along any non-self-
intersecting curve C going to infinity in the sector arg(z) E ((ir/2) + e, 7r - e) will
do since we can apply the Phragmen-Lindelof principle ([191, Part III, Sect. 6.5])
to the region enclosed by C and its complex conjugate C.

(vi) For simplicity of exposition, we only discussed the Dirichlet boundary
condition

u(0+) = 0
in the Schrodinger operator H. Everything extends to the the general boundary

condition
u'(O+) + hu(0+) = 0, h c 2,
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and we refer to [98, Remark 2.9] for details.

(vii) Similarly, the case of a finite interval problem on [0, b], b E (0, 00), instead
of the half-line [0, oo) in Theorem 6.52 (i), with 0 < a < b, and a self-adjoint
boundary condition at x = b_ of the type

u'(b_) + hbu(b_) = 0, hb E IEB,

can be discussed (cf. [98, Remark 2.10]).

While we have separately described a few extensions in Remarks 6.55 (v)-(vii),
it is clear that they can all be combined at once.

Without going into further details, we also mention that [98] contains the ana-
log of the local Borg-Marchenko uniqueness result, Theorem 6.52 (i) for Schrodinger
operators on the real line. In addition, the case of half-line Jacobi operators and
half-line matrix-valued Schrodinger operators was dealt with in [98].

More recent references: An even shorter proof of Theorem 6.52 (i), close in
spirit to Borg's original paper [25], was found by Bennewitz [18]. Still other proofs
were presented by Horvath [124] and Knudsen [139]. Various local and global
uniqueness results for matrix-valued Schrodinger, Dirac-type, and Jacobi operators
were considered in [84]. The analog of the local Borg-Marchenko theorem for
certain Dirac-type systems was also studied by A. Sakhnovich [212]. The matrix-
valued weighted Sturm-Liouville case has further been studied by Andersson [9].
He also studied uniqueness questions for certain scalar higher-order differential
operators in [10]. A local Borg-Marchenko theorem for complex-valued potentials
has been proved by Brown, Peacock, and Weikard [26]. The case of semi-infinite
Jacobi operators with complex-valued coefficients was studied by Weikard [2501-
A (global) uniqueness result for trees in terms of the (generalized) Dirichlet-to-
Neumann map was found by Brown and Weikard [27].
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1. Introduction

Originally we were asked to write two separate papers: one on Barry Simon's
work and one on the state of the art in the theory of orthogonal polynomials.
However, Simon's work on orthogonal polynomials is so fresh and fundamental
that it will be, for quite some time, the state of the art of the theory on the unit
circle. This conflict could have only been resolved in a joint article.

This work is meant for non-experts, and therefore it contains some introductory
material. We tried to list most of the actively researched fields, but because of space
limitation, we have one or two pages for areas where dozens of papers and several
books had been published. As a result our account is necessarily incomplete.

The connection of orthogonal polynomials with other branches of mathematics
is truly impressive. Without even trying to be complete, we mention continued
fractions, operator theory (Jacobi operators), moment problems, analytic functions
(Bieberbach's conjecture), interpolation, Pade approximation, quadrature, approx-
imation theory, numerical analysis, electrostatics, statistical quantum mechanics,
special functions, number theory (irrationality and transcendence), graph theory
(matching numbers), combinatorics, random matrices, stochastic processes (birth
and death processes, prediction theory), data sorting and compression, Radon
transform and computer tomography.

The theory of orthogonal polynomials can be divided into two main but only
loosely related parts. The two parts have many things in common, and the divid-
ing line is quite blurred-it is more or less along algebra vs. analysis. One of the
parts is the algebraic aspect of the theory, which has close connections with special
functions, combinatorics and algebra, and it is mainly devoted to concrete orthog-
onal systems or hierarchies of systems such as the Jacobi, Hahn, Askey-Wilson,
etc. polynomials. All the discrete polynomials and the q-analogues of classical ones
belong to this theory. We will not treat this part; the interested reader can consult
three recent excellent monographs [51, 32, 4]. Much of the present state of the
theory of orthogonal polynomials of several variables also lies close to this algebraic
part of the theory. To discuss them would take us too far from our main direction,
rather we refer the reader to the recent book [28].

The other part is the analytical aspect of the theory. Its methods are ana-
lytical, and it deals with questions that are typical in analysis, or questions that
have emerged in and are related to other parts of mathematical analysis. General
properties fill a smaller part of the analytic theory, and the greater part falls into
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two main and extremely rich branches: orthogonal polynomials on the real line and
on the circle. The richness is due to some special features of the real line and the
circle. Classical real orthogonal polynomials, sometimes in other forms like contin-
ued fractions, can be traced back to the 18th century, but their rapid development
occurred in the 19th and early 20th century. Orthogonal polynomials on the unit
circle is much younger, and their existence is largely due to Szego and Geronimus
in the first half of the 20th century. Simon's recent treatise [106, 107] (see also
[100]) summarizes and greatly extends what has happened since then.

The organization of the present article is as follows. First, in Part 1, we give
a brief outline of general and real orthogonal polynomials. Then we elaborate on
some recent trends and the state of the art of this branch of the analytic theory.
Simon's contributions to real orthogonal polynomials will be mentioned in this part.
After that, in Part 2, we move to orthogonal polynomials on the circle, and, finally,
Part 3 lists many of Simon's contributions.

Each of us has opted for his own style of exposition. Part 1, prepared by the
second author, deals mostly with the state of the art in orthogonal polynomials-
except orthogonal polynomials on the unit circle and covers areas/results that
are from a period of over a hundred years and from a large number of people;
therefore the style there is somewhat informal. In contrast, Part 3 discusses mostly
achievements of Barry Simon, and there, more formal statements are given.

Acknowledgements. Both authors participate in the project INTAS 03-51-6637
that supported a visit of the first author to Szeged, during which the outline of this
paper was laid out. Research of the second author was supported by NSF grant
DMS-040650 and OTKA T049448, TS44782.

Part 1. GENERAL THEORY

2. Orthogonal Polynomials

2.1. Orthogonal Polynomials With Respect to Measures. Let p be a
positive Borel measure on the complex plane with infinite support for which

f z1m'dµ(z) < oo

for all m > 0. There are unique polynomials

r , , ,p. (z) kn > 0, n = 0, 1, .. .

which form an orthonormal system in L2(µ), i.e.,

f
f pniPndp

0 ifm n
_ .

1 ifm=n
These pn's are called the orthonormal polynomials corresponding to p. icn is the
leading coefficient, and pn (z)/ICn = zn +.. is called the monic orthogonal polyno-
mial. The leading coefficients play a special and important role in the theory; many
properties depend on their behavior. When dp(x) = w(x)dx on some interval, say,
then we talk about orthogonal polynomials with respect to the weight function w.

The pn's can be easily generated: all we have to do is to make sure that

Kn
dµ(z) = 0, k = 0, 1'...,n - 1,

J
pn(z) zk
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which is an n x n system of equations for the coefficients of pn(z)/FGn with matrix
1(ai j)nij-=., where

ai,j = fZZ)
are the complex moments of µ. This matrix is non-singular, so the system has a
unique solution, and finally in comes from normalization.

In particular, the complex moments already determine the polynomials. In
terms of them one can write up explicit determinantal formulae:

010,0 010,1 ... 010 n_1 1

011,0 011,1 ... a1,n_1 Z

P (z) =
1

n
Dn 1Dn

where

an-1,0 an-1,1 an-1 n-1 zn-1

an o an 1 ... an n-1 zn

Dn = I aij I i,j=o (2.2)

are the so-called Gram determinants.
Note that if µ is supported on the real line then

fx'x+jorij = f

so Dn = ai+j o is a Hankel determinant, while if µ is supported on the unit
circle then

ai,j = f zZ 3dµ(z) =: Na-j,

so Dn = I,Qi_j ji j=0 is a Toeplitz determinant. In these two important cases the
orthogonal polynomials have many special properties that are missing in the general
theory. For example, in the real case, i.e., if µ is supported on the real line, the
pn's obey a three-term recurrence formula

XPn(X) = anPn+1(x) + bnPn(x) + an_1Pn-1(x), (2.3)

where
ttn

an = > 0, bn = xpn(x)dµ(x),
Kn+1

and conversely, any system of polynomials satisfying (2.3) with real an > 0, bn is
an orthonormal system with respect to a (not necessarily unique) measure on the
real line (Favard's theorem). In the real case the zeros of pn are real and simple
and the zeros of pn and Pn+1 interlace, i.e., in between any two zeros of pn+1i there
is a zero of pn. We emphasize that the three-term recurrence is a very special
property of real orthogonal polynomials, and it is due to the fact that in this case
the polynomials are real, hence

fXPn(X)Pm(X)d(X) _ fPn(x)(xp.(x))dµ(x) = 0

for m < n - 1. This three-term recurrence is missing in the general case, and
it is replaced by a different recurrence for polynomials on the circle (see Part 2).
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For example, in the real case the three-term recurrence implies for the reproducing
kernel the Christoffel-Darboux formula

n

E Pk (x)Pk (t) _
k=0

in pn+1(x)pn (t) - Pn (x)pn+1(t)
kn+1 x - t

The starting values of the recurrence (2.3) are p_1 - 0, po = (µ(C)))-1/2. If
one starts from q-1 = -1, qo - 0 and use the same recurrence (with a_1 = 1)

xgn(x) = angn+l(x) + bngn(x) + an-lqn-1(x), (2.4)

then qn is of degree n - 1, and by Favard's theorem the different qn's are orthogonal
with respect to some measure. The qn's are called orthogonal polynomials of the
second kind (sometimes for Pn we say that they are of the first kind). They can
also be written in the form

qn(z) = (NL(C'))
1/2 f pn(Z) _ Pn(x)

2.2. The Riemann-Hilbert Approach. Let p still be supported on the real
line, and suppose that it is of the form dp(t) = w(t)dt with some smooth function
w. A new approach to generating orthogonal polynomials that has turned out to
be of great importance was given in the early 1990's by Fokas, Its and Kitaev [31].
Consider 2 x 2 matrices

Y(z) (YI1(z)

Y12(z)Y21 (Z) Y22(z)

where the Ytij are analytic functions on C \ R, and solve for such matrices the
following matrix-valued Riemann-Hilbert problem:

1. For all xER

Y+(x) Y (x) 1 w(x) )
where Y+ (resp. Y_) is the limit of Y(z) as z tends to x from the upper (resp. lower)
half plane, and

2.

Y(z) _ (I+O()) ( zJ
at infinity, where I denotes the identitymatrix. /

There is a unique solution Y(z), and its entry Y11(z) is precisely the monic
polynomial pn(a, z)/r1n. The other entries can also be explicitly written in terms
of Pn and pn_1. Furthermore, r1n and the recurrence coefficients an, bn can be
expressed from the entries of Y1, where Yl is the matrix in

Y(z)(Z fl )=i+1+o(J).
For details on this Riemann-Hilbert approach, see [20] or [21] in this Festschrift.
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2.3. Orthogonal Polynomials With Respect to Inner Products. Some-
times one talks about orthogonal polynomials with respect to an inner product
which is defined on some linear space containing all polynomials. In this case or-
thogonality means (pn, pm) = 0 for m n. When the inner product is positive
definite in the sense that (p, p) = 0 only for the zero polynomial p, then the afore-
mentioned orthogonalization process can be used, and with Qi,j = (xi, xj), the
determinantal formula (2.1) is still valid. The same is true if the Gram determi-
nants (2.2) are different from zero. However, if this is not so, e.g., in the so-called
non-Hermitian orthogonality (see Section 11), then these cannot be used. In this
case we write

pn (Z) = -'nZn + 7'n-IZn-1 + .. .

and make sure that pn is orthogonal to all powers zk, 0 < k < n, i.e., solve the
homogeneous system of equations

n

E-IjO'j,k=0, k=0,...,n-1
j=0

for ryo, 71) ... , yn. Since the number of unknowns is bigger than the number of
equations, there is always a non-trivial solution, which gives rise to non-trivial
orthogonal polynomials. However, we cannot assert any more ryn 0, so the degree
of pn may be smaller than n, and there may be several choices for pn. Still, in
applications where non-Hermitian orthogonality is used, these Pn play the role of
orthogonal polynomials.

2.4. Varying Weights. In the last twenty-five years orthogonal polynomials
with respect to varying measures have played a significant role in several prob-
lems; see, e.g., the sections on exponential and Freud weights or on random ma-
trices in Section 4. In forming them one has a sequence of measures µn (gen-
erally with some particular behavior), and for each n one forms the orthogonal
system {pk(µn, z)}k o. In most cases one needs the behavior of pn(µn, z) or that
of pntk(µn, z) with some fixed k.

2.5. Matrix Orthogonal Polynomials. Orthogonality of matrix polyno-
mials (i.e., when the entries of the fixed size matrix are polynomials of degree
n = 0, 1.... and orthogonality is with respect to a matrix measure) is a very active
area which shows extreme richness compared to the scalar case. See Section 13 for
a short discussion.

3. Classical Orthogonal Polynomials

These are
Jacobi polynomials Pn(" 3), a, 3 > -1, orthogonal with respect to the
weight (1 -

x)c'

(1 + x)' on [-1, 1]
Laguerre polynomials L(a), a > -1 with orthogonality weight x'e-x on
[0, oo),
Hermite polynomials Hn orthogonal with respect to

e_x2
on (-oo, oo).

In the literature various normalizations are used for them.
They are very special, for they possess many properties that no other orthogonal

polynomial system does. In particular,
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they have derivatives which form again an orthogonal polynomial system,
e.g., the derivative of Pna'") is a constant multiple of P(a 11,a+1)

(P(a,a))'(x) = 2 (n + a + 0 + 1)P( il'0+1) (x),

they all possess a Rodrigues-type formula

Pn(x) = 1 do
{w(x)Q(x)n},

dnw(x) dxn

where w is the weight function and a is a polynomial that is independent
of n, e.g.,

nL(a)(x) = exx-a 1 /e-xxn+a)
,

n1

.

dxn

\\

they satisfy a differential-difference relation of the form

7r(x)P'(x) = (anx +Nn)Pn(x) +1nPn 1(x),

e.g.,

x(L;ca))'(x) = nL(a)(x) - (n+a)Ln)1(x),
they satisfy a non-linear equation of the form

a(x) (Pn(x)PP-1(x))' = (anx +,3n)Pnn(x)Pn-1(x) + 1'nPn, (x) + bnPP-1(x),

with some constants an, On,'yn, bn, and a a polynomial of degree at most
2, e.g.,

(Hn(x)Hn-1(x))' = 2xHn(x)Hn-1(x) - +2nHn_1(x)

Now every one of these has a converse, namely, if a system of orthogonal polynomials
possesses any of these properties, then it is (up to a change of variables) one of
the classical systems [3]. See also Bochner's result in the next section claiming
that the classical orthogonal polynomials are essentially the only polynomial (not
just orthogonal polynomial) systems that satisfy a certain second-order differential
equation.

Classical orthogonal polynomials are also special in the sense that they possess
a relatively simple

second-order differential equation, e.g.,

xy1 +(a+l-x)y'+ny=0
for Ln(a)
generating function, e.g.,

Hn x) wn = exp(2xw - w2)
n!

n

integral representation, e.g.,
n

(1 - x)a(1 +x)Op(-,/3)(x) =
_

2'L+ 7r2
f (1 - t)n+a(1 +t)n+O(t - X)-n- -Idt

over an appropriate contour,

and these are powerful tools to study their behavior. For all these results, see [122].
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4. Where Do Orthogonal Polynomials Come From?

In this section we mention a few selected areas where orthogonal polynomials
naturally arise.

4.1. Continued Fractions. Continued fractions played an extremely impor-
tant role in the development of several branches of mathematics, but their signifi-
cance has been unjustly diminished in modern mathematics. A continued fraction
is of the form

B1
B2Al + A2+...

and its n-th convergent is
Sn B1 n=1,2,....
Rn Al +

B2
A2+... A

The value of the continued fraction is the limit of its convergents. The denominators
and numerators of the convergents satisfy the three-term recurrence relations

Rn = AnRn-1 + BnRn_2i Ro- 1, R_1 0

Sn = AnSn-1 + BnSn_2i So= 0, S_1 1,

which immediately connects continued fractions with three-term recurrences and
hence with orthogonal polynomials.

But the connection is deeper than just this formal observation. Many elemen-
tary functions (like z - z2 - 1) have a continued fraction development where the
Bn's are constants while the An's are linear functions, in which case the convergents
are ratios of some orthogonal polynomials of the second and first kind. An impor-
tant example is that of Cauchy transforms of measures µ with compact support on
the real line (the so-called Markov functions):

f (z) _ a0 - al
(4.1)-z z z2

The coefficients aj in the development of (4.1) are the moments

%=J xidµ(x), j=0,1,...
of the measure A. The continued fraction development

f (z) ^ B1
z- A1+ B2z-A2+

off at infinity converges locally uniformly outside the smallest interval that contains
the support of µ (Markov's theorem).

As has been mentioned, the numerators Sn(z) and the denominators Rn(Z) of
the n-th convergents

Sn (Z) _ B1
n = 1 2

> ,...
n ( ) 1+ B2R z z-A z-A2+

satisfy the recurrence relations

Rn(z) = (z - An)Rn-i(z) + BnRn-2(z), Ro= 1, R-1 = 0 (4.2)

Sn(z) = (z - An)Sn-1(z) + BnSn-2(z), So - 0, S_1 1.
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These are precisely the recurrence formulae for the monic orthogonal polynomi-
als of the first and second kind with respect to p. Hence the n-th convergent
is cgn(z)/pn(z) with c = µ(C)1/2. See [122, pp. 54-57] as well as [56] and the
numerous references there.

4.2. Pade Approximation and Rational Interpolation. With the pre-
ceding notation, the rational function Sn(z)/Rn(z) = cgn(z)/pn(z) with c = µ(C)1/2
of numerator degree n - 1 and of denominator degree n interpolates f (z) at infin-
ity in the order 2n. This is the analogue (called [n - 1/n] Pade approximation)
of the n-th Taylor polynomial (which interpolates the function in the order n) for
rational functions. The advantage of Pade approximation over Taylor polynomials
lies in the fact that the poles of Pade approximants may imitate the singularities
of the function in question, while Taylor polynomials are good only up to the first
singularity. The error in [n - 1/n] Pade approximation has the form

AZ) -
cgn(z) = 1 f po(x) dµ(x).
pn(z) p2(z) x - z

Orthogonal polynomials appear in more general rational interpolation (called
multipoint Pade approximation) to Markov functions; see, e.g., [117, Sect. 6.1].

4.3. Moment Problem. The moments of a measure p, p (C) = 1, supported
on the real line, are

an = f xndp(x), n = 0, 1, ... .

The Hamburger moment problem is to determine if a sequence {an} (with nor-
malization ao = 1) of real numbers is the moment sequence of a measure with
infinite support, and if this measure is unique (the Stieltjes moment problem asks
the same, but for measures on [0, oo)). The existence is easy: {an} are the mo-
ments of some measure supported on R if and only if all the Hankel determinants
ai+jj =o, M = 0, 1'... are positive. The unicity (usually called determinacy)

depends on the behavior of the orthogonal polynomials (2.1) defined from the mo-
ments Qij = ai+j. In fact, there are different measures with the same moments
aj if and only if there is a non-real zo with En Ipn(zo)12 < oo, which in turn is
equivalent to En IN (z) 1 2 < oo for all z E C. Furthermore, the Cauchy transforms
of all solutions v of the moment problem have the parametric form

dv(x) _ C(z)F(z) + A(z)
J z - x D(z)F(z) + B(z)'

where F is an arbitrary analytic function (the parameter) mapping the upper half
plane C+ into C+ U {oo}, and A, B, C and D have explicit representation in terms
of the first/ and second kind orthogonal polynomials pn and qn:

A(z) = z En gn(0)gn(z); B(z) = -1 + z En gn(0)pn(z);

C(z) = 1 + z En pn(0)gn(z); D(z) = z En pn(0)pn(z).

For all these results and for an operator theoretic approach to the moment
problem, see Simon's survey [96] (in particular, Theorems 3 and 4.14).
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4.4. Jacobi Matrices and Spectral Theory of Self-Adjoint Operators.
Tridiagonal, so-called Jacobi matrices

bo ao 0 0

ao b1 a1 0

0 a1 b2 a2

0 0 a2 b2 ...

with bounded an > 0 and bounded real bn define a self-adjoint bounded operator J
in 12, a so-called Jacobi operator. These are the discrete analogue of second-order
linear differential operators of Schrodinger type on the half line. Every bounded
self-adjoint operator with a cyclic vector is a Jacobi operator in an appropriate
base.

The formal eigenequation J7r = A7r is equivalent to the three-term recurrence

an-17rn-1 + bn7rn + an7rn+1 = )17rn, n

boiro + ao7rl = X7ro, 70 = 1.

Thus, 7rn(A) is of degree n in A.
By the spectral theorem, J, as a self-adjoint operator having a cyclic vector

((1,0,0 ....)), is unitarily equivalent to multiplication by x in some L2(µ) with
µ having compact support on the real line. More precisely, if pn(x) = pn(A,x)
are the orthonormal polynomials with respect to µ, and U maps the unit vector
en = (0,...,0,1,0 ....) into pn, then U can be extended into a unitary operator
from 12 onto L2 (µ), and if S f (x) = x f (x) is the multiplication operator by x in
L2(µ), then J = U-1SU. The recurrence coefficients for pn(µ, x) are precisely the
an's and bn's from the Jacobi matrix, i.e., pn(x) = c7rn(x) with some fixed constant
c. These show that Jacobi operators are equivalent to multiplication by x in L2 (µ)
spaces if the particular basis {pn(µ)} is used (see, e.g., [21, Ch. 2]).

The truncated n x n matrix

b0 a0 0 0

ao b1 a1 0 ...

Jn _ 0 a1 b2 a2 ...

0 0 0 an-2 bn-1 f

has n real and distinct eigenvalues, which turn out to be the zeros of pn, i.e., the
monic polynomial pn(z)/r-n is the characteristic polynomial of Jn.

4.5. Quadrature. For a measure µ, an n-point quadrature is a set of points
X1, ... , xn and a set of associated numbers A1, ... , A. It is expected that

f fdµ,,,EAkf(xk)
k=1

in some sense for as large class of functions as possible. Often the accuracy of the
quadrature is measured by its exactness, which is defined as the largest m such
that the quadrature is exact for all polynomials of degree at most m, i.e., m is the
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largest number with the property that

forall0j <m.Jz3d(z)=Akx
k=1

For µ with support on the real line and for quadrature based on n points, this
exactness m cannot be larger than 2n - 1, and this optimal value 2n -1 is attained
if and only if x1, ... , xn are the zeros of the orthonormal polynomial pn(p, x) cor-
responding to µ, and the so-called Cotes numbers'\k are chosen to be

(EPixk)2Ak =
j=0

See [122, Ch. XV].

1

4.6. Random Matrices. Some statistical-mechanical models in quantum sys-
tems use random matrices. Let 7-ln be the set of all n x n Hermitian matrices
M = *'j)7j=1i and let there be given a probability distribution on In of the
form

Pn(M)dM = Dn1 exp(-nTr{V(M)})dM,
where V (A), A E R, is a real-valued function that increases sufficiently fast at
infinity (typically an even polynomial in quantum field theory applications), Tr{H}
denotes the trace of the matrix H,

n

dM = fi dmk,k 11 d'mk,j d smk,j
k=1 k<j

is the "Lebesgue" measure for Hermitian matrices, and Dn is a normalizing constant
so that the total integral of Pn(M)dM is one.

Every matrix M E 7-ln has n real eigenvalues which carry physical information
on the system when it is in the state described by M. The quantity

Nn(D) = #{eigenvalues in D}
n

is the random variable that equals the normalized number of eigenvalues in the
interval D. This model is known as the unitary ensemble associated with V.

Let pj (wn, x) be the orthonormal polynomials with respect to the varying
weight wn(x), w(x) = exp(-V(x)). Then the joint probability density of the eigen-
values can be written in the form

2

do I pi-i (wn, Aj )wf12 (Aj ) 1<i,j <n,

where do is a normalizing constant built up from the leading coefficients of the
pj (wn, ). With the so-called weighted reproducing kernel

n-1
Kn (t, s)

=
E pj (wn, t)wn/2 (t) pj (WT, s)wn'l2 (s),
j=0

it can also be written in the form

I Kn(Ai, Aj)I1<i,j<n



832 L. GOLINSKII AND V. TOTIK

In particular, for the expected number of eigenvalues in an interval D, we have

ENN(D) = K,(A, A)
dA,

where 1/K.n(A, A) is known in the theory of orthogonal polynomials as the n-th
(weighted) Christoffel function associated with the weight wn, while the limit of
the left-hand side (as n -> oc) is known as the density of states. See, e.g., [77] and
[86].

5. Some Questions Leading to Classical Orthogonal Polynomials

There are almost an infinite number of problems where classical orthogonal
polynomials emerge. Let us just mention a few.

5.1. Electrostatics. Put to 1 and -1 two positive charges p and q, and with
these fixed charges put n positive unit charge on [-1, 1] to the points x 1 , . .. , xn,. On
the plane the Coulomb force is proportional with the reciprocal of the distance, and
so a charge generates a logarithmic potential field. Therefore, the mutual energy
of all these charges is

I(x1i... Xn) =p1: log +qElog +I:log
7=I

11 - xjl J-1 I1 + xj
i<J

Ixi - xj

and the equilibrium problem asks for finding x1i ... , xn for which this energy is
minimal. The unique minimum occurs (see [122, Sect. 6.7]) for the zeros of the
Jacobi polynomial P(2p-1'29-1) orthogonal with respect to the weight (1-x)2p-1(1+
x)2q-1

1 There is a similar characterization of the zeros of Laguerre and Hermite poly-
nomials, and even of more general orthogonal polynomials (for the latter, see [51,
Sect. 3.5]).

5.2. Polynomial Solutions of Eigenvalue Problems. Consider the eigen-
value problem,

z

P X) dx2 y(x) + g(x)d y(x) + h(x)y(x) = Ay(x),

where f, g, h are fixed polynomials and A is a free constant, and it is required that
this has a polynomial solution of exact degree n for all n = 0, 1, ..., for which the
corresponding A and y(x) will be denoted by A and yn(x), respectively. Bochner's
theorem [14] states that except for some trivial solutions of the form y(x) = ax's +
bx' and for some polynomials related to Bessel functions, the only solutions are
(in all of them we can take h(x) = 0):

Jacobi polynomials P(a'13) (f (x) = 1 - x2, g(x) _ 3 - a - x(a +,3 + 2),
A = -n(n+a+/3+1))
Laguerre polynomials Ln') (f (x) = x, g(x) = 1 + a - x, An = -n) and
Hermite polynomials Hn(x) (f (x) = 1, g(x) _ -2x, A = -2n).
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5.3. Harmonic Analysis on Spheres and Balls. Harmonic analysis on
spheres and balls in Rd is based on spherical harmonics, i.e., harmonic homogeneous
polynomials. In this theory special Jacobi polynomials, so-called ultraspherical or
Gegenbauer polynomials P,"'), play a fundamental role-they are orthogonal with
respect to the weight (1 - x2)a-1/2

Let Sd-1 be the unit sphere in Rd and let 71 be the restriction to Sd-1 of all
harmonic polynomials Q(xl, . . . , xn) of d variables that are homogeneous of degree
n, i.e.,

a2
2 Q=0, Q(Ax..... Ax,n) = AnQ(xl, .. xn), A > 0.

k=1 axk

The dimension of 7-ldn is

Cnd-111-\nd-13/'

and an orthogonal basis in it can be produced as follows. With p = xd_1 + xd,
let gs,o = PsP(o)(xd-1/P) and gs,1 = xdPsP(I)(xd-1/P). With nd = 0 or nd = 1,
consider all multi-indices n = (nl, n2.... , nd) such that nl + + nd = n, and if
for such a multi-index we define

d-2

(
2 2)n, (aj) 2 2)-1/2)Y. (XI, ... xd) = gnd-l,nd (xj + ... + xdPn7 (x7 (x + ... + xd

j=1

then these Yn constitute an orthogonal basis in 7-I (see, e.g., [28, p. 35]).

5.4. Approximation Theory. In the literature, expansions of functions into
classical orthogonal polynomial series are second only to trigonometric expansions,
and numerous works have been devoted to their convergence and approximation
properties; see, e.g., [122, Ch. XIII].

The Chebyshev polynomials given by cos (n arccos x) are orthogonal on [- 1, 1]
with respect to the weight w(x) = (1 - x2)-1/2. These directly correspond to
trigonometric functions, and expansions into them have virtually the same prop-
erties as trigonometric Fourier expansions. But there are many other aspects of
approximation where Chebyshev polynomials appear. If one considers, e.g., the
best approximation on [-1, 1] of xn by polynomials Pn-1(x) of smaller degree,
then the smallest error appears when xn - Pn_1(x) = 21-n cos(n arccos x) is the
monic n-th Chebyshev polynomial.

The monic orthogonal polynomials Pn(P)/r-n are the solutions to the extremal
problem

J
Pnj2dp --> min, (5.1)

where the minimum is taken for all monic polynomials of degree n. This extremal
property makes orthogonal polynomials, particularly Chebyshev polynomials, in-
dispensable tools in approximation theory.

Lagrange interpolation and its various generalizations like Hermite, Hermite-
Fejer interpolation, etc. is mostly done on the zeros of some orthogonal polynomi-
als. In fact, these nodes are often close to optimal in the sense that the Lebesgue
constant increases in the optimal rate. In many cases interpolation on zeros of
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orthogonal polynomials have special properties due to explicitly calculable expres-
sions. Recall, e.g., Fejer's result that if P2,i_1 is the unique polynomial of degree
at most 2n - 1 that interpolates a continuous function f at the nodes of the n-th
Chebyshev polynomial and that has zero derivative at each of these nodes, then
P2n_1 uniformly converges to f on [-1, 1] as n -> oo. For the role of orthogonal
polynomials in interpolation, see [121] and [72].

6. Heuristics

In this section we do not state precise results; we just want to indicate some
heuristics on the behavior of orthogonal polynomials. For the concepts below, as
well as for a more precise form of some of the heuristics, see the following sections,
in particular, Section 7.

As we have just seen, the monic orthogonal polynomials pn(p)/In minimize
the L2(µ) norm in (5.1). Therefore, the polynomials try to be small where the
measure is large, e.g., one expects the zeros to cluster at the support S(p) of p.
The example of arc measure on the unit circle, for which the orthogonal polynomials
are zn, shows, however, that this is not true (due to the fact that the complement
of the support is not connected). The statement is true when the support lies on
R or on some systems of arcs, and also in the general case when, instead of the
support, one considers the polynomial convex hull of the support of p: on any
compact set outside the polynomial convex hull, there can only be a fixed number
of zeros of pn(p) for every n. When the complement of S(p) is connected and S(p)
has no interior, then the distribution of the zeros shows a remarkable universality
and indifference with respect to the size of p. In many situations the distribution of
the zeros is the equilibrium distribution of the support S(p). When S(p) = [-1, 1],
this means that under very weak assumptions, the zero distribution is always the
arcsine distribution dx/,7r 1 - x2.

The L2(p) minimality of pn(p)/#n in the sense of (5.1) is something like min-
imality in L°° norm on S(p). Therefore, pn(p)/r-n should behave like the monic
polynomial Tn minimizing the L°° norm on S(p) (the so-called Chebyshev polyno-
mials for S(p)). Since

1 log ITn(z) I = flogk - tl dvn(t)
n

where vn has mass 1/n at each zero offlogTn, in the limit the behavior should be like

U, (Z) = Iz - tldv(t), (6.1)

where v is the probability measure on S(p) for which the maximum of U" on S(p)
is as small as possible (this is the so-called equilibrium measure of S(p)). More
generally, if dv = dvn = wn(x)dx is a varying weight in the specified way, then the
same reasoning leads to a behavior like (6.1), but now v is a measure for which
the supremum of U" (z) + log w(z) is as small as possible (weighted equilibrium
measure).

Universal behavior can also be seen for the polynomials themselves. Usually
they obey

1 log Ipn(A, z)I 9C\S( )(z, 00), z V S(p) (6.2)n
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where gc\s(µ) (z, oo) is the Green's function with pole at infinity associated with the
complement of the support. When the unbounded component of the complement of
S(p) is simply connected, then in that component, often there is a finer asymptotic
behavior of pn (µ) of the form

pn(z) ^' dngµ(z)(D(z)n, z V S(p) (6.3)

where 1 is the mapping function that maps C\S(p) conformally onto the outside of
the unit disk, and gN, is a function (might be called the generalized Szego function)
that depends on p. Such a fine asymptotic is restricted to the simply connected
case; see, e.g., Section 8.

Asymptotics on orthogonal polynomials have a hierarchy, and the different
types of asymptotics usually require the measure to be sufficiently strong with
different degree on its support. Consider first the case of compact support S(µ).
The weakest is n-th root asymptotics stating the behavior (6.2) for pn (A, Z) II/n
outside the support of the measure. It is mostly equivalent with a corresponding
distribution of the zeros, as well as asymptotical minimal behavior of rn . It holds
under very weak assumption on the measure, roughly stating that the logarithmic
capacity where p' > 0 (derivative with respect to equilibrium measure) be the
same as the capacity of S(p). Ratio asymptotics, i.e., asymptotic behavior of
pn+I (µ, z)/pn (p, z), is stronger, and is equivalent with asymptotics for the ratio
r.n+I/r-n of consecutive leading coefficients. It can only hold when C \ S(µ) (more
precisely, its unbounded component) is simply connected, and in this case it is
enough that p' > 0 almost everywhere with respect to the equilibrium measure of
the support of p (see Section 8). Finally, strong asymptotics of the form (6.3) needs
roughly that log p' be integrable (Szego condition, see Section 8).

All these are outside the support. On the support the orthogonal polynomials
are of oscillatory behavior, and in the real case under smoothness assumptions on
the measure, often a so-called Plancherel-Rotach-type asymptotic formula

pn(p, x) - dng(x) sin(nh(x) + H(x))

holds, where g, h, H are fixed functions. Here h(x) is directly linked with the zeros,
h'/7r is precisely the distribution of the zeros. When S(p) = [-1, 1] and the measure
is smooth, then h(x) = arccos x.

When S(p) is not of compact support (like Laguerre, Hermite or Freud weights),
then usually the zeros are spreading out, and one has to rescale them to [-1, 1] (or to
[0, 1]) to get a distribution, which is mostly not the arcsine distribution. In similar
fashion, various asymptotics hold for the polynomials only after the corresponding
rescaling.

7. General Orthogonal Polynomials

In this section p is always of compact support S(p). For all the results below,
see [117] and the references there.

The energy V(K) of a comparctr set K is defined as the infimum of

I(v) =
JJ

log
x ti

dv(x)dv(t) (7.1)

where the infimum is taken for all positive Borel measures on K with total mass 1.
The logarithmic capacity is then cap(K) = e-V(K). For the leading coefficients to
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of the orthonormal polynomials p,,, (µ), we have

1
< lim inf ,n/n.

cap(S(µ)) n-_
When cap(K) is positive, then there is a unique measure v = WK minimizing

the energy in (7.1), and this measure is called the equilibrium measure of K. The
Green's function gc\K(z, oo) with pole at infinity of C \ K can then be defined as

9c\K(z, oo) = log cap(K) -
flog z 1 t dwK(t). (7.3)

We have for all µ (with cap(S(p)) > 0) the estimate

lim inf 1 log I pn (µ, z)1 > 9c\s(µ) (z, oo) (7.4)n-,oo n -
locally uniformly outside the convex hull of S(µ), while in the convex hull but out-
side the polynomial convex hull Pc(S(p)) (see below), (7.4) is true quasi-everywhere
(i.e., with the exception of a set of zero capacity). The same is true on the outer
boundary of S(µ), which is defined as the boundary 10 of the unbounded compo-
nent SZ of the complement C \ S(µ), namely, for quasi-every z c 81 ,

liminf Ipn(A,z)I'/n > 1.n-co

All these estimates are sharp.
The zeros of pn(µ) lie in the convex hull of S(µ). When SZ is the unbounded

component of the complement C \ S(µ), then Pc(S(p)) = C \ SZ is called the
polynomial convex hull of S(µ) (it is the union of S(µ) with all the "holes" in
it, i.e., with the bounded components of C \ S(µ)). Now the zeros cluster on
Pc(S(p)) in the sense that for any compact subset K of SZ, there is a number NK
independent of n, such that pn (µ) can have at most NK zeros in K. For example, if
µ is supported on the real line, then Pc(S(p)) = S(µ), and if K is a closed interval
disjoint from the support, then there is at most one zero in K. Denisov and Simon
[26] showed that if xo E R is not in the support, then for some b > 0 and all n,
either pn or Pn+1 has no zero in (xo - 8, xo + 6). Note that if µ is a symmetric
measure on [-1, - i ] U [ 1 1, 1]then pen+1(0) = 0 for all n, so the result is sharp.

In [26] Denisov and Simon focused on attracting properties of isolated points
of the supp A. Let zo be an isolated point of S(µ), such that its distance from
the convex hull of S(µ) \ {zo} is 8 > 0. Then pn has at most one zero in the
disk {Iz - zoI < b/3}. It is also clear that for any symmetric measure µ with
S(µ) = [-1, -2] U {0} U [2, 1], the polynomials p2n(p) have two zeros near 0 (in
this case b = 0). Moreover, if µ lies on the unit circle, then there exist two positive
constants C and a and a zero zn of pn such that Izn - z0I < Ce-an.

Next put a unit mass to every zero of pn(µ) (counting multiplicity), this gives
the so-called counting measure vin(,,) on the zero set. Zero distribution amounts to
finding the limit behavior of 11VPn(11). The normalized arc measure on the unit circle
(for which pn(A, z) = Zn) shows that if the interior of the polynomial convex hull
Pc(S(p)) is not empty, then the zeros may be far away from the outer boundary 490,
where the equilibrium measure ws(N,) is supported. Thus, assume that Pc(S(µ)) has
empty interior and also that there is no Borel set of capacity zero and full µ-measure
(the case when this is not true is rather pathological; almost anything can happen
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with the zeros then). In this case,
1

li Kn/n = log
cap(S (µ))

if and only if
1

limnvpn(N,) = WS(p)

in weak * sense, i.e., asymptotically minimal behavior of /cam ,/n (see (7.2)) is equiva-
lent to the fact that the zero distribution is the equilibrium distribution.

(7.5) is called regular limit behavior, and in this case we write µ E Reg. Thus,
the important class Reg is defined by the property (7.5). If 0 is a regular set with
respect to the Dirichlet problem, then p E Reg is equivalent to either of

limn-. Il Pn (/2) sup,s(,-) = 1

For any sequence {Pn} of polynomials of degree n = 1, 2, .. .

lim IIPnIIsup,S(1,) /n = 1.
n-.oo ( IIPnIIL2(1,)

The last statement expresses the fact that in n-th root sense the L2 (µ) and L°°
norms (on S(µ)) are asymptotically the same.

All equivalent formulations of p E Reg point to a certain "thickness" of µ
on its support. Regularity is an important property, and it is desirable to know
"thickness" conditions under which it is true. Several regularity criteria are known,
e.g., either of the conditions

all Borel sets B C S(µ) with full measure (i.e with µ(B) = µ(S(µ))) have
capacity cap(B) = cap(S(p))
dµ/dws(p) > 0 (Radon-Nikodym derivative) ws(,,)-almost everywhere

is sufficient for p E Reg. Regularity holds under fairly weak assumptions on the
measure, e.g., if S(µ) = [0, 1], and

liminfrlog µ([x - r,x+r]) > 0
r-.o -

for almost every x E [0, 1] (i.e., if p is not exponentially small around almost every
point), then p c Reg.

No necessary and sufficient condition for regularity in terms of the size of the
measure p is known. The only existing necessary condition is for the case S(µ) _
[0, 1], and it reads that for every 77 > 0,

lim cap ({x I µ([x - 1/n, x + 1/n]) > e-"' 1) -- 4n-oo
(here 4 is the capacity of [0, 1]).

8. Strong and Ratio Asymptotics

Let p be supported on [-1, 1] and suppose that the so-called Szeg6 condition

logA,(t)
dt > -oo (8.1)

I 1-t2
holds, where a' is the Radon-Nikodym derivative of p with respect to linear Lebesgue
measure. Note that this condition means that the integral is finite, for it cannot be
oc. It expresses a certain denseness of p, and under this condition, Szeg6 proved
several asymptotics for the corresponding orthonormal polynomials pn(u). This
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theory was developed on the unit circle and then was translated into the real line.
The Szeg6 function associated with ,u is

-
l't)dt

D, (z) = exp (r-----_-i1 log p

_I - t2

(8.2)

and it is the outer function in the Hardy space on C \ [-1, 1] with boundary values
IDN,(x)12 = µ'(x). Outside [-1, 1] the asymptotic formula

pn(fA,, z) = (1 + 0(1)) 2 (z + z2 - 1)nDN (z) (8.3)

holds locally uniformly; in particular, the leading coefficient Kn of pn (A) is of the
form

2n 1 log µ' (t)
Nn = (1 + 0(1)) 27rexp

27r
dt (8.4)

I 1 - t2
For all these results, see [122, Ch. 6]. The Szego condition is also necessary for
these results, e.g., an asymptotic formula like (8.3) or (8.4) is equivalent to (8.1).

If one assumes weaker conditions, then necessarily weaker results will follow.
A large and important class of measures is the Nevai class M(b, a) (see [80]), for
which the coefficients in the three-term recurrence

xpn(x) = anpn+I(x) + bnpn(x) + an-lpn-I(x)

satisfy an ----> a, bn -+ b. This is equivalent to ratio asymptotics

pn+I (z) _ z - b + (z - b)2 - 4a2
limn-oo pn(z) 2

for large z (actually, away from the support of µ), and the monograph [80] contains a
very detailed treatment of orthogonal polynomials in this class. Simon [101] showed
that if the limit of pn+I(z)/pn(z) exists at a single non-real z, then p E M(b, a) for
some a, b.

The classes M(b, a) are scaled versions of each other, and the most important
condition ensuring M(0, 2) is given in Rakhmanov's theorem [92]: if p is supported
in [-1, 1] and µ' > 0 almost everywhere on [-1, 1], then p c M(0, 2). Conversely,
Blumenthal's theorem [13] states that p E M(0,

2)
implies that the support of

p is [-1, 1] plus at most countably many points that converge to ±1. Thus, in
this respect, the extension of Rakhmanov's theorem given in [24] by Denisov is
of importance: if p' > 0 almost everywhere on [-1, 1] and outside [-1, 1] the
measure p has at most countably many mass points converging to ±1, then p c
M(0,

2
). However, M(0, 2) contains many other measures not just those that are

in these theorems; e.g., in [23] a continuous singular measure in the Nevai class was
exhibited, and the result in [126] shows that the Nevai class contains practically
all kinds of measures allowed by Blumenthal's theorem.

There are a number of papers where the condition bn ---> 0, an - z is strength-
ened. See, e.g., the paper [57] of Killip and Simon, where a complete characteriza-
tion of

(an - 2)2 + b2 < o0

n

is given in terms of the generating measure.
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Under Rakhmanov's condition, supp(p) _ [-1, 1], p' > 0 a.e., some parts of
Szego's theory can be proven in a weaker form (see, e.g., [74, 75]). In these the
Turan determinants

Tn(x) = pn(x) Pn-1(x)Pn+1(x)

play a significant role. In fact, given any interval D C (-1, 1), the Turan determi-
nant Tn is positive on D for all large n, and Tn 1(x)dx converges in weak-* sense
to dp on D. Furthermore, the absolutely continuous part p' can also be separately
recovered from Tn:

lim Tn(x)P'(x) - (1 - x2)112 dx = 0.

Under Rakhmanov's condition, we also have weak convergence, e.g.,lfim f f (x)p (x) a (x)dx =- f 1 2

for any continuous function f. Pointwise we only know a highly oscillatory behavior:
for almost all x c [-1, 1],

limsuPpn(x) ? 2 (IL W) 1/2(1 - x2)-1/4,n-oo 7

liminfpn(x) < -2 (po(x)) 1/2(1 -n-oo 7[

and if En(e) is the set of points x e [-1, 1] where

x2)-1/4,

IPn(x)I > (1 + e)2 (po(x)) 1/2(1 - x2)-1/4,_
7T

then IEn(e)I - 0 for all e > 0. However, it is not true that the sequence {pn(A, x)}
is pointwise bounded, since for every e > 0 there is a weight function w > 1 on
[-1, 1] such that pn(0)/n1/2-E is unbounded (see [93]).

Simon [101] extended (8.5) by showing that if the recurrence coefficients satisfy
bn -' b, a2n+1 , a' and a2n - a", then there is an explicitly calculated measure p
depending only on b, a', a" such that

lim
J

f(x)pn2(x)p'(x)dx = J 1 f(x)dp(x) (8.6)
n o0 1

for any continuous function f , and conversely, if (8.6) exists for f (x) = x, x2, x4,
then bn -' b, a2n+1 - a' and a2n -f a" with some b, a', a".

Szego's theory can be extended to measures lying on a single Jordan curve or
arc J (see [52] where also additional outside lying mass points are allowed), in which
case the role of z + z2 1 in (8.3) is played by the conformal map 4D of C \ J onto
the exterior of the unit disk, and the role of 2n in (8.4) is played by the reciprocal
of the logarithmic capacity of J (see Section 7). Things change considerably if
the measure is supported on a set J consisting of two or more smooth curve or
arc components J1, ..., J,,,. A general feature of this case is that Kncap(J)' does
not have a limit-its limit points fill a whole interval (though if some associated
harmonic measures are all rational then the limit points may form a finite set). The
polynomials themselves have asymptotic form

Pn(z) = cap(J)T (z)n(Fn(z) + o(1))
Kn
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uniformly away from J, where 4P is the (multi-valued) complex Green's function of
the complement C \ J, and where Fn is the solution of an Lz-extremal problem
involving analytic functions belonging to some class rn. The functions F in Fn are
determined by an Hz condition plus an argument condition: if the change of the
argument of 1 as we go around Jk is -yk27r modulo 27r, then for the functions in
rn the change of the argument around Jk is -nryk2ir modulo 21r. Now the point
is that these function classes F,,, change with n, and hence so does Fn, and that
is the reason that a single asymptotic formula like (8.4) or (8.3) does not hold.
The fundamentals of the theory were laid in Widom's paper [133]; and since then
many results have been obtained by Peherstorfer and his collaborators, as well as
Aptekarev, Geronimo, Suetin and Van Assche. The theory has deep connections
with function theory, the theory of Abelian integrals and the theory of elliptic
functions. We refer the reader to the papers [6, 38, 87, 88, 89, 90, 91, 119, 120].

The Christoffel functions
n

An'(A x) _
Pk(µ

x)2

kk=0

behave somewhat more regularly than the orthogonal polynomials. In [76] it was
shown that if p is supported on [-1, 1], it belongs to the Reg class there (see
Section 7) and log p' is integrable over an interval I C [-1, 1], then for almost all
xEI,

lim nAn(x) = 1 - xzµ'(x).
n-oo

This result is true [127] in the form

lim n.n(x) = dp(x)
n--.oo dwsupp(A) (x)

a.e. xEI

when the support is a general compact subset of R, p c Reg and log µ' E Ll (I).
Often only a rough estimate is needed for Christoffel functions, and such an

estimate is provided in [73]: if w is supported on [-1, 1] and it is a doubling weight,
i.e.,

f w<LJ w
I I

for all I C [-1, 1], where 21 is the twice enlarged I, then uniformly on [-1, 1],
z

An(x) f w.
A, (X) =

1 - x + 1

n (-) n nz

9. Exponential and Freud Weights

These are weight functions of the form e-2Q(x), where x is on the real line or
on some subinterval of it. For simplicity we shall first assume that Q is even. We
get Freud weights when Q(x) = I xI", a > 0, x E R and Erd6s weights if Q tends to
infinity faster than any polynomial as jxj -> oo. Freud started to investigate these
weights in the sixties and seventies, but they independently appeared also in the
Russian literature and in statistical physics. One can safely say that some of Freud's
problems and the work of Nevai and Rakhmanov were the primary cause of the
sudden revitalization of the theory of orthogonal polynomials since the early 1980's.
In the last twenty years, Lubinsky with coauthors have conducted systematic studies
on exponential weights, see, e.g., [61, 62, 65, 66, 128]; we should mention the
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names Levin, Saff, Van Assche, Rakhmanov and Mhaskar. In the mid-1990's a new
stimulus came from the Riemann-Hilbert approach that was used together with
the steepest descent method by Deift and his collaborators ([20]) to give complete
asymptotics when Q is analytic.

One can roughly say that because of the fast vanishing of the weight around
infinity, things happen on a finite subinterval [-an, an] (depending on the degree of
the polynomials), and on [-an, an] techniques developed for [-1, 1] are applied. For
Freud weights one can also make the substitution x -* nl/Ax and go to orthogonality
with respect to the varying weight e_7 HHHA, in which case things are automatically
reduced to a finite interval which is the support of a weighted energy problem.

an are the so-called Mhaskar-Rakhmanov-Saff numbers with definition

n = 2 a,tQ'(a,,,t) dt. (9.1)
i JO '1-t2

The zeros of pn(W2), w(x) = exp(-Q(x)) are spreading out and the largest zero is
very close to an, which tends to oo.

To describe the distribution of the zeros and the behavior of the polynomials,
one has to make appropriate contractions. Let us consider first the case of Freud
weight w(x) = exp(-Ixla), and let pn be the n-th orthogonal polynomial with
respect to w2 (on (-oo, oc)). In this case

an=nl/aya, yam:=F\2/FIZZ/2F(2+2)

Thus, for the largest zero xn,n we have xn,n/nl/a ya as n - oo, and to describe
zero distribution we divide (contract) all zeros xn,i by nl/aya. These contracted
zeros asymptotically have the distribution

1 a_1d(t) .= - u du, t c [-1, 1]. (9.2)-jtj 2_t2
This measure µ,,, minimizes the weighted energy

If
among all probability measures compactly supported on R. It is a general feature
of exponential weights that the behavior of zeros or the polynomials is governed by
the solution of a weighted energy problem (weighted equilibrium measures). If in
is the leading coefficient of pn, i.e., pn(z) = /cnz '+ + . . , then

lim Icn7r1/22-ne-n/an(n+1/2)/a = 1,
n-.oc

and we have
f1 zua-1

u r lpn (n'/ayaz) 1 1/n = exp (log 1z + z2 - 11 + Re J du
0 z

2 -u2

locally uniformly outside [-1, 1]. This latter one is so-called n-th root asymptot-
ics, while the former one is strong asymptotics. Strong asymptotics for pn(Z) on
different parts of the complex plane was given in [59] using the Hilbert-Riemann
approach (see also [21] in this Festschrift).

Things become more complicated for non-Freud weights, but the corresponding
results are of the same flavor. In this case the weight is not necessarily symmetric,
but under some conditions (like Q being convex or xQ'(x) / for x > 0 and an
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analogous condition for x < 0), the support of the relevant weighted equilibrium
measure is an interval, and the definition of the Mhaskar-Rakhmanov-Saff numbers
a±n is

T6 =

fa. xQ'(x)
dx,

(x a_n)(an x)

T

fa,
0 = 1 Q'(x) dx.

_. (x - a_n)(a. - x)
Now one solves the weighted equilibrium problem (9.3) for all measures µ with total
mass n, and if µn is the solution, then [a-n, a,,,] is the support of µn and µ,,/n will
play the role of the measure µ,,, from (9.2) above.

The weight does not even have to be defined on all R, e.g., in [62] a theory
was developed that simultaneously includes far-reaching generalizations of non-
symmetric Freud, Erdos and Pollaczek weights (the latter are defined on [-1, 1]
and vanish at high order at ±1).

10. Sobolev Orthogonality

In Sobolev orthogonality we consider orthogonality with respect to an inner
product

(f, 9) =
ff(k)g(k)duk

, (10.1)
k=0

where Pk are given positive measures. There are several motivations for this kind
of orthogonality, perhaps the most natural one is smooth data fitting. The Spanish
school around Marcellan, Lopez and Martinez-Finkelshtein has been particularly
active in developing this area (see the surveys [68, 69, 70] and the references
there).

In this section let Qn(z) = z' + denote the Tnonic orthogonal polynomial
with respect to the Sobolev inner product (10.1), and gn(µk) the monic orthogonal
polynomials with respect to the measure µk.

Most arguments for the standard theory fail in this case, e.g., it is no longer true
that the zeros lie in the convex hull of the support of the measures µk, k = 0, 1, ... , r.
It is not even known if the zeros are bounded if all the measures µk have compact
support. Nonetheless, for the case r = 1, and µo, µ1 e Reg (see Section 7), it was
shown in [33] that the asymptotic distribution of the zeros of the derivative Q' is
the equilibrium measure WEOUEO, where Ei is the support of pi, i = 0, 1 (which also
have to be assumed to be regular). If, in addition, Eo C E1i then the asymptotic
zero distribution of Qn is WE,,

In general, both the algebraic and the asymptotic/ analytic situation is quite
complicated, and there are essentially two important cases which have been under-
stood to a satisfactory degree.
Case I: The discrete case. In this case po is some "strong" measure, e.g., from the
Nevai class M(b, a) (see Section 8), and Al, ... , µk are finite discrete measures. It
turns out then that the situation is similar to adding these discrete measures to po
(the new measure will also be in the same Nevai class), and considering standard
orthogonality with respect to this new measure. For example, if r = 1, then

lim Qn (z) = 1n-cogn(/4'o+µ1,z)
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holds uniformly on compact subsets of C \ supp(po + pi). Thus, the Sobolev
orthogonal polynomials differ from those of the measure µo, but not more than
what happens when adding mass points to go.

In this discrete case the Qn's satisfy a higher-order recurrence relation, hence
this case is also related to matrix orthogonality (see the end of Section 13).
Case I I : The Szego case. Suppose now that µo, ... , µk are all supported on the same
smooth curve or arc J, and they satisfy Szego's condition there (see Section 8). In
this case the k-th derivative of Q, satisfies locally uniformly in the complement of
J the asymptotic formula

Q(k)(z)
1

lim =
n-'°c nkgn-k(p" Z) (Z)]--k

where P is the conformal map that maps C \ J onto the complement of the unit
disk. That is, in this case the measures µo, ... , p,._I do not appear in the asymptotic
formula, only µr. matters. The reason for this is the following: Q = Qn minimizes

r
fQ(k)2dPk(Q, Q) _ E

k=0

among all monic polynomials of degree n, while q = qn-k(uk) minimizes

f I q 2dµk

(10.2)

among all monic polynomials of degree n - k. But the polynomial Qnk (t) _
n(n - 1) . (n - k + 1)tn-k + is a monic polynomial times the factor n(n -
1) . . . (n - k + 1) - nk, and this factor is dominant for k = r, so everything else
will be negligible. There are results for compensation of this nk factor which lead
to Sobolev orthogonality with respect to varying measures.

Under the much less restrictive assumption that µo c Reg and the other mea-
sures µk are supported in the support E of µo, it is true ([63]) that the asymptotic
zero distribution of Qnk is the equilibrium measure WE for all k,

n-oo

and hence, away from the zeros in the unbounded component of the complement
of E, we have

lim Qn(z)I1/n = esc\E(z)n-.oc
where gc\E is the Green's function for this unbounded component.

The techniques developed for exponential weights and for Sobolev orthogo-
nality were combined in [36] to prove strong asymptotics for Sobolev orthogonal
polynomials when r = 1 and po = pI are exponential weights.

11. Non-Hermitian Orthogonality

We refer to non-Hermitian orthogonality in either of these cases:
the measure p is non-positive or even complex-valued and we consider pn
with

lira IIQnk) Ilsup,E = cap(E),

f pn(z)zkdµ = 0, k = 0, 1, ... , n - 1 (11.1)
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p is again non-positive or complex-valued, or positive but lies on a complex
curve or arc and orthogonality is considered without complex conjugation,
i.e., if

fP(z)zkd=O, k = O, 1, ... , n - 1. (11.2)

More generally, one could consider non-positive inner products, but we shall restrict
our attention to complex measures and orthogonality (11.2).

As an example, consider the diagonal Pade approximant to the Cauchy trans-
form

.f (z) = J
dµ(t)z-t

of a signed or complex-valued measure, i.e., consider polynomials Pn and qn of
degree at most n such that

f(z)pn(z) - qn(z) =
o(z-n-1)

at infinity. Then Pn /satisfies the non-Hermitian orthogonality relation

f
pn(x)xjdp(x) = 0, j = 0, 1, ... , n - 1. (11.3)

In this non-Hermitian case even the Gram-Schmidt process may fail, and then
p,,, is defined as the solution of the orthogonality condition (11.1) (resp. (11.2)),
which gives a system of homogeneous equations for the coefficients of per,. Thus, Pn
may be of smaller than n degree, and things can go pretty wild with this kind of
orthogonality, e.g., in the simple case,

dp(x) _ (x - cos7ra1)(x - cosira2)(1 - x2)-1/2dx, x E [-1, 1]

with 0 < a1 < a2 < 1 rationally independent algebraic numbers, the zeros of Pn
from (11.3) are dense on the whole complex plane (compare this with the fact that
for positive p all zeros lie in [-1, 1]). In [116] it was shown that it is possible to
construct a complex measure p on [-1, 1], such that for an arbitrarily prescribed
asymptotic behavior some subsequence {pl, } will have this zero behavior. Nonethe-
less, the asymptotic distribution of the zeros is again the equilibrium distribution of
the support of p under regularity conditions on p. For example, this is the case if (p(
belongs to the Reg class (see Section 7), and the argument of p, i.e., dp(t)/dJpJ(t)
is of bounded variation [9]. In [114, 115, 116] Stahl obtained asymptotics for
non-Hermitian orthogonal polynomials even for varying measures and gave several
applications of them to Pade approximation. When the measure p is of the form
dp(x) = g(x)(1 - x2)-1/2dx, x E [-1, 1] with an analytic g, for z E C \ [-1, 1], the
strong asymptotic formula of the form

p (z) _ (1 + o(1))
(z +

2n
DN,(z) -1 exp J 1 log p'(t2 dt)

(with D,1 the Szeg6 function (8.2)) was proved by Nuttall [84, 85], Gonchar and
Suetin [49]. For a recent Riemann-Hilbert approach, see the paper [8] by Aptekarev
and Van Assche. A similar result holds on the support of the measure, as well as
for the case of varying weights; see [8].
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12. Multiple Orthogonality

Multiple orthogonality comes from simultaneous Pade approximation. It is
a relatively new area where we have to mention the names of Nikishin, Sorokin,
Gonchar and Rakhmanov, Aptekarev, Kuijlaars and Van Assche (see the survey
[129] by Van Assche and the references there and the paper [48]).

On R let there be given r measures µl, ... , µr with finite moments and infi-
nite support, and consider multi-indices n = (n1i . . . , nr) of non-negative integers
with norm lal = n1 + + n,. There are two types of multiple orthogonality
corresponding to the appropriate Hermite-Pade approximation.

In type I we are looking for polynomials Qn,j of degree nj - 1 for each j =
1,... , r such that

E f xk`%n,j(x)dµj(x)=0, k=0,1,...,Inj -2.
j=1

These orthogonality relations give lal - 1 homogeneous linear equations for the lal
coefficients of the r polynomials Qn,j, so there is a non-trivial solution. If the rank
of the system is Inj - 1, then the solution is unique up to a multiplicative factor, in
which case the index n is called normal. This happens precisely if each Qn,j is of
exact degree nj - 1.

In type II we are looking for a single polynomial Pn of degree lal such that

fxkP(x)d/i(x)=o, k = 1,...,nl - 1

fXkPn(X)dr(X)0, k = 1, ... , nr - 1.

These are Inj homogeneous linear equations for the jnl + 1 coefficients of Pn, and
again if the solution is unique up to a multiplicative constant, then n is called
normal. This is again equivalent to Pn being of exact degree n.

n is normal for type I orthogonality precisely when it is normal for type II, so
we just speak of normality. This is the case, for example, if the µj's are supported
on intervals [aj, bj] that are disjoint except perhaps for their endpoints; in fact, in
this case Pn has nj simple zeros on (aj, bj).

To describe recurrence formulae, let ej = (0,...,1,...,0) where the single
1 entry is at position j. Under the normality assumption, if Pn is the monic
orthogonal polynomial, then for any k,

r

xPn (x) = Pn+ek (x) + an,oPn (x) + E an, j Pn-e,, (x)
j=1

Another recurrence formula is
r

xPn(x) = Pn,+ek (x) + bn,OPn(x) + bn.,jPn-e,(,)-...-en(a) (x),
j=1

where r(1) ... , er(r) is an arbitrary but fixed permutation of 1,2,. .. , r. The or-
thogonal polynomials with different indices are strongly related to one another, e.g.,
Pn+ek (x) - Pn+e, (x) is a constant multiple of Pn(x).
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If dpi = wjdµ, then similar recurrence relations hold in case of type I orthog-
onality for

r

Q" (X) = ) Qn,7 (x)wj (x)'
j=1

Also, type I and type II are related by a biorthogonality property:

f PQ,,,,dp = 0

except for the case when m = n + ek for some k, and then the previous integral is
not zero (under normality condition).

To describe an analogue of the Christoffel-Darboux formula, let {nj } be a
sequence of multi-indices such that no is the identically 0 multi-index, and nj+1
coincides with nj except for one component which is 1 larger than the corresponding
component of nj. Set Pj = P,,,3 , Qj = Q,,,+1, n = nn, and (R) j denoting the j-th
component of the multi-index n

hnj) = f Pn(x)x(n)3dyj(x).

Then [18] with n = nn,
n-1 r

h( j)
(x - 2J) Pk(x)Qk(y) = P.(x)Qn(y) - E h(j) Pn-e (x)Qn+e, (y)

k=0 j=1 n-e.

Thus, the left-hand side depends only on n = nn and not on the particular choice
of the sequence nj leading to it.

There is an approach [130] to both types of multiple orthogonality in terms
of the matrix-valued Riemann-Hilbert problem for (r + 1) x (r + 1) matrices Y =
(Yij (z))i,j=o.

Asymptotic behavior of multiple orthogonal polynomials is not fully understood
yet, due to the interaction of the different measures. For all the existing results,
see [5, 129] and Van Assche's Chapter 23 in [51] and the references there.

13. Matrix Orthogonal Polynomials

In the last twenty years the fundamentals of matrix orthogonal polynomials
have been developed mainly by Duran and his coauthors (see also the work [7] by
Aptekarev and Nikishin). The theory shows many similarities with the scalar case,
but there is an unexpected richness which is still to be explored.

For all the results in this section, see [64] and [29] and the numerous references
there.

An N x N matrix

P11(t) ... PiN(t)
P(t)

PN1(t) . . . PNN (t)

with polynomial entries pij (t) of degree at most n is called a matrix polynomial of
degree at most n. Alternatively, one can write

P(t)=Cntn+...+CO
with numerical matrices Cn, ... , Co of size N x N.
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t = a is called a zero of P if P(a) is singular, and the multiplicity of a is the
multiplicity of a as a zero of detP(a). When the leading coefficient matrix Cn is
non-singular, then P has nN zeros counting multiplicity.

From now on we fix the dimension to be N, but the degree n can be any natural
number. I will denote the N x N unit matrix and 0 stands for all kinds of zeros
(numerical or matrix).

A matrix
µU (t)

W(t)=
PNI (t) ...

of measures defined on (or part of) the real line is positive definite if for any Borel
set E the numerical matrix W (E) is positive semidefinite. We assume that all
moments of W are finite. With such a matrix we can define a matrix inner product
on the space of N x N matrix polynomials via

(P, Q) = I P(t)dW (t)Q* (t),

and if (P, P) is non-singular for any P with non-singular leading coefficient, then
just as in the scalar case one can generate a sequence {Pn}°O 0 of matrix polynomials
of degree n = 0, 1.... which are orthonormal with respect to W:

fP(t)dW(t)P(t)={ I ifn=m,
and here Pn has non-singular leading coefficient matrix. The sequence {Pn} is
determined only up to multiplication on the left by unitary matrices, i.e., if Un
are unitary matrices, then the polynomials UnPn also form an orthonormal system
with respect to W.

Just as in the scalar case, these orthogonal polynomials satisfy a three-term
recurrence relation

tPn(t) = An+1Pn+1(t) + BnPP(t) + AnPn_1(t), n > 0, (13.1)

where An are non-singular matrices, and Bn are Hermitian. Conversely, the ana-
logue of Favard's theorem is also true: if a sequence of matrix polynomials {Pn} of
corresponding degree n = 0, 1, 2.... satisfy (13.1) with non-singular An and Her-
mitian Bn, then there is a positive definite measure matrix W such that Pn are
orthonormal with respect to W.

The three-term recurrence formula easily yields the Christoffel-Darboux for-
mula:

n-1

(w - z) I'k (z)Pk(w) = Pn*-1(z)AnPn(w) - Pn(z)A*aPn-1(w),
k=0

from which, e.g., it follows that

Pn_1(z)AnPn(z) - Pn(z)A**Pn(z) = 0
n-1

Pk (z)Pk(z) = I'n(z)AnPP(z) - Pn(z)An (z).
k=0
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The orthogonal polynomials Qn of the second kind

Q. (t) =
P. Wt

-
(x) dW (x), n = 1, 2, .. .

also satisfy the same recurrence and are orthogonal with respect to some other
matrix measure. For them we have

/Pn_1(t)AnQn(t) - P,n(z)A,Qn-1(t) = I
and

Qn(t)P,-1(t) - Pn(t)Qn-1(t) = Ant.
With the recurrence coefficient matrices An; Bn, one can form the block Jacobi

matrix
B0 A0 0 0

Ao B1 Al 0

Jr 0 Ai B2 A2

0 0 A2 B2 :::

The zeros of Pn are real and they are the eigenvalues (with the same multiplicity)
of the N-truncated block Jacobi matrix (which is of size nN). If a is a zero then
its multiplicity p is at most N, the rank of Pn(a) is N - p, and the space of those
vectors v for which Pn(a)v = 0 is of dimension p. If we write Xn,k, 1 < k < in for
the different zeros of Fn, and lk is the multiplicity of Xn,k, then the matrices

rk (det(Pn(t))(1k)(xn.,k)
(Adj(Pn(t)))(lk-1) (xn,k)Qn(xn,k), 1 < k < m

are positive semidefinite of rank 1k, and with them the matrix quadrature formula

J P(t)dW(t) _ P(xn,k)rn,,k
k=1

holds for all matrix polynomials P of degree at most 2n - 1.
If the matrix of orthogonality is diagonal (or similar to a diagonal matrix)

with diagonal entries pi, then the orthogonal matrix polynomials are also diagonal
with i-th entry equal to pn(pi), the n-th orthogonal polynomial with respect to
pi. Many matrix orthogonal polynomials in the literature can be reduced to this
scalar case. However, recently some remarkably rich non-reducible families have
been obtained by Duran and Grunbaum (see [29] and the references there), which
may play the role of the classical orthogonal polynomials in higher dimension. They
found families of matrix orthogonal polynomials that satisfy second-order (matrix)
differential equations just like the classical orthogonal polynomials. Their starting
point was a symmetry property between the orthogonality measure matrix and a
second-order differential operator. They worked out several explicit examples. Here
is one of them: N = 2, the measure matrix is

/
I2t4 a2 \z

1H(t) = e-tIf\
ate

i /11 t c R,

where a E C \ {0} is a free parameter. The corresponding Pn (t) satisfies

Pjv(t) + Pm(t) (0 t 4at 2t) + Pn(t) I 04 20a1 -2n0- 4 2a(2 2n 1)1
P.

(t)
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There is an explicit Rodrigues-type representation for the polynomials themselves,
and the three-term recurrence (13.1) holds with Bn = 0,

An+1 =

where

n
2

1

C

7n+3/7n+2 a yn+z7n+l
0 7n/7n+1 / '

z

7n=1+2 (2).
Matrix orthogonality is closely connected to (2N+1)-term recurrences for scalar

polynomials. To describe this we need the following operators on polynomials p: if
p(t) = >k aktk, then

RN,m(P) =
asN+Tnts

S

i.e., from a polynomial the operator RN,m takes those powers where the exponent
is congruent tom modulo N, removes the common factor tm and changes tN to t.

Now suppose that {pn}°°_0 is a sequence of scalar polynomials of correspond-
ing degree n = 0, 1.... and suppose that this sequence satisfies a (2N + 1)-term
recurrence relation

N

tNpn(t) = Cn,Opn(t) + 1: (Cnkpn-k(t) +Cn+k,kpn+k(t)),
k=1

where cn,0 is real, Cn,N 54 0 (and pk(t) - 0 for k < 0). Then

P. (0 =

RN,O(pnN) ... RN,N-1(pnN)
RN,O(pnN+1) RN,N-1(pnN + 1)

RN,O (pnN+N-1) . . . RN,N-1 (pnN + N - 1) /

is a sequence of matrix orthogonal polynomials with respect to a positive definite
measure matrix. Conversely, if Pn = (Pn,m, j) -J

.10 is a sequence of orthonormal
matrix polynomials, then the scalar polynomials

N-1
pnN+m, (t) = tJ Pn,'m,j (tN ),

i=o

0<m<N, n=0,1,2,...

satisfy a (2N + 1)-recurrence relation of the above form.

Part 2. ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE

In what follows we shall use Simon's abbreviation OPUC for orthogonal poly-
nomials on the unit circle.

14. Definitions and Basic Properties

14.1. Orthogonality. The unit circle T is by far the simplest closed curve
on the complex plane with a number of additional properties, so polynomials or-
thogonal with respect to measures on T are of specific interest.
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If p is a non-trivial probability measure on T (i.e., not supported on a finite
set), the monic orthogonal polynomials (Dn(z, p) (or <Dn if p is understood) are
uniquely determined by

4)n(z) _ f j(z - zn,j), C j = 0, 1, ... n -1 (14.1)
Tj=1

so in the Hilbert space L' (T), (4?n, 4),,,,) = 0, n m. The orthonormal polynomials
cpn are cpn = (Dn/II(Pn1j. The orthonormal set {cpn}n>o may not be a basis in
L2 (T) (e.g., if u = dm is the normalized Lebesgue measure, then cpn = Sn and
(-1 is orthogonal to all W?). A celebrated result of Szego-Kolmogorov-Krein (see

Theorem 14.2 below) states that {con} is a basis in L2 (T) if and only if log p'
L' (T), where p' is the Radon-Nikodym derivative of p with respect to dm.

Clearly, (14.1) and the fact that the polynomials of degree n have dimension
n + 1 implies

deg(P) = n, PLC', = = > (14.2)

On L2 (T) the anti-unitary map f*(() := (n f (() (which depends on n) is
naturally defined. The set of polynomials of degree at most n is left invariant:

n n

P(z) = E pjzj P*(z) = Pn_jzj. (14.3)

j=0 j=0

(14.2) now implies

deg(P) = n, PLC, j = 1, ... , n P = ctn. (14.4)

14.2. Szego Recurrences and Verblunsky Coefficients. A key feature
of the unit circle is that the multiplication operator U f = z f in L2 (T) is unitary.
So the difference (bn+i(z) - zcn(z) is of degree n and orthogonal to z3 for j =
1, 2, ... , n, and by (14.4),

4)n+I(z) = zDn(z) - an(Dn* (z) (14.5)

with some complex numbers an, called the Verblunsky coefficients. (14.5) is known
as the Szegd recurrences after its first occurrence in the Szego book [122]. (14.5)
at z = 0 implies

an = -4)n+1(0). (14.6)

Applying (14.3) to (14.5) yields
4)n+1(z) = (z) - anz<Dn (z).

It follows from the unitarity of U and 4)*nl4)n+l that
n-1

II4)n+1112 = (1- Ian12)II(Dn112, II(DnII2 = Ij(I - Iaj 12),
j=0

(14.7)

(14.8)

and so Ian l < 1. Since it arises often, define

Pj:= V 1-IajF, 0<p<1, 1aj12+Pi=1. (14.9)

Using (14.8) one can get the recursion relations for cpn written in matrix form

( cPn+1(z)) = A(z, an)
(Wn

cP* (z) ) I A(z, a) P (-za 1 ) (14.10)
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or

C (P*+1(z)) = Tn+1z) C 1
J

TP(z) = A(z, a,-1) ... A(z, co) (14.11)

4n+1 ( ) \
known as the transfer matrix.

Let D°° be the set of complex sequences {aj},'?_o with Iajl < 1. The map S
from p -f {aj (µ) is a well-defined map from the set P of non-trivial probability
measures on T to D. The following fundamental result is proved in [131].

THEOREM 14.1 (Verblunsky's Theorem). S is a bijection.

As a matter of fact, S is a homeomorphism if P is given the weak-* topology
and in D°° the topology of component convergence is considered.

The following result is usually attributed to Szego, Kolmogorov and Krein.

THEOREM 14.2. For any non-trivial measure p, the following are equivalent:
(1) limn- IIDnII = 0

(11) E o
On 12 = 00

(iii) {con},°° o is a basis for L2 (T)
(iv) fT log u' dm = -oo, i.e., log u' V L' (T) .

14.3. Bernstein-Szego Approximation. An interesting problem is to iden-
tify measures it with finite sequences of Verblunsky coefficients: aj(µ) = 0 for all
large enough 7.

THEOREM 14.3. Let ,a be a non-trivial probability measure on T with orthonor-
mal polynomials con. Let

dm
itn '

Wn(S)I2
. (14.12)

Then µn are probability measures with

aj (tn) = ai (µ), j = 0, 1, ... , n - 1; aj (tn) = 0, j > n. (14.13)

This result is often credited to Geronimus [41] even though it was proven (in
different terms) by Verblunsky [132] ten years earlier. Since, for each fixed j,
aj (µn) - aj (µ) (indeed, they are equal for n > j), µn -> it weakly since S is a
homeomorphism. It was Verblunsky who also found the Caratheodory function for
measures (14.12):

*

F(z, µn) = IT (- z dyn

n* W
where the second kind polynomials On are the orthonormal polynomials with re-
spect to the measure µ_1 with aj(µ_1) = -aj(µ).

In fact, the measures with finite sequences of Verblunsky coefficients are exactly
those of the form it = cIP(()I-2 dm, where c is picked to make it a probability
measure, and P is a polynomial of degree n with all zeros in D.

15. Schur, Geronimus, Khrushchev

15.1. Schur Functions and Algorithm. Given a probability measure µ on
T, define the Caratheodory function by

(-n
(z, µ) = r dµ(() = 1 + 2 NnZn, Nn dl,

+z
ITT z

n=1
(15.1)
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the moments of p. F is an analytic function in D which obeys RF > 0, F(0) = 1.
The Schur function is then defined by

f
f (z, P) = z(F(z) + 1)' F(z)

11

zf (z) '
(15.2)

which is an analytic function in D with supD If (z) I < 1. So a one-one corre-
spondence can be easily set up between the three classes (probability measures,
Caratheodory and Schur functions). Under this correspondence µ is trivial, that
is, supported on a finite set, if and only if the associated Schur function is a finite
Blaschke product.

Let us proceed with the Schur algorithm. Given a Schur function f = fo which
is not a finite Blaschke product, define inductively

fn+i(z) = fn. (z) 7'n
'Yn = fn(0) (15.3)

z(1 - }'nzfn(z))
It is clear that the sequence If,,) is an infinite sequence of Schur functions (called
the n-th Schur iterates) and neither of its terms is a finite Blaschke product. The
numbers {y,,} are called the Schur parameters.

The fundamental paper of Schur [94] had appeared a few years before Szeg6
introduced the notion of orthogonal polynomials on the unit circle (OPUC). Amaz-
ingly, neither of them benefited from the results of the other. And only twenty years
later did Geronimus [40] put these ideas together and come up with the following:

THEOREM 15.1 (Geronimus' Theorem). Let p be a non-trivial probability mea-
sure on T, f its Schur function and yn (f) the Schur parameters of f. Then
yn(f) = 01n(µ)'

The latter formula explains why a minus and conjugate is taken in (14.5). As
a straightforward consequence of this result, we see that yj (f) = yj (g) for all j
implies f = g. Furthermore, a nice relation between the moments On from (15.1)
of the measure (Taylor coefficients of the Caratheodory function) and the Schur
parameters (Verblunsky coefficients) is given by

n-2
Nn = an_i 11(1 - Iaj I2) + polynomial in (aoi do, , ... ) an-2, an-2).

j=o

15.2. Khrushchev's Theory. In two remarkable papers [53, 55], Khrushchev
found deep connections between Schur iterates and the structure of OPUC. A key
input for the theory is

THEOREM 15.2 (Khrushchev's Formula). The Schur function for the measure
I2dp is given by the product bn(z) fn(z), where fn is the n-th Schur iterate, and

bn is the finite Blaschke product

bn(z) _ O*(z)
Wn (z)

The most important consequence of Khrushchev's formula is

THEOREM 15.3. The essential support of the a.c. part of p is all of T if and
only if

lim J Ifn(()I2dm=0,
n-oo T

dm is the normalized Lebesgue measure on T.
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Here are some other important results of Khrushchev's theory.

THEOREM 15.4.

* - lim I onl2dp = dm lim an+j an = 0, j = 1, 2 ... .
n->oo n-o0

Define the n-th Schur approximate f [n] by

ryj(f!nl)=7j(f), j =1,2,...,n _lj(f[n])=0, j>n.
THEOREM 15.5. Let f [n] befthe n-th Schur approximate. Then

li l f [n,(() - f (()12 dm = 0

if and only if either p is purely singular or an (µ) - 0-

16. Szego's Theory and Extensions

Szego's theorems may well be the most celebrated in OPUC. They have re-
peatedly served as a source for further development. For historical reasons one
should state them in terms of Toeplitz determinants, Dn(p). This is defined as the
determinant of the (n+ 1) x (n+ 1) matrix {/3k-j}o<k,j<n with moments /3's given
in (15.1). The invariance of such determinants under triangular change of basis
implies (using (14.8) )

n n-1

Dn(w) =11III,112 = rl (I - Ia.12)n-j,

j=o j=0

and so
00

S(µ) = li r[(1 - Iaj12),
j=0

00

G(µ) = lim n+1 (µ ) = rl(1 - ajl2)-7-1.
n-o0 S n+1

S is always defined and is a non-negative number. G is defined as long as S > 0
and is finite if and only if E10 o j I aj 12 < 00.

Szeg6's theorems express S and G in terms of the a.c. and singular components
of the Lebesgue decomposition of p: µ = w dm +,u,, w E L' (T).

THEOREM 16.1 (Szeg6's Theorem).

S(µ)=fl(1-lajl2)=expl 2xJ logw(()dm). (16.1)00

j=0
\ T

Szego proved this when p = 0 in 1915 (in his very first paper!). The result
does not depend on p,-this was shown by Verblunsky [132].

It is immediate from Szego's theorem that
00

E laj12 < oo * logw E L1(T). (16.2)
j=0
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The equivalent conditions (16.2) are called the Szego condition, and the corre-
sponding class of measures is known as the Szego class. Within this class the Szego
function

D(z, w) = exp 1 J + z
log w(c) dm) , IzI < 1 (16.3)T - z

is well defined. Standard boundary value theory implies D(() = 1im,.Tj D(rz) exists
almost everywhere and JD(() 12 = w(() a.e. The main asymptotic result (due to
Szego) claims that

lim (o* (z) = D-1(z)
n-oo

uniformly on compact subsets of D.

THEOREM 16.2 (Strong Szeg6 Theorem). If µs = 0 and the Szego condition
holds, then

00

G(µ) = 11(1 - Iajj2)-j-1 = exp nlwn12 I ,

j=o n=o 1

where wn are the Fourier coefficients of log w.

For an up-to-date approach to this result, see [108].
In a series of papers [74, 75, 76], Mate, Nevai, and Totik extended some parts

of Szego's theory to the cases where the Szego condition fails. Their main result
can be viewed as a comparative asymptotics.

THEOREM 16.3. Let u = wdm + ps be a non-trivial probability measure on
T obeying w > 0 a.e. Consider another probability measure v = gdp for a non-
negative function g E L1(µ). Suppose next that there is a polynomial Q so that
g±Q E L°°(µ). Then

(Z, V)lim Pn ' = D(z, g 1),
n-9oo cPn \z, µ)

(D is defined in (16.3)), uniformly on compact subsets of the unit disk D.

Another natural extension of Szego's theory deals with ratio asymptotics.

THEOREM 16.4. Let y be a non-trivial probability measure on T. Suppose

lim
+

O) = G(z)noo
exists uniformly on compact subsets of D. Then either G - 1 or

G(z) = Ga,A(Z) =
1 + Az + (1 - Az)2 + 4a2Az

2

(16.4)

for some A E T and a E (0, 1].
(16.4) holds with G = Ga,a if and only if an(p) obeys the Lopez condition

lim IanI = a, lim an+I =
n-oo n--.oo an

In this case the essential support of p is an arc, and (16.4) holds uniformly on
compact subsets of C\suppp.

The first statement is due to Khrushchev [55] and the second one to Barrios
and Lopez [10].

The following extension of the above result, which can be viewed as relative
ratio asymptotics, was proved in [47].
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THEOREM 16.5. Let p and v be two non-trivial probability measures on T. Let
{an(p)} and {an(v)}, respectively, be their Verblunsky coefficients, and let 4D n* (A)
and 4bn(v), respectively, be their reversed monic orthogonal polynomials. Then

4Dn+1(µ,z)
_ 41a+1(v, z) , 0 (16.5)

,Dn(µ, z) 'n(v, z)
uniformly on compact subsets of D as n - oo if and only if for any f > 1,

lim [an(µ)an_e(µ) - an(v)dn_f(v)] = 0. (16.6)
n-- 00

17. CMV Matrices

One of the most interesting developments in the theory of OPUC in recent years
is the discovery by Cantero, Moral, and Velazquez [16, 17] of a matrix realization
for multiplication by ( on Lµ (T) which is of finite band size (i.e., I ('Xm, Xn) 0
if Im - nj > k for some k); in this case, k = 2 to be compared with k = 1
for the Jacobi matrices which correspond to the real line case. The CMV basis
(complete, orthonormal system) {Xn} is obtained by orthonormalizing the sequence
1, C, (-1, (2, (-2, ..., and the matrix, called the CMV matrix,

C(µ) = ICn,m11m,n=0 = ((XTn.,Xn), m,nEZ+
is five-diagonal. Remarkably, the X's can be expressed in terms of cp's and cp*'s

X2n = Z-n'P2n(Z), X2n+1 = n E Z+,

and the matrix elements in terms of a's and P's: C = LM where L, M are block
diagonal matrices

L = Diag(0o, 02i 04, . . . ) , M = Diag(1, O1, 03, ...) (17.1)

with
Oj= aj Pj j=0,1,... (17.2)

Pj -aj /
(the first block of M is 1 x 1). By Co we denote the CMV matrix for the Lebesgue
measure dm.

There is an important relation between CMV matrices and monic orthogonal
polynomials akin to the well-known property of orthogonal polynomials on the real
line:

4)n(z) = det(zII - (17.3)

where C() is the principal n x n block of C. The CMV representation provides one
of the proofs of Verblunsky's theorem.

The natural extension of L, M, C to doubly infinite matrices proves helpful in
some problems related to periodic and stochastic Verblunsky coefficients. For the
standard basis {ej}jEZ, denote by Ek the two-dimensional subspace spanned by
{ek, ek+1}, so

f2 (Z) _ ® E2j = ® E2j+1.
jEZ jEZ

Let the operator 0k act in Ek by (17.2). We come to

(D 62j, M=®02j+1, C=LiVI.
jEZ jEZ

The Weyl-Titchmarsh theory for such CMV operators is developed in [42].

(17.4)
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The CMV matrices play much the same role in the study of OPUC that Jacobi
matrices do in orthogonal polynomials on the real line.

Part 3. BARRY SIMON'S CONTRIBUTIONS

18. Analysis of CMV Matrices

18.1. CMV Matrices and Spectral Analysis. Perturbation theory in-
volves looking at similarities of measures when their Verblunsky coefficients are
close in some suitable sense. The CMV matrices provide a powerful tool for the
comparison of properties of two measures µ1 and µ2 if we have some information
about an(µ2) as a perturbation of an(µl). Of course, this idea is standard in the
real line setting where Jacobi matrices do the job.

Put

an(µl,µ2) I01n(µ1)-an(µ2)I, Pn(/21,P'2) IPn(µ1) P.(/22)I-An

easy estimate using the LM factorization shows with II
-
IIr the Sr trace ideal

norm

LEMMA 18.1. For all 1 < p < oo,

00

1C(µ1) - C(µ2)IIp < 6 (c(/1i,/12) + P,,(µ1, µ2) (18.1)
n=0

For p = oc, the right-hand side of (18.1) is interpreted as

supmax(an(µl, µ2), Pn(µl, /22))
n

This result (joint with L. Golinskii) allows one to translate the ideas of Simon-
Spencer to a new operator theoretic proof of the following result called Rakhmanov's
lemma: µ is purely singular whenever lim supra I an = 1.1 It is also a key ingredient
in proving the following (see [106, Sect. 4.3]).

THEOREM 18.2. Let µj = wjdm + µj,, J = 1, 2.
1. If limn.-.00 an (µ1,µ2) = 0, then the supports of µl and µ2 have identical sets

of limit points: (suppµl)' = (suppµ2)'.
2. If En an (l-11, µ2) < oo, then up to sets of Lebesgue measure zero,

{( : w1(() # 0} = {( : W2(() 0}.

Concerning the essential spectrum of CMV operators, see [60].

18.2. CMV Matrices and the Szego Function. An intimate relation be-
tween the CMV matrices and the Szego functions (16.3) is presented in [106,
Sect. 4.2]. Let

00

log D(z) = 2 wo + wnzn, wk = Jlogw()C_kdm (18.2)

(wk are the Fourier coefficients of log w).

THEOREM 18.3. (i). Assume that the Verblunsky coefficients {an} E Q2. Then
1. C - Co is Hilbert-Schmidt;

lA similar result for the Jacobi matrices appeared prior to Simon-Spencer in [27].
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2.

3.

Tr(Cn - Con)wn- , n>2.
n

(ii). Assume that {an} E £1. Then
1. C - Co is trace class;
2.

3.

In either case,

D(O) - I-zC
D(z) - det 1 I - zCo)

Tr(Cn - Con)wn= n> 1.
n

00
=w (Cn)jjn - n

j=0

19. Zeros

19.1. Limit Sets of Zeros. The structure of zero sets for OPUC is another
fascinating topic of the theory. Given a non-trivial probability measure p E P,
denote by Zn(p) the zero set for (Dn:

Zn(p) = {zjn}j 1, Iznnl C zn-1,n1 < ... < z1,n1, On(Zjn,A) = 0.

The basic property of zeros reads that Iz1,nl < 1, i.e., Zn(p) C D. Indeed, let
zo E Zn and define P = 4Dn/(z - zo). Since deg P = n - 1, PIOn and so

IIP112 = IzP1j2 = IIzoP+ On112 = IzoI211P112 + 114)n
112.

Hence 11On112 = (1 - Jzo12)I^M2, as needed.
In 1988 Alfaro and Vigil [2] answering a question of Turan showed that for an

arbitrary sequence of points {zk} in D, there exists a unique measure p E P with
4n(zn, A) = 0. Hence the total set of zeros of On's Z00(µ) = UnZn(A) can be dense
in D. A vast generalization of the Alfaro-Vigil theorem is due to Simon-Totik
[111].

THEOREM 19.1. For an arbitrary sequence of points {zk} in D and arbitrary
sequence of positive integers 0 < m1 < m2 < ..., there exists µ E P such that
0.,(zj,µ) = 0 for j = mk-1 + It ...,mk.

The following consequence of this result may seem kind of amazing. Let a
measure µ belong to the class of non-trivial probability measures P. Consider the
sequence {Vn(µ)}n>1 of normalized counting measures for zeros of On, i.e.,

suppvn=Zn, Vn{,zjn}=
l(zjn)

(19.1)
n

with l(zjn) equal to the multiplicity of the zero zjn. Let M+(D) be a space of
probability measures on D endowed with the weak-* topology. A measure p E P is
said to be universal if for each a c .M+(D) there is a sequence of indices nj such

D(0) (I - zC l 00
zwl

D(z) - detz
I - zC

e 'w1 = ao - anon-1
0 n=1

with det2 being the renormalized determinant for the Hilbert-Schmidt class;
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that vn, (µ) converges to a as j - oo in weak-* topology. The existence of universal
measures is proved in [111, Cor. 3].

It is known that zeros of 4),(p) cluster to the support of the orthogonality
measure µ as long as the support is not the whole circle. The situation changes
dramatically if suppµ = T (see, e.g., the Lebesgue measure). By the Alfaro-Vigil,
theorem zeros of I n can cluster to all points of D. Denote by

Z,,,(µ) := {z c D : liminf dist(z, Zn) = 0}n-oc

the point set of limit points for the zeros of all (Dn (weakly attracting points). Let
Z. = {Z.(µ)}N,E, be the class of all such point sets. So, D E Z. It turns out
that Z,,, is rich enough. More precisely, each compact subset K of D belongs to
Z,,,, and the same is true if K T ([111, Thm. 4]). On the other hand, K = [2, 1]
is not in Z.

Similarly, denote by

ZS (µ) :_ {z E D : lim dist(z, Zn) = 0}n-oo

the point set of strongly attracting points, and Zs the class of all such point sets.
The structure of the latter is quite different from that of Z. For instance, it is
proved in [1] that if 0 E Z3 (µ) for some µ E P, then Z3 (µ) is at most a countable
set which converges to the origin. So, e.g., the disk z < 2} is not in Z.

19.2. Mhaskar-Saff and Clock Theorems for Zeros. A remarkable the-
orem of Mhaskar and Saff [78] provides some information about the limit points (in
the space M+(D)) of the sequence of counting measures of zeros associated with
a non-trivial probability measure µ E P in the case when Verblunsky coefficients
tend to zero fast enough.

THEOREM 19.2 (Mhaskar-Saff). Let

A := limsup lan(/i)II/n = lim l any
n- co 3--.oo

Suppose that either A < 1 or A = 1 and E o Ic(/2) I = o(n) as n - oo. Then
{vn, (µ)} converges to the uniform measure on the circle of radius A.

Simon suggested a new approach to this result based on CMV matrices instead
of potential theory. A key relation which links the two subjects is obvious from
(17.3):

zkdvn(µ).1 r1y(C(n))k = IDn

THEOREM 19.3. Let 10'n(µ1) - o(n), n -f oo. Then for each
k E Z+,

lim J zk (dvn(µl) - dvn(µ2)) = 0-
n oc D

any limit point of vn(µ2), thenIn particular, if vn(pi) tends to

ID

vand 'y is

ID
zkd y =
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A crucial feature of the Mhaskar-Saff theorem is its universality. Under its
assumption the angular distribution is the same. To get certain quantitative bounds
on the distance between zeros, Simon studies various more stringent conditions, and
among them the so-called Barrios-Lopez-Saff condition

an(µ) = Cbn + O((b8)n); C E C\0, 0 < b, 8, < 1. (19.2)

The following result is proved in [110].

THEOREM 19.4. Under the assumption (19.2), -n(µ) has a finite number J
of "spurious" zeros off the circle I zl = b for all large n. Furthermore, let for
j=1,2,...,n-J,

zjn = zjnleil,n; 0 = 190. < e1n < ... < E)n-Jn < 27r = E)n-J+l,n

be the other zeros. Then the limit relations hold

sup Ilzjnl-bI=0(-),lognn-oc;
(19.3)

1<j<n-J n

sup n
1<j<n-J

27r
Oj+l,n - Ojn - n

Izj+1,n = 1+0 (nlo1
1zjn1

= o(1), n -* oo; (19.4)

gn n -> oo. (19.5)

Note that (19.4)-(19.5) imply limn nl zj+l,n - zjnI = 27rb. Amazingly, the spu-
rious zeros also follow the clock pattern!

In [102] Simon treats the more general case
m

an(A) = > Clein°tb'n + 0((b6 )n).

1=1

20. Spectral Theory in Special Classes

20.1. High-Order Szeg6 Theorem. Simon came up with the idea of ex-
tending Szego's theorem by allowing "Pollaczek singularities" (so all quantities in
(16.1) may be infinite). His result can be viewed as the first-order Szeg6's theorem:
for any (o E T,

00

I(-(012 logw EL1(T) -# Eaj+1-(0aj12+1aj14 <00.
j=0

Moreover, there is a precise formula for this case similar to the second equality in
(16.1) [106, Sect. 2.8]. The second-order Szeg6's theorem appeared in [113]. Let
(k c T, k = 1, 2. Then for (1 # (2

00
r

I(-5

r1121(-(212 loges E L1(T) laj+2-(Z1 +(2)aj+1+(1(2aj12+1aj14 < 00,

and for (I = (2,

j=o

00

lS - 5114 loges E L1(T) aj+2 - 2(1aj+1 + (iaj l2 + l aj 16 < oo.
j=0
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The general nice-looking conjecture called the higher-order Szego's theorem is
put forward in [106, Sect. 2.8]. Given (k c T, k = 1, ... , n and (, 54 (q, p q,

define a polynomial
n n

P(() := fJ(c - (k)m1

, mk E N, P(O fJ(S - Sk)mk,
k=1 k=1

and put m = 1 + maxk mk. Then
lP(()12logw E L'(T) (P(S)) {c } E 22 and {aj } E £2m,

where S is the shift operator: S(ao, a1, ...) _ (al, a2, ...). A measure p = wdm +
ps E P belongs to the polynomial Szego class if lP(() I2 log w E L1(T). For further
advances concerning the polynomial Szego class, in particular, the asymptotics
inside the disk and L2 on the circle, see [25].

The following particular case of Simon's conjecture which can be called the
higher-order Szego's theorem in 24 has been proved recently in [47].

THEOREM 20.1. Assume that {aj } E Q4. Then
lP(C)12logw E L1(T) t-* (P(S)) {aj} E £2.

20.2. Baxter's Theorem. The celebrated paper [11] by Baxter appears to
be one of the cornerstones of OPUC theory. He was interested in general complex-
valued weight functions and corresponding non-Hermitian Toeplitz matrices of mo-
ments in connection with two sets of Verblunsky coefficients. Applied to the case
of OPUC, his basic result looks as follows.

THEOREM 20.2 (Baxter). Let p = wdm+p3 be a non-trivial probability measure
on T with Verblunsky coefficients an(p) and moments,3n(p). Then the following
are equivalent:

1. >_0Iaj(p)I < oc
2. o oo, ps = 0, w is continuous, and min w(C) > 0.

A new approach to Baxter's theorem with some extensions is suggested in [106,
Ch. 5].

A function v(n), n E Z, is called a Beurling weight if

v(-n) = v(n), v(n) > 1, v(m + n) < v(m)v(n),

and a strong Beurling weight if in addition,

log v(n) -
A(v) := lim - 0.n-oo n

Examples include v(n) = (1 + InJ)" (strong) and v(n) = e"Inl , a > 0.
Given a Beurling weight v, the Beurling algebra 2 is the Banach algebra of

two-sided sequences {a(n)}nEZ with standard operations (addition and convolution)
and

11all := la(n)Jv(n) < oo.
nEZ

THEOREM 20.3. Let v be a strong Beurling weight. Then the following are
equivalent:

1. {an(p)} E £v
2. {j3 (µ)} E Q,,, p, = 0, w is continuous, and minw(C) > 0.
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A number of equivalent conditions are displayed in [106, Thm. 5.2.2].
As an immediate consequence of this result, Simon obtains

COROLLARY 20.4. Let k E N. Then
1. If En (n + 1)k1 an(p)I < 00, then p = wdm with inf w(C) > 0 and w a Ck

function.
2. If k > 2 and p = wdm with inf w(C) > 0, and w is a Ck function, then

En(n + 1)Qjan(µ)I < oc for any 0 < Q < k - 1.
In particular, p = wdm with inf w(C) > 0, and w a C°° function if and only if for
all k,

(p <Ck(n+1)-k

The last statement is due to B. Golinskii [44]. For some further extensions of
Baxter's theorem, see [37].

20.3. B. Golinskii-Ibragimov Condition. In 1971 B. Golinskii and Ibrag-
imov proved that if the Verblunsky coefficients {an(p)} of a measure p obey
EnnIan(A)I2 < oc then p is absolutely continuous. The extension of their ideas
led Simon [97] to the class of measures for which EN 0 n l an (µ) 12 diverges loga-
rithmically. More precisely, Simon's condition is

N

En1an(µ)12 <AlogN+C (20.1)
n=0

with A, C constants. He proved in [106, Thm. 6.1.7], that p is absolutely continuous
as long as (20.1) holds with some A < 4. On the other hand, for any A > 4, there
are examples with p. # 0, that is, 4 is optimal. As a matter of fact, for A > 4, one
should distinguish the pure point component APP of µs = ppp + p from the singular
continuous one, p. For instance, it is shown in [106, Cor. 2.7.6] that App = 0 as
long as (20.1) holds with A = 4. It turns out that for measures (20.1) with some
A < oc, the support of p1P consists of at most [4A] points, [x] being an integer part
of x (see [107, Theorem 10.12.7]). Recently, Damanik [19], answering a question
of Simon, proved that, indeed, µ = 0 whenever (20.1) holds for some A < oc.

20.4. Sparse Verblunsky Coefficients. In [58] Kiselev, Last and Simon
presented a thorough analysis of continuum and discrete Schrodinger operators
with sparse potentials. In [107, Sect. 12.5] Simon found the analogues of these
results for OPUC. A set of Verblunsky coefficients is said to be sparse if aj # 0
only for j E {nk}k>1 where nk+1 - nk -* oc perhaps at some specific rate. The
first result of the "sparse flavor" for OPUC is due to Khrushchev [53], who proved
that under the so-called Mate-Nevai condition,

lim an(A)an-k(A) = 0
n-- co

for each fixed l = 1, 2.... (which certainly holds for sparse sets and characterizes
Rakhmanov's class of measures) p is singular as long as 1im supn-,, I an(p) I > 0.

For the proof of the next two results, see [107, Thms. 12.5.1, 12.5.2].

THEOREM 20.5. Let {nk} be a monotone sequence of positive integers with
liminfk. nk+1/nk > 1. Suppose

00

aj(µ) = 0, V {nk}, i Iak(µ)I2 < 00-
j=0
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Then supp p = T and µs = 0, i.e., p is absolutely continuous. Moreover, p = wdm
with w+1 E LP(T) for all 1 < p < oo.

THEOREM 20.6. Let {nk} be a monotone sequence of positive integers with
liminfk.0 nk+1/nk = oo. Suppose

aj (µ) = 0, j V {nk }, lim aj = 0,
3-.00

00

1 ak(A)12 = oo.
j=0

Then supp,a = T and ppp = p.c = 0, i.e., u is purely singular continuous.

20.5. Dense Embedded Point Spectrum. The story for Schrodinger op-
erators goes back to Naboko [79], who constructed the operator - dx2 + V (x) with
V decaying only slightly slower than x1-1 but there is dense embedded point spec-
trum. Naboko's method extends to OPUC; see [107, Sect. 12.3].

THEOREM 20.7. Let g(n) be an arbitrary function with 0 < g(n) < g(n +
1) and g(n) -> oo as n -f oo. Let {wj}j>o be an arbitrary subset of T which
are multiplicatively rationally independent, that is, for no integers n1,.. . , nk other
than zeros is it true that j=1 1. Then there exists a sequence {aj(p)} of
Verblunsky coefficients with

for all n so that µ has pure points at each wj.

Note that if g(n) < n1/2-E then an E f2 so by Szeg6's theorem, w > 0 a.e.,
that is, the point spectrum is embedded in a.c. spectrum.

20.6. Fibonacci Subshifts. There is an extensive literature on subshifts for
discrete Schrodinger operators. Simon [107, Sect. 12.8] has analyzed the OPUC
analogues of the most heavily studied of these subshifts, defined as follows. Pick
a 0 in the open unit disk and let F1 = a, F2 = a,3, and Fn+I = FFn-1 for
n = 2, 3,.... These are finite strings built up from a and 0. As Fn+i starts with
Fn, there is a limit F(a, )3) which is a one-way infinite string aa/3a/3a . Let
µ(a, (3) be the measure that has Verblunsky coefficients (in an infinite string form)
anal ... = F(a,(3).

THEOREM 20.8. The essential support of the measure u(a,)3) is a closed per-
fect set of Lebesgue measure zero. For fixed ao, 13o and a.e. A E T, the measure
µ(.\ao, a(3o) is a pure point measure, with each pure point isolated and the limit
points of the pure points form a perfect set of Lebesgue measure zero.

21. Periodic Verblunsky Coefficients

The theory of one-dimensional periodic Schrodinger operators (also known as
Hill's equations) and of periodic Jacobi matrices has been extensively developed.
The theory up to the 1950's is summarized in the Magnus-Winkler book [67].
There was an explosion of ideas following the KdV revolution, including spectrally
invariant flows and Abelian functions on hyperelliptic Riemann surfaces. The ideas
have been carried over to the discrete setting of orthogonal polynomials on the real
line; see, e.g., Toda [125] and Flaschka-McLaughlin [30].
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In the 1940's Geronimus [39] found the earliest results on OPUC with periodic
Verblunsky coefficients, i.e., for some p > 1,

aj+p = aj, j E Z+. (21.1)

In particular, the case of - o E D\{0} yields OPUC called Geronimus polynomials
(see [106, Ex. 1.6.12]). Many of the general features for OPUC obeying (21.1)
appeared in a fundamental series of papers by Peherstorfer and collaborators.

The aforementioned literature on OPUC used little from the work on Hill's
equation. A partial link is Geronimo-Johnson [35], which discussed almost peri-
odic Verblunsky coefficients using Abelian functions. See also Geronimo-Gesztesy-
Holden [34], which includes work on isospectral flows.

Some new results and approaches for periodic Verblunsky coefficients are pre-
sented in [107, Ch. 11].

21.1. Discriminant. For Schrodinger operators and Jacobi matrices, the dis-
criminant is known to be just the trace of the transfer matrix, which has determi-
nant one in this case. For OPUC, the transfer matrix Tp (14.11) has det(TP(z)) _
zP, so it is natural to define the discriminant by

A(z) ._ Tr (z-Pl2TP(z))
(21.2)

which explains why p is normally assumed to be an even number. A is known to
be real on T, so

0(1/z) = O(z),

and z-P/2 Tp (z) has eigenvalues ° f i 1 - (°) 2 In particular, these eigenvalues
have magnitude 1, that is, sup,,, IITmp(z)MI < oc exactly when A E [-2,2].

THEOREM 21.1. There exist with

X1 < y1 < x2 < y2 < ... < xp < yp < xl + 21r - xp+l

so that the solutions of A(z) = 2 (resp. -2) are exactly e'xl, ezY2, e1x3, ... , eixp
(resp. e41, eix2, eiy3, ... , ezyp) and 0(z) E [-2, 2] exactly on the bands

P

B = U Bj, Bj = {e'B : xj < B < (21.3)
j=1

B is the essential support of /2ac and the only possible singular spectrum are mass
points which can occur in open gaps (i.e., non-empty sets of the form {eie : yj <
0 < xj+l}) with at most one mass point in each gap.

Further properties of A are given in the following result.

THEOREM 21.2. (i) For all non-zero z c C, the Lyapunov exponent is

-Y(z) = lim IMTn(z)11V = 2 log(z) + p
2z)

+
p2(z)

- 1 , (21.4)n-co

where the branch of square root is taken that maximizes the logarithm.
(ii) The logarithmic capacity of B (21.3) is given by

P-1

CB = fJ(1 - lajl2)I/p

j=0

and -[y + log CB] is the equilibrium potential for B.
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(iii) The density of zeros is the equilibrium measure for B and is given in terms of
A by dv = Vd9/2ir, where

1 O'(et°)i
p 4-A2(00)

on Bj, and V = 0 on the complement of B. 11 //

(iv) v(Bj) = 1/p.

For any {aj }P=01 E DP, one can define a discriminant A(z, {aj }P=o) for the
p-periodic Verblunsky coefficients that agree with {aj }P =o for j = 0, ... , p - 1. It
turns out (see [107, Thm. 11.10.2]) that the set {aj}P=o E DP for which 0 has all
gaps open, i.e., all Bj in (21.3) are disjoint, is a dense open set in DP (the case
of generic potentials). [107] has two proofs of this result: one is based on Sard's
theorem and one is a perturbation theoretic calculation.

In 1946 Borg [15] proved two celebrated theorems for Schrodinger operators
about the implication of closed gaps. In [107, Sect. 11.14] Simon gives the analogues
of these results for OPUC.

THEOREM 21.3. (i) Let aj be a periodic sequence of Verblunsky coefficients.
Suppose all gaps are closed, i.e., the support of the orthogonality measure is the
whole unit circle. Then aj - 0.
(ii) Let p be even and {c } has period 2p. Then all gaps with 0(z) = -2 are closed
if and only if aj+P = a j. All the gaps with A(z) = 2 are closed if and only if
aj +P = -aj .

As shown in [43], Theorem 21.3(i) permits a non-trivial generalization. First,
one can admit reflectionless Verblunsky coefficients from the outset and does not
have to assume periodicity. Second, one can solve the inverse spectral problem (still
in the more general reflectionless case) if the spectrum is a connected arc on the
unit circle rather than the whole arc.

The isospectral results constitute one of the highlights of the OPUC theory.

THEOREM 21.4. Let {aoP=o E DP such that A(z, {a }P=o) has k open gaps.
Then the set of all {3}'I -o E DP with A (z, {Qj}P=o) = A (z, {aj}P=o) is a k-
dimensional torus.

There is one important difference between OPUC and the Jacobi case. In the
latter, the infinite gap does not count in the calculation of the dimension of the
torus, so it has a dimension equal to the genus of the Riemann surface for the m-
function. In the OPUC case, all gaps count and the torus has dimension one more
than the genus.

The torus can be defined explicitly in terms of natural additional data as-
sociated to {aoP=o. One way to define the data is to analytically continue the
Caratheodory function F for the periodic sequence. One cuts C on the connected
components of {JAJ < 2} and forms the two-sheeted Riemann surface associated
to 02 - 4. On this surface F is meromorphic with exactly one pole on each "ex-
tended gap." The ends of the gap are branch points and join the two images of the
gap into a circle. The p points, one on each gap, are thus p-dimensional torus, and
the refined version of the above result is that there is exactly one Caratheodory
function associated to a period p set of Verblunsky coefficients with specified poles.
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Alternately, the points in the gap are solutions of J = 4DP with sheets deter-
mined by whether the points are pure points of the associated measure or not.

22. Random Coefficients

Let SZ be the space 11°°0 D, an measures on D and a = 11'o aj the product
measure on Q. In other words, sequences {a,,,}°°_0 of Verblunsky coefficients con-
sidered in this section are independent random variables. If in addition aj = ao
for all j, then they are identically distributed. One is interested in statements that
hold when aj = wj for a.e. w c 52 with respect to a. The main result is that,
typically, the associated measure ft,, with aj(j ) = wj is a pure point measure
with pure points often dense in T.

For A E T, let pa, be the measure with aj(/2 ) = Awj. The main result for
the i.i.d. case is [107, Thm. 12.6.3].

THEOREM 22.1. Suppose that a0 is not supported at a single point. Then for
a. e. (A, w) E T x Q the measure µa, has pure point spectrum. If ao is absolutely
continuous with respect to the area Lebesgue measure on D, then j is pure point
for a.e.wEft

22.1. Decaying Random Verblunsky Coefficients. Decaying random po-
tentials were studied starting with Simon [95] who found the first example of Jacobi
matrices with Ian - 11 + Ibnl --> 0 and µ purely singular. The pioneering results on
decaying Verblunsky coefficients are due to Nikishin [83] and Teplyaev [123]. The
detailed account of the subject is presented in [107, Sects. 12.6-7].

Now Verblunsky coefficients {aj(w)} are assumed to be independent random
but not necessarily identically distributed variables, which decay to zero in some
sense; at a minimum, the mean value E(I aj(w)I2) -> 0. The main result states that
there is no singular spectrum.

THEOREM 22.2. Let the Verblunsky coefficients {aj(w)} be independent random
variables with E(aj(w)) = 0 and

cc

EE(Iaj(w)12) <oo,
j=0

i.e., the Szego condition holds a. e. Then the corresponding orthogonality measure
p,, is absolutely continuous for a. e. w.

The situation changes dramatically for the slowly decaying Verblunsky coeffi-
cients. Assume that

supIaj(w)I < 1, lim sup la
w,7

and

7-0o w
)I=0, (22.1)

E(aj (w)) = E(aj' (w)) = 0, (22.2)

E(laj(w)I2)I/2 = rj-,y, j ? j0, 0<,/5 2. (22.3)

THEOREM 22.3. (i) Suppose that independent Verblunsky coefficients {aj (w) }
satisfy (22.1)-(22.3) with y < 2. Then for a.e. pairs (A,w) E T x SZ, the measure
µa W is pure point and dense in T.
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(ii) Suppose that (22.1)-(22.3) hold with y = a and in addition,

sup n1/21aj (w)I < oo.
-,7

Then for a. e. pairs (A, w) E T x SZ, the measure µa,, has dense pure point spectrum
as long as F > 1. If F < 1, then for a. e. pairs (.A, w) E T x S2, the measure µa,
has purely singular continuous spectrum of exact Hausdorff dimension 1 - 1,2.

The distribution of the zeros of random paraorthogonal polynomials on the unit
circle is studied in [118].

23. Miscellanea

23.1. Exponential Decay Estimates. In [81] Nevai and Totik proved that
lira supra-. I an (P) I1/n = R-1 < 1 if and only if µ is absolutely continuous and
the reciprocal of the Szego function (16.3) D-1 is analytic in the disk {Izl < R},
providing a formula for the exact rate of exponential decay in terms of properties
of D-1. Moreover, the following result is true (see [104, Thm. 2.1]).2

THEOREM 23.1. Let limsupn- 0 an(µ)11/n = R-1 < 1 and define
00

S(z) -Eaj-1(µ)z', r(z) := D(1/z)D-1(z), (23.1)

i=o

so both S and D-I are analytic in {jzj < R}. Then the difference r - S is analytic
in{z:1-6<zj <R3} for some 6>0.

The point of this theorem is that both S and D-1 have singularities on the
circle of radius R so the fact that the combination has analytic continuation is
subtle.

To study the more specific exponential decay of Verblunsky coefficients, Simon
came up with the following:
Definition. A sequence {An}n?-1 of complex numbers is said to have an asymp-
totic series with error R-n for some R > 1 if there exists a finite number of points
{µj} i, 1 < µjj < R, and polynomials {Pj},4=1 so that

i
Pj 1-

'1n

lira sup (23.2)An - : < RHn-oo
9 =1

,

An has a complete asymptotic series if it has an asymptotic series with error R-n
for allR>1.

It is not hard to see that {An}n>_1 has an asymptotic series with error R-n if
and only if

00
L(z) := E An-lzn

n=0

is meromorphic in { z < R} with a finite number of poles, all in {1 < z j < R}. In
particular, {An}n>_1 has a complete asymptotic series if and only if L is an entire
meromorphic function, i.e., meromorphic on the whole C.

Here is the main result of [104].

2This result was proved independently in [22].
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THEOREM 23.2. Let a be a non-trivial probability measure in P with Verblunsky
coefficients an(a). Then an has a complete asymptotic series if and only if it
is an absolutely continuous measure from the Szego class and D-1 is an entire
meromorphic function. The latter is equivalent to the function S (23.1) being an
entire meromorphic function.

Simon also provides the relation between pi's that enter in the asymptotic
series and the poles of D-1. For some further extensions, see [71].

23.2. Rakhmanov's Theorem on an Arc. Let it = wdm+p5 be a measure
from P. It was Rakhmanov [92] who proved that w > 0 a.e. on T implies an(ti) -' 0
as n - oo. Subsequently, Bello and Lopez [12] took this result over to an arc of
the unit circle.

THEOREM 23.3 (Bello-Lopez). Let A,,, be an arc on T

L ={(=eit:a<t<27r-a}, 0<a<7r.

Suppose that supp p = Da and w > 0 a. e. on this arc. Then

n m Ian (W )I = sin 2, Eli sin2
a
2

On the other hand, the recent result of Denisov [24] states

THEOREM 23.4 (Denisov). Let J = J({an}, {bn}) be a Jacobi matrix with the
spectral measure a = vdm + o,,. Suppose that ess supp a = [-2, 2] and v > 0 a. e.
on [-2, 2]. Then an -> 1, bn -* 0 as n -> oo.

The original Rakhmanov theorem (more precisely, its real line analogue) cor-
responds to the case supp a = [-2, 2]. There is also an alternate proof of Denisov's
theorem due to Nevai-Totik [82], which appeared to be a starting point for Simon
to prove

THEOREM 23.5. The result of Bello-Lopez holds under the relaxed assumption
ess suppp = 0,,,.

23.3. Measures with VC's from P, p > 2. For the class P of non-trivial
probability measures on T, Totik [126] established the following

THEOREM 23.6. Let a E P with supp p = T. Then there exists a measure v
mutually absolutely continuous with p and such that an(v) -* 0 as n ---> oo.

Simon proved the stronger (see [106, Thm. 2.10.1])

THEOREM 23.7. Let p E P with supp p = T. Then there exists a measure v
mutually absolutely continuous with p and such that for all p > 2,

00

E (v) <00.
n=0

Khrushchev [54] gave examples of singular continuous measure p on T with
{an(p)} E QP for all p > 2.
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23.4. Counting Eigenvalues in Gaps. Suppose that p(°) and p are mea-
sures from P with Verblunsky coefficients {an"} and {an}, respectively, and let
an - 0 with some information on the rate. If an open circular arc F is

disjoint from o ess (µ(°)) then the same happens for o-ess (µ) by Theorem 20.2. If the
number of pure points of p in IF is infinite, they can only have the endpoints of I' as
limit points, and one can ask about the growth of the number of pure points near
the endpoints of F.

The analogous problem for Schrodinger operators and Jacobi matrices is heavily
studied. Given a Jacobi matrix J({an}n>1, {bn}n>1) with an --+ 1 and bn --+ 0 as
n -> oo, denote by N(J) a number of eigenvalues of J off [-2,2].

THEOREM 23.8 (Geronimo-Case, Chihara-Nevai). . Suppose that
00

n(Ibnl+Ian-1I) <00.
n=1

Then N(J) < oc.

Geronimo and later Hundertmark and Simon found a quantitative bound (see
[50, Thm. A1])

cc

N(J) < E(nlbnl + (4n + 2)(an - 1)+), (x) + = max(x, 0), (23.3)
n=1

the result known as the Bargman-type bound. Next, denote by {E } the eigenvalues
of J with

El >EZ >...>2>-2>...>E2 >Ei.
Then (see [50, Thm. 2] )

(IEn - 21p-1/21 + IEn +2 1p-1/21 1 < CP
CE

bnIP + 4 Ian - 11P (23.4)L-d
n=1 1 \n-1 n=1

for all p > 1, where Cp is an explicitly given constant depending only on p. The
estimate is usually called a Lieb-Thirring-type bound.

In [107, Sect. 12.2] Simon found similar bounds in the OPUC setting.

THEOREM 23.9. Let'qj+N = 77j, j E Z+, be a periodic sequence of complex
numbers, and suppose the Verblunsky coefficients an(p) of a measure p E P satisfy

cc

E7Iaj(µ) - %1 < 00-
j=0

Then p has an essential support whose complement has at most N gaps, and each
gap has only finitely many mass points.

THEOREM 23.10. Suppose a's and ij's are as in the above theorem, and
00

1: Iaj (µ)-1jI'<oo
i=0

holds for some p > 1. Then for the mass points zj in the gaps, we have

1: dist(zj, ess supp µ)9 < oo,
zi

where q> 2 ifp=1 and q>p-2 ifp>1.
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Remark. In a recent paper [45] L. Golinskii found precise quantitative ana-
logues of (23.3) and (23.4) in the OPUC setting for the case of a constant back-
ground (N = 1).

23.5. Jitomirskaya-Last Inequalities. In a fundamental paper intended
to understand and extend the subordinacy theory of Gilbert-Pearson, Jitomirskaya
and Last proved some basic inequalities about singularities of the m-function as the
energy approaches the spectrum. In [107, Sect. 10.8] an analogue of their results
for OPUC is established.

For a sequence of complex numbers {aj }j>o and a positive 0 < x < oo, define

[x1

Ilall' L Iai12 + (x - [x])Ia[x]+112,
j=0

so IaII2 = E;=0 Ian I2 and Ilall2 is linearly interpolated in between. Let W,,((, µ) and
On((, p) be the orthonormal polynomials of the first and second kind, respectively,
with respect to p. Since either {cpn} or {On} is not in t2 for ( E T, the product

increases monotonically from 1 to +oo, 0 < x < oo. Hence for ( E T
and 0 < r < 1, there is a unique solution x(r) of

Sr
The unit circle analogue of Jitomirskaya-Last inequalities takes the following form.

THEOREM 23.11. Let F = F(z,,u) be the Caratheodory function of µ. Then

1

111(p(OlIX(o]A - F(rC, µ) <- A M(() L(r)
where 1 < A < oo is a universal constant.

COROLLARY 23.12. Let G C T be a Borel set on the unit circle so that for all
E G, the transfer matrix Tn defined in x(14.11) satisfies

sup IITn(()II < 00-
n

Then p is absolutely continuous on G.

The OPUC analogues of the Gilbert-Pearson subordinacy theory appeared first
in [46] and the Simon-Wolff theory in [124] (see also [46]) and were elaborated in
[107, Sect. 10].
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1. Introduction

It is customary to consider Chebyshev, Gauss, Jacobi, and Legendre as the main
creators of the theory of orthogonal polynomials. However, their contributions
were directly influenced by Brouncker and Wallis who, in March of 1655, made
discoveries which influenced the development of analysis for the next hundred years.
Namely, Wallis found an infinite product of rational numbers converging to 4/7r and
Brouncker gave a remarkable continued fraction for this quantity. Brouncker didn't
leave much on how he proved his formula. However, some vague remarks remained
in Section 191 of Wallis' Arithmetica Infinitorum. The only mathematician who
understood the importance of these discoveries was Euler. He undertook serious
efforts to recover Brouncker's proof and found several proofs, but they all used
differential and integral calculus, tools which were not available to Brouncker. It
is clear from Euler's remarks in [3] that he felt that the recovery of the original
Brouncker's proof could open new perspectives for analysis. As usual, Euler was
right. The purpose of this paper is to show that indeed Brouncker's proof leads
to the discovery of orthogonal polynomials and, in fact, the polynomials listed in
Wallis' Arithmetica Infinitorum in 1655 are the first orthogonal polynomials which
were written explicitly.

The plan of the paper is the following. In Sections 2-3, we discuss Brouncker's
formula and recover Brouncker's proof from Wallis' remarks. In Section 4 we
present an application of Euler's ideology of Wallis' interpolation to the theory
of the Gamma function and show how this topic is related to Brouncker's contin-
ued fraction. In Section 5 using Euler's differential method for obtaining continued
fractions, we derive the asymptotic expansion for Brouncker's continued fraction in
terms of Euler's numbers. In Section 6 we state Euler's problem on rational para-
meterization of orthogonal matrices which finally led Chebyshev to the discovery
of general orthogonal polynomials and their most important properties. In Sec-
tions 7-8 we show how Euler's ideas in the field of continued fractions influenced
the discoveries of Gauss. In Sections 9-10 we present Jacobi's and Sturm's contri-
butions. In Section 11 we give an account of Chebyshev's method, and finally in
Section 12 we summarize Chebyshev's contribution to the example of Brouncker's
polynomials.

2. Arithmetica Infinitorum

By March of 1655 John Wallis had almost completed his Arithmetica Infinito-
rum in which he promoted an important method of interpolation. This was a great
work. Very briefly, Wallis discovered that analytic formulas can be interpolated by
their values at integer numbers. Nowadays these facts are established in complex
analysis with uniqueness theorems. But in 1655, even differential calculus was not
available. Nevertheless, Wallis successfully applied his interpolation to find formu-
las for the areas under many curves. Only one curve remained uncovered. It was
the unit circle. In 1593 Viete found the formula

2 12- 2+vf2- 2+ 2+v/_2

it 2 2 2
(1)

Since the multipliers in Viete's formula are algebraic irrationalities of increasing
order, it was not the formula which could meet Wallis' requirements. Finally, in
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March of 1655, Wallis obtained his now well-known formula

2 1 . 3 3.5 5.7 (2n - 1) (2n + 1)
it 2.2 4.4 6.6 2n 2n

877

(2)

in which all multipliers are rational. Wallis shared this important discovery with
William Brouncker [15], who gave the quadrature continued fraction for 7r:

4 _1+12 32 52 + K ((2n-1)21
it 2+2+2+... n=1 2 J

(3)

Brouncker's proof has never been published. However, Wallis included his com-
ments on Brouncker's proof at the end of Arithmetica Infinitorum. From these
comments one can conclude that Brouncker considered the function

()
K ((2n-1)2bs =s+ KI

2s

and proved that it satisfies the following functional equation

b(s)b(s + 2) = (s + 1)2.

This functional equation looks especially attractive written in the form

(4)

(5)

12 32 12 32 2s-1+2(s-1)+2(s-1)+...
X (8 +1+2(s+1)+2(s+1)+... s

We give here the most important extract from the recent translation by Stedall
of Arithmetica Infinitorum [22]:

The Noble Gentleman noticed that two consecutive odd num-
bers, if multiplied together, form a product which is the square of
the intermediate even number minus one.... He asked, therefore,
by what ratio the factors must be increased to form a product,
not those squares minus one, but equal to the squares themselves.

Algebraically these can be written as a transformation of

s(s+2)=(s+ 1)2-1
into (5).

The important discovery of Brouncker remained untouched until May 1727,
when Euler arrived in St. Petersburg with Arithmetica Infinitorum. Brouncker's
formula mentioned in it didn't escape Euler's attention. In fact, Euler undertook
tremendous efforts to recover Brouncker's proof. For instance in his main paper on
continued fraction [3], Euler wrote:

Therefore for quite a long time I undertook great efforts to prove
this Theorem so that its proof a priori can be related with this
function; this research, in my opinion, is more difficult, but I be-
lieve it may result in great benefits. While any such research
was condemned to failure, I regret most of all the fact that
Brouncker's method was nowhere present and most likely sank
into oblivion.
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3. Recovery of Brouncker's Proof

Let us notice first [15] that Wallis showed Brouncker his infinite product. As
it is clear from the following formula

1 . 3 3 . 5 5 . 7 (2n - 1) (2n + 1) _
2.2 4.4 6.6

1.3 2.2 3.5 (6)

0 + 0 + 0 +...+ 0 + 1

products and continued fractions are related. Since any formal infinite continued
fraction with identically zero partial denominators diverges, something should be
done to make them positive. This was known to Brouncker; see Wallis [22, p. 169,
footnote 79]: `The first fraction, beginning with zero, oscillates between zero and
infinity, but multiplied by the next fraction, beginning with 2, it is supposed to make
1.

This suggests the idea of increasing s to b(s) and s + 2 to b(s+2) in odd partial
numerators of continued fraction (6), where b satisfies (5). Then to keep (6) valid,
odd zero partial denominators in the right-hand side of (6) must become positive
automatically. That is exactly what is needed to complete the proof. The fact that
s + 1 is even is also helpful since it may provide necessary cancellations. Using (5)
repeatedly, we may write

22 22 22 62 22 62
b(1) =

b(3)
= 42 b(5) - 42

b(7)
= 42 82 b(9)

1)2
b(4n + 1) == 42 82 102 ... (4n

(4n)2
2)2

b(4n + 1) = 22 42 ... (2n
(2n)2

- 1 . 3 3 . 5 5 . 7 (2n-1)(2n+1) b(4n + 1) (7)

22
42

62 (2n)2 (2n + 1)

Combined with Wallis' formula, this implies

b(1) = I +0(1) I .

b(4n

+ 1 )

Since s + 2 < b(s + 2) and b(s)b(s + 2) = (s + 1)2, we have

s < b(s) <
s2 + 2s + 1 _ s+ 1

s+2 2+s

which together with (8) imply

(8)

It remains only to find a formula for b(s). Inequality (9) suggests that b(s) may
be represented as a sum of an infinite power series in 1/s. The analogy with the
conversion of decimal numbers into regular continued fractions indicates that this
method may be at least tried. It is not a big deal to obtain by iterations of (5) and
(9), using the method of uncertain coefficients, that

1 153
b(s) - s +

2s 893 + 16s5 +O(s7) (11)
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or equivalently

(-)bs =+ 8s4-18s+153+0
(
12)

Applying the Euclidean algorithm to the quotient of polynomials, we have

8s4 - 18s2 + 153 1 1

16s5 9(4s3 - 34s)
2s+

9
2s +

8s4 - 18s2 + 153 8s4 - 18s2 +153

4s3 - 34s
1 1

9 9
2s+

25(2s2 + 153/25)
2s +

25
2s+

4s3 -34s
2s
+ 2s+---

A remarkable property of the above calculations is that 12 = 1, 32 = 9, 52 = 25,
etc. appear automatically as common divisors of the coefficients of the polynomials
in Euclid's algorithm. The fraction 153/25 occurs only because c7 was not found.
Increasing the number of terms in (11), we naturally arrive at the conclusion that
(4) is a correct formula for b.

Having obtained (4), we may reverse the order of arguments and compute the
following differences for first convergents Pn/Q,,, of continued fraction (4)

Po(s) Po(s + 2) - 2
=

2 -

Qo(s) Qo(s + 2)
(s + 1) s(s + 2) - (s + 1) (-1) = 0(1)

Pi (s) Pi (s + 2) 2 4s4 +16s 3 + 20s2 +8s+9

Q1 (s) Q1 (s +T) 4s2 +8s

4s4 +16s 3 + 20s2 + 8s

4s2 +8s
9 =01

4s2 + 8s
(s2

P2(s) P2(s + 2)
- (s + 1)2 =

Q2 (s) Q2 (s +T)
16s6 + 96s5 + 28Os4 + 480s3 + 649s2 + 594s - (s + 1)2 =

16s4 + 64s3 + 136s2 + 144s + 225

-225 - 0(1
16s4 + 64s3 + 136s2 + 144s + 225 s4

One can find these very formulas in [22, pp. 169-170], where Wallis writes: `.. .
which is less than the square F2 + 2F + 1.1 And thus it may be done as far as one
likes; it will form a product which will be (in turn) now greater than, now less than,
the given square (the difference, however, continually decreasing, as is clear), which
was to be proved.'

To make Wallis' comments more clear, we first show that the convergents
Pn(s)/Qn(s) tend to some limit if s > 0 and n -* +oo. Polynomials Pte, and
Qn satisfy the predecessor of Szego's recursion:

Pn = 2sPn_1 + (2n - 1)2Pn-2
(13)

Qn = 2sQn-1 + (2n - 1)2Qn_2 .

'In Wallis' notation, s = F.
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Formulas of type (13) valid for arbitrary continued fractions are now known as
Euler-Wallis formulas. However, as it is clear from Wallis' notes, it was Brouncker
who showed these formulas to Wallis.

LEMMA 1. Continued fraction (4) converges for s > 1:

lim Pn(s) = b(s)
n Qn(s)

PROOF. An iterative application of (13) shows that

PnQn_1 - Pn-1Qn =
(-1)n-1(2n - 1)!!2,

which implies
Qn-1 Qn

(-1)n-1(2n - 1)!!2

Next
Pn-1 Pn Pn Pn-1

Qn-2
-

Qn _ Qn-2 _ Qn-1 Qn-1 Qn

Pn_2 Pn Pn_2 Pn-1 + Pn-1 Pn

(-1)n-1(2n - 3)!!2 5 (2n - 1)2 1 (-1)n(2, - 3)!!22s
Pn_ 1 P. - Pn 2 } - PnPn-2

Hence, even convergents Pn/Qn increase and odd convergents decrease. The first
formula in (13) shows by induction that Pn(1) _ (2n + 1)!!. Indeed, Po(1) = 1,
P1(1)=2.12+1=3 and finally

Pn(1) = (2n - 1)!!(2 + (2n - 1)) _ (2n + 1)!! . (14)

Since Pn(s) > Pn(1) for s > 1, we obtain for such s that

Qn-1 - Qn I (2n - 1)!!2 = 1

Pn_1 Pn (2n + 1)!!(2n - 1)!! 2n+1
implying the existence of limn Qn/Pn (and hence of limn Pn/Qn) for s > 1.

Since most likely Brouncker considered integer s, he probably didn't prove the
convergence for 1 > s > 0. The easiest way to establish the convergence for all
s > 0 is to apply a simple old theorem by Pringsheim [17], see [12, Ch. I, §5].

THEOREM 2. Let Pn > 0, qn > 0, and

E (qn-lgn 1/z

pn
+00

n=1=1

Then qo + K (L=) converges.n=1 qn

In our case qn = 2s and Pn = (2n -1)2. Therefore the convergence of continued
fraction (4) follows from the divergence of the harmonic series.

Formulas (13) also imply that the denominators in the boxed Brouncker's for-
mulas are products Qn(s)Qn(s + 2) of polynomials with positive coefficients and
therefore have positive coefficients as well.

For n = 0, 1, 2, Brouncker's formulas show that

Pn(s)Pn(s + 2) - (s + 1)2Qn(s)Qn(s + 2) = cn , (15)

where cn is a constant. If it is true for every n, then cn can be easily found.
Indeed, putting s = -1 in (15), we obtain cn = Pn(-1)Pn(1). By (14) we have
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P,,,(1) = (2n + 1)!!. Since Pa(s) is odd for even n and is even for odd n, c, _
-(-1)" [(2n + 1)!!]2. It follows that for s > 0,

P2k (S) P2k (S + 2) 2 P2k+1(S) P2k+1(S + 2)

Q2k(S) Q2k(S + 2)
< (S + 1) < Q2k+l(S) Q2k+1(S + 2)

Since continued fraction (4) converges and all its terms are positive, even conver-
gents increase to b whereas odd convergents decrease to b. Passing to the limit in
the above inequalities, we obtain that continued fraction b(s) satisfies functional
equation (5). The inequality s < b(s) is clear from (4). Thus the proof is completed
by the following technical lemma, which can be proved by induction (see its proof
in [13]).

LEMMA 3. Let P,,(s)/Q, (s) be the n-th convergent to Brouncker's continued
fraction (4). Then

PP (s)P,,.(s + 2) - (s + 1)2Q.(s)QT.(s + 2) = (-1)'+1 [(2n + 1)!!]2 . (16)

The following theorem describes all solutions to functional equation (5) exceed-
ing s for s > 0. It also interpolates the relationship between Wallis' product and
Brouncker's continued fraction to all s > 0.

THEOREM 4. Let b(s) be a function on (0, +oo) satisfying (5) and the inequality
s < b(s) for s > C, where C is some constant. Then

11 (s+4n-3)(s+4n+1) _s+ K ((2n-1)2)
(17)b(s)_(s+1)

n=1
(s + 4n - 1)2 n=1 \ 2s J

for every positive s.

PROOF. Repeating Brouncker's arguments, we obtain

b(s)
(s+3)2 b(s + 4) _ (s + 3)2 (s + 7)2

b(s
+

8)
_

(s + 1)2 (s+5)2 (s + 4n - 3)2
b(s + 4n) _

(s+3)2 (s + 7)2 (s + 4n - 1)2

_ (s+1)(s+1)(s+5) (s+4n-3)(s+4n+1) b(s+4n)
(s+3)2 (s+4n-1)2 (s+4n+1)

Multipliers are grouped in accordance with the rule of Wallis' formula:
(s + 4n - 3)(s + 4n + 1) 4

(s+4n- 1)2 = 1 (s+4n- 1)2
which provides the convergence of the product for all s -(4n - 1). For positive
s it converges to b(s) since s + 4n < b(s + 4n) < s + 4n + 1 by the assumption that
s < b(s) for s > C.

A simple analysis of the proof presented shows that by March 1665, Brouncker
had at his disposal elements of the theory of positive continued fractions including
recursion formulas (13). It looks therefore that Wallis' question fell into fertile soil.
Brouncker proposed several new ideas but a very new and important idea here was
that of considering a continuum of asymptotic series.
Definition. A formal power series

Cl C2 C3+ 3 +...cp++ 2
SS s
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is called an asymptotic expansion of a function y(s) at oo if for every n

y (s)

n

_
Sk

+ O
(S

+1
/

S 00
k=o

Summing up Brouncker's method (Brouncker's program) puts together four differ-
ent objects:

1) functional equation y(s)y(s + 2) = (s + 1)2;
2) asymptotic series (11);
3) continued fraction (4) corresponding to this series;
4) infinite product (17) locating singular points of y(s).

4. Euler
In his letter to Goldbach of October 13, 1729, Euler applied Brouncker's pro-

gram to answer a question posed by Daniel Bernoulli and Goldbach. The problem
was to find a formula extending the factorial n -> n! = 1 - 2 ... n to real values of
n.

Arguing by analogy, one can search an extension r(x) for P(n + 1) = n! as a
solution to

P(x + 1) = xF(x). (18)

Let 0 < x < 1. Iterating (18), we obtain

P(x+n+1)P(x) _
x(x + 1)...(x + n) n E 7G+ . (19)

Now if one can find an asymptotic formula for P(t + 1) as t - +oo, then it can be
used to define r(x) as a limit of elementary functions.

Definition. A positive sequence co = 1, cl, ..., cn, ... is called convex if 2ck
ek+l + ck_1 for k = 1, 2,....

The function log P(t + 1) interpolates the sequence zk = log k! at t = k. The
sequence {zk}k>O is convex. Since logF(t + 1) interpolates it, one may assume
that the graph of log r(t + 1) is convex too. Comparing on the coordinate plane
the slopes of the three chords determined by the points (n - 1, zn_1), (n, zn)) and
(n, zn), (x + n, log P(x + n + 1) ), and finally by (n, zn), (n + 1, zn+1), we obtain that

log n <
log P (x + n + 1) - log n! < to n + 1x g( )

or equivalently,

nxn! < P(x + n + 1) < (n + 1)xn! . (20)

The substitution of these inequalities in (19) shows that

nxn! < P(x) < nxn!

+x(x + 1)...(x + n) x(x + 1)...(x n)

which leads to Euler's definition of the Gamma function:

nxn!
P(x) = -oo x(x + 1)...(x + n)

(21)
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The above arguments show that if (18) has a logarithmic convex solution, then it
is defined by (21). Next,

nn! 1
x n 1 x

1

11 1+
x 1+- (22)

x(x + 1)...(x + n) x (n

n
+ 1 j jj=1

implies the existence of the limit in (21), since

l

1 xx

C1 + /
\1 + I = 1 + x(j2 1)

+0(
73 /

Finally,

d2

(x(x+1)...(x+n))
nxn!

log
0

= 0 (x + j)2 > 0

shows that the limit function r(x) is logarithmic convex and

2 00

1
d

22 logF(x)
j=0

(x + i)2 . (23)

COROLLARY 5 (The Bohr-Mollerup Theorem, 1922 [1, p. 35]). If f (x) is a
positive logarithmic convex function on x > 0 satisfying f (1) = 1, f (x+ 1) = x f (x),
then f(x) = r(x).

It is clear from [3, §17, 19, 20] that Euler continued his attempts at recovering
the original Brouncker's proof for quite a long time. First, using Wallis' method of
infinite products and Theorem 4, Euler obtained the following formula

1 xs+2dx
(2n - 1) 2 4°° Jos + K1

2s = (s+
1 -x

1) 1 xs dx

Jp 1x4
(24)

The idea is very simple. Integration by parts shows that

x"` 1(1-x4)4-1dx= m+2 X.+4-1 (1-x4)-1dx.
m o

Iterations of this formula give the products shifted by four exactly as zeros of nu-
merators and denominators in Brouncker's product (17). Repeating Wallis' proof,
one can easily obtain from here that Brouncker's product equals the quotient of
integrals in (24). Then, using calculus, Euler proved that, indeed, formula (24) is
correct [3]. Euler's formula (24) is only one step away from Ramanujan's formula
for b(s):

f

1 1

xs(1-x4)12 1dx=4J xs41-1(1-x)2 1dx=4B(S411 2)
0

1

where B is Euler's Beta function. Combining the well-known expression of the Beta
function via Gamma function, we obtain Ramanujan's formula

2 3+s 2

b(s) = s + K1
((2n - 1) \

4 I r(143)
J R(s)

(25)
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As soon as one has Ramanujan's formula (25), one can easily prove it! Indeed,
using the functional equation for the Gamma function we see that

3+S4S) l - (s + 1)zR(s)R(s + 2) = 4z r(34 1+r(1

2

r( 4 )r( 4 )

so R satisfies the same functional equation as b. Now Stirling's formula

°O B
r (X) laze exp (

2k(2k -
1k=

(26)

where B,,, are the Bernoulli numbers defined by

z _ °° Bn,(-1)nzn (27)
1 - e-Z n!n=0

shows that R(s) > s for big s. By Theorem 4 this proves both Ramanujan's formula
(25) and Euler's formula (24).

5. The Asymptotic Expansion for b(s)

Since Brouncker's function b(s) and Euler's Gamma function r(s) are closely
related, one may expect that an analogue of (26) holds for b(s). The key role here
is played by the continued fraction

°O rnzlY(S)

= K1 ( 8 )
(28)

partial numerators of which appear in the right-hand side of (5). In his main paper
[3] on continued fractions, Euler presented a simple method for evaluation of such
continued fractions with differential calculus.

LEMMA 6 (Euler [3]). Let R and P be two positive functions on (0, 1) such that
for n = 0, 1, 2.... and some positive a, /3, y,

fo

1 1 1

(a + na) PRndx = (b + n,(3) J PRn+ldx + (c + nry) jo PRn+zdx
0

hent

fo PRdx _ a (a + a) c (a + 2a) (c + y) (a + 3a) (c + try)

fo pdx b+ b+,3 + b + 2,3 + b + 3/3 +...

Keeping in mind the integration by parts formula, one can search P and R as
functions satisfying the following identity with indefinite integrals

(a + na) J PRndx + Rn+1S = (b + n,(3) J PRn+ldx + (c + ny) J
PRn+zdx .

If Rn+1S vanishes at 0 and 1, then P and R must satisfy the conditions of Lemma 6.
Euler's formula in differentials looks as follows

(a + na) Pdx + RdS + (n + 1) SdR = (b + n,3) PRdx + (c + nry)PR2dx .

Considering it as a polynomial in n, one can replace it with a system

aPdx + RdS + SdR = bPRdx + cPR2dx ,

aPdx + SdR =,3PRdx + yPRzdx .
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Solving both equations in Pdx, we find that

Pdx =
RdS + SdR _ SdR (29)

bR + cR2 - a OR + yR2 -a
It follows from the last equation of (29) that

dS _ (b - /3)RdR + (c - y)R2dR - (a - a)dR
S OR2 + yR3 - aR

(30)- (a - a)dR + (ab -,3a)dR + (ac - ya)RdR
aR a((3R + yR2 - a)

To obtain a formula for continued fraction (28), we apply Euler's method with

a=1, b=s, c=2, ab-,(3a=s,
a=1, 0=0, y=1, ac-ya=1.

By Lemma 6,
1 s/2

1-x dx°° /n2 10 x l+x 1x2- 1 s12K (31)1I S
1-x\ ((' dx

JO l+x 1x2

THEOREM 7 (Euler [3, §69]). For s > 0,
1 2 1 xs dx x= _t +00 e-st dt

(32)
0o n2 J0 1 + x2 J0 cosh(t)s+ K (n=1 S

x),
PROOF. By integration by parts followed by the substitution x :_ (1- x)/(1 +

1 x1 - x s12 dx

Jo 1+x 1-x2
1 (1_x) s/2 dx 1 x(s-1)/2 dx=1-s =1-s lJo 1+x 1-x2 10 + x

and (31) result in the formula

n20.0s+ K -
n=1 s

Expanding (1 + x2)-1 into the power series in (32) and integrating, we obtain

1 _ °O (-1)k
00 n2 2E s+2k+1 '

s+ Kn=1( s

which gives the functional equation for y(s):

(34)

y(2s) + y(2s + 2) = 2s+1 (35)

The following elementary lemma describes the solutions to (35) vanishing at +oo.
Notice that lims+00 y(s) = 0 by (32).

)

1
1 x(s-1)/2 dx f1 xs dx

+ x
2 J0

1 + x2
(33)
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LEMMA 8. Let g(s) be monotonic on (0, +oo) and g(s) = 0. Then
the unique solution to the functional equation

f(s)+f(s+1) = g(s) (36)

satisfying lim,,_,+,, f (s) = 0 is given by
00

f (s) = 1:(-1)ng(s + n) .

n=o

On the other hand, an application of the logarithm to (5) shows that

log b(2s) + log b(2(s + 1)) = 2log(2s + 1) .

The differentiation now implies that (b'/b)(2s) satisfies (35). By Theorem 4,

b' 1 °O 8

b(s) +1 +E (s+4n-3)(s+4n-1)(s+4n+1) '
implying lims_,+,,.(b'/b) (2s) = 0. Hence by Lemma 8,

1 b'
00 n2

= b (s) .
+ K

n=1 s

THEOREM 9. For s > 0,
00

s + Kl ((2n_1)2)
2s

- r48ir (((2 exp 00US
dt

( 24 \4) t+ Kl (t )
PROOF. Integrating differential equation (38) and observing that

y(0)=
1 1 r(3) 2 (3)r(1) 2 r(1)44 =4 4 4 _ 4

y(2) 4 [cj(4) r2 (4) 87r2

(37)

(38)

(39)

we get (39).

LEMMA 10 (Watson [23]). Let f be a function on (0, +oo) such that If (t)I < M
fort > e and f (t) = Ek o cktk, 0 < t < 2E. Then

f dt "0
k!Ck

s - +oo (40)
k=0

is the asymptotic expansion for the Laplace transform of f.

The proof is elementary and can be found in [1, p. 614]. The second formula
in (32) and Lemma 10 give the asymptotic expansion for y(s). Indeed,

1
00 En

cosh(x) = n!
xn (41)

where En are the Euler numbers: E0 = 1, E1 = 0, E2 = -1, E3 = 0, E4 = 5,
E5 = 0, E6 = -61, E7 = 0, Es = 1385, .... Hence,

2 k00 n s +1s+K ( k=O
n=1 S

1 Ek s - +00 . (42)
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THEOREM 11. The following asymptotic relation holds as s -' +oo:

z 00

b(s) = s + K1
(2n _2s 1) 1 N s exp _y

2kskzk
k=1

887

(43)

PROOF. By Theorem 4, continued fraction b(s) extends analytically to the left
half-plane and vanishes at s = -1. Hence, b(s) can be written as

J

ry(t)dt}exp{-Joo

ry(t)dt},b(s)=b(0)(s+1)expU000
o s

where

By (42),

Integration shows that

,y(t) 1 1

00
t+ K (t2) 1+t

n=1

7(t) E Ek - (-1)k
t +00 .0,0

k=1

100 (t) dt Ek k(k

1)k
- +00 .

s
k=1

Since b(s) - s as s -> +oo, we see that

+O0 1 1f (+-'-)° in=1

and

The proof is completed by observing that
00

(ks)k = -In (1+ s)k
k=1

k=1

It is useful to compare formula (43) with Stirling's formula (26) for the Gamma
function. The coefficients in (26) are the Bernoulli numbers, whereas in (43) they
are the Euler numbers. Easy computations with the first Euler numbers show that

00s+ K ((2n-1) z ) s e x j 1 - 5 + 6 1 +O()1=
n=1 2s 2sz 4s4 6s6 ss JJ

1 9 153 (1 )
S +

2s 8s3 + 16ss + S7

Compare this with the asymptotic series for Brouncker's continued fraction b(s)
obtained in (11) by a different method.

If we apply Euler's method with

a=2, b=s, c=1, ab-,Qa=s,
a=1, 0=0, 'y=1, ac-'ya=-1,

dt = In
(87r2

r(4)4

s + K1
((2n_1)2'\

2s
- (s + 1) exp(- Ek

k 8k
1)k) (45)

n= E
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then we arrive at an interesting formula

implying

2 s2-1
+ =S00

s+ K (n( s+2)) s+ K (s2
n=1 n=1

1 1
00

E2k - E2k+2
00

s + K (n(n+2) 2 kL=O S2k+1

n=1 \ S )

6. Euler's Problem
A square matrix

all a12 a13 " ' aln

a21 a22 a23 a2n

and an2 an3 "' ann

is called orthogonal if its entries aij satisfy

n

1:
1ifk=l

akja1j = { 0 if k# 1j=1

(46)

(47)

(48)

Orthogonal 2 x 2 matrices are parameterized by independent real parameters a and
b:

1

a2 + b2

a b

b -a
(49)

The entries in this parameterization are rational functions in a and b. In 1771, [6]
Euler found a rational parameterization for orthogonal 3 x 3 matrixes:

D2 + A2 - B2 - C2 2(AB - CD) 2(AC + BD)
2(AB + CD) D2 - A2 + B2 - C2 2(BC - AD)
2(AC - BD) 2(BC + AD) D2 - A2 - B2 + C2

The sum of squares of the columns and rows equals (D2 + A2 + B2 + C2)2, which
shows that to obtain the required parameterization, one should divide the entries
of the matrix by D2 + A2 + B2 + C2. Euler also found similar formulas for 4 x 4
matrices

Al B1 C1 D1
A2 B2 C2 D2
A3 B3 C3 D3
A4 B4 C4 D4
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where

AI =ap+bq+cr+ds , A2 =ar-bs-cp+dq,
Bl = -aq+bp+cs - dr , B2 =as+br+cq+dp,
C1 =ar+bs-cp-dq , C2=-ap+bq-cr+ds,
DI=-as+br-cq+dp,D2=-aq-by+cs+dr,
A3=-as-br+cq+dp, A4=aq-by+cs-dr,
B3=ar-bs+cp-dq, B4=ap+bq-cr-ds,
C3=aq+bp+cs+dr, C4=as-br-cq+dp,
D3=-ap+bq+cr-ds, D4=ar+bs+cp+dq,

As an application Euler presented the following square matrix:

+68 -29 +41 -37
-17 +31 +79 +32
+59 +28 -23 +61
-11 -77 +8 +49

with orthogonal columns and rows. The sum of the squares in rows and columns
equals 8515. The same value has the sum at the corners of the big and central
interior squares:

682 +37 2 + 492 + 112 = 312 + 792 +23 2 +28 2 = 8515 .

In the conclusion [6, §36], Euler writes:

This solution should be paid more attention to since I arrived
at it not with some definite method but rather through some
guesses; and since in addition it depends on eight arbitrary pa-
rameters, which after the normalization can be reduced to seven,
one can hardly doubt that it is universal and lists all possible
cases. If somebody will find a direct way to this solution, then
it will be admitted that he made an outstanding contribution
to Analysis. Whether similar solutions exist for wider squares
consisting of 25, 36, etc. numbers, I hardly dare to claim. Here
not only Algebra but the Diophantine method seemingly will get
a great contribution.

Euler's Problem. Find rational (or may be algebraic) parameterizations of the
manifold of real orthogonal matrices with independent parameters.

A solution to Euler's problem can be found in [21, Ch. IX, §1], where it is proved
that any rotation of R" is a product of two-dimensional rotations of a very special
form. Recall that rotations of R" correspond to orthogonal n x n matrices. Since
any rotation of a plane can be rationally parameterized (see (49)), their products
can be rationally parameterized too.

In 1855, exactly two hundred years after Brouncker's great discovery, Cheby-
shev found a parameterization which gave rise to the Theory of Orthogonal Poly-
nomials. Chebyshev's solution followed important contributions by Gauss, Jacobi,
Legendre, and Sturm.
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7. Gauss' Continued Fractions for 2F1

In [4] Euler presented three different methods to assign a finite value to Wallis'
divergent hypergeometric series

(11 (-1)kkl
2Fo (50)

k=0

and even computed this value 0.596347362323 at s = 1. Notice that this problem is
similar to the evaluation of b(0), which according to Brouncker is 1/b(2). The for-
malism of the formal Laurent series is quite useful in handling divergent asymptotic
series and exploits Part 3 of Brouncker's Program; see p. 880. The field C ([1/s])
of formal Laurent series at s = oo consists of formal series

f(z) _
sk

, (51)

kEZ

where ck E C and ck 0 only for a finite number of negative indices k. It is
equipped with a non-archimedean norm

IIf11=exp(deg(f)), deg(f)=-inf{kEZ:ck#0}. (52)

We put

Qfj zk Frac(f) _ zk
k<0 k>0

Similar to real numbers, Q f is called the integer part and Frac(f) the fractional
part of f. Exploiting Brouncker's analogy between decimal fractions and rational
functions, and the introduced notations, one can easily develop any element in
C ([1/s]) into a continued fraction

bo (s)
+ kKl \ bk (s) / (53)

converging in C ([1/s]). Here bk(s) are polynomials in s. If deg(bk) > 1 for every
k > 1, then this continued fraction, called the P-fraction off E C ([1/s]), is unique.
Therefore, it looks helpful to develop some general methods for construction of such
continued fractions, at least for special Laurent series.

THEOREM 12. Suppose that for infinitely many n a formal Laurent series f
can be represented as

b 1 1 1 1f= o+b1+b2+...+b,i+gn' (54)

where bj are polynomials with deg(bj) > 0, deg(bn) > 1 and deg(gn) > 0. Then the
continued fraction bo + Kl(bk(z)) converges to f in C ([1/z]).

PROOF. Notice that deg(bj) > 1 infinitely often, which implies deg(Q,,)
+oo. By (54),

f
Pn (_1)n

\/1Qn Q2 (9n + -n 1 /
Since deg(gn) > 0, deg(Qn_1/Qn) <. -1, and deg(Qn) - +oo, this proves the
theorem.
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Remark. As in the number field case (Lemma 6, in which g,,, > 0), it is essential
that deg(g,,) > 0. Indeed, let {bk}k>1 be any sequence of polynomials such that
deg(bk) > 1 and b1 = z. It determines the continued fraction K (bk(z)). The

k>1
formula

Q. _ 1 1 1

wn 1
bn + b,i,_1 + b,_2 +...+ b1

shows that the identity

z 2z+b2+...+b,+g,,
holds with g,, -Q,_1/Q,,, deg(g,,) i -1. However, since two different P-
fractions cannot be equal, this equation is not valid in the limit.

The Pochhammer symbol

(x)n =
I'(r(X) n)

= x(x + 1) ... (x + n - 1)

considerably simplifies the notation for hypergeometric series. As usual, the product
with the empty set of multipliers has the value 1. A direct generalization of Wallis'
hypergeometric series is the series in C ([1/s])

(F0 a, _1\ 00 (a)n(b)n (-1)"
2Fo J n! s'S -on

(55)

THEOREM 13 (Euler [4]). In C ([1/z]),

2Fo a'6
-SO +a b+1 a+1 b+2 a+2

(56)
2Fo a,b+l;_11 s+ 1 + S + 1 + s+...

s

PROOF. Elementary algebra with series shows that

a,b+1 1 a,b 1 a a+1,b+1 1
2Fo ;-S =2Fo I ;-S - S 2Fo S

It follows that
2Fo lab i\

S ll

/
a s1 +(a,b+1.-1) 2Fb(°'6}1;_ )

2Fo 1\ f S 2Fa(a+1,b}1;-s)

Since 2Fo is symmetric with respect to a and b, the iterations complete the proof
by Theorem 12.

COROLLARY 14 (Euler [4]). In C ([1/s]),

1 1,1 1) r. (-1)k k! _ 1 1 1 2 2 3 3

s-2F0 s k-o
sk+l -s+1+s+1+s+1+s+... (57)

PROOF. It follows from Theorem 13 and the obvious identity

(12 1 2! 2! 3! 3! 4! 1,1 1
2Fo

s
= 1

s
+ 2j s2 -

3!s3
- ... = s 1 - 2Fo

s

Just substitute this in (56) and make equivalence transforms.
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The continued fraction in (57) converges for every positive s and for s = 1
Euler found its value 0.596347362323. By formal differentiation of

00

y(s) - (Sn+1n
n=o

Euler obtained that y satisfies the differential equation y' = y - 1/s. This equation
has a solution

s
f°° t dt = J00 e-stdt = f°° et dt

y(s)=e Js e
t 1 + t o t + s

Then by Lemma 10,

e-st
f 000

dt J°O et dt N
0

(-1)n n!
1+ t t+ s n-O Sn+1

(58)

(59)

Euler found that the left integral also equals 0.596347362323 for s = 1. Most likely
this happens since the integral equals the continued fraction. Using the binomial
theorem and Lemma 10, we obtain

1 -x a-1

E(a, b; s)
F(a) (1 + x/s)b dx 2F0 (a

b

s)0

To handle the apparent asymmetry of E(a, b; s) in a and b, we write
1 1 °°_ e-(1+x/s)yy6-1 dy(1 + x/t)b IF (b) o

It follows that

E(a, b; s) _ 1 -x-y-xyls a l b-1e x y dxdy = E(b a; s)
r(a)r(b) J000 1000

60)(

Now integration by parts and the symmetry of E(a, b; s) imply

E(a, b; s) = E(a, b + 1; s) +
a

E(a + 1, b + 1; s), (61)
s

E(a, b; s) = E(a + 1, b; s) + s E(a + 1, b + 1; s) . (62)

Using (61) and (62) as in Lemma 6, we obtain the following corollary:

COROLLARY 15. For positive a, b and s,

E(a,b,s) _ a b+1 a+1 b+2 a+2
E(a, b + 1; s)

1 +
s + 1 + s + 1 + s +...

Putting b = 0 in (61) and b = 1 in (62), we find that
E(a+1,1;s) - 1-E

X E(a+1,2;s) (a+s)E-s
where E = E(a, 1; s). Resolving this equation in E, we find

1 °° e-xxa-1 d_ E(a,1; s) _ 1 a 1

I'(a) Jo x + s
x

s s + 1 + sX
1 a 1 a+1 2 n a+n

(63)s+1+s+ 1 +s+...+s+ 1 +...'
which explains Euler's striking calculations. It should be mentioned that these
formulas were later proved by Stieltjes to develop the theory of moments [18].
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Similar arguments can be applied to the hypergeometric series

2F1
(ab)

= (64)
n! (c),00n=0

which Euler introduced in [5], although Euler considered partial cases earlier in
relation with Wallis' interpolation method. The ratio test shows that the series
(64) converges in the unit disc zj < 1 at least for positive a, b, c.

THEOREM 16 (Gauss [7]). For z = 1/s in C ([1/s]),

a,b+l
2F1 c+1 'z

a,b2F1(c;z

c a(c - b)z (b + 1)(c - a + 1)z

c- c+1 - c+2

(a + n)(c - b + n)z (b + n + 1)(c - a + n + 1)z

- c+2n+1 - c+2n+2
The strategy of the proof in case 2F1 is absolutely the same as for 2F0 considered

above. In his work [7] Gauss obtained the convergence of the continued fraction in
C ([1/s]). However, the pointwise convergence for s > 0 can be easily derived from
Euler's integral representation for 2F1, which is obtained similarly to (60).

THEOREM 17 (Euler [5]). For c > b > 0,

ac b; \ F(C) 1 tb-1(1 - t)c-6-1
(65)

2F1 (c ' z) F(b)F(c - b) J0 (1 - zt)a
dt .

Theorems 16 and 17 imply that the formula

fo tb((i+zt)a 1 dt b a(c - b)z (b + 1)(c - a + 1)z

1 t6-1(1-t)°-b-1

dt C+ C+ 1 + C+ 2 +...
0 (1+zt)°

(a + n)(c - b + n)z (b + n + 1)(c - a + n + 1)z

+ c+2n+1 + c+2n+2 +...
(66)

is valid for positive z. Let us apply (66) to Euler's formula (24) and put z = 1,
b = 321, c - b = 1/2, a = 1/2 in (66). Then

a,b+l . -1- 1)2 b(s + 1) 2F1 c+1

i
((2nKS +

= -1 -2s ) = c 2F1 a ,b:

(s + 1)2 12 (s+3)2 32 (s+5)2 52

s+2.1+s+2.2+s+2.3+s+2.4+s+2.5+s+2.6+...
For s = 1, this turns into a nice formula for -7r:

12 42 32 62 52 82
= 3 + 5 + 7 + 9 + 11 + 13 + 15 +... (67)

Putting formally b = 0 in Theorem 16 and observing that F(a, 0; c; -z) = 1,
we arrive at the following important theorem:
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THEOREM 18. For z > 0,

a,1 1 az a)z (a + 1)cz 2(c - a + 1)z
ZF1

c
-z 1+ c + c+l + c+2 + c+3 +

(a + n)(c + n - 1)z (n + 1)(c - a + n)z

c+2n + c+2n+1 (68)

Since many known functions can be obtained from 2F1(a, 1; c; -z), Theorem 18
gives useful expansions into continued fractions, which converge at least in C ([1/s]).
In particular,

In 1 + z = 2zF(1/2 1:3/2:z2) = 2z 12x2 22x2 32x2 42z2

1-z 1- 3 - 5 - 7 - (69)

Replacing z by 1/s in (69) and applying equivalence transforms, we obtain

1 In S+ 1 1 12 22 32 42

2 s-1 s - 3s - 5s - 7s - 9s
(70)

8. Gauss' Quadrature Formula

In 1671 Newton discovered the 3/8 rule for definite integrals of continuous
functions:

f.

E4

f (x) dx
38 h

{ f (xl) + 3f (x2) + 3f (x3) + f (X4)1 . (71)
l

Here x2 - x1 = x3 - x2 = x4 - x3 = h > 0. Newton's quadrature formula (71)
has a remarkable property: it is a true identity on any polynomial f, deg(f)
4-1 = 3. This property of (71) follows from the formula for Lagrange interpolation
polynomials

n

L(x) yk (x - " " X ' k)
, Q(x) _ (x - x1) ... (x - xn) , (72)

k 1=

satisfying L(xk) = Yk for k = 1, 2, ... , n. Fixing the nodes xk in (72) and integrating
in x, we obtain the Newton-Cotes quadrature

JX1

n

f (x) dx E lkf (xk) , 1k = f
Xn

(x -
Q)Q'(xk) dx , (73)

k=1

which is a true identity on polynomials of degree n - 1.
Since Newton-Cotes quadratures depend on n nodes, a proper choice of {xk}

may result in a formula which is a true identity on any polynomial of degree n -
1 + n = 2n - 1. In [8] Gauss studied this problem for nodes -1 < x1 < x2 < ... <
xn <1:

n

k=1

Quadrature formula (73) is an identity for any polynomial of degree 2n - 1 if and
only if it is the identity for any monomial f (x) = xm, m = 0, 1, . . . , 2n - 1. It
follows that for these m,

(-1)m+1mdesfam
- x dx - 2_., lkxk -

-1
- lkx'=0. (74)

1+k=1 m k=1
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Since lk are defined by (73), 6,,,, = 0 for m = 0, ... , n-1. Notice also that 8m = 0(1)
as m -> oo. For zj > 1, Gauss considered a convergent Laurent series

Gz 1( 1)m+1 l Co xk + bm
( ) = (m + 1)zm+1 k zm+1 zm+1

M=0 k=1 m=o m=n

and multiplied it by Q to obtain the formula

Q(z)G(z) = E lkQ(z) + 6mQ(z)

=1
z - xk m=n zm+1

k

- P(z) + (6nzn-1 + ... + 62n-1)Q(z)
+0(

1 (75)z2n zn+1 )
where P is a polynomial. Notice that bn = ... = 82n-1 = 0 in (75) if and only if
deg (QG - P) <, -n - 1, where deg(Q) = n. Since

In
+ 1

=
°° 1lnl z 1) - (m+1)z""+1

=G(z) ,

as elementary calculations with power series show, by Lagrange's theorem, P/Q is
the nth convergent (see (70)) to

In
z+1 - 2 12 22 32 42

z-1 z-3z-5z-7z-9z-
It follows that Q is one of the polynomials defined by the Euler-Wallis formulas

Qn+1(x) = (2n + 1)xQn(x) - n2Qn-I(x) , Qo(x) = 1, Q1(x) = x . (76)

It remains to check that all zeros of Qn are simple and are located in (-1, 1).

THEOREM 19. The zeros xn 1 < xn_11 < < xnn of Qn are located in (-1, 1)
and interlace the zeros of Qn-1.

PROOF. By inspection the statement is true for Qo = 1, Q1 = x, Q2 = 3x2 - 1
and Q3 = 3x(5x2 - 3). Easy induction with (76) shows that Qn(x) is even if n is
even and is odd if n is odd, deg(Qn(x)) = n and the leading coefficient of Qn(x) is
(2n-1)!!. The identity (2n+1)n!-n2(n-1)! = (n+1)! and (76) imply by induction
that Qn(1) = n! > 0. Now the proof is completed by induction by counting zeros
and applying Bolzano's theorem.

THEOREM 20 (Gauss [8]). For every positive integer n, there are n nodes -1 <
x1 < < xn < 1 such that

jf (x) dx = lk f (xk) (77)
k=1

for every polynomial f, deg(f) 2n - 1. The nodes Xk are the zeros of the denom-
inator of the nth convergent to the continued fraction (70).

Notice that since deg(Qn) = n, the approximation of G(z) by the convergent
of the nth order cannot give the order 2n at infinity, which implies that 2n - 1 is
the best possible degree in Gauss's quadrature.
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9. Jacobi's Contribution

In [9] Jacobi noticed that the choice of f (x) = xkQn (x) in (77) with 0 < k < n
gives

fl
rl fl

Qn dx = xQn dx = ... =
-1 -1

since deg(x/Qm(x)) < 2n-1 and Qn(xk) = 0. On the other hand, in [16] Legendre
introduced orthogonal polynomials P,,(x):

L
1 f 1ifn=m

Pn(x)Pm(x)dx=
2n+16,n n

6nTn.de

(79)

which are now called the Legendre polynomials. One look at (78) and (79) is enough
to understand that Qn in (78) are constant multiples of the Legendre Polynomials.
Integration by parts

p1

uv' dx = uv

xn-1Qn dx = 0 , (78)

1 1

vu'dx
-1 1

shows that the polynomial

nv'(x) = dxd n (x2 _ 1)n

of degree n satisfies (78) since it has zeros of order n at x = -1 and x = 1. Taking
into account the formulas for the leading coefficients of the polynomials, we obtain
that

(2n-1)!!.n! do
(x2 - 1) nQ't(x) = (2n)! dx'n

By Rolle's theorem all roots of Qn are located in (-1, 1).
Around 1843 Jacobi returned to these results and extended them to more gen-

eral Jacobi's weights. This paper [10] was published in 1859 by Heine after Jacobi's
death.

In [10] Jacobi observes that continued fraction (70), which played a crucial role
in Gauss' quadratures, is a partial case of a more general Gauss' continued fraction
(68). An important ingredient of Gauss' proof was the fact that continued fraction
(70) represents in C ([1/z]) the Cauchy type integral of a constant positive weight
on [-1, 1]. In fact, Gauss considered the interval [0, 1]. Comparing Euler's formula
(65) with Gauss' continued fraction (68) and keeping in mind the symmetry of
2F1 in a and b (see (64)), we can easily obtain a continued fraction for Cauchy
integrals of some special weights on [0, 1]. More precisely, let a > 0, 3 > 0. Then
by Theorem 17,

a,1 1, a _ r(0, + ) 1 0-1(1 - t)p-1
2F1 (a + 0 ' z) = 2F1 (a +,3 ; z) r(a)r(0) Jo 1 - zt

dt .
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Hence by Theorem 18,

r (a + 0) tQ-1(1 - t)0-1 a 1 1 1
dt F -

P(a)F(j3) Jo
=2 i ,Z- t (a+ z z

_ 1 a 1 j 3 (a + 1) ' (a + ) 2 . (Q + 1)
z a a+/3+2 - (a+0+3)z -...

a+0+2n (a+0+2n+1)z
This formula allows one to obtain quadrature formulas analogous to Gauss' quad-
rature formula. It can also be used to obtain the recurrence relation for Jacobi
orthogonal polynomials; see [20, §3.4, Ch. IV] for details.

It is interesting that Jacobi was aware of Euler's paper [6] which motivated
Chebyshev in his discovery of general orthogonal polynomials. Moreover, Jacobi
even wrote a manuscript [11], where he explained Euler's ideas. As in the case of
[10], [11] was published only after Jacobi's death.

10. Sturm's Theorem

The proof of Theorem 19 can easily be extended to cover a more general case.

THEOREM 21. Let {b,l(x)}n>i be any sequence of real linear polynomials with
positive coefficients at x and {an}n)i be any nonzero real sequence. Then the zeros
of the denominators Qn of any convergent to

2 2 2 2a1 a2 a3 an (80)

bi(x) - b2 (x) - b3 (x) -- bn (x)
are all real and interlace the zeros of Q.n- i.

PROOF. The difference compared with Theorem 19 is that here it is not nec-
essary to prove that all zeros lie in [-1, 1]. Since Qn(x) _ cxn, c > 0, if x -+ 00,
the location of the smallest and the greatest zeros can be controlled.

Let us summarize the properties of Qn, which were used in Theorem 20.

THEOREM 22. Let Qn be the denominator of the nth convergent to the continued
fraction (80). Then the sequence

fo(x) = Qn(x) , fl (X) = Qn-1(x) , ... , fn (x) = Qo(x) (81)

satisfies the following properties
(a) the product fo(x) f, (x) changes the sign from - to + if x passes any zero

of fo(x) in the positive direction;
(b) no polynomials fk(x), fk+l (x), k = 0,1, ... , yn - 1, may have common

zeros;
(c) if fk(a) = 0, 1 < k < yn - 1, then fk_1(a)fk+1(a) < 0;

(d) fn(x) has no real zeros.

PROOF. Applying the determinant identity to continued fraction (21), we ob-
tain that

2 2 2PkQk-1 - Pk-1Qk = a1a2 ... ak
which implies (b). The Euler-Wallis formula, Qk+1 = bk+lQk - Qk-1, implies (c).
Since Qo = 1, we have (d). Let us prove (a). Since the zeros {x(,i_1) k} of Qn_1
alternate the zeros {xn k} of Qn, we have x(n_1) k E [xn 1, xn.n]. If n is even, then
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Q, (x) > 0, Q,l_1(x) < 0 for x < x, 1, which proves (a) since the signs alternate.
The case of odd n is considered similarly.

Definition. A sequence of nonzero polynomials

f (x) = fo (x), fl (x), ... , fin (x) (82)

in R [X] is called a Sturm's series for a polynomial f (x) on [a, b], a < b if conditions
(a)-(d) of Theorem 22 are valid on [a, b].

Given x E [a, b] let Ws(x) be the number of sign changes in (82).

THEOREM 23 (Sturm [1829]). Let f E R [x] be a polynomial with simple roots
on [a, b], a < b, satisfying f (a) f (b) 0, and (82) be a Sturm's series for f (x).
Then the number of roots of f (x) on (a, b) is Ws(a) - Ws(b).

PROOF. It is clear that a sign change in (82) may occur only at zeros of
polynomials fj. No sign changes happen in fm, since by (d) it has no zeros on
[a, b]. If 0 < j < m, then by (c) the number of the sign variations in the triple
(fj_1(x), fj(x), fj+1(x)) is kept invariant when x passes through any zero of fj. If
x passes through a zero of fo, then the product fofl changes the sign from - to +,
which implies that Ws(x) decreases by one.

The second important ingredient of Sturm's method is a choice of Sturm's
sequence. In 1829 Sturm [19] proposed to take the first two polynomials f and
f' from Budan's series and then apply the method of continued fractions. Thus
the idea was to present the continued fraction of f'/ f in the form of Lambert and
Gauss: f' - 1 1 1

(83)f b1 - b2 - b3 ..

11. Chebyshev's Solution to Euler's Problem

The logarithmic derivative of any polynomial f = c(x - xl)" ... (x - xk)n" is
a rational function with simple poles and positive residues

1 1 f'
k nj IN

N (log f )' = N f
j=1

Definition. A rational function r(x) is called a Chebyshev rational function if it
can be represented as

n

r(x) _ x
cjx

(84)

j=1
where cj > 0 and x1 < x2 < ... < xn.

The behavior of rational functions r in (84) with real cj is controlled by the
Cauchy index:

b c9Ia sign(cj) .1:x-xi
xjc(a,b)

THEOREM 24 (Chebyshev [2]). A rational function r is a Chebyshev function
if and only if

1 1 1
r(z) _

bl(z) - b2(z) -...- bn(z) '
(85)
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where n = I+ r and b1, b2, ..., bn are real linear polynomials with positive coeffi-
cients at z. 00

PROOF. Since
n E=

c) /1\r(x) = cj - -1 + O I - I , x -+ oo ,
X - xj x x2

j-1

the real polynomial Q1/r is linear and has a positive coefficient at x. For any
Chebyshev function r and z c C, sr(z) = -.sz E; 1 cj I Z - xj -2, which implies
that r(z) can vanish only on R. Let

1
( = (86)r x) bi(x) - r2(x)

Then the poles of r2 are located on I[8 at the zeros of r1. Since
n

) _
_
E cj <0r ( (87),x

2(x - xj)j=1

the function r1 decreases on IL If r(c) = 0, then

lim(x - c)r2(x) = lim(x - c)b1(x) - r'(1c) > 0

by (87) implying that r2 is a Chebyshev function. By (87) the poles of r2 interlace
the poles of r. This proves that I+ r2 = I+- r1 - 1.00 -00

If f is a separable polynomial with real roots, then f'/ f is a Chebyshev function.
Hence all real polynomials bj in (83) have positive coefficients at x. If we compare
Gauss' continued fraction with Sturm's sequence and Chebyshev's theorem, we
come to the conclusion that most likely the orthogonality of the denominators
of the convergents is not a particular property of Gauss's continued fraction but
follows from a more general fact. Gauss' proof even hints that Lagrange's criteria
for convergents must play the crucial role here.

We present here arguments for positive Borel measures o, with compact support
supp(o) in C. The Cauchy's integral of r

CT (z) =
/ do (t)
f z-t

is holomorphic at z = oo and therefore determines a unique element in C([1/z]).
This element can be developed into a continued fraction (80).

THEOREM 25. Let Pf/Q be a convergent to Ca, n = deg(Q). Then

J
Q(t)tkdo, =0, k=0,1,...,n-1. (88)

PROOF. By Lagrange's theorem,

Ca Q = O (x21+1 I .

Following an idea of Lagrange from Number Theo/ry, we consider a linear form in
CQ with polynomial coefficients

QCQ-P= f Q(z)-Q(t)do, -P+ f Q(t)do-=OI 1 I .J z-t z-t z'+1
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P=[Q(z)-Q(t)du;
z-t

Q(t)
do,

=C
1 1

zn+1z-t \ )

Observing that the series converges uniformly in t,

1 _ 1 t t2

t-z zz2z3

(89)

(90)

if jzj > 21t1, t E supp(o), we obtain (88).

Remark. Compare this proof with Gauss' arguments; see (74) and (75). This
proof was explicitly used by Jacobi in [10, §8] to establish the orthogonality of
Jacobi polynomials. Chebyshev used similar arguments. However they are not so
transparent since he considered the case of discrete masses.

Chebyshev's solution to Euler's problem follows from Theorems 24 and 25.
Indeed, let r = P/Q be a Chebyshev function, deg(Q) = n. Then the coefficients
of both polynomials P and Q are polynomials in cl, ... , cn and in X 1 ,- .. , xn. The
long division of polynomials shows that the coefficients of the linear polynomials
bl, . . . , bn are rational functions of these parameters. By Euler-Wallis recursions,
the same is true for the polynomials Qo, ... , Q.

THEOREM 26 (Chebyshev [2]). Let {Q,,} be the denominators of the conver-
gents for the continued fraction

f da(t) = a1 a2 an

J z - t bi(z) - b2(z) -...- bn(z) -... '

where bn(z) = knZ + ln. Then

f a2 a2

J
Q,n(t)do, (t) = 1 n+1

IIg kn+1
(91)

PROOF. By the Euler-Wallis formulas, Qn(t) = kn ... kith + ... + Q(0). Ob-
serving that Qn L tk for k = 0, 1, . . . , n - 1, we obtain from here that

fQdo.zzzkn...kifQnt'dC.

Integrating the Euler-Wallis formula multiplied by to-1

n-1 n n-1 2 n-1
Qn+1t = kn+lt Qn + to+lQnt - an+lQn-lt

and using the orthogonalityf property, we obtain that

kn+1
J

Qntn do, = a2n+1
J

Qn-itn-l da ,

which implies that

JR
Q2 do, =

n

(kn ... ki)(an+1 ... a2)

JR
Qo d =

kl (an+1 ... a2)

k

a(R);
n+1

The asymptotic formula for Co shows that o,(IR) = ai/k1. El
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By Theorems 25 and 26, the matrix

klcl k1c2 ... klcn
k2C1Q1(xl) k2C2Q1(x2) ... k2CnQ1(xn)

knC1Qn.-1(x1) knC2Qn-1(x2) ... knC.Q.(xn)

is orthogonal.

12. Back to Brouncker's Polynomials

Using (13), we can easily list the first Brouncker's polynomials

P-i(s)=1,
Po(s)=s,
Pi(s) = 2s2 + 1,

P2(s) = 4s3 + 11S

P3(s) = 8S4 + 72s2 + 25

P4(s) = 16s5 + 340s3 + 589s,

P5(s) = 32s6 + 1328s4 + 341082 +2025.

(92)

It is clear that deg(P,,,) = n + 1 and Pn(s) = 2nsn+l + .... Putting s = 0 in (13),
we obtain

_ 0 if n is even,
Pn(0)

(2n - 1)2(2n - 5)2(2n - 9)2 ... if n is odd.

For instance, P5(0) = 92.5 2. 12 = 2025. For odd n, (14) implies

(2n + 1)Pn(0) = (2n + 1) (2n - 1) (2n - 1) (2n - 5) (2n - 5)... >
> (2n + 1) (2n - 1) (2n - 3) (2n - 5) (2n - 7) ... _ (2n + 1)!! = Pn(1) .

LEMMA 27. Brouncker's continued fraction (4) converges in the right half-plane
IRs > 0 to a holomorphic function having a positive real part.

PROOF. Let so (w) = s + w, sk (w) = (2k - 1)2/(2s + w). Then if Its > 0, then
each sk maps lw > 0 into IJ2w > 0. Hence the same is true for

Pn(S) = SO O S1 0 ... o Sn(0)
Qn (S)

which implies that the family of holomorphic functions Pn/Qn is normal in Its > 0.
But these convergents converge to b(s) for positive s. Hence they converge for
Its > 0 by the uniqueness theorem for holomorphic functions.

COROLLARY 28. Identity (17) holds for IRs > 0 and the infinite product in (17)
has positive real part for IRs > 0.

Stirling's formula (26) in the classical form

I'(z) ti 27rzz-1/2e-z

, jzj ---> +oo (93)



902 S. KHRUSHCHEV

is valid in any angular domain larg(z) I < it - 6, 6 > 0; see [1, Cor. 1.4.3]. Simple
calculations using Ramanujan's formula (25) show that in any such domain,

b(z) - z , zj -+ +oo . (94)

THEOREM 29. For Its > 0,

1 =I dµ (t)
d y

1 jl(1 + it) 4
dt

b(s) s - it' µ
8ir3 4 J

where p is a probability measure on R.

PROOF. A well-known formula for the Gamma function [24, §12.14]

F(s)F(1 - s) = 7r
sin 7rs

with s = 1/4 - it/4 shows that

3+it it 1
F 4 = F(1 - s) =

sin,7rs r(s)

and therefore,

1±it 2

1 [F () 1 - cos 27rs 1 ( art )

4 F (33±it) = 87r2 F(s)14 =
87r2

1 - isinh 2 J
4

It follows from (25) that
4

(b(it)) 8;r2
F 4

By (94), we can apply Cauchy's integral formula for the holomorphic function 1/b(s)
to the right half-plane Is > 0:

1 1
00

1 1 = 1

+°°
1 1 dt

b(s) 27r
J(it)bdit - s (it) 27r ,_ 00 b(it) s - it

_ 1 1 1 dt _ 1 1 1
dt

0 2ir ,f 00 b(it) it + s 27r ,_ 00 b(it) s - it
.

Adding these two formulas, we complete the proof of the formula for 1/b(s). Since
1/b(s) = 1/s + o(1/s2) as s , +oo, we obtain that

38 DO

4

dt=1 (95)

and hence dp is a probability measure on R. El

Notice that by (93), one can easily obtain an asymptotic formula for the density
of dp (see [1, Corollary 1.4.4]):

1

8ir3

+it)F(1
4

COROLLARY 30. For sz > 0,

1 f+°°

4

exp(-2Itl),t-foo. (96)--

13 f+°° IF (1 + it "\ dt 1 12 32 52

r J 4

) 1487

(97)z - t z - 2z - 2z - 2z -...
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PROOF. If sz > 0 and s = z/i, then Rs > 0 and
1 f dp(t) -

Z

. f dp(t) - . f dp(t)
b(s) Ja s - it a z + t R z-t

since µ is symmetric. On the other hand, continued fraction (4) can be easily
transformed into (80) by the substitution z = is:

1 _ i i12 _ i 12 i32 _ i 12 32 52

b(s) is+ s +... z - z + s +... z - z - z - z
which implies (97).

The partial denominators Un of the convergents to the continued fraction in
(97) satisfy the recurrence relation

Un+1(z) = 2zUn(z) - (2n - 1)2Un_I(z) , Uo(z) = 1 , Ui(z) = Z.

Observing that z = is and using the recurrence relations for Pn and Un, we see
that these polynomials are related by

Un(z) = in'Pn_1(s) . (98)

By Theorem 21, all roots of polynomials Un are real. Hence, all roots of Brouncker's
polynomials are placed on the imaginary axis. These roots taken in their totality
make a barrier for the analytic continuation of Brouncker's continued fraction from
the right half-plane to the left half-plane as a continued fraction. However, as
Theorem 4 shows b(s) still extends analytically through the imaginary axis by the
formula of Wallis' infinite product.

By Theorem 25, the polynomials Un are orthogonal with respect to p. By (98)
this implies that P(it)fUd[L=(2n_1)!!2,are orthogonal polynomials. By (91)

n=1,2,... .

It follows that the system

Vn(s) = Un(z) , n = 1,2,..., Vo(z) -- 1(2n - 1)!!

is an orthonormal system in L2(dp). The operator of multiplication by z acts on
Vn by the formulas

1 1
zVn (z) = n +

1

2
Vn+I + (n 2 Vn_I , n = 1, 2,... , zVo (z) Vl (z)

Hence, the Jacobi matrix of this operator is

0 I
Vf2

0 0 0 0
1

0
3

0 0 0
2

0 3 0
5

0
2 2

.. ... ... ... ... ...

0 0 0 ... n-Z 0 n+1 0

Let us put z = iy, y --+ +oo in (97). Then
00

1
(99)

b(y)
E(-1)k y2k [ t2kdµ , y +oo .

k=0
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Comparing this formula with (11), we obtain that

Further moments

t2 dµ
2

,
ft4 dµ

8
f is dµ

can be evaluated by (43). Since by (96),

12

log(dp/dx) dx _-0 ,

1+x2

173

16

polynomials are complete in L2(dp).
It took 160-200 years after Brouncker's discovery until the relationship between

orthogonal polynomials and continued fractions was clarified, and it took another
122 years until Wilson constructed Wilson's polynomials [25], of which Brouncker's
polynomials turned out to be an important partial case corresponding to the choice
of the parameters a = 0, b = Z, c = d = 4. (See [1, p. 152] for the definition of
Wilson's polynomials.)
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ABSTRACT. We survey some results in the spectral theory of certain one-
dimensional differential and finite-difference operators: Jacobi matrices, Krein
systems, Schrodinger operators and CMV matrices. What ties these results
together is the use of sum rules relating the coefficients and the spectral data.
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1. Introduction
We survey some results in the spectral theory of certain one-dimensional dif-

ferential and finite-difference operators. What ties these results together is their
use of sum rules relating the coefficients and spectral data. Contemporary math-
ematicians are perhaps most familiar with these identities in the context of the
inverse scattering solution of integrable systems; however, as we will explain, the
natural precursor is a formula of Szeg6 and Verblunsky uncovered in the study of
orthogonal polynomials.
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We will describe results for a quartet of operators: Jacobi matrices, Krein
systems, Schrodinger operators, and CMV matrices. However, in the interests of
brevity and clarity, we limit the discussion of proofs to the case of Jacobi matrices.

2. Background

We start at the very beginning:

THEOREM 2.1. The sum of the diagonal entries of an n x n matrix is equal to
the sum of its eigenvalues (counting algebraic multiplicity).

This innocuous sounding result is surprisingly deep; perhaps more importantly,
it and its descendants can be surprisingly useful. The key point is the following:
in general, one cannot hope to determine the eigenvalues of an operator; however,
computing the trace is easy and says something potentially useful about the eigen-
values. A good example of the power of this little fact is shown by the following
ingenious application due to Avron, van Mouche, and Simon, [1]:

THEOREM 2.2. Consider the almost Mathieu operator

[HBu](n) = u(n + 1) + u(n - 1) + A cos(27rna + O)u(n)

acting on £2(Z) with a = p/q rational and A < 2. Then or = floa(HB) has Lebesgue
measure 4 - 2A.

Let me outline the proof when q is odd. Due to a remarkable formula of
Chambers, [11], it is possible to show that a_ is the union of q bands; moreover,
each band edge corresponds to an eigenfunction of either HB=0 or HB=, belonging to
a specific symmetry class: periodic/anti-periodic (under translation) and even/odd
(under reflection). In this way, one is led to the conclusion that

Io, I = tr(HB= .) - tr(HH' 0) + tr(H0=0) - tr(HH, )

where the subscripts indicate the restriction of this operator to the subspace with
the corresponding symmetry. This equality comes from regarding the trace as the
sum of eigenvalues; the traces are easily evaluated as the sum of diagonal entries,
which gives the result. (The result is also true for irrational a; see [43, 58].)

The proof of Theorem 2.1 is easily found once one pauses to remember the
definition of algebraic multiplicity: the number of occurrences on the diagonal in
Jordan normal form, or the order of the root in the characteristic polynomial. Of
course, one may identify all coefficients of the characteristic polynomial in terms of
its roots (the eigenvalues) and in terms of the matrix entries. This leads to

THEOREM 2.3. For any n x n matrix, A,

1+Ezktr(AkA) =det[1+zA] = 1+Ezk E A1...
k=1 k=1 11>...>lk

where A1, ... , A denote the eigenvalues of A according to algebraic multiplicity.

REMARK. The matrix elements of AkA-the restriction of A ® . . . ® A to an-
tisymmetric tensors-are exactly the k x k minors of A; thus

tr(A' A) _ A(11,...,lk ) = 1 E A(11:...,lk) (1)
11,...,lk k! 111...,lk

11>...>1k 11,...,1k
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Our notation for the minors is as follows: the upper list of indices gives the rows
used for the minor and the lower, the columns. The second equality comes from
summing over permutations of the indices and noting that the (minor) determinant
vanishes if two indices coincide.

PROOF. The right-hand equality comes from expanding 11(l + zAj ). These for-
mulae for the coefficients of a polynomial in terms of its roots are usually attributed
to FranCois Viete, a 16th century French lawyer and mathematician.

The determinant is multi-linear in the columns, thus one may expand det(1 +
zA) in much the same way as the product in the previous paragraph. A few column
operations are all that is required to finish the proof.

It is natural to extend this theorem to Banach spaces; it is here that one realizes
that things are not so simple after all. An operator on a Banach space E is called
nuclear if it can be written as E ej (lj, ) for sequences ej E E and lj E E* with

Ikej 11 11 < oo. The big surprise is that the eigenvalues of nuclear operators
are only guaranteed to be absolutely summable if E is isomorphic to a Hilbert
space, [44].

In the Hilbert space setting, the space of nuclear operators is better known
as trace class, 31, and the more usual definition is as those compact operators,
A, whose singular values are summable. (Recall that the singular values are the
eigenvalues of (A*A)1/2.) Here, the sum of the moduli of the eigenvalues is finite;
indeed it is bounded by the sum of the singular values. A very general and elegant
proof of this fact can be found in [109]; [87] contains three further proofs and
historical references.

A second obstruction to the extension of Theorem 2.1 to Banach spaces is more
devastating: there is a nuclear operator A on $1 with tr(A) = 1 and A2 = 0. A
textbook presentation of this example can be found in [62, §2.d].

THEOREM 2.4. Let A be a trace class operator on a Hilbert space. For any
orthonormal basis, {0j }, E% IA0j) is equal to the sum of the eigenvalues repeated
according to algebraic multiplicity.

For a compact operator, the algebraic multiplicity of a non-zero eigenvalue A
can be defined as the rank of ,,(z - A)-ldz where -y is a small circle around A
excluding the remainder of the spectrum of A. It is not necessary to assign a
multiplicity to A = 0 as such eigenvalues do not contribute to the sum.

Theorem 2.4 is widely known as Lidskii's theorem, [60]. As pointed out by
Pisier, [70], the statement can be found earlier in [40, §4]. Neither paper gives much
detail; thorough treatments can be found in several textbooks: [37, 59, 88]. The
majority of proofs of this theorem go one step further and treat the determinant:

THEOREM 2.5. Let A be a trace class operator on a Hilbert space, then
00

det(1 + zA) := 1 + E zk tr(AkA) = fl(1 + zAt). (2)
k=1

PROOF. The sum converges to an entire function for any nuclear operator
on a Banach space; indeed by applying the Hadamard inequality in (1) one has
tr(AkA) = O(Ckk-ky2) . Moreover, by finite-rank approximations, its zeros are
zl = -A 1 where Al are the eigenvalues of A with appropriate multiplicities.
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The restriction to Hilbert space has two effects: Firstly, E I ziI -1 < oo and
so det(1 + zA) = e9(z) fJ(1 + z.\l) for some entire function g. Secondly, one can
improve the bound on tr(AkA) to O(Ek/k!) for any c > 0. In this way, we obtain
I det(1 +zA)I < exp(EIz1) for every E > 0. With further effort, one can then deduce
Reg(z) < 2Elzl +CE, which implies that Ig(z)I = o(jzj) by the Borel-Caratheodory
inequality. Thus g is constant, and taking z = 0 shows g(z) - 0.

The proof outlined above matches the scant details in [40]. It seems to be the
simplest approach and was independently discovered by Barry, [87]. Related ideas
where used by Carleman, [9], to prove a product representation for the (regularized)
determinant of integral operators with Hilbert-Schmidt kernels.

Every entire function has a product representation; the product over the zeros
can be made to converge by adding exponential factors. This is a famous idea of
Weierstrass. Implementing it in the context of determinants leads to the notion of
regularized determinants:

THEOREM 2.6. Given an integer p > 1, let G(x) = EPk-1 xk/k then

detp(1 - zA) := det(1 - zA)etrG(zA) = fJ(1 - zAj)ec(zA') = det [(1 - zA)eG(ZA)]

extends from trace class to a continuous function on gyp, the space of operators
whose singular values are &.

The notion of regularized determinants entered mathematics incrementally, be-
ginning in the early twentieth century; see [87, §6] for a discussion of the history.
One approach to the theory (introduced by Seiler, [86]) is to notice that (1-x)eG(x)
can be written as 1 - xP f (x) for some entire function f.

Undoubtedly, the most famous work on infinite determinants is that of Fred-
holm concerning integral equations, [32]. In addition to constructing the determi-
nant, he obtains a series expansion for the kernel of the inverse operator by analogy
with Cramer's rule. We will use the discrete analogue of these formulae:

THEOREM 2.7. Suppose A E 31, then 1 + A is invertible if and only if
00

det(1 + A) = 1 +E E A((ll,...,tk
l LI,...,lk

k=1 11>...>lk

is non-vanishing. The inverse can then be written as 1 - B where

1
00

(3)

,11,...,tkB(rc' m)
det(1 + A) A (

7L,tk)
(4)

k=0 11>...>tk

PROOF. The first sentence follows from (1) and Theorem 2.5. Note that 1 + A
is invertible if and only if -1 is not an eigenvalue of A.

The second statement follows by direct computation. For more detail, see [59,
Ch. 24] or [88, Ch. 5].

This theorem can be extended to operators in the higher trace ideals, 1P. Specif-
ically, detp(1 + zA) can be written as a sum of modified minors: when calculating
these determinants as a sum over the symmetric group, one must omit any permu-
tation containing a cycle of length less than p. The modification to (4) is not so
simply explained; see [88].

Later, we will use the following consequence of the Fredholm formulae. While I
have not seen this precise statement elsewhere, results of this type are well known.
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LEMMA 2.8. Let G be a bounded operator with semi-separable kernel, that is,

G(n m) = f (n)g(m) : n > m,
f (m)g(n) : n < M.

Suppose K is a finite rank operator with K(n, m) 54 0 only when m < n < N for
some integer N, then

f = [1 + GK] -1 f obeys f (n) = a-' f (n) for n > N

where a = det(1 + GK).

PROOF. We will give the main computation and then justify the steps. Writing
A for GK and using the Fredholm formulae from Theorem 2.7, we see that for n
sufficiently large,

00

f(n)=f(n)-a
k=o

A( n,li..*,lk ) f (m)-41, -,k

11>...>lk m
00

=f(n)-a-1E
k=0
00

= f(n) - a-' E
k=0

A( n,11,...,lkA( 1 ... lk
) f(m)

m>11>...>lk

A(m,11,...,lk) f (n)L l m,11,...,lk
m>l1>...>lk

= f (n) [1 - a-' (a - 1)],

which simplifies to al f (n). The second line follows by noting that if m < ll then
the top two rows of the minor are linearly dependent; this uses the fact that K is
upper triangular and G is semi-separable. For the same reasons, f (m)A(n, p) =
f (n)A(m, p) whenever p < max{n, m}. This justifies the third equality. The last
line follows by recognizing the determinant from (3).

3. Trace Formulae for Jacobi Matrices

In this section, we will present a priori sum rules for Jacobi matrices.
Given two sequences an > 0 and bn E R indexed over n = 1, 2, ..., the associ-

ated Jacobi matrix is the tri-diagonal matrix with these sequences as entries:

J= (5)

This defines a bounded self-adjoint operator if and only if the sequences are bounded.
When they are unbounded, the operator may or may not be essentially self-adjoint
when defined on finite sequences; see [91] for a discussion of this and its significance
for the moment problem.

Given a pair of Jacobi matrices, J and J, that differ at only finitely many
entries, we can define the perturbation determinant:

a(z) = det det[1 + G(J - J)] with G = G(z) = (J - z)-1, (6)
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which is an analytic function off a(J) and meromorphic for z V aess(J). We will
derive trace formulae by studying the behaviour of log la(z) I at infinity and in a
neighbourhood of the spectrum. This is simpler if we assume that J is a bounded
operator, which we do henceforth.

The behaviour near infinity is the easiest to describe: for zj sufficiently large,

log[a(z)] = logdet[1-z_i,] = tr(log[1 z-1J] - log[1 - z-'J])
CO

k

z-k tr(Jk - Jk).
k=1

(7)

Taking the real part gives the asymptotics of log Ia(z)1.
Understanding the behaviour of log ja(z) I near the spectrum is considerably

more involved and will require a number of preliminaries.
The vector el = [1, 0,. ..]t is cyclic for J; we will write du for the corresponding

spectral measure. Because of the existence of a cyclic vector, all eigenspaces are
one-dimensional and hence all zeros and poles of a(z) are simple. Given a concrete
Jacobi matrix, the natural way to determine dµ is via the m-function:

m(z) = (e1I(J - z) -lel) _ J dµ(t)
t - z (8)

This requires knowledge of the Green function, which we will now describe.
The Green function is constructed from two solutions of the finite difference

equation associated to J. Let us define polynomials p,(z) of degree n > 0 by the
recurrence

an+lpn+l (z) + bnpn (.z) + an-lpn-1(z) = ZP-n (z) (9)

with p_1(z) - 0 and po - 1. Then E o pn (z)en+l is a formal solution of Ju = zu.
Moreover, these polynomials form an orthonormal basis for L2(dp) and pn(J)el =
en+1. The second solution is the Weyl solution, which is only defined for z 0 a(J).
It is given by

r_0 o4'n(z)en+1 = (J - z)-lel (10)

In practice, one uses the following equivalent formulation: On(z) obeys (9) for
n > 1, it is square summable, and a1o1 + (b1 - z)bo = 1. It is now easy to check
that the Green function is given by

G(n + 1, n' + 1; z) _ (en+1l(J - z) 1en'+1) = Pmin{n,n1}(z) )max{n,n'}(z)

The point in introducing all this machinery is the following discrete analogue
of a theorem of Jost and Pais, [45]:

THEOREM 3.1. Suppose J and J are bounded Jacobi matrices differing in only
finitely many entries, then for n sufficiently large, the Weyl solutions associated to
these Jacobi matrices obey

On

00 -
a(z) (z) = 4'n (z) f ak .

k=1 ak

In particular, for a. e. x with respect to dµac,

00 akdµ - Im rn(x + i0) 2
(12)

dµ Im m(x + i0)
= Ia(x + i0) 1 11k=1 ak
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PROOF. Let D be the diagonal matrix with Dnn ak/ak. By the resol-
vent identity,

D(J - z)-1D-1 = (J - z)-1 (J - z)-1[D-1JD - J]D(J - z)-1D-1,

which implies that the sequence n obeys

n = V)n -

G is the Green function for J and K is the matrix D-1JD - J, which is
lower triangular. As Dam,,, is eventually identically one and

det[1 + GK] = det[D-1(J - z)D(J - z)-1] = a(z),

Lemma 2.8 implies that (11) holds.
To prove (12) we merely combine (11), the fact that

dp
= lim Im m(x + iy) = lim

I I (J - x - iy) lei 112 = lira 211'0n(x + iy)112dx y1o Y10 yo 11

Lebesgue almost everywhere, and the corresponding result for J.

With a little more care, one may use the reasoning above to deduce that
log la(z)I has a non-tangential limit at dµac-a.e. x c R. Actually, it is easy to
obtain this kind of information about a(z):

LEMMA 3.2. If J - J has finite rank, then a(z) is a polynomial in z and m(z).

PROOF. The key observation is that every matrix element of (J - z)-1(J - J)
is a polynomial in m(z) and z. This can be justified by noting that

(en+l(J - z) lem+1) - pn(x)pm(x) dµ(x)
X - z

and xk(x - z)-1 = X.1 + zxk-l(x - z)-1. El

The reader is no doubt familiar with function theory in the unit disk and
hence in any simply connected domain. In multiply-connected domains, matters
are more complicated, primarily because of the non-existence of Blaschke products.
Of course, one may always lift questions to the universal cover and apply results
from the disk case, but in general, the covering map can be a horror. We do not
wish to get waylaid by these problems and so treat a very simple case.

HYPOTHESIS 3.3. We assume that J is periodic, that is, the sequences an and
bn are periodic.

Under this hypothesis, u(J) consists of finitely many compact intervals together
with finitely many points. (This remains true for finite-rank perturbations.)

Let us write 0 for the complement of Uess(J) in the Riemann sphere. By
applying Joukowski transformations, this region can be transformed to one bounded
by finitely many analytic curves; thus we can apply the general results described
in [31, 77].

The trace formulae we will derive amount to the relation between log ia(z)l
on Qess(J) as given in Theorem 3.1 and the asymptotics given in (7). In essence,
log Ja(z) I is the Poisson integral of its boundary values; however a(z) may have both
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zeros and poles. When S2 is simply connected, the traditional approach has been
to remove the problem with Blaschke products. We use Green's identity:

12
fOg-gQ f =

Jaszf an

Og Of
-g8n. (13)

(The Poisson integral representation of harmonic functions follows by choosing g
to be the Dirichlet Green function for Q.)

DEFINITION 3.4. Let go(z) denote the (Dirichlet) Green function for f with
singularity at infinity. That is, go is the unique continuous function on C that is
harmonic on C \ QesS (J), vanishes on Uess (J), and has asymptotics

go(z) = -2 log I z I + O(1) as z -> oc.

Similarly we introduce functions gk, k > 1, that are continuous and harmonic as
before, but with asymptotics

gk(z)=-- Rezk+O(1) asz ->oc.
We will also use the analogue of harmonic measure:

dvk (x) = -2 [lim gk (x + iy)] dx,ylo y

which is supported on UeSS(J).

Note that Green's identity with f = 1 shows that f dvk = bko. These functions
are Green functions for infinity in the following sense: if f is smooth and supported
in a small neighbourhood of infinity with

f (z) ^' E cl Re(z-1) + d1 Im(z-1), then J f Ogk =
{kck

cc
. k

k

> 1, (14)
1

THEOREM 3.5. Suppose J is a periodic Jacobi matrix and J is a finite-rank
perturbation, then

- E log[ai/aj] = 27r E[go(Ej) - go(Ej)] - 2 flog[]dvo(x), (15)

where Ej and Ej enumerate the discrete spectrum of J and J. For k > 1,

-tr(Jk - Jk) = 2 7 r - 2 J l o g ] dvk(x). (16)

PROOF. The equations follow from Green's identity, (13), with f = log ja(z) I
and g = A. As a(z) has simple poles/zeros at the eigenvalues of J and J,

-Of =>27rd(z-Ej)-E2-7rd(z-E;),
while fn f Ogk can be evaluated with (7) and (14).

We need to show that the integrals over the boundaries can be taken in an
almost-everywhere, rather than distributional, sense. Because we have assumed
that J is periodic, its m-function is extremely well behaved and so Lemma 3.2
makes this elementary. In more general settings, one needs to use the fact that
m E HP(Il) for any 0 < p < 1 and hence a(z) E HP(S1) for p sufficiently small.

From the definition, a(z) = a(z) and so f (z) = f (z). This allows us to combine
the contributions from upper and lower edges of each slit. The final result follows by
re-writing f on the boundary via (12). Note that log[aj/aj] appears with coefficient
one in (15) and not at all in (16) because f dvk = 8k0
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These formulae may seem rather far removed from the trace formulae we dis-
cussed in Section 2. However, the important property has remained: the left-hand
side involves the coefficients of the operator, while the the right, the spectral prop-
erties.

The simplest periodic operator has constant coefficients; by scaling and shifting,
it suffices to consider ak - 1 and bk 0. The resulting Jacobi matrix has spectrum
[-2, 2], which is purely absolutely continuous,

d,a(x) = (x) 4 - x2 dx.

For this choice of J, Theorem 3.5 is due to Case, [10], although he was very much
inspired by the trace formulae for Schrodinger operators that we will describe in
the next section.

Certain linear combinations of the Case formulae turn out to be more useful
for applications; the key ingredient is positivity. The following example synthesizes
[47, 54]. Let T,,, and Un denote the usual Chebyshev polynomials:

Tn(cos(B)) = cos(nB) and U(cos(B)) = sin[(n+1)B]
sin(O)

Then for each n > 1,

f 4-x2Un -I(z)I2dx+EGn,(E
2

cc

= tr{[2Tn(2J)-2TnJ)]2}+4EF(aj...aj+n-I)+Xn

j=1

(17)

where F(x) = x - 1 - log(x) > 0,

Gn(3+,3-I) =
j32n _ /3-2n - 4n log 101 for 1/3 > 1, (18)

and Xn is a simple function of the first few entries of J. This is most easily
deduced by simply repeating the proof of Theorem 3.5 using the harmonic function
g = a Re Gn in place of any particular gk. One further observation is necessary
however: 2Tn (2 J) differs from the matrix with ones on the nth sub- and super-
diagonals and zeros elsewhere in only a few entries. This implies

J)]Tn(I J)I = Xn - 4 E[aj ... dj+n-1 - 1],-8 tr{ [Tn(2J) - Tn(I
2 2

with the proper choice of Xn; in fact, XI - 0.
For future reference, let us note that the right-hand side of this equation is finite

if and only if Tn (z J) - Tn (2 J) is Hilbert-Schmidt; the sum over F(aj .. aj+n-1)
is bounded by the sum of the squares of the entries on the nth super-diagonal of
this matrix.

The first two terms on the right-hand side of (17) are manifestly positive, as
is the sum over the eigenvalues. Strict positivity of the integral is not essential;
however, by Lemma 6.2 it is bounded from below. There are several other sum
rules for Jacobi matrices that have good positivity properties; see, for example,
[47, 53, 81, 100]. A very general (but rather abstract) approach to the positivity
problem can be found in [66].

The observation regarding 2Tn (2 J) has an analogue for general periodic Jacobi
matrices, which gives rise to similar formulae. Let J be a periodic Jacobi matrix
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with period p scaled so that a1a2 ap = 1 and let A denote the corresponding
discriminant. For any J differing from J by finite rank,

27r E[g(E3) - g(E,,)] - 2 f1og[]dv(x)
(19)

= 4p tr{ [A(J) _ A(J)] 2 } + 4p E F(aj ...aj+p-1) + X

where g = 2 Re {log [ 1 A + Z A2 - 4] - A A2 - 41 and dv is the probability
measure supported on cress (J) with density d' = zip 1 A' (x) 4 - -A (x) 2. These
formulae and related results are the topic of forthcoming joint work, [14]. Note also
that (17) follows from this formula by considering the case of constant coefficients
as a period-n problem.

4. Trace Formulae for Other Operators

As mentioned in the previous section, the derivation of sum rules for Jacobi
matrices follows earlier results for Schrodinger operators. The first goal of this
section is to describe these results. After that we will briefly discuss certain older
results that fit naturally into the same framework. As in the previous section, we
will state a priori versions of these sum rules; that is, with far stronger hypotheses
than turn out to be necessary.

Consider the whole-line Schrodinger operator associated to a smooth compactly
supported potential V,

[Lu] (x) = -u"(x) +V(x)u(x),

and write L for the free operator (V - 0). In this setting, the perturbation de-
terminant a(z) = det[(L - z)/(L - z)] happens to be equal to the reciprocal of
the transmission coefficient and most references we quote take this point of view.
The analogue of Theorem 3.5 is much better known, primarily because of its role
in the inverse scattering solution of the KdV equation. As o,(L) is not compact,
one studies the behaviour of a(z) as z approaches infinity in a particular direction,
specifically, along the negative real axis.

THEOREM 4.1. If V is C°° and of compact support, then for n > 0,
00

log la(E+i0)JE'i-1/2dE = (221+17 J+'+ (2n)+ 17r E,,,, 1/2 (20)

where Em < 0 enumerate the discrete spectrum and 6n+1 is defined by the following
recurrence: 0(x) = 0, j, (x) = V (x) and bn.+1 + . + 1 Stbn-Q = 0

The original paper is [110], which builds upon earlier work [7, 34, 35]. The
reader may have noticed that Jacobi matrices are parameterized over a half-line,
while now we discuss whole-line Schrodinger operators. The trace formulae for
half-line Schrodinger operators, [7], contain values of V (and its derivatives) at the
origin; this makes them unsuitable for the applications we have in mind.

The formulae for f Sk dx can be simplified by recognizing complete derivatives.
We will primarily discuss the n = 1 case of (20):

1 J logla(E+i0)IE112dE+ 3 IEmI312
= a [ IV(x)12dx. (21)

0
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If V is supported on the positive half-axis, then we obtain the following analogue
of the Jost-Pais theorem: for k > 0,

ja(k2 +
i0)12 = lm(k2 + i0) + ik12 >

1 (22)
4k Im m(k2 + i0)

where m denotes the Weyl m-function associated to the half-line Schrodinger op-
erator with potential V and a Dirichlet boundary condition. In Theorem 3.1, we
made a direct link to the spectral measure; that is not quite possible here. While
1 Im m(E + i0) is equal to the Radon-Nikodym derivative of the spectral measure,
the formula for a involves Re m and hence the Hilbert transform of the spectral
measure.

Jacobi matrices are naturally associated to the theory of orthogonal polyno-
mials for measures supported on the real line. There is an analogous theory of
orthogonal polynomials for measures on the unit circle in the complex plane. While
this theory is of considerable vintage, the proper analogue of Jacobi matrices was
discovered surprisingly recently. We will now describe these operators and describe
how the corresponding sum rules relate to certain classical questions.

Given a probability measure dp on S' = {z E C : zj = 1} (with infinite sup-
port), we can construct a system of orthonormal polynomials cbk (z) by applying the
Gram-Schmidt procedure to 1, z, z2, .... As in the Jacobi case, these polynomials
obey a recurrence relation. As it is simpler in this case, we write the relation for
the monic orthogonal polynomials:

'Dk+1(z) = z%(z) - ak4Dk(z), 'Dk+l(z) = 'Dk(z) - akz4)k(Z). (23)

Here ak E lD are the recurrence coefficients, which we call Verblunsky coefficients,
and -Dk denotes the reversed polynomial: 4Dk(z) =

In general, these polynomials need not form a basis for L2 (dµ), as can be
seen when dp = 2 dB. Instead, we may apply the Gram-Schmidt procedure to
1, z, z-1, z2, z 2, ...; in this way we obtain an orthonormal basis xk(z) for L2(dp),
which are related to the orthonormal polynomials by

xk(z) =
z k even
z-(k-l)/2 Ok(z) : k odd.

(24)

Let C be the matrix representing f (z) H z f (z) in this basis. The resulting class
of matrices are known as CMV matrices and comprise a natural unitary analogue
of Jacobi matrices. The name is taken from authors of [8]; however, the original
discovery predates this paper as discussed in [95] and [108].

Let us write Co for the CMV matrix associated to dp = 2dO, which corresponds
to ak - 0. The analogue of Theorems 3.1 and 3.5 can be combined into one:

THEOREM 4.2. Suppose C - Co is of finite rank (that is, ak = 0 for all but
finitely many k). Then d(z) := det[(1 - zCt)/(1 - zCt )] is related to the Szegd
function,

ie l
D(z) = exp{ 4 f e;e + z log [2'r de dB by d(z)D(z) = (1 - jak 2)1/2.

e z JJJ

Notice that D(eie)12 = 27r d1'
.

This result is Theorem 4.2.14 in [94]. By comparing the Taylor coefficients of
d(z) and D(z) one easily deduces sum rules resembling (15) and (16).
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While the interpretation of D(z) as a perturbation determinant of CMV ma-
trices is very recent, the primary content of this theorem is not. Szeg6, [102, 103],
proved that when the integral defining D is convergent, 0n* (z) - D(z)-1 uniformly
on compact subsets of D. By using the recurrence relations for 0n, one can deduce
the same family of sum rules.

Krein, [52], introduced a continuous analogue of the recurrence (23),

dd-rP(r, z) = izP(r, z) - A(r)P*(r, z), z) -A(r)P(r, z), (25)

where A(r) is a complex function on [0, oc) and P. (0, z) = P(0, z) - 1. These
equations are referred to as the Krein system. Note that P, (r, z) = e2TZP(r, z) and

P(r, z) = eirz _ f y,.(s)e'ir-Slz dz
0

for some integrable function yr, which explains the relation of r to the degree of the
polynomial. The polynomial analogy is further strengthened by the existence of a
measure dp on R so that f (1 +x2)-'dp(x) < oo and f P(r, x)P(s, x) dp = 5(r - s).
While of interest in their own right, results for Krein systems also have consequences
for Schrodinger operators; the key observation is that if A is real-valued, then

(r; z) _
z P(2r, z) - P. (2r, z)

2iz

where V(r) = 4A(2r)2 - 4A'(2r).

solves - vi" + VV) = z2Y'

Krein does not give sum rules per se, but under suitable hypotheses, P, (r, z) ,
II(z) as r - oo where II(z) is the outer function on the upper half-plane that obeys
JII(x + i0) 1-2 = 27r d . This is essentially equivalent as discussed above. Lastly, the
reader should be warned that Krein's paper contains no proofs; fortunately, details
can be found in [84, 105].

5. Point Spectrum
As first noted in [33, p. 115], it follows from (21) that the bound-state energies,

E.,,,,, of a whole-line Schrodinger operator with potential V E L2 obey

3
IE'nI3/2

<
s

f IV(x)I2dx. (26)

This can be justified as follows: Choose V. E C° ° converging to V in L2. Then L +
l/ converges to L in strong resolvent sense, which implies (individual) convergence
of the eigenvalues. Applying Fatou's lemma to the sum over eigenvalues and using
the fact that la(E+i0) I > 1 for any potential gives (26). The existence of non-trivial
reflectionless potentials shows that the constant in this inequality is optimal.

Inequalities of this kind are known as Lieb-Thirring inequalities and hold in
considerable generality, including higher dimensions; see [61]. Considerable atten-
tion has been paid to the question of the optimal constants. In [57], Laptev and
Weidl made a major breakthrough:

THEOREM 5.1. The negative eigenvalues of -A + V acting in L2 (Rd) obey

F(7+1) / ry+zdE < 2dird/2r(y+
Zd+1) J

1 v(x) dx

for any d > 1 and > z . Moreover, the constant is optimal.
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This is proved by extending the inequality (26) to operator-valued potentials
(using trace formula methods) and then employing induction in dimension. An
alternate proof of the trace formula portion of the argument appears in [5].

It is elementary to apply the reasoning described above to (17); this leads to
the following result [47, 54] :

[TT(ZJ) -T,,(2J)] E 32 E[IE,I - 2]3/2 < oo. (27)

(Analogous results can be found in [53, 81].) The particular case n = 1, treated in
[47], is the natural Jacobi-matrix analogue of (26). For further inequalities of this
type, see [41].

For CMV matrices and Krein systems with decaying coefficients, the essential
spectrum fills S' and R, respectively. Thus there is no discrete spectrum.

6. A.C. Spectrum

It is well known that a one-dimensional Schrodinger operator with sufficiently
rapidly decreasing potential has a.c. spectrum on [0, oo)-with sufficient decay it
will even be purely absolutely continuous. But how quickly is sufficiently quickly?

On the basis of sparse, [50, 68, 72], and random, [18, 19, 51, 89], examples, it
was known that there are potentials just outside L2 which produce no a.c. spectrum
whatsoever. Indeed, Simon has shown that this is generic, [90]. Eventually, the
weight of this and other evidence led Kiselev, Last, and Simon, [50], to conjecture
that L2 was the correct borderline.

In his thesis, Kiselev made a significant step toward verifying this conjecture.
This approach was later refined in [12], while an alternate approach was developed
by Remling, [73]. The central conclusion of this work was: If I V(x) I < (1+x2)-E-1/4

then for almost every positive energy, all generalized eigenfunctions are bounded.
In particular, the essential support of the a.c. spectrum fills [0, oo). It would be
extremely interesting to know whether eigenfunctions are bounded at almost every
positive energy when V E L2; in the regime of infinitesimal coupling, this reduces
to Carleson's theorem on a.e. convergence of Fourier integrals. See [104] for more
on this perspective.

The spectral question for V E L2 has been resolved using sum-rule methods,
[16]:

THEOREM 6.1. The absolutely continuous spectrum of a half-line Schrodinger
operator with potential V E L2 is essentially supported by [0, oo).

PROOF. Keeping only the imaginary part of m in (22) leads to

l a(k2 + i0) l2 >
[Im m(k2 + i0) + k] 2 > 1

4k Im m(k2 + i0)

Notice that Jai is large wherever d" _ Imm is small, but by (21), we know that
the integral of log jai is controlled by the L2 norm of the potential. The only obstacle
is that we only know (21) for compactly supported potentials; this is resolved by
choosing a sequence Vim, --> V and applying a simple semi-continuity argument.

There are now many results proved by similar means; we will give a brief
overview of these and then turn to the Jacobi matrix case, where we offer a more
detailed presentation. After that we will describe the analogous results for CMV
matrices and Krein systems, which are actually the oldest of all.
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Using higher-order sum rules, [65] proves full a.c. spectrum under the hypothe-
ses V(p-1) E L2 and V E Lp+1 for any integer p > 1. By using the connection to
Krein systems, Denisov obtained the same conclusion under the following hypothe-
ses: V is uniformly L

210c

and V = A' with A E L2, see [20]; or lim sup V (x) = 0 and
V' E L2, see [21]. See also [78].

In [46], a modification of the trace formula method was developed that works
locally in energy. Specifically, one studies the perturbation determinant in a small
region which touches the boundary along an interval, which allows one to consider
perturbations of operators with non-zero potentials. In this way, it was shown that
the a.c. spectrum of periodic Schrodinger operators is invariant under L2 pertur-
bation. The Stark operator was also studied; see [69] for further developments in
this direction and for references to work on this operator that is not based on sum
rules.

Another result from [46] is the following: if V E L3 and (the distribution) V
agrees with an L2 function on an interval [a2, b2], then -88 + V has a.c. spectrum
throughout the interval [2a, 2b]. See also [81], which treats Jacobi matrices. By
combining the problems for V and -V as in [83], one can see that the condition
V E L3 can be replaced by V E L4. This was pointed out to me by 0. Safronov.

The most interesting recent development of the trace formula method has been
its extension to higher dimensions. For Dirac operators, there are the impressive
results of Denisov, [25, 26]. Progress for Schrodinger operators has been slower
for two reasons: bound states are especially problematic in the multi-dimensional
case and there is no satisfactory WKB theory without smoothness assumptions
on the potential. For the state of the art, see [24, 27, 55, 56, 82, 83] and the
Denisov-Kiselev contribution to this Festschrift.

We will now present a Jacobi-matrix analogue of Theorem 6.1. The case of
discrete Schrodinger operators was discussed in [16]; however, our treatment follows
[47] with additional input from [54, 66]. The final result is from [66]. As suggested
in the last proof, the main ingredient is a semi-continuity statement:

LEMMA 6.2. Given probability measures dv and do on 1[8,

S(dvl da) := inf f e9 du - J (g + 1) dv = - .f log[w] dv : dv = wda
-00 : otherwise

where the infimum is over bounded continuous functions g. As a consequence, if
du,, converges weak-* to da, then S(dvlda) > lim sup S(dvjdan).

PROOF. The case where dv is not do--a.c. is easily dealt with; we suppose
dv = wdo-. Let us write /g = c + h where c = f g dv. By Jensen's inequality,

S(dvlda) < e° J w-1eh dv - c - 1 < exp{c - f log[w] dv} - c - 1.

The minimizing value of c is f log[w] dv, which proves S(dvldo,) < - f log[w] dv.
The fact that this inequality can be saturated follows by choosing g to approx-

imate log[es], which corresponds to the case of equality in Jensen's inequality.

REMARK. By choosing gr- 0, it follows that S(dvl do-) < 0. Consequently,

f
log[dµ] dv < -S(dvjdµ). (28)
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THEOREM 6.3. Let J be the Jacobi matrix with ak - 1 and bk - 0. If J is a
Jacobi matrix with [T, (2 J) - (2 J)] E 32 for some integer n > 1, then

f1og[]y4x2Unl(2dx<o
o

z

where Tn and Un represent Chebyshev polynomials as in (17).

PROOF. The result follows by combining (17) and Lemma 6.2 once we know
that there are a sequence of operators Jk each differing from J by finite rank such
that Jk -> J strongly (which implies weak-* convergence of the spectral measures)
and for which Tn (2 Jk) - Tn (2 J) is bounded in Hilbert-Schmidt norm. Such a
sequence does exist because an --f 1 and bn - 0. This can be shown by examining
the top three diagonals in Tn(ZJ); for details see Lemma 6.6 of [66].

Jacobi matrix results have developed along lines parallel to the Schrodinger
case-though the proper analogue of [65] remains particularly stubborn; see [53]
for the latest on this problem.

That the a.c. spectrum fills Si for CMV matrices with ak E £2 follows from
early work of Szego, [102, 103]. Indeed much more is true; see Theorem 8.1.

With regard to higher-order sum rules for CMV matrices, see [22, 28, 39, 94,
101].

For Krein systems, we have the following [52]:

THEOREM 6.4. When A E L2(dr), the spectral measure obeys

dxlog [ dx ] 1+x2 < Do.

In particular, the essential support of the a.c. spectrum is R.

7. The Step-by-Step Method

As we have seen, the a priori sum rules presented in Section 3 are ample for
applications in (forward) spectral theory. In the next section, we will be presenting
results that incorporate inverse spectral theory and for this purpose, we need to
discuss a second kind of a priori sum rule. The main idea can be found in [47, §4],
but was first emphasized in [100]. The function-theoretic essence of the argument
was distilled in [93]. We will present only the simplest case; it is not difficult to
extend the results to the generality presented in Section 3.

HYPOTHESIS 7.1. We assume dd is a probability measure with support [-2,2]U
{Ej} where Ej obeys E[IEj - 2]3/2 < oo and a > 0 almost everywhere in [-2,21.

As previously, we write m(z) = (ell(J - z)-lei) = f d
Z

dµ(t), which is a
meromorphic function on SZ, the complement of [-2, 2] in the Riemann sphere. We
also enumerate the point spectrum {A} so that jEjj is non-increasing.

A single step consists of removing the first row and column from J. We will
denote the resulting Jacobi matrix by j('), its spectral measure by dµ('), and m-
function, m(l) (z).

LEMMA 7.2. If dd obeys Hypothesis 7.1, then so does di(1 .
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PROOF. By the min-max characterization of eigenvalues,

E;M1 << IE,I. (29)

Indeed, by the theory of rank-one perturbations, the eigenvalues of J and J(1)
interlace. By the well-known formulae for inverting block matrices,

m(z) _ [b1 - z - aim(l) (z)] 1. (30)

In particular, taking the imaginary part we find

dµ(1) dµ Im 7-n(1) (x + i0) - _2
(31)

dx dx Im m(x + i0) - al rrt(x + i0) I-2

for a.e. x E [-2, 2]. This completes the proof; Herglotz functions have non-zero
boundary values almost everywhere.

The step-by-step approach studies log I in(z) I in very much the same manner as
we studied log Ia(z)I in Section 3; its boundary values can be read off (31) while
the behaviour at infinity is governed by

LEMMA 7.3. If dµ has compact support,

00

log[-zm(z)] _ -kz-k tr{Jk - (0 ®J(1))k} (32)
k=1

for z sufficiently large. Note, 0 ® J(1) differs from J by having al = bl = 0.

PROOF. By writing m(z) = tr{P(J - z)-1} with P = Iei)(el I and expanding,

00 k

log[-zm(z)] = E z-k E (-1)P tr{Pit1PJtz ... pit, }
k=1 p=1 p ti+ ..+tp=k

where t1, ... , tp are positive integers. Writing out the matrix product, we can regard
the trace here as a sum over m-tuples (i 1, . . . , im) where i,9 = 1 whenever s belongs
to the set fl, l + tl, ... , l + tl + + t1,_1}. Similarly,

tr{Jk - (0 (D J(l))k} _ - E J(jl,72)J(j2, j3) ... J(jk,jl)

where the sum is taken over k-tuples with j,9 = 1 for at least one s.
To connect the two, one should perform inclusion/exclusion on the number of

times a k-tuple visits the value 1; the role of p is to restrict to k-tuples visiting 1
at least p times.

I have not seen (32) in the literature. This is not the simplest proof; however
having typed all those indices, I am loath to delete them. A simpler proof was
suggested to me by Barry: By (8) and Cramer's rule, m(z) can be written as a
ratio of determinants and thus log[-zm(z)] can be written as the differences of
traces. To make this fully rigorous, one first treats finite Jacobi matrices and then
observes that this suffices.
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THEOREM 7.4. Let J denote the Jacobi matrix with aj - 1 and bj - 0. Let us
fix n > 1 and suppose dµ obeys Hypothesis 7.1. Then for each k > 1,

f1og[d -dd 4-x2 lUn I(z)Izdx+E
2

= tr{ [2Tn(ZJ) - 2Tn(ZJ)]2 - [2Tn(20 ® J(k)) - 2Tn(20 ® J(k))]2} (33)
k

+ 4 E F(aj ... aj+n-1) + Xn - Xnk)
j=1

where 0 represents the k x k zero matrix, F(x) = x - 1 - log(x) > 0, Gn is given by
(18), and Xn and X(k) are simple functions of the first few entries of J and J(k),
respectively.

PROOF. It suffices to prove the case k = 1 since the general case follows by
applying this successively. This case corresponds to Green's identity with f (z) =
logIm(z)I and g(z) = Gn(z). Note that m(z) has a pole at every eigenvalue of J
and a zero at those of J(1). Also, 0 < G(x) < [Ixl - 2]3/2 for x E IR and so by
Lemma 7.2, the sum over each set of eigenvalues is absolutely convergent.

Because of the interlacing property of the discrete spectrum and the monotonic-
ity of Gn, it is not necessary to assume that dµ has the Lieb-Thirring property.

8. Necessary and Sufficient Conditions

In this section, our presentation will most closely resemble the historical de-
velopment; though as previously, we will restrict detailed discussions to the Jacobi
case. The primary topic is the optimal versions of the sum rules we have described-
the versions with no hypotheses; the left-hand side equals the right, be they finite
or infinite.

The first sum rule to reach this stage of development is that of Verblunsky
[107]:

THEOREM 8.1. The coefficients of a CMV matrix, ak, and its spectral measure,
dµ, always obey

0 ( /' l
11 (1 - Iakl2) = exp(J log[27rB]

zO

.

k=0 JJ

In particular, the right-hand side is finite if and only if ak E $2.

This result admits several `higher order' analogues where zo is replaced by
IP(B)I22 with P a trigonometric polynomial; see [100] and [94, §2.8].

Theorem 8.1 is often referred to as Szego's theorem in deference to [102, 103];
see [94] for a thorough historical discussion. There is a related sum rule which goes
under the name `strong Szego theorem'. The definitive version of this is due to
Golinskii and Ibragimov, [38, 42]:

THEOREM 8.2. If dp = -1-eh(e)dO, then
CK) cc

fl(1 - lakl2)-k-1 = exp{En1h(n)I2}
k=0 n=1

and the left-hand side is infinite if dp cannot be written in this form.
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There are two more results of similar nature, although neither has a corre-
sponding trace formula. The first is due to Baxter, [4]:

THEOREM 8.3. ak E Ql if and only if dµ = z eh(e)dO with h E £1.

This can be interpreted as a statement about the Wiener algebra. As discussed
by Baxter, the result extends to other algebras; see also [94].

The second result is from [67] :

THEOREM 8.4. lim sup 1ak I1/k < R-1 < 1 if and only if du = If (eie) I-2dO with

f (z) an analytic function on I z I < R.

This result has recently been the subject of much study, including several ex-
tensions in the circle case, [2, 3, 17, 96], and also to Jacobi matrices, [15, 97].
See also the review article [98].

In the remainder of this section, we will discuss analogues of Theorem 8.1 for
Jacobi matrices and Schrodigner operators; I am not aware of a corresponding
result for Krein systems. It would be interesting to find analogues of Theorems 8.2
and 8.3. As far as I know, the only work on this question is [79, 80], which treats
Jacobi matrices. Note that as the rate of decay improves, the analysis becomes more
tractable; for instance, the classical theorems of forward and inverse scattering (as
used to solve KdV and the Toda lattice), [63, 106], have weighted L' hypotheses.

The following result is from [66]; it extends earlier results from [47] and [54].
We give a slightly different proof.

THEOREM 8.5. Fix n > 1 and write J for the Jacobi matrix with aj - 1 and
bj - 0. Then T,,(2 J) -TT,, (2 J) is Hilbert-Schmidt if and only if the spectral measure
dµ obeys

(i) (Blumenthal-Weyl) supp(d i) is compact and ess-supp(dµ) = [-2, 2].
(ii) (Normalization) dµ is a probability measure.
(iii) (Lieb-Thirring Bound)

E(I Ej - 2)3/2 < 00

(iv) (Quasi-Szego Condition) Let dµac(E) = w(E) dE. Then
z

(34)

log[w(E)] IUn_1(ZE)I2 4 - E2 dE > -oo.f z
(35)

REMARK. When n is small, the Hilbert-Schmidt condition can be reduced to
simple explicit hypotheses on the coefficients by brute force; the general case was
treated in [66] by using the recurrence relation for Chebyshev polynomials. The
reformed condition is

(u1 + uj+1 + ... + uj+n-1) E Q2' uj E f4'

(bj + bj+l + + bj+n_1) E £2, and bj c Q4,

where uj = aj - 1.
PROOF. The forward implication follows from Weyl's theorem (on relatively

compact perturbations), (27), and Theorem 6.3.
For the other direction, we use Theorem 7.4. The first observation is that

LHS(33) is bounded from above as k --> oo; naively, it may happen that

f 2 (k) 2
o)I dx -> -ooJ 1°gd 4-x21Un-1(2

z
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but by (28), this sequence cannot diverge to +oo. Therefore, RHS(33) must also
be bounded above as k -> oo.

As dji has compact support, the coefficients of J are uniformly bounded. The
sequence aj is bounded from below, for if it were not, trace-class perturbation
theory would imply that dp is purely singular, [30, 99]. In this way, the bound on
RHS(33) translates into

k

lim sup E C e j
k->oo j=1

which completes the proof.

[Tn(2J) -Tn(IJ)]2ej> < oo,

11

An analogous result for perturbations of periodic operators can be found in
[14].

The proof of Theorem 8.5 given above avoids a very interesting idea that was
employed in [54, 66], namely Denisov's extension of Rakhmanov's theorem, [23]:

THEOREM 8.6. Let J be a bounded Jacobi matrix, and dp its spectral measure.
If QeSS(J) _ [-2,2] and d" > 0 a.e. there, then an --> 1 and bn - 0.

The original theorem of Rakhmanov, [64, 71], says the following: if the spectral
measure of a CMV matrix obeys ae > 0 a.e. on the unit circle, then ak -4 0.

To obtain the Schrodinger analogue of Theorem 8.5, one must confront two
new difficulties.

First, every probability measure is the spectral measure for some Jacobi ma-
trix, but not every positive measure on R is the spectral measure of a Schrodinger
operator. Necessary and sufficient conditions are known, [63]; they involve the
large-energy asymptotics of the spectral measure. In addition, for technical rea-
sons, one would like a statement that guarantees the existence of an Ll c potential.

The second problem is the occurrence of the real part of m in the natural trace
formula. By analogy with Theorem 8.5, one would like to have a condition on the
logarithmic integrability of the Radon-Nikodym derivative of the spectral measure.

The theorem below is from [48]. But first, a few remarks about how these
difficulties are overcome.

Let dp denote the spectral measure for a half-line Schrodinger operator (or a
candidate for this role) and let dpo denote the measure for the free (V - 0) case.
We define a signed measure dv on (1, oo) by

7
f f (k2) k dv(k) = Jf(E)[dp(E) - dpo(E)]> d f c C°° ((1, )) (36)

Notice that dv is parameterized by momentum, k, rather than energy, E. Using
Barry's A-function approach to the inverse problem, [36, 76, 92], it is possible to
show that if vI (n, n+ 1)] 2 is finite, then dp is the spectral measure of a potential
V E Lr C. Using trace-formula methods, it is possible to show that this sum is finite
for any V E L2.

Following the work of Burkholder, Gundy, and Silverstein, [6], it is understood
that LP bounds on the maximal function are equivalent to such bounds on the
conjugate function. This is progress in our setting because it removes the spectre
of cancellation. It also unifies the way one measures the size of the singular and
absolutely continuous parts of dp. The specific hypothesis below makes use of a
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short-range modification of the usual Hardy-Littlewood maximal function:

(Msv)(x) = sup
vl([x-L,x+L])

o<L<1 2L

THEOREM 8.7. A positive measure dp on li is the spectral measure associated
to a (Dirichlet) half-line Schrodinger operator with potential V E L2(R+) if and
only if

(i) (Weyl) supp(dp) is bounded from below and ess-supp(dp) = [0, oc).
(ii) (Normalization)

I
Mv(k) 2

logIl+
k )

]k2dk<oo

(iii) (Lieb-Thirring)

i IEj 13/2 < 00
3

(37)

(38)

(iv) (Quasi-Szego)

I
00

log4dp- +2+4
Po P

(39)

One consequence of this theorem is that L2 perturbations can give rise to more
or less arbitrary embedded singular spectrum. A related result was proved in [29];
indeed, this paper was a major stimulus for [47, 48]. Other results on the nature
of embedded singular spectrum (not using trace formula methods) can be found in
[13, 49, 74, 75] and the Denisov-Kiselev contribution to this Festschrift.
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