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Homework 3: Lie derivatives and interior products

Given a particular vector field on a manifold, we can define two more operations. The Lie
derivative is a generalization of the directional derivative of a function to a derivative of
a tensor field “along” the given vector field. The interior product, or contraction, is an
operation that maps p-forms to (p — 1)-forms by “contracting” with the given vector field.

Flows and Lie derivatives (Nakahara, section 5.3)

Let V be a vector field in a manifold M. A curve z(t) whose tangent vector is V|, i.e.,
da*(t)/dt = V*(x(t)), is called the integral curve of V.

Let o(t,x¢) be an integral curve of V which passes through =g € M at t = 0, i.e.,
do*(t,zo)/dt = VF(o(t,z0)) and o#(0,29) = zf. The map 0 : R x M — M is called
the flow generated by V. Here t can be thought of as “time”: start at the point zy and then
“flow” with V.

At fixed t, o(t,zg) is a diffeomorphism oy : M — M. For infinitesimal ¢t = €, o, : 2* —
x# + eVH(x). The vector field V' is the generator of the transformation o..

Consider a second vector field U. We would like to know the rate of change of the vector
field U along the flow generated by the vector field V. We should therefore compare U,
with U|g/—s, (z), Or more precisely with the push-forward of this quantity by o_..

Def. The Lie derivative of a vector field U along the flow o of a vector field V is
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In local coordinates U, = U#(z) 4, and we get (check!)

LoU = (VRO,U” — U9, V")~

oxv
This can also be expressed as
LVU = [V7 U] ) (1)
where the RHS is the Lie bracket, defined by
V.ULf = VIULS] = UV (2)

The Lie derivative of a dual vector field (one form) w along a vector field V' is similarly
defined (using the pull-back) as

.1 *
ﬁvw = 11_{%2 [(Ue) W|o€(x) - W’:p] ’

and in local coordinates
Lyw = (VFO,w, + w,0, V) dz".



The Lie derivative of a function f along V' is the usual directional derivative

Lof = VIfl = Vi)l

Oxr
For a general tensor field the Lie derivative satisfies
Ly(ty+1t2) = Ly(t) + Ly(tse)
Ly(ti®@ty) = (Lyt1) @ta+11 @ (Lyty).
Problem 1: Properties of the Lie bracket

Show that the Lie bracket satisfies the following properties.
a. Jacobi identity: [[X,Y], Z]+ [[Z, X, Y]+ [[Y, Z], X] =0.

b. XY are vector fields in M, w is a p-form and g is a function in M. Show that

LoxY = glX,Y]=Y[g]X
Lx(gY) = glX, Y]+ X[glY
[ﬁx,ﬁy]w = £[X,y}w.

The interior product (Nakahara, section 5.4.3)
The interior product, or contraction, maps p-forms to (p — 1)-forms
i+ AP(M) — A (M),
where V' € T,M, and is defined for w € A?(M) by
(tyw)V1,..., Vo) =w(V, Vi, .., V).
In terms of local coordinates V' = V“%, W= Wyy ooyt A+ Adxte; and
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One can relate d, i,y and Ly acting on differential forms:
Ly =diy +iyd.

Problem 2: Properties of the interior product

Let X be vector field on M, w € A"(M) and n € A*(M).

a. Show that iy is an antiderivation: ix(w A n) = ixw An+ (—1)"w Aixn.
b. Show that ix is nilpotent, % = 0, and use this to show Lyiyw = ixLxw.
c. Show that

T

(Lxw)(Vis-- s Ve) = Xw(Vi, o Vo)l = S0 (=D (X, Vi) Vi Vi, Vi, -

=1

d. Let X,Y be vector fields on M. Show that [Lx,iy]w = ipxyw.



