Homework 3: Lie derivatives and interior products

Given a particular vector field on a manifold, we can define two more operations. The Lie derivative is a generalization of the directional derivative of a function to a derivative of a tensor field "along" the given vector field. The interior product, or contraction, is an operation that maps p-forms to ($p-1$)-forms by "contracting" with the given vector field.

Flows and Lie derivatives (Nakahara, section 5.3)

Let V be a vector field in a manifold M. A curve $x(t)$ whose tangent vector is $\left.V\right|_{x(t)}$, i.e., $d x^{\mu}(t) / d t=V^{\mu}(x(t))$, is called the integral curve of V.
Let $\sigma\left(t, x_{0}\right)$ be an integral curve of V which passes through $x_{0} \in M$ at $t=0$, i.e., $d \sigma^{\mu}\left(t, x_{0}\right) / d t=V^{\mu}\left(\sigma\left(t, x_{0}\right)\right)$ and $\sigma^{\mu}\left(0, x_{0}\right)=x_{0}^{\mu}$. The map $\sigma: \mathbb{R} \times M \rightarrow M$ is called the flow generated by V. Here t can be thought of as "time": start at the point x_{0} and then "flow" with V.
At fixed $t, \sigma\left(t, x_{0}\right)$ is a diffeomorphism $\sigma_{t}: M \rightarrow M$. For infinitesimal $t=\epsilon, \sigma_{\epsilon}: x^{\mu} \mapsto$ $x^{\mu}+\epsilon V^{\mu}(x)$. The vector field V is the generator of the transformation σ_{ϵ}.
Consider a second vector field U. We would like to know the rate of change of the vector field U along the flow generated by the vector field V. We should therefore compare $\left.U\right|_{x}$ with $\left.U\right|_{x^{\prime}=\sigma_{\epsilon}(x)}$, or more precisely with the push-forward of this quantity by $\sigma_{-\epsilon}$.
Def. The Lie derivative of a vector field U along the flow σ of a vector field V is

$$
\mathcal{L}_{V} U \equiv \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[\left.\left(\sigma_{-\epsilon}\right)_{*} U\right|_{\sigma_{\epsilon}(x)}-\left.U\right|_{x}\right]
$$

In local coordinates $\left.U\right|_{x}=U^{\mu}(x) \frac{\partial}{\partial x^{\mu}}$, and we get (check!)

$$
\mathcal{L}_{V} U=\left(V^{\mu} \partial_{\mu} U^{\nu}-U^{\mu} \partial_{\mu} V^{\nu}\right) \frac{\partial}{\partial x^{\nu}} .
$$

This can also be expressed as

$$
\begin{equation*}
\mathcal{L}_{V} U=[V, U], \tag{1}
\end{equation*}
$$

where the RHS is the Lie bracket, defined by

$$
\begin{equation*}
[V, U] f \equiv V[U[f]]-U[V[f]] . \tag{2}
\end{equation*}
$$

The Lie derivative of a dual vector field (one form) ω along a vector field V is similarly defined (using the pull-back) as

$$
\mathcal{L}_{V} \omega \equiv \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[\left.\left(\sigma_{\epsilon}\right)^{*} \omega\right|_{\sigma_{\epsilon}(x)}-\left.\omega\right|_{x}\right]
$$

and in local coordinates

$$
\mathcal{L}_{V} \omega=\left(V^{\mu} \partial_{\mu} \omega_{\nu}+\omega_{\mu} \partial_{\nu} V^{\mu}\right) d x^{\nu} .
$$

The Lie derivative of a function f along V is the usual directional derivative

$$
\mathcal{L}_{V} f=V[f]=V^{\mu}(x) \frac{\partial f}{\partial x^{\mu}} .
$$

For a general tensor field the Lie derivative satisfies

$$
\begin{aligned}
& \mathcal{L}_{V}\left(t_{1}+t_{2}\right)=\mathcal{L}_{V}\left(t_{1}\right)+\mathcal{L}_{V}\left(t_{2}\right) \\
& \mathcal{L}_{V}\left(t_{1} \otimes t_{2}\right)=\left(\mathcal{L}_{V} t_{1}\right) \otimes t_{2}+t_{1} \otimes\left(\mathcal{L}_{V} t_{2}\right) .
\end{aligned}
$$

Problem 1: Properties of the Lie bracket

Show that the Lie bracket satisfies the following properties.
a. Jacobi identity: $[[X, Y], Z]+[[Z, X], Y]+[[Y, Z], X]=0$.
b. X, Y are vector fields in M, ω is a p-form and g is a function in M. Show that

$$
\begin{aligned}
\mathcal{L}_{g X} Y & =g[X, Y]-Y[g] X \\
\mathcal{L}_{X}(g Y) & =g[X, Y]+X[g] Y \\
{\left[\mathcal{L}_{X}, \mathcal{L}_{Y}\right] \omega } & =\mathcal{L}_{[X, Y]} \omega .
\end{aligned}
$$

The interior product (Nakahara, section 5.4.3)

The interior product, or contraction, maps p-forms to ($p-1$)-forms

$$
i_{V}: \Lambda^{p}(M) \rightarrow \Lambda^{p-1}(M),
$$

where $V \in T_{p} M$, and is defined for $\omega \in \Lambda^{p}(M)$ by

$$
\left(i_{V} \omega\right)\left(V_{1}, \ldots, V_{p-1}\right) \equiv \omega\left(V, V_{1}, \ldots, V_{p-1}\right)
$$

In terms of local coordinates $V=V^{\mu} \frac{\partial}{\partial x^{\mu}}, \omega=\omega_{\mu_{1} \cdots \mu_{p}} d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{p}}$, and

$$
\begin{aligned}
i_{V} \omega & =\frac{p!}{(p-1)!} V^{\mu} \omega_{\mu \mu_{2} \cdots \mu_{p}} d x^{\mu_{2}} \wedge \cdots \wedge d x^{\mu_{p}} \\
& =\sum_{s=1}^{p} V^{\mu_{s}} \omega_{\mu_{1} \cdots \mu_{s} \cdots \mu_{p}} d x^{\mu_{1}} \wedge \cdots d x^{\mu_{s-1}} \wedge d x^{\mu_{s+1}} \wedge \cdots \wedge d x^{\mu_{p}} .
\end{aligned}
$$

One can relate d, i_{V} and \mathcal{L}_{V} acting on differential forms:

$$
\begin{equation*}
\mathcal{L}_{V}=d i_{V}+i_{V} d . \tag{3}
\end{equation*}
$$

Problem 2: Properties of the interior product

Let X be vector field on $M, \omega \in \Lambda^{r}(M)$ and $\eta \in \Lambda^{s}(M)$.
a. Show that i_{X} is an antiderivation: $i_{X}(\omega \wedge \eta)=i_{X} \omega \wedge \eta+(-1)^{r} \omega \wedge i_{X} \eta$.
b. Show that i_{X} is nilpotent, $i_{X}^{2}=0$, and use this to show $\mathcal{L}_{X} i_{X} \omega=i_{X} \mathcal{L}_{X} \omega$.
c. Show that

$$
\left(\mathcal{L}_{X} \omega\right)\left(V_{1}, \ldots, V_{r}\right)=X\left[\omega\left(V_{1}, \ldots, V_{r}\right)\right]-\sum_{i=1}^{r}(-1)^{i+1} \omega\left(\left[X, V_{i}\right], V_{1}, \ldots, V_{i-1}, V_{i+1}, \ldots, V_{r}\right)
$$

d. Let X, Y be vector fields on M. Show that $\left[\mathcal{L}_{X}, i_{Y}\right] \omega=i_{[X, Y]} \omega$.

