Corrigé du DM nº 8

Exercice 1.

- 1. $f(x) = 4x^2 12x + 9 5 = 4x^2 12x + 4$
- 2. $f(x) = \left[2\left(x \frac{3}{2}\right)\right]^2 5 = 4\left(x \frac{3}{2}\right)^2 5$. Ceci est la forme canonique de f. f est une fonction du second degré, sa courbe est une parabole tournée vers le bas. La fonction f admet donc un minimum, atteint en $x = \frac{3}{2}$. La valeur de ce minumum est f.

Exercice 2.

1. Pour un taux d'occupation de 40 %, le bénéfice est égal à 900 euros, ce qui signifie que B(40) = 900. On en déduit la valeur de c, car $B(40) = -40^2 + 160 \times 40 + c = -1600 + 6400 + c$. D'où l'équation

$$-1600 + 6400 + c = 900$$

 $c = 900 + 1600 - 64000$

donc c = -3900. L'expression du bénéfice en fonction du taux d'occupation est alors

$$B(x) = -x^2 + 160 \, x - 3900$$

2. La fonction B est une fonction du second degré du type $x \mapsto ax^2 + bx + c$ avec a = -1, b = 160 et $c = -3\,900$. Comme a est négatif, la fonction admet un maximum. Ce maximum est atteint en

$$\alpha = -\frac{b}{2a} = -\frac{160}{-2} = 80$$

et vaut

$$B(80) = -80^2 + 160 \times 80 - 3900 = -6400 + 12800 - 3900 = 2500$$

D'où le tableau de variations de B:

x	20	80	90
В	-1100	2500	2 400

3. D'après ce qui précède, le bénéfice est maximal lorsque x=80, c'est-à-dire lorsque le taux d'occupation est égal à 80%.

Le bénéfice maximum réalisé est $B(80) = 2500 \in$.

Exercice 3.

- 1. Pour commencer, étudions la fonction f. C'est une fonction du second degré. On sait que sa courbe représentative est une parabole, tournée vers le bas car a=1 est positif, donc f admet un minimum. Comme la fonction est donnée sous la forme canonique, on lit directement que son minimum est atteint en x=1, et qu'il vaut 2. Cela correspond à la courbe \mathscr{C}_3 .
- 2. La fonction g est aussi une fonction du second degré, elle est donnée sous sa forme développée. a=1 donc g admet un minimum, qui est atteint en $\alpha=-\frac{b}{2a}=-\frac{0}{2}=0$. Le minimum vaut g(0)=2. La fonction g est donc représentée par la courbe \mathscr{C}_2 .
- 3. La fonction h est une fonction du second degré, qui admet un maximum car a=-1 est négatif. h est donc représentée par la courbe \mathscr{C}_1 . On vérifie : le maximum de h est atteint en $\alpha=-\frac{b}{2a}=-\frac{2}{-2}=1$. Il vaut h(1)=-1+2+3=4. Ces deux informations correspondent bien à \mathscr{C}_1 .

Exercice 4.

1. Pour comparer $\frac{1}{\sqrt{5}+2}$ et $\frac{1}{\sqrt{5}-3}$, on compare d'abord $\sqrt{5}+2$ et $\sqrt{5}-3$. Or $\sqrt{5}+2$ est positif alors que $\sqrt{5}-3$ est négatif. Donc comme les nombres et leur inverse sont de même signe,

$$\boxed{\frac{1}{\sqrt{5}+2} > \frac{1}{\sqrt{5}-3}}$$

(un nombre positif est toujours plus grand qu'un nombre négatif).

2. Pour comparer $\frac{1}{x^2+2}$ et $\frac{1}{x^2+1}$, on compare d'abord x^2+2 et x^2+1 . On sait que $x^2+2>x^2+1$. De plus, ces deux nombres sont positifs, puisque x^2 est positif ou nul. Donc comme la fonction inverse est décroissante sur $]0;+\infty[$, on a

$$\frac{1}{x^2 + 2} < \frac{1}{x^2 + 1}$$

Exercice 5.

1. $\frac{1}{x} \le \frac{3}{4}$ équivaut à x négatif (puisque dans ce cas, $\frac{1}{x}$ est négatif, donc plus petit que $\frac{3}{4}$) ou x positif et $x \ge \frac{1}{\frac{3}{4}}$, c'est-à-dire $x \ge \frac{4}{3}$.

Or x < 0 équivaut à $x \in]-\infty; 0[$, et $x \ge \frac{4}{3}$ équivaut à $x \in \left[\frac{4}{3}; +\infty\right[$.

Un nombre x est solution s'il vérifie l'une ou l'autre condition, donc s'il appartient à la réunion de ces deux intervalles.

$$\boxed{\mathscr{S} =] - \infty \; ; \; 0[\; \cup \left[\frac{4}{3} \; ; \; + \infty\right[$$

2. $\frac{1}{x} \le -3$ équivaut à x négatif et $x \ge \frac{1}{-3}$, c'est-à-dire x > 0 et $x \ge -\frac{1}{3}$.

Pour que les deux conditions soient vérifiées simultanément, il faut que $x \in]-\infty;0[$ et $x \in \left[-\frac{1}{3};+\infty\right[,$ donc x appartient à l'intersection de ces deux intervalles, c'est-à-dire $\boxed{\mathscr{S}=\left[-\frac{1}{3}\;;\;0\right[}$.

3. $\frac{1}{x} > -2$ équivaut à x positif, ou x négatif et $x < \frac{1}{-2}$, c'est-à-dire x positif ou $x < -\frac{1}{2}$.

Pour que x soit solution, il doit vérifier l'une ou l'autre des deux conditions, donc soit $x \in \left[-\infty; -\frac{1}{2}\right[$, soit $\in \left]0; +\infty\right[$, c'est-à-dire :

$$\mathscr{S} = \left] -\infty \; ; \; -\frac{1}{2} \left[\; \cup \;]0 \; ; \; +\infty [\; \right].$$

Exercice 6.

1. La fonction f est définie lorsque son dénominateur est non nul, c'est-à-dire $x+2\neq 0$. Or, x+2=0 équivaut à x=-2. Donc la valeur interdite de f est -2. Donc l'ensemble de définition de f est $\boxed{\mathscr{D}_f=\mathbb{R}\setminus\{-2\}=]-\infty}\;;\; -2[\;\cup\;]-2\;;\; +\infty[\;].$

La fonction g est définie lorsque son dénominateur est non nul, c'est-à-dire $2-3x\neq 0$. Or, 2-3x=0 équivaut à -3x=-2, qui équivaut à $x=\frac{-2}{-3}=\frac{2}{3}$.

Donc la valeur interdite de h est $\frac{2}{3}$. Donc l'ensemble de définition de h est

$$\mathscr{D}_h = \mathbb{R} \setminus \left\{ \frac{2}{3} \right\} = \left[-\infty ; \frac{2}{3} \right[\cup \left[\frac{2}{3} ; +\infty \right] \right].$$

2. On part de l'expression du membre de droite, qu'on réduit au même dénominateur :

$$1 - \frac{3}{x+2} = \frac{1(x+2)}{x+2} - \frac{3}{x+2} = \frac{x+2-3}{x+2} = \frac{x-1}{x+2} = f(x)$$

Donc une autre expression de f(x) est effectivement $f(x) = 1 - \frac{3}{x+2}$

On fait le même travail avec l'expression proposée pour g:

$$-\frac{1}{3} - \frac{1}{3(2-3x)} = -\frac{2-3x}{3(2-3x)} - \frac{1}{3(2-3x)}$$

$$= \frac{-(2-3x)-1}{3(2-3x)}$$

$$= \frac{-2+3x-1}{3(2-3x)}$$

$$= \frac{3x-3}{3(2-3x)}$$

$$= \frac{x-1}{2-3x} \quad \text{(en simplifiant par 3)}$$

$$-\frac{1}{3} - \frac{1}{3(2-3x)} = g(x)$$

Donc une autre expression de g(x) est $g(x) = -\frac{1}{3} - \frac{1}{3(2-3x)}$