Emacs MIME Manual

by Lars Magne Ingebrigtsen

This file documents the Emacs MIME interface functionality:.
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual”, and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License” in the Emacs manual.

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

This document is part of a collection distributed under the GNU Free
Documentation License. If you want to distribute this document separately
from the collection, you can do so by adding a copy of the license to the
document, as described in section 6 of the license.

Emacs MIME

This manual documents the libraries used to compose and display MIME messages.

This manual is directed at users who want to modify the behaviour of the MIME encod-
ing/decoding process or want a more detailed picture of how the Emacs MIME library works,
and people who want to write functions and commands that manipulate MIME elements.

MIME is short for Multipurpose Internet Mail Extensions. This standard is documented
in a number of RFCs; mainly RFC2045 (Format of Internet Message Bodies), RFC2046 (Me-
dia Types), RFC2047 (Message Header Extensions for Non-ASCII Text), RFC2048 (Regis-
tration Procedures), RFC2049 (Conformance Criteria and Examples). It is highly recom-
mended that anyone who intends writing MIME-compliant software read at least RFC2045
and RFC2047.

Emacs MIME Manual

Chapter 1: Decoding and Viewing 3

1 Decoding and Viewing

This chapter deals with decoding and viewing MIME messages on a higher level.

The main idea is to first analyze a MIME article, and then allow other programs to do
things based on the list of handles that are returned as a result of this analysis.

1.1 Dissection

The mm-dissect-buffer is the function responsible for dissecting a MIME article. If given
a multipart message, it will recursively descend the message, following the structure, and
return a tree of MIME handles that describes the structure of the message.

1.2 Non-MIME

Gnus also understands some non-MIME attachments, such as postscript, uuencode, binhex,
yenc, shar, forward, gnatsweb, pgp, diff. Each of these features can be disabled by add an
item into mm-uu-configure-list. For example,

(require ’mm-uu)
(add-to-list ’mm-uu-configure-list ’(pgp-signed . disabled))

postscript

Postscript file.
uu Uuencoded file.
binhex Binhex encoded file.
yenc Yenc encoded file.
shar Shar archive file.

forward Non-MIME forwarded message.

gnatsweb Gnatsweb attachment.

pgp-signed
PGP signed clear text.

pgp-encrypted
PGP encrypted clear text.

pgp-key PGP public keys.

emacs-sources
Emacs source code. This item works only in the groups matching mm-uu-emacs-
sources-regexp.

diff Patches. This is intended for groups where diffs of committed files are automat-
ically sent to. It only works in groups matching mm-uu-diff-groups-regexp.

4 Emacs MIME Manual

1.3 Handles
A MIME handle is a list that fully describes a MIME component.

The following macros can be used to access elements in a handle:

mm-handle-buffer
Return the buffer that holds the contents of the undecoded MIME part.

mm-handle-type
Return the parsed Content-Type of the part.

mm-handle-encoding
Return the Content-Transfer-Encoding of the part.

mm-handle-undisplayer
Return the object that can be used to remove the displayed part (if it has been
displayed).

mm-handle-set-undisplayer
Set the undisplayer object.

mm-handle-disposition
Return the parsed Content-Disposition of the part.

mm-handle-disposition
Return the description of the part.

mm-get-content-id
Returns the handle(s) referred to by Content-ID.

1.4 Display
Functions for displaying, removing and saving.
mm-display-part
Display the part.
mm-remove-part
Remove the part (if it has been displayed).
mm-inlinable-p
Say whether a MIME type can be displayed inline.
mm-automatic-display-p
Say whether a MIME type should be displayed automatically.

mm-destroy-part
Free all resources occupied by a part.

mm-save-part

Offer to save the part in a file.
mm-pipe-part

Offer to pipe the part to some process.
mm-interactively-view—-part

Prompt for a mailcap method to use to view the part.

Chapter 1: Decoding and Viewing 5

1.5 Display Customization

mm-inline-media-tests
This is an alist where the key is a MIME type, the second element is a function
to display the part inline (i.e., inside Emacs), and the third element is a form
to be evaled to say whether the part can be displayed inline.

This variable specifies whether a part can be displayed inline, and, if so, how
to do it. It does not say whether parts are actually displayed inline.

mm-inlined-types
This, on the other hand, says what types are to be displayed inline, if they
satisfy the conditions set by the variable above. It’s a list of MIME media

types.

mm-automatic-display
This is a list of types that are to be displayed “automatically”, but only if
the above variable allows it. That is, only inlinable parts can be displayed
automatically.

mm-automatic-external-display
This is a list of types that will be displayed automatically in an external viewer.

mm-keep-viewer-alive-types
This is a list of media types for which the external viewer will not be killed
when selecting a different article.

mm-attachment-override-types
Some MIME agents create parts that have a content-disposition of ‘attachment’.
This variable allows overriding that disposition and displaying the part inline.
(Note that the disposition is only overridden if we are able to, and want to,
display the part inline.)

mm-discouraged-alternatives
List of MIME types that are discouraged when viewing ‘multipart/alternative’.
Viewing agents are supposed to view the last possible part of a message,
as that is supposed to be the richest. However, users may prefer other
types instead, and this list says what types are most unwanted. If, for
instance, ‘text/html’ parts are very unwanted, and ‘text/richtext’ parts
are somewhat unwanted, you could say something like:

(setq mm-discouraged-alternatives
>("text/html" "text/richtext")
mm-automatic-display
(remove "text/html" mm-automatic-display))

mm-inline-large-images
When displaying inline images that are larger than the window, Emacs does
not enable scrolling, which means that you cannot see the whole image. To
prevent this, the library tries to determine the image size before displaying it
inline, and if it doesn’t fit the window, the library will display it externally (e.g.
with ‘ImageMagick’ or ‘xv’). Setting this variable to t disables this check and
makes the library display all inline images as inline, regardless of their size.

6 Emacs MIME Manual

mm-inline-override-types
mm-inlined-types may include regular expressions, for example to specify that
all ‘text/.*’ parts be displayed inline. If a user prefers to have a type that
matches such a regular expression be treated as an attachment, that can be
accomplished by setting this variable to a list containing that type. For example
assuming mm-inlined-types includes ‘text/.*’, then including ‘text/html’ in
this variable will cause ‘text/html’ parts to be treated as attachments.

mm-text-html-renderer
This selects the function used to render HTML. The predefined renderers are
selected by the symbols w3, w3m', 1inks, 1lynx, w3m-standalone or html2text.
If nil use an external viewer. You can also specify a function, which will be
called with a MIME handle as the argument.
mm-inline-text-html-with-images
Some HTML mails might have the trick of spammers using ‘’ tags. It is
likely to be intended to verify whether you have read the mail. You can prevent
your personal informations from leaking by setting this option to nil (which is
the default). It is currently ignored by Emacs/w3. For emacs-w3m, you may
use the command t on the image anchor to show an image even if it is nil.?
mm-w3m-safe-url-regexp
A regular expression that matches safe URL names, i.e. URLs that are unlikely
to leak personal information when rendering HTML email (the default value is
‘\\“cid:’). If nil consider all URLSs safe.

mm-inline-text-html-with-w3m-keymap
You can use emacs-w3m command keys in the inlined text/html part by setting
this option to non-nil. The default value is t.

mm-external-terminal-program
The program used to start an external terminal.

mm-enable-external
Indicate whether external MIME handlers should be used.

If ¢, all defined external MIME handlers are used. If nil, files are saved to
disk (mailcap-save-binary-file). If it is the symbol ask, you are prompted
before the external MIME handler is invoked.

When you launch an attachment through mailcap (see Section 4.12 [mailcap],
page 27) an attempt is made to use a safe viewer with the safest options—this
isn’t the case if you save it to disk and launch it in a different way (command
line or double-clicking). Anyhow, if you want to be sure not to launch any
external programs, set this variable to nil or ask.

1.6 Files and Directories

mm-default-directory
The default directory for saving attachments. If nil use default-directory.

L See http://emacs-w3m.namazu.org/ for more information about emacs-w3m

2 The command T will load all images. If you have set the option w3m-key-binding to info, use i or I
instead.

http://emacs-w3m.namazu.org/

Chapter 1: Decoding and Viewing 7

mm-tmp-directory
Directory for storing temporary files.

mm-file-name-rewrite-functions
A list of functions used for rewriting file names of MIME parts. Each function
is applied successively to the file name. Ready-made functions include

mm-file—-name-delete-control
Delete all control characters.

mm-file-name-delete-gotchas
Delete characters that could have unintended consequences when
used with flawed shell scripts, i.e. ‘|’, >’ and ‘<’; and ‘-, *.” as the
first character.

mm-file-name-delete-whitespace
Remove all whitespace.

mm-file-name-trim-whitespace
Remove leading and trailing whitespace.

mm-file-name-collapse-whitespace
Collapse multiple whitespace characters.

mm-file-name-replace-whitespace
Replace whitespace with underscores. Set the variable mm-file-
name-replace-whitespace to any other string if you do not like
underscores.

The standard Emacs functions capitalize, downcase, upcase and upcase-
initials might also prove useful.

mm-path-name-rewrite-functions
List of functions used for rewriting the full file names of MIME parts. This is
used when viewing parts externally, and is meant for transforming the absolute
name so that non-compliant programs can find the file where it’s saved.

1.7 New Viewers

Here’s an example viewer for displaying text/enriched inline:

(defun mm-display-enriched-inline (handle)
(let (text)
(with-temp-buffer
(mm-insert-part handle)
(save-window-excursion
(enriched-decode (point-min) (point-max))
(setq text (buffer-string))))
(mm-insert-inline handle text)))

We see that the function takes a MIME handle as its parameter. It then goes to a
temporary buffer, inserts the text of the part, does some work on the text, stores the result,
goes back to the buffer it was called from and inserts the result.

8 Emacs MIME Manual

The two important helper functions here are mm-insert-part and mm-insert-inline.
The first function inserts the text of the handle in the current buffer. It handles charset
and/or content transfer decoding. The second function just inserts whatever text you tell
it to insert, but it also sets things up so that the text can be “undisplayed” in a convenient
manner.

Chapter 2: Composing 9

2 Composing

Creating a MIME message is boring and non-trivial. Therefore, a library called mm1 has been
defined that parses a language called MML (MIME Meta Language) and generates MIME
messages.

The main interface function is mml-generate-mime. It will examine the contents of the
current (narrowed-to) buffer and return a string containing the MIME message.

2.1 Simple MML Example

Here’s a simple ‘multipart/alternative’:
<#multipart type=alternative>
This is a plain text part.
<#tpart type=text/enriched>
<center>This is a centered enriched part</center>
<#/multipart>
After running this through mml-generate-mime, we get this:

Content-Type: multipart/alternative; boundary="=-=-="

This is a plain text part.

Content-Type: text/enriched

<center>This is a centered enriched part</center>

2.2 MML Definition

The MML language is very simple. It looks a bit like an SGML application, but it’s not.

The main concept of MML is the part. Each part can be of a different type or use a
different charset. The way to delineate a part is with a ‘<#part ...>’ tag. Multipart parts
can be introduced with the ‘<#multipart ...>’ tag. Parts are ended by the ‘<#/part>’
or <#/multipart>’ tags. Parts started with the ‘<#part ...>’ tags are also closed by the
next open tag.

There’s also the ‘<#external ...>" tag. These introduce ‘external/message-body’
parts.

Each tag can contain zero or more parameters on the form ‘parameter=value’. The val-
ues may be enclosed in quotation marks, but that’s not necessary unless the value contains
white space. So ‘filename=/home/user/#hello$ yes’ is perfectly valid.

10 Emacs MIME Manual

The following parameters have meaning in MML; parameters that have no meaning are
ignored. The MML parameter names are the same as the MIME parameter names; the
things in the parentheses say which header it will be used in.

‘type’ The MIME type of the part (Content-Type).

‘filename’
Use the contents of the file in the body of the part (Content-Disposition).

‘charset’ The contents of the body of the part are to be encoded in the character set
specified (Content-Type). See Section 2.5 [Charset Translation], page 14.

‘name’ Might be used to suggest a file name if the part is to be saved to a file (Content-
Type).
‘disposition’

Valid values are ‘inline’ and ‘attachment’ (Content-Disposition).

‘encoding’
Valid values are ‘7bit’, ‘8bit’, ‘quoted-printable’ and ‘base64’ (Content-
Transfer-Encoding). See Section 2.5 [Charset Translation], page 14.

‘description’
A description of the part (Content-Description).

‘creation-date’
RFC822 date when the part was created (Content-Disposition).

‘modification-date’
RFC822 date when the part was modified (Content-Disposition).

‘read-date’
RFC822 date when the part was read (Content-Disposition).

‘recipients’
Who to encrypt/sign the part to. This field is used to override any auto-
detection based on the To/CC headers.

‘sender’ Identity used to sign the part. This field is used to override the default key

used.
‘size’ The size (in octets) of the part (Content-Disposition).
‘sign’ What technology to sign this MML part with (smime, pgp or pgpmime)

‘encrypt’ What technology to encrypt this MML part with (smime, pgp or pgpmime)
Parameters for ‘text/plain’:

‘format’ Formatting parameter for the text, valid values include ‘fixed’ (the default)
and ‘flowed’. Normally you do not specify this manually, since it requires the
textual body to be formatted in a special way described in RFC 2646. See
Section 2.7 [Flowed text|, page 15.

Parameters for ‘application/octet-stream’

‘type’ Type of the part; informal-—meant for human readers (Content-Type).

Chapter 2: Composing 11

Parameters for ‘message/external-body’:

‘access-type’
A word indicating the supported access mechanism by which the file may
be obtained. Values include ‘ftp’, ‘anon-ftp’, ‘tftp’, ‘localfile’, and
‘mailserver’. (Content-Type.)

‘expiration’
The RFC822 date after which the file may no longer be fetched. (Content-
Type.)

‘size’ The size (in octets) of the file. (Content-Type.)

‘permission’
Valid values are ‘read’ and ‘read-write’ (Content-Type).

Parameters for ‘sign=smime’:
‘keyfile’ File containing key and certificate for signer.
Parameters for ‘encrypt=smime”:

‘certfile’
File containing certificate for recipient.

2.3 Advanced MML Example

Here’s a complex multipart message. It’s a ‘multipart/mixed’ that contains many parts,
one of which is a ‘multipart/alternative’.

<#multipart type=mixed>

<#tpart type=image/jpeg filename="/rms.jpg disposition=inline>
<#multipart type=alternative>

This is a plain text part.

<#tpart type=text/enriched name=enriched.txt>
<center>This is a centered enriched part</center>
<#/multipart>

This is a new plain text part.

<#part disposition=attachment>

This plain text part is an attachment.
<#/multipart>

And this is the resulting MIME message:

Content-Type: multipart/mixed; boundary="=-=-="

Content-Type: image/jpeg;
filename=""/rms. jpg"

12

Emacs MIME Manual

Content-Disposition: inline;
filename=""/rms. jpg"
Content-Transfer-Encoding: base64

/93j/4AAQSKZIRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBWc JCQgKDBANDASLDBKSEwWSUHROE
HhOaHBwgJC4nICIsIxwcKDcpLDAXNDQOHyc5PTgyPC4zNDL/wAALCAAWADABAREA/8QAHWAA
AQUBAQEBAQEAAAAAAAAAAAECAWQFBgcICQoL/8QAtRAAAgEDAWIEAwWUFBAQAAAF9AQIDAAQR
BRIhMUEGE1FhByJxFDKBkaEIIOKxwRVSOfAkM2JyggkKFhcYGRo1JicoKSoONTY30Dk6QORF
RkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXgDhIWGh4iJipKT1JWW15iZmgK jpKWmp6ip
qrKztLW2t7i5usLDxMXGx8jJytLTINXW19jZ2uHi4+T15uf 06erx8vP09fb3+Pn6/90ACAEB
AAA/AQ/rifFHj1dNuGsrDa0qcSSHkA+gHrXKw+LtWLrMb+RgTyhbr+HSug07xNqVIfQtZrNI
AyiaFE/NuBPOOOPOrvRNE880KOC8TbXXGCv1FPqjrFALDR7uSL7SkTFT/ALWOP1xXgTuXfc7E
sx6nuabrwp4IvvEM8chCxWx0dzn7wz6V9AaB4S07wOp5itowOrDLSY5Pt9K43x066P4xs71m
2Q0XiGCbA4y0VJI9+1aYORkdK4341yNH4ahCnG66VTINj15JFbPAXOMS43M4VQE5/yr2vSpLlnw
5ZW8d1CZ8KFX jOPX0/mK6rSPEGt3Angu44fNEReHYNvIH3TzXDeKNOBRX+kSX20uZkicTI0c
L+g7E810ulF jpVtv3bwgB3HJyK5L4quY/C9sVxk31ij/xx6850u7timtp/wD1pEw3An3Jr3Dw
34gsbWza4nB1hC5LDsaW6+IFgupQyCF3iHH7gA7cO9R9ay7zx6t7aX9 jHC4smhfBkGCvHGErm
tLQ7hbnRrV1GPkAP1x1/Hr+Ncr8Vz jwrbf8AX6v/AKA9eQRyY1Qk8Yx9K6XTNbkgia2¢ciSIn
7p5Ga9AtteOLTLKO6it4i7dVRFJIDcZ4PvXN+JVEMFObILVGXJLSZ4zk jivRPDaeX4b08HOTC
pOf fmua+KkbS+GLVUGTItT/0B68eeIpIFYjB70+00VXyoOM9+M1eaWeCLzHPYHGO/NVWvJJm
jQ8KGH1INfQWhXSXmh2c8eArRLwO3HSv/2Q==

Content-Type: multipart/alternative; boundary="==-=-="

Content-Type: text/enriched;
name="enriched.txt"

<center>This is a centered enriched part</center>

This is a new plain text part.

Content-Disposition: attachment

Chapter 2: Composing 13

This plain text part is an attachment.

2.4 Encoding Customization

mm-body-charset-encoding-alist
Mapping from MIME charset to encoding to use. This variable is usually used
except, e.g., when other requirements force a specific encoding (digitally signed
messages require 7bit encodings). The default is
((150-2022-jp . 7bit)

(i50-2022-jp-2 . 7bit)

(utf-16 . base64)

(utf-16be . base64)

(utf-16le . base64))

As an example, if you do not want to have ISO-8859-1 characters quoted-
printable encoded, you may add (iso-8859-1 . 8bit) to this variable. You
can override this setting on a per-message basis by using the encoding MML
tag (see Section 2.2 [MML Definition|, page 9).

mm-coding-system-priorities

Prioritize coding systems to use for outgoing messages. The default is nil,
which means to use the defaults in Emacs. It is a list of coding system symbols
(aliases of coding systems are also allowed, use M-x describe-coding-system
to make sure you are specifying correct coding system names). For example, if
you have configured Emacs to prefer UTF-8, but wish that outgoing messages
should be sent in ISO-8859-1 if possible, you can set this variable to (iso-
8859-1). You can override this setting on a per-message basis by using the
charset MML tag (see Section 2.2 [MML Definition], page 9).

mm-content-transfer-encoding-defaults
Mapping from MIME types to encoding to use. This variable is usually used
except, e.g., when other requirements force a safer encoding (digitally signed
messages require 7bit encoding). Besides the normal MIME encodings, qp-
or-base64 may be used to indicate that for each case the most efficient of
quoted-printable and base64 should be used.

gp-or-base64 has another effect. It will fold long lines so that MIME parts
may not be broken by MTA. So do quoted-printable and base64.

Note that it affects body encoding only when a part is a raw forwarded message
(which will be made by gnus-summary-mail-forward with the arg 2 for exam-
ple) or is neither the ‘text/*’ type nor the ‘message/*’ type. Even though in
those cases, you can override this setting on a per-message basis by using the
encoding MML tag (see Section 2.2 [MML Definition], page 9).

mm-use-ultra-safe-encoding
When this is non-nil, it means that textual parts are encoded as quoted-
printable if they contain lines longer than 76 characters or starting with "From

14 Emacs MIME Manual

" in the body. Non-7bit encodings (8bit, binary) are generally disallowed. This
reduce the probability that a non-8bit clean MTA or MDA changes the message.
This should never be set directly, but bound by other functions when necessary
(e.g., when encoding messages that are to be digitally signed).

2.5 Charset Translation

During translation from MML to MIME, for each MIME part which has been composed
inside Emacs, an appropriate charset has to be chosen.

If you are running a non-MULE Emacs, this process is simple: If the part contains any
non-ASCII (8-bit) characters, the MIME charset given by mail-parse-charset (a symbol)
is used. (Never set this variable directly, though. If you want to change the default charset,
please consult the documentation of the package which you use to process MIME messages.
See section “Various Message Variables” in Message Manual, for example.) If there are only
ASCII characters, the MIME charset US-ASCII is used, of course.

Things are slightly more complicated when running Emacs with MULE support. In this
case, a list of the MULE charsets used in the part is obtained, and the MULE charsets are
translated to MIME charsets by consulting the variable mm-mime-mule-charset-alist. If
this results in a single MIME charset, this is used to encode the part. But if the resulting list
of MIME charsets contains more than one element, two things can happen: If it is possible
to encode the part via UTF-8, this charset is used. (For this, Emacs must support the
utf-8 coding system, and the part must consist entirely of characters which have Unicode
counterparts.) If UTF-8 is not available for some reason, the part is split into several ones,
so that each one can be encoded with a single MIME charset. The part can only be split
at line boundaries, though—if more than one MIME charset is required to encode a single
line, it is not possible to encode the part.

When running Emacs with MULE support, the preferences for which coding system to
use is inherited from Emacs itself. This means that if Emacs is set up to prefer UTF-8,
it will be used when encoding messages. You can modify this by altering the mm-coding-
system-priorities variable though (see Section 2.4 [Encoding Customization], page 13).

The charset to be used can be overridden by setting the charset MML tag (see Section 2.2
[MML Definition], page 9) when composing the message.

The encoding of characters (quoted-printable, 8bit etc) is orthogonal to the discussion
here, and is controlled by the variables mm-body-charset-encoding-alist and
mm-content-transfer-encoding-defaults (see Section 2.4 [Encoding Customization],
page 13).

2.6 Conversion

A (multipart) MIME message can be converted to MML with the mime-to-mml function.
It works on the message in the current buffer, and substitutes MML markup for MIME
boundaries. Non-textual parts do not have their contents in the buffer, but instead have
the contents in separate buffers that are referred to from the MML tags.

An MML message can be converted back to MIME by the mml-to-mime function.

These functions are in certain senses “lossy” —you will not get back an identical message
if you run mime-to-mml and then mml-to-mime. Not only will trivial things like the order

Chapter 2: Composing 15

of the headers differ, but the contents of the headers may also be different. For instance,
the original message may use base64 encoding on text, while mml-to-mime may decide to
use quoted-printable encoding, and so on.

In essence, however, these two functions should be the inverse of each other. The resulting
contents of the message should remain equivalent, if not identical.

2.7 Flowed text

The Emacs MIME library will respect the use-hard-newlines variable (see section “Hard
and Soft Newlines” in Emacs Manual) when encoding a message, and the “format=flowed”
Content-Type parameter when decoding a message.

On encoding text, regardless of use-hard-newlines, lines terminated by soft newline
characters are filled together and wrapped after the column decided by fill-flowed-
encode-column. Quotation marks (matching ‘~>* ?’) are respected. The variable controls
how the text will look in a client that does not support flowed text, the default is to wrap
after 66 characters. If hard newline characters are not present in the buffer, no flow encoding
occurs.

On decoding flowed text, lines with soft newline characters are filled together and
wrapped after the column decided by fill-flowed-display-column. The default is to
wrap after fill-column.

16

Emacs MIME Manual

Chapter 3: Interface Functions 17

3 Interface Functions

The mail-parse library is an abstraction over the actual low-level libraries that are de-
scribed in the next chapter.

Standards change, and so programs have to change to fit in the new mold. For instance,
RFC2045 describes a syntax for the Content-Type header that only allows ASCII characters
in the parameter list. RFC2231 expands on RFC2045 syntax to provide a scheme for
continuation headers and non-ASCII characters.

The traditional way to deal with this is just to update the library functions to parse
the new syntax. However, this is sometimes the wrong thing to do. In some instances it
may be vital to be able to understand both the old syntax as well as the new syntax, and
if there is only one library, one must choose between the old version of the library and the
new version of the library.

The Emacs MIME library takes a different tack. It defines a series of low-level libraries
(‘rfc2047.el’, ‘rfc2231.el’ and so on) that parses strictly according to the corresponding
standard. However, normal programs would not use the functions provided by these libraries
directly, but instead use the functions provided by the mail-parse library. The functions
in this library are just aliases to the corresponding functions in the latest low-level libraries.
Using this scheme, programs get a consistent interface they can use, and library developers
are free to create write code that handles new standards.

The following functions are defined by this library:

mail-header-parse-content-type
Parse a Content-Type header and return a list on the following format:

("type/subtype"
(attributel . valuel)
(attribute2 . value2)

)

Here’s an example:

(mail-header-parse-content-type
"image/gif; name=\"b980912.gif\"")
= ("image/gif" (name . "b980912.gif"))

mail-header-parse-content-disposition
Parse a Content-Disposition header and return a list on the same format as
the function above.

mail-content-type-get
Takes two parameters—a list on the format above, and an attribute. Returns
the value of the attribute.

(mail-content-type-get
>("image/gif" (name . "b980912.gif")) ’name)
= "b980912.gif"

mail-header-encode-parameter
Takes a parameter string and returns an encoded version of the string. This is
used for parameters in headers like Content-Type and Content-Disposition.

18

Emacs MIME Manual

mail-header-remove-comments

Return a comment-free version of a header.

(mail-header-remove-comments
"Gnus/5.070027 (Pterodactyl Gnus v0.27) (Finnish Landrace)")
= "Gnus/5.070027 "

mail-header-remove-whitespace

Remove linear white space from a header. Space inside quoted strings and
comments is preserved.

(mail-header-remove-whitespace
"image/gif; name=\"Name with spaces\"")
= "image/gif;name=\"Name with spaces\""

mail-header-get-comment

Return the last comment in a header.

(mail-header-get-comment
"Gnus/5.070027 (Pterodactyl Gnus v0.27) (Finnish Landrace)")
= "Finnish Landrace"

mail-header-parse-address

Parse an address and return a list containing the mailbox and the plaintext
name.
(mail-header-parse-address
"Hrvoje Niksic <hniksic@srce.hr>")
= ("hniksic@srce.hr" . "Hrvoje Niksic")

mail-header-parse-addresses

Parse a string with list of addresses and return a list of elements like the one
described above.

(mail-header-parse-addresses
"Hrvoje Niksic <hniksic@srce.hr>, Steinar Bang <sb@metis.no>")
= (("hniksic@srce.hr" . "Hrvoje Niksic")
("sb@metis.no" . "Steinar Bang"))

mail-header-parse-date

Parse a date string and return an Emacs time structure.

mail-narrow-to-head

Narrow the buffer to the header section of the buffer. Point is placed at the
beginning of the narrowed buffer.

mail-header—-narrow-to-field

Narrow the buffer to the header under point. Understands continuation headers.

mail-header-fold-field

Fold the header under point.

mail-header-unfold-field

Unfold the header under point.

mail-header-field-value

Return the value of the field under point.

Chapter 3: Interface Functions 19

mail-encode-encoded-word-region
Encode the non-ASCIT words in the region. For instance, ‘Nave’ is encoded as
‘=7150-8859-17q7Na=EFve?=".

mail-encode-encoded-word-buffer
Encode the non-ASCII words in the current buffer. This function is meant to
be called narrowed to the headers of a message.

mail-encode-encoded-word-string
Encode the words that need encoding in a string, and return the result.

(mail-encode-encoded-word-string

"This is nave, baby")
= "This is =7is0-8859-17q7na=EFve,?= baby"

mail-decode-encoded-word-region
Decode the encoded words in the region.

mail-decode-encoded-word-string
Decode the encoded words in the string and return the result.

(mail-decode-encoded-word-string
"This is =7is0-8859-17q7na=EFve,?= baby")
= "This is nave, baby"

Currently, mail-parse is an abstraction over ietf-drums, rfc2047, rfc2045 and
rfc2231. These are documented in the subsequent sections.

20

Emacs MIME Manual

Chapter 4: Basic Functions 21

4 Basic Functions

This chapter describes the basic, ground-level functions for parsing and handling. Covered
here is parsing From lines, removing comments from header lines, decoding encoded words,
parsing date headers and so on. High-level functionality is dealt with in the next chapter
(see Chapter 1 [Decoding and Viewing], page 3).

4.1 rfc2045

RFC2045 is the “main” MIME document, and as such, one would imagine that there would
be a lot to implement. But there isn’t, since most of the implementation details are delegated
to the subsequent RFCs.

So ‘rfc2045.el’ has only a single function:

rfc2045-encode-string
Takes a parameter and a value and returns a ‘PARAM=VALUE’ string. value will
be quoted if there are non-safe characters in it.

4.2 rfc2231

RFC2231 defines a syntax for the Content-Type and Content-Disposition headers. Its
snappy name is MIME Parameter Value and Encoded Word Extensions: Character Sets,
Languages, and Continuations.

In short, these headers look something like this:

Content-Type: application/x-stuff;
title*O*=us-ascii’en’This%20is%20even’,20more’20;
titlex1x=Y,2A%2A%2Afun¥2A%2A%2A%20;
titlex2="isn’t it!"

They usually aren’t this bad, though.
The following functions are defined by this library:

rfc2231-parse-string
Parse a Content-Type header and return a list describing its elements.

(rfc2231-parse-string
"application/x-stuff;
title*O*=us-ascii’en’This%20is%20even’20more%20;
titlex1*=%2A%2A%2Afun%2A%2A%2A%20;
titlex2=\"isn’t it!'\"")
= ("application/x-stuff"
(title . "This is even more ***xfun*** isn’t it!"))

rfc2231-get-value
Takes one of the lists on the format above and returns the value of the specified
attribute.

rfc2231-encode-string
Encode a parameter in headers likes Content-Type and Content-Disposition.

22 Emacs MIME Manual

4.3 ietf-drums

drums is an IETF working group that is working on the replacement for RFC822.
The functions provided by this library include:

ietf-drums-remove-comments
Remove the comments from the argument and return the results.

ietf-drums-remove-whitespace
Remove linear white space from the string and return the results. Spaces inside
quoted strings and comments are left untouched.

ietf-drums-get-comment
Return the last most comment from the string.

ietf-drums-parse-address
Parse an address string and return a list that contains the mailbox and the
plain text name.

ietf-drums-parse-addresses
Parse a string that contains any number of comma-separated addresses and
return a list that contains mailbox/plain text pairs.

ietf-drums-parse-date
Parse a date string and return an Emacs time structure.

ietf-drums-narrow-to-header
Narrow the buffer to the header section of the current buffer.

4.4 rfc2047

RFC2047 (Message Header Extensions for Non-ASCII Text) specifies how non-ASCII text
in headers are to be encoded. This is actually rather complicated, so a number of variables
are necessary to tweak what this library does.

The following variables are tweakable:

rfc2047-header-encoding-alist
This is an alist of header / encoding-type pairs. Its main purpose is to prevent
encoding of certain headers.

The keys can either be header regexps, or t.
The values can be nil, in which case the header(s) in question won’t be encoded,

mime, which means that they will be encoded, or address-mime, which means
the header(s) will be encoded carefully assuming they contain addresses.

rfc2047-charset-encoding-alist
RFC2047 specifies two forms of encoding—Q (a Quoted-Printable-like encoding)
and B (base64). This alist specifies which charset should use which encoding.

rfc2047-encoding-function-alist
This is an alist of encoding / function pairs. The encodings are Q, B and nil.

rfc2047-encoded-word-regexp
When decoding words, this library looks for matches to this regexp.

Chapter 4: Basic Functions 23

Those were the variables, and these are this functions:

rfc2047-narrow-to-field
Narrow the buffer to the header on the current line.

rfc2047-encode-message-header
Should be called narrowed to the header of a message. Encodes according to
rfc2047-header-encoding-alist.

rfc2047-encode-region
FEncodes all encodable words in the region specified.

rfc2047-encode-string
Encode a string and return the results.

rfc2047-decode-region
Decode the encoded words in the region.

rfc2047-decode-string
Decode a string and return the results.

4.5 time-date

While not really a part of the MIME library, it is convenient to document this library here.
It deals with parsing Date headers and manipulating time. (Not by using tesseracts, though,
I'm sorry to say.)

These functions convert between five formats: A date string, an Emacs time structure,
a decoded time list, a second number, and a day number.

Here’s a bunch of time/date/second/day examples:

(parse-time-string "Sat Sep 12 12:21:54 1998 +0200")
= (54 21 12 12 9 1998 6 nil 7200)

(date-to-time "Sat Sep 12 12:21:54 1998 +0200")
= (13818 19266)

(time-to-seconds ’ (13818 19266))
= 905595714.0

(seconds-to-time 905595714.0)
= (13818 19266 0)

(time-to-days ’ (13818 19266))
= 729644

(days-to-time 729644)
= (961933 65536)

(time-since ’ (13818 19266))
= (0 430)

24

Emacs MIME Manual

(time-less-p ’ (13818 19266) ’ (13818 19145))
= nil

(subtract-time ’ (13818 19266) ’(13818 19145))
= (0 121)

(days-between "Sat Sep 12 12:21:54 1998 +0200"
"Sat Sep 07 12:21:54 1998 +0200")
= 5

(date-leap-year-p 2000)
=t

(time-to-day-in-year ’(13818 19266))
= 255

(time-to-number-of-days

(time-since

(date-to-time "Mon, 01 Jan 2001 02:22:26 GMT")))
= 4.146122685185185

And finally, we have safe-date-to-time, which does the same as date-to-time, but
returns a zero time if the date is syntactically malformed.

The five data representations used are the following:

date An RFC822 (or similar) date string. For instance: "Sat Sep 12 12:21:54 1998
+0200".

time An internal Emacs time. For instance: (13818 26466).

seconds A floating point representation of the internal Emacs time. For instance:
905595714.0.

days An integer number representing the number of days since 00000101. For in-

stance: 729644,

decoded time

A list of decoded time. For instance: (54 21 12 12 9 1998 6 t 7200).

All the examples above represent the same moment.

These are the functions available:

date-to-time

Take a date and return a time.

time-to-seconds

Take a time and return seconds.

seconds-to-time

Take seconds and return a time.

time-to-days

Take a time and return days.

Chapter 4: Basic Functions 25

days-to-time
Take days and return a time.

date-to-day
Take a date and return days.

time-to-number-of-days
Take a time and return the number of days that represents.

safe-date-to-time
Take a date and return a time. If the date is not syntactically valid, return a
“zero” date.

time-less-p
Take two times and say whether the first time is less (i. e., earlier) than the
second time.

time-since
Take a time and return a time saying how long it was since that time.

subtract-time
Take two times and subtract the second from the first. I. e., return the time
between the two times.

days-between
Take two days and return the number of days between those two days.

date-leap-year-p

Take a year number and say whether it’s a leap year.
time-to-day-in-year

Take a time and return the day number within the year that the time is in.

4.6 qp
This library deals with decoding and encoding Quoted-Printable text.

Very briefly explained, gp encoding means translating all 8-bit characters (and lots of
control characters) into things that look like ‘=EF’; that is, an equal sign followed by the
byte encoded as a hex string.

The following functions are defined by the library:

quoted-printable-decode-region
QP-decode all the encoded text in the specified region.

quoted-printable-decode-string
Decode the QP-encoded text in a string and return the results.

quoted-printable-encode-region
QP-encode all the encodable characters in the specified region. The third op-
tional parameter fold specifies whether to fold long lines. (Long here means
72.)

quoted-printable-encode-string
QP-encode all the encodable characters in a string and return the results.

26 Emacs MIME Manual

4.7 base64

Base64 is an encoding that encodes three bytes into four characters, thereby increasing the
size by about 33%. The alphabet used for encoding is very resistant to mangling during
transit.

The following functions are defined by this library:
base64-encode-region
base64 encode the selected region. Return the length of the encoded text. Op-

tional third argument no-line-break means do not break long lines into shorter
lines.

base64-encode-string
base64 encode a string and return the result.

base64-decode-region
base64 decode the selected region. Return the length of the decoded text. If
the region can’t be decoded, return nil and don’t modify the buffer.

base64-decode-string
base64 decode a string and return the result. If the string can’t be decoded,
nil is returned.

4.8 binhex

binhex is an encoding that originated in Macintosh environments. The following function
is supplied to deal with these:

binhex-decode-region
Decode the encoded text in the region. If given a third parameter, only decode
the binhex header and return the filename.

4.9 uudecode

uuencode is probably still the most popular encoding of binaries used on Usenet, although
base64 rules the mail world.

The following function is supplied by this package:

uudecode-decode-region
Decode the text in the region.

4.10 yenc

yenc is used for encoding binaries on Usenet. The following function is supplied by this
package:

yenc-decode-region
Decode the encoded text in the region.

Chapter 4: Basic Functions 27

4.11 rfc1843
RFC1843 deals with mixing Chinese and ASCII characters in messages. In essence, RFC1843
switches between ASCII and Chinese by doing this:

This sentence is in ASCII.
The next sentence is in GB. {<:Ky2;S{#,NpJ)16HK!# }Bye.

Simple enough, and widely used in China.
The following functions are available to handle this encoding;:

rfc1843-decode-region
Decode HZ-encoded text in the region.

rfc1843-decode-string
Decode a HZ-encoded string and return the result.

4.12 mailcap
The ‘~/.mailcap’ file is parsed by most MIME-aware message handlers and describes how
elements are supposed to be displayed. Here’s an example file:

image/*; gimp -8 s

audio/wav; wavplayer %s

application/msword; catdoc %s ; copiousoutput ; nametemplate=%s.doc

This says that all image files should be displayed with gimp, that WAVE audio files
should be played by wavplayer, and that MS-WORD files should be inlined by catdoc.

The mailcap library parses this file, and provides functions for matching types.

mailcap-mime-data
This variable is an alist of alists containing backup viewing rules.

Interface functions:
mailcap-parse-mailcaps
Parse the ‘~/.mailcap’ file.
mailcap-mime-info
Takes a MIME type as its argument and returns the matching viewer.

28

Emacs MIME Manual

Chapter 5: Standards 29

5 Standards

The Emacs MIME library implements handling of various elements according to a (some-
what) large number of RFCs, drafts and standards documents. This chapter lists the
relevant ones. They can all be fetched from http://quimby.gnus.org/notes/.

RFC822
STD11

RFC1036
RFC2045
RFC2046
RFC2047
RFC2048
RFC2049
RFC2231

RFC1843

Standard for the Format of ARPA Internet Text Messages.
Standard for Interchange of USENET Messages

Format of Internet Message Bodies

Media Types

Message Header Extensions for Non-ASCIT Text
Registration Procedures

Conformance Criteria and Examples

MIME Parameter Value and Encoded Word Extensions: Character Sets, Lan-
guages, and Continuations

HZ - A Data Format for Exchanging Files of Arbitrarily Mixed Chinese and
ASCII characters

draft-ietf-drums-msg-fmt-05.txt

RFC2112
RFC1892

RFC2183

RFC2646

Draft for the successor of RFC822
The MIME Multipart/Related Content-type

The Multipart /Report Content Type for the Reporting of Mail System Admin-
istrative Messages

Communicating Presentation Information in Internet Messages: The Content-
Disposition Header Field

Documentation of the text/plain format parameter for flowed text.

http://quimby.gnus.org/notes/

30

Emacs MIME Manual

Chapter 6: Index

6 Index

base64 26
base64-decode-region......................... 26
base64-decode-string 26
base64-encode-region......................... 26
base64-encode-string 26
binhex....... 3, 26
binhex-decode-region...................... ... 26

C

charsets........... 14
Chinese . ..ot 27
CompPOSING . .« oee ettt 9

EIMACS-SOUTCES &+ o o vt e et et e et e et et e e 3

F

format=flowed............................... 15
forward 3

G

ietf-drums-get-comment 22
ietf-drums-narrow-to-header 22
ietf-drums-parse-address. 22
ietf-drums-parse-addresses 22
ietf-drums-parse-date 22
ietf-drums-remove-comments. 22
ietf-drums-remove-whitespace 22
interface functions 17

31
M
Macintosh.......... 26
mail-content-type-get oL 17
mail-decode-encoded-word-region 19
mail-decode-encoded-word-string 19
mail-encode-encoded-word-buffer.............. 19
mail-encode-encoded-word-region 19
mail-encode-encoded-word-string 19
mail-header-encode-parameter 17
mail-header-field-value 18
mail-header-fold-field 18
mail-header-get-comment 18
mail-header-narrow-to-field 18
mail-header-parse-address 18
mail-header-parse-addresses. 18
mail-header-parse-content-disposition.......... 17
mail-header-parse-content-type................ 17
mail-header-parse-date 18
mail-header-remove-comments 18
mail-header-remove-whitespace 18
mail-header-unfold-field 18
mail-narrow-to-head 18
mail-parse. 17
mail-parse-charset 14
mailcap-mime-data 27
mailcap-parse-mailcaps....................... 27
MIME Composingoooiei.. 9
MIME Meta Language 9
mime-to-mml......... 14
mm-attachment-override-types................. 5
mm-automatic-display......................... 5
mm-automatic-display-p....................... 4
mm-automatic-external-display 5
mm-body-charset-encoding-alist............... 13
mm-coding-system-priorities 13
mm-content-transfer-encoding-defaults 13
mm-default-directory.............., 6
mm-destroy-part............ 4
mm-discouraged-alternatives................ ... 5
mm-display-part L 4
mm-enable-external 6
mm-external-terminal-program................. 6
mm-file-name-collapse-whitespace 7
mm-file-name-delete-control 7
mm-file-name-delete-gotchas 7
mm-file-name-delete-whitespace 7
mm-file-name-replace-whitespace............... 7
mm-file-name-rewrite-functions 7
mm-file-name-trim-whitespace 7
mm-handle-buffer............................. 4
mm-handle-disposition 4
mm-handle-encoding 4
mm-handle-set-undisplayer 4

mm-handle-type 4

32

mm-handle-undisplayer........................ 4
mm-inlinable-p 4
mm-inline-large-images 5
mm-inline-media-tests............... 5
mm-inline-override-types 6
mm-inline-text-html-with-images............... 6
mm-inline-text-html-with-w3m-keymap 6
mm-inlined-types 5
mm-interactively-view-part 4
mm-keep-viewer-alive-types.................... 5
mm-mime-mule-charset-alist 14
mm-path-name-rewrite-functions............... 7
mm-pipe-part ... 4
mm-remove-part 4
MM-SAVe-PArtot 4
mm-text-html-renderer........................ 6
mm-tmp-directory L 7
mm-use-ultra-safe-encoding 13
mm-uu-configure-list 3
mm-uu-diff-groups-regexp 3
MM-UU-EMACS-SOUTCES-TEZEXD « .« . v e v veeevnenn 3
mm-w3m-safe-url-regexp 6
MML ..o 9
mml-generate-mime 9
mml-to-mime.............. ... 14
MULE ... 14

pgp-encrypted 3
PEP-KEY « ot 3
pgp-signed 3
postscript 3
quoted-printable-decode-region................ 25

quoted-printable-decode-string 25

Emacs MIME Manual

quoted-printable-encode-region................ 25
quoted-printable-encode-string 25

R

rfcl843. . 27
rfc2045-encode-string. 21
rfc2047-charset-encoding-alist 22
rfc2047-decode-region 23
rfc2047-decode-string. 23
rfc2047-encode-message-header................ 23
rfc2047-encode-region 23
rfc2047-encode-string. 23
rfc2047-encoded-word-regexp 22
rfc2047-encoding-function-alist 22
rfc2047-header-encoding-alist 22
rfc2047-narrow-to-field 23
rfc2231-encode-string. 21
rfc2231-get-value.............. 21
rfc2231-parse-string 21

Unicode. 14
UTE-8. . 14
L0 P 3
uudecode. 26
uudecode-decode-region 26
UUENCOAE. . vttt e et 26

Y

VENC . ottt 3, 26
yenc-decode-region........................... 26

Short Contents

Emacs MIME . . vt i vt ittt e et e s eooeesossessossessess 1
1 Decodingand VIeWing .. oo oo e e ettt evonvoooeeeeess 3
2 COmMPOSING . v eeeeeeeessessoneoeoessssssssnsnnas 9
3 Interface FUNCtions « v v v o v v v v v v v v v vvvvooooceessss 17
4 Basic FUnctionS. . e e v eeeeeeoooosoosessossessossse 21
5 Standards ..o v v v ittt ettt i i i 29
6 Index...eeeeeeeeeeeseeoeeooeoosoosoosossonsse 31

11

Emacs MIME Manual

Table of Contents

Emacs MIME.t iinennnn. 1
1 Decoding and Viewing 3
1.1 DISSeCtiOnt 3
1.2 Non-MIME 3
1.3 Handles 4
1.4 Displayo 4
1.5 Display Customization............... 5
1.6 Files and Directories. 6
1.7 New VIeWerS. e 7
2 CompoSINgG ...vvvttterrinnnnneensnnsnnnas 9
2.1 Simple MML Example 9
2.2 MML Definitioncou i 9
2.3 Advanced MML Example........... i, 11
2.4 Encoding Customization................ 13
2.5 Charset Translation 14
2.6 CONVEISION . . v vttt e e e 14
2.7 Flowed text.o 15
3 Interface Functionsco..... 17
4 BasicFunctions...........ooeieieenen.. 21
4.1 12045 . oo 21
4.2 1IC2231 . 21
4.3 1etf=drums . ..o 22
4.4 TIC2047T . .o 22
4.5 time-date 23
BB gD et 25
A7 basebd. . ..o 26
4.8 binhex. 26
4.9 uudecode 26
AL0 YONC. . ottt e 26
411 TICI843 . .o 27
412 mailecap ... 27
5 Standards.........c.oiiiiiiiiiiii i, 29

v

Emacs MIME Manual

	Emacs MIME
	Decoding and Viewing
	Dissection
	Non-MIME
	Handles
	Display
	Display Customization
	Files and Directories
	New Viewers

	Composing
	Simple MML Example
	MML Definition
	Advanced MML Example
	Encoding Customization
	Charset Translation
	Conversion
	Flowed text

	Interface Functions
	Basic Functions
	rfc2045
	rfc2231
	ietf-drums
	rfc2047
	time-date
	qp
	base64
	binhex
	uudecode
	yenc
	rfc1843
	mailcap

	Standards
	Index

