Geometric Methods in Physics October 29, 2014
Prof. Oren Bergman Due: Sunday, Nov. 9, 2014

Homework 1: Fundametal groups of Polyhedra

In this exercise you will learn a more systematic way of computing the fundamental group
of topological spaces using triangulations (Nakahara, Sec. 4.4).

Triangulations

A triangulation of a topological space X is a polyhedron which is homeomorphic to X, and
which is constructed using triangles and their analogs in other dimensions (“simplexes”).
Thus, a 0-simplex is a point (pg), a 1-simplex is a line segment (pop;), a 2-simplex is a filled
triangle (pop1p2), a 3-simplex is a filled tetrahedron (pop1paps), etc. We define a g-face to be a
g-sub-simplex of an r-simplex, for example (p1pap3) is a 2-face of the 3-simplex (pop1pap3). A
“simplicial complex” K is a finite set of simplexes (in R™) which are “nicely fitted together”,
namely

1. Any face of any simplex of K belongs to K.
2. For any pair of simplexes of K, their intersection is either empty or a face of both.

The set K defines a polyhedron |K| C R™ as the union of all the simplexes of K. The
dimension of | K| is the highest simplex dimension in K. For example, Fig. a below shows
a triangulation of the cylinder. Fig. b, on the other hand, is not a legal triangulation, since

(pop1p2) N (p2p3po) = (po) U (pa), which is neither empty nor a simplex.
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Free groups
A subset X = {z;} of a group G is called a free set of generators of G if any g € G — {e}

is uniquely expressed as g = :rzf :16%2 -l (i € Z — {0}). We assume that no adjacent x;
are equal (if they are, you must reduce to a form where they’re not). If G has a free set
of generators it is a free group. Conversely, given a set X, we can construct a free group G
whose free set of generators is X.

A general group G is specified by the generators and constraints on the generators,
which take the form r = x?l x?’z . 9327; = 1. These are called relations. The combination
(X1,...,@p 111, ...,17,) is called the presentation of G. For example, the group Z is generated
by a single element x with no relations, so Z = (z,0). The cyclic group of order n, Z,, is

generated by a single element z with the relation 2™ = 1, so Z,, = (x : ™). Another example



is Z®Z = {«"y"|n,m € Z}. This is a free abelian group generated by X = {x,y}, so
1y = yz, or equivalently zyx~'y~! = 1. Thus the presentation is Z ® Z = (z,y : zyx~'y~1)

The edge group of a polyhedron

An element of the fundamental group of a topological space X can be represented by loops
in X. Therefore we expect similar loops in the triangulation |K|, which are made up of
1-simplexes, to generate a group isomorphic to the fundamental group of X. This is called
the edge group of the polyhedron |K|. We will first define the edge group, and then introduce
a convenient way of computing it for any polyhedron.

An edge path is a sequence vgv; - - - vy, of vertices of a polyhedron | K|, where v;v;,; is either
a 0-simplex (if v; = v;41) or a 1-simplex. An edge loop is an edge path with vy = vx(=v). We
classify these loops into equivalence classes according to an equivalence relation. Two edge
loops a and 3 are equivalent if one is obtained from the other by repeating the following
operations a finite number of times:

1. If the vertices u, v, w span a 2-simplex in K, the edge path uvw may be replaced by
uww and vice-versa.

2. As a special case, if u = w in (1), the edge path uvu may be replaced by a 0-simplex
u and vice-versa.

Denote the equivalence class of edge loops at v, to which vvy - - - v _1v belongs by {vvy - - - v _qv}.
The set of equivalence classes forms a group under the product operation {vuy - - up_1v} *
{vvy - -v_v} = {vug - up_qvvy - -y_v}. The unit element is {v}, and the inverse of
{vvg -+~ vg_1v} is {vvg_q1 - - - vyv}. This group is called the edge group of K at v, denoted by
E(K;v). Theorem: E(K;v) = m(|K|;v).

Computing the edge group

To compute E(K;v), and therefore m(X), we need to find the generators and relations.
Here’s the recipe:

1. Find a triangulation f : |K| — X.

2. Find a subcomplex L of K that is arcwise connected, simply connected and contains all
the vertices of K. (Since L is simply connected, the edge loops in |L| do not contribute
to E(K;v). Therefore we can effectively ignore the simplexes in L in our calculations.)

3. Assign a generator g;; to each 1-simplex (v;v;) of K — L, for which ¢ < j. (The inverse
is given by gi_j1 = gji.)

4. Impose a relation g;;g;x = g if there is a 2-simplex (v;v;v5) such that i < j < k. If
two of the vertices v;, v; and v form a l-simplex of L, the corresponding generator
should be set equal to 1.

5. The group generated by {g;;} with the above relations is the edge group E(K;v).

If K is arcwise connected, an L satisfying the conditions of 2 can always be constructed
as the maximal tree of K. A tree is a 1-dimensional simplicial complex that is arcwise and
simply connected. It is a mazimal tree of K if it is not a subset of other trees of K.



Example 1

K = {v1,v9,v3, (v102), (v1v3), (vov3)} is a simplicial complex of a circle S*. A maximal tree
is given by L = {v1,vq, v3, (v109), (v1v3) }. There is only one generator go3, and there are no
relations since there are no 2-simplexes in K. Hence m;(S') & (go3 : 0) X Z.

Example 2

An n-bouquet is defined by the one-point union of n circles. For example, Fig. (a) below is a
triangulation of a 3-bouquet. Fig. (b) is the maximal tree. There are three generators g2, g4,
and gs6, and no relations. The fundamental group is therefore 7 (3-bouquet) = (z,y, z : 0).
Note that this is a free, but not Abeilan-free group. Consider two loops at v encircling
different holes: o = vvyv v and 8 = vogvzv. The product a* 3x a~! cannot be continuously
deformed into 3, therefore [o] % [3] % [a] ™1 # 3], or equivalently [a]*[3] # [3] *[a]. In general
m(n-bouquet) = (xy,...,x, : 0).

vy vy 1 N

Exercise

Go over the other examples in Nakahara, including the torus 72 and the real projective plane
RP?, and then compute the fundamental groups of the Mobius strip and the Klein bottle.



