Homework 3: Lie derivatives and interior products

Given a particular vector field on a manifold, we can define two more operations. The *Lie* derivative is a generalization of the directional derivative of a function to a derivative of a tensor field "along" the given vector field. The *interior product*, or contraction, is an operation that maps p-forms to (p-1)-forms by "contracting" with the given vector field.

Flows and Lie derivatives (Nakahara, section 5.3)

Let V be a vector field in a manifold M. A curve x(t) whose tangent vector is $V|_{x(t)}$, *i.e.*, $dx^{\mu}(t)/dt = V^{\mu}(x(t))$, is called the *integral curve* of V.

Let $\sigma(t, x_0)$ be an integral curve of V which passes through $x_0 \in M$ at t = 0, *i.e.*, $d\sigma^{\mu}(t, x_0)/dt = V^{\mu}(\sigma(t, x_0))$ and $\sigma^{\mu}(0, x_0) = x_0^{\mu}$. The map $\sigma : \mathbb{R} \times M \to M$ is called the *flow generated by* V. Here t can be thought of as "time": start at the point x_0 and then "flow" with V.

At fixed $t, \sigma(t, x_0)$ is a diffeomorphism $\sigma_t : M \to M$. For infinitesimal $t = \epsilon, \sigma_{\epsilon} : x^{\mu} \mapsto x^{\mu} + \epsilon V^{\mu}(x)$. The vector field V is the generator of the transformation σ_{ϵ} .

Consider a second vector field U. We would like to know the rate of change of the vector field U along the flow generated by the vector field V. We should therefore compare $U|_x$ with $U|_{x'=\sigma_{\epsilon}(x)}$, or more precisely with the push-forward of this quantity by $\sigma_{-\epsilon}$.

Def. The *Lie derivative* of a vector field U along the flow σ of a vector field V is

$$\mathcal{L}_{V}U \equiv \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[(\sigma_{-\epsilon})_{*}U|_{\sigma_{\epsilon}(x)} - U|_{x} \right]$$

In local coordinates $U|_x = U^{\mu}(x) \frac{\partial}{\partial x^{\mu}}$, and we get (check!)

$$\mathcal{L}_V U = \left(V^\mu \partial_\mu U^\nu - U^\mu \partial_\mu V^\nu \right) \frac{\partial}{\partial x^\nu} \,.$$

This can also be expressed as

$$\mathcal{L}_V U = [V, U], \qquad (1)$$

where the RHS is the *Lie bracket*, defined by

$$[V, U]f \equiv V[U[f]] - U[V[f]].$$
(2)

The Lie derivative of a dual vector field (one form) ω along a vector field V is similarly defined (using the pull-back) as

$$\mathcal{L}_V \omega \equiv \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[(\sigma_{\epsilon})^* \omega |_{\sigma_{\epsilon}(x)} - \omega |_x \right] \,,$$

and in local coordinates

$$\mathcal{L}_V \omega = \left(V^\mu \partial_\mu \omega_\nu + \omega_\mu \partial_\nu V^\mu \right) dx^\nu \,.$$

The Lie derivative of a function f along V is the usual directional derivative

$$\mathcal{L}_V f = V[f] = V^{\mu}(x) \frac{\partial f}{\partial x^{\mu}}.$$

For a general tensor field the Lie derivative satisfies

$$\mathcal{L}_V(t_1 + t_2) = \mathcal{L}_V(t_1) + \mathcal{L}_V(t_2) \mathcal{L}_V(t_1 \otimes t_2) = (\mathcal{L}_V t_1) \otimes t_2 + t_1 \otimes (\mathcal{L}_V t_2) .$$

Problem 1: Properties of the Lie bracket

Show that the Lie bracket satisfies the following properties.

- **a.** Jacobi identity: [[X, Y], Z] + [[Z, X], Y] + [[Y, Z], X] = 0.
- **b.** X, Y are vector fields in M, ω is a *p*-form and *g* is a function in M. Show that

$$\mathcal{L}_{gX}Y = g[X,Y] - Y[g]X$$
$$\mathcal{L}_X(gY) = g[X,Y] + X[g]Y$$
$$[\mathcal{L}_X,\mathcal{L}_Y]\omega = \mathcal{L}_{[X,Y]}\omega.$$

The interior product (Nakahara, section 5.4.3)

The interior product, or contraction, maps p-forms to (p-1)-forms

$$i_V: \Lambda^p(M) \to \Lambda^{p-1}(M)$$
,

where $V \in T_p M$, and is defined for $\omega \in \Lambda^p(M)$ by

$$(i_V\omega)(V_1,\ldots,V_{p-1})\equiv\omega(V,V_1,\ldots,V_{p-1}).$$

In terms of local coordinates $V = V^{\mu} \frac{\partial}{\partial x^{\mu}}, \ \omega = \omega_{\mu_1 \cdots \mu_p} dx^{\mu_1} \wedge \cdots \wedge dx^{\mu_p}$, and

$$i_{V}\omega = \frac{p!}{(p-1)!}V^{\mu}\omega_{\mu\mu_{2}\cdots\mu_{p}}dx^{\mu_{2}}\wedge\cdots\wedge dx^{\mu_{p}}$$
$$= \sum_{s=1}^{p}V^{\mu_{s}}\omega_{\mu_{1}\cdots\mu_{s}\cdots\mu_{p}}dx^{\mu_{1}}\wedge\cdots dx^{\mu_{s-1}}\wedge dx^{\mu_{s+1}}\wedge\cdots\wedge dx^{\mu_{p}}.$$

One can relate d, i_V and \mathcal{L}_V acting on differential forms:

$$\mathcal{L}_V = di_V + i_V d\,. \tag{3}$$

Problem 2: Properties of the interior product

Let X be vector field on M, $\omega \in \Lambda^r(M)$ and $\eta \in \Lambda^s(M)$.

a. Show that i_X is an antiderivation: $i_X(\omega \wedge \eta) = i_X \omega \wedge \eta + (-1)^r \omega \wedge i_X \eta$.

b. Show that i_X is nilpotent, $i_X^2 = 0$, and use this to show $\mathcal{L}_X i_X \omega = i_X \mathcal{L}_X \omega$.

c. Show that

$$(\mathcal{L}_X\omega)(V_1,\ldots,V_r) = X[\omega(V_1,\ldots,V_r)] - \sum_{i=1}^r (-1)^{i+1} \omega([X,V_i],V_1,\ldots,V_{i-1},V_{i+1},\ldots,V_r)$$

d. Let X, Y be vector fields on M. Show that $[\mathcal{L}_X, i_Y]\omega = i_{[X,Y]}\omega$.