Martingales

Exercise 1. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables independent identically distributed. We define the random process S by

$$
\left\{\begin{array}{l}
S_{0}=0 \\
S_{n}=X_{1}+\cdots+X_{n} \quad \text { if } \quad n \geq 1
\end{array}\right.
$$

S is called a random walk. Let $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ if $n \geq 1$.

1) Prove that $\mathcal{F}_{n}=\sigma\left(S_{1}, \ldots, S_{n}\right)$.
2) If $\mathbb{E}\left[\left|X_{1}\right|\right]<+\infty$ and $\mathbb{E}\left[X_{1}\right]=0$, prove that S is a $\left(\mathcal{F}_{n}\right)$-martingale.

Exercise 2. With the same notation as in the previous exercise, we assume that $\mathbb{E}\left[X_{1}^{2}\right]<+\infty$ and $\mathbb{E}\left[X_{1}\right]=0$. We define V by $V_{n}=S_{n}^{2}-n \mathbb{E}\left[X_{1}^{2}\right]$ for $n \in \mathbb{N}$. Prove that the random process V is a $\left(\mathcal{F}_{n}\right)$-martingale.

Hint : Calculate $\mathbb{E}\left(\left(S_{n+1}-S_{n}\right)^{2} \mid \mathcal{F}_{n}\right)$.

Exercise 3. With the same notation as in the first exercise, let λ be a real such that $\varphi(\lambda)=$ $\log \mathbb{E}\left(e^{\lambda X_{1}}\right)<+\infty$. Then we define a random process Z^{λ} by $Z_{n}^{\lambda}=\exp \left(\lambda S_{n}-n \varphi(\lambda)\right)$ for $n \in \mathbb{N}$. Prove that Z^{λ} is a $\left(\mathcal{F}_{n}\right)$-martingale.

Exercise 4. Let $M=\left(M_{n}\right)_{n \geq 0} a\left(\mathcal{F}_{n}\right)$-martingale and $H=\left(H_{n}\right)_{n \geq 0}$ a random process such that for all n, H_{n} is \mathcal{F}_{n}-measurable and bounded. Let G_{0} be a random variable \mathcal{F}_{0}-measurable and integrable. For $n \geq 1$ we define $G_{n}=G_{0}+\sum_{k=0}^{n-1} H_{k}\left(M_{k+1}-M_{k}\right)$ or equivalently :

$$
\forall n \geq 0, \quad G_{n+1}-G_{n}=H_{n}\left(M_{n+1}-M_{n}\right)
$$

1) Prove that $G=\left(G_{n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)$-martingale.
2) Application : gain of a betting strategy in a fair game. We note $H=\left(H_{n}\right)_{n \geq 0}$ the sequence of bets on a sequence of results briging $\left(X_{n+1}\right)_{n \geq 0}$ by unit bet. we suppose that for each n, H_{n} is a function of $\left(X_{1}, \cdots, X_{n}\right)$ and is a bounded random variable. H_{0} is deterministic. The profit realized at time n is then defined by the following recurrent relation : $G_{n+1}-G_{n}=H_{n} X_{n+1}$.
a) Using 1), prove that $\left(G_{n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)$-martingale with $\mathcal{F}_{n}=\sigma\left(X_{1}, \cdots, X_{n}\right)$.
b) Prove that it is impossible to earn money in a fair coin tossing game.
c) Explain why it is impossible to win money without taking risk, i.e. $\mathbb{P}\left(G_{n} \geq G_{0}\right)=1$ and $\mathbb{P}\left(G_{n}>G_{0}\right)>0$.

Exercise 5. We note \wedge the mathematical operator defined by $x \wedge y=\inf \{x, y\}$. Let M be a $\left(\mathcal{F}_{n}\right)$ random process, i.e. for each n, M_{n} is \mathcal{F}_{n}-measurable, and τ a \mathcal{F}_{n}-stopping time. We define another random process N by $N_{n}=M_{\tau \wedge n}$. Prove that N is a $\left(\mathcal{F}_{n}\right)$-martingale.

Exercise 6. Stopped martingale theorem. \mathcal{F}_{n} is a filtration of $(\Omega, \mathcal{T}, \mathbb{P})$. Let τ be a bounded \mathcal{F}_{n}-stopping time (i.e. there exists $C \geq 0$ such that $\tau \leq C$ a.s.) and $M=\left(M_{n}\right)_{n \geq 0} a\left(\mathcal{F}_{n}\right)$ martingale. Show that $\mathbb{E}\left(M_{\tau}\right)=\mathbb{E}\left(M_{0}\right)$.

Exercise 7. [**] Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of indepedent random variables with the same law, $\mathbb{P}\left(X_{n}=1\right)=\mathbb{P}\left(X_{n}=-1\right)=1 / 2$. We define the random walk generated by $\left(X_{n}\right)_{n \geq 1}, S$, defined by :

$$
\left\{\begin{array}{l}
S_{0}=0 \\
S_{n}=X_{1}+\cdots+X_{n} \quad \text { if } \quad n \geq 1
\end{array}\right.
$$

For $a \in \mathbb{N}^{*}$, we define $\tau_{a}=\inf \left\{n \geq 0, \quad S_{n}=a\right\} .\left(\tau_{a}=+\infty\right.$ if $\left.\left\{n \geq 0, \quad S_{n}=a\right\}=\emptyset\right)$

1) Prove that τ_{a} is a $\left(\mathcal{F}_{n}\right)$-stopping time with $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.
2) Show that $\mathbb{P}\left(\tau_{a}<+\infty\right)=1$.
3) Explain why $\mathbb{E}\left(S_{\tau_{a}}\right)=a>0$.
4) Interprete this result in terms of coin-flipping.
5) Prove $\mathbb{E}\left[\sup _{n \leq \tau_{a}} S_{n}^{-}\right]=+\infty$ where x^{-}is the negative part of x. Interprete this result for a fair coin-flipping game.
