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1 Notations and statement

Let T be the 1-dimmensional torus R/Z.
For α in T we denote by Tα : T → T the translation operator defined by
Tα(x) = x + α mod 1.
For n in N we denote by Mn : T → T the multiplication operator defined by
Mn(x) = nx mod 1.

Theorem A. (Furstenberg)
Let a and b be two positive integers which are not powers of a same integer, and let F
be a closed subset of T invariant by Ma and Mb. Then either F is finite or F = T.

Remarks 1.1.
-In the case where F is an invariant finite set, it is actullay constituted of rational
numbers (indeed if F contains some irrational number x, then it contains anx for every
n and these numbers are all distinct modulo 1.)

-The conclusion does not hold if the closed set is invariant by only one transforma-
tion Ma. For exemple the triadic Cantor set is invariant by M3.

-We can reformulate the theorem as follows: if a, b are integers which are not powers of
a same integer, then for any irrational number x the set {ambnx, (m,n) ∈ N2

} is dense
modulo 1.

2 Proof of the theorem

We will mainly follow the proof of Furstenberg, except that we try to avoid
the unnecessary use of the existence of minimal invariant closed subsets. For
the whole proof, we fix integers a and b which are not powers of a same integer.
It is equivalent to say such that log a and log b are independant over Q. Let F
be a closed subset of T invariant by Ma and Mb. If F is infinite, it means that it
has some accumulation point, and we want to deduce that actually F = T. We
divide the proof in two parts:

The first part treat the particular case where the accumulation point of F is a
rational number. "Spreading" points of F close to this rational number by using
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Ma and Mb, we manage to prove that F = T, mainly by combinatorial technics.

The second part treat the general case where the accumulation point can
be irrational. The idea here is to use translations Tα commuting with Ma and
Mb, and to prove that there is "some Tα-invariance" in F. The first treated case
will help at some key points. Note however the following fact which can be
checked by a simple computation:

Lemma 2.1. A translation Tα commute with Ma and Mb if and only if (a − 1)α =
(b − 1)α = 0 mod 1, or equivalently that α is a rational number (modulo 1) whose
denominator divide a − 1 and b − 1.

This condition on α is too much restrictive to be useful (there is only a finite
numbers of solutions, and even no solution at all if a−1 and b−1 are coprime!).
That is why we will actually use translations commuting with some large pow-
ers of Ma and Mb.

2.1 The particular case

In this part we prove the following weak version of the theorem:

Proposition 2.2. If F is closed, invariant by Ma and Mb and has some rational number
p
q as an accumulation point, then F = T.

The proof relies on the following combinatorial lemma, which is actually the
only step where we use that we have two transformations Ma and Mb instead
of one.

Lemma 2.3. Let us enumerate the set S = {ambn, (m,n) ∈ N2
} by an increasing

sequence of integers (sk)k∈N. Then limk→+∞
sk+1
sk
= 1

Proof. The key point is to use that the additive group generated by log a and
log b is dense inR (since log a and log b are independant overQ) and hence that
the set {ambn, (m,n) ∈ Z2

} is dense in R+. In particular one can find a sequence
(xk)k∈N of the form xk = amk bnk with mk,nk inZ, which converges to 1 by superior
values.

As a consequence, we claim that for any ε > 0, one can find two real num-
bers u and v in (1, 1 + ε) of the form u = am

bn and v = bm′

an′ with m,n,m′,n′ positive
integers. Indeed, for k larger that some k0, we have xk = amk bnk ∈ (1, 1 + ε), and
in particular mk and nk have alternate signs. If for some k1, k2 one have mk1 > 0
(hence nk1 < 0) and mk2 < 0 (hence nk2 > 0) then one can choose u = xk1 and
v = xk2 . If not, let say for exemple that mk > 0, nk < 0 for any k larger than k0 (the
other case is identical), then one can choose u = xk0 and v = xk0 x−1

k with k >> k0
(so that v = amk0−mk bnk0−nk ≈ xk0 ∈ (1, 1 + ε) with mk0 −mk < 0 and nk0 − nk > 0).
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Now, we can conclude as follows: let us write the enumeration (sk)k∈N as
sk = amk bnk with mk, nk in N, and let us fix ε > 0, and u = am

bn and v = bm′

an′ in
(1, 1 + ε) as before. Then for k large, either mk or nk is large enough so that at
least one of the numbers sku or skv belongs to S. In consequence,

sk+1 ≤ max(sku, skv) ≤ sk(1 + ε),

and so limk→+∞
sk+1
sk
= 1. �

Let us prove Proposition 2.2:

Proof. We denote by x 7→ x̄ the canonical projection of R onto T.

Let us treat first the case where the accumulation point of F is 0 (modulo
1). Then, up to replace F by −F we assume that for any ε > 0, there exists xε in
(0, ε) such that x̄ε belongs to F. Let x ∈ (0, 1) arbitrary, and for each ε > 0 let kε
be such that skεxε ≤ x < skε+1xε. We write that

d(x̄,F) ≤ |x − skx0| ≤ skε+1xε − skεxε =
(

skε+1

skε
− 1

)
skεxε ≤

(
skε+1

skε
− 1

)
x

Letting ε going to 0, we have that kε → +∞ hence the last term tends to 0 by
the lemma, and we conclude that x̄ belongs to F. Thus F = T.

In the general case where the accumulation point of F is a rational number
p
q , then the point p = 0 mod 1 is an accumulation point of Mq(F), and since Mq

commute with Ma and Mb, the set Mq(F) is also invariant by Ma and Mb, and
we deduce by the first case that Mq(F) = T. As a consequence, we also have
that M−1

q (Mq(F)) = T, that is:

F ∪ T 1
q
(F) ∪ · · · ∪ T q−1

q
(F) = T.

Since a finite union of closed sets with empty interiors has empty interior, we
conclude that F contains some non trivial interval I. But for n large, Mn

a (I) = T,
hence F = T by Ma-invariance of F. �

2.2 The general case

We establish some lemmas relating F with dynamics of translations Tα.

Lemma 2.4. For any closed set F invariant by Ma and Mb and for any translation Tα,
we have that Tα(F) ∩ F , ∅ unless maybe if F is finite.

Proof. Note that
Tα(F) ∩ F , ∅ ⇔ α ∈ F − F,

where F − F = {x − y, (x, y) ∈ F × F}. The set F − F is closed and invariant by
Ma and Mb. Moreover, if F is infinite, then F has some accumulation point x
and hence 0 = x − x is a accumulation point of F − F so that by Proposition 2.2,
F − F = T, and hence Tα(F) ∩ F , ∅.

�
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Lemma 2.5. If F is an infinite closed set invariant by Ma and Mb, and if Tα is a
translation commuting with Ma and Mb, then there exists a nonempty closed set F̃ ⊂ F
invariant by Tα.

Proof. Since F is infinite, the set F′ of the accumulation points of F is non empty.
Let us define by induction F0 = F′ and Fn+1 = Fn∩Tα(Fn), and let F̃ = ∩nFn. The
sequence (Fn)n∈N is a decreasing sequence of closed sets, all of them invariant
by Ma and Mb (because Tα commute with Ma and Mb), and Tα(Fn+1) ⊂ Fn. The
intersection F̃ is obviously a closed subset of F invariant by Tα, so the only non
trivial point to check is that F̃ , ∅.

Let us assume by contradiction that F̃ = ∅. Then by compacity we have that
Fn = ∅ for some n > 0, and choosing n minimal we can assume that Fn−1 , ∅.
Then, by Lemma 2.4, Fn−1 is a finite set, hence in particular it is constituted of
rational numbers (See the first remark after Theroem A). Since Fn−1 , ∅ and
Fn−1 ⊂ F0 = F′, that means that we can find a rational number in F′, so that
by Proposition 2.2, F = T and hence F̃ = T, which contradicts the assumption
F̃ = ∅ and conclude the proof. �

Remarks 2.6. We will use the previous lemma with rational translations Tα, and in this
case one easily check that F̃ is actually the finite intersection F̃ = F′∩Tα(F′)∩· · ·Tk−1

α (F′)
where k is the denominator of α.

We are now ready to prove Theorem A:

Proof. Let F a closed set invariant by Ma and Mb that we assume infinite. Let k a
large number coprime with a and b, and let n = ϕ(k) the cardinal of (Z/kZ)× so
that an = bn = 1 mod k. Then, F is invariant by Man = Mn

a and Mbn = Mn
b , and

the translation T 1
k

commute with Man and Mbn (Lemma 2.1). Applying Lemma
2.5 (with Man and Mbn instead of Ma and Mb), we find F̃ ⊂ F non empty invariant
by T 1

k
. In particular F̃ is 1

k -dense, and hence so does F. Since k can be chosen
arbitrarily large, F = T. �
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