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Homework 3: Lie derivatives and interior products

Given a particular vector field on a manifold, we can define two more operations. The Lie
derivative is a generalization of the directional derivative of a function to a derivative of
a tensor field “along” the given vector field. The interior product, or contraction, is an
operation that maps p-forms to (p− 1)-forms by “contracting” with the given vector field.

Flows and Lie derivatives (Nakahara, section 5.3)

Let V be a vector field in a manifold M . A curve x(t) whose tangent vector is V |x(t), i.e.,
dxµ(t)/dt = V µ(x(t)), is called the integral curve of V .

Let σ(t, x0) be an integral curve of V which passes through x0 ∈ M at t = 0, i.e.,
dσµ(t, x0)/dt = V µ(σ(t, x0)) and σµ(0, x0) = xµ0 . The map σ : R × M → M is called
the flow generated by V . Here t can be thought of as “time”: start at the point x0 and then
“flow” with V .

At fixed t, σ(t, x0) is a diffeomorphism σt : M → M . For infinitesimal t = ε, σε : xµ 7→
xµ + εV µ(x). The vector field V is the generator of the transformation σε.

Consider a second vector field U . We would like to know the rate of change of the vector
field U along the flow generated by the vector field V . We should therefore compare U |x
with U |x′=σε(x), or more precisely with the push-forward of this quantity by σ−ε.

Def. The Lie derivative of a vector field U along the flow σ of a vector field V is

LVU ≡ lim
ε→0

1

ε

[
(σ−ε)∗U |σε(x) − U |x

]
In local coordinates U |x = Uµ(x) ∂

∂xµ
, and we get (check!)

LVU = (V µ∂µU
ν − Uµ∂µV

ν)
∂

∂xν
.

This can also be expressed as
LVU = [V, U ] , (1)

where the RHS is the Lie bracket, defined by

[V, U ]f ≡ V [U [f ]]− U [V [f ]] . (2)

The Lie derivative of a dual vector field (one form) ω along a vector field V is similarly
defined (using the pull-back) as

LV ω ≡ lim
ε→0

1

ε

[
(σε)

∗ω|σε(x) − ω|x
]
,

and in local coordinates
LV ω = (V µ∂µων + ωµ∂νV

µ) dxν .



The Lie derivative of a function f along V is the usual directional derivative

LV f = V [f ] = V µ(x)
∂f

∂xµ
.

For a general tensor field the Lie derivative satisfies

LV (t1 + t2) = LV (t1) + LV (t2)

LV (t1 ⊗ t2) = (LV t1)⊗ t2 + t1 ⊗ (LV t2) .

Problem 1: Properties of the Lie bracket

Show that the Lie bracket satisfies the following properties.

a. Jacobi identity: [[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0.

b. X, Y are vector fields in M , ω is a p-form and g is a function in M . Show that

LgXY = g[X, Y ]− Y [g]X

LX(gY ) = g[X, Y ] +X[g]Y

[LX ,LY ]ω = L[X,Y ]ω .

The interior product (Nakahara, section 5.4.3)

The interior product, or contraction, maps p-forms to (p− 1)-forms

iV : Λp(M)→ Λp−1(M) ,

where V ∈ TpM , and is defined for ω ∈ Λp(M) by

(iV ω)(V1, . . . , Vp−1) ≡ ω(V, V1, . . . , Vp−1) .

In terms of local coordinates V = V µ ∂
∂xµ

, ω = ωµ1···µpdx
µ1 ∧ · · · ∧ dxµp , and

iV ω =
p!

(p− 1)!
V µωµµ2···µpdx

µ2 ∧ · · · ∧ dxµp

=

p∑
s=1

V µsωµ1···µs···µpdx
µ1 ∧ · · · dxµs−1 ∧ dxµs+1 ∧ · · · ∧ dxµp .

One can relate d, iV and LV acting on differential forms:

LV = diV + iV d . (3)

Problem 2: Properties of the interior product

Let X be vector field on M , ω ∈ Λr(M) and η ∈ Λs(M).

a. Show that iX is an antiderivation: iX(ω ∧ η) = iXω ∧ η + (−1)rω ∧ iXη.

b. Show that iX is nilpotent, i2X = 0, and use this to show LXiXω = iXLXω.

c. Show that

(LXω)(V1, . . . , Vr) = X[ω(V1, . . . , Vr)]−
r∑
i=1

(−1)i+1ω([X, Vi], V1, . . . , Vi−1, Vi+1, . . . , Vr)

d. Let X, Y be vector fields on M . Show that [LX , iY ]ω = i[X,Y ]ω.


