120. Anneaux $\mathbb{Z}/n\mathbb{Z}$. Applications.

1 Le groupe $\mathbb{Z}/n\mathbb{Z}$

1.1 Étude algébrique

Définition 1. Soient $n \in \mathbb{N}^*, x, y \in \mathbb{Z}$. On dit qu'ils sont congrus modulo n si $x - y \in n\mathbb{Z}$, et on note $x \equiv y[n]$.

Proposition 2. $n\mathbb{Z}$ est un sous-groupe de \mathbb{Z} , distingué car \mathbb{Z} abélien, c'est donc un groupe.

Exemple 3. $\mathbb{Z}/2\mathbb{Z} = \{\overline{0}, \overline{1}\}\$ où $\overline{0}$ est la classe des entiers pairs et $\overline{1}$ la classe des entiers impairs.

Théorème 4. À isomorphisme près, $\mathbb{Z}/n\mathbb{Z}$ est le seul groupe cyclique d'ordre n.

Proposition 5. Pour tout d diviseur de n, $\mathbb{Z}/n\mathbb{Z}$ possède un unique sous-groupe d'ordre d, engendré par $(\frac{n}{d})$.

Exemple 6. Le sous-groupe d'ordre 2 de $\mathbb{Z}/4\mathbb{Z}$ est $2\mathbb{Z}/4\mathbb{Z} = \{\overline{0}, \overline{2}\}.$

Définition 7. Pour $n \in \mathbb{N}^*$, on appelle indicatrice d'Euler de n, et on note $\varphi(n)$, le nombre de générateurs de $\mathbb{Z}/n\mathbb{Z}$.

Proposition 8. Pour tout $\overline{k} \in \mathbb{Z}/n\mathbb{Z}$, \overline{k} engendre $\mathbb{Z}/n\mathbb{Z}$ si et seulement si $k \wedge n = 1$.

Application 9. Si p premier, $\varphi(p) = p - 1$ et $\varphi(p^{\alpha}) = p^{\alpha - 1}(p - 1)$.

Exemple 10. Les générateurs de $\mathbb{Z}/6\mathbb{Z}$ sont $\overline{1}, \overline{5}$, et $\varphi(6) = 2$.

Proposition 11. Pour tout $n \in \mathbb{N}^*$, on a $n = \sum_{d|n} \varphi(d)$.

Proposition 12. If y a exactement $n \wedge m$ morphismes de $\mathbb{Z}/n\mathbb{Z}$ dans $\mathbb{Z}/m\mathbb{Z}$.

1.2 Produits directs

Théorème 13 (chinois). Soient $m, n \in \mathbb{N}^*$. $\mathbb{Z}/mn\mathbb{Z}$ est isomorphe à $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ si et seulement si $m \wedge n = 1$.

Théorème 14. Soit G un groupe abélien fini.

Alors il existe une unique suite d'entiers naturels d_1, \dots, d_k tels que G soit isomorphe à $\mathbb{Z}/d_1\mathbb{Z} \times \dots \times \mathbb{Z}/d_k\mathbb{Z}$ et $\forall i \in [1, k-1], d_i | d_{i+1}$.

Exemple 15. $\mathbb{Z}/36\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z}$ est isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$.

Application 16. À isomorphisme près, il existe 5 groupes abéliens d'ordre 48.

2 L'anneau $\mathbb{Z}/n\mathbb{Z}$

Proposition 17. $n\mathbb{Z}$ est un idéal de \mathbb{Z} , $\mathbb{Z}/n\mathbb{Z}$ possède donc une structure d'anneau quotient. L'isomorphisme de groupes donné par le lemme chinois est en fait un isomorphisme d'anneaux.

2.1 Éléments inversibles

Proposition 18. \overline{k} est inversible dans $\mathbb{Z}/n\mathbb{Z}$ si et seulement si $k \wedge n = 1$.

Corollaire 19. On a $|(\mathbb{Z}/n\mathbb{Z})^*| = \varphi(n)$.

Théorème 20 (Euler). On a, pour tout $a \in \mathbb{Z}$, $a^{\varphi(n)} \equiv 1[n]$.

Corollaire 21 (Fermat). Si p nombre premier, pour tout $a \in \mathbb{Z}, a^p \equiv a[p]$.

Contre-exemple 22. Nombres de Carmichael.

Application 23 (Cryptage RSA). Soient p,q deux nombres premiers distincts. Soit n=pq, soient c,d tels que $cd\equiv 1[\varphi(n)]$. Les applications $\mathbb{Z}/n\mathbb{Z}\to\mathbb{Z}/n\mathbb{Z}$ définies par $c:\overline{x}\mapsto \overline{x}^c$ et $d:\overline{x}\mapsto \overline{x}^d$ sont respectivement appelées fonction de chiffrement et de déchiffrement. On a $c\circ d=d\circ c=\mathrm{Id}_{\mathbb{Z}/n\mathbb{Z}}$. On peut ainsi transmettre des messages cryptés à l'aide de la clé publique (n,c) et de la clé privée d.

Proposition 24. Si $p \geq 3$ premier, alors $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^*$ est isomorphe à $\mathbb{Z}/p^{\alpha-1}(p-1)\mathbb{Z}$. Si $\alpha \geq 3$, $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^*$ est isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{\alpha-2}\mathbb{Z}$.

Proposition 25. Pour tout $n \in \mathbb{N}^*$, $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ et $(\mathbb{Z}/n\mathbb{Z})^*$ sont isomorphes.

2.2 Éléments nilpotents et idempotents

Proposition 26. Soit $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \in \mathbb{N}$. $\overline{x} \in \mathbb{Z}/n\mathbb{Z}$ est nilpotent si et seulement si $x \in p_1 \cdots p_r\mathbb{Z}$.

Proposition 27. $\overline{x} \in \mathbb{Z}/n\mathbb{Z}$ est idempotent si et seulement si, pour tout $i \in [1, r], x \equiv 0[p_i^{\alpha_i}]$ ou $x \equiv 1[p_i^{\alpha_i}]$.

Corollaire 28. Il y a donc exactement 2^r éléments idempotents.

Exemple 29. Les idempotents de $\mathbb{Z}/12\mathbb{Z}$ sont 0, 1, 4, 9.

Le corps $\mathbb{Z}/p\mathbb{Z}$

Généralités

Proposition 30. $\mathbb{Z}/p\mathbb{Z}$ est un corps si et seulement si p est premier. On le note alors \mathbb{F}_p .

Théorème 31 (Wilson). Soit $p \ge 2$. p est premier si et seulement si $(p-1)! \equiv -1[p]$.

Lemme 32. \mathbb{F}_p est de caractéristique p.

Application 33. Tout corps fini K de caractéristique p est un \mathbb{F}_p -espace vectoriel. Si on note r sa dimension, il est de cardinal $q = p^r$. Le groupe additif de K est alors isomorphe à $(\mathbb{Z}/p\mathbb{Z})^r$, et son groupe multiplicatif à $\mathbb{Z}/(p^r-1)\mathbb{Z}$.

Éléments carrés

Définition 34. Soit p nombre premier. Pour $a \in \mathbb{F}_p$, on définit le symbole de Legendre par $\left(\frac{a}{p}\right) = 0$ si a = 0, 1 si a est un carré dans \mathbb{F}_p^* et -1 sinon.

Proposition 35. On a, pour $a \in \mathbb{F}_p$, $\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}}$. En particulier, le symbole de Legendre est multiplicatif.

Corollaire 36. Il y a donc $\frac{p+1}{2}$ carrés dans \mathbb{F}_p .

Corollaire 37. –1 est un carré dans \mathbb{F}_p si et seulement si $p \equiv 1[4]$.

Théorème 38 (Frobenius-Zolotarev). Supposons $p \geq 3$, soit $u \in GL_n(\mathbb{F}_p)$. On a $\varepsilon(u) = \left(\frac{\det(u)}{n}\right).$

Théorème 39 (Réciprocité quadratique). Soient p,q nombres premiers impairs distincts. On a $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$.

Exemple 40. 65 est un carré dans \mathbb{F}_{29} .

Applications

Critères de divisibilité

Proposition 41. Soit
$$x = \sum_{j=0}^{k} a_j 10^j \in \mathbb{N}$$
. On a:

- $-x \equiv \alpha_0 + \dots + \alpha_k[3] \text{ et } x \equiv \alpha_0 + \dots + \alpha_k[9].$ $-x \equiv \alpha_0[2] \text{ et } x \equiv a_0[5].$ $-x \equiv \alpha_0 \alpha_1 + \dots + (-1)^k \alpha_k[11].$

4.2 Équations diophantiennes

Définition 42. On appelle équation diophantienne une équation de la forme $P(x_1,\dots,x_n)=0$, où $P\in\mathbb{Z}[X_1,\dots,X_n]$ et dont les solutions recherchées sont entières.

Proposition 43. Soient $a \geq 2, b \in \mathbb{Z}^*, c \in \mathbb{Z}$. L'équation diophantienne ax + by = cest équivalente à l'équation $b\overline{y} = \overline{c}$ dans $\mathbb{Z}/a\mathbb{Z}$. Cette équation a des solutions si et seulement si $a \wedge b = 1$ ou si $c \in (a \wedge b)\mathbb{Z}$.

Exemple 44. Les solutions de 522x+2214y=36 sont $\{(34+123k, -8-29k), k \in \mathbb{Z}\}.$

Proposition 45. $(x,y,z) \in (\mathbb{N}^*)^3$ est solution de $x^2 + y^2 = z^2$ si et seulement si il existe $d, u, v \in \mathbb{N}$ avec $u \wedge v = 1$ tels que (x, y, z) ou $(y, x, z) = (d(u^2 - v^2), 2duv, d(u^2 + v^2))$ $v^{2})).$

Application 46. Les équations diophantiennes $x^4 + y^4 = z^2$ et $x^4 + y^4 = z^4$ n'ont pas de solution non triviale.

Théorème 47. Soit $\Sigma = \{n \in \mathbb{N}, \exists (a,b) \in \mathbb{N}^2, n = a^2 + b^2\}$. Soit $p \geq 3$ premier. Alors $p \in \Sigma \Leftrightarrow p \equiv 1 \mod 4$.

Corollaire 48. Soit $n \geq 2$, de décomposition en facteurs premiers $n = \prod p^{v_p(n)}$.

Alors $n \in \Sigma \Leftrightarrow v_p(n)$ pair pour tout $p \equiv 3 \mod 4$.

 $\mathbb{Q}[X]$, et dans $\mathbb{Z}[X]$ si son contenu est 1.

Irréductibilité des polynômes dans $\mathbb{Z}[X]$

Théorème 49 (Eisenstein). Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{Z}[X]$. S'il existe p premier tel que $p \nmid a_n$, $p|a_k$ pour tout $0 \le k \le n-1$ et $p^2 \nmid a_0$, alors P est irréductible dans

Théorème 50 (Réduction modulo p). Soit $P \in \mathbb{Z}[X]$, soit p premier, on note \overline{P} le polynôme obtenu en réduisant modulo p les coefficients de P. Si $\deg(\overline{P}) = \deg(P)$ et \overline{P} irréductible dans $\mathbb{F}_p[X]$, alors P irréductible dans $\mathbb{Q}[X]$.

Exemple 51. $3X^3 + 17X - 11$ est irréductible dans $\mathbb{Z}[X]$ et dans $\mathbb{Q}[X]$.

Contre-exemple 52. $X^4 + 1$ est réductible dans $\mathbb{F}_p[X]$ pour tout p premier, mais irréductible dans $\mathbb{Z}[X]$ et $\mathbb{Q}[X]$.

Définition 53. Soit
$$n \in \mathbb{N}^*$$
, soit $\omega = e^{2i\pi/n}$. On définit $\Phi_n = \prod_{\substack{k \le n \\ k \land n = 1}} (X - \omega^k)$.

Proposition 54. $\Phi_n \in \mathbb{Z}[X]$ est irréductible dans $\mathbb{Q}[X]$.

Développements

- Loi de réciprocité quadratique.
- Théorème des deux carrés.

Références

- [1] F. Combes, ALGÈBRE ET GÉOMÉTRIE, Bréal.
- [2] X. Gourdon, LES MATHS EN TÊTE ALGÈBRE, Ellipses.
- [3] D. Perrin, Cours d'Algèbre, Ellipses.