
Ecole Centrale Paris
fabrice.mathurin@gmail.com

Disc. Stoch. Processes
S4 Electif 9
03-26-2009

FINAL TEST

The present test is composed of an exercise and a problem. The problem is divided in three
parts all independent from each other. All documents are allowed. Calculators, or computers
are forbidden.

Exercise. Three States Markov Chain.

Let (Xn)n≥0 be a Markov chain on the set E = {1, 2, 3}. We note its transition matrix P , so
that :

P =

 0 1− α α
1− α 0 α

1
3

1
3

1
3

 ,

where 0 < α < 1.

a) Draw the chain’s graph and verify the chain is irreducible, positive reccurent.

b) Verify that 1, α− 1 and 1
3 − α are eigenvalues of P .

From now, we assume α ̸= 2
3 , so that the eigenvalues are all different from each other.

c) Show that (1, 1, 1), (1,−1, 0) and (3α, 3α,−2) are eigenvectors related to the eigenvalues
and recall the eigenvalue for each vector.

d) We define the set of eigenvectors :

B = ((1, 1, 1), (1,−1, 0), (3α, 3α,−2)) .

Briefly recall why it is a basis of R3. Then give the change of basis matrix noted A from
the canonical basis ((1, 0, 0), (0, 1, 0), (0, 0, 1)) to B. Calculate A−1.

e) Express P as the product of A, A−1, and a diagonal matrix D. Then, calculate Pn based
on this expression.

f) Isolate the first line vector of lim
n→∞

Pn, noted π, such as π(i) = lim
n→∞

Pn(1, i). If all your
calculations are correct, you should find :

π =

(
1

2 + 3α
,

1

2 + 3α
,

3α

2 + 3α

)
.

Then check that π is a stationary distribution of the Markov Chain, meaning :

π · P = π.



Problem. Ruin of the two gamblers.

Two gamblers, A and B, play an unfair coin tossing game, with an infinite number of inde-
pendent tosses. The total amount of their fortune is worth S = a+ b euros where a ∈ N (resp.
b ∈ N) is the fortune of A (resp. B). At each toss, the gambler A wins with probability p and
loses with probability q = 1− p with 0 < p < 1. At each step, the loser gives one euro to the
winner. The game ends as soon as one of the gambler is broke.

Part 1

To go further, we will note Xn the gambler’s A fortune after the nth toss.

1) Explain why (Xn)n≥0 is a Markov chain on the set of states E = {0, 1, . . . , S} and give
its transition matrix.
Give an interpretation for the states 0 and S. Verify that those states are absorbing.

This Markov Chain has two recurrent classes, {S} and {0} and one transient class,
{1, 2, . . . , S − 1}.
For i ∈ {1, . . . , S − 1}, let us note φi the probability that the chain hits the states
S before the state 0, starting on the state i, meaning, the probability of ruin for the
gambler B, when gambler A has a fortune of i euros. We then define the standard
hitting times TS and T0 by

TS = inf{n ≥ 1, Xn = S}, and T0 = inf{n ≥ 1, Xn = 0}.

2) Express φi as function of T0, TS , X0 and i. Remark and explain why φ0 = 0 and φS = 1.
Give the solution of the two gambler’s game ruin, if S = 1.

For now and then, we assume a, b ≥ 1 and then S ≥ 2.
3) In this question, our aim is to show the recurrence relation satisfied by (φi) :

∀ i ∈ J1, S − 1K, φi = qφi−1 + pφi+1.

obtained in conditionning regarding the state at n = 1.
We define two other hitting times :

T ′
S = inf{n ≥ 2, Xn = S}, and T ′

0 = inf{n ≥ 2, Xn = 0}.

3.1) Explain why P (TS < T0, X1 = 0 | X0 = i) equals to 0. In a same fashion show that
P (TS < T0, X1 = S | X0 = i) equals to p if i = S − 1 and to 0 if else.

For j ∈ Ji, S − 1K, we can remark the events {TS < T0, X1 = j} and
{1 + T ′

S < 1 + T ′
0, X1 = j} are the same.

3.2) Using the Markov Chain definition and the previous remark, give a relation between
P (TS < T0, X1 = j | X0 = i), P (T ′

S < T ′
0 | X1 = j) and P (X1 = j | X0 = i).

3.3) Using the previous question, prove the following equality :

P (TS < T0, X1 = j | X0 = i) = φjP (i, j)

where P (i, j) is the ith line, jth column element of the transition matrix P of the
Markov chain.
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3.4) Then prove the following equality :

P (TS < T0| X0 = i) =

S∑
j=1

P (TS < T0, X1 = j | X0 = i)

then using 3.1, 3.2, 3.3 and this formula, finally conclude on the recurrence relation
satisfied by φi.

3.5) Give the explicit formula of φi, whether p = 1
2 or p ̸= 1

2 .
To solve this question you can either use the classical technique for recurrence relation
with the discriminant, or remark, φi+1 − φi =

q
p (φi − φi−1).

Part 2

Now, we are going to use another path to the solution with Martingales. We suppose
a, b ≥ 1. We introduce another process, Sn, defined by Sn = X0 + · · · + Xn, and as a
convention, X0 = 0. In this framework, Sn represents the profit made by A at the nth

step of the game, so that a + Sn (resp. b − Sn) represents A (resp. B) fortune at time
n, as long as those sums stay positive. We then define a random variable T :

T = min{n ≥ 1, Sn = −a or Sn = b}.
Finally, we note Tn, the filtration generated by σ(X0, . . . , Xn).

4) In this question we prove that T is almost surely finite.
4.1) Verify that T is a stopping time relative to the filtration (Tn)n≥0.
4.2) Assuming p = q = 1

2 , check that (Sn)n≥0 is a (Tn)n≥0-martingale. Then, remark
that the sequence (Xn) is not convergent (explain why) ; now consider the stopped
martingale ST = (ST∧n) (recall why ST is a martingale). Since ST is bounded, we
concede that ST is convergent (no proof to give). Then considering (Sn) = ST on the
event {T = +∞}, what can you say about P (T = +∞) ? Then conclude that T is
almost surely finite in this case.

4.3) If we assume p ̸= q, and the event {T = +∞}, use the Law of Large Numbers to
prove the convergence of Sn

n . Calculate the limit.
Then explain why we have two cases : Sn → +∞ a.s., or Sn → −∞ a.s., depending
on the sign of p − q. Finally, explain why P(T < ∞) = 1, and thus why T is almost
surely finite.

5) In this question we evaluate the ruin probability.
Since T is almost surely finite, we can consider the random variable ST . With this
definition, ST can only be equal to −a (ruin of A) or b (ruin of B). We define :

ra = P (ST = −a) and rb = P (ST = b) ,

and then ra + rb = 1. Calculate E(ST ) as function of ra.

5.1) Case p = q = 1
2

Recall why the process (Sn)n≥0 is a martingale.
Apply the Stopped Martingale Theorem to find :

ra =
b

a+ b
.
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– Case p ̸= q
Explain why the process (Sn)n≥0 is not anymore a (Tn)n≥0-martingale , using E(S1).
We need to use another technique to achieve this valuation of ra. We introduce a new
stochastic process, noted Z defined by :

Z0 = 1, ∀ n ≥ 1 Zn =

(
q

p

)Sn

.

– Prove that the process (Zn)n≥0 is a (Tn)n≥0-martingale.
– Apply the Stopped Martingale Theorem to the process Z and the stopping time T .
– Calculate E(ZT ) directly as a function of ra, q, p, a and b.
– Using the last two questions prove that the ruin probability of A in the case p ̸= q

equals to :

ra =
1−

(
p
q

)b

1−
(
p
q

)a+b
.

6) Length of the game : evaluation of the expectancy of T .

6.1) Case p = q = 1
2

To calculate E(T ), we still want to use the stopped martingale theorem. As already
done during the course, we introduce another martingale M :

M0 = 0 and ∀ n ≥ 1, Mn = S2
n − n.

– Let n be an integer, apply the stopped martingale theorem to the martingale M
and the stopping time T ∧ n.

– Using the classical convergence theorem for the expectancy, prove :

E(S2
T ) = E(T ).

– Give a direct calculation of E(S2
T ) using ra, then with 5.1, prove that :

E(T ) = ab.

6.2) Case p ̸= q.
As previously said in this test, (Sn) is not a (Tn)n≥0-martingale. However, if we slightly
modify S, it can be made into a martingale. Since E(X1) = p−q, we define the process
R :

Rn = Sn − (p− q) · n.

– Prove that the stochastic process R is a (Tn)n≥0-martingale.
– For a fixed integer n, apply the stopped martingale theorem to R, and T ∧ n to

prove :

E(ST∧n) = E(T ∧ n)(p− q).

– Using the classical convergence theorem, prove that :

E(T ) =
1

p− q
E(ST ).
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– Calculate directly E(ST ), as a function of ra, p and q. Then using the expression of
ra, prove :

E(T ) =
b

p− q
− a+ b

p− q
·

1−
(
p
q

)b

1−
(
p
q

)a+b
.

Then deduce :

E(T ) =
a

q − p
− a+ b

q − p
·

1−
(
q
p

)a

1−
(
q
p

)a+b
.

6.3) Numerical application
If the game is fair, how many throws are needed before one gambler goes broke, if A
has 50d and B 200d ? Comment on this result.

Part 3

7) In this part, we consider the case where B is infinitely rich.

7.1) Explain why this case can be useful for actual modelization at least as an approxi-
mation. Give two examples at least of such situations, and give orders of magnitude
for a and p.

To get the formulas in this situation we only need to make b goes to +∞ in all the
formulas.

7.2) Ruin probability of A.
7.2.1) Case p = q = 1

2
Give ra with these assumptions (B infinitely rich and p = q). Give an interpretation.
Is it always sure that A goes broke against an infinitely rich opponent ?

7.2.2) Case p < q
Give ra with these assumptions (B infinitely rich and p < q). Give an interpretation.
Is it always sure that A goes broke against an infinitely rich opponent ?

7.2.3) Case p > q
Give ra with these assumptions (B infinitely rich and p > q). Give an interpretation.
Is it always sure that A goes broke against an infinitely rich opponent ?

7.3) Time to busto. For all the cases below, give the value of E(T ).
7.3.1) Case p = q

Give E(T ) and an interpretation.
7.3.2) Case p < q

Give E(T ) and an interpretation.
7.3.3) Case p > q

Give E(T ) and interpretes this result.
Give an example of casino game where the gambler has an advantage over the
house. Propose a numerical application for his life expected earnings using all the
material of this test. (try to be creative).
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