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Abstract

In this paper, we prove thatif Ry, ..., R,, are Anzai cocycles of T2 (i.e. on
the form R;(x, y) = (x+a;, y+Pi(x)), andif f, ..., f,, are C¥-close to Ry, ..., R,
and satisfy some diophantine condition, then considering the Markov sys-
tem x,41 = f;, (x,) where (i,) is a sequence of i.i.d. variableson {1, ..., m}, for
every stationary measure of this system at least one associated Lyapunov
exponent is negative unless fi, ..., f,, are simultaneously conjuted to Anzai
cocycles with a smooth conjugation close to a linear action.

1 Introduction

Krikorian and Dolgopyat studied in [1] Markov system on S% (d > 2) of the
form x,4+1 = f;,(x,), where (i) is an i.i.d sequence on {1,...,m}, and fi, -, fu
are smooth diffeomorphisms C*-close to rotations Rj, ..., R, whose action on
$? is minimal, and proved that for each stationary measure of this system,
at least one associated Lyapunov exponent is non-positive unless fi, ..., f,, are
simultaneously conjugated to rotations, with a conjugation C*-close to Identity.

Our purpose is to obtain an analogous result on T: if fi, ..., fm are diffeo-
morphisms of T close to rotations, does nullity of Lyapunov exponents imply
simultaneous conjugation? We proved in a previous paper that the answer
is yes when d = 1, under some diophantine condition on rotations numbers
p(f1),--., p(fm). If d = 2, it does not hold anymore. Indeed, if each function f; is
on the form

filxr, ..., xq) = (01 + a1, x0 + az(x1), x3 + az(x1, x2), ..., xq + ag(x, ..., x4-1)) (1)

where ay is a smooth map on Tk1, then it is not difficult to show that all
the Lyapunov exponents of the system are null, though there is not in general
simultaneous conjugation to rotations since in general, the f;’s do not commute.
Thus, the natural extention of the result would be rather:

if fi,-+ , fu are diffeomorphisms of T¢ C*-close to diffeomorphisms of the form
(1), does nullity of Lyapunov exponents implies simultaneous conjugation of
fi,..., fu to diffeomorphisms of the form (1)? In this paper we will prove this



assertion, under some diophantine condition, in the case d = 2. Moreover, we
will also prove that simultaneous conjugation is equivalent to some algebraic
relation between fi, ..., f, (precisely: the group of diffeomorphisms generated
by fi,..., fu is solvable of order 2, that is, for every i,j k1, fifif* fj‘1 and
fifif M f;7t commute. This can be viewed as an analog of Moser’s theorem
[2] which states that in a perturbative context, conjugation to translation is

equivalent to the fact that the diffeomorphisms commute).

2 Notations and results

Let T¢ = R?/Z? be the d-dimensional torus. We will identify functions on T¢
with their liftings on R? by the map x - x + Z“. Thus, in this context, we will
denote:

o CK(T",R") the space of the C* functions on R? into R", 1-periodic in each
variable, or only CX(T?) if n = 1. If k < +00, we endow CK(T¥) with the
norm [|p|lx = SUP <k xeR¢ |0%p(x)| , and we endow C®(T?) with the metric

il ) = Y Tl — ¢l

k
keN 2

e Dif f*(T") the space of the functions which induce a C* diffeomorphism of
T, that is the bijective functions f : RY — R? of the form f(x) = Ax + ¢(x)
where A € Sly(Z), ¢ € CK(T?,RY). A is the linear part of f, and ¢ its periodic
part.

e Dif f§(T¥) the connected component of Id in Dif f*(T?), that is functions
of Dif f¥(T?) whose linear part is Id.

Let (QQ,F,P) be a finite probability space. If E is one of the function
spaces described above, we will denote by E the space of random variables
f:w e fYfrom Qinto E. Such a random variable f will be called random
function/diffeomorphism, and if x belongs to T¢, f(x) will denote the random
variable w — f®(x). If || - || is some functional norm and ¢ a random map, we
will denote

ligl. = E[igi2]

A probability measure y is said stationary for f € [5?70(11"‘1) if E[fiul =p. A
stationary measure is said ergodic if it is extremal in the convex set of stationary
measures.

ff=Id+de li?ﬁ?(?l"d), we will call random rotation vector of f a random
variable X on RY of the form X = fw ¢dy where 11 is a stationary measure of f.



If A, 0 are positive reals, a random variable ® in RY will be said (4, 0)-
diophantine if

A

VqeZ,E|inflg.0 —pl| > —.

q LEZ la P|] i
From now on we will essentially work in T?:

We will call Anzai cocycles the maps of Dif f*(T?) of the form R(x,y) =

(x + a, y + B(x)). We will write ﬁ as a shortcut for E(O) = fT B(x)dx.

If f belongs to /D-af-j/r ' (T?) and u is a stationary ergodic measure of f, then
letting (f,,) be a sequence of independant copies of f and F,, = f,—10--- 0 fy, we
set

700 = lim 5 [ 04 ldaC0)

n—+co 1
.1 “1-
va(fop) = lim ~E | InfldF, ()7 du)
n—+oo 1 b
the Lyapunov exponents of f associated to p.

Theorem 1. Let A,0,My > 0. There exists ey > 0 such that for every random
Anzai cocycle R satisfying do(R,Id) < My, and for every random diffeomorphism f
in 57]‘;0(11“2) satisfying d(f, R) < &9 and admitting a (A, o)-diophantine random
rotation vector, the following assertions are equivalent:

(D) ya2(f, u) = 0 for some probability measure y stationary for f.

(II) There exists a solvable subgroup G of Dif f(T?) such that f € G almost surely.

(1) f is smoothly conjugated to a random Anzai cocycle, by a conjugation C*-close
to a linear automorphism of T2,

Remark: Random rotation vectors are not in general invariant by conjuga-
tion. But it is when the stationary measure of f is almost surely invariant by
f, which is the case when f is conjugated to a random Anzai cocycle. (Anzai
cocycles are Lebesgue invariant).

(III) trivially implies (I) and (II) (and in fact implies more precisely that
yi(f,u) = 0 (i = 1,2) and that f almost surely belongs to some solvable sub-
group of Dif fo(T?) with index 2) ,thus we will be interest with the converse
implications. The way we will use assumption (II) relies on the following
proposition:

Proposition 1. Let X a compact space, and G a solvable group of homeomorphisms of
X. Then there exists a G-invariant probability measure u (that is g.u = u for every g

in G).

Proof. Let G a solvable group of homeomorphisms of X. Thus, there exists a
chain of subgoup Gy = {Id},G1,...,Gn-1,Gn = Gsuch thatfor 0 < i <n -1,
Gi < Gis1 and Giy1/Gi is abelian. Let TI(X) = C%(X)’ the set of probability
measures on X endowed with the weak topology, and M; the set of G;-invariant
probability measures, which is convex and closed in II(X). We assume that
M; # 0 for some i, and then we define for f € G;1 the linear operator Ty on



M; by Tg(u) = f.u. Since Giy1 < Gi, for every ¢ in G; and every u € M; we
have (f'gf).u = p and so g.(fip) = fip, thus Te(u) = fiu € M;. Moreover,
if f,¢ € Giv1, then f1g7 fg € G, so for every pin M, (f'¢g fg).u = p and
so Tr o Ty(u) = Tg o T(u). Thus, (Tf)feg,,, is a commuting family of linear
operators of M; into itself. By Kakutani-Markov fixed point theorem, there
exists a common fixed point of these operators in M;, that is there exists u in
M,; such that f,u = u for every u in Giy1, so M1 # 0. By immediate induction,
M, # 0.

O

We recall here properties of Ck-calculus we will need in the sequel:

Proposition 2. See [1]
i) For every ¢, ¢ in CK(T?),

llplle < CU)Ipllllllo + lipllolille)
ii) For every f = P+ ¢ and ¢ = Q + ¢ in Dif fX(T?) such that |[|| < M,

llf og—PoQIl <Ck Mo)(IPIII Il + QIINpllic + Npllellll)
iii) For every f = P + ¢ in Dif f*(T?) such that ||plli < s,

If~ =Pl < RIS = Pl

2.1 Scheme of the proof
We describe here the differents steps of the proof:

e Step 1: If R is a random Anzai map whose random rotation vector (a, ﬁ)
satisfies a diophantine condition, and if we denote T : ¢ — E[¢p o R]
the associated transition operator, for 1 in C*(T?) we will prove that the
cohomological equation

o=Top =y | vz

admits a solution ¢ in C*(T?) whose norms of derivatives are controlled
by derivatives of 1.

e Step 2: Using estimates of step 1, we prove that a random diffeomorphism
of T2 close to R has stationary measures close to Lebesgue measure, notic-
ing that such a stationary measure will be small on functions of the form
¢ — Top. Moreover, by a finer analysis we will obtain a more precise ap-
proximation of stationary measures by some density measure (1 +h(z))dz,
where & is small.



Next, we conjugate the diffomorphism by a conjugation close to Identity
in order to vanish the term h(z)dz. Thus, the new diffeomorphism has
stationary measures closer to Lebesgue measure.

Step 3: Using the formula

wmm+n@msz

Indetd, fdu(z)
T

(d.f is the differential of f at point z), when p is close to Lebesgue measure,
we verify that the condition y»(f, 1) > 0implies by Jensen inequality some
uniform estimates from which we deduce that Lebesgue mesure is close
to be invariant by realisations of f, and that in fact, y1(f, u) and y»(f, 1)
are close to 0.

Step 4: We study the action of the differential of f on the space of vectorial
lines of R? denoted P(IR?) (which can be identified to T): we define a nat-
ural extension of f on T2 x P(IR?) by f(z,h) = (f(z),d.f(h)). Using step 2,
we can assume, up to conjugating the system, that stationary measures of
the cocycle have a projection on T? close to Lebesgue measure. Moreover,
using analog arguments we can also assume that stationary measures of

f are close to product measures.

When f is close to a translation, d. f is close to the identity, and by Taylor
expansions the transition operator S of the cocycle has on C*(T) the form,
up to negligibles terms:

Sp(h) ~ a(h)g' (k) + b()e” (h),

with b > 0. Next we prove a dichotomy:

-If b has a bound by below not too small, this implies some ellipticity
on the operator S and then stationary measures can be approximated by
some density dz ® g(h)dh, where g is smooth and has a controlled size.

-If there exists h such that b(h) is very small, then this direction / is close
to be invariant by d, f, uniformly in z.

If the first case of this alternative occurs, then using that the Lyapunov
exponent of the cocycle is close to 0 (consequence of the fact that Lya-
punov exponents of f are close to 0), we prove that the cocycle is close to
be linearizable, that is conjugated to one on the form (z, h) — (f(z),e“®h)
up to negligible terms. And we prove next that such a linearization is im-
possible in this context, and so that the first case cannot occur. Thus, the
second case of the alternative necessarly occurs and there exists a direc-
tion & close to be invariant by the cocycle. Itis then not difficult to deduce



that f is linearly conjugated to a diffeomorphism close to an Anzai cocycle.

When f is not close to a translation, using a conjugation of the cocycle
by (z,h) — (z,D(h)) where D is some diagonal matrix, we can obtain a
cocycle whose second term is close to the identity, and thus use previous
arguments and prove the same result in this case, and more precisely
in this case the diffeomorphism f is close to an Anzai cocycle without
algebraic conjugation.

o Step 5 At this point we have proved that a random diffeomorphism close
to a diophantine Anzai cocyle whose Lyapunov exponents are positive
is conjugated to a random diffeomorphism closer to an Anzai map, and
in general, the algebraic part of the conjugation is the identity. Iterating
this fact, by the use of classical KAM methods we prove that the random
diffeomorphism is conjugated to an Anzai cocycle.

3 Cohomological equation

For all the sequel, we will assume ¢ and M, are fixed, and we will not explicit
the dependence of constants which will appear in ¢ and M. We will neither
explicit their depedence on A, but we will need the easily checkable fact that
this dependance is polynomial (there are bounded by CA™ for some m > 0 with
C not depending on A) We will use the notation O(Z) to represent a quantity
whose absolute value is bounded by CZ for some constant C, and if E is some
normed vectorial space, Og(Z) will represent an element of E whose norm is
bounded by CZ.

Let R : (x,y) = (x + a,y + p(x)) be a random Anzai cocycle, Ty the as-
sociated transition operator defined by Top = E[p o R], f = ﬁl.ﬁ(x)dx and
A =R o R = R o Rlll2(r2) where R is an independant copy of R. We will assume
that (o, ﬁ) is (A, 0)-diophantine and that d(R, Id) < M.

If k1 and k; are two integers and ¢ is a C* function on T?, we will denote
81'1 +ip (p
dxh dyP

llpllic k, = sup

NI
i1,i€IN,0< i + % <1

L[2(T2)

(with the convention § = +co, 2 = 0).

Proposition 3. The operator I — Ty is a bijection from the space

Ey = {(p € C°°(T2)|f o(x, y)dxdy = 0}
T2

onto itself. Moreover:



i)For every integer k there exists an integer K such that for every 1 in Eo,
I = To) "l < Cligli
for some C = C(k).

i)If A # 0, there exists an integer a such that for every integers ki, k, > 1 and
every Y in Ey,
_ C
”(I_ TO) 117[)”}(1,1(2 S EHIP”thIZ,kZJrIZkU
for some constant C = C(ky, k).

iii)For every 0 > 0 and every integer p, there exists an integer ko such that for every
Y in Ey, there exists @ in Eq such that for every ki and ky larger thant ko,

@l k< Cllilla+ok,a+s)k
(I = To)p — Yl k, < CAPNYN A48y, (146)k

for some constant C = C(5, p, k1, k).

Proof. We will use the decomposition of the space Ey on two subspaces Ey =
Eog @ F where

Eqo = {(p eC(TY)Vx €T, f P, y)dy = 0}
T

and F is the subspace of functions of Eq which depend only on the first variable.
Notice that the spaces Egy and F are stable by Ty, and by the derivations d;
and d,. It is easy to check that I — Ty is a bijection of F onto itself satisfying
estimates 1),ii) and iii) (it satisfies in fact stronger estimates), since for ¢ in F,
Top(x) = E[p(x + a)], so that the cohomological equation ¢ — Top = ¢ can be
solved using Fourier series expansion.. Thus, we will mainly study the restric-
tion of I — Ty on Eg.

Up to replacing R by URU™! with U(x, y) = (x, y + u(x)), u being defined by
the relation u(x) — E[u(x + a)] = E[B(x) - B] (see Lemma 1 of previous chapter),
we will from now on assume that

Vx € T, E[f(x) — f] = 0.
If R is an independant copy of R, then
(RoR-RoR)(x,y) = (0, (Bx + & + () — (Bx +a) + B))).
Since E[f] = constant,

E[R o R~ R o Rla, B] = (0, Top — p),



and in consequence
ITop = Blllz2(r) < A.
and for every integer k,

1B = Blll < CllITop = Bllleszs < C VA
for some C = C(k).

When A = 0, this implies that R is almost surely a translation on T?: in this
case we do not need to use the previous decomposition of Ey, Proposition 3 can
be proved by Fourier arguments:

Lemma 1. If R is almost surely a translation, then (I — Ty) is a bijection from Eg onto
itself, then for every 6 > O there exists an integer ko such that for every integers ky and
ko larger than ko and for every V in Ey,

T = To) Yl ky < CllY a5y, (1+6)ks
for some C = C(6, k1, ky).
Proof. The equation ¢ — Top = 1) is equivalent to
Vp = (p1,p2) € Z2,p(p)(1 — E[ZTP1*72P]) = {(p)

Thus defining ¢ by

lP(P) eZin(p1x+p2y)
1 — E[EZiﬂ(p1a+pzﬁ)] 4

px) =

pez2—(0)

we have ¢ — Top = 1 and using that
207 B ’
|1 _ IE[E 17T p1a+p2 ]l Z -
1% + Ip2f*
we deduce that ¢ is C* and that there exists an integer a such that
llpllzerey < CUlATPlzar) + 19512 r2))-
If k; and k; are larger than § and if i; and i, are integers satisfying 1% + ,l(—zz <1,
then since (I — T0)8§1 8;2(p = 811 8;217b we get by the previous inequality
197 95 Pllizqry < CUIGY 03 Plliars) + 197 9y Pl

with

i1+a i 1 [( i i ) a

= —+ 2+ —]|<
1+0k  (+0k 1+0l\k "k +k1]_1

so that [|9] ™07l < 1Wllasop, 1ok, and 10707 Ylizrzy < 1Pllasom, aron,
in the same way. The result follows. o



In the sequel, we will assume that A # 0. Now we will prove the point iii)
of Proposition 3

Lemma 2. For every integer p and every O > 0, there exists ko such that for every
k1, ky larger than ko and every ¢ in Ey, there exists ¢ in C®(T?) such that

1@l kg < Clllla+s)k, 1+5)k,
II = To)p — Yll, g, < CAPIIY 1450k, (1+5)k, -

Proof. We set Top(x, y) = E[p(x + a, y + f)]. This operator Ty is close to Ty when
A is small, in the sense that for every ¢ in Ey,

I(To = To)@llk, &, < ClIB = Blli, @l ko1 < C VAI@Ilk, £p+1

Moreover, we know by Lemma 1 that [ — T, is invertible on E,. For Y in Ey,
we define functions ¢, and 1, by induction by ¢ = 0, ¥, = (I — To)¢p, and
Ppi1 = @p+ (I - To) ' — ). Now let pin IN, let us assume that for every 6 > 0
if k; and k, are large enough we have

{ loplli, ko < C”l/’||(1+g)k1,(1+6)k2
Wy = Yl g, < CA2{[Yll1o)k, 1 40)k, -

for some constant C = C(, k1, k;). Then

. P
lopi1=@pllk ks = IT=To) ' W@=Yp)llis s < ClY—pllasop, arops < CAZIYIl 1ok, 1462k
hence
14
lppsille k, < N@plliy k, + CAZID 14512k 1572k, < CllPlla+spr, q+opk, 1
s pit

11 = Yl ke = 1(To = To)(@ps1 = @pllk ks < Cll@ps1 = @pllky kor1 < CAZ Wl a5k, q+5)200+1)

We deduce by induction that ¢ = ¢, satisfies the claimed estimates. O

Lemma 3. There exists an integer ko such that for every ¢ in Ey,

C
pllzer) < Eua;“((p — To)ll2r2)

Proof. Let ¢ = E[||d%(¢ o R - qo)lliz(Tz)]% = E[lld5(¢ — @ o R’l)llizm)]% for some

integer k we will chose later. We have

e = 2f Ep(x, y)ydxdy - 2f Ko (x, ) To(sp)(x, y)dxdy
T2 T2

= fz (p&%k(<p — Top)dxdy
T
< 2llpllizer) 103 (@ — To@)llrz2cr)

Notice that if Sis a composition of n any copies (not necessarly independant)
of R or R7!, then

E[lI05(@ 0 S = @)l pz) 17 < me.



Letting R : (x, y) — (x + &,y + p) be an independant copy of R, we set
So=R'oR1ToRoR,
which is on the form

So(x, }/) = (x/y + b(x))

where b(x) = —B(x + @) — f(x + @ + &) + B(x + @) + B(x).
Next, letting R; : (x,y) = (x +a;, y + Bi(x)) (i = 1,...,n) be n independant copies
of R for some n we will chose later, we set

S = (Rn O"'ORl)_l OSOO(RVI 0"‘OR1),
which is on the form
5(x,y) = (x, y + b(x +5))
wheres, = a; + -+ + a;,.
By the previous remark, we have

E[I04(p © S = @)l 217 < (21 + 2)e.

Writing .
P y) = Y P, 2)

peZ
we have
poSxy) -y =@ y+bx+s,) - y)

— Z (pp(x)(e%nph(xﬂ,,) _ 1)62inpy.
peZ

Seeing @, (x)(e?P™ ) — 1) as a Fourier coefficient L?>-norm of y - ¢ o S(x, y) —
@(x,y) leads to

<
Ipl¥

Denoting u = E[e*P™], we have E[e?P™0*)] = Triy(x) (we still denote T the
restriction of Ty on functions depending only of the first variable), and so

lpp () (@t — 1) < —|lp 0 S(x,-) — p(x, Ik

llpp(Tou — Dllrzery < (21 + 2)e,
hence

< (2n + 2)e. (3)
L2(T)

Setting m, = E [ e2™"0dt, writing u = v — Tov + m,, leads to

lo
< Cllually, < Clpl

n n

10



for some constant C and integer Iy, and so

1 n-1 C I
=Y T > 1| - =
j=0
2Cph
Choosing n = —p, we obtain
11— mpl
1 i 1 _mpl
z Ty —
- Z Tiu -1 >
j=0
and so (3) becomes
Cne Cple
< < 4
||§0p||L2(1r) =N _mpl 1 —mp|2 4)

for some constant C.

Let us look for a lower bound for [1 — m,|. We have
[1-my| 2 E f(l — cos(2mpb(t))dt > 2 f{pb(t)}zdt,
T T

where {t} is the distance of ¢ to Z. Next, for a fixed event, using that B(O) =0,
we have the alternative:

-either there exists ¢y such that |pb(ty)| = %, and then for |t — fy| <
have

1
e, W

1
Ipb(t) = pbito)l < IpllIEllolt = tol < 7

hence {pb(t)} > }1, and hence

fT (pb(t) Pt > f[

fo——L
07 ZpileTly ~

dt 1

o] 16 64pIE7T

-or |pb(t)| < % for every tin T and

[ o = [ ooy = par
T T

Thus,

-1 -1
(E] [eora)) < [( [wbeoreal } <E[oap o + s | < cpia®

for some C, and



Finally, using these lower bounds of |1 — m,|, (4) becomes

Ce

lppllrzery < P2l

and, choosing k = Iy + 4, we have by (2)
Ce _C 1 2k 5
pllycrz) < Z; ppllieen < S5 < 7l 1934 = To@ )y
pe
and the result follows. O

Lemma 4. There exists an integer a such that for every @ in Eg and every integers kq

and ky larger than 1,
C
lpllk, k, < e

Proof. Therelation (I-T)d1¢ = d1(p—Top)—E[p'droR]leads to the inequality

||(P - T(p||k1,kz+ﬂk1

197 (I = To)1 pllezcrey < 107 (I = To)llars) + ClIY D2l
Thus, for every positive integer j less than k;,
19} = To)d} pllizersy < 10"V = T0)} @l + Clloy ™ Dagllizcrs,
and we deduce by succesive use of this inequality that
I = To)dY @llizry < 11070 = To)@llizcry + CllOY " agpllry

for some constant C. Next, Using Lemma 3 and the fact that d, and T, commute,
we get

C C -
1979y pllizcry < S5 II=To)dy 95 lliaery < 551107 3™ (=To)pllezcany 197 057 pllre)
and by iteration of this inequality,

k1

C » .

105 5 pllrs < g Y195 = Todplezerey
i=0

with a = ko + 1. Now, If i, i, are integers satisfying ,1{—11 + ,'(—22 <1, then

o C NO | i ypsai
197 Ol < g D 1947950 = To)lizce
=0

with

i1—i ip+al i i 1 a .
! + 2 S—1+—2+( )
k1 k2+ﬂk1 k1 kz

12



hence

o C
197 95 Pllz(r2) < E”(I = To)pllk, ky+ak,
and hence c
l@llk, k, < E”(I = To)Pllky kr +ak; -

Lemma 5. For every y in Ego, there exists ¢ in Eqy such that o — T = ¢

Proof. Let ¢ in Eg. Using Lemma 3, we have for every n the inequality

C C C
ISPl < FH(I_ To)Snllok, = F“(I_ To)Yllox, < FHlPHo,ko,

hence (S,1) is bounded in L?(T?). Setting

=
(PN = N HZ:O Snl;b/
we have .
(I-To)pn =9 - ﬁleP/

hence (I — To)pn converges to ¢ in L*(T?) as N tends to +o0. Since (S,1)) is
bounded in L?(T?), so does (¢n) and there exists a subsequence of (¢y) weakly
converging to some function ¢ in L2(T?), which satisfies (I — To)p = 1.

Moreover, since d, and Ty commute, for every integer k (9’;(;) belongs to
L*(T?) and (I — To)d5p = 5y

For k; in IN, let us assume that 8’1‘1 8’;2(/) belongs to L*(T?) for every integer k.
Then for every k;, we easily verify by induction on k; that

I = (- To)d e+
where 0; 8’; belongs to L*(T?) for every k}. Next, denoting

Q(x+hy) - px,y)
h 4

Anp(x,y) =
we have
Ay I = (I-To) Ayt 9% p+E[07 95 p(x+at, y+P(x+h) -5 p(x+a, y+B(x+h)+Aur
and we deduce that (I - TO)A;,8]{1 a’;go converges in L?(T?) when h tends to 0, and
next that for every k/, [|(I - T())(Ah&’;1 (9};2@ - Ay (9’1(1 Bgz(pllo,k; converges to 0 when h
and /' tend to 0, and next by Lemma 3 that A, 8’{1 8];2(;) converges in L?(T?), and

so that 8]{”18’;2@ belongs to L*(T?).
O
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Now, we can finish the proof of Proposition 3. At this point we have proved
that I — Ty is a bijection of E satisfying the estimates ii) and iii). Let us now
prove i). Let i in Eg, and ¢ = (I — Tp)"'¢. By Lemma 2, we can find ¢ such that
for k1, ky large enough

1Pl ky, < Clltpllaky 2,
II = To)(@ = Pl k, = I = To)P = Ylli, g, < CAPIIY ]Ik, 2k, -

Using Lemma 4, the second inequality implies that

<

llp = Pl < 5

I = To)@ = Pllky rakrsats < APl g,
with ky = 2(ky + a), ky = 2(k + ak;). Choosing p = 8k;, we deduce

lpllky b, < NPl k, + 1l = Pl k, < CllYI, £, -

4 Estimates on the stationary measure and the sum
of Lyapunov exponents, first conjugation

We fix a diophantine random Anzai cocycle R as in the previous section, f = R+C

in 15?7000("{2) a perturbation of R, and p a stationary measure of f. For ¢ in
C™(T?), we will denote

Up = (I-To)™ (¢ - P(0)).
If u and v are probability measures on T?, we denote

d; (1, v) = sup { f pdp — f pdvlp € CHM?), llgllk < 1}.
T T2

Proposition 4. There exists an integer K such that for every ¢ in C*(T?), we have

f(pd#:f (pdz+f(@'U(p).idz+O(€2||(p||K),
T2 T2 T2

where T = E[Co R, ¢ = |[Tllx. In particular, if T = constant + O(e?), then
dy (u, dz) = O(e?).

Proof. For ¢ in C*(T?), setting T¢ = E[p o f] and Top = E[p o R], we have
|Te — Topl| < €llplli. Using the T-invariance of u, we get

Lf@—n@wkamn
'I[‘Z

14



We now use Proposition 3. For ¢ in C*(T?), applying the previous inequality
to ¢ = U1 gives for some C and K

.jq;z¢d”_jq;2¢dz

Thus p is equal to Lebesgue measure in first approximation. To get a more

< CellUyll < Cell¢Ik.

precise approximation, we now write T — Top = IE[(ﬁgo o R).C] + O(szllgollg),
which gives by integration and our previous estimate on p:

@ =Top)du = [, E[(Vo o R).Tdy + O(elpll)
I El(Ve © R).Cldz + O(ellpllx)
= [ Vo.ldz + O(IlIx).

Applying as previously this formula to ¢ = Ui this gives for some Kj:

— = Vi C 2
fT s fT iz = fT (VUY).Ldz + Ol

O

Proposition 5. i) There exists a diffeomorphism G = Id + g such that, denoting
f=G'fG=R+C

o Forany ky k; larger than 1,

C
181k, 5 < El”l”lkﬁmkﬁak]-

for some C = C(ky, k).
e For any k, there exists K such that
ligllk < ClIICllIx
for some C = C(k).

o For any integer k, there exists an integer K such that

'l]E [z or- [ t(z)dz]

it) For any 6 > 0 and integer p, there exists a diffeomorphism G = Id + g such that,
denoting f =G fG=R+

< Il
k

o Forany ki k; large enough,

181l &, < CHITN 16y, (1+5)kn -

for some C = C(ky, k).

15



o For any integer k, there exists an integer K such that

H]E [i oR! - f i(z)dz}
']1"2

Proof. Let G = Id + g in Dif f°(T?) with |igll = O(ll|C/llk,) for some integer ko,
andlet f = G™'fG = R+ . Setting C = (4, (), £ = (G, &) and G = (G1, Gy) =
Id + (g1, §2), we have

{ §1 =G+ -g1°oR)+ OLZ(Q)(”IQHI%D)
G =0+ (BoGi—p)+(g2— g oR)+O(ICI ),

< C(APIITl + TR

k

hence, denoting Top = E[poR™'],m1 = E[( o R and n, = E[(G+f0 Gy —f) o
R1], we have i i
{ G =m1 — (81— Togn) + O(IITIR)
G = m = (82— Toga) + OUIITIIE,)

Thus, using Proposition 3 with T instead of Ty and denoting U the associated in-
verse operator, setting ¢; = U (ToCl) andnextg, = U (TQ(CZ oR'+(BoGy— ﬁ)))
we obtain the point i). If instead we define g; and g» using the point iii) of
Proposition 3, we obtain the point ii). O

Proposition 6. If f = R + C satisfies for some ¢ > 0 and some integer ko large enough

the inequalities
[I1Clllk, < &
”lE [Cor- [, C(z)dz]”k <

and if moreover y1(f, u) + y2(f, u) =2 0, or fou = p a.s., then we have,
det(d.f) = 1+ Opapy(e?).
where d, f is the differential of f at the point z.

Proof. By Proposition 4, d; (i, dz) = O(¢?). In consequence, we have

)/1(f/ /J) + VZ(fr ‘U) =E f 2 In det(dzf)d(u(z)
=E fr , Indet(d. f)dz + O(e?)

=E ﬁr (det(d=f) - 1)dz - LE [, (det(d-f) — 1)?dz + O(&?).

Since f is a diffefomorphism of T2, sz det(d, f)dz = 1 hence

P+ 72t = ~3E [ (et~ 17z + O

This gives the expected estimate when y1(f, u) + y2(f, u) = 0.

16



To obtain this same estimate when f,u = p a.s., we write that for ¢ in C*(T?),

‘fqﬂy=j‘ﬂ@ﬂ+0@m@w
e e

f pofldy = f P(f(2)dz + O llp o f~1l)
e T2

and

4

= j;rz ¢(z) det(d f)dz + O(?|lpllk)

hence

fwwmw@mﬂ=f¢wﬂ+wﬁmw

Setting ¢ = det(d, f) — 1 and taking the expectation of the last formula, we get

E f (det(d. f) — 1)*dz = O(&>)
TZ
O

Thus, using the last two propositions, under assumption (I) or (II) of The-
orem 1 we can conjugate f to some f which is close to be Lebesgue invariant.
In the next section, we will use more finely these assumptions in studying the
action of the differential of f on the projective space P(IR?), and we will obtain
that in fact f is close to an Anzai cocycle, up to an algebraic conjugation.

5 Projective action

The aim of this section is to prove the following proposition:

Proposition 7. Assume that f = R + C satisfies assumption (I) or (II) of Theorem
1, and that in addition, E[f(x — a)] = B, and ||E[Co R7T - f,(O)]IIk < Myée? for some
Moy, k. Then, there exist 5y > 0 such that for every x > 0, if K is large enough and if
€ = |IIf — Rlllx is small enough, there exists a matrix P in Sly(Z) and an Anzai cocyle
R:(x,y) > (x+ @&y + p(x)) such that ||[P7L fP — R||lo < Ce'*™ for some C = C(My).
Morever, ||P|| < Ce™, and P = Id if |||’ |llo > 2¢.

Proof. By proposition 6, we already know that
det(d.f) = 1+ O(¢?) (5)

To prove the more precise fact that f is close, up to an algebraic conjugation,
to a random Anzai cocycle, we will study the action of the random cocycle
(z,h) = (f(z),d.f(h)) on T? x P(IR?). Notice that in the case where f is close to
a translation of T?, d,f is close to Id. And in the general case where f is close
to an Anzai cocycle, we can conjugate the cocycle by (z,h) — (z, D(h))) where

17



1
0 3

component is close to Id.

D= ( A0 to obtain for an appropriated choice of A a cocycle whose second

More precisely: Let m = [||f’lllo, A > 1 a real number we will choose later,

D= g (l) and M, = D(J.f)D~! where . f is the Jacobian matrix of f at point

A
z. Thus, M, = Id + N, with

N = ( MG 2a
AL +p) b )

which satisfies ||N,|| = O(@ + AllB’llo) = O(e1) where we have set
€
&1 = X + mA.
Let
u; =Id + 1,
the diffeomorphism of T induced by the projective action of M,, that is such

in6 .
that % = ¢™:(0), Writing that

i@ ind ind
Q2imu=(0) _ M.e™ €™ + Nge

Mzeing e—ind 4 Nzeine

= 2™ (1 + 2Im(N-e™ &™) + O(|IN=IP))

leads to the estimate

n(0) = #=Im(N.e™ e + O(IN.I?)
= M1 G + B’) cos?(10) + (920, — d1L;) cos(m0) sin(6) (6)
~ %G sin%(16) + O(IIN.II?)

Finally, let U the random cocycle (z,0) +— (f(z),u.(0)) on T2 x T, i a sta-
tionary measure of U, and u, v the projections of [i on the first and second factor.

The probability y is stationary for f, so we know by Proposition 4 that u is
close to Lebesgue measure. Adapting the proof, we will prove that in fact, m is
close to a product measure:

Lemma 6. Under assumptions of Proposition 7 and previous notations, there exists
an integer k such that for every ¢ in C*(T? x T),

f o(z, 0)d(z, 0) = f (2, 0)dzdv(6) + O(lgll)
T2xT T2xT
Proof. For ¢ in C*(T? x T),

[ 9 0@ 0) =E [[1. 1 ¢(f(2), 1(0))dp(z, 6)
—E [, (R(2), 0)d(z 6) + Ofe1llglh)

18



and so, for ¢ € C*(T? x T), choosing ¢(-, 0) = U (Y(-, 0)) (where U is defined as
previously by Ug = (I — To) (@ — ¢(0)))

fT (e, Az, 0) = f fT ¥z O)z(0) + Ofer Iyl )
Next, for ¢ in C*(T? x T),
Elp(f(2), 1(0)] = E[p(R(2), 0)1+ E[V.0(R(2), 0).L@) |+ E[dop(R(2), O)n.(6)]+O(cligl)
hence by (7)

[ @@ — Elp(RE), ODdz, 0) = [fp,, 4 V=p(z, OE[LR (2))]dzdv(0)
+ [J1a, e P09(z, O)E[NR1(2)(6)]dzdv(6)
+O(elll)-

Since E[(;oR™!] = ¢;+O(¢%) by assumptionand ¢ > &1, the integral fszﬂr Vzgo(z, O)E[L(R™1(2))]dzdv(0)
is bounded by above by Ce?||¢|l; for some C. We estimate the integral
[Ji2,z 209 (2, O)Elng-1((6)]dzdv(6) thanks to (6). We have

92 (E[Gi o R™']) = E[02C; 0 R7]
1 (E[G o R™]) = E[01C; o R + E[p'd,T; 0 R = E[01 i 0 R7] + O(e])
E[f'(x-a)] =0,

hence [E[ng-1(,)(0)] = O(s%), and the integral f szﬂr do@(z, 0)E[ng-1(,)(0)]dzdv(0)
is bounded by above by Ce3{|¢l;.

Consequently,

[].._. 00~ Eipe, omdac ) = otéen,

and choosing ¢(-, 0) = U(Y(-, 0)) for ¢ in C*(T? x T) gives the result.
O

We do not still have any information on the measure v. This is the aim of
the next lemma:

Lemma 7. For every 0 > 0, we have the following alternative:

e cither there exists Oy such that

(., Bo)lllqr2) < 1"

o or there exists a smooth density g(0)do satisfying ||gllk < Ce7?, ||In g”k < Ce

and d;(v, 8(0)d6) < Ce%_(sfor some C = C(k,6) and § = 5(k, 6) = 0s5—0(1).
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Proof. We set

70 = [ (o

, (8)
b(6) = 7 fT 16z = 2 O

We have the estimates ||[1.[llc = O(e1), II7llk = O(e) and |[bllx = O(e7). Moreover
we fix 6 > 0, and we will assume that

2406
b>e;

o
on T.(if it does not hold, we have the conclusion |||7(-, O)|llr2(r2) < \/Ee? 2). With
this assumption, we want to approximate v by a smooth density whose deriv-
atives are controlled.

If ¢ is a C* function on T, then

Jre©dv(®) =E [[, . ou-(6))dp(z, 60)
=E [0 (0(6) + 9 (0)1:(6) + 190" (0)n:(0)%) dfa(z, 0) + O lipll)
= [r 9(©)dv(0) + [ (1(O)¢'(6) + b(O)g" () dv(6) + O(ellly),

hence

fT ([1(0)¢’ (0) + b(O)p" (0)) dv(0) = O(e}lllk)- ©)

Thus, v is small on the space {fj¢" + bp”, ¢ € C*(T)}, so we will naturally try to
approximate v by a density measure g(6)d6 null on this space, that is such that
(7—b")g + bg’ is constant.

Sublemma 1. Let a, b in C™(T?) such that ||allk, ||l < €2 and infb > 3*° for some
reals numbers €,6 > 0 and integer k. Then there exists an unique smooth periodic

function g such that fT g(tdt = 1 and ag + bg’ is constant. Moreover, g is positive,
liglle < Cel‘g and ||In gl < Cel‘gfor some C = C(k,6) and & = 5(k, 6) = 050(1).

Proof. ForcginIR, g : R — Ris solution of the equation ag +bg’ = cp if and only
if there exists dy in R such that

g(0) = doe™ %O + ¢yR(0),

where Q(0) = — f09 %dt and R(0) = fog eQ(thf(H) dt. By Cauchy-Lipschitz theorem,
g is 1-periodic if and only if g(1) = g(0) since 6 +— g(1 + 0) is solution of the
same equation, and so if and only if do(e™%® — 1) + ¢oR(1) = 0. Since R(1) is
clearly non null, we deduce that the space of 1-periodic functions g such that
ag + bg’ is constant has dimension 1.

If g in C*(T) is such that ag + bg’ is constant equal to ¢y, then:
-If ¢g = 0, g cannot vanish by Cauchy-Lipschitz theorem, unless it is identically
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null.

-If g # 0, at each point 6 where g vanishes we must have b(9)g’(6) = ¢o, so g’ (6)
has the same strict sign as cy. But if §; and 0, are two consecutive zeros of g,
§'(01) and g’(0>) cannot have same sign. Consequently, g cannot vanish on IR.
Thus, unless g is identically null, ¢ does not vanish on T, and in particular,
i g(tdt # 0.

In any case, there exists a unique function g such that ag + bg’ is constant and
fT g(t)dt = 1. Moreover, since g does not vanish, it is necessarly positive.

Let us assume now thatag+bg’ = ¢o for some constant ¢y and that ﬁr g(tdt =
1. Let O be a point where g is minimal. Then g’(6y) = 0 so |co| = [a(69)g(O0)| <
¢3inf(g), and so
a

- <
Bl =

2

’
C

‘g_‘< bg .
o
1

€
For k > 2, derivating k — 1 times the relation ag + bg’ = ¢y gives

k-1

be® + Z ;8" =0,

=0

where g; is some linear combination of derivatives of a and b (in particular,
= O(¢7)). We deduce that

(k) k=1 0 ()
g g C 8

E | < — su —

|b| 7 éif Osjskp—l g

for some C = C(k), and so by induction,

g(k)

8

<

. 10
1

€
for some C = C(k).

For every 0,

‘ (6) - fg(t)dt‘ flg t) |dt<—(13fg(t dt<—

50 |g| < 5 <, and bY (10) g(k)| (k+1)>

&

Finally, one can easily verify by induction that

7\i () \
1 o)® = a (g_) (g_)
(Ing) Y, e . .

0<iy+--+ix<k
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where the a;’s depend only on k. It follows by (10) that || In g|lx < Ce;kz‘S for some
C = C(k).
O

We will now prove Lemma 7. Let g be given by Sublemma 1 with b defined

in (8) and a = b’ — 1], so that
ag +bg’ = €l (11)
for some constant cy. We will distinguish the cases where ¢ is small and large.

Let us assume that |cg| > ei/ 3

2(6)d6.
Notice that g(0)d0 is null on the functions of the form 7@’ + bgp”, so if i in
C™(T?) satisfies ﬁr P(t)g(t)dt = 0, there exists ¢ such that e2y = 7jp’ + bp”, and

we can assume fT(p(t)dt = 0 up to adding a constant to ¢. In order to use

, in which case we will prove that v is close to

(9) and conclude that fT @dv is small, we need to estimate ||@|lx. Using that
(' —)g +bg’ = e3¢y or equivalently 7jg = (bg)’ — e3¢y, we write

ehpg =1gp’ +bgp” = ((bg) — 2co)p’ +bgp” = (bge') — 2cog’.

If |bge’| is maximum at 8y, (bgp’)'(69) = 0, hence

lco®’(Bo)l = [1P(60)g(O0)l < %IIIPIIO,
1

and |co(bg¢")(B0)l < 3 °I[llo. Thus,
llcobge’llo < Ce2~2Illo.

1
But we know that b > e%*‘s, we have assumed that |co| > €7, and if g is minimal
at point 01, we have by (11)

leTcol = [a(61)g(61)] < Celg(61)l,
so that ¢ > &lcol > %81% . These lower bounds leads to

, 2.5
llp'llo < &, "llllo-

Using this estimate, successive derivations of the relation 2y = ¢’ +bg” gives

llplle < CE;%_SHI/)H;( for some C, and thus hence by (9),

-5

1 ’ ” %
[ wiv=5 [ 9"+ bgar = OCerliph = 0Ce} g,
T e Jdr

hence d:(#v(6), §(0)d0) = O(¢; ), which proves Lemma 7 in the case |co| > .
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Now we can assume |co| < 81%. For ¢ in C*(T), applying (9) to ¢1(6) =
6 .
I @) - p(0))dt gives

fT (1 + b = €6, fT 9(0)d6 + Ol

where 6%50 = fjr 7(0)dv(0), and we also have

f (g + bp")g(0)d6 = —¢3cq f @(6)d6.

Thus, using Sublemma 1 we choose ¢ such that fi¢’ + bp is constant with

fT ©(0)d0 =1 and ||lpllx < Cel‘é. Thus we get & = —cp + O(e%‘g) = O(e%), and in
consequence, for every ¢ in C*(T),

fT (g + b )dv = OCe ). (12)

Weset A(0) = |, Zg dt, which satisfies |A’| < Ce7 % for some C since 7] = O(e?)
and b > €2%°,

Sublemma 2. Let I = [0, 61] an interval such that A does not have local minima on
100 + €%, 01 — €8[. Then there exists a real A such that for every ¢ in C*(T) supported

inl,
dv_—/\f 6—d6+Oe%5
f(P o( )b(e) (&7 llelle)

Proof. Lety in C*(T) whose supportisincluded in I, and satisfying fI Y(t) L;z(;)) dt =
0. Then the function @(6) = 2e~4© foe %e“‘(t)dt is 1-periodic, satisfies fjp+bg’ =
€31, has support in I, and:
-If 6 € [0y, Oy + 5‘15], then for ¢ in [0y, 0], |A(t) — A(0)| < C and so |p(0)| < %H‘#Ho-
-If 0 € [61 — €5, 61], then using that (0) = —e~4© :1 lbp(:))eA )dt, we get in the
same way [p(0)| < Sl ll.

-If 0 € [0 + €0, 61 — €2°], then either A is increasing on [6) + &}, 6] and

_ e p 0 | ¢ |
lp(0)] < 4@ (eA(QO DO + )| + &2 fwé) llf((t)) AD g ]

or A is decreasing on [0, 61 — £2°] and in the same way,

1

9(0)] < 1O AO-Diy(, — ) 4 2 f Tl agy ] < =gl
0 b(t) €
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Thus we conclude that [|glly < %H#’Ho- Then, derivating the equality 7o + by’ =
Y, we have by induction [|p[lx < Cl|[¢[|x for some C, and so by (12) ﬁrwdv
Ol llo)- o

Now if I and | are two successive intervals where previous lemma applies,
with an intersection of lenght superior to £, we can approximate v by a density
of the form hy(0) = c1e2@b(0)™ on I and hy(0) = 264 @Pb(0)~" on ], with for
exemple c; < ¢. Let us cut I U | in three intervals Iy, I, I3 of lenght > %86 with
Iycl,I cJ,I3cIn]. Let y a smooth function such that0 < y <1, x =1on
I, x=0on I, and ||x]lk < Ce’{é, and let i defined by Inh = xInh; + (1 — x) Inhy.

We clearly have ||Ink||, < CSIS for some C,5. We will verify that h(0)d0 is an
approximation of v on I U I,.

If @ is a C* function supported on I; U I, we write ¢ = @1 + @2 + @3 with
@; suported on I, [lpjlly < Cs{kbll(pllk. Then for j = 1,2, ¢; is supported on I;
SO fT Pj(0)h(0)dO = fﬂ. @;(0)hj(0)dO is close to ﬁr @;(0)dv(0) (up to a remainder
O(e%_éll(pjllk), and for j = 3, ﬁr @3(0)h1(0)dO is close to fﬂ. @3(0)dv(0) since @3 is
supported on [; and I, and using that h; < h < h,, we get that fT @3(0)h(0)do
is also close to fT(pg,(G)dv(G), up to a remainder O(ef_éll(p;gllk). Consequently,

Jp 9(©)n(6)d6 is close to [, p(6)dv(6) up to a remainder O(gf el + llpalle +

1_
lpsll)) = OCe; " liglle).

We can write 7] = 7j; + 7 where f]; is a trigonometrical polynomial of degree 2
and r a negligible term of order O(e?), hence up to replacing 7 by its approxima-
tion 7j;, we can assume that 2 has at most 4 zeros on T, and so that A has at most
2 local minima. Thus we can write T as a union of at most two intervals where
previous sublemma applies, and "connecting" the densities obtained using our
previous argument, we obtain a smooth density on T satisfying the claimed
property, and this completes the proof of Lemma 7 ]

Lemma 8. If f satisfies the assumption (I) or (II) of Theorem 1, we have for some
C = C(k,0) and o = 0(k, O) the alternative:

o cither there exists Oy in T such that

(., B0l < Cer™,

e or there exists a diffeomorphism G in Dif fo(T) satisfying |G — Id||ly < Ce™® and
a family (r, = Id + w(2)),e12 of random translations on T such that:

L
IIGu.G™ = r)llzare) < Ce ™
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Proof. We can assume that the first alternative does not hold, so that we
can apply Lemma 7 to approximate v by some smooth density g. We set

GO) = [ gltydt.

We first treat the case where y»(f, i) > 0. For any real numbers 0; and 0,
and any z in T?, the aera of the parallelogram generated by the vectors M, (¢™)
and M,(e™) is equal to |det(M.)| - |sin(r(61 — 62))|, and also to |[M.(e™")| -
IM,(e'™2)| - | sin(u;(01) — u.(62))|. Letting 0, — 6 tend to 0 and using (5) leads to
the equality

|Mz(ei779)|2.|1/l;(6)| = |det(MZ)| =1+ O(élg)
Now, y1(f, ) = y2(f, u) 2 0 and

vifow) +y2(fop) =B fT Indetd. fdu(z) = O(e})
hence we have y;(f, u) = O(s% ). This implies that

E f f In ML) ldp(z, 6) = O(ed),
T2xT

and hence

E f f Inu(0)dp(z, 0) = O(e}).
T2xT

Thus, the Lyapunov exponent of the cocycle U associated to the stationary
measure [i is close to 0. The idea is now tu use that since [ is close to g(0)dzd0,
the conjugation of U by (z,60) — (z,G(0)) should be almost dzdO-stationary,
which would allow to easily estimate the associated Lyapunov exponent. But
we will not exactly proceed like this because we do not have a good control on
derivatives of G™!. We will rather copy the proof of the invariance of Lyapunov
exponent by conjugation, which leads to the following computation: using that

{1 is stationary for U, that di(f1, g(6)d0dz) = O(s%“;) and the estimate

IE[Inu’ +1Ingou —Inglllcrm = I + (In g) fillcirxm + O(27) = O(e279),
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we have

E ff Inu(0)df(z, 0)
T2XT

ff (Inu(0) + In g(u-(0)) — In g(6)) d1(z, )

= j[ (Inu,(6) + In g(u,(6)) — In g(0)) g(0)d6dz
T2><"Jl"

-8
+Os

- f fT . ((G Gf‘(ze))(e)) (©)d0dz +0 (e}
Gou, 0
) ffm (( o) - )) ()16

——]E ffTZXT ((G ° ”Z,(Q();) (9)) 2(0)d0dz + o(sf“s)

- ffTZXT(GouZ G)(G)z%dz+0( H).

Thus, we have

E f f (Gou: — GY (0)*d0dz < Ce}
T2XT
for some C. Setting w(z) = G(u;(0)),

]Ef IG o 12 - G - w(@)l2dz < Ce. .
T2

If f satisfies assertion (II), and belongs almost surely to some solvable group
G, then one can easily verify that the cocycle (z,h) — (f(z),d.f(h)) also almost
surely belongs to a solvable group, precisely to G = {(z,h) — (g(2),d-g(h)), g €
G N Dif f1(T?)}, and then that this is also the case for U. Hence, by Proposition
1, there exists a probability {1 almost surely invariant by U, which can be

approximated by a density ¢(6)d0dz. Thus, for ¢ in C*(T? X T), the integral of
pol™— — ¢ along f1 is null, and differs from its integral along ¢(6)d0dz by a rest

0> (lp o Ul + ligll)) = O(e? lllle). By a change of variable,
@ @ @li)- By g

f po Uz, 0)8(0)d0dz = f @(z, 0)g(112(0))u(0) det(d, f)dzdO
TxT? T2xT
and by Proposition 5, detd, f = 1 + O(e?), hence

f (2 0)(G o 1z — GY'dzd6 = Oe. lipll)
T2xT

Choosing ¢(z, 0) = (G o u; — G)'(0), we deduce as previously that

f IG o 1. - G - w(@)IRdz = O(e ).
"JI‘Z

26



Lemma 9. Under assumptions of Proposition 7 there exists a vector p in Z2, a map
k : T2 > R and some positive constants C and &g such that

ld-f(p) — k@)pllli2er2) < Cel*oo
with |pl < ™, and p = (0,1) if m = || lllo > 2¢.

Proof. Now, we will fix the value A in the definition of M, and ¢ of the begining
of the section by:

A= \/% if m > 2¢, in which case ¢ = 2 Vme.
A =1if m < 2¢,in which case €1 = ¢ + m < 3¢.

We will first prove that this is necessarly the first alternative of Lemma 8
which will occur. Let 6 > 0 and let us assume that there exists G and w as in
Lemma 8 such that

Gu.G™1(0) = 6 + () + Opre, (ef *5),

or equivalently
2(0)1:(6) = w(z) + Oy (sf‘é). (13)

Ifinfg < 6(13, then choosing 0 in (13) such that ¢ is minimal gives [|w(:)ll;2r2) <
CE%J"3 for some C, and next choosing 0y such that g(6y) = 1 gives |[1.(Oo)llr2(r2) <
1§
Ce?

1

We now assume that inf g > &8, If W is a complex measure on T?, we set
Nw = f1r2 N.dW(z) and nw = fT2 1.dW(z). Assume that for some 0y, Ny (e™%) =
0. Then nw(6o) = 2Im(Nw(e™)e" ™) + O(e3) = O(e3), which implies, by the
estimates (13) and the inequality & < g < CSIS, that |Inwllo = 0(81%—6) and so
that Ny = O(e%*S). Using this remark:

X

If m > 2¢, we choose dW = 0, X dy, so that Ny = ( % 0

) vanishes

at the vector ( (1) ) By the above remark, Nw = O(e _5), which implies,

Om

ol oo

setting V(x) = B'(x) + fT&Cz(x, y)dy, that AV(x) = O(e

7_¢8 ~
MVilo =m—¢e > 7% we geter = Am = O(e; 6), which is absurd if €1 and 0 are
small enough.

), and using that

If m < 2¢, then N, = JO(z) where ® = f —Id. For p = (p1,p2) in Z?, we

choose dW = €3z, so that Ny = (pj®i(p)h<ij< is null at vector ( P 21 i

7 =
hence Ny = O(e] b). And since this estimate is valid for any choice of p, we
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deduce that N, = O(elg _5) and so that.

Thus, if 5y is small enough, there necessarly exists 6 such that ||[n.(6o)|llr2(r2) <
&;". This implies that

N.eineo = k(Z)einGO + OLZ(TZ)(€1+(‘)O)

where k(z) = Re(N.(¢™%)e~m00),

If m > 2¢, for W = 6, X dy, Niw and V(x) defined as previously and ky =
sz k(z)dW(z), we have Nye™® = kye™® + O(e;*) with Ny = ( 0 0 ) +

AV(x) 0O
O(e?), hence
AV (x) cos(rt0p) = kyy sin(rt0p) + O(e} ™)
{ kw cos(rt0) = O(e; ™) ‘

Combining these two equalities gives AV(x) cos?(rt6p) = O(eiﬂso) with [|[V]llo =
2 hence cos?(n6y) = O(e?’é“). Thus, ™% = +i + O(e‘;’”), hence, denoting e, the

second canonical vector of IR?, we successively obtain N,e, = k(z)e, + O(e}*‘s"),

M.e; = (1 +k(2))ez + O(e;™) and dzf(es) = (1 + k(z))e2 + O(Ae;*™), with
Mgt = mP e+ = O(el+ ).

If m < 2¢, we set AW = e?mP2dz, where p = (p1,p2) € Z*. On one hand, we
have Nye'™ = kye™ + O(£1*?), and on another hand, Ny vanishes at vector

p2 o\ . . P2 cos(1t6y)
( o ), hence writing Ny in the basis ( oy ), ( sin(r0y)

Tr(Nw) = kw + O(e' ).

But Tr(N.) = det(M;) — 1+ O(?) = O('*%) so ky = O(¢'*™) and so Ny (e™%) =
O(e'*®), that is

) gives the relation

(p1 cos(1By) + pa sin(r0))Ci(p1, p2) = O(e'+%)

fori=1,2. Now we fix k1 < g, and we distinguish two cases:

1) If Iii(p)l < 5“670 (i =1,2) for every p € Z>—{(0,0)} such that p| < £, then,
for k large enough,

G -GOle< Y, i< Y, e ¥+ Y '”;"}j'k - 0@ ).

peZ2-{(0,0)} Ipl<e* Iplze*

If [Gi(p)l = 1*% for some i in {1,2} and some p = (p1,p2) in Z* — {(0,0)} such
that |p| < €7, then |p; cos(1t0p) + p2 sin(nty)| < 2 Thus, ¢ = i‘% N O(é‘%o),
where j = (—p2, p1). Consequently, N, (p) = O(el+%°)'

O

28



We can complete the proof of Proposition 7. Let p = (p1, p2) and k(z) given by
Lemma 9. Up to dividing p1 and p, by some common divisor, we can assume
ged(p1, p2) = 1. According to Bezout Lemma, there exists P in SI>(Z) such that
Pe; = pand ||P|| < |p| < ¢ ,and we can choose P = Id if p = (0, 1), hence if
m > 2¢. The diffeomorphism f = P! fP = (fy, f>) satisfies

d.f(e)) = ez + P"IN,Pey = e + O(|P7H||e'¥) = ¢y + O(EH%U),

that is ,
dhfi = O™ 7). (14)

Thus, f; depends only on x, up to a remainder O(e'*). Next, we have by (5)
det(d. f) = det(d.f) = 1 + O(e?),

which leads to 3 ~ \
81f1 + 82f2 =2+ O(Sf).

Using that [ f>(x, y)dy = 1 and that [.01fi(x, y)dy = o1 fi(x,") + O(s“%o), we
g T y y T y ]/

obtain
£ ,1+67°
81{1 =1+0(¢ 00) (15)
azfz =1+ O(€1+7).

Estimates (14) and (15) imply that f =R+ O(s”%o) for some Anzai cocycle
R. i

6 KAM iteration

Let f = R + C a random diffeomorphism of T? having a finite number of
realizations, where R : (x, y) = (x + a, ¥ + B(x)) is a diophantine random Anzai
cocycle satisfying [E[f(x — )] = 0. We will denote e, x, = [|Clll,x, and A =
IRoR—-RoR|. Asa corollary of the two previous sections (more precisely of
Proposition 5 and 7), we have the following conjugation result:

Lemma 10. There exists a and ko in IN and 69, € > 0 such that if f satisfies assumption
(1) or (II) of Theorem 1, and if ek, x, < € then:

i)There exists a diffeomorphism G = P + g where P is the algebraic part of G, and
an Anzai cocycle Ry, such that

IGFG™ = Rulllo < Cey'

and for every ki, ky
C
||g”k1,k2 S m€k1+ﬂ,k2+ﬂk1+ﬂ'

for some C = C(ky, k).
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ii)For every integer p, there exists G = P + g where P is an algebraic automorphism,
and an Anzai cocycle Ry, such that

IGFG™ = Rullo < Cekoky + VAP g, k)™

and for every 6 > 0 and every integers ky, kp large enough,

1811k 5, < Ceas)ty (146, -
Moreover, ||P|| < Ce " and P = 1d if |[|f"|llo = 2IICllx,-

In order to iterate this conjugation procedure, we will need some estimates
on large derivatives of the conjugated diffeomorphism. In this view, we will re-
place the conjugation G by some approximation by a trigonometric polynomial.

If ¢ belongs to C* (T?) and A1, A, are real numbers, we denote

Paanploy)= Y e,

[p11<As,Ip2l<A2
The operator Py, 5, satisfies the estimates:

Lemma 11. For every 6 > 0 and every integers ky ko, and ki, ko large enough, there
exists a constant C such that for every @ in C*(T?):

Fioky | ok
1P, 1, @llg 7, < CATT + A7 @Ik, g,

L L el
Agk}—kl)—éfq A;k}—kz)—éfcz Pl

llp = Pa, @l b, < C

Proof. 1f ]’{—11 + ;722 <1, then

1055 Ps ey SC Y ImPipaPlpp, pa)?
[p11=A1,Ip21<A2 ) )
<C Y (P P, p)l?
[p11=A1,Ip21<A2

2(k1—k k 2(ka—k: k
< COE TN Iy + 43 NIOF I

2( 2))
2(k1—k 2(ko—k:
< C(A ( 1 1) A (2 2))||(P||21’k
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. i] iz
and if Ete < 1,

10995 = Po@llizrsy <C| Y+ Y, }wl 2210 (1, p2)
[P11>A1,p2€Z p1€Z,|pa2|>A2
p1l + [paf
<C ——— | llpllg, &,
Il + |pal2
P11>A1,p2€Z  p1€Z,|pa2|>A2
p1 [ Ipal*2
<C (1—;?3)121 o5 T Z 6121p (1-0)k; i, .
[p1>A1,p2€Z |P1| |P2| PEZ pal>M |P1| |P2|
1
< C (l_fl_kl)_b]_(l + (]_Q—kz)—b’_(z ”(P”]_(],I_(z
/\1 /\2

Lemma 12. Let 6 a positive real number. We set & = eskk.

There exists a and ko in IN and 6o, & > 0 such that if f satisfies assumption (I) or
(1) of Theorem 1, and if ey, < € then:

i) For every A > 1, there exist a diffeomorphism Gy = P + go, an Anzai cocycle
Ri: (x,y) = (x+ a1, y+ p1(x)) and a family of constants (Cy)ren depending on 6 and
A such that, denoting fi = Go ngl =Ry + { and e}(cl) = |lICilllsk k, we have for every
integer k, k:
Cr f
M) o~k [gk+a 1460 , Sk
& = Al6k (/\ % t A (k—k)—0k—a )

ii)For every integer p and every A > 1, there exists a diffeomorphism Gy = P + go,
an Anzai cocycle Ry : (x,y) = (x + a1,y + p1(x)) and a family of constants (Cy)ken
depending on 6, A and p such that, denoting f; = Gof G, V= R+ and ef{l) = I1Ca Mok

we have 7
el(<1) < Cy (/\kw(fko + \/N’_Eko)lﬂso " ﬁ)

Moreover in the two cases, we have E[](x — a1)] = 0, [IPl| < Cei* and P = Id if

1Bl = 2ex, or I’ lllo < 26’({1)‘

Proof. Let G = P + g and R; given by point i) of Lemma 10, Go = P + g3, 1, and

fi=GofGy' = Ry + Ly where gy, 1, = P, 0,8

We know that
C
81lks ~akp-aks < g Ekrkes
hence
C a ﬂkl
(1§20, 1k e < W(Al + A5 )€k Ky
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and

g~ Sallose <~ | s + e |
L RN Ak)-ok ) (k)0 Rk
1 2
Next, we have for some constant C the following estimates:

IGFG™ = Rilllo < Ce,'y:

IGofGy' = GfGMllo < IGofGy' — GfGyllllo + GGy — GFG Ml
<IGo = Gllo + IIGf = GfG ' Gollo
<@+ IGFG Y Nlo)IG = Gollo
1 1

S C = -+ —
/\kl -0k Akz—bkz
1 2

€k

Combining the two last inequalities, we obtain:
1 1
1+(50
—— + ——— | K | -
Ekorko ( T —ok ko—ok ] kl,kzl
/\11 1 /\22 2

— (A7 + /\akl )€k

e5) < lIGofGy' = Rullly < C|e

Moreover, we also have

W
e S Cler g + 18l ;) < N

and consequently, using the decomposision C = Py, 4,C + (C — Pj,1,0), we
deduce

1 o)
— — + — — ey
(k1—k1)—06k1 A(kz—kz)—ékz ky k2
2

0

(A A el 4 (A

C
A16E]

IA

1 1
(/\kl +a Akz+ﬂ)él+bg + (Akl +a /\kz+u) _ _ 4+ _ _ ((:]'( i
1 2 Aki—oki  yk-dk 2
1

1 1
a llk] -
A+ 4, )[ Tk, * 1 aka)—ok2 ] 5"1'4
1 2

Now we set Ay = A, Ay = A%, ki =k, ko = 67k, ki = k, ko = 67'k. The previous
inequality becomes

(1)< C (Ak+a8i+50+ _ _ 5k)~
0 /\(k—k)—(a+1)6k—a

Al6k
The proof of ii) is analog.

Finally, we can assume that E[f](x — a)] = 0 up to conjugate by some
diffeomorphism U : (x,y) = (x,y + u(x)), and if [[|B}llo < 2é&x,, then f; is close to
a translation and hence P! fP is stillclose to a translation so that we can assume
P=1Id.

O
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The convergence of the procedure will be assured by the following combi-
natorial Lemma

Lemma 13. Let a and kg in N and 6¢ > 0. There exists ki and s in IN and 6 > 0 such
that, setting Q = 1+ % and A, = e?, zf(el(("))k,ne]N and (Cy)xen are families of positive
real numbers satisfying for every integers n, k, k with k > k > ko

(n)
el
(n+1) | ak+ay (m\1+60 k
e < Cel A (16)
n

,((”) = O(A,") as n goes to +oo.

and e,((?) < G, then forevery kp inIN, ¢
()

C k+ko’
enough. Let k and p be large enough and satisying the following conditions:

Proof. Up to replacing ¢} by ¢ we can assume kg = 0. We fix 6 > 0 small
p(1+ 69) > k(1 +6) + 2a

Q ¢ Q
1-9 _1)k aQ_12(1+6)p (17)
p(1+060)—a=(1+0)p

(when 6 = 0, these inequalities become p(1 + &) > k + constant, k > p + constant
and p > constant, hence are compatible, and still are when 6 is small enough)
We fix an integer N and we set M = sup, _y, eé”))\fl.
Using inequality (16) with k = k we have
M1+60 glgn)
=k /\p(1+60)—l_<—a + A;él_(—u
n

8;{"‘*’1) ] < CI_{(Ml-HSo + E;"))Azlz+a,
and we deduce

Sk+a

M4 < 2CAT M0 4+£7D) < < G M +eD) (g -+ Ayr)FH < (G AT

and hence

Sk+a

eg’) < CHMM™ + elgo))/\,?*1 (18)

(up to replacing C; by 3Cz). Next, inequality (16) with k = 0 gives
@
L(n+1) | ya M1+ k
g SC|Auleg) + Y

n
1+6, 0)
o[ +c;'(M v+ e)
= k| p(s0-a (1-0 2 yig &
" An Q-1 o-1

M
< 1+9)
/\( P

n+1
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where M = Cg”(ZM“d“ + e}(}o)). A first consequence is that the sequence M,, =

SUpP;., e(()k)/\’; satisfies the inequality

Myt < G + ),
which implies that (M,) is bounded if
(O < o
[ T

A second consequence is that once we have proved that eé") = OA))

for some p, we have egl) = O(/\;(Hé)p), and by induction we deduce that

Sg') = O(A,") for every p > 0.
Finally, we deduce by (18) that for every k,
ok g
e = 0™

and next by inequality (16) that for every p, k, k,

1 1
61((1’1+1) = p(1+60)—k—a + R 3
AP A(l—éﬁ)k—k—a@
n
which gives the result choosing k and p large enough. m]

By successive uses of the Lemma 12, we will now define a sequence of ran-
dom diffeomorphisms f, conjugated to f and converging to a random Anzai
cocycle, defined by fy = f and the induction relation f,+1 = G, f,G,;! where G,
is constructed using point i) or ii) of Lemma 12.

Thus, we assume now that f = R + C satisfies assumptions of theorem
1. If (ao,ﬁo) is a (A, 0)-diophantine rotation vector of f, we can assume that
sz (R — Id)dz = (ao, fo). Indeed, we have f1r2 (R = Id)du = (a, fo) for some sta-
tionary measure  for f. The first coordinate of R — Id is constant, hence close
to ag. In consequence i is small on maps on the form E[¢(x + ag)] — ¢(x), and
using that ag is diophantine, we deduce that u is close to Lebesgue on maps
depending only on x, and so sz (R = Id)dy is close to sz (R - Id)dz.

Now we fix § > 0, we set A, = e1*%/2" a5 in Lemma 13, we define fy = f,
Ro =R, { = C, and once we have constructed f, = R, + C,, if Lemma 12 applies
we define fy1 = Gy fuG,' = Rys1 + Gun where G, = Py, + g, is a conjugation
constructed using point i) or ii) of Lemma 12 with A = A, (contruction ii) will be
used with some fixed integer p we will chose later). We set H, = G,—1 0---0 Gy,
e]((") = |ICulllskx and A, = [[IR, o R, — R, o Rilllz2(r2), where R, is an independant
copy of R,,. More precisely, we will use construction ii) of Lemma 12 as long as
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A, is small behind G, and construction ii) once A, is large behind C,.

Using that (ap, fo) is a diophantine random rotation vector of f, we can
assume that R, is diophantine as long as f, is defined: indeed, by Proposition
4, the stationary measure u, = (H,).p for f, is close to the Lebesgue measure

2
(up to a remainder O ((eg_l)) )), hence

(O(O/BO) = Lz(Hn Ofn - Hn)dHn ~ f (HhoR, —Hy)dz = P(anlﬁn)

T2

and hence we can assume R, is diophantine up to adding it a constant.

There will exist np such that the diffeomorphism G, will be defined using
construction ii) for n < ny (with some fixed p we will chose later) and construc-
tion i) for n > ny.

(n)
k

Aslong as f, is defined, ¢’ satisfies for n < n

(n+1) wa (L0, [\ i

n+ ~ +a n p (n

g <G| Ay (eko + Aneko) + R
Ay

and for n > ny

(n)

C; &

(n+1) k k+a (n)\1+6 k

€ < — AT (e, ) 0 + —]

k n \&g 0k
Al6k [ 0 quk f)—ok—a

If we control derivatives of H,, then the numbers A, are comparable. If we

assume that A, < 2A,, for every n,m, then for n > ny we have

(1)

G &

(n+1) k k+a ()\1+8¢ k

& = AL6k [A" (e, )" + A(k—k)—ék—a]'
no n

1

A S
and so by Lemma 13, there exists integers s and k; such that if e,(:") < (C—m) ,
k1

then for every n > m and every k,q > 0

for some constant C = C(k, g).
(m)
k1

for some ng, then we use

Thus, we use the following scheme: As long as A}, < C ¢, ° we use con-

struction ii) with p = s to define f.1. If A} > CZI gl((':o)

construction i) to define f for k > n.
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Hence, for n < nyg we have

e

(
(n+1) ktag (mN1+60 , kK
g S GG | A (g )T + A (=h=ok-a
n

Thus, there exists k, in IN such that if e}(g) is small enough then we have the
(n

o, for any k, g as long as f,, is defined and ||Hj,||o is controlled.

Let us prove that this estimate of E;c")

estimate &

implies an estimate on H,.

Noticing that there is at most one integer 1 such that P,,, = P # Id, we have
H, = P, + h, with

,_.

n—
h, = Pj(gj o Hj-1).
j

Iy
o

For every I, we have for some C and k

n-1

Il <Z]m@mHmk

5
M:O
-

1P gl (X + {171k
J
< Ce

'S
vo

sup(1 + [1hllk)-

]<n

Using an induction we deduce that ||,||x = O(elgo)), and next that

,_.

n—

IP;(g; © Hu)lli = O(el).

Iy
(=)

j

In consequence, we deduce by induction that f,, G, and H, are defined for
every 7, and that i, normally converges in C/(T?) to some limit / satisfying

[|All = O(s]go)), and H = P + h is thus C*, close to P and invertible if f is close
enough to R, and HfH! is almost surely a limit of Anzai cocycles, hence is

almost surely an Anzai cocycle.
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