Basic Probability Revision

Exercise 1. Dices.

1) Consider a fair six faces dice. What is the probability to get a 4?
2) Determine the probability to get a number greater than 4.
3) Throw three fair dices. Calculate the probability for the sum to be greater than 4.
4) In average, how much will I get if I throw the dice once?
5) If the dice has n faces, what is the average result of a throw?
6) Estimate the standard deviation of one throw.

Exercise 2. Bernoulli and Binomial law.
We define a Bernoulli game with probability p, i.e. a random variable Y such that $\mathbb{P}(Y=1)=p$ and $\mathbb{P}(Y=0)=1-p$. The law of this random variable is often noted $\mathcal{B}(p)$. The sum of the repetition of this variable n times is a binomial game, noted $X_{n} .{ }^{1}$

1) What is the probability to get k successes, i.e. calculate $\mathbb{P}\left(X_{n}=k\right)$? Estimate the expectancy of X_{n}.
2) What is the standard deviation of X_{n} ?
3) Give an asymptotic approximation of X_{n}.

Exercise 3. Ballot boxes and Polya urn models.
In this exercise, we consider an urn with red ballots and n black ballots in it. We take two ballots whitout replacing the first one in the urn.

1) What is the probability for the 2 ballots to be red?
2) Estimate the probability for the first to be red and the second black.
3) Let's modify the experiment : we get one ballot and note its colour. Then, we put d ballots of this kind plus this one in the urn. We repeat this process as long as we need a new step.
1. If Y_{1}, \ldots, Y_{n} are n independent Bernouilli games of same probability p, X_{n} has the same distribution than $Y_{1}+\cdots+Y_{n}$.
a) What is the probability for the second ballot to be black?
b) What is the probability for the first ballot to be black if we know the second is black?

Exercise 4. Convergence theorems.
Let $\left(X_{i}\right)_{1 \leq i \leq n} n$ be independent identically distributed random variables. Let $\left(S_{n}\right)_{n \geq 1}$ be defined by $S_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.

1) Study the convergence of S_{n} and give an asymptotic distribution.
2) What is the rate of convergence?
