104. Groupes finis. Exemples et applications.

Introduction: La classification des groupes finis est aujourd'hui considérée comme achevée, mais la démonstration complète comporte des milliers de pages. On présente ici quelques grandes idées de la théorie des groupes finis.

1 Généralités

Soit G un groupe de cardinal fini.

1.1 Définitions et premières propriétés

Définition 1. Le cardinal de G est appelé ordre de G.

Définition 2. Si $g \in G$, on appelle ordre de g l'entier $n = \min\{k \in \mathbb{N}^*, g^k = e_G\}$. On note $n = \operatorname{ord}(g)$.

Théorème 3 (Lagrange). Soit H sous-groupe de G. Alors $|G| = |H| \cdot |G/H|$.

Corollaire 4. L'ordre d'un élément de G divise l'ordre de G.

Définition 5. G est dit d'exposant fini s'il existe $N \in \mathbb{N}$ tel que pour tout $g \in G, g^N = e$.

Proposition 6. Tout groupe fini est d'exposant fini.

Contre-exemple 7. $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ est d'exposant fini mais non fini.

Théorème 8 (Burnside). Tout sous-groupe de $GL_n(\mathbb{C})$ d'exposant fini est fini.

1.2 Actions de groupes finis

On suppose que G agit sur un ensemble X fini. Pour $x \in X$, on notera $\mathrm{Orb}(x)$ son orbite et $\mathrm{Stab}(x)$ son stabilisateur.

Théorème 9 (Formule des classes). Pour tout $x \in X$, $|\operatorname{Orb}(x)| = \frac{|G|}{|\operatorname{Stab}(x)|}$. En particulier, si $\Omega \subseteq X$ contient un unique représentant de chaque orbite, alors

 $|X| = \sum_{x \in \Omega} \frac{|G|}{|\operatorname{Stab}(x)|}.$

Application 10. Si G est un p-groupe, son centre n'est pas trivial.

Définition 11. On appelle fixateur de $g \in G$ l'ensemble $Fix(g) = \{x \in X, g \cdot x = x\}.$

Théorème 12 (Formule de Burnside). Si G, X sont finis, le nombre d'orbites de l'action de G sur X est donné par $N = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|$.

Application 13. Si une roue de loterie est découpée en n secteurs, et qu'on dispose de p couleurs, le nombre de coloriages possibles est $\frac{1}{n}\sum_{d|n}\varphi\left(\frac{n}{d}\right)p^d$.

1.3 Exemples de groupes finis

Groupes cycliques

Définition 14. G est dit cyclique s'il est engendré par un élément.

Exemple 15. Pour tout $n \in \mathbb{N}$, $\mathbb{Z}/n\mathbb{Z}$ et \mathbb{U}_n sont cycliques.

Proposition 16. Les groupes cycliques et leurs produits directs sont abéliens.

Proposition 17. Tout groupe d'ordre premier est cyclique.

Groupes symétriques et alternés

Définition 18. Pour $n \in \mathbb{N}$, on appelle n-ème groupe symétrique le groupe S_n des permutations de [1, n].

Théorème 19 (Cayley). Si n = |G|, alors G est isomorphe à un sous-groupe de S_n .

Définition 20. On appelle k-cycle $(2 \le k \le n)$ une permutation c pour laquelle il existe $i_1, \dots, i_k \in \llbracket 1, n \rrbracket$ tels que $c(i_1) = i_2, \dots, c(i_{k-1}) = i_k, c(i_k) = i_1$. Un tel cycle est noté (i_1, i_2, \dots, i_k) , les autres éléments de $\llbracket 1, n \rrbracket$ étant fixés. Le support d'un cycle c est l'ensemble $\{i \in \llbracket 1, n \rrbracket, c(i) \ne i\}$. Un 2-cycle est appelé transposition.

Théorème 21. Tout $\sigma \in \mathcal{S}_n$ peut s'écrire de façon unique comme produit de cycles à supports disjoints, ou comme produits de transpositions (non unique).

Définition 22. Si $\sigma \in \mathcal{S}_n$, on définit sa signature par $\varepsilon(\sigma) = \prod_{1 \leq i < j \leq n} \frac{\sigma(i) - \sigma(j)}{i - j}$.

Proposition 23. ε est un morphisme de groupes de (S_n, \circ) dans $(\{-1, 1\}, \times)$.

Définition 24. Le noyau de ε est appelé groupe alterné, et noté A_n .

Groupes diédraux

Définition 25. Soit $n \in \mathbb{N}^*$. On appelle n-ème groupe diédral le groupe D_n des isométries conservant le polygone régulier à n sommets.

Proposition 26. D_n est constitué des n rotations de centre O et d'angle $\frac{2k\pi}{n}, k \in [0, n-1]$ et des n réflexions par rapport aux droites passant par O et d'angle $\frac{k\pi}{n}, k \in [0, n-1]$ avec l'axe horizontal.

Groupe quaternionique

Définition 27. On appelle groupe quaternionique le groupe $\mathbb{H}_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ dont la loi est donnée par $i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j.$

2 Classification des groupes finis

2.1 Groupes abéliens finis

Proposition 28. Pour $n \in \mathbb{N}$, $\mathbb{Z}/n\mathbb{Z}$ est l'unique groupe cyclique d'ordre n à isomorphisme près.

Théorème 29 (Lemme chinois). Soient $m, n \in \mathbb{N}^*$. Alors $\mathbb{Z}/mn\mathbb{Z}$ est isomorphe à $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$, si et seulement si, m et n sont premiers entre eux.

Application 30. L'ensemble des solutions de $\begin{cases} x \equiv 2[3] \\ x \equiv 4[5] \end{cases}$ est $\{14+15k, k \in \mathbb{Z}\}.$

Lemme 31. Si H sous-groupe distingué d'un groupe fini G, alors tout morphisme $H \to \mathbb{C}^*$ se prolonge en un morphisme $G \to \mathbb{C}^*$.

Théorème 32. Soit G un groupe abélien fini.

Alors il existe une unique suite d'entiers naturels d_1, \dots, d_k tels que G soit isomorphe à $\mathbb{Z}/d_1\mathbb{Z} \times \dots \times \mathbb{Z}/d_k\mathbb{Z}$ et $\forall i \in [\![1,k-1]\!], d_i|d_{i+1}$.

Exemple 33. $\mathbb{Z}/36\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z}$ est isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$.

Application 34. À isomorphisme près, il existe 5 groupes abéliens d'ordre 48.

2.2 Groupes non abéliens

Définition 35. Si G est un groupe d'ordre $p^k m$ avec p premier et $p \wedge m = 1$, on appelle p-Sylow de G tout sous-groupe d'ordre p^k .

Théorème 36 (Sylow). Soit p un nombre premier, soit G un groupe d'ordre multiple de p.

- 1. G possède un p-Sylow.
- 2. Tous les p-Sylow sont conjugués. En particulier, s'il n'existe qu'un seul p-Sylow, il est distingué dans G.

3. Si on note n_p le nombre de p-Sylow, $n_p \equiv 1[p]$ et p|m.

Application 37. Il n'existe pas de groupe simple d'ordre 30 ou 105.

Application 38. Pour $n \geq 5$, A_n est simple.

3 Représentations linéaires des groupes finis

3.1 Définitions et propriétés

Définition 39. Soit G un groupe. On appelle représentation linéaire de G la donnée d'un couple (ρ, V) où V est un \mathbb{C} -espace vectoriel et $\rho: G \to GL(V)$ morphisme de groupes. Si V est de dimension finie, sa dimension est appelée degré de la représentation.

Exemple 40.

- Le morphisme constant $1: G \to \mathbb{C}^*$ est une représentation de degré 1.
- Le groupe diédral s'identifie à un sous-groupe de $GL(\mathbb{R}^2)$: c'est la représentation standard, de degré 2.

Définition 41. On dit qu'un sous-espace W de V est stable par la représentation s'il est stable par tous les $\rho(g), g \in G$. La représentation est dite irréductible si ses seuls sous-espaces stables sont $\{0\}$ et V.

Définition 42. (ρ_1, V_1) et (ρ_2, V_2) sont dites équivalentes s'il existe $f: V_1 \to V_2$ isomorphisme tel que $\forall g \in G, \rho_2(g) = f \circ \rho_1(g) \circ f^{-1}$.

3.2 Caractères

Définition 43. On appelle caractère d'une représentation (ρ, V) l'application χ_{ρ} : $g \mapsto \operatorname{tr}(\rho(g))$.

On munit l'ensemble $\mathcal{F}(G)$ des fonctions de G dans \mathbb{C} du produit scalaire hermitien $\langle \varphi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \varphi(g) \overline{\psi(g)}.$

Théorème 44.

- Il y a autant de classes d'équivalence de représentations irréductibles que de classes de conjugaison de G.
- Les caractères irréductibles forment une base orthonormée de l'espace des fonctions $G \to \mathbb{C}$ constantes sur les classes de conjugaison.

Définition 45. On appelle table de caractères le tableau donnant la valeur de chaque caractère irréductible sur chaque classe de conjugaison.

Exemple 46. Table de caractères de S_4 .

Annexe

Classification des groupes de petit cardinal

Ordre	Classes d'isomorphisme	Nb classes
2	$\mathbb{Z}/2\mathbb{Z}$	1
3	$\mathbb{Z}/3\mathbb{Z}$	1
4	$\mathbb{Z}/4\mathbb{Z}, (\mathbb{Z}/2\mathbb{Z})^2$	2
5	$\mathbb{Z}/5\mathbb{Z}$	1
6	$\mathbb{Z}/6\mathbb{Z}, \mathcal{S}_3 \simeq D_3$	2
7	$\mathbb{Z}/7\mathbb{Z}$	1
8	$\mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, (\mathbb{Z}/2\mathbb{Z})^3, D_4, \mathbb{H}_8$	5
9	$\mathbb{Z}/9\mathbb{Z}, (\mathbb{Z}/3\mathbb{Z})^2$	2
10	$\mathbb{Z}/10\mathbb{Z}, D_5$	2

Développements

- Théorème de Burnside.
- Théorème de structure des groupes abéliens finis.
- Table de caractères de S_4 .

Références

- [1] F. Combes, ALGÈBRE ET GÉOMÉTRIE, Bréal.
- [2] J. Delcourt, Théorie des groupes, Dunod.
- [3] G. Rauch, Les groupes finis et leurs représentations, Ellipses.
- [4] A. Szpirglas et al., ALGÈBRE L3, Pearson.