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Abstract Machine translation systems are not reliable enough to be used “as is”:1

except for the most simple tasks, they can only be used to grasp the general mean-2

ing of a text or assist human translators. The purpose of confidence measures is3

to detect erroneous words or sentences produced by a machine translation system.4

In this article, after reviewing the mathematical foundations of confidence estimation,5

we propose a comparison of several state-of-the-art confidence measures, predictive6

parameters and classifiers. We also propose two original confidence measures based7

on Mutual Information and a method for automatically generating data for training8

and testing classifiers. We applied these techniques to data from the WMT campaign9

2008 and found that the best confidence measures yielded an Equal Error Rate of10

36.3% at word level and 34.2% at sentence level, but combining different measures11

reduced these rates to 35.0 and 29.0%, respectively. We also present the results of12

an experiment aimed at determining how helpful confidence measures are in a post-13

editing task. Preliminary results suggest that our system is not yet ready to efficiently14

help post-editors, but we now have both software and a protocol that we can apply to15

further experiments, and user feedback has indicated aspects which must be improved16

in order to increase the level of helpfulness of confidence measures.17
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Keywords Machine translation · Confidence measure · Translation evaluation ·18

Support vector machine · Mutual information · Partial least squares regression ·19

Logistic regression · Neural network20

1 Introduction21

A machine translation (MT) system generates the best translation for a given sentence22

according to a previously learnt or hard-coded model. However no model exists that is23

able to capture all the subtlety of natural language. Therefore, even the best MT sys-24

tems make mistakes, and always will; even experts make mistakes after all. Errors take25

a variety of forms: a word can be wrong, misplaced or missing. Whole translations can26

be utterly nonsensical or just slightly flawed: involving missing negation, grammatical27

error and so forth. Therefore, when a document is intended for publication, MT output28

cannot be used “as is”; at best, it can be used to help a human translator produce29

good-quality target-language output. A tool for detecting and pinpointing translation30

errors may ease their work as suggested, for example, in Ueffing and Ney (2005).31

Gandrabur and Foster (2003) suggest the use of confidence estimation in the context32

of translation prediction. Confidence estimates could benefit automatic post-editing33

systems like the one proposed in Simard et al. (2007), by selecting which sentences34

are to be post-edited. Even end-users using MT for grasping the overall meaning of a35

text may appreciate the highlighting of dubious words and sentences, thus preventing36

them from placing too much trust in potentially wrong translations.37

However, and maybe because of such high expectations, confidence estimation is a38

very difficult problem because if decisions are to be made based on these estimations39

(such as modifying a translation hypothesis), they need to be very accurate in order to40

maintain translation quality and avoid wasting the user’s time. Confidence estimation41

remains an active research field in numerous domains and much work remains to be42

done before they can be integrated into working systems.43

This article is an overview of many of today’s available predictive parameters for44

MT confidence estimation along with a few original predictive parameters of our own;45

we also evaluated different machine learning techniques—support vector machines,46

logistic regression, partial least squares regression and neural networks (Sect. 2)—to47

combine and optimise them. An exhaustive review would require a whole book, so this48

paper intends to give a more targeted overview of some of the most significant ideas49

in the domain. Blatz et al. (2004) proposed a review of many confidence measures for50

MT. We used this work as a starting point to then carry out a thorough formalisation51

of the confidence estimation problem and make two contributions to the field:52

– Original estimators based on Mutual Information and Part-Of-Speech tags53

(Sect. 6).54

– An algorithm to automatically generate annotated training data for correct/incor-55

rect classifiers (Sect. 4.3).56

We implemented techniques described in Siu and Gish (1999) for the evaluation57

of the performance of the proposed confidence measures. In Sects. 6.2 and 7.2, we58

show that using a combination of all predictive parameters yields an improvement of59

123

Journal: 10590-COAT Article No.: 9094 TYPESET DISK LE CP Disp.:2011/7/9 Pages: 34 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Detecting errors in machine-translated sentences

1.3 points absolute in terms of equal error rate over the best parameter used alone60

(Sect. 3.1).61

Finally, we present the results of a post-editing experiment in which we asked vol-62

unteers to correct sentences which had been automatically translated and measure their63

efficiency with and without confidence measures (Sect. 8). Unfortunately, the results64

suggested that this confidence estimation system was not yet ready to be included in a65

post-editing software tool. However, we provide a number of useful observations and66

indications about what is wrong with our system and what is really important for a67

user.68

1.1 Sentence-level confidence estimation69

We intuitively recognise a wrong translation that does not have the same meaning as70

the source sentence, or no meaning at all, or is too disfluent. State-of-the-art natural71

language processing software is still unable to grasp the meaning of a sentence or to72

assess its grammatical correctness or fluency, so we have to rely on lower level estima-73

tors. The problem is also ill-posed: sometimes one cannot decide what is the meaning74

of a sentence (especially without a context), let alone decide whether its translation75

is correct or not (a translation can be correct for one of the possible meanings of the76

source sentence and wrong for another). In our experiments we asked human judges77

to assign a numerical score to machine-translated sentences, ranging from one (hope-78

lessly bad translation) to five (perfect) as described in Sect. 4.1. We set the confidence79

estimation system to automatically detect sentences with scores of three or higher80

(disfluencies are considered acceptable, insofar as a reader is able to understand the81

correct meaning in a reasonable amount of time). To this end we computed simple82

numeric features (also called predictive parameters: Language Model (LM) score,83

length, etc., cf. Sect. 7) and combined them (Sect. 2).84

1.2 Word-level confidence estimation85

Defining the correctness of a word is even more tricky. Sometimes a translated word86

may not be appropriate in the context of the source sentence, as may be the case when87

homonyms are involved (for example if the French word vol, speaking of a plane, is88

translated with the English word theft instead of flight). In this case the error is obvious89

but sometimes the correctness of a word might depend on how other words around it90

are translated. Consider the following example:91

Ces mots sont presque synonymes →

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 : These words are almost

synonyms (correct)

2 : These words have close

meanings (correct)

3 : These words have close

synonyms(incorrect)

92

#3 is definitely an incorrect translation but then we have to decide which word is93

wrong: is it close, synonyms, have, or all of them? In the rest of the article we show94
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S. Raybaud et al.

how we trained classifiers to discriminate between correct and incorrect words, but this95

example shows that no system can ever achieve perfect classification simply because96

this does not exist.97

1.3 Mathematical formulation98

Let us now state the problem in mathematically sound terms: the goal of MT is to gen-99

erate a target sentence from a source sentence. A sentence is a finite sequence of words100

and punctuation marks, which are elements of the vocabulary set. The sentences are101

represented by random variables. We use the following conventions: a random var-102

iable will be represented by a capital letter and a realisation of the variable by the103

corresponding lower-case letter; bold letters are non-scalar values (sentences, vectors,104

matrices); non-bold letters are for scalar values like words and real numbers; cursive105

letters are sets.106

VS : Source-language vocabulary

VT : Target-language vocabulary

S ∈ V∗
S : Sentence in the source language

T ∈ V∗
T : Sentence in the target language

107

From these two primary random variables we then derive new variables:108

Len(S) ∈ N : Length of S (number of words)

Len(T) ∈ N : Length of S

Si ∈ VS : i-th word of S

T j ∈ VT : j-th word of T

109

When estimating confidence we are given realisations of these variables and then need110

to guess the values of:111

CS,T ∈ {0, 1} : correctness of a sentence T as a translation of S

CS,T, j ∈ {0, 1} : correctness of the j-th word of T
112

To this end the following probability distribution functions (PDFs) are required and113

need to be estimated:114

P(CS,T = 1|S, T) : the probability that T is a correct (1)115

translation of S116

P(CS,T, j = 1|S, T) : the probability of correctness of the j-th (2)117

word of T given that T is a translation of S118

As S and T may be any sentence, directly estimating these probabilities is impossi-119

ble. We therefore opted to map the pair (S, T) to a vector of ds numerical features120

(so-called predictive parameters described in Sect. 7.1) via the function xs. Similarly121

(S, T, j) were mapped to a numerical vector of dw features via xw (Sect. 6.1):122

xs : (S, T) ∈ V
∗
S × V

∗
T → xs(S, T) ∈ R

ds
123
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Detecting errors in machine-translated sentences

and:124

xw : (S, T, j) ∈ V
∗
S × V

∗
T × N → xw(S, T, j) ∈ R

dw
125

Such parameters may include, for example, the length of source and target sentences,126

the score given by a translation model or a language model, etc. The following PDFs127

are thus learnt (the left-hand parts are just notations) instead of Formulae 1 and 2:128

p(CS,T; S, T)
de f
= P(CS,T|xs(S, T)) (3)129

p(CS,T, j ; S, T, j)
de f
= P(CS,T, j |x

w(S, T, j)) (4)130

Note that although it does not explicitly appear in the notation, p depends on the131

function x, which will vary in different experiments, and will also not be the same132

on sentence- and word-levels. These distributions were to be learnt on large data133

sets (described in Sect. 4) by standard machine learning algorithms (Sect. 2) such as134

Support Vector Machines (Cortes and Vapnik 1995), Neural Networks (Fausett 1994),135

Logistic Regression (Menard 2002) or Partial Least Squares Regression (Tobias 1995).136

1.3.1 Classification137

After this training process the probability estimates (Formulae 3 and 4) could be used138

as confidence measures. It was then possible to compute a classification:139

ĉ : (T, S) → ĉ(T, S) ∈ {0, 1}140

or at word-level::141

ĉ : (T, S, j) → ĉ(T, S, j) ∈ {0, 1}142

In order to minimise the number of errors, classification needs to be performed143

according to:144

ĉ(T, S)
de f
= arg max

c∈{0,1}

p(c; S, T) (5)145

ĉ(T, S, j)
de f
= arg max

c∈{0,1}

p(c; S, T, j) (6)146

However, this is too strict and neither accounts for biased probability estimates nor147

permits the attribution of levels of importance to correct rejection or correct acceptance,148

i.e. correct detection of good translations versus correct detection of erroneous transla-149

tions (see performance estimation in Sect. 3). Therefore we introduced an acceptance150

threshold δ:151
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S. Raybaud et al.

ĉ(T, S; δ)
de f
=

{

1 if p(1; S, T) ≥ δ

0 otherwise
(7)152

ĉ(T, S, j; δ)
de f
=

{

1 if p(1; S, T, j) ≥ δ

0 otherwise
(8)153

If δ = 0.5, then formulae 7 and 8 are equivalent to 5 and 6. However, setting a154

higher δ may compensate for a positive bias in probability estimates (3) and (4) or155

penalise false acceptances more heavily, while setting a lower δ compensates for a156

negative bias or penalises false rejections more heavily.157

1.3.2 Bias158

Probability estimates of Formulae 3 and 4 are often biased. This generally does not159

harm classification performance for two reasons. Firstly, when the bias is uniform160

(p∗ = p̃ + b where b is constant), removing the bias is equivalent to setting an appro-161

priate acceptance threshold. Secondly and most importantly, these PDFs are learnt by162

minimising classification cost. It is, therefore, unsurprising that even if the probabili-163

ties are biased, and even if the bias is not uniform (p∗ = p̂ +b( p̂)), positive examples164

generally obtain a higher probability than negative ones.165

However, biased probability estimates can harm other performance metrics and in166

particular will definitely harm Normalised Mutual Information (Sect. 3) as shown in167

Siu and Gish (1999). We thus estimated bias on a separate corpus as explained in the168

paper of Siu et al. The interval [0, 1] was split into 1000 non-overlapping bins Bi of169

uniform width, and bias was estimated separately on each of them.170

∀i ∈ {1, . . . , 1000} · b(Bi ) =

∑

j | p̂ j ∈Bi

(

p̂ j − c∗
j

)

∑

j | p̂ j ∈Bi
1

(9)171

where p̂ j are the estimated probabilities of the correctness of items in the training set172

dedicated to bias estimation, and c∗
j their true classes. Then we obtained an unbiasing173

function:174

if p ∈ Bi : unbias(p) = p − b(Bi ) (10)175

If p̂ is the probability of correctness estimated by a confidence measure, we chose176

to use the unbiased estimation in our applications:177

p(1; S, T) = unbias( p̂)178

1.3.3 Sentence quality assessment179

Some applications do not require the classification of sentences as correct or incorrect,180

but rather the estimation of overall quality of the translation. This would ressemble181

BLEU score (Papineni et al. 2002) or Translation Edit Rate (Snover et al. 2006) only182

without using reference translations. In this case a quality metric is more suitable than183
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Detecting errors in machine-translated sentences

a correctness probability. In Sect. 7 we thus present a method for learning the PDF of184

Formula 3 which can also perform regression against quality scores. The training set185

for this task was:186

{(

xs(sn, tn); q∗
sn ,tn

)}

n=1...N
⊂ R

ds × R
+

187

where q∗
sn ,tn is a score relying on expert knowledge. This can be a human evalua-188

tion, or a metric computed by comparing the sentence to expert given references, like189

Word Error Rate, BLEU or Translation Edit Rate. The goal is to learn the mapping190

fΘ : R
ds → R

+ while minimising the mean quadratic error using regression tech-191

niques (e.g. linear regression, support vector regression, partial least squares regres-192

sion) where Θ is a set of parameters to be estimated by regression:193

1

N

N
∑

n=1

∣

∣ fΘ
(

xs(sn, tn)
)

− q∗
sn ,tn

∣

∣

2
(11)194

1.3.4 Training sets195

PDFs (Eqs. 3 and 4) and regression parameters Θ in Eq. 11 need to be learnt using196

large data sets. Such data sets consist of:197

– N source sentences s1, . . . , sN which are realisations of S.198

– The corresponding N automatically translated sentences t1, . . . , tN which are199

realisations of T.200

– Reference sentences classes and a quality metric201
((

c∗
s1,t1 , q∗

s1,t1

)

, . . . ,

(

c∗
sN ,tN , q∗

sN ,tN

))

n=1,...,N
∈

(

{0, 1} × R
+
)N

which are202

realisations of CS,T; they can be provided by human experts (Sect. 4.1) or auto-203

matically generated from human translations (Sect. 4.3 and 4.2).204

– Reference word classes205

∀n ∈ {1, . . . , N } ·
(

c∗
sn ,tn ,1, . . . , c∗

sn ,tn ,Len(t)

)

∈ {0, 1}Len(t) which are realisations206

of CS,T, j and also provided by human experts.207

2 Classification and regression techniques208

The problem of confidence estimation is now reduced to standard classification and209

regression problems. Many well-known machine learning approaches are available and210

we opted to experiment with often used techniques such as Support Vector Machines,211

Logistic Regression and Artificial Neural Networks, as well as with the less widely-212

known Partial Least Squares Regression.213

2.1 Logistic regression214

Here we wanted to predict the correctness C ∈ {0, 1} given a set of features X ∈ R
d ;215

to this end we needed to estimate the distribution P(C = 1|X). Logistic Regression216

(Menard 2002) consists of assuming that:217
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S. Raybaud et al.

P(C = 1|X) =
1

1 + e〈Θ,X〉+b
(12)218

for some Θ ∈ R
d and b ∈ R and then optimise Θ with regard to the maximum likeli-219

hood criterion on the training data. Logistic regression was used not only to combine220

several features but also to map the scores produced by a confidence estimator to a221

probability distribution.222

2.2 Support vector machines223

The well-known Support Vector Machines (SVMs) (Hsu et al. 2003) have highly224

desirable characteristics which made them well-suited to our problem. They are able225

to discriminate between two non-linearly separable classes; they can also compute226

the probability that a given sample belongs to one class (and not only a binary deci-227

sion), and they can also be used to perform regression against numerical scores (Smola228

and Schölkopf 2004). We used LibSVM (Chang and Lin 2011) for feature scaling,229

classification and regression.230

2.2.1 SVM for classification231

An SVM was trained to produce a probability of correctness. By doing so the accep-232

tance threshold could be adapted (Sect. 1.3 and Eqs. 7 and 8), making the classifier233

more flexible. The kernel used was a Radial Basis Function since it is simple and was234

reported in Zhang and Rudnicky (2001) as giving good results:235

Kγ (x(s, t, j), x(s′, t′, j ′)) = e−γ ‖x(s,t, j)−x(s′,t′, j ′)‖
2

236

2.2.2 SVM for quality evaluation237

The same kernel was used but this time to perform regression against sentence-level238

BLEU score (Papineni et al. 2002).239

2.2.3 Meta-parameters optimisation240

SVMs require two meta-parameters to be optimised: the γ parameter of the radial basis241

function, and the error cost C . γ and C were optimised by grid search on the devel-242

opment corpus with regard to equal error rate for classification, and mean quadratic243

error for regression.244

2.3 Neural networks245

The FANN toolkit (Fast Artificial Neural Network (Nissen 2003)) is used for build-246

ing feed-forward neural networks (NN). After experimenting on a development set247
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Detecting errors in machine-translated sentences

we decided to stick to the standard structure, namely one input layer with as many248

neurons as we have features, one hidden layer with half as many neurons, and an249

output layer made of a single neuron which returns a probability of correctness. The250

connection rate was 0.5 in order to keep computation time tractable. We stuck to the251

default sigmoid activation function. The weights were optimised by standard gradient252

back-propagation.253

2.4 Partial least squares regression254

Partial Least Squares Regression (Wold et al. 1984; Specia et al. 2009) is a multivariate255

data analysis technique that finds a bilinear relation between the observable variables256

(our features X and the response variables, namely the probability of correctness257

p(1; X) or the quality score). It works by projecting both predictors and observations258

on a linear subspace and performs least-squares regression in this space. It has the259

major advantage of being robust to correlated predictors.260

3 Evaluation of the classifiers261

Error rate is the most obvious metric for measuring the performance of a classi-262

fier. It is, however, not an appropriate metric because of its sensitivity to class priors263

(Kononenko and Bratko 1991; Siu and Gish 1999). Let us exemplify the problem and264

consider, for example, an MT system which gives roughly 15% of wrongly translated265

words. Now let us consider a confidence measure such that:266

∀s, t, j p0(1; s, t, j) = 1267

It makes no error on correct words (85% of total) but misclassifies all wrong words268

(15%). Its error rate is therefore 0 × 0.85 + 1 × 0.15 = 0.15. Now let us consider a269

second confidence measure p1(1; s, t, j) which correctly detects every wrong word270

(if the j-th word of t is wrong then p1(1; s, t, j) = 0) but also incorrectly assigns a271

null probability of correctness to 20% of the words that are appropriate translations.272

The error rate of this measure is: 0 × 0.15 + 0.20 × 0.85 = 0.17.273

p0 thus seems to outperform p1. This is, however, not true, because p0 does not274

provide the user with any useful information (or strictly speaking, no information at275

all), while if p0(1; s, t, j) > 0 then we would be certain that the word is correct. There276

is a lesson here. An appropriate metric for the usefulness of a confidence measure is not277

the number of misclassifications it makes but the amount of information it provides.278

This is why we opted to use Normalised Mutual Information (Siu and Gish 1999) to279

assess the performance of a measure (Sect. 3.2), along with Equal Error Rate (EER)280

and Discrimination Error Trade-off (DET) curves (Sect. 3.1). The latter is a powerful281

tool for the visualisation of the behaviour of a classifier with different acceptance282

thresholds and therefore different compromises between incorrect acceptances and283

incorrect rejections.284
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3.1 Discrimination error trade-off285

A classifier makes two kinds of mistakes: False acceptance (or ‘false positive’, also286

called a Type 1 error), when an erroneous item (word or sentence) is classified as287

correct, and False rejection (or ‘false negative’, also known as a Type 2 error) when a288

correct item is classified as incorrect. When evaluating the performance of a clas-289

sifier we know the predictions ĉ (Eqs. 7 and 8) and the actual realisations c∗ of290

the variables C. As stated above in Sect. 1.3, ĉ(t; s; δ) is the estimated correctness291

of translation t given the source sentence s with acceptance threshold δ, and c∗
s,t is292

the true (expert-given) correctness (Sect. 1.3.4). The sentence-level false acceptance293

rate is:294

e1(s, t; δ) =

{

1 if ĉ(t; s; δ) = 1 and c∗
s,t = 0

0 otherwise
(13)295

err1(δ) =

∑

s,t e1(s, t; δ)
∑

s,t

(

1 − c∗
s,t

) (14)296

err1 is thus the proportion of wrong items which are incorrectly accepted (
∑

s,t

(

1 − c∗
s,t

)

297

is the number of wrong items).298

The sentence-level false rejection rate is:299

e2(s, t; δ) =

{

1 if ĉ(t; s; δ) = 0 and c∗
s,t = 1

0 otherwise
(15)300

err2(δ) =

∑

s,t e2(s, t; δ)
∑

s,t c∗
s,t

(16)301

err2 is the proportion of correct items which are rejected by the classifier. Adapting302

these formulae to word-level is straightforward.303

Intuitively err1 is the proportion of erroneous words that the classifiers wrongly304

accept, while err2 is the proportion of correct words that the classifier wrongly rejects.305

A relaxed classifier has a low err2 and a high err1, while a strict one has a low err1306

and a high err2. Proof that err1 and err2 are insensitive to class priors was given in307

Siu and Gish (1999).308

When δ goes from 0 to 1, more and more items are rejected. Accordingly, the false309

rejection rate (err2) monotonically increases from 0 to 1, while the false acceptance310

rate (err1) monotonically decreases from 1 to 0. The plot of err1(δ) against err2(δ)311

is called the DET curve (Discrimination Error Trade-off), cf. examples in Sect. 6.312

A lower curve indicates a better classifier. All points of the DET curve should lie313

below the diagonal [(0, 1), (1, 0)], which is the theoretical curve of a classifier using314

features uncorrelated with correctness (that is, inappropriate features).315
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Detecting errors in machine-translated sentences

Both err1 and err2 are generally approximations of continuous functions.1 Thus a316

threshold δE E R exists such that:317

err1(δE R R) ≃ err2(δE E R) = E E R (17)318

EER is called the equal error rate. It can be seen as a ‘summary’ of the DET curve319

when the acceptance threshold is set so that there are the same proportions of Type320

1 and 2 errors, and can be used for direct comparisons between classifiers. However,321

this is arbitrary, as the user may prefer to have fewer errors of one type, at the cost of322

more of the other type.323

3.2 Normalised mutual information324

Normalised Mutual Information (NMI) measures the level of informativeness of a325

predictive parameter or a set thereof in an application-independent manner (Siu and326

Gish 1999). Intuitively NMI measures the reduction of entropy of the distribution of327

true class C over the set {“correct”,“incorrect”} when the value of the predictive328

parameter is known. Let x(S, T) be a vector of predictive parameters:329

N M I (C, x) =
I (C; x)

H(C)
=

H(C) − H(C |x)

H(C)
330

H(C) = −p∗log(p∗) − (1 − p∗)log(1 − p∗)331

(18)332

H(C |x) =

∫

v

⎛

⎝P(x(S, T) = v)333

×
∑

c∈{0,1}

P(C = c|x(S, T) = v)log(P(C = c|x(S, T) = v))

⎞

⎠ dv334

where I is mutual information, H is entropy and p∗ is the true prior probability of cor-335

rectness. Since the true distribution P(x(S, T)) is replaced with empirical frequencies336

observed in data, and P(C |x(S, T)) is replaced with the computed estimation:337

– Sentence-level NMI:338

H(C |x) ≃
1

N

∑

(s,t)∈S

(p(1; s, t)log(p(1; s, t))339

+(1 − p(1; s, t))log(1 − p(1; s, t))) (19)340

1 It actually depends on the true and estimated PDFs. When this is not the case, they will be approximated

by continuous functions.
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– Word-level NMI:341

H(C |x) ≃
1

Nw

∑

(s,t)∈S

Len(t)
∑

j=1

(p(1; s, t, j)log(p(1; s, t, j))342

+(1 − p(1; s, t, j))log(1 − p(1; s, t, j))) (20)343

H(C |x) can never be lower than 0 and equality is achieved when for all pairs of344

sentences (or all words within such sentence-pairs), p(cs,t; s, t) = 1, which means345

that the true class is predicted with no uncertainty. On the other hand H(C |x) can346

never be greater than H(C), and equality is achieved when the predictive parameters347

are completely useless. Thus M(x) is theoretically a real number between 0 and 1.348

However the approximation of H(C |x) can be negative in practice.349

4 Training and testing data350

Large data sets are needed to learn PDFs of Formulae 3 and 4. Ideally a human pro-351

fessional translator would read the output of an MT system and assign a label (correct352

or incorrect) to each item. This method would give us high-quality training data but353

would be extremely expensive. Thus it would be preferable to use automatic or semi-354

automatic methods for efficiently classifying words and sentences. In the following355

we will discuss different methods for obtaining labelled data.356

4.1 Expert-annotated corpora357

This is the high-quality-high-cost whereby human experts analyse translations pro-358

duced by an MT system and decide whether each word and sentence is correct or not.359

The classification depends on the application, but in our setting a word is classified as360

erroneous if it is an incorrect translation, if it suffers from a severe agreement error361

or if it is completely misplaced. A sentence is considered wrong if it is not clear that362

it has the same meaning as the sentence of which it is supposed to be a translation,363

or any meaning at all, or if it contains a significant level of ambiguity that was not364

apparent in the source sentence. This method has two major drawbacks. The first is365

that it is extremely slow and expensive, and the second is that it is not reproducible366

because a given sentence may be differently classified by different translators, or even367

by the same translator at different times.368

We needed a small corpus of real, expert-annotated machine-translated sentences369

for our test set. To this end we set up the statistical MT system described as the baseline370

for WMT08 evaluation campaign following the instructions on the StatMT website2: it371

features a 5-gram language model with Kneser-Ney discounting trained with SRILM372

(Stolcke 2002) on about 35 million running words, IBM-5 translation model trained373

on around 40 million words, and Moses (Koehn et al. 2007) is used as the decoder.374

A held-out set of 40,000 sentence pairs was extracted from data for the purpose of375

2 http://statmt.org/wmt08/baseline.html.
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Detecting errors in machine-translated sentences

training the confidence estimation system. We annotated a small set of 150 auto-376

matically translated sentences from transcriptions of news broadcast. Because of the377

spontaneous style of these sentences together with a vocabulary which did not match378

that of the training corpora (European Parliament), the BLEU score is not high (21.8379

with only one reference). However, most translations were intelligible when given380

some thought.381

A word was annotated as “incorrect” if it was completely irrelevant, very misplaced382

or grammatically flawed. Sentences were given scores ranging from one (hopelessly383

flawed) to five (perfect). For classification purposes we considered sentences scoring384

three or higher (possible to derive the correct meaning when given a little thought) to385

be correct.386

Here are a few examples of expert-annotated sentences (the incorrect words are387

underlined):388

Source sentence Machine translation score

je vous remercie monsieur le commis- thank you mr commissioner 2

-saire pour votre déclaration. for your question.

j’ai de nombreuses questions à poser i have some questions to ask 4

à m. le commissaire. to the commissioner.

les objectifs de la stratégie de lisbonne the lisbon strategy mistaken. 3

ne sont pas les bons.

389

4.2 Automatically annotated corpora390

An intuitive idea is to compare a generated translation to a reference translation, and391

classify as correct the candidate words that are Levenshtein-aligned to a word in the392

reference translation (Ueffing and Ney 2004). However, this is too strict and many393

correct words would be incorrectly classified, because there are often many possible394

translations for a given source sentence and these may have nothing in common. This395

problem can partly be overcome by using multiple reference translations (Blatz et al.396

2004). However multiple references are not always available and are costly to produce.397

4.3 Artificial training data398

In this section we present an algorithm which is aimed at obtaining the best of both399

worlds, namely automatically generating sentences (no humans involved, quickly gen-400

erating huge amounts of data as with automatic annotation), and without any annotation401

error (no errors in gold standard classes as with human annotation). Our objective was402

to generate enough data for training classifiers in order to combine several predictive403

parameters.404

Starting from human-produced reference translations, errors were automatically405

introduced in order to generate examples for training confidence measures. Given an406

English sentence t (a correct translation of source sentence s), we first chose where to407

introduce errors. As MT errors tend to be “bursty” (not evenly distributed but appearing408

in clusters), we implemented two error models whose parameters were estimated on a409
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few human-annotated sentences. These annotations were not required to be extremely410

precise.411

Bigram error model firstly we implemented a simple bigram model P(Ci |Ci−1),412

namely the probability that a word is correct given the correctness of the preceding413

word. The first word in a sentence has an a priori probability of being correct. Accord-414

ing to this model we generated sequences of ones and zeroes corresponding to correct415

and incorrect words. We found that nine sentences out of ten in our human-annotated416

test set started with a correct word, that a wrong word had approximately a 50% chance417

of being followed by another wrong word (P(Ci = 0|Ci−1 = 0) ≃ 0.5), and that a418

correct word had approximately a 90% chance of being followed by another correct419

word (P(Ci = 1|Ci−1 = 1) ≃ 0.9).420

Cluster error model the second explicitly models clusters. A sentence is a sequence421

of clusters of correct words and clusters of incorrect words: C1, . . . , Cn . By definition422

if a cluster contains correct words, the next cluster will contain incorrect words and423

vice versa. Let Ci be the correctness of words in the i-th cluster. P(length(C.)|C. = 0)424

and P(length(C.)|C. = 1) were estimated on a held-out set of 50 machine transla-425

tions annotated by a human. Sequences of zeroes and ones were generated accord-426

ingly. The parameters of the model cannot theoretically be represented by a finite427

set of real numbers (they are distributions over N). In practice, cluster lengths are428

bounded, so these distributions are actually over {0, . . . , max(length((C.)))}. Just to429

give an idea, we found that the average length of a cluster of wrong words was 1.9430

(
∑

k�1 k × P(length(C.) = k|C. = 0) = 1.9), with that of a cluster of correct words431

being 12.2.432

433

Once the exact location of errors was known, we randomly introduced errors of434

five types: move, deletion, substitution, insertion and grammatical error. “Deletion”435

is straightforward: a word is chosen randomly according to a uniform distribution and436

deleted. “Move” is not much more complicated: a word is chosen at random according437

to the uniform distribution, and the distance it will be moved (jump length) is chosen438

according to a probability which is uniform within a given range (4 in our experi-439

ments) and null beyond. “Grammatical” errors are generated by modifying the ending440

of randomly selected words (“preserving” may become “preserved”, “environment”441

may become “environmental”). “Substitution” and “insertion” are a little more subtle.442

Given the position i of the word to be replaced or inserted, the probability of every443

word in the vocabulary was computed using an IBM-1 translation model (Brown et al.444

1993) and a 5-gram language model:445

∀t ′ ∈ VT · p(t ′) = pI B M−1

(

t ′|sI
1

)

× p5−gram(t ′|ti−4, . . . , ti−1)446

The new word t ′ was then picked among all w at random according to the distribu-447

tion p. This way the generated errors were not too “silly”. WordNet (Miller 1995) was448

used to check that t ′ was not a synonym of t (otherwise it would not be an incorrect449

word): t ′ could not belong to any synset of which t is an element. The algorithm was450

controlled by several parameters, which were empirically chosen:451
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Detecting errors in machine-translated sentences

– probability distribution Pm of the proportion of move errors in a sentence and452

probability distribution Pj of jump length,453

– probability distribution Pd of the proportion of deletions,454

– probability distribution Ps of the proportion of substitutions,455

– probability distribution Pi of the proportion of insertions,456

– probability distribution Pg of the proportion of grammatical errors.457

We chose triangle-shaped distributions with mode = 0.2, minimum = 0 and maxi-458

mum = 0.5. These may not be the real distributions but seemed reasonable. The posi-459

tions of words to be moved, deleted, inserted or modified were chosen according to460

uniform distribution probability. For each sentence errors were inserted in the order461

given previously; firstly, words were moved, then some were deleted, etc. Eventu-462

ally we obtained a corpus with an average 16% word error rate, which approximately463

matches the error rate of real MT output.464

Below is an example of degraded translation obtained using this method, extracted465

from our corpus:466

Source sentence Quant à eux, les instruments politiques doivent

s’adapter à ces objectifs.

Reference translation Policy instruments, for their part, need to adapt to

these goals.

Degraded translation Policy instruments, for the part, must to adapt to

these goals.

We used 40,000 pairs of sentences (source: French-target: English) from the WMT-467

2008 evaluation campaign data. We degraded the reference translations according to468

the above rules. We found that the bigram error model gave the best results in the end469

(classification error rates of confidence measures trained on such data are lower) so470

we used it for all experiments presented here. The BLEU score of the degraded corpus471

was 56.5 which is much higher than the score of our baseline described in Sect. 4.1472

(21.8). The latter score may be deemed to be an underestimation of the utility of our473

models since only one reference translation was available. However, this phenomenon474

did not affect the BLEU score of the degraded corpus as it came directly from the475

reference sentences, and so there was no need for multiple references. The error rate476

in the degraded corpus was set to 16% to match that of real MT output.477

Others have proposed the use of artificial corpora, for example Blatz et al. (2004) and478

Quirk (2004). While we found that automatically generated corpora yield comparable479

performance to that of expert-annotated ones (Sect. 6.2), Quirk draws conclusions480

opposed to ours, as he found that a classifier trained on a small, human-annotated481

corpus performs better than one trained on a large automatically annotated corpora.482

However, in his experiments sentences are not automatically generated but automat-483

ically annotated. It is important to understand that automatically generated data is484

not the same as automatic annotation. In the latter, sentences are realistic but there is485

uncertainty redarding annotation. In contrast, while automatically degraded sentences486

may seem less realistic, there is almost no doubt that words labelled as incorrect are487

actually wrong, and vice versa. Thus automation plays a completely different role in488

the system of Quirk (2004) and ours. Another difference is that Quirk is evaluating489

sentences, while an important task for us is the evaluation of words. In Sect. 6.2 we490

present an experiment showing that a classifier trained on our large artificial corpus491

123

Journal: 10590-COAT Article No.: 9094 TYPESET DISK LE CP Disp.:2011/7/9 Pages: 34 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

S. Raybaud et al.

yields better results than one trained on a small human-annotated corpus (Fig. 4), for492

a fraction of the cost.493

5 Experimental framework494

A single feature (for example, n-gram probability) can be used as a confidence score.495

It is then relatively simple to evaluate its performance because no neural network or496

similar machine learning tool is necessary. Each word or sentence is attributed a score497

and a DET curve can be immediately computed. Computing NMI is a slightly more498

subtle operation because a probability is needed here, and not all predictive parameters499

qualify as such. In this case the score is turned into a probability by logistic regression500

(Sect. 2.1) whose parameters are learnt from artificial data.501

Combining several predictive parameters is a little more complicated. Unless oth-502

erwise specified we proceeded as follows: two artificial corpora T1 (for “training”) and503

D (“development”) were used to find the best meta-parameters with regard to EER504

for SVM (γ and C , cf. Sect. 2.2) and Neural Networks (number of hidden units, cf.505

Sect. 2.3). Once optimal meta-parameters were found (or if none was set), the classi-506

fier was trained on a larger set of automatically generated data T2 and finally tested507

on real, unseen MT output U . Then, if relevant, bias was estimated on a corpus of508

automatically generated data B. T1, T2,D and B consisted of 10,000 sentences each509

(around 200,000 words). U consisted of 150 sentences, or approximately 3,000 words,510

with each of them having one reference translation (Sect. 4.1).511

6 Word-level confidence estimation512

We shall now look into the details of the predictive parameters we used (the components513

of the vector x(S, T, j)) for word-level confidence estimation. These components will514

be noted xindex where index is the label of the equation so that they are easier to find515

and refer to in the paper. Altogether these features are a numerical representation of516

a word in the target language (T j ), its context (the whole sentence T), and the source517

sentence S, the translation of which it is supposed to be a part. Of course this represen-518

tation is less expressive than the original natural words and sentences, but hopefully519

it is more accessible to probability estimation while still bearing enough information520

to enable us to determine whether a word is correct or not.521

Some of these features can themselves be used as confidence measures (for example522

LM-based features). In this case, we provided performance evaluation. Others cannot,523

such as Part-Of-Speech tag, stop word indicator and rule-based features.524

6.1 Features for word-level confidence estimation525

6.1.1 N-gram-based features526

N-gram scores and backoff behaviour can provide a great deal of useful information.527

First, the probability of a word in a classical 3-gram language model can be used as528

the feature:529
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Detecting errors in machine-translated sentences

x21(S, T, j) = P
(

t j |t j−1, t j−2

)

(21)530

Intuitively, we would expect an erroneous word to have a lower n-gram probabil-531

ity. However, this feature is generally already used in statistical MT systems, so the532

probability levels even of wrong words may not be too low.533

Backward 3-gram language models, proposed for speech recognition confidence534

estimation in Duchateau et al. (2002), also turned out to be useful:535

x22(S, T, j) = P
(

t j |t j+1, t j+2

)

(22)536

This feature has the advantage of generally not being used in the decoding process.537

Finally the backoff behaviour of the 3-gram and backward 3-gram models are pow-538

erful features: an n-gram not found in the language model may indicate a translation539

error. A score is given according to how many times the LM had to back off in order to540

assign a probability to the sequence, as proposed in Uhrik and Ward (1997) for speech541

recognition:542

x23(S, T, j) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1.0 if t j−2, t j−1, t j exists in the model

0.8 if t j−2, t j−1 and t j−1, t j both exist in the

model

0.6 if only t j−1, t j exists in the model

0.4 if only t j−2, t j−1 and t j exist separately in

the model

0.3 if t j−1 and t j both exist in the model

0.2 if only t j exists in the model

0.1 if t j is completely unknown

(23)543

Figure 1 shows DET curves of the confidence measures based on 3-grams and544

backward 3-grams, together with scores and backoff behaviour. While 3-grams and545

backward 3-grams are almost indistinguishable, backoff behaviour performs better in546

terms of EER. Although this measure is very simple, it is less correlated with those547

used in the decoding or degrading process, which may explain why it achieves better548

discrimination results. The results are summarised in Table 1.549

The NMI of backward 3-gram scores is negative. This is theoretically not possible550

but may be explained by a strong bias in the estimation of probabilities which our551

unbiasing method was unable to efficiently remove (Sect. 1.3.2), and because NMI552

was only approximated here (Sect. 3.2).553

6.1.2 Part-Of-Speech-based features554

Replacing words with their POS class can help detect grammatical errors, and also555

take into account the fact that feature values do not have the same distributions for556

different word classes. Thus we used syntactic POS tags as a feature, along with the557

score of a word in a POS 3-gram model. Tagging was performed using GPoSTTL, an558

open source alternative to TreeTagger (Schmid 1994, 1995).559

123

Journal: 10590-COAT Article No.: 9094 TYPESET DISK LE CP Disp.:2011/7/9 Pages: 34 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

S. Raybaud et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

F
a
ls

e
 A

c
c
e
p
ta

n
c
e
s

False Rejections

3-gram backoff behavior
Backward 3-gram backoff behavior

3-gram score
Backward 3-gram score

Fig. 1 DET curves of 3-grams based confidence measures at word level

Table 1 Performance of 3-gram-based confidence measures at word level

Feature Equal error rate Normalised mutual information

3-Grams 42.1 4.86 × 10−3

Backward 3-grams 42.9 −3.93 × 10−3

Backoff 37.0 6.11 × 10−2

Backward backoff 38.1 1.09 × 10−2

x24(S, T, j) = P O S(t j ) (24)560

x25(S, T, j) = P(P O S(t j )|P O S(t j−2), P O S(t j−1)) (25)561

With our settings, POS is a non-numeric feature which can take 44 values, say562

{π1, . . . , π44}. In order to combine it with numeric features, it was mapped to a vector563

π(t j )∈{0, 1}N with N=40, as suggested in Hsu et al. (2003). The mapping is defined by564

π(t j )[i] =

{

1 if P O S(t j ) = πi

0 otherwise
565

We have chosen not to show the individual results of these confidence measures as566

they are only useful in combination with others.567

6.1.3 Taking into account errors in the context568

A common property of all n-gram-based features is that a word can receive a low score569

if it is actually correct but its neighbours are wrong. To compensate for this phenome-570

non, we took into account the average score of the neighbours of the word being con-571
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Fig. 2 DET curves of 3-gram score combined with neighbours’ score at word level

Table 2 Influence of taking the

context into account
Equal error rate Normalised mutual

information

3-Grams 42.1 4.86 × 10−3

3-Grams and neighbours 36.3 (−5.7) 4.57 × 10−3

sidered. More precisely, for every relevant feature x. defined above (x21, x22, x23, x25),572

we also computed:573

x le f t
. (S, T, j) = x.(S, T, j − 2) ∗ x.(S, T, j − 1) ∗ x.(S, T, j)574

xcentred
. (S, T, j) = x.(S, T, j − 1) ∗ x.(S, T, j) ∗ x.(S, T, j + 1)575

xright
. (S, T, j) = x.(S, T, j) ∗ x.(S, T, j + 1) ∗ x.(S, T, j + 2)576

These predictive parameters were then combined using a neural network. Figure 2577

and Table 2 show a vast improvement when using the product of 3-gram probabilities578

of words in the centred window.579

However, NMI was slightly harmed in the process. This may be because the prod-580

uct of 3-gram scores on the window was not a proper estimation of probability of581

correctness. Nevertheless, it is perfectly possible to have a confidence measure with582

good discrimination power and a low NMI.583

6.1.4 Intra-lingual mutual information584

In Raybaud et al. (2009a,b) we introduced original predictive features based on mutual585

information, which is a metric for measuring how much information a random variable586

gives about another. Here we consider two random variables whose realisations are587

words, say W1 and W2:588
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I (W1, W2) =
∑

w1,w2

P(W1 = w1, W2 = w2)589

×log

(

P(W1 = w1, W2 = w2)

P(W1 = w1)P(W2 = w2)

)

590

We used point-wise mutual information which is the contribution of a specific pair of591

words to the mutual information between W1 and W2 (that is, a single term of the sum592

above).593

M I (w1, w2) = P(W1 = w1, W2 = w2)log

(

P(W1 = w1, W2 = w2)

P(W1 = w1)P(W2 = w2)

)

594

The tuple (w1, w2, M I (w1, w2)) is called a trigger. Triggers are learnt on an unaltered595

bilingual corpus. The idea of using mutual information for confidence estimation was596

first expressed in Guo et al. (2004). It has since been proved useful for computing597

translation tables (Lavecchia et al. 2007).598

Intra-lingual mutual information (IMI) measures the level of similarity between the599

words in a generated sentence, thus assessing the consistency of the sentence. For-600

mally W1 and W2 are any Ti and T j here (words in the translation hypothesis). Let J601

be the length of the translation hypothesis. The feature for confidence estimation is:602

x26(S, T, j) =
1

J − 1

∑

1≤i �= j≤J

M I (ti , t j ) (26)603

6.1.5 Cross-lingual mutual information604

Cross-lingual mutual information (CMI) is similar to the previous intra-lingual mutual605

information in that it assesses source-translation consistency. Let I be the length of606

the source sentence:607

x27(S, T, j) =
1

I

∑

1≤i≤I

M I (si , t j ) (27)608

Here W1 and W2 are any Si and T j .609

Table 3 summarises the performance of MI-based features when used as confi-610

dence measures by themselves. Although they perform poorly, we will see that they611

are useful when combined with other predictive parameters (Sect. 6.2).612

Table 3 Performance of mutual

information-based features at

word level

Feature Equal error rate Normalised mutual

information

Intra-lingual 45.8 9.46 × 10−4

Cross-lingual 45.7 −2.21 × 10−1
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Detecting errors in machine-translated sentences

Table 4 Performance of

IBM-1-based confidence

measure at word level

Feature Equal error rate Normalised mutual

information

IBM-1 score 45.0 −1.84 × 10−3

6.1.6 IBM-1 translation model613

This feature was proposed in Blatz et al. (2004), Ueffing and Ney (2005):614

x28(S, T, j) =
1

I + 1

I
∑

i=0

pI B M−1(t j |si ) (28)615

where s0 is the empty word. The performance of this predictive parameter used alone616

is given in Table 4. Once again the results are disappointing. The results are extremely617

similar to alignment probability (the sum is replaced by a max). It is surprising to618

note that even on a translation evaluation task, measures involving only the hypothesis619

yield better performance than those taking the source sentence into account.620

Like MI-based features, IBM-1 does not work very well when used as a confidence621

measure and will only be used in combination with others.622

6.1.7 Stop words and rule-based features623

The “stop word” predictive parameter is a simple flag indicating whether the word is624

a stop word (the, it, etc.) or not. It helps a classifier to take into account the fact that625

the distribution of other features is not the same for stop words compared to content626

words. This feature is less informative than Part-Of-Speech, but simpler.627

x29(S, T, j) =

{

1 if t j is a stop word

0 otherwise
(29)628

The stop list was generated by picking words that are both short and frequent. Finally,629

we implemented four binary features indicating whether the word is a punctuation630

symbol, numerical, a URL or a proper name (based on lists of each type). These631

features were of course not designed to be used as standalone confidence measures.632

6.2 Feature combination633

Altogether we had 66 features for word-level confidence estimations, many of them634

very similar (for example 3-gram probability and average 3-gram probabilities on dif-635

ferent windows), some very crude (for example sentence-level features like length ratio636

(cf. Sect. 7.1.5) used at word level). We trained four classifiers (Logistic Regression,637

Partial Least Squares Regression, Support Vector Machines and Neural Networks)638

to discriminate between correct and incorrect words based on these features. Only639

Neural Networks gave a consistent improvement over the best feature used alone640
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Fig. 3 Combination of all features by neural network

Table 5 Performance of all word-level features combined

Classifier Equal error rate NMI Training time Testing time

Logistic regression 36.8 −2.61 × 10−2 13′′ 5′′

PLSR 37.5 −5.84 × 10−2 15′ 1′′

SVM 36.7 −1.87 × 10−1 12h 500′′

Neural network 35.0 6.06 × 10−2 10′ 2′′

(3-gram scores on a centred window, cf. Sects. 6.1.1 and 6.1.3) for the classification641

task, although this was not a large improvement (−1.3 EER points). The DET curve642

for neural networks is presented in Fig. 3 and the results are summarised in Table 5.643

The network used was a fully connected three-layer perceptron with 66 input nodes,644

33 hidden nodes and one output node. The activation function is sigmoid.645

The NMI results were especially disappointing. As explained in Sect. 3.2, NMI646

is harmed by bias. Although we estimated bias on a dedicated set of training data647

and removed it from the final estimation, we believe that the poor performance may648

perhaps be explained by the fact that bias is very different for artificial and natural649

data and probably much more important on the latter.650

In order to evaluate the performance gain given by the automatically generated train-651

ing corpus, we also split the annotated sentences into a training set (70 sentences), a652

development set (30 sentences) and a test set (50 sentences), on which we trained and653

evaluated the neural network. Figure 4 and Table 6 show that training on annotated654

data does not yield better results than training on the generated corpus. The natural655

corpus is small, but it must be noted that the artificial corpus was generated in just a656

few hours, while it took more than one day to annotate all the sentences. In addition,657

human annotations are subject to time and inter-annotator variations. Employing a658
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Fig. 4 Training neural network on annotated or generated corpus

Table 6 Performance of all word-level features combined

Classifier Equal error rate NMI

NN trained on generated corpus 35.0 6.06 × 10−2

NN trained on annotated corpus 36.8 5.79 × 10−2

Table 7 Contribution of mutual

information-based confidence

measure to overall performance

Equal error rate NMI

Without IMI and CMI 35.6 5.32 × 10−2

With IMI and CMI 35.0 6.06 × 10−2

Improvement −0.60 +7.4 × 10−3

trained professional may alleviate these problems but this, of course, would be more659

expensive.660

In Table 7 we show the modest contribution of mutual information (Sects. 6.1.4661

and 6.1.5) to the performance of neural network combination of the features.662

7 Sentence-level confidence estimation663

The features described in this Section form a numerical representation of a pair made664

up of a source sentence and a target sentence. As in the previous section, our aim665

was to compute the distribution of probability of correctness on the numerical space666

(a subspace of R
dsentence ). Unlike at the word level, the algorithm for generating667

degraded sentences cannot reliably tell if a degraded sentence is still correct or not.668
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S. Raybaud et al.

We circumvented the problem of creating a corpus for training classifiers (Sect. 7.2)669

but we could not automatically generate a corpus for estimating probability biases.670

Thus all normalised mutual information is poor.671

Many word-level features can be extended to the sentence level by arithmetic or672

geometric averaging, e.g. IBM-1 translation probability, n-gram probability, etc.673

7.1 Features for sentence-level confidence estimation674

7.1.1 LM-based features675

The first features we propose are sentence normalised likelihood in a 3-gram model676

(forward and backward) and average backoff behaviour:677

x30(s, t) =

⎛

⎝

J
∏

j=1

P(t j |t j−1, . . . , t j−n+1)

⎞

⎠

1
J

(30)678

x31(s, t) =

⎛

⎝

J
∏

j=1

P(t j |t j+1, . . . , t j+n−1)

⎞

⎠

1
J

(31)679

x32(s, t) =
1

J

J
∑

j=1

x23(S, T, j) (32)680

These features can also be used as confidence measures by themselves and their per-681

formance as such is presented in Table 8 and Fig. 5 together with intra-lingual mutual682

information, another kind of language model.683

The following predictive parameter is the source-sentence likelihood. Its aim is to684

reflect how difficult the source sentence is to translate. It is obviously not designed to685

be used alone.686

x33(s, t) =

(

I
∏

i=1

P(si |si−1, . . . , si−n+1)

)

1
I

(33)687

Table 8 Performance of

3-gram- and backoff-based

confidence measures at sentence

level

Feature Equal error Normalised mutual

rate information

3-Gram normalised likelihood 41.7 4.02 × 10−3

Backward 3-gram normalised 41.3 3.97 × 10−3

likelihood

Averaged backoff behaviour 34.2 4.15 × 10−3
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Detecting errors in machine-translated sentences

7.1.2 Average mutual information688

x34(s, t) =
1

J × (J − 1)

J
∑

i=1

∑

1≤ j �=i≤J

M I (ti , t j )689

=
1

J

J
∑

j=1

x26(s, t, j) (34)690

x35(s, t) =
1

I × J

I
∑

i=1

J
∑

j=1

M I (si , t j )691

=
1

J

J
∑

j=1

x27(s, t, j) (35)692

We were surprised to observe that cross-lingual MI performed even worse at sen-693

tence level than at the word level. We have only presented the results for intra-lingual694

MI in Fig. 5 and Table 9, as its performance was closer to other standard confidence695

measures than it was at word level.696
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Fig. 5 DET curves of 3-gram-, backoff- and intra-lingual mutual information-based confidence measures

at sentence level

Table 9 Intra-lingual mutual

information CM as a

sentence-level confidence

measure

Feature Equal error rate Normalised mutual

information

IMI 39.0 9.46 × 10−4
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7.1.3 Normalised IBM-1 translation probability697

The score of a sentence is its translation probability in IBM model 1, normalised to698

avoid penalising longer sentences:699

x36(s, t) =

⎛

⎝

I
∏

i=1

J
∑

j=0

P(si |t j )

⎞

⎠

1
I

(36)700

As was the case at word level, it is surprising to note that although the system was701

tested on a translation task, confidence measures involving the source sentence do not702

perform better than those involving only the target sentence.703

7.1.4 Basic syntax check704

A very basic parser checks that brackets and quotation marks are matched, and that705

full stops, question or exclamation marks, colon or semi-colon are located at the end706

of the sentence (Blatz et al. 2004).707

x37(s, t) =

{

1 if t is parsable

0 otherwise
(37)708

This feature and the following are only pieces of information about the source and709

target sentences; they are not confidence measures themselves.710

7.1.5 Length-based features711

These very basic features reflect levels of consistency between the lengths of a source712

sentence and its translation (Blatz et al. 2004). The idea is that source and target sen-713

tences should be approximately of the same length, at least for language pairs such as714

French/English:715

x38(s, t) = Len(s) (38)716

x39(s, t) = Len(t) (39)717

x40(s, t) =
Len(t)

Len(s)
(40)718

7.2 Combination of sentence-level features719

As explained earlier in the paper, a generation algorithm cannot tell which sentences720

are to be considered correct and which are not. Therefore, for sentence-level confi-721

dence, it was not directly possible to train classifiers to discriminate between correct722

and incorrect sentences. Instead, we used SVM, Neural Networks and Partial Least723
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Fig. 6 DET curves of PLS and Neural Network combination of sentence-level features

Table 10 Performance of PLS,

SVM and neural nets at

sentence-level

Feature Equal error rate NMI

PLS 29.0 8.14 × 10−2

SVM 38.0 −2.56 × 10−1

Neural net 41.3 −2.44 × 10−2

Squares (PLS) to perform regression against sentence-level BLEU score.3 Sentences724

were then classified by thresholding this score (Fig. 6; Table 10).725

Only PLS was found to improve (by 5.2 points, absolute) on the best standalone con-726

fidence measure (Average backoff behaviour, Sect. 7.1.1). Its correlation coefficient727

with human evaluation was 0.358.728

8 Preliminary post-editing experiment729

The previous sections have given a detailed explanation of how the proposed confi-730

dence measures work and the amount of errors they are able to detect. In this section731

we will describe a more subjective usability experiment. Our aim was to obtain qualita-732

tive feedback from real users of the system about the usability of confidence measures733

for assisted post-editing. Because of the limited number of subjects, and the fact that734

many predictive parameters are still work-in-progress, these results are only to be735

interpretated as hints regarding what users want and find useful, what we did right or736

3 It is true that BLEU is not very suited for sentence-level estimation. It has the advantage of being a well

known automatic metric for which efficient toolkits are available. We also experimented with TER (Snover

et al. 2006) but too many sentences produced a null score.
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wrong and which direction we should follow in our research. The experimental pro-737

tocol is inspired by the one described in Plitt and Masselot (2010). We implemented738

a post-editing tool with confidence measures and let users correct machine-translated739

sentences, with and without the help of confidence measures.740

8.1 The post-editing tool741

The program we developed (see screenshot in Fig. 7) can be seen as a simplified ver-742

sion of a tool for Computer-Assisted Translation. It displays a source sentence (in our743

case, in French) and a translation (in English) generated by Moses (Koehn et al. 2007).744

Errors detected by the confidence measures are highlighted. The user can then opt to745

edit the proposed translation.746

The source sentence is displayed in the top field with the candidate translation in747

the field below. On the left there is a slider with which the user can change the accep-748

tance threshold of the confidence estimation system (cf. Sect. 1.3.1). All words with749

a score below this threshold are displayed in red. Simplified explanations are given to750

the user, who does not require a full ‘lecture’ on confidence estimation: s/he is told751

that s/he may use an automatic help to detect erroneous words, and that the requested752

quality can be changed with this slider, if s/he so wishes. Of course, if his/her quality753

requirements are too high (corresponding to a threshold value of 1, i.e. the point to754

the far right on the DET curve, cf. Sect. 3.1), the system will incorrectly consider755

all words to be wrong. The user can edit the candidate translation if s/he thinks it756

is necessary. When s/he is satisfied with the translation, s/he has to click on “next”.757

For the sake of the experiment the user may not come back to a sentence that has758

already been validated. If required, the user can click on “pause” to take a break,759

thus avoiding the problem of the program continuing to count the time spent on the760

translation, which would cause the time statistics to be meaningless. However, none761

of the users ever took a break. Everything else on this GUI is cosmetic (progress bar,762

etc.).763

The total time spent on each sentence was recorded (the time between the loading764

of the sentence and clicking on the “next“ button). This is actually the sum of three765

partial times, which are also recorded: time typing on the keyboard, time spent on the766

interface (moving the acceptance slider) and thinking time (the rest).767

Fig. 7 Screenshot of the post-editing software
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Detecting errors in machine-translated sentences

It should be noted that the proposed translation and confidence scores were not768

computed on-the-fly, in order to keep the program responsive and easily portable.769

This is quite a heavy constraint because the system cannot take the user’s edits into770

account to compute a new, improved translation, and cannot compute the confidence771

of the post-edited translation (our users were of course informed of that). Furthermore,772

while all users stated that the program was easy to use, an ergonomist’s input would be773

required to ensure that we made the right choices with regard to usability and that what774

we measure is really the influence of confidence measures and is not due to influence775

of the interface.776

8.2 Experimental protocol777

Since we were not expecting many volunteers, we wanted their English skills to be as778

homogeneous as possible (all of them are French native speakers) in order to limit the779

variability of the results. Seven subjects volunteered for the experiment. Six of them780

are English teachers and one is a master student in English. Unfortunately two of them781

failed to correctly follow the instructions and the corresponding data was discarded.782

The experiment lasted approximately two hours, divided into four stages:783

First stage: introduction and training The users were provided with some basic expla-784

nations about the domain and the task and given ten sentences to post-edit along with785

simple instructions (see below). These sentences were just for training purposes and786

were not included in the final results.787

Second stage: first experiment The users were told to start the first experiment when788

ready. They were given 30 sentences with their corresponding MT output and were789

told they could post-edit these translations with the help of the confidence measures.790

Third stage: second experiment This experiment was identical to the first, except that791

the users did not have access to confidence measures. One volunteer out of two had792

the second experiment before the first, in order to compensate for the “training effect”793

(users complete the second experiment faster than the first one) and for fatigue (a user794

may be tired by the time s/he starts the second experiment, thus affecting post-editing795

speed and quality).796

Fourth stage: user feedback Finally, the users were asked to complete a questionnaire,797

providing us with feedback on the post-editing software and the confidence measures.798

We gave the following instructions to the users, with the idea that translated doc-799

uments must be good enough to be read without extra effort, but not necessarily in800

perfectly idiomatic English:801

– The goal is to obtain a correct translation, not necessarily a very fluent one. Fix802

mistakes, not style.803

– You can use any help you want (most of them actually used paper or online dic-804

tionaries) but:805

– Don’t use an online tool to re-translate the sentence806
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– Don’t spend too much time on details807

– Don’t ask the supervisor for help808

The sentences were random subsets of the test set of the WMT09 campaign, which809

comprises transcripts of news broadcast. Each user had to post-edit two randomized810

sets of thirty sentences. This choice is questionable insofar as most ‘real life’ applica-811

tions consist of translating whole documents and not a sequence of sentences without812

connections to each other. However, we chose randomized subsets so that the intrinsic813

difficulty of the task did not influence the results.814

8.3 Results and analysis815

Table 11 summarises the most important results of the experiments. Most of these816

metrics are straightforward but some are worthy of more explanation.817

Sentence quality After the experiment, all the post-edited translations were scored by818

a team member, a native French speaker also fluent in English. Each sentence received819

a score between 1 and 5 in the same fashion as in StatMT evaluation tasks:820

1. the translation is completely unusable.821

2. the translation is seriously faulty but a degree of meaning can be grasped.822

3. the translation is usable although not very good.823

4. the translation has minor flaws.824

5. the translation is very good.825

Correlation between confidence estimations and edits our aim here was to check how826

the user’s decisions and the machine predictions correlated. To this end every word in827

the machine-generated hypothesis was mapped to 1 if it was Levenshtein-aligned to828

a word in the edited hypothesis (which means it was not modified), and 0 otherwise829

(which means it had been inserted or modified by the user). The corpus was, there-830

Table 11 Effect of confidence estimation on a post-editing task

Without CM With CM

Average time per sentence (s) 77 87

Average edit rate 30% 32%

Average sentence quality 4.3 4.2

First experiment Second experiment

Average time per sentence 84.22 80.12

Average edit rate 0.29 0.33

Average sentence quality 4.2 4.3

Ratio of corrections/detected errors 1.76

Correlation between CM and edits 0.23

CM confidence measure
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fore, mapped to a sequence of 0 and 1 and we computed the correlation between this831

sequence and the estimated probabilities of correctness.832

Ratio of number of edits over number of detected errors this is the ratio of the num-833

ber of edits made to the original hypothesis over the number of errors which were834

detected by the system. A high ratio suggests that the user could not find an appro-835

priate trade-off between false positives and false negatives and had to lower his/her836

quality requirement (using the slider) in order to obtain an acceptable level of accuracy.837

While the results in terms of translation speed are disappointing (Table 11), this838

experiment was primarily designed to obtain a qualitative feedback from real users839

of the system. This is what the following analysis will focus on, in order to deter-840

mine what must be improved and how. A more fine-grained analysis showed that the841

time difference is entirely due to “thinking” time. User feedback confirmed that they842

thought the help was not reliable enough to be useful, and that even if it sometimes843

drew their attention to some mistakes, checking the systems’ recommendations wasted844

too much of their time. However, it must be noted that users were significantly faster845

during the second post-editing task than the first. This suggests that more training is846

needed before users would grow accustomed to the task and really see the program as847

a tool instead of a constraint. We believe that an experiment involving more users over848

a longer time frame is necessary. The consistently high and comparable edit rate with849

and without confidence measures suggests—and this is confirmed by feedback—that850

a lot of editing was required, but the high ratio of number of corrections over auto-851

matically detected errors suggests that confidence measures were not able to precisely852

discriminate between correct and incorrect words. Regardless of confidence estima-853

tion, many of our users stated that they would rather translate a sentence from scratch854

than edit flawed MT output.855

As a conclusion to this experiment, we propose the following directions for further856

improvements and experiments:857

– The users should be given a consistent task, not random sentences.858

– Users need a longer amount of training time as some of them were still not sure859

what to do with the slider by the end of the tasks. Measurements show that their860

efficiency continued to increase after the training stage. We believe they need more861

time to familiarise themselves with the tool and make the best use of it.862

– The program interface needs to be carefully designed with ergonomics in mind in863

order to really measure the influence of confidence measures and not that of the864

GUI.865

– We need more reliable confidence measures and above all, we greatly need to866

focus on precision rather than recall as we observed that false alarms were very867

disconcerting for users.868

9 Conclusion869

After introducing and formalising the problem, we presented a method which makes870

it possible to generate large amounts of training data. We then developed a list of871

predictive parameters which we consider are some of the most significant for con-872
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fidence estimation, including two original measures based on mutual information.873

We compared different machine learning techniques combining the features we pro-874

posed. From these features, we consider Neural Networks and Partial Least Squares875

Regression to be the best suited, depending on the application. We have shown that876

combining many features improves over the best predictive parameters alone, by 1.3877

points (absolute) EER at word level and 6 points at sentence level on a classification878

task. Finally, we presented an experiment aimed at measuring how helpful confidence879

estimation is in a post-editing task. This experiment suggested that our confidence880

estimation system is not mature enough to be helpful in such a setting. However,881

the limited number of volunteers and the lack of long-term observations makes the882

results somewhat difficult to interpret. Nevertheless, the knowledge we gained from883

this experiment and users feedback will help us improve confidence measures for the884

benefit of future users.885

Our hope is that this paper will provide the necessary information to enable the886

construction of a complete confidence estimation system for MT from scratch and887

facilitate the incorporation therein of new predictive features. In addition to assisted888

post-editing, we believe there are many useful applications for confidence estimation,889

namely:890

– Warning a user that the translation s/he requested may be flawed,891

– Automatically rejecting hypotheses generated by the decoder or combining several892

systems in a voting system,893

– Recombining good phrases from an n-best list or a word graph to generate a new894

hypothesis.895

We have also identified important research directions in which this work could be896

extended to make confidence measures more helpful for users. Firstly, we would cite897

computing confidence estimates at phrase level which would enable users to work898

on semantically consistent chunks while retaining a more fine-grained analysis than899

with sentences. Secondly, semantic features could be introduced which would make900

it possible to detect otherwise tricky errors such as missing negations, and help users901

to focus on errors of meaning rather than grammatical errors and disfluencies which902

are, in some cases, arguably less important.903
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