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Abstract In this paper a model reduction approach

for elastic-viscoplastic evolution problems is considered.

Enhancement of the PGD reduced model by a new iter-

ative technique involving only elastic problems is inves-

tigated and allows to reduce CPU cost. The accuracy of

the solution and convergence properties are tested on

an academic example and a calculation time compari-

son with the commercial finite element code Abaqus is

presented in the case of an industrial structure.

Keywords PGD · LATIN method · elastic-

viscoplastic · model reduction

1 Introduction

Numerical simulation has been playing an increasingly

important role in science and engineering. However,

when dealing with high-fidelity models, the number of

degrees of freedom can lead to systems so large that di-

rect techniques are inapplicable. Model reduction tech-

niques constitute an efficient way to circumvent this

difficulty by seeking the solution of a problem in a

reduced-order basis (ROB), whose dimension is much

lower than the original vector space. A posteriori meth-

ods usually consist in defining this ROB by the decom-

position of the solution of a surrogate model relevant

to the initial model (see e.g. [2,12,17,10,3]). A priori

methods follow a different path by building progres-

sively an approximate separated representation of the
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solution, without assuming any basis (see e.g. [13,1,23,

15,19,6,25,16,7]).

This work focuses on the Proper Generalized De-

composition (PGD) which belongs to the second family

and is used herein to solve elastic-viscoplastic evolution

problems defined over the time-space domain. This type

of problems, especially when they involve a large num-

ber of time steps and degrees of freedom are particu-

larly CPU expensive [18]. To make these computations

affordable, the PGD, originally introduced as the “ra-

dial loading approximation” in [13], consists in seeking

a separated time-space representation of the unknowns

and the iterative LATIN method is used to generate

the approximation by successive enrichments [14]. At a

particular iteration, the ROB which has been already

formed is first used to compute a reduced-order model

(ROM) and find a new approximation of the solution.

If the quality of this approximation is not sufficient,

the ROB is enriched by determining a new functional

product using a greedy algorithm. The PGD has been

applied for solving many types of problems in the con-

text of the LATIN method and allowed to decrease

the CPU cost drastically. Elastic-viscoplastic problems

have already been solved with this method in [8,9] but,

since these works, more efficient algorithms have been

introduced to built the PGD approximation. These al-

gorithms (a review can be found in [21]) have only been

applied to visco-elasticity [22,15] and this paper demon-

strates their use in the elastic-viscoplastic case.

However, model reduction techniques are more par-

ticularly efficient when the ROM needs to be constructed

only once, which is not the case when dealing with non-

linear aspects. In that case, the various operators must

be updated along the iterations and the calculation of

the ROM and its inversion represents a large part of

the global CPU cost. This issue has been highlighted
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and some dedicated techniques proposed in the context

of a posteriori methods (eg. [20,5,4]).

This work focusses on a new technique which al-

lows, in the context of the PGD method, to avoid the

previous drawback by dealing only with the inversion of

the equilibrium equation, instead of the inversion of the

operator corresponding to the ROM. Taking advantage

of the time independence of the equilibrium equation,

the associated discrete problem can be assembled and

factorized only one time, which leads to significant de-

crease in CPU cost.

The present paper is organized as follows. The ref-

erence problem to be solved, the LATIN algorithm and

the introduction of the PGD for elastic-viscoplastic con-

stitutive formulation are presented in Section 2. Section

3 is focused on the new algorithm to determined the

PGD. A gain of 4 in term of CPU time is estimated

by the introduction of the new algorithm. In Section 4,

some properties of this new reduced model are studied.

The quality of the PGD obtained along LATIN itera-

tions is compared with a direct PGD of the solution

which is obtained at the convergence of the algorithm,

showing that this decomposition is of good quality. The

influence of the mesh refinement and the number of

time steps on the number of pairs in the decomposition

is shown. Our conclusion is that the PGD is linked to

the problem to be solved, not on the discretization, as

soon as the discretization is accurate enough to capture

all the physics. A comparison of the results and CPU

times obtained with our research software and the in-

dustrial code Abaqus is then presented, showing a gain

of 30% in favor of the method developed herein.

2 The reference problem and the LATIN

method

∂1Ω

∂2Ω

Ω

Fd

Ud

fd

Fig. 1 The reference problem in domain Ω

The reference problem is a quasi-static isothermal

evolution of a structure defined over the time-space do-

main I×Ω, with I = [0, T ] the interval of study, assum-

ing small perturbations. The structure is subjected to

prescribed body forces f
d
, to traction forces F d over

a part ∂2Ω of the boundary, and to prescribed dis-

placements Ud over the complementary part ∂1Ω (see

Fig. 1).

The state of the structure is defined by the set of

fields s(σσσ, ε̇εεp) (where the upper point denotes the deriva-

tive with respect to time), in which:

– εεεp designates the inelastic part of the strain field

εεε corresponding to displacement field U , with the

classic additive decomposition into an elastic part

εεεe and an inelastic part εεεp = εεε− εεεe;

– σσσ designates the Cauchy stress field.

All these quantities are defined over the time-space do-

main I ×Ω and assumed to be sufficiently regular.

2.1 Constitutive formulation

To fix the idea, we consider herein the case of a Chaboche’s

type elastic-visco-plastic formulation. The state equa-

tion of this formulation is

σσσ = Hεεεe (1)

where H is the Hooke’s operator, and the evolution

equation is

ε̇εεp = ṗ
3/2σσσD

J2(σσσ)
(2)

where ṗ = 〈(J2(σσσ)− σy)/K〉n+, with K, n and σy mate-

rial dependent scalars. SuperscriptD denotes the devia-

toric part of the tensor, and J2(σσσ) the Von-Mises equiv-

alent stress. The evolution equation is nonlinear and we

formally introduce operator B such as ε̇εεp = B(σσσ). Let

us define the space Γ of fields s such that (2) is fulfilled.

2.2 Admissibility conditions

Let us introduce the following spaces and the corre-

sponding vector spaces (with superscript ?):

– the space U of the kinematically admissible fields U
such that

U |t=0 = U0 and U = Ud on ∂1Ω (3)

– the spaceF of the statically admissible fields σσσ such

that ∀U? ∈ U?

−
∫
I×Ω

σσσ : εεε(U?) dΩ dt

+

∫
I×Ω

f
d
·U? dΩ dt+

∫
I×∂2Ω

F d ·U
? dS dt = 0

(4)
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– the space E of the kinematically admissible fields εεε

such that ∃U ∈ U , εεε = ∇symU that is, in a weak

form,

∀σσσ ∈ F?,

−
∫
I×Ω

σσσ? : εεε dΩ dt+

∫
I×∂1Ω

σσσ?n · Ud = 0 (5)

– the space Ad of the admissible fields s such that

(H−1σσσ + εεεp) ∈ E and σσσ ∈ F

2.3 Brief overview of the LATIN method

Solving such a nonlinear problem arises both difficulties

of satisfying the linear equilibrium of the structure and

solving the local nonlinear equations of the material

constitutive formulation. With the spaces introduced

before, the difficulty is to find the solution field s such

that s ∈ Ad ∩Γ . Usual nonlinear solvers are incremen-

tal in time. The LATIN method is non-incremental. It

is an iterative procedure which consists in finding al-

ternatively an approximation of the solution over the

entire time-space domain between the space Ad (linear

equations eventually global in space) and the space Γ

(local equations eventually nonlinear). More details can

be found in [14].

A local stage and a linear stage are defined in the

method as follows:

– knowing a linear solution s in Ad, the local stage

consist in finding a local solution ŝ in Γ such as a

local search direction (6) is fulfilled,

G( σ̂σσ − σσσ) + (ˆ̇εεεp − ε̇εεp) = 0 (6)

where G is an operator, parameter of the method;

– knowing a local solution ŝ in Γ , the linear stage

consist in finding a linear solution s in Ad such as

a linear search direction (7) is fulfilled,

A(σσσ − σ̂σσ)− ( ε̇εεp − ˆ̇εεεp) = 0 (7)

where A is an operator, parameter of the method.

The choice of G and A will be discussed later.

An iteration of the LATIN method is made of a lo-

cal stage and a linear stage. A simple initialization is

an elastic solution, which is in Ad.

An indicator of the quality of the solution can be cal-

culated at each iteration of the LATIN method as the

distance between the local solution and the linear one

ηLATIN =

∥∥∥ ˆ̇εεεp − ε̇εεp

∥∥∥∥∥∥ ˆ̇εεεp + ε̇εεp

∥∥∥ +
‖ σ̂σσ − σσσ‖
‖ σ̂σσ + σσσ‖

(8)

We made the following choice for the search direc-

tions, similar to the search directions in a Newton tan-

gent algorithm:

– the local search direction (which can be seen as a

local approximation of the Ad space) is defined by,

G =∞ ⇒ σ̂σσ = σσσ (9)

– the linear search direction (which can be seen as a

linear approximation of the Γ space) is defined at

each time-space point (t,M) by,

A(t,M) =
∂B

∂σσσ

∣∣∣∣
σσσ= σ̂σσ

=
∂ṗ

∂ σσσ
⊗ 3/2σσσD

J2(σσσ)

+ ṗ ·
3/2

(
J2(σσσ)I− 3/2 σσσ

D⊗σσσD

J2(σσσ)

)
J2(σσσ)2

(10)

where ∂ṗ
∂σσσ = n 〈(J2(σσσ)− σy)/K〉(n−1)+

3/2σσσD

J2(σσσ) . One

can notice that this operator evolves along LATIN

iterations.

2.4 PGD model reduction technique

At the linear stage of the LATIN method, a linear ap-

proximation of the elastic-viscoplastic problem is known.

The PGD technique can be introduced easily in this

context as the superposition principle is valid for linear

problems.

The unknowns are searched as sums of products

of time functions αi(t) and space functions (Ci(M),

Ep,i(M)), for example with m− 1 pairs,

σσσ(t,M) =

m−1∑
i=1

αi(t)Ci(M) (11a)

ε̇εεp(t,M) =

m−1∑
i=1

α̇i(t)Ep,i(M) (11b)

The interested reader can refer to [21] for a review

of the different algorithms to solve a linear problem

with the PGD. A progressive algorithm with update is

considered in our case, based on the minimization of

a constitutive error. The linear search direction (7) is

used to define the error.

Let first consider the case of the update of the time

functions, m−1 space functions (Ci,Ep,i) and time func-

tions αi being known, which corresponds to seek a bet-

ter approximation of the solution in the ROB which has
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been already built,

σσσ =

m−1∑
i=1

(αi +∆αi)Ci (12a)

ε̇εεp =

m−1∑
i=1

(α̇i +∆α̇i)Ep,i (12b)

Writing (7) as a minimization problem, one seeks

{∆αi}m−1i=1 such that,

{∆αi}m−1i=1 =

arg min
{∆αi}m−1

i=1 ∈H
m−1
1∥∥∥∥∥A

m−1∑
i=1

∆αiCi −
m−1∑
i=1

∆α̇iEp,i − �1

∥∥∥∥∥
M

(13)

where H1 is the space of continuous functions with

continuous first derivative, �1 = A
(
σ̂σσ−

∑m−1
i=1 αiCi

)
−(

ˆ̇εεεp−
∑m−1
i=1 α̇iEp,i

)
is known and ‖�‖M =

∫
I×Ω � :

M�dΩ dt.

The operator M, defining the norm, is chosen to be

A−1 to ensure a good convergence rate of the PGD.

The minimization problem (13) can be rewritten as a

multivariables differential equation, which can be solved

by using the algorithm presented in [15,24].

Knowing the correction of the time function, an in-

dicator of the quality of the approximation with the

PGD is defined,

ηPGD =

∥∥∥A∑m−1
i=1 ∆αiCi −

∑m−1
i=1 ∆α̇iEp,i − �1

∥∥∥
M

‖�1‖M
(14)

If this indicator exceeds a threshold value after the up-

date of the time functions (chosen equal to 0.95 after

our numerical studies) a new pair of functions is added.

The addition of a new pair (αm,Cm,Ep,m) corre-

sponds to an enrichment phase of the ROB,

σσσ =

m−1∑
i=1

(αi +∆αi)Ci + αmCm (15a)

ε̇εεp =

m−1∑
i=1

(α̇i +∆α̇i)Ep,i + α̇mEp,m (15b)

The new pair is built by solving,

(αm,Cm,Ep,m) =

arg min
αm∈H1

Cm∈F?

(HCm+Ep,m)∈E?

∥∥AαmCm − α̇mEp,m − �2

∥∥
M

(16)

where

�2 = A

(
σ̂σσ −

m−1∑
i=1

(αi +∆αi)Ci

)

−

(
ˆ̇εεεp −

m−1∑
i=1

(α̇i +∆α̇i)Ep,i

)
is known.

A fixed point algorithm is used to solve problem (16).

The algorithm is initialized with a random time func-

tion, then

– knowing the time function αm, the space functions

are searched as

(Cm,Ep,m) =

arg min
Cm∈F?

(HCm+Ep,m)∈E?

∥∥AαmCm − α̇mEp,m − �2

∥∥
M

(17)

whose resolution is detailed in the next section,

– knowing the space functions (Cm,Ep,m), the time

function is searched as

αm = arg min
αm∈H1

∥∥AαmCm − α̇mEp,m − �2

∥∥
M

(18)

which can be rewritten as a differential equation and

solved [15,24].

This algorithm converges quickly and in practice only

3 to 10 iterations are necessary to reach a stagnation of

the time function.

At each linear stage of LATIN iteration, we decided

to enrich the ROB by at most one vector. At the first

iteration, a new vector is generated, then for the next

iterations, an update of the time functions is first per-

formed and new vectors added only if necessary. The

way the PGD pairs are obtained could be called LATIN

progressive PGD.

The PGD of the solution obtained at the end of LATIN

iterations is not optimal for this last iteration as the

search direction A evolves along the iterations. This

point is detailed in section 4.1.

3 A new algorithm to find the space functions

A major difficulty in the fixed point method to deter-

mine a new pair of functions consists in ensuring the

static and kinematic admissibilities of the space func-

tions (17), which is mandatory to reuse the PGD pairs

along LATIN iterations.

Removing the subscript m for the sake of simplicity,

let us define e2 = ‖AαC− α̇Ep − �2‖M, which must

be minimized under the constrains that E ∈ E? and

C ∈ F?.
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3.1 Previous algorithm

The method proposed in previous works [15,24] con-

sisted in a fixed point algorithm. The space function

E associated to the total strain was introduced and e2

written as a function of E and C through the use of

the Hooke equation and the partition of strain Ep =

E−H−1C, e2 =
∥∥AαC+α̇H−1C−α̇E−�2

∥∥
M

.

The fixed point algorithm consisted in finding the

minimum of e2 ensuring alternatively the kinematic ad-

missibility and the static admissibility.

– E being known find C = arg min
C∈F?

e2(C,E), whose

resolution leads to one assembly of a finite elements

problem and one inversion the obtained rigidity ma-

trix after dualization.

– C being known find E = arg min
E∈E?

e2(C,E), whose

resolution leads to one assembly of a finite elements

problem and one inversion.

It is important to note that these minimization prob-

lems involve both the search direction A, which is up-

dated at each iterations of the LATIN to capture the

nonlinear behavior, and the time function α, which varies

during the iterations of the space-time fixed point algo-

rithm.

In that case no convergence property was proved

and after discretization numerous assemblies of matri-

ces must be performed, which induced a huge compu-

tational cost.

The calculation cost of this algorithm can be esti-

mated on an academic example. Let consider the exam-

ple of a plate with a hole with imposed displacement.

The symmetry conditions allow to consider only a eight

of the plate (Fig. 2). A 2 periods sinusoidal displace-

ment is prescribed.

ud

t

ud

normal
displacement
imposed

120s

Fig. 2 Boundary conditions

One can notice on Fig. 3 that the method converges

to the solution. LATIN indicator of 10−2 is reached in

34 iterations. 17 pairs of functions are generated dur-

ing these iterations. In 17 others iterations, the solution

is improved only through the update of the time func-

tions, i.e. by the use of the ROM.
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Number of iterations
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T

IN
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number of LATIN iterations

number of pairs

Fig. 3 LATIN indicator versus number of iterations and
number of functions, plate with a hole

Let now detailed the calculation cost of space func-

tion in the enrichment of the ROB with 17 pairs. The

number of pairs and the number of iterations in the

space-time fixed point (Eq. 17 and Eq. 18) determines

the number of space problems to be solved in total. 10

iterations in the time-space fixed point algorithm were

used in the case of the plate, witch makes a total of 170

space problems to be solved.

Two assemblies and factorizations, one for the kine-

matic problem and one for the static problem of the

linear systems are necessary at each space resolution

(170× 2 = 340). The number of inversions depends on

the number of iterations in the static-kinematic fixed

point, which was 10 in the example (340×10 = 3, 400).

Let us introduce a time unit (tu) as the time of one

iteration of a classic Newton tangent algorithm. Dur-

ing one iteration we evaluate the cost as follows 10% to

assemble the matrice associated to the finite elements

problem, 88% to factorize it and 2% to solve the lin-

ear system of equations. With this orders of magnitude

the total time dedicated to the space problem (Eq. 17)

with the old algorithm can be evaluated.

operation number unitary cost (tu) total (tu)

assembly 340 0.1 34

factorization 340 0.88 299.2

inversion 3, 400 0.02 68

total 401.2

A total of 401.2 time units are necessary to generate

the 17 spaces functions with this algorithm.

This number can be compared with a classic Newton

tangent algorithm. For 120 time steps and a mean of
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two iterations per time step, calculation cost is 2×120 =

240 time units, which is less than 401.2.

3.2 New algorithm

To avoid the drawbacks of previous algorithm we pro-

pose here a new algorithm that will be shown to involve

matrices that do not depend on the search direction and

the time function and then will decrease the computa-

tional cost. With the new algorithm, the solution of a

nonlinear problem is solved using only the discrete ma-

trices related to the same linear elastic problem, taking

advantage at the time independence of the equilibrium

equation.

Let us first remark that the plastic strain rate space

function Ep is the main unknown of the minimization

problem (17). Indeed, introducing the state law (1) in

the static admissibility condition of C (4) reads,

∀E? ∈ E?,
∫
Ω

H(E− Ep) : E?dΩ = 0 (19)

which allows to define an operator E and C such that

E = EEp and C = CEp (C = H(E − I)). The error

e2 is then only a function of Ep and the minimization

problem (17) consists in finding Ep such that,

Ep = arg min
Ep

‖AαCEp − α̇Ep − �2‖M (20)

E and C are obtained as a post-treatment by

E = EEp, (21)

C = CEp (22)

One can notice that the admissibility conditions E ∈ E?
and C ∈ F? are fulfilled by construction.

3.2.1 Residual problem

Minimization problem (20) is formally rewritten by in-

troducing an intermediate variable Z that only depends

on Ep, Z =
[
E− Ep Ep

]T
=

(
E− I

I

)
Ep. The error e2

is then,

e2 = 1/2

∫
Ω

Z
TQZdΩ +

∫
Ω

L
T
ZdΩ + a2/2 (23)

where , Q is a symmetric matrix and LT a linear form

and a a scalar (24), which are known quantities at this

stage,

Q =

∫
I

[
αAHMαAH −αAHMα̇

−αAHMα̇ α̇Mα̇

]
dt (24a)

L =

∫
I

[
−αAHM�2

α̇M�2

]
dt (24b)

a2/2 =

∫
I
�2M�2 dt (24c)

One can recognize a classic quadratic form in e2. The

stagnation of e2 with respect to Ep is found for,

∂e2

∂Ep
=
∂e2

∂Z

∂Z

∂Ep
= 0

⇐⇒
∫
Ω

(QZ + L)T
(

E− I

I

)
E
?
p dΩ = 0, ∀E?p (25)

Let us defined q =
∫
Ω

(QZ + L)T
(

E− I

I

)
E?p dΩ; split

into two integrals

q =

∫
Ω

(Q1Z + L1) : (E? − E
?
p) dΩ

+

∫
Ω

(Q2Z + L2) : E?p dΩ (26)

where Q1, L1 and Q2, L2 are respectively the first and

the second line of operators Q and L. In this expression,

the stagnation still bring in E?. Using the equilibrium,

it can be expressed only with E?p. Indeed, as the static

admissibility C? ∈ F? is enforced, ∀� ∈ E?,∫
Ω

C
? : �dΩ = 0⇔

∫
Ω

H(E? − E
?
p) : �dΩ = 0

⇔
∫
Ω

H� : E? dΩ =

∫
Ω

H� : E?p dΩ (27)

That means that any kinematically admissible to zero

field has the same virtual energy with respect to E? or

E?p when the Hooke operator is involved.

A particular � ∈ E? is chosen, such that ∀E? ∈ E?,∫
Ω

H� : E? dΩ +

∫
Ω

(Q1Z + L1) : E? dΩ = 0 (28)

The calculation of � is performed through a classic fi-

nite elements problem. By using (27), (28) is written

as, ∫
Ω

(Q1Z + L1) : E? dΩ = −
∫
Ω

H� : E?p dΩ (29)

This last equation enables to write q (26) only as a

function of E?p,

q =

∫
Ω

R(Z,�) : E?p dΩ (30)

where

R(Z,�) = −(Q1Z + L1)−H� + (Q2Z + L2) (31)

R(Z,�) is a residual, only function of Ep. The solu-

tion is found when R is equal to zero.
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3.2.2 Iterative procedure

We use an iterative procedure, similar to a conjugate

gradient algorithm, to find Ep such as e2 is minimum

(Algorithm 1).

This iterative procedure is initialized with Ep,0 = 0,

which gives through the equilibrium (19) that E0 = 0

and then Z0 =
[
0 0
]T

, with 0 the field with null value

at any point.

At iteration n, a correction Zn of Z is searched. One

must first determined the residual R with (31), where

� is calculated through problem (28), Z being known

from previous iteration,

Z =

n−1∑
j=0

Zj

Then a direction E′′p,n must be chosen,

E
′′
p,n = (Q22 −Q12)−1R (32)

The equilibrium (19) enables to determine E′′n asso-

ciated with this direction (33), with a finite element

method.

∀E? ∈ E?,
∫
Ω

H(E′′n − E
′′
p,n) : E?dΩ = 0 (33)

The direction Z′′n =
[
E′′n − E′′p,n E

′′
p,n

]
is then set or-

thogonal to previous iterations directions by a Graam-

Schmitt procedure to find Z′n such as{
Z′′n =

∑n−1
i=0 γiZ

′
i + Z′n∫

Ω
(QZ′j)

TZ′n dΩ = 0 ∀j < n
(34)

In practice orthogonalization with the direction of iter-

ation n − 1 is enough. With this search direction, one

searched the intensity of descent λ

Zn = λZ′n (35)

such as e2 is minimum. The new value of Z is

Z =

n−1∑
j=0

Zj + Zn

which gives an evolution of the error,

e2(Zn) = e2(λZ′n) =

1

2
λ2
∫
Ω

(QZ
′
n)TZ′n dΩ + λ

∫
Ω

L
T
Z
′
n dΩ (36)

The minimum of e2(λZ′n) is found for,

λ = −
∫
Ω
LTZ′n dΩ∫

Ω
(QZ′n)TZ′n dΩ

(37)

With this value of λ,

e2(Zn) = −1

2

(∫
Ω
LTZ′n dΩ

)2∫
Ω

(QZ′n)TZ′n dΩ
(38)

One can remarks that e2(Zn) is always negative, while

e2(Z) is always positive. The correction by Zn always

induces a diminution of e2(Z). Iterations of the algo-

rithm are stopped when e2(Zn)/ ‖�2‖M is less than a

threshold value. A value of 10−2 appears in the numer-

ical test to be small enough and is reached in average

in 10 iterations.

Algorithm 1: Space function determination

1 Initialization Ep,0 = 0

2 while e2(Zn)/ ‖�2‖M > 10−2 do
3 � (28) (FE problem)
4 Residual calculation R (31)
5 Descent direction E

′′
p,n (32)

6 Descent direction E
′′
n (33) (FE problem)

7 Graam-Schmitt Z′n (34)
8 Descent intensity λ (37)
9 Correction Zn = λZ′n

10 Update of Z← Z + Zn

11 Error evolution e2(Zn) (38)

12 end

3.2.3 Evaluation of the calculation cost

The calculation cost can be estimated on the academic

example with this new algorithm. The discrete matrix

associated to
∫
Ω

HE′′n : E? dΩ (33) and
∫
Ω

H� : E? dΩ

(28) is assembled and factorized only one time. The

number of inversions depend on the number of pairs,

the number of iterations in the time-space fixed point

algorithm and the number of iterations in the iterative

procedure of the space function algorithm (17 × 10 ×
10× 2 = 3, 400).

operation number unitary cost (tu) total (tu)

assembly 1 0.1 0.1

factorization 1 0.88 0.88

inversion 3, 400 0.02 68

total 68.98

The total number of time units is 68.98 which is around

6 times less than using the previous algorithm and 3.5

times less than using a Newton tangent algorithm. This

total is just an estimation of the calculation time with

the proposed algorithm, the real one is higher because

of all operations not taken into account.
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4 Some numerical properties of the PGD

Some properties of the PGD, as the fact that it is ob-

tained along LATIN iterations, the number of functions

depending on the mesh refinement or the time step size,

remain unclear. We tested the influence of these param-

eters on the number of generated functions and on the

computational time to reach a constant quality of solu-

tion.

4.1 LATIN PGD

The LATIN PGD consists in finding the pairs along the

iterations of the LATIN method. The linear problem on

which the PGD is build evolves along the iterations as

the PGD is introduced at the linear stage of the LATIN.

The LATIN PGD is then not optimal with respect to

the linear stage at the last LATIN iteration, which is

the best linear approximation of the problem. This fact

is highlighted by comparing the convergence rate of the

PGD with space functions generated along LATIN it-

erations or generated at the last iteration.

0 5 10 15
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10−1

100

Number of pairs

P
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ro
r

in
d

ic
a
to

r

space functions generated along LATIN iterations

space functions generated at last iteration

Fig. 4 Comparison PGD error versus number of pairs, when
approximating the last LATIN iteration with space functions
generated along LATIN iterations or generated at the last
iteration

One can remark on Fig. 4 that the convergence rate

of the LATIN PGD is less than the progressive PGD

for the first functions. For the last functions the con-

vergence rate is the same. This can be explained by

the fact that the tangent evolution law operator evolves

quickly in the first iterations of the LATIN method and

becomes constant in next iterations. Nevertheless the

number of pairs do not increases dramatically (16 us-

ing LATIN PGD compared to 14 using space function

generated at the last iteration).

4.2 Influence of mesh characteristic length and time

step

We compared the number of pairs to reach a LATIN

indicator of 10−2 when using different meshes and time

steps. One can observe on Fig. 5 that the number of

pairs does not evolve when increasing the number of

degrees of freedom. However, it depends on the number

of time steps until it reaches a plateau. This is related

to the influence of the time step on the calculation of

the evolution law of the constitutive relation.

Fig. 5 Number of pairs versus number and dofs and time
steps

4.3 Performance of the algorithm, comparison with

Abaqus

Model reduction techniques do not always allow to save

computational time. The calculation of the reduced model,

integral in time or space, can lead to be less efficient

than a direct method. The control of the error added

by the reduced model is also a critical point. To check

this, the LATIN method has been implemented in a

C++ code linked to standard library of linear algebra

in the code platform of the LMT-Cachan. Then the ef-

ficiency of the method is compared to the commercial

software Abaqus on an example on an example provided

with its documention. The elastic-viscoplastic consti-

tutive formulation is calculated in Abaqus through a

Umat generated by the Zmat program 1.

1 http://www.nwnumerics.com/Z-mat/
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The example considered herein is the upper part of

a vessel (Fig. 6) from the Abaqus documentation. The

symmetry conditions allow us to take a quarter of the

part. An internal pressure is imposed with a sinusoidal

variation in time (Fig. 6). The part is meshed with

160, 587 quadratic tetrahedrons (10 nodes), which leads

to 740, 097 degrees of freedom. An Euler implicit time

scheme is used with 60 time intervals.

symetry 

pressure

Fig. 6 Boundary conditions

100 iterations are necessary to reach a LATIN error

indicator of 10−2 (Fig. 7). 20 pairs of time and space

functions are generated, the quality of the solution is

improved only by an update of the time functions in

most of the iterations reuse of the ROB without en-

richment).

As shown in Table 1, calculation times obtained

with Abaqus and the LATIN program are similar. The

Abaqus calculation time is increased by the use of the

Zmat program, but the elastic-viscoplastic behavior law

is not present natively in this program.

Wallclock time (sec)
Abaqus + Zmat 12, 308
LATIN 8, 920

Table 1 Comparison of LATIN and Abaqus calculation
times

5 Conclusions

In this paper, we showed that it is possible to build

a reduced model with the PGD in the case of a non-

0 20 40 60 80 100
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number of LATIN iterations

number of pairs

Fig. 7 LATIN indicator versus number of iterations and
number of pairs, vessel head

linear constitutive law through the use of the LATIN

method, which allows to build a linear approximation

of the problem at each of its iterations on which the

PGD is computed easily.

We have presented a new algorithm for the cal-

culation of the ROB of the Proper Generalized De-

composition for the a priori construction of a sepa-

rated variable representation of the solution of time-

dependent problem, based on a minimum residual prob-

lem. This new algorithm is 6 times less computationally

expensive than fixed point techniques used in previous

works, as the discrete operator involved in the finite

element problems does not change along the LATIN

iterations, even if the solution of a problem with an

elastic-viscoplastic formulation is searched.

We have highlighted some properties of the reduced

model built along LATIN iterations. We checked the

quality of the PGD reduced model obtained along LATIN

iterations compared to a PGD performed on the best

linear approximation of the problem. We concluded that

the PGD model built along LATIN iterations is not op-

timal but of good quality as very few additional pairs

are generated in that case compared to the PGD per-

formed on the best linear approximation of the prob-

lem. On a simple academic example, we showed that the

number of pairs does not depend on the mesh size, and

depends on the number of time steps until convergence

of the time integration scheme.

We finally have illustrated the performances of the

LATIN method with this new algorithm on an example

of the Abaqus documentation, by comparing the calcu-

lation time obtained with the LATIN and with Abaqus
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in the case of an elastic-viscoplastic material formula-

tion. We obtained a gain of 30% in CPU time in favor

of the LATIN method.

This work shows that it is possible to generate a

good quality PGD reduced model associated to a design

configuration defined by a set of parameters (material

parameters, boundary conditions...). The next step is is

to deal with a parametric study and then to compute

the solution for several sets of parameters. For a new set

of parameters, the idea is to initialize the algorithm us-

ing the ROB already generated for the previous set. It is

quite inexpensive and generally sufficient if the two sets

of data are closed. The error indicators already defined

allow to know if the required quality is achieved and

to automatically enrich the approximation by adding

new functional products by performing new LATIN it-

erations if it is not the case. Using this strategy based

on the PGD reduced model, we can expect to dras-

tically reduce the computational time associated to a

parametric study [11].
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