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Introduction

A Markov Chain Monte-Carlo (MCMC) algorithm is a powerful tool to explore a given space of
parameters. The aim of this “tutorial” is to give a ready-to-use recipe for rapidly writing such an
algorithm.

MCMC algorithms are useful in many situations but it is especially recommended to use them
for solving optimisation problems such as the minimisation of a function.

Basic MCMC algorithm: Metropolis

Consider a m-dimensional parameter space and a vector ~θ of this space.
The first idea is to randomly sample the vectors of this space. Let k denote the kth iteration

and i the ith component of the ~θ vector. The sampling then reads, using a multidimensional
Central-Limit Theorem argument:

θ
(i)
k+1 = θ

(i)
k + δθiN (0, 1).

where N (0, 1) denotes the normal (Gaussian) law of mean 0 and variance 1.
Then one has to consider the likelihood ratio γ = Lk+1

Lk
1 to choose whether to accept the move.

The conditions are as follows:

• If γ ≥ 1: Accept the move.

• If γ < 1: Choose a random number r between 0 and 1.

– If r < γ: accept the move.

– Else: reject it.

This is the simplest case of MCMC algorithm.
The best-fit parameters may be determined by taking the mean value (or the median) of all

visited values. But be careful, there is is a so-called burn-in period where the algorithm re-
ally searches its way through the parameter space and it must not be taken into account in the
determination of the best-fit parameters.

The acceptance rate η is defined as:

η =
# accepted moves

# total moves

1We consider the case of the minimisation of the χ2 with Gaussian errors in a fitting problem, L = exp(−χ2/2).
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Roberts, Gelman and Gilks 2 have proved that provided some assumptions the ideal acceptance
rate is η = 0.234. The hypotheses required by the Roberts, Gelman and Gilks theorem concern
the proposal distribution f (we chose a Gaussian):

• Independance: F (~θ) =
∏m

i=1 f(θi).

• Regularity: f ∈ C2(R).

• Generalisation to the case: f = fi.

It is easily understandable that the difficulty lies in the choice of the δθi steps values. Too
small δθi would cause the algorithm to explore only a small zone of the parameter space whereas
too high values would lead to a inaccurate exploration.

Parameters correlations

In real-life cases one often encounters correlated parameters. These correlations have a disastrous
effect on the algorithm presented above. Indeed, the exploration of the space is no longer efficient.
At least two approaches may be chosen.

• Variance-Covariance matrix approach.

• Preliminary orthogonalisation of the parameter space.

Variance-Covariance matrix

The variance-covariance matrix V is defined as:

Vi,j = cov(θi, θj), ∀(i, j) ∈ [[0;m]]2

Vi,i = var(θi)

with:

cov(θi, θj) =
N∑
k=1

(θ
(i)
k − θ(i))(θ

(j)
k − θ(j))

σ2
k

var(θi) =
N∑
k=1

(θ
(i)
k − θ(i))2

σ2
k

This matrix can be built after a full preliminary MCMC run and its diagonalisation leads to
the construction of a space of uncorrelated parameters. It is merely a change-of-basis procedure.

However, a full MCMC run takes a lot of time, especially if the parameter space is complicated.

2Roberts, J. O., Gelman A and Gilks, W. R. Weak Convergence And Optimal Scaling of Random Walk Metropolis
Algorithms, The Annals of Applied Probability, 1997
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Preliminary orthogonalisation

To avoid losing time, one can think of orthogonalising the parameter space before running the
MCMC algorithm. This can be done via a Gram-Schmidt procedure as proposed by N. Kains in
his PhD thesis (2010) for gravitational microlensing light-curve fitting.

Consider a model µ depending on time and on the parameters θi
3 and consider the following

vectors:

Pi = t

(
∂µ

∂θi
(tj)

)
j=1···Nmes

The general Gram-Schmidt procedure taims at creating an orthonormalised basis (ek) from an
initial basis (vk):

uk = vk −
k−1∑
j=1

Puj
(vk)

and
ek =

uk

‖uk‖

with:

Pu(v) =
u · v
u · u

u

the projection operator of the vector v on the
vector u.

with the dot product:

A ·B =
Nmes∑
i=1

A(ti)B(ti)

σ2
i

Applying this procedure to the Pi vectors, one is able to compute the corresponding Bi vectors
of the uncorrelated parameter space:

Bi = t

(
∂µ

∂βi
(tj)

)
j=1···Nmes

Where the βi parameters are the uncorrelated parameters one sought.
The change-of-basis is done via the matrices T and S:

Tij =


Pi·Bj

Bj ·Bj
i ≥ j

0 i < j

~β = S~θ, S = T−1

and

Bi =
i∑

j=1

SijPj

3This may be applied to other model such as spectra.
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