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Abstract

In this paper, we prove that if R1, . . . ,Rm are Anzai cocycles ofT2 (i.e. on
the form Ri(x, y) = (x+αi, y+βi(x)), and if f1, . . . , fm are C∞-close to R1, . . . ,Rm

and satisfy some diophantine condition, then considering the Markov sys-
tem xn+1 = fin (xn) where (in) is a sequence of i.i.d. variables on {1, . . . ,m}, for
every stationary measure of this system at least one associated Lyapunov
exponent is negative unless f1, . . . , fm are simultaneously conjuted to Anzai
cocycles with a smooth conjugation close to a linear action.

1 Introduction

Krikorian and Dolgopyat studied in [1] Markov system on Sd (d ≥ 2) of the
form xn+1 = fin (xn), where (in) is an i.i.d sequence on {1, . . . ,m}, and f1, · · · , fm
are smooth diffeomorphisms C∞-close to rotations R1, . . . ,Rm whose action on
Sd is minimal, and proved that for each stationary measure of this system,
at least one associated Lyapunov exponent is non-positive unless f1, . . . , fm are
simultaneously conjugated to rotations, with a conjugation C∞-close to Identity.

Our purpose is to obtain an analogous result on Td: if f1, . . . , fm are diffeo-
morphisms of Td close to rotations, does nullity of Lyapunov exponents imply
simultaneous conjugation? We proved in a previous paper that the answer
is yes when d = 1, under some diophantine condition on rotations numbers
ρ( f1), . . . , ρ( fm). If d ≥ 2, it does not hold anymore. Indeed, if each function fi is
on the form

fi(x1, . . . , xd) = (x1 + α1, x2 + α2(x1), x3 + α3(x1, x2), . . . , xd + αd(x1, . . . , xd−1)) (1)

where αk is a smooth map on Tk−1, then it is not difficult to show that all
the Lyapunov exponents of the system are null, though there is not in general
simultaneous conjugation to rotations since in general, the fi’s do not commute.
Thus, the natural extention of the result would be rather:
if f1, · · · , fm are diffeomorphisms ofTd C∞-close to diffeomorphisms of the form
(1), does nullity of Lyapunov exponents implies simultaneous conjugation of
f1, . . . , fm to diffeomorphisms of the form (1)? In this paper we will prove this
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assertion, under some diophantine condition, in the case d = 2. Moreover, we
will also prove that simultaneous conjugation is equivalent to some algebraic
relation between f1, . . . , fm (precisely: the group of diffeomorphisms generated
by f1, . . . , fm is solvable of order 2, that is, for every i, j, k, l, fi f j f−1

i f−1
j and

fk fl f−1
k f−1

l commute. This can be viewed as an analog of Moser’s theorem
[2] which states that in a perturbative context, conjugation to translation is
equivalent to the fact that the diffeomorphisms commute).

2 Notations and results

Let Td = Rd/Zd be the d-dimensional torus. We will identify functions on Td

with their liftings on Rd by the map x 7→ x +Zd. Thus, in this context, we will
denote:

• Ck(Td,Rn) the space of the Ck functions on Rd into Rn, 1-periodic in each
variable, or only Ck(Td) if n = 1. If k < +∞, we endow Ck(Td) with the
norm ‖ϕ‖k = sup|α|≤k,x∈Rd |∂αϕ(x)| , and we endow C∞(T2) with the metric

d∞(ϕ,ψ) =
∑

k∈N

min(1, ‖ϕ − ψ‖k)
2k

• Di f f k(Td) the space of the functions which induce a Ck diffeomorphism of
Td, that is the bijective functions f : Rd → Rd of the form f (x) = Ax +φ(x)
where A ∈ Sld(Z), φ ∈ Ck(Td,Rd). A is the linear part of f , and φ its periodic
part.

• Di f f k
0 (Td) the connected component of Id in Di f f k(Td), that is functions

of Di f f k(Td) whose linear part is Id.

Let (Ω,F ,P) be a finite probability space. If E is one of the function
spaces described above, we will denote by Ẽ the space of random variables
f : ω 7→ fω from Ω into E. Such a random variable f will be called random
function/diffeomorphism, and if x belongs to Td, f (x) will denote the random
variable ω 7→ fω(x). If ‖ · ‖α is some functional norm and ϕ a random map, we
will denote

|||ϕ|||α = E
[
‖ϕ‖2α

] 1
2 .

A probability measure µ is said stationary for f ∈ D̃i f f 0(Td) if E[ f∗µ] = µ. A
stationary measure is said ergodic if it is extremal in the convex set of stationary
measures.

If f = Id + Φ ∈ D̃i f f 0
0 (Td), we will call random rotation vector of f a random

variable X on Rd of the form X =
∫
Td φdµ where µ is a stationary measure of f .
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If A, σ are positive reals, a random variable Θ in Rd will be said (A, σ)-
diophantine if

∀q ∈ Zd,E

[
inf
p∈Z
|q.Θ − p|

]
≥ A
|q|σ .

From now on we will essentially work in T2:
We will call Anzai cocycles the maps of Di f f∞(T2) of the form R(x, y) =

(x + α, y + β(x)). We will write β̂ as a shortcut for β̂(0) =
∫
T
β(x)dx.

If f belongs to D̃i f f
1
(T2) and µ is a stationary ergodic measure of f , then

letting ( fn) be a sequence of independant copies of f and Fn = fn−1 ◦ · · · ◦ f0, we
set 

γ1( f , µ) = lim
n→+∞

1
n
E

∫

T2
ln ‖dFn(x)‖dµ(x)

γ2( f , µ) = lim
n→+∞

1
n
E

∫

T2
ln ‖dFn(x)−1‖−1dµ(x)

the Lyapunov exponents of f associated to µ.

Theorem 1. Let A, σ,M0 > 0. There exists ε0 > 0 such that for every random
Anzai cocycle R satisfying d∞(R, Id) ≤ M0, and for every random diffeomorphism f
in D̃i f f

∞
0 (T2) satisfying d∞( f ,R) ≤ ε0 and admitting a (A, σ)-diophantine random

rotation vector, the following assertions are equivalent:
(I) γ2( f , µ) ≥ 0 for some probability measure µ stationary for f .
(II) There exists a solvable subgroupG of Di f f 0

0 (T2) such that f ∈ G almost surely.
(III) f is smoothly conjugated to a random Anzai cocycle, by a conjugation C∞-close

to a linear automorphism of T2.

Remark: Random rotation vectors are not in general invariant by conjuga-
tion. But it is when the stationary measure of f is almost surely invariant by
f , which is the case when f is conjugated to a random Anzai cocycle. (Anzai
cocycles are Lebesgue invariant).

(III) trivially implies (I) and (II) (and in fact implies more precisely that
γi( f , µ) = 0 (i = 1, 2) and that f almost surely belongs to some solvable sub-
group of Di f f0(T2) with index 2) ,thus we will be interest with the converse
implications. The way we will use assumption (II) relies on the following
proposition:

Proposition 1. Let X a compact space, and G a solvable group of homeomorphisms of
X. Then there exists a G-invariant probability measure µ (that is g∗µ = µ for every g
in G).

Proof. Let G a solvable group of homeomorphisms of X. Thus, there exists a
chain of subgoup G0 = {Id},G1, . . . ,Gn−1,Gn = G such that for 0 ≤ i ≤ n − 1,
Gi C Gi+1 and Gi+1/Gi is abelian. Let Π(X) = C0(X)′ the set of probability
measures on X endowed with the weak topology, andMi the set ofGi-invariant
probability measures, which is convex and closed in Π(X). We assume that
Mi , ∅ for some i, and then we define for f ∈ Gi+1 the linear operator T f on
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Mi by T f (µ) = f∗µ. Since Gi+1 C Gi, for every g in Gi and every µ ∈ Mi we
have ( f−1g f )∗µ = µ and so g∗( f∗µ) = f∗µ, thus T f (µ) = f∗µ ∈ Mi. Moreover,
if f , g ∈ Gi+1, then f−1g−1 f g ∈ Gi, so for every µ inMi, ( f−1g−1 f g)∗µ = µ and
so T f ◦ Tg(µ) = Tg ◦ T f (µ). Thus, (T f ) f∈Gi+1 is a commuting family of linear
operators of Mi into itself. By Kakutani-Markov fixed point theorem, there
exists a common fixed point of these operators inMi, that is there exists µ in
Mi such that f∗µ = µ for every µ in Gi+1, soMi+1 , ∅. By immediate induction,
Mn , ∅.

�

We recall here properties of Ck-calculus we will need in the sequel:

Proposition 2. See [1]
i) For every φ, ψ in Ck(T2),

‖ϕψ‖k ≤ C(k)(‖φ‖k‖ψ‖0 + ‖φ‖0‖ψ‖k)

ii) For every f = P + φ and g = Q + ψ in Di f f k(T2) such that ‖ψ‖ ≤M0,

‖ f ◦ g − P ◦Q‖ ≤ C(k,M0)(‖P‖.‖ψ‖k + ‖Q‖.‖φ‖k + ‖φ‖k‖ψ‖k)

iii) For every f = P + φ in Di f f k(T2) such that ‖φ‖1 ≤ 1
2‖P‖ ,

‖ f−1 − P−1‖k ≤ C(k)‖ f − P‖k

2.1 Scheme of the proof

We describe here the differents steps of the proof:

• Step 1: If R is a random Anzai map whose random rotation vector (α, β̂)
satisfies a diophantine condition, and if we denote T0 : ϕ 7→ E[ϕ ◦ R]
the associated transition operator, for ψ in C∞(T2) we will prove that the
cohomological equation

ϕ − T0ϕ = ψ −
∫

T2
ψ(z)dz

admits a solution ϕ in C∞(T2) whose norms of derivatives are controlled
by derivatives of ψ.

• Step 2: Using estimates of step 1, we prove that a random diffeomorphism
ofT2 close to R has stationary measures close to Lebesgue measure, notic-
ing that such a stationary measure will be small on functions of the form
ϕ − T0ϕ. Moreover, by a finer analysis we will obtain a more precise ap-
proximation of stationary measures by some density measure (1+h(z))dz,
where h is small.
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Next, we conjugate the diffomorphism by a conjugation close to Identity
in order to vanish the term h(z)dz. Thus, the new diffeomorphism has
stationary measures closer to Lebesgue measure.

• Step 3: Using the formula

γ1( f , µ) + γ2( f , µ) = E

∫

T2
ln det dz f dµ(z)

(dz f is the differential of f at point z), whenµ is close to Lebesgue measure,
we verify that the condition γ2( f , µ) ≥ 0 implies by Jensen inequality some
uniform estimates from which we deduce that Lebesgue mesure is close
to be invariant by realisations of f , and that in fact, γ1( f , µ) and γ2( f , µ)
are close to 0.

• Step 4: We study the action of the differential of f on the space of vectorial
lines ofR2 denotedP(R2) (which can be identified to T): we define a nat-
ural extension of f on T2 × P(R2) by f̂ (z, h) = ( f (z), dz f (h)). Using step 2,
we can assume, up to conjugating the system, that stationary measures of
the cocycle have a projection onT2 close to Lebesgue measure. Moreover,
using analog arguments we can also assume that stationary measures of
f̂ are close to product measures.

When f is close to a translation, dz f is close to the identity, and by Taylor
expansions the transition operator S of the cocycle has on C∞(T) the form,
up to negligibles terms:

Sϕ(h) ≈ a(h)ϕ′(h) + b(h)ϕ′′(h),

with b ≥ 0. Next we prove a dichotomy:

-If b has a bound by below not too small, this implies some ellipticity
on the operator S and then stationary measures can be approximated by
some density dz ⊗ g(h)dh, where g is smooth and has a controlled size.

-If there exists h such that b(h) is very small, then this direction h is close
to be invariant by dz f , uniformly in z.

If the first case of this alternative occurs, then using that the Lyapunov
exponent of the cocycle is close to 0 (consequence of the fact that Lya-
punov exponents of f are close to 0), we prove that the cocycle is close to
be linearizable, that is conjugated to one on the form (z, h) 7→ ( f (z), eiω(z)h)
up to negligible terms. And we prove next that such a linearization is im-
possible in this context, and so that the first case cannot occur. Thus, the
second case of the alternative necessarly occurs and there exists a direc-
tion h close to be invariant by the cocycle. It is then not difficult to deduce
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that f is linearly conjugated to a diffeomorphism close to an Anzai cocycle.

When f is not close to a translation, using a conjugation of the cocycle
by (z, h) 7→ (z,D(h)) where D is some diagonal matrix, we can obtain a
cocycle whose second term is close to the identity, and thus use previous
arguments and prove the same result in this case, and more precisely
in this case the diffeomorphism f is close to an Anzai cocycle without
algebraic conjugation.

• Step 5 At this point we have proved that a random diffeomorphism close
to a diophantine Anzai cocyle whose Lyapunov exponents are positive
is conjugated to a random diffeomorphism closer to an Anzai map, and
in general, the algebraic part of the conjugation is the identity. Iterating
this fact, by the use of classical KAM methods we prove that the random
diffeomorphism is conjugated to an Anzai cocycle.

3 Cohomological equation

For all the sequel, we will assume σ and M0 are fixed, and we will not explicit
the dependence of constants which will appear in σ and M0. We will neither
explicit their depedence on A, but we will need the easily checkable fact that
this dependance is polynomial (there are bounded by CA−m for some m > 0 with
C not depending on A) We will use the notation O(Z) to represent a quantity
whose absolute value is bounded by CZ for some constant C, and if E is some
normed vectorial space, OE(Z) will represent an element of E whose norm is
bounded by CZ.

Let R : (x, y) 7→ (x + α, y + β(x)) be a random Anzai cocycle, T0 the as-
sociated transition operator defined by T0ϕ = E[ϕ ◦ R], β̂ =

∫
T
β(x)dx and

∆ = |||R ◦ R̃− R̃ ◦R|||L2(T2) where R̃ is an independant copy of R. We will assume
that (α, β̂) is (A, σ)-diophantine and that d∞(R, Id) ≤M0.

If k1 and k2 are two integers and ϕ is a C∞ function on T2, we will denote

‖ϕ‖k1,k2 = sup
i1,i2∈N,0≤ i1

k1
+

i2
k2
≤1

∥∥∥∥∥∥
∂i1+i2ϕ

∂xi1∂yi2

∥∥∥∥∥∥
L2(T2)

(with the convention 1
0 = +∞, 0

0 = 0).

Proposition 3. The operator I − T0 is a bijection from the space

E0 =

{
ϕ ∈ C∞(T2)|

∫

T2
ϕ(x, y)dxdy = 0

}

onto itself. Moreover:
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i)For every integer k there exists an integer K such that for every ψ in E0,

‖(I − T0)−1ψ‖k ≤ C‖ψ‖K
for some C = C(k).

ii)If ∆ , 0, there exists an integer a such that for every integers k1, k2 ≥ 1 and
every ψ in E0,

‖(I − T0)−1ψ‖k1,k2 ≤
C

∆8k1
‖ψ‖k1+a,k2+ak1 ,

for some constant C = C(k1, k2).

iii)For every δ > 0 and every integer p, there exists an integer k0 such that for every
ψ in E0, there exists ϕ in E0 such that for every k1 and k2 larger thant k0,

{
‖ϕ‖k1,k2 ≤ C‖ψ‖(1+δ)k1,(1+δ)k2

‖(I − T0)ϕ − ψ‖k1,k2 ≤ C∆p‖ψ‖(1+δ)k1,(1+δ)k2

for some constant C = C(δ, p, k1, k2).

Proof. We will use the decomposition of the space E0 on two subspaces E0 =
E00 ⊕ F where

E00 =

{
ϕ ∈ C∞(T2)|∀x ∈ T,

∫

T

ϕ(x, y)dy = 0
}

and F is the subspace of functions of E0 which depend only on the first variable.
Notice that the spaces E00 and F are stable by T0, and by the derivations ∂1
and ∂2. It is easy to check that I − T0 is a bijection of F onto itself satisfying
estimates i),ii) and iii) (it satisfies in fact stronger estimates), since for ϕ in F,
T0ϕ(x) = E[ϕ(x + α)], so that the cohomological equation ϕ − T0ϕ = ψ can be
solved using Fourier series expansion.. Thus, we will mainly study the restric-
tion of I − T0 on E00.

Up to replacing R by URU−1 with U(x, y) = (x, y + u(x)), u being defined by
the relation u(x) −E[u(x + α)] = E[β(x) − β̂] (see Lemma 1 of previous chapter),
we will from now on assume that

∀x ∈ T,E[β(x) − β̂] = 0.

If R̃ is an independant copy of R, then

(R ◦ R̃ − R̃ ◦ R)(x, y) = (0, (β(x + α̃) + β̃(x)) − (β̃(x + α) + β(x))).

Since E[β̃] = constant,

E[R ◦ R̃ − R̃ ◦ R|α, β] = (0,T0β − β),
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and in consequence
|||T0β − β|||L2(T) ≤ ∆.

and for every integer k,

|||β − β̂|||k ≤ C|||T0β − β|||k+2σ ≤ C
√

∆

for some C = C(k).

When ∆ = 0, this implies that R is almost surely a translation on T2: in this
case we do not need to use the previous decomposition of E0, Proposition 3 can
be proved by Fourier arguments:

Lemma 1. If R is almost surely a translation, then (I − T0) is a bijection from E0 onto
itself, then for every δ > 0 there exists an integer k0 such that for every integers k1 and
k2 larger than k0 and for every ψ in E0,

‖(I − T0)−1ψ‖k1,k2 ≤ C‖ψ‖(1+δ)k1,(1+δ)k2

for some C = C(δ, k1, k2).

Proof. The equation ϕ − T0ϕ = ψ is equivalent to

∀p = (p1, p2) ∈ Z2, ϕ̂(p)(1 − E[e2iπ(p1α+p2β)]) = ψ̂(p)

Thus defining ϕ by

ϕ(x) =
∑

p∈Z2−{0}

ψ̂(p)
1 − E[e2iπ(p1α+p2β)]

e2iπ(p1x+p2 y),

we have ϕ − T0ϕ = ψ and using that

|1 − E[e2iπ(p1α+p2β)]| ≥ A2

|p1|2σ + |p2|2σ

we deduce that ψ is C∞ and that there exists an integer a such that

‖ϕ‖L2(T2) ≤ C(‖∂a
1ψ‖L2(T2) + ‖∂a

2ψ‖L2(T2)).

If k1 and k2 are larger than a
δ and if i1 and i2 are integers satisfying i1

k1
+ i2

k2
≤ 1,

then since (I − T0)∂i1
1 ∂

i2
2ϕ = ∂i1

1 ∂
i2
2ψ we get by the previous inequality

‖∂i1
1 ∂

i2
2ϕ‖L2(T2) ≤ C(‖∂i1+a

1 ∂i2
2ψ‖L2(T2) + ‖∂i1

1 ∂
i2+a
2 ψ‖L2(T2)).

with
i1 + a

(1 + δ)k1
+

i2
(1 + δ)k2

=
1

1 + δ

[( i1
k1

+
i2
k2

)
+

a
k1

]
≤ 1

so that ‖∂i1+a
1 ∂i2

2ψ‖L2(T2) ≤ ‖ψ‖(1+δ)k1,(1+δ)k2 , and ‖∂i1
1 ∂

i2+a
2 ψ‖L2(T2) ≤ ‖ψ‖(1+δ)k1,(1+δ)k2

in the same way. The result follows. �
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In the sequel, we will assume that ∆ , 0. Now we will prove the point iii)
of Proposition 3

Lemma 2. For every integer p and every δ > 0, there exists k0 such that for every
k1, k2 larger than k0 and every ψ in E0, there exists ϕ in C∞(T2) such that

{
‖ϕ‖k1,k2 ≤ C‖ψ‖(1+δ)k1,(1+δ)k2

‖(I − T0)ϕ − ψ‖k1,k2 ≤ C∆p‖ψ‖(1+δ)k1,(1+δ)k2 .

Proof. We set T̃0ϕ(x, y) = E[ϕ(x +α, y + β̂)]. This operator T̃0 is close to T0 when
∆ is small, in the sense that for every ϕ in E0,

‖(T0 − T̃0)ϕ‖k1,k2 ≤ C‖β − β̂‖k1‖ϕ‖k1,k2+1 ≤ C
√

∆‖ϕ‖k1,k2+1

Moreover, we know by Lemma 1 that I − T̃0 is invertible on E0. For ψ in E0,
we define functions ϕp and ψp by induction by ϕ0 = 0, ψp = (I − T0)ϕp and
ϕp+1 = ϕp + (I− T̃0)−1(ψ−ψp). Now let p inN, let us assume that for every δ > 0
if k1 and k2 are large enough we have

{ ‖ϕp‖k1,k2 ≤ C‖ψ‖(1+δ)k1,(1+δ)k2

‖ψp − ψ‖k1,k2 ≤ C∆
p
2 ‖ψ‖(1+δ)k1,(1+δ)k2 .

for some constant C = C(δ, k1, k2). Then

‖ϕp+1−ϕp‖k1,k2 = ‖(I−T̃0)−1(ψ−ψp)‖k1,k2 ≤ C‖ψ−ψp‖(1+δ)k1,(1+δ)k2 ≤ C∆
p
2 ‖ψ‖(1+δ)2k1,(1+δ)2k2 ,

hence

‖ϕp+1‖k1,k2 ≤ ‖ϕp‖k1,k2 + C∆

p
2 ‖ψ‖(1+δ)2k1,(1+δ)2k2 ≤ C‖ψ‖(1+δ)2k1,(1+δ)2k2

‖ψp+1 − ψ‖k1,k2 = ‖(T0 − T̃0)(ϕp+1 − ϕp)‖k1,k2 ≤ C‖ϕp+1 − ϕp‖k1,k2+1 ≤ C∆
p+1

2 ‖ψ‖(1+δ)2k1,(1+δ)2(k2+1)
.

We deduce by induction that ϕ = ϕ2p satisfies the claimed estimates. �

Lemma 3. There exists an integer k0 such that for every ϕ in E00,

‖ϕ‖L2(T2) ≤
C
∆8 ‖∂

k0
2 (ϕ − T0ϕ)‖L2(T2)

Proof. Let ε = E[‖∂k
2(ϕ ◦ R − ϕ)‖2L2(T2)]

1
2 = E[‖∂k

2(ϕ − ϕ ◦ R−1)‖2L2(T2)]
1
2 for some

integer k we will chose later. We have

ε2 = 2
∫

T2
∂k

2ϕ(x, y)2dxdy − 2
∫

T2
∂k

2ϕ(x, y)T0(∂k
2ϕ)(x, y)dxdy

=

∫

T2
ϕ∂2k

2 (ϕ − T0ϕ)dxdy

≤ 2‖ϕ‖L2(T2)‖∂2k
2 (ϕ − T0ϕ)‖L2(T2)

Notice that if S is a composition of n any copies (not necessarly independant)
of R or R−1, then

E[‖∂k
2(ϕ ◦ S − ϕ)‖2L2(T2)]

1
2 ≤ nε.
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Letting R̃ : (x, y) 7→ (x + α̃, y + β̃) be an independant copy of R, we set

S0 = R−1 ◦ R̃−1 ◦ R ◦ R̃,

which is on the form
S0(x, y) = (x, y + b(x))

where b(x) = −β(x + α) − β̃(x + α + α̃) + β(x + α̃) + β̃(x).
Next, letting Ri : (x, y) 7→ (x +αi, y + βi(x)) (i = 1, . . . , n) be n independant copies
of R for some n we will chose later, we set

S = (Rn ◦ · · · ◦ R1)−1 ◦ S0 ◦ (Rn ◦ · · · ◦ R1),

which is on the form
S(x, y) = (x, y + b(x + sn))

where sn = α1 + · · · + αn.
By the previous remark, we have

E[‖∂k
2(ϕ ◦ S − ϕ)‖2L2(T2)]

1
2 ≤ (2n + 2)ε.

Writing
ϕ(x, y) =

∑

p∈Z
ϕp(x)e2ipπy, (2)

we have

ϕ ◦ S(x, y) − ϕ(x, y) = ϕ(x, y + b(x + sn)) − ϕ(x, y)
=

∑

p∈Z
ϕp(x)(e2iπpb(x+sn) − 1)e2iπpy.

Seeing ϕp(x)(e2ipπb(x+sn) − 1) as a Fourier coefficient L2-norm of y 7→ ϕ ◦ S(x, y) −
ϕ(x, y) leads to

|ϕp(x)(e2ipπb(x+sn) − 1)| ≤ C
|p|k ‖ϕ ◦ S(x, ·) − ϕ(x, ·)‖k

Denoting u = E[e2ipπb], we have E[e2ipπb(x+sn)] = Tn
0 u(x) (we still denote T0 the

restriction of T0 on functions depending only of the first variable), and so

‖ϕp(Tn
0 u − 1)‖L2(T2) ≤ (2n + 2)ε,

hence ∥∥∥∥∥∥∥∥
ϕp


1
n

n−1∑

j=0

T j
0u − 1



∥∥∥∥∥∥∥∥
L2(T)

≤ (2n + 2)ε. (3)

Setting mp = E
∫
T

e2iπpb(t)dt, writing u = v − T0v + mp leads to
∣∣∣∣∣∣∣∣
1
n

n−1∑

j=0

T j
0u −mp

∣∣∣∣∣∣∣∣
≤ C‖u‖l0

n
≤ C|p|l0

n

10



for some constant C and integer l0, and so
∣∣∣∣∣∣∣∣
1
n

n−1∑

j=0

T j
0u − 1

∣∣∣∣∣∣∣∣
≥ |1 −mp| −

Cpl0

n
.

Choosing n =
2Cpl0

|1 −mp| , we obtain

∣∣∣∣∣∣∣∣
1
n

n−1∑

j=0

T ju − 1

∣∣∣∣∣∣∣∣
≥ |1 −mp|

2

and so (3) becomes

‖ϕp‖L2(T) ≤
Cnε
|1 −mp| ≤

Cpl0ε

|1 −mp|2
(4)

for some constant C.

Let us look for a lower bound for |1 −mp|. We have

|1 −mp| ≥ E
∫

T

(1 − cos(2πpb(t))dt ≥ 2π2E

∫

T

{pb(t)}2dt,

where {t} is the distance of t to Z. Next, for a fixed event, using that b̂(0) = 0,
we have the alternative:

-either there exists t0 such that |pb(t0)| = 1
2 , and then for |t − t0| ≤ 1

4|p|‖b′‖0 we
have

|pb(t) − pb(t0)| ≤ |p|‖b′‖0|t − t0| ≤ 1
4

hence {pb(t)} ≥ 1
4 , and hence
∫

T

{pb(t)}2dt ≥
∫

[
t0− 1

4|p|‖b′‖0
,t+ 1

4|p|‖b′‖0

]
dt
16

=
1

64|p|‖b′‖0 ,

-or |pb(t)| < 1
2 for every t in T and

∫

T

{pb(t)}2dt =

∫

T

(pb(t))2dt = p2∆2.

Thus,
(
E

[∫

T

{pb(t)}2dt
])−1

≤ E

(∫

T

{pb(t)}2dt
)−1 ≤ E

[
64|p|‖b′‖0 +

1
p2∆2

]
≤ C|p|∆2

for some C, and

|1 −mp| ≥ C
|p|∆2 .

11



Finally, using these lower bounds of |1 −mp|, (4) becomes

‖ϕp‖L2(T) ≤
Cε

|p|k−l0−2∆4
,

and, choosing k = l0 + 4, we have by (2)

‖ϕ‖L2(T2) ≤
∑

p∈Z
‖ϕp‖L2(T) ≤

Cε
∆4 ≤

C
∆4 ‖ϕ‖

1
2

L2(T2)‖∂2k
2 (ϕ − T0ϕ)‖

1
2

L2(T2),

and the result follows. �

Lemma 4. There exists an integer a such that for every ϕ in E0 and every integers k1
and k2 larger than 1,

‖ϕ‖k1,k2 ≤
C

∆8k1
‖ϕ − Tϕ‖k1,k2+ak1

Proof. The relation (I−T0)∂1ϕ = ∂1(ϕ−T0ϕ)−E[β′∂2ϕ◦R] leads to the inequality

‖∂k1
1 (I − T0)∂1ϕ‖L2(T2) ≤ ‖∂k1+1

1 (I − T0)ϕ‖L2(T2) + C‖∂k1
1 ∂2ϕ‖L2(T2)

Thus, for every positive integer j less than k1,

‖∂k1− j
1 (I − T0)∂ j

1ϕ‖L2(T2) ≤ ‖∂k1−( j−1)
1 (I − T0)∂ j−1

1 ϕ‖L2(T2) + C‖∂k1−1
1 ∂2ϕ‖L2(T2),

and we deduce by succesive use of this inequality that

‖(I − T0)∂k1
1 ϕ‖L2(T2) ≤ ‖∂k1

1 (I − T0)ϕ‖L2(T2) + C‖∂k1−1
1 ∂2ϕ‖L2(T2)

for some constant C. Next, Using Lemma 3 and the fact that ∂2 and T0 commute,
we get

‖∂k1
1 ∂

k2
2 ϕ‖L2(T2) ≤

C
∆8 ‖(I−T0)∂k1

1 ∂
k2+k0
2 ϕ‖L2(T2) ≤

C
∆8 (‖∂k1

1 ∂
k2+k0
2 (I−T0)ϕ‖L2(T2)+‖∂k1−1

1 ∂k2+k0+1
2 ϕ‖L2(T2))

and by iteration of this inequality,

‖∂k1
1 ∂

k2
2 ϕ‖L2(T2) ≤

C
∆8k1

k1∑

i=0

‖∂k1−i
1 ∂k2+ai

2 (I − T0)ϕ‖L2(T2)

with a = k0 + 1. Now, If i1, i2 are integers satisfying i1
k1

+ i2
k2
≤ 1, then

‖∂i1
1 ∂

i2
2ϕ‖L2(T2) ≤

C
∆8k1

i1∑

i=0

‖∂i1−i
1 ∂i2+ai

2 (I − T0)ϕ‖L2(T2)

with
i1 − i

k1
+

i2 + ai
k2 + ak1

≤ i1
k1

+
i2
k2

+
(
− 1

k1
+

a
k1 + a

)
i ≤ 1

12



hence
‖∂i1

1 ∂
i2
2ϕ‖L2(T2) ≤

C
∆8k1
‖(I − T0)ϕ‖k1,k2+ak1

and hence
‖ϕ‖k1,k2 ≤

C
∆8k1
‖(I − T0)ϕ‖k1,k2+ak1 .

�

Lemma 5. For every ψ in E00, there exists ϕ in E00 such that ϕ − Tϕ = ψ

Proof. Let ψ in E00. Using Lemma 3, we have for every n the inequality

‖Snψ‖L2(T2) ≤
C
∆8 ‖(I − T0)Snψ‖0,k0 =

C
∆8 ‖(I − Tn

0 )ψ‖0,k0 ≤
C
∆8 ‖ψ‖0,k0 ,

hence (Snψ) is bounded in L2(T2). Setting

ϕN =
1
N

N−1∑

n=0

Snψ,

we have
(I − T0)ϕN = ψ − 1

N
SNψ,

hence (I − T0)ϕN converges to ψ in L2(T2) as N tends to +∞. Since (Snψ) is
bounded in L2(T2), so does (ϕN) and there exists a subsequence of (ϕN) weakly
converging to some function ϕ in L2(T2), which satisfies (I − T0)ϕ = ψ.

Moreover, since ∂2 and T0 commute, for every integer k ∂k
2ϕ belongs to

L2(T2) and (I − T0)∂k
2ϕ = ∂k

2ψ.

For k1 inN, let us assume that ∂k1
1 ∂

k2
2 ϕ belongs to L2(T2) for every integer k2.

Then for every k2, we easily verify by induction on k1 that

∂k1
1 ∂

k2
2 ψ = (I − T0)∂k1

1 ∂
k2
2 ϕ + r

where ∂1∂
k′2
2 belongs to L2(T2) for every k′2. Next, denoting

∆hϕ(x, y) =
ϕ(x + h, y) − ϕ(x, y)

h
,

we have

∆h∂
k1
1 ∂

k2
2 ψ = (I−T0)∆h∂

k1
1 ∂

k2
2 ϕ+E[∂k1

1 ∂
k2
2 ϕ(x+α, y+β(x+h))−∂k2

2 ϕ(x+α, y+β(x+h))]+∆hr

and we deduce that (I−T0)∆h∂
k1
1 ∂

k2
2 ϕ converges in L2(T2) when h tends to 0, and

next that for every k′2, ‖(I−T0)(∆h∂
k1
1 ∂

k2
2 ϕ−∆h′∂

k1
1 ∂

k2
2 ϕ‖0,k′2 converges to 0 when h

and h′ tend to 0, and next by Lemma 3 that ∆h′∂
k1
1 ∂

k2
2 ϕ converges in L2(T2), and

so that ∂k1+1
1 ∂k2

2 ϕ belongs to L2(T2).
�
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Now, we can finish the proof of Proposition 3. At this point we have proved
that I − T0 is a bijection of E0 satisfying the estimates ii) and iii). Let us now
prove i). Let ψ in E0, and ϕ = (I − T0)−1ψ. By Lemma 2, we can find ϕ̃ such that
for k1, k2 large enough

{
‖ϕ̃‖k1,k2 ≤ C‖ψ‖2k1,2k2

‖(I − T0)(ϕ̃ − ϕ)‖k1,k2 = ‖(I − T0)ϕ̃ − ψ‖k1,k2 ≤ C∆p‖ψ‖2k1,2k2 .

Using Lemma 4, the second inequality implies that

‖ϕ − ϕ̃‖k1,k2 ≤
C

∆8k1
‖(I − T0)(ϕ − ϕ̃)‖k1+a,k2+ak1 ≤ ∆p−8k1‖ψ‖k̄1,k̄2

with k̄1 = 2(k1 + a), k̄2 = 2(k2 + ak1). Choosing p = 8k1, we deduce

‖ϕ‖k1,k2 ≤ ‖ϕ̃‖k1,k2 + ‖ϕ − ϕ̃‖k1,k2 ≤ C‖ψ‖k̄1,k̄2
.

�

4 Estimates on the stationary measure and the sum
of Lyapunov exponents, first conjugation

We fix a diophantine random Anzai cocycle R as in the previous section, f = R+ζ

in D̃i f f0
∞

(T2) a perturbation of R, and µ a stationary measure of f . For ϕ in
C∞(T2), we will denote

Uϕ = (I − T0)−1(ϕ − ϕ̂(0)).

If µ and ν are probability measures on T2, we denote

d∗k(µ, ν) = sup
{∫

T2
ϕdµ −

∫

T2
ϕdν|ϕ ∈ Ck(Td), ‖ϕ‖k ≤ 1

}
.

Proposition 4. There exists an integer K such that for every ϕ in C∞(T2), we have
∫

T2
ϕdµ =

∫

T2
ϕdz +

∫

T2
(~∇Uϕ).ζ̄dz + O(ε2‖ϕ‖K),

where ζ̄ = E[ζ ◦ R−1], ε = |||ζ|||K. In particular, if ζ̄ = constant + O(ε2), then
d∗K(µ, dz) = O(ε2).

Proof. For ϕ in C∞(T2), setting Tϕ = E[ϕ ◦ f ] and T0ϕ = E[ϕ ◦ R], we have
|Tϕ − T0ϕ| ≤ ε‖ϕ‖1. Using the T-invariance of µ, we get

∣∣∣∣∣
∫

T2
(ϕ − T0ϕ)dµ

∣∣∣∣∣ ≤ ε‖ϕ‖1.
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We now use Proposition 3. For ψ in C∞(T2), applying the previous inequality
to ϕ = Uψ gives for some C and K

∣∣∣∣∣
∫

T2
ψdµ −

∫

T2
ψdz

∣∣∣∣∣ ≤ Cε‖Uψ‖1 ≤ Cε‖ψ‖K.

Thus µ is equal to Lebesgue measure in first approximation. To get a more
precise approximation, we now write Tϕ − T0ϕ = E[(~∇ϕ ◦ R).ζ] + O(ε2‖ϕ‖2),
which gives by integration and our previous estimate on µ:

∫
T2 (ϕ − T0ϕ)dµ =

∫
T2 E[(~∇ϕ ◦ R).ζ]dµ + O(ε2‖ϕ‖2)

=
∫
T2 E[(~∇ϕ ◦ R).ζ]dz + O(ε2‖ϕ‖K)

=
∫
T2
~∇ϕ.ζ̄dz + O(ε2‖ϕ‖K).

Applying as previously this formula to ϕ = Uψ this gives for some K1:
∫

T2
ψdµ −

∫

T2
ψdz =

∫

T2
(~∇Uψ).ζ̄dz + O(ε2‖ψ‖K1 ).

�

Proposition 5. i) There exists a diffeomorphism G = Id + g such that, denoting
f̃ = G−1 f G = R + ζ̃:

• For any k1 ,k2 larger than 1,

‖g‖k1,k2 ≤
C

∆16k1
|||ζ|||k1+a,k2+ak1 .

for some C = C(k1, k2).

• For any k, there exists K such that

‖g‖k ≤ C|||ζ|||K
for some C = C(k).

• For any integer k, there exists an integer K such that
∥∥∥∥∥∥E

[
ζ̃ ◦ R−1 −

∫

T2
ζ̃(z)dz

]∥∥∥∥∥∥
k

≤ C|||ζ|||2K

ii) For any δ > 0 and integer p, there exists a diffeomorphism G = Id + g such that,
denoting f̃ = G−1 f G = R + ζ̃:

• For any k1 ,k2 large enough,

‖g‖k1,k2 ≤ C|||ζ|||(1+δ)k1,(1+δ)k2 .

for some C = C(k1, k2).
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• For any integer k, there exists an integer K such that
∥∥∥∥∥∥E

[
ζ̃ ◦ R−1 −

∫

T2
ζ̃(z)dz

]∥∥∥∥∥∥
k

≤ C(∆p|||ζ|||K + |||ζ|||2K)

Proof. Let G = Id + g in Di f f∞0 (T2) with ‖g‖1 = O(|||ζ|||k0 ) for some integer k0,
and let f̃ = G−1 f G = R + ζ̃. Setting ζ = (ζ1, ζ2), ζ̃ = (ζ̃1, ζ̃2) and G = (G1,G2) =
Id + (g1, g2), we have

{
ζ̃1 = ζ1 + (g1 − g1 ◦ R) + OL2(Ω)(|||ζ|||2k0

)
ζ̃2 = ζ2 + (β ◦ G1 − β) + (g2 − g2 ◦ R) + O(|||ζ|||2k0

),

hence, denoting T̃0ϕ = E[ϕ ◦R−1], η1 = E[ζ1 ◦R−1] and η2 = E[(ζ2 + β ◦G1 − β) ◦
R−1], we have {

ζ̃1 = η1 − (g1 − T̃0g1) + O(|||ζ|||2k0
)

ζ̃2 = η2 − (g2 − T̃0g2) + O(|||ζ|||2k0
) .

Thus, using Proposition 3 with T̃0 instead of T0 and denoting Ũ the associated in-
verse operator, setting g1 = Ũ

(
T̃0ζ1

)
and next g2 = Ũ

(
T̃0(ζ2 ◦ R−1 + (β ◦ G1 − β))

)

we obtain the point i). If instead we define g1 and g2 using the point iii) of
Proposition 3, we obtain the point ii). �

Proposition 6. If f = R + ζ̃ satisfies for some ε > 0 and some integer k0 large enough
the inequalities 

|||ζ|||k0 ≤ ε∥∥∥∥E
[
ζ ◦ R−1 −

∫
T2 ζ(z)dz

]∥∥∥∥
k
≤ ε2 ,

and if moreover γ1( f , µ) + γ2( f , µ) ≥ 0, or f∗µ = µ a.s., then we have,

det(dz f ) = 1 + OL2(T2)(ε
3
2 ).

where dz f is the differential of f at the point z.

Proof. By Proposition 4, d∗k(µ, dz) = O(ε2). In consequence, we have

γ1( f , µ) + γ2( f , µ) = E
∫
T2 ln det(dz f )dµ(z)

= E
∫
T2 ln det(dz f )dz + O(ε3)

= E
∫
T2 (det(dz f ) − 1)dz − 1

2E
∫
T2 (det(dz f ) − 1)2dz + O(ε3).

Since f is a diffeomorphism of T2,
∫
T2 det(dz f )dz = 1 hence

γ1( f , µ) + γ2( f , µ) = −1
2
E

∫

T2
(det(dz f ) − 1)2dz + O(ε3).

This gives the expected estimate when γ1( f , µ) + γ2( f , µ) = 0.
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To obtain this same estimate when f∗µ = µ a.s., we write that forϕ in C∞(T2),
∫

T2
ϕdµ =

∫

T2
ϕ(z)dz + O(ε2‖ϕ‖k)

and ∫

T2
ϕ ◦ f−1dµ =

∫

T2
ϕ( f−1(z))dz + O(ε2‖ϕ ◦ f−1‖k)

=

∫

T2
ϕ(z) det(dz f )dz + O(ε2‖ϕ‖k)

,

hence ∫

T2
ϕ(z)(det(dz f ))dz =

∫

T2
ϕ(z)dz + O(ε2‖ϕ‖k)

Setting ϕ = det(dz f ) − 1 and taking the expectation of the last formula, we get

E

∫

T2
(det(dz f ) − 1)2dz = O(ε3)

�

Thus, using the last two propositions, under assumption (I) or (II) of The-
orem 1 we can conjugate f to some f̃ which is close to be Lebesgue invariant.
In the next section, we will use more finely these assumptions in studying the
action of the differential of f̃ on the projective space P(R2), and we will obtain
that in fact f̃ is close to an Anzai cocycle, up to an algebraic conjugation.

5 Projective action

The aim of this section is to prove the following proposition:

Proposition 7. Assume that f = R + ζ satisfies assumption (I) or (II) of Theorem
1, and that in addition, E[β(x − α)] = β̂, and ‖E[ζ ◦ R−1 − ζ̂(0)]‖k ≤ M0ε2 for some
M0, k. Then, there exist δ0 > 0 such that for every κ > 0, if K is large enough and if
ε = ||| f − R|||K is small enough, there exists a matrix P in Sl2(Z) and an Anzai cocyle
R̃ : (x, y)→ (x + α̃, y + β̃(x)) such that |||P−1 f P− R̃|||0 ≤ Cε1+δ0 for some C = C(M0).
Morever, ‖P‖ ≤ Cε−κ, and P = Id if |||β′|||0 ≥ 2ε.

Proof. By proposition 6, we already know that

det(dz f ) = 1 + O(ε
3
2 ) (5)

To prove the more precise fact that f is close, up to an algebraic conjugation,
to a random Anzai cocycle, we will study the action of the random cocycle
(z, h) → ( f (z), dz f (h)) on T2 × P(R2). Notice that in the case where f is close to
a translation of T2, dz f is close to Id. And in the general case where f is close
to an Anzai cocycle, we can conjugate the cocycle by (z, h) → (z,D(h))) where
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D =

(
λ 0
0 1

λ

)
to obtain for an appropriated choice of λ a cocycle whose second

component is close to Id.

More precisely: Let m = |||β′|||0, λ ≥ 1 a real number we will choose later,

D =

(
λ 0
0 1

λ

)
and Mz = D(Jz f )D−1 where Jz f is the Jacobian matrix of f at point

z. Thus, Mz = Id + Nz with

N· =
(
∂1ζ1

∂2ζ1
λ

λ(∂1ζ2 + β′) ∂2ζ2

)
,

which satisfies ‖Nz‖ = O( ‖ζ‖1λ + λ‖β′‖0) = O(ε1) where we have set

ε1 =
ε
λ

+ mλ.

Let
uz = Id + ηz

the diffeomorphism of T induced by the projective action of Mz, that is such
that Mz(eiπθ)

|Mz(eiπθ)| = eiπuz(θ). Writing that

e2iπuz(θ) =
Mzeiπθ

Mzeiπθ
=

eiπθ + Nzeiπθ

e−iπθ + ¯Nzeiπθ
= e2iπθ

(
1 + 2Im(Nzeiπθ.e−iπθ) + O(‖Nz‖2)

)

leads to the estimate

η·(θ) = 1
2π Im(N·eiπθ.e−iπθ) + O(‖N·‖2)

= λ(∂1ζ2 + β′) cos2(πθ) + (∂2ζ2 − ∂1ζ1) cos(πθ) sin(πθ)
− ∂2ζ1

λ sin2(πθ) + O(‖N·‖2)
(6)

Finally, let U the random cocycle (z, θ) 7→ ( f (z),uz(θ)) on T2 × T, µ̂ a sta-
tionary measure of U, and µ, ν the projections of µ̂ on the first and second factor.

The probability µ is stationary for f , so we know by Proposition 4 that µ is
close to Lebesgue measure. Adapting the proof, we will prove that in fact, π is
close to a product measure:

Lemma 6. Under assumptions of Proposition 7 and previous notations, there exists
an integer k such that for every ϕ in C∞(T2 × T),

"

T2×T
ϕ(z, θ)dµ̂(z, θ) =

"

T2×T
ϕ(z, θ)dzdν(θ) + O(ε2

1‖ϕ‖k)

Proof. For ϕ in C∞(T2 × T),
!
T2×T ϕ(z, θ)dµ̂(z, θ) = E

!
T2×T ϕ( f (z),uz(θ))dµ̂(z, θ)

= E
!
T2×T ϕ(R(z), θ)dµ̂(z, θ) + O(ε1‖ϕ‖1)
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and so, for ψ ∈ C∞(T2 ×T), choosing ϕ(·, θ) = U
(
ψ(·, θ)

)
(where U is defined as

previously by Uϕ = (I − T0)−1(ϕ − ϕ̂(0)))
∫

T2
ψ(z, θ)dµ̂(z, θ) =

"

T2×T
ψ(z, θ)dzdν(θ) + O(ε1‖ψ‖k) (7)

Next, for ϕ in C∞(T2 × T),

E[ϕ( f (z),uz(θ))] = E[ϕ(R(z), θ)]+E[~∇zϕ(R(z), θ).ζ(z)]+E[∂θϕ(R(z), θ)ηz(θ)]+O(ε2
1‖ϕ‖2)

hence by (7)
!
T2×T(ϕ(z) − E[ϕ(R(z), θ)])dµ̂(z, θ) =

!
T2×T

~∇zϕ(z, θ)E[ζ(R−1(z))]dzdν(θ)
+

!
T2×T ∂θϕ(z, θ)E[ηR−1(z)(θ)]dzdν(θ)

+O(ε2
1‖ϕ‖k).

SinceE[ζi◦R−1] = ci+O(ε2) by assumption and ε ≥ ε1, the integral
!
T2×T

~∇zϕ(z, θ)E[ζ(R−1(z))]dzdν(θ)
is bounded by above by Cε2

1‖ϕ‖1 for some C. We estimate the integral!
T2×T ∂θϕ(z, θ)E[ηR−1(z)(θ)]dzdν(θ) thanks to (6). We have

∂2

(
E[ζi ◦ R−1]

)
= E[∂2ζi ◦ R−1]

∂1

(
E[ζi ◦ R−1]

)
= E[∂1ζi ◦ R−1] + E[β′∂2ζi ◦ R−1] = E[∂1ζi ◦ R−1] + O(ε2

1)
E[β′(x − α)] = 0,

hence E[ηR−1(z)(θ)] = O(ε2
1), and the integral

!
T2×T ∂θϕ(z, θ)E[ηR−1(z)(θ)]dzdν(θ)

is bounded by above by Cε2
1‖ϕ‖1.

Consequently,
"

T2×T
(ϕ(z) − E[ϕ(R(z), θ)])dµ̂(z, θ) = O(ε2

1‖ϕ‖k),

and choosing ϕ(·, θ) = U(ψ(·, θ)) for ψ in C∞(T2 × T) gives the result.
�

We do not still have any information on the measure ν. This is the aim of
the next lemma:

Lemma 7. For every δ > 0, we have the following alternative:

• either there exists θ0 such that

|||η(., θ0)|||L2(T2) ≤ ε1+δ
1

• or there exists a smooth density g(θ)dθ satisfying ‖g‖k ≤ Cε−δ̃1 ,
∥∥∥ln g

∥∥∥
k ≤ Cε−δ̃1

and d∗k(ν, g(θ)dθ) ≤ Cε
1
3−δ̃
1 for some C = C(k, δ) and δ̃ = δ̃(k, δ) = oδ→0(1).
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Proof. We set


η̄(θ) =

∫

T2
ηz(θ)dz

b(θ) =
1
2
E

∫

T

ηz(θ)2dz =
1
2
|||η(·, θ)|||2L2(T2)

, (8)

We have the estimates |||ηz|||k = O(ε1), ‖η̄‖k = O(ε2
1) and ‖b‖k = O(ε2

1). Moreover
we fix δ > 0, and we will assume that

b ≥ ε2+δ
1

onT.(if it does not hold, we have the conclusion |||η(·, θ)|||L2(T2) ≤
√

2ε1+ δ
2

1 ). With
this assumption, we want to approximate ν by a smooth density whose deriv-
atives are controlled.

If ϕ is a C∞ function on T, then
∫
T
ϕ(θ)dν(θ) = E

!
T2×T ϕ(uz(θ))dµ̂(z, θ)

= E
!
T2×T

(
ϕ(θ) + ϕ′(θ)ηz(θ) + 1

2ϕ
′′(θ)ηz(θ)2

)
dµ̂(z, θ) + O(ε3

1‖ϕ‖2)
=

∫
T
ϕ(θ)dν(θ) +

∫
T

(
η̄(θ)ϕ′(θ) + b(θ)ϕ′′(θ)

)
dν(θ) + O(ε3

1‖ϕ‖k),

hence ∫

T

(
η̄(θ)ϕ′(θ) + b(θ)ϕ′′(θ)

)
dν(θ) = O(ε3

1‖ϕ‖k). (9)

Thus, ν is small on the space {η̄ϕ′ + bϕ′′, ϕ ∈ C∞(T)}, so we will naturally try to
approximate ν by a density measure g(θ)dθ null on this space, that is such that
(η̄ − b′)g + bg′ is constant.

Sublemma 1. Let a, b in C∞(T2) such that ‖a‖k, ‖b‖k ≤ ε2
1 and inf b ≥ ε2+δ

1 for some
reals numbers ε, δ > 0 and integer k. Then there exists an unique smooth periodic
function g such that

∫
T

g(t)dt = 1 and ag + bg′ is constant. Moreover, g is positive,
‖g‖k ≤ Cε−δ̃1 and ‖ ln g‖k ≤ Cε−δ̃1 for some C = C(k, δ) and δ̃ = δ̃(k, δ) = oδ→0(1).

Proof. For c0 inR, g : R→ R is solution of the equation ag + bg′ = c0 if and only
if there exists d0 in R such that

g(θ) = d0e−Q(θ) + c0R(θ),

where Q(θ) = −
∫ θ

0
a(t)
b(t) dt and R(θ) =

∫ θ
0

eQ(t)−Q(θ)

b(t) dt. By Cauchy-Lipschitz theorem,
g is 1-periodic if and only if g(1) = g(0) since θ 7→ g(1 + θ) is solution of the
same equation, and so if and only if d0(e−Q(1) − 1) + c0R(1) = 0. Since R(1) is
clearly non null, we deduce that the space of 1-periodic functions g such that
ag + bg′ is constant has dimension 1.

If g in C∞(T) is such that ag + bg′ is constant equal to c0, then:
-If c0 = 0, g cannot vanish by Cauchy-Lipschitz theorem, unless it is identically
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null.
-If c0 , 0, at each point θwhere g vanishes we must have b(θ)g′(θ) = c0, so g′(θ)
has the same strict sign as c0. But if θ1 and θ2 are two consecutive zeros of g,
g′(θ1) and g′(θ2) cannot have same sign. Consequently, g cannot vanish on R.
Thus, unless g is identically null, g does not vanish on T, and in particular,∫
T

g(t)dt , 0.
In any case, there exists a unique function g such that ag + bg′ is constant and∫
T

g(t)dt = 1. Moreover, since g does not vanish, it is necessarly positive.

Let us assume now that ag+bg′ = c0 for some constant c0 and that
∫
T

g(t)dt =
1. Let θ0 be a point where g is minimal. Then g′(θ0) = 0 so |c0| = |a(θ0)g(θ0)| ≤
ε2

1 inf(g), and so ∣∣∣∣∣
g′

g

∣∣∣∣∣≤
∣∣∣∣∣
c0

bg

∣∣∣∣∣+
∣∣∣∣∣

a
b

∣∣∣∣∣ ≤
2
εδ1
.

For k ≥ 2, derivating k − 1 times the relation ag + bg′ = c0 gives

bg(k) +

k−1∑

j=0

q jg( j) = 0,

where q j is some linear combination of derivatives of a and b (in particular,
q j = O(ε2

1)). We deduce that

∣∣∣∣∣∣
g(k)

g

∣∣∣∣∣∣ ≤
1
|b|

k−1∑

j=0

|q j|
∣∣∣∣∣∣
g( j)

g

∣∣∣∣∣∣ ≤
C
εδ1

sup
0≤ j≤k−1

∣∣∣∣∣∣
g( j)

g

∣∣∣∣∣∣

for some C = C(k), and so by induction,
∣∣∣∣∣∣
g(k)

g

∣∣∣∣∣∣ ≤
C
εkδ

1

(10)

for some C = C(k).

For every θ,
∣∣∣∣∣g(θ) −

∫

T

g(t)dt
∣∣∣∣∣ ≤

∫

T

|g′(t)|dt ≤ 2
εδ1

∫

T

g(t)dt ≤ 2
ε2δ

1

so |g| ≤ C
εδ1

, and by (10), |g(k)| ≤ C
ε(k+1)δ

1

.

Finally, one can easily verify by induction that

(ln g)(k) =
∑

0≤i1+···+ik≤k

ai1,...,ik

(
g′

g

)i1

· · ·
(

g(k)

g

)ik
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where the ai’s depend only on k. It follows by (10) that ‖ ln g‖k ≤ Cε−k2δ
1 for some

C = C(k).
�

We will now prove Lemma 7. Let g be given by Sublemma 1 with b defined
in (8) and a = b′ − η̄, so that

ag + bg′ = ε2
1c0 (11)

for some constant c0. We will distinguish the cases where c0 is small and large.

Let us assume that |c0| ≥ ε1/3
1 , in which case we will prove that ν is close to

g(θ)dθ.
Notice that g(θ)dθ is null on the functions of the form η̄ϕ′ + bϕ′′, so if ψ in
C∞(T2) satisfies

∫
T
ψ(t)g(t)dt = 0, there exists ϕ such that ε2

1ψ = η̄ϕ′ + bϕ′′, and
we can assume

∫
T
ϕ(t)dt = 0 up to adding a constant to ϕ. In order to use

(9) and conclude that
∫
T
ϕdν is small, we need to estimate ‖ϕ‖k. Using that

(b′ − η̄)g + bg′ = ε2
1c0 or equivalently η̄g = (bg)′ − ε2

1c0, we write

ε2
1ψg = η̄gϕ′ + bgϕ′′ = ((bg)′ − ε2

1c0)ϕ′ + bgϕ′′ = (bgϕ′)′ − ε2
1c0ϕ

′.

If |bgϕ′| is maximum at θ0, (bgϕ′)′(θ0) = 0, hence

|c0ϕ
′(θ0)| = |ψ(θ0)g(θ0)| ≤ C

εδ̃1
‖ψ‖0,

and |c0(bgϕ′)(θ0)| ≤ ε2−δ̃
1 ‖ψ‖0. Thus,

‖c0bgϕ‘‖0 ≤ Cε2−δ̃
1 ‖ψ‖0.

But we know that b ≥ ε2+δ
1 , we have assumed that |c0| ≥ ε

1
3
1 , and if g is minimal

at point θ1, we have by (11)

|ε2
1c0| = |a(θ1)g(θ1)| ≤ Cε2

1|g(θ1)|,

so that g ≥ 1
C |c0| ≥ 1

Cε
1
3
1 . These lower bounds leads to

‖ϕ′‖0 ≤ ε−
2
3−δ̃

1 ‖ψ‖0.

Using this estimate, successive derivations of the relation ε2
1ψ = η̄ϕ′+bϕ′′ gives

‖ϕ‖k ≤ Cε−
2
3−δ̃

1 ‖ψ‖k for some C, and thus hence by (9),
∫

T

ψdν =
1
ε2

1

∫

T

(η̄ϕ′ + bϕ′′)dν = O(ε1‖ϕ‖k) = O(ε
1
3−δ̃
1 ‖ψ‖k),

hence d∗k(dν(θ), g(θ)dθ) = O(ε
1
3−δ̃
1 ), which proves Lemma 7 in the case |c0| ≥ ε

1
3
1 .
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Now we can assume |c0| ≤ ε
1
3
1 . For ϕ in C∞(T), applying (9) to ϕ1(θ) =∫ θ

0 (ϕ(t) − ϕ(0))dt gives

∫

T

(η̄ϕ + bϕ′)dν = ε2
1c̃0

∫

T

ϕ(θ)dθ + O(ε3
1‖ϕ‖k)

where ε2
1c̃0 =

∫
T
η̄(θ)dν(θ), and we also have

∫

T

(η̄ϕ + bϕ′)g(θ)dθ = −ε2
1c0

∫

T

ϕ(θ)dθ.

Thus, using Sublemma 1 we choose ϕ such that η̄ϕ′ + bϕ is constant with∫
T
ϕ(θ)dθ = 1 and ‖ϕ‖k ≤ Cε−δ̃1 . Thus we get c̃0 = −c0 + O(ε1−δ̃

1 ) = O(ε
1
3
1 ), and in

consequence, for every ϕ in C∞(T),
∫

T

(η̄ϕ + bϕ′)dν = O(ε
7
3
1 ‖ϕ‖k). (12)

We set A(θ) =
∫ θ

0
η̄(t)
b(t) dt, which satisfies |A′| ≤ Cε−δ1 for some C since η̄ = O(ε2

1)
and b ≥ ε2+δ

1 .

Sublemma 2. Let I = [θ0, θ1] an interval such that A does not have local minima on
]θ0 + εδ1, θ1 − εδ1[. Then there exists a real λ such that for every ϕ in C∞(T) supported
in I, ∫

T

ϕdν = λ

∫

T

ϕ(θ)
eA(θ)

b(θ)
dθ + O(ε

1
3−δ̃
1 ‖ϕ‖k)

.

Proof. Letψ in C∞(T) whose support is included in I, and satisfying
∫

I ψ(t) eA(t)

b(t) dt =

0. Then the functionϕ(θ) = ε2
1e−A(θ)

∫ θ
0

ψ(t)
b(t) eA(t)dt is 1-periodic, satisfies η̄ϕ+bϕ′ =

ε2
1ψ, has support in I, and:

-If θ ∈ [θ0, θ0 + εδ1], then for t in [θ0, θ], |A(t) − A(θ)| ≤ C and so |ϕ(θ)| ≤ eC

εδ1
‖ψ‖0.

-If θ ∈ [θ1 − εδ1, θ1], then using that ϕ(θ) = −e−A(θ)
∫ θ1

θ

ψ(t)
b(t) eA(t)dt, we get in the

same way |ϕ(θ)| ≤ eC

εδ1
‖ψ‖0.

-If θ ∈ [θ0 + εδ1, θ1 − ε2δ
1 ], then either A is increasing on [θ0 + εδ1, θ] and

|ϕ(θ)| ≤ e−A(θ)

eA(θ0+εδ1)|ϕ(θ0 + εδ1)| + ε2
1

∫ θ

θ0+εδ1

|ψ(t)|
b(t)

eA(t)dt

 ≤
eC + 1
εδ1
‖ψ‖0,

or A is decreasing on [θ, θ1 − ε2δ
1 ] and in the same way,

|ϕ(θ)| ≤ e−A(θ)

eA(θ1−ε2δ
1 )|ϕ(θ1 − εδ1)| + ε2

1

∫ θ1−ε2δ
1

θ

|ψ(t)|
b(t)

eA(t)dt

 ≤
eC + 1
εδ1
‖ψ‖0.
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Thus we conclude that ‖ϕ‖0 ≤ C
εδ1
‖ψ‖0. Then, derivating the equality η̄ϕ+ bϕ′ =

ψ, we have by induction ‖ϕ‖k ≤ C‖ψ‖k for some C, and so by (12)
∫
T
ψdν =

O(ε
1
3−δ
1 ‖ψ‖k). �

Now if I and J are two successive intervals where previous lemma applies,
with an intersection of lenght superior to εδ1, we can approximate ν by a density
of the form h1(θ) = c1eA(θ)b(θ)−1 on I and h2(θ) = c2eA(θ)b(θ)−1 on J, with for
exemple c1 ≤ c2. Let us cut I ∪ J in three intervals I1, I2, I3 of lenght ≥ 1

3ε
δ with

I1 ⊂ I, I2 ⊂ J, I3 ⊂ I ∩ J. Let χ a smooth function such that 0 ≤ χ ≤ 1, χ = 1 on
I1, χ = 0 on I2, and ‖χ‖k ≤ Cεkδ

1 , and let h defined by ln h = χ ln h1 + (1 − χ) ln h2.
We clearly have ‖ ln h‖k ≤ Cε−δ̃1 for some C,δ̃. We will verify that h(θ)dθ is an
approximation of ν on I1 ∪ I2.

If ϕ is a C∞ function supported on I1 ∪ I2, we write ϕ = ϕ1 + ϕ2 + ϕ3 with
ϕ j suported on I j, ‖ϕ j‖k ≤ Cε−kδ

1 ‖ϕ‖k. Then for j = 1, 2, ϕ j is supported on I j

so
∫
T
ϕ j(θ)h(θ)dθ =

∫
T
ϕ j(θ)h j(θ)dθ is close to

∫
T
ϕ j(θ)dν(θ) (up to a remainder

O(ε
1
3−δ
1 ‖ϕ j‖k), and for j = 3,

∫
T
ϕ3(θ)h1(θ)dθ is close to

∫
T
ϕ3(θ)dν(θ) since ϕ3 is

supported on I1 and I2, and using that h1 ≤ h ≤ h2, we get that
∫
T
ϕ3(θ)h(θ)dθ

is also close to
∫
T
ϕ3(θ)dν(θ), up to a remainder O(ε

1
3−δ
1 ‖ϕ3‖k). Consequently,∫

T
ϕ(θ)h(θ)dθ is close to

∫
T
ϕ(θ)dν(θ) up to a remainder O(ε

1
3−δ
1 (‖ϕ1‖k + ‖ϕ2‖k +

‖ϕ3‖k)) = O(ε
1
3−(k+1)δ
1 ‖ϕ‖k).

We can write η̄ = η̄1 + r where η̄1 is a trigonometrical polynomial of degree 2
and r a negligible term of order O(ε3

1), hence up to replacing η̄ by its approxima-
tion η̄1, we can assume that a has at most 4 zeros onT, and so that A has at most
2 local minima. Thus we can write T as a union of at most two intervals where
previous sublemma applies, and "connecting" the densities obtained using our
previous argument, we obtain a smooth density on T satisfying the claimed
property, and this completes the proof of Lemma 7 �

Lemma 8. If f satisfies the assumption (I) or (II) of Theorem 1, we have for some
C = C(k, δ) and δ̃ = δ̃(k, δ) the alternative:

• either there exists θ0 in T such that

|||η(., θ0)|||L2(T2) ≤ Cε1+δ
1 ,

• or there exists a diffeomorphism G in Di f f0(T) satisfying ‖G− Id‖k ≤ Cε−δ̃ and
a family (rz = Id + ω(z))z∈T2 of random translations on T such that:

|||Gu.G−1 − r.)|||L2(T2) ≤ Cε
7
6−δ̃
1 .
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Proof. We can assume that the first alternative does not hold, so that we
can apply Lemma 7 to approximate ν by some smooth density g. We set

G(θ) =
∫ θ

0 g(t)dt.

We first treat the case where γ2( f , µ) ≥ 0. For any real numbers θ1 and θ2,
and any z inT2, the aera of the parallelogram generated by the vectors Mz(eiπθ1 )
and Mz(eiπθ2 ) is equal to |det(Mz)| · | sin(π(θ1 − θ2))|, and also to |Mz(eiπθ1 )| ·
|Mz(eiπθ2 )| · | sin(uz(θ1)− uz(θ2))|. Letting θ2 − θ1 tend to 0 and using (5) leads to
the equality

|Mz(eiπθ)|2.|u′z(θ)| = |det(Mz)| = 1 + O(ε
3
2
1 ).

Now, γ1( f , µ) ≥ γ2( f , µ) ≥ 0 and

γ1( f , µ) + γ2( f , µ) = E

∫

T2
ln det dz f dµ(z) = O(ε2

1)

hence we have γi( f , µ) = O(ε
3
2
1 ). This implies that

E

"

T2×T
ln |Mz(eiπθ)|dµ̂(z, θ) = O(ε

3
2
1 ),

and hence

E

"

T2×T
ln u′z(θ)dµ̂(z, θ) = O(ε

3
2
1 ).

Thus, the Lyapunov exponent of the cocycle U associated to the stationary
measure µ̂ is close to 0. The idea is now tu use that since µ̂ is close to g(θ)dzdθ,
the conjugation of U by (z, θ) 7→ (z,G(θ)) should be almost dzdθ-stationary,
which would allow to easily estimate the associated Lyapunov exponent. But
we will not exactly proceed like this because we do not have a good control on
derivatives of G−1. We will rather copy the proof of the invariance of Lyapunov
exponent by conjugation, which leads to the following computation: using that
µ̂ is stationary for U, that dk(µ̂, g(θ)dθdz) = O(ε

1
3−δ̃) and the estimate

‖E[ln u′. + ln g ◦ u. − ln g]‖Ck(T2×T) = ‖η̄′· + (ln g)′η̄·‖Ck(T2×T) + O(ε2−δ̃
1 ) = O(ε2−δ̃

1 ),
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we have

E

"

T2×T
ln u′z(θ)dµ̂(z, θ) = E

"

T2×T

(
ln u′z(θ) + ln g(uz(θ)) − ln g(θ)

)
dµ̂(z, θ)

= E

"

T2×T

(
ln u′z(θ) + ln g(uz(θ)) − ln g(θ)

)
g(θ)dθdz

+O
(
ε

7
3−δ̃
1

)

= E

"

T2×T
ln

(
(G ◦ uz)′(θ)

G′(θ)

)
g(θ)dθdz + O

(
ε

7
3−δ̃
1

)

= E

"

T2×T

(
(G ◦ uz − G)′(θ)

G′(θ)

)
g(θ)dθdz

−1
2
E

"

T2×T

(
(G ◦ uz − G)′(θ)

G′(θ)

)2

g(θ)dθdz + O
(
ε

7
3−δ̃
1

)

= −1
2
E

"

T2×T
(G ◦ uz − G)′(θ)2 dθ

g(θ)
dz + O

(
ε

7
3−δ̃
1

)
.

Thus, we have

E

"

T2×T
(G ◦ uz − G)′(θ)2dθdz ≤ Cε

7
3−δ̃
1

for some C. Setting ω(z) = G(uz(0)),

E

∫

T2
‖G ◦ uz − G − ω(z)‖20dz ≤ Cε

7
3−δ̃
1 .

If f satisfies assertion (II), and belongs almost surely to some solvable group
G, then one can easily verify that the cocycle (z, h) 7→ ( f (z), dz f (h)) also almost
surely belongs to a solvable group, precisely to Ĝ = {(z, h) 7→ (g(z), dzg(h)), g ∈
G ∩Di f f 1(T2)}, and then that this is also the case for U. Hence, by Proposition
1, there exists a probability µ̂ almost surely invariant by U, which can be
approximated by a density g(θ)dθdz. Thus, for ϕ in C∞(T2 ×T), the integral of
ϕ ◦U−1 −ϕ along µ̂ is null, and differs from its integral along g(θ)dθdz by a rest

O(ε2+ 1
3−δ̃

1 (‖ϕ ◦U−1‖k + ‖ϕ‖k)) = O(ε
7
3−δ̃
1 ‖ϕ‖k). By a change of variable,

∫

T×T2
ϕ ◦U−1(z, θ)g(θ)dθdz =

∫

T2×T
ϕ(z, θ)g(uz(θ))u′z(θ) det(dz f )dzdθ

and by Proposition 5, det dz f = 1 + O(ε
3
2 ), hence

∫

T2×T
ϕ(z, θ)(G ◦ uz − G)′dzdθ = O(ε

7
3−δ̃
1 ‖ϕ‖k)

Choosing ϕ(z, θ) = (G ◦ uz − G)′(θ), we deduce as previously that
∫

T2
‖G ◦ uz − G − ω(z)‖20dz = O(ε

7
3−δ̃
1 ).

�
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Lemma 9. Under assumptions of Proposition 7 there exists a vector p in Z2, a map
k : T2 → R and some positive constants C and δ0 such that

|||dz f (p) − k(z)p|||L2(T2) ≤ Cε1+δ0

with |p| ≤ ε−κ, and p = (0, 1) if m = |||β′|||0 ≥ 2ε.

Proof. Now, we will fix the value λ in the definition of Mz and ε1 of the begining
of the section by:

{
λ =

√
ε
m if m > 2ε, in which case ε1 = 2

√
mε.

λ = 1 if m ≤ 2ε, in which case ε1 = ε + m ≤ 3ε.

We will first prove that this is necessarly the first alternative of Lemma 8
which will occur. Let δ > 0 and let us assume that there exists G and ω as in
Lemma 8 such that

Gu.G−1(θ) = θ + ω(·) + OL2(T2)

(
ε

7
6−δ̃
1

)
,

or equivalently

g(θ)ηz(θ) = ω(z) + OL2(T2)

(
ε

7
6−δ̃
1

)
. (13)

If inf g ≤ εδ1, then choosing θ in (13) such that g is minimal gives ‖ω(·)‖L2(T2) ≤
Cε1+δ

1 for some C, and next choosing θ0 such that g(θ0) = 1 gives ‖η·(θ0)‖L2(T2) ≤
Cε

7
6−δ̃
1 .

We now assume that inf g ≥ εδ1. If W is a complex measure on T2, we set
NW =

∫
T2 NzdW(z) and ηW =

∫
T2 ηzdW(z). Assume that for some θ0, NW(eiπθ0 ) =

0. Then ηW(θ0) = 2Im(NW(eiπθ0 )e−iπθ0 ) + O(ε2
1) = O(ε2

1), which implies, by the

estimates (13) and the inequality εδ1 ≤ g ≤ Cε−δ̃1 , that ‖ηW‖0 = O(ε
7
6−δ̃
1 ) and so

that NW = O(ε1+δ̃
1 ). Using this remark:

If m > 2ε, we choose dW = δx × dy, so that NW =

(
× 0
× 0

)
vanishes

at the vector
(

0
1

)
. By the above remark, NW = O(ε

7
6−δ̃
1 ), which implies,

setting V(x) = β′(x) +
∫
T
∂1ζ2(x, y)dy, that λV(x) = O(ε

7
6−δ̃
1 ), and using that

|||V|||0 ≥ m − ε ≥ m
2 we get ε1 = λm = O(ε

7
6−δ̃
1 ), which is absurd if ε1 and δ̃ are

small enough.

If m ≤ 2ε, then Nz = JΦ(z) where Φ = f − Id. For p = (p1, p2) in Z2, we

choose dW = e2iπp.zdz, so that NW = (p jΦ̂i(p))1≤i, j≤2 is null at vector
(

p2
−p1

)
,

hence NW = O(ε
7
6−δ̃
1 ). And since this estimate is valid for any choice of p, we
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deduce that Nz = O(ε
7
6−δ̃
1 ) and so that.

Thus, if δ0 is small enough, there necessarly existsθ0 such that |||η·(θ0)|||L2(T2) ≤
ε1+δ0

1 . This implies that

N·eiπθ0 = k(z)eiπθ0 + OL2(T2)(ε
1+δ0
1 )

where k(z) = Re(Nz(eiπθ0 )e−iπθ0 ).

If m > 2ε, for W = δx × dy, NW and V(x) defined as previously and kW =
∫
T2 k(z)dW(z), we have NWeiπθ0 = kWeiπθ0 + O(ε1+δ0

1 ) with NW =

(
0 0

λV(x) 0

)
+

O(ε2
1), hence {

λV(x) cos(πθ0) = kW sin(πθ0) + O(ε1+δ0
1 )

kW cos(πθ0) = O(ε1+δ0
1 )

.

Combining these two equalities gives λV(x) cos2(πθ0) = O(ε1+δ0
1 ) with |||V|||0 ≥

m
2 , hence cos2(πθ0) = O(ε1+δ0

1 ). Thus, eiπθ0 = ±i + O(εδ0
1 ), hence, denoting e2 the

second canonical vector of R2, we successively obtain Nze2 = k(z)e2 + O(ε1+δ0
1 ),

Mze2 = (1 + k(z))e2 + O(ε1+δ0
1 ) and dz f (e2) = (1 + k(z))e2 + O(λε1+δ0

1 ), with

λε1+δ0
1 = m

δ0
2 ε1+

δ0
2 = O(ε1+

δ0
2 ).

If m ≤ 2ε, we set dW = e2iπp.zdz, where p = (p1, p2) ∈ Z2. On one hand, we
have NWeiπθ0 = kWeiπθ0 + O(ε1+δ), and on another hand, NW vanishes at vector(

p2
−p1

)
, hence writing NW in the basis

(
p2
−p1

)
,
(

cos(πθ0)
sin(πθ0)

)
gives the relation

Tr(NW) = kW + O(ε1+δ0 ).

But Tr(Nz) = det(Mz) − 1 + O(ε2) = O(ε1+δ0 ) so kW = O(ε1+δ0 ) and so NW(eiπθ0 ) =
O(ε1+δ0 ), that is

(p1 cos(πθ0) + p2 sin(πθ0))ζ̂i(p1, p2) = O(ε1+δ0 )

for i = 1, 2. Now we fix κ1 < δ
6 , and we distinguish two cases:

1) If |ζ̂i(p)| ≤ ε1+
δ0
2 (i = 1, 2) for every p ∈ Z2−{(0, 0)} such that |p| ≤ ε−κ, then,

for k large enough,

|||ζi − ζ̂i(0)|||0 ≤
∑

p∈Z2−{(0,0)}
|ζ̂i(p)| ≤

∑

|p|≤ε−κ
ε1+

δ0
2 +

∑

|p|≥ε−κ

|||ζi|||k
|p|k = O(ε1+

δ0
3 ).

If |ζ̂i(p)| ≥ ε1+
δ0
2 for some i in {1, 2} and some p = (p1, p2) in Z2 − {(0, 0)} such

that |p| ≤ ε−κ, then |p1 cos(πθ0) + p2 sin(πθ0)| ≤ ε δ0
2 . Thus, eiπθ0 = ± p̃

|p̃| + O(ε
δ0
2 ),

where p̃ = (−p2, p1). Consequently, Nz(p̃) = O(ε1+
δ0
3 ).

�
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We can complete the proof of Proposition 7. Let p = (p1, p2) and k(z) given by
Lemma 9. Up to dividing p1 and p2 by some common divisor, we can assume
gcd(p1, p2) = 1. According to Bezout Lemma, there exists P in Sl2(Z) such that
Pe2 = p̃ and ‖P‖ ≤ |p| ≤ ε−δ1 ,and we can choose P = Id if p = (0, 1), hence if
m ≥ 2ε. The diffeomorphism f̃ = P−1 f P = ( f̃1, f̃2) satisfies

dz f̃ (e2) = e2 + P−1NzPe2 = e2 + O(‖P−1‖ε1+δ0 ) = e2 + O(ε1+
δ0
2 ),

that is
∂2 f̃1 = O(ε1+

δ0
2 ). (14)

Thus, f̃1 depends only on x, up to a remainder O(ε1+δ0 ). Next, we have by (5)

det(dz f̃ ) = det(dz f ) = 1 + O(ε
3
2 ),

which leads to
∂1 f̃1 + ∂2 f̃2 = 2 + O(ε

3
2 ).

Using that
∫
T
∂2 f̃2(x, y)dy = 1 and that

∫
T
∂1 f̃1(x, y)dy = ∂1 f̃1(x, ·) + O(ε1+

δ0
2 ), we

obtain 
∂1 f̃1 = 1 + O(ε1+

δ0
2 )

∂2 f̃2 = 1 + O(ε1+
δ0
2 ).

(15)

Estimates (14) and (15) imply that f̃ = R̃ + O(ε1+
δ0
2 ) for some Anzai cocycle

R̃. �

6 KAM iteration

Let f = R + ζ a random diffeomorphism of T2 having a finite number of
realizations, where R : (x, y) 7→ (x + α, y + β(x)) is a diophantine random Anzai
cocycle satisfying E[β(x − α)] = 0. We will denote εk1,k2 = |||ζ|||k1,k2 and ∆ =
|||R ◦ R̃ − R̃ ◦ R|||. As a corollary of the two previous sections (more precisely of
Proposition 5 and 7), we have the following conjugation result:

Lemma 10. There exists a and k0 inN and δ0, ε > 0 such that if f satisfies assumption
(I) or (II) of Theorem 1, and if εk0,k0 ≤ ε then:

i)There exists a diffeomorphism G = P + g where P is the algebraic part of G, and
an Anzai cocycle R1, such that

|||G f G−1 − R1|||0 ≤ Cε1+δ0
k0,k0

and for every k1, k2

‖g‖k1,k2 ≤
C

∆16k1
εk1+a,k2+ak1+a.

for some C = C(k1, k2).
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ii)For every integer p, there exists G = P + g where P is an algebraic automorphism,
and an Anzai cocycle R1, such that

‖G f G−1 − R1‖0 ≤ C(εk0,k0 +
√

∆pεk0,k0 )1+δ0

and for every δ > 0 and every integers k1, k2 large enough,

‖g‖k1,k2 ≤ Cε(1+δ)k1,(1+δ)k2 .

Moreover, ‖P‖ ≤ Cε−κk0,k0
and P = Id if |||β′|||0 ≥ 2‖ζ‖k0 .

In order to iterate this conjugation procedure, we will need some estimates
on large derivatives of the conjugated diffeomorphism. In this view, we will re-
place the conjugation G by some approximation by a trigonometric polynomial.

If ϕ belongs to C∞(T2) and λ1, λ2 are real numbers, we denote

Pλ1,λ2ϕ(x, y) =
∑

|p1 |≤λ1,|p2 |≤λ2

ϕ̂(p)e2iπ(p1x+p2 y).

The operator Pλ1,λ2 satisfies the estimates:

Lemma 11. For every δ > 0 and every integers k1 ,k2, and k̄1, k̄2 large enough, there
exists a constant C such that for every ϕ in C∞(T2):



‖Pλ1,λ2ϕ‖k̄1,k̄2
≤ C(λk̄1−k1

1 + λk̄2−k2
2 )‖ϕ‖k1,k2

‖ϕ − Pλ1,λ2ϕ‖k1,k2 ≤ C


1

λ(k̄1−k1)−δk̄1

1

+
1

λ(k̄2−k2)−δk̄2
2

 ‖ϕ‖k̄1,k̄2

Proof. If i1
k̄1

+ i2
k̄2
≤ 1, then

‖∂i1
1 ∂

i2
2 Pλ1,λ2ϕ‖2L2(T2) ≤ C

∑

|p1 |≤λ1,|p2 |≤λ2

|p1|2i1 |p2|2i2 |ϕ̂(p1, p2)|2

≤ C
∑

|p1 |≤λ1,|p2 |≤λ2

(|p1|2k̄1 + |p2|2k̄2 |)ϕ̂(p1, p2)|2

≤ C(λ2(k̄1−k1)
1 ‖∂k1

1 ϕ‖2L2(T2) + λ2(k̄2−k2)
2 ‖∂k2

2 ϕ‖2L2(T2))

≤ C(λ2(k̄1−k1)
1 + λ2(k̄2−k2)

2 )‖ϕ‖2k1,k2
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and if i1
k1

+ i2
k2
≤ 1,

‖∂i1
1 ∂

i2
2 (ϕ − Pλ1,λ2ϕ)‖L2(T2) ≤ C


∑

|p1 |>λ1,p2∈Z
+

∑

p1∈Z,|p2 |>λ2

 |p1|i1 |p2|i2 |ϕ̂(p1, p2)|

≤ C


∑

|p1 |>λ1,p2∈Z
+

∑

p1∈Z,|p2 |>λ2


( |p1|k1 + |p2|k2

|p1|k̄1 + |p2|k̄2

)
‖ϕ‖k̄1,k̄2

≤ C


∑

|p1 |>λ1,p2∈Z

|p1|k1

|p1|(1−δ)k̄1 |p2|δk̄2
+

∑

p1∈Z,|p2 |>λ1

|p2|k2

|p1|δk̄1 |p2|(1−δ)k̄2

 ‖ϕ‖k̄1,k̄2

≤ C


1

λ(k̄1−k1)−δk̄1

1

+
1

λ(k̄2−k2)−δk̄2
2

 ‖ϕ‖k̄1,k̄2

�

Lemma 12. Let δ a positive real number. We set εk = εδk,k.

There exists a and k0 in N and δ0, ε > 0 such that if f satisfies assumption (I) or
(II) of Theorem 1, and if εk0 ≤ ε then:

i) For every λ > 1, there exist a diffeomorphism G0 = P + g0, an Anzai cocycle
R1 : (x, y) 7→ (x +α1, y + β1(x)) and a family of constants (Ck)k∈N depending on δ and
λ such that, denoting f1 = G0 f G−1

0 = R1 + ζ1 and ε(1)
k = |||ζ1|||δk,k, we have for every

integer k, k̄:

ε(1)
k ≤

Ck̄

∆16k̄

(
λk+aε1+δ0

k0
+

εk̄

λ(k̄−k)−δk̄−a

)
..

ii)For every integer p and every λ > 1, there exists a diffeomorphism G0 = P + g0,
an Anzai cocycle R1 : (x, y) 7→ (x + α1, y + β1(x)) and a family of constants (Ck)k∈N
depending on δ,λ and p such that, denoting f1 = G0 f G−1

0 = R1+ζ1 and ε(1)
k = |||ζ1|||δk,k,

we have
ε(1)

k ≤ Ck

(
λk+a(εk0 +

√
∆pεk0 )1+δ0 +

εk̄

λ(k̄−k)−δk̄−a

)

Moreover in the two cases, we have E[β′1(x − α1)] = 0, ‖P‖ ≤ Cε−κk0
and P = Id if

|||β′|||0 ≥ 2εk0 or |||β̃′|||0 ≤ 2ε(1)
k0

.

Proof. Let G = P + g and R1 given by point i) of Lemma 10, G0 = P + gλ1,λ2 and
fλ = G0 f G−1

0 = R1 + ζ1 where gλ1,λ2 = Pλ1,λ2 g.
We know that

‖g‖k1−a,k2−ak1 ≤
C

∆16k1
εk1,k2 ,

hence
‖gλ1,λ2‖k1,k2 ≤

C
∆16k1

(λa
1 + λak1

2 )εk1,k2
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and

‖g − gλ1,λ2‖k1,k2 ≤
C

∆16k̄1


1

λ(k̄1−k1)−δk̄1

1

+
1

λ(k̄2−k2)−δk̄2
2

 εk̄1,k̄2
.

Next, we have for some constant C the following estimates:

|||G f G−1 − R1|||0 ≤ Cε1+δ0
k0,k0

|||G0 f G−1
0 − G f G−1|||0 ≤ |||G0 f G−1

0 − G f G−1
0 |||0 + ‖G f G−1

0 − G f G−1‖0
≤ ‖G0 − G‖0 + ‖G f − G f G−1G0‖0
≤ (1 + |||(G f G−1)′|||0)‖G − G0‖0
≤ C


1

λk̄1−δk̄1
1

+
1

λk̄2−δk̄2
2

 εk̄1,k̄2

Combining the two last inequalities, we obtain:

ε(1)
0,0 ≤ |||G0 f G−1

0 − R1|||0 ≤ C

ε
1+δ0
k0,k0

+


1

λk̄1−δk̄1
1

+
1

λk̄2−δk̄2
2

 εk̄1,k̄2

 .

Moreover, we also have

ε(1)
k̄1,k̄2
≤ C(εk̄1,k̄2

+ ‖g‖k̄1,k̄2
) ≤ C

∆16k̄1
(λa

1 + λak̄1
2 )εk̄1,k̄2

and consequently, using the decomposision ζ = Pλ1,λ2ζ + (ζ − Pλ1,λ2ζ), we
deduce

ε(1)
k1,k2

≤ C

(λ
k1+a
1 + λk2+a

2 )ε(1)
0 +


1

λ(k̄1−k1)−δk̄1

1

+
1

λ(k̄2−k2)−δk̄2
2

 ε
(1)
k̄1,k̄2



≤ C
∆16k̄1

(λ
k1+a
1 + λk2+a

2 )ε1+δ0
k0,k0

+ (λk1+a
1 + λk2+a

2 )


1

λk̄1−δk̄1
1

+
1

λk̄2−δk̄2
2

 εk̄1,k̄2

+(λa
1 + λak1

2 )


1

λ(k̄1−k1)−δk̄1

1

+
1

λ(k̄2−k2)−δk̄2
2

 εk̄1,k̄2



Now we set λ1 = λ, λ2 = λδ, k1 = k, k2 = δ−1k, k̄1 = k̄, k̄2 = δ−1k̄. The previous
inequality becomes

ε(1)
k ≤

C
∆16k

(
λk+aε1+δ0

k0
+

1
λ(k̄−k)−(a+1)δk̄−a

εk̄

)
.

The proof of ii) is analog.

Finally, we can assume that E[β′1(x − α)] = 0 up to conjugate by some
diffeomorphism U : (x, y) 7→ (x, y + u(x)), and if |||β′1|||0 ≤ 2εk0 , then f1 is close to
a translation and hence P−1 f P is stillclose to a translation so that we can assume
P = Id.

�
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The convergence of the procedure will be assured by the following combi-
natorial Lemma

Lemma 13. Let a and k0 in N and δ0 > 0. There exists k1 and s in N and δ > 0 such
that, setting Q = 1 + δ0

2 and λn = eQn , if (ε(n)
k )k,n∈N and (Ck)k∈N are families of positive

real numbers satisfying for every integers n, k, k̄ with k̄ ≥ k ≥ k0

ε(n+1)
k ≤ Ck̄

λk+a
n (ε(n)

k0
)1+δ0 +

ε(n)
k̄

λ(k̄−k)−δk̄−a
n

 (16)

and ε(0)
k1
≤ C−s

k1
, then for every k,p in N, ε(n)

k = O(λ−p
n ) as n goes to +∞.

Proof. Up to replacing εn
k by ε(n)

k+k0
, we can assume k0 = 0. We fix δ > 0 small

enough. Let k̄ and p be large enough and satisying the following conditions:



p(1 + δ0) > k̄(1 + δ) + 2a

(1 − δ Q
Q − 1

)k̄ − a
Q

Q − 1
≥ (1 + δ)p

p(1 + δ0) − a ≥ (1 + δ)p

(17)

(when δ = 0, these inequalities become p(1 + δ0) > k̄ + constant, k̄ ≥ p + constant
and p ≥ constant, hence are compatible, and still are when δ is small enough)
We fix an integer N and we set M = supn≤N ε

(n)
0 λ

p
n.

Using inequality (16) with k = k̄ we have

ε(n+1)
k̄
≤ Ck̄


M1+δ0

λ
p(1+δ0)−k̄−a
n

+
ε(n)

k̄

λ−δk̄−a
n

 ≤ Ck̄(M1+δ0 + ε(n)
k̄

)λδk̄+a
n ,

and we deduce

M1+δ0+ε(n)
k ≤ 2Ck̄λ

δk̄+a
n−1 (M1+δ0+ε(n−1)

k ) ≤ · · · ≤ (2Ck̄)n(M1+δ0+ε(0)
k̄

)(λ0 · · ·λn−1)δk̄+a ≤ (2Ck̄)nλ
δk̄+a
Q−1
n

and hence
ε(n)

k̄
≤ Cn

k̄ (M1+δ0 + ε(0)
k̄

)λ
δk̄+a
Q−1
n (18)

(up to replacing Ck̄ by 3Ck̄). Next, inequality (16) with k = 0 gives

ε(n+1)
0 ≤ Ck̄

λa
n(ε(n)

0 )1+δ0 +
ε(n)

k̄

λ(1−δ)k̄−a
n



≤ Ck̄


M1+δ0

λp(1+δ0)−a
n

+
Cn

k (M1+δ0 + ε(0)
k̄

)

λ
(1−δ Q

Q−1 )k̄−a Q
Q−1

n



≤ M̃

λ(1+δ)p
n+1
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where M̃ = Cn+1
k̄

(2M1+δ0 + ε(0)
k̄

). A first consequence is that the sequence Mn =

supk≤n ε
(k)
0 λ

p
k satisfies the inequality

Mn+1 ≤ Cn+1
k̄ (M1+δ0

n + ε(0)
k̄

),

which implies that (Mn) is bounded if

ε(0)
k̄
≤ C

− 1
δ0

k̄
.

A second consequence is that once we have proved that ε(n)
0 = O(λ−p

n )
for some p, we have ε(n)

0 = O(λ−(1+δ)p
n ), and by induction we deduce that

ε(n)
0 = O(λ−p

n ) for every p > 0.

Finally, we deduce by (18) that for every k̄,

ε(n)
k̄

= O(λ
δk̄

Q−1 +a
n )

and next by inequality (16) that for every p, k, k̄,

ε(n+1)
k = O


1

λp(1+δ0)−k−a
n

+
1

λ
(1−δ Q

Q−1 )k̄−k−a Q
Q−1

n



which gives the result choosing k̄ and p large enough. �

By successive uses of the Lemma 12, we will now define a sequence of ran-
dom diffeomorphisms fn conjugated to f and converging to a random Anzai
cocycle, defined by f0 = f and the induction relation fn+1 = Gn fnG−1

n where Gn
is constructed using point i) or ii) of Lemma 12.

Thus, we assume now that f = R + ζ satisfies assumptions of theorem
1. If (α0, β̂0) is a (A, σ)-diophantine rotation vector of f , we can assume that∫
T2 (R − Id)dz = (α0, β̂0). Indeed, we have

∫
T2 (R − Id)dµ = (α0, β̂0) for some sta-

tionary measure µ for f . The first coordinate of R − Id is constant, hence close
to α0. In consequence µ is small on maps on the form E[ϕ(x + α0)] − ϕ(x), and
using that α0 is diophantine, we deduce that µ is close to Lebesgue on maps
depending only on x, and so

∫
T2 (R − Id)dµ is close to

∫
T2 (R − Id)dz.

Now we fix δ > 0, we set λn = e(1+δ0/2)n
as in Lemma 13, we define f0 = f ,

R0 = R, ζ0 = ζ, and once we have constructed fn = Rn + ζn, if Lemma 12 applies
we define fn+1 = Gn fnG−1

n = Rn+1 + ζn+1 where Gn = Pn + gn is a conjugation
constructed using point i) or ii) of Lemma 12 with λ = λn (contruction ii) will be
used with some fixed integer p we will chose later). We set Hn = Gn−1 ◦ · · · ◦G0,
ε(n)

k = |||ζn|||δk,k and ∆n = |||Rn ◦ R̃n − R̃n ◦ Rn|||L2(T2), where R̃n is an independant
copy of Rn. More precisely, we will use construction ii) of Lemma 12 as long as
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∆n is small behind ζn, and construction ii) once ∆n is large behind ζn.

Using that (α0, β̂0) is a diophantine random rotation vector of f , we can
assume that Rn is diophantine as long as fn is defined: indeed, by Proposition
4, the stationary measure µn = (Hn)∗µ for fn is close to the Lebesgue measure

(up to a remainder O
((
ε(n−1)

k0

)2
)
), hence

(α0, β̂0) =

∫

T2
(Hn ◦ fn −Hn)dµn ≈

∫

T2
(Hn ◦ Rn −Hn)dz = P(αn, β̂n)

and hence we can assume Rn is diophantine up to adding it a constant.

There will exist n0 such that the diffeomorphism Gn will be defined using
construction ii) for n < n0 (with some fixed p we will chose later) and construc-
tion i) for n ≥ n0.

As long as fn is defined, ε(n)
k satisfies for n ≤ n0

ε(n+1)
k ≤ Ck̄

λk+a
n

(
ε(n)

k0
+

√
∆

p
nε

(n)
k0

)1+δ0

+
ε(n)

k̄

λ
(k̄−k)−ap
n



and for n ≥ n0

ε(n+1)
k ≤ Ck̄

∆16k̄
n

λk+a
n (ε(n)

k0
)1+δ0 +

ε(n)
k̄

λ(k̄−k)−δk̄−a
n

 .

If we control derivatives of Hn, then the numbers ∆n are comparable. If we
assume that ∆n ≤ 2∆m for every n,m, then for n ≥ n0 we have

ε(n+1)
k ≤ Ck̄

∆16k
n0

λk+a
n (ε(n)

k0
)1+δ0 +

ε(n)
k̄

λ(k̄−k)−δk̄−a
n

 ,

and so by Lemma 13, there exists integers s and k1 such that if ε(m)
k1
≤

(
∆m

Ck1

)s

,

then for every n ≥ m and every k, q > 0

ε(n)
k ≤

C
λq

n

for some constant C = C(k, q).
Thus, we use the following scheme: As long as ∆s

n ≤ Cs
k1
ε(n)

k1
we use con-

struction ii) with p = s to define fn+1. If ∆s
n0
≥ Cs

k1
ε(n0)

k1
for some n0, then we use

construction i) to define fk for k > n.

35



Hence, for n < n0 we have

ε(n+1)
k ≤ CkCk1

λk+a
n (ε(n)

k1
)1+δ0 +

ε(n)
k̄

λ(k̄−k)−δk̄−a
n



Thus, there exists k2 in N such that if ε(0)
k2

is small enough then we have the

estimate ε(n)
k = O(λ−q

n ) for any k, q as long as fn is defined and ‖H′n‖0 is controlled.
Let us prove that this estimate of ε(n)

k implies an estimate on Hn.

Noticing that there is at most one integer n0 such that Pn0 = P , Id, we have
Hn = Pn + hn with

hn =

n−1∑

j=0

P j(g j ◦H j−1).

For every l, we have for some C and k̄

‖hn‖k ≤
n−1∑

j=0

‖P j(g j ◦H j)‖k

≤ C
n−1∑

j=0

‖P j‖‖g j‖k(1 + ‖h j‖k)

≤ Cε(0)
k̄

sup
j<n

(1 + ‖h j‖k).

Using an induction we deduce that ‖hn‖k = O(ε(0)
k̄

), and next that

n−1∑

j=0

‖P j(g j ◦Hm)‖l = O(ε(0)
k̄

).

In consequence, we deduce by induction that fn, Gn and Hn are defined for
every n, and that hn normally converges in Cl(T2) to some limit h satisfying
‖h‖k = O(ε(0)

k̄
), and H = P + h is thus C∞, close to P and invertible if f is close

enough to R, and H f H−1 is almost surely a limit of Anzai cocycles, hence is
almost surely an Anzai cocycle.
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