Homework 1: Fundametal groups of Polyhedra

In this exercise you will learn a more systematic way of computing the fundamental group of topological spaces using triangulations (Nakahara, Sec. 4.4).

Triangulations

A triangulation of a topological space X is a polyhedron which is homeomorphic to X, and which is constructed using triangles and their analogs in other dimensions ("simplexes"). Thus, a 0 -simplex is a point $\left\langle p_{0}\right\rangle$, a 1 -simplex is a line segment $\left\langle p_{0} p_{1}\right\rangle$, a 2 -simplex is a filled triangle $\left\langle p_{0} p_{1} p_{2}\right\rangle$, a 3 -simplex is a filled tetrahedron $\left\langle p_{0} p_{1} p_{2} p_{3}\right\rangle$, etc. We define a q-face to be a q-sub-simplex of an r-simplex, for example $\left\langle p_{1} p_{2} p_{3}\right\rangle$ is a 2 -face of the 3 -simplex $\left\langle p_{0} p_{1} p_{2} p_{3}\right\rangle$. A "simplicial complex" K is a finite set of simplexes (in \mathbb{R}^{m}) which are "nicely fitted together", namely

1. Any face of any simplex of K belongs to K.
2. For any pair of simplexes of K, their intersection is either empty or a face of both.

The set K defines a polyhedron $|K| \subset \mathbb{R}^{m}$ as the union of all the simplexes of K. The dimension of $|K|$ is the highest simplex dimension in K. For example, Fig. a below shows a triangulation of the cylinder. Fig. b, on the other hand, is not a legal triangulation, since $\left\langle p_{0} p_{1} p_{2}\right\rangle \cap\left\langle p_{2} p_{3} p_{0}\right\rangle=\left\langle p_{0}\right\rangle \cup\left\langle p_{2}\right\rangle$, which is neither empty nor a simplex.

Free groups

A subset $X=\left\{x_{j}\right\}$ of a group G is called a free set of generators of G if any $g \in G-\{e\}$ is uniquely expressed as $g=x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}\left(i_{k} \in \mathbb{Z}-\{0\}\right)$. We assume that no adjacent x_{j} are equal (if they are, you must reduce to a form where they're not). If G has a free set of generators it is a free group. Conversely, given a set X, we can construct a free group G whose free set of generators is X.

A general group G is specified by the generators and constraints on the generators, which take the form $r=x_{k_{1}}^{i_{1}} x_{k_{2}}^{i_{2}} \cdots x_{k_{n}}^{i_{n}}=1$. These are called relations. The combination $\left(x_{1}, \ldots, x_{p}: r_{1}, \ldots, r_{q}\right)$ is called the presentation of G. For example, the group \mathbb{Z} is generated by a single element x with no relations, so $\mathbb{Z}=(x, \emptyset)$. The cyclic group of order n, \mathbb{Z}_{n}, is generated by a single element x with the relation $x^{n}=1$, so $\mathbb{Z}_{n}=\left(x: x^{n}\right)$. Another example
is $\mathbb{Z} \oplus \mathbb{Z}=\left\{x^{n} y^{m} \mid n, m \in \mathbb{Z}\right\}$. This is a free abelian group generated by $X=\{x, y\}$, so $x y=y x$, or equivalently $x y x^{-1} y^{-1}=1$. Thus the presentation is $\mathbb{Z} \oplus \mathbb{Z}=\left(x, y: x y x^{-1} y^{-1}\right)$

The edge group of a polyhedron

An element of the fundamental group of a topological space X can be represented by loops in X. Therefore we expect similar loops in the triangulation $|K|$, which are made up of 1 -simplexes, to generate a group isomorphic to the fundamental group of X. This is called the edge group of the polyhedron $|K|$. We will first define the edge group, and then introduce a convenient way of computing it for any polyhedron.

An edge path is a sequence $v_{0} v_{1} \cdots v_{k}$ of vertices of a polyhedron $|K|$, where $v_{i} v_{i+1}$ is either a 0 -simplex (if $v_{i}=v_{i+1}$) or a 1 -simplex. An edge loop is an edge path with $v_{0}=v_{k}(=v)$. We classify these loops into equivalence classes according to an equivalence relation. Two edge loops α and β are equivalent if one is obtained from the other by repeating the following operations a finite number of times:

1. If the vertices u, v, w span a 2 -simplex in K, the edge path $u v w$ may be replaced by $u w$ and vice-versa.
2. As a special case, if $u=w$ in (1), the edge path $u v u$ may be replaced by a 0 -simplex u and vice-versa.

Denote the equivalence class of edge loops at v, to which $v v_{1} \cdots v_{k-1} v$ belongs by $\left\{v v_{1} \cdots v_{k-1} v\right\}$. The set of equivalence classes forms a group under the product operation $\left\{v u_{1} \cdots u_{k-1} v\right\}$ * $\left\{v v_{1} \cdots v_{l-1} v\right\}=\left\{v u_{1} \cdots u_{k-1} v v_{1} \cdots v_{l-1} v\right\}$. The unit element is $\{v\}$, and the inverse of $\left\{v v_{1} \cdots v_{k-1} v\right\}$ is $\left\{v v_{k-1} \cdots v_{1} v\right\}$. This group is called the edge group of K at v, denoted by $E(K ; v)$. Theorem: $E(K ; v) \cong \pi_{1}(|K| ; v)$.

Computing the edge group

To compute $E(K ; v)$, and therefore $\pi_{1}(X)$, we need to find the generators and relations. Here's the recipe:

1. Find a triangulation $f:|K| \rightarrow X$.
2. Find a subcomplex L of K that is arcwise connected, simply connected and contains all the vertices of K. (Since L is simply connected, the edge loops in $|L|$ do not contribute to $E(K ; v)$. Therefore we can effectively ignore the simplexes in L in our calculations.)
3. Assign a generator $g_{i j}$ to each 1-simplex $\left\langle v_{i} v_{j}\right\rangle$ of $K-L$, for which $i<j$. (The inverse is given by $g_{i j}^{-1}=g_{j i}$.)
4. Impose a relation $g_{i j} g_{j k}=g_{i k}$ if there is a 2 -simplex $\left\langle v_{i} v_{j} v_{k}\right\rangle$ such that $i<j<k$. If two of the vertices v_{i}, v_{j} and v_{k} form a 1 -simplex of L, the corresponding generator should be set equal to 1 .
5. The group generated by $\left\{g_{i j}\right\}$ with the above relations is the edge group $E(K ; v)$.

If K is arcwise connected, an L satisfying the conditions of 2 can always be constructed as the maximal tree of K. A tree is a 1-dimensional simplicial complex that is arcwise and simply connected. It is a maximal tree of K if it is not a subset of other trees of K.

Example 1

$K=\left\{v_{1}, v_{2}, v_{3},\left\langle v_{1} v_{2}\right\rangle,\left\langle v_{1} v_{3}\right\rangle,\left\langle v_{2} v_{3}\right\rangle\right\}$ is a simplicial complex of a circle S^{1}. A maximal tree is given by $L=\left\{v_{1}, v_{2}, v_{3},\left\langle v_{1} v_{2}\right\rangle,\left\langle v_{1} v_{3}\right\rangle\right\}$. There is only one generator g_{23}, and there are no relations since there are no 2 -simplexes in K. Hence $\pi_{1}\left(S^{1}\right) \cong\left(g_{23}: \emptyset\right) \cong \mathbb{Z}$.

Example 2

An n-bouquet is defined by the one-point union of n circles. For example, Fig. (a) below is a triangulation of a 3-bouquet. Fig. (b) is the maximal tree. There are three generators g_{12}, g_{34}, and g_{56}, and no relations. The fundamental group is therefore $\pi_{1}(3$-bouquet $) \cong(x, y, z: \emptyset)$. Note that this is a free, but not Abeilan-free group. Consider two loops at v encircling different holes: $\alpha=v v_{2} v_{1} v$ and $\beta=v v_{4} v_{3} v$. The product $\alpha * \beta * \alpha^{-1}$ cannot be continuously deformed into β, therefore $[\alpha] *[\beta] *[\alpha]^{-1} \neq[\beta]$, or equivalently $[\alpha] *[\beta] \neq[\beta] *[\alpha]$. In general $\pi_{1}(n$-bouquet $) \cong\left(x_{1}, \ldots, x_{n}: \emptyset\right)$.

Exercise

Go over the other examples in Nakahara, including the torus T^{2} and the real projective plane $\mathbb{R} P^{2}$, and then compute the fundamental groups of the Möbius strip and the Klein bottle.

