Martingales

Exercise 1. Let $(X_n)_{n\geq 1}$ be a sequence of random variables independent identically distributed. We define the random process S by

$$\begin{cases} S_0 &= 0\\ S_n &= X_1 + \dots + X_n \quad if \quad n \ge 1 \end{cases}$$

S is called a random walk. Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ if $n \ge 1$.

- 1) Prove that $\mathcal{F}_n = \sigma(S_1, \ldots, S_n)$.
- 2) If $\mathbb{E}[|X_1|] < +\infty$ and $\mathbb{E}[X_1] = 0$, prove that S is a (\mathcal{F}_n) -martingale.

Exercise 2. With the same notation as in the previous exercise, we assume that $\mathbb{E}[X_1^2] < +\infty$ and $\mathbb{E}[X_1] = 0$. We define V by $V_n = S_n^2 - n\mathbb{E}[X_1^2]$ for $n \in \mathbb{N}$. Prove that the random process V is a (\mathcal{F}_n) -martingale.

Hint : Calculate $\mathbb{E}((S_{n+1} - S_n)^2 | \mathcal{F}_n).$

Exercise 3. With the same notation as in the first exercise, let λ be a real such that $\varphi(\lambda) = \log \mathbb{E}(e^{\lambda X_1}) < +\infty$. Then we define a random process Z^{λ} by $Z_n^{\lambda} = \exp(\lambda S_n - n\varphi(\lambda))$ for $n \in \mathbb{N}$. Prove that Z^{λ} is a (\mathcal{F}_n) -martingale.

Exercise 4. Let $M = (M_n)_{n\geq 0}$ a (\mathcal{F}_n) -martingale and $H = (H_n)_{n\geq 0}$ a random process such that for all n, H_n is \mathcal{F}_n -measurable and bounded. Let G_0 be a random variable \mathcal{F}_0 -measurable and integrable. For $n \geq 1$ we define $G_n = G_0 + \sum_{k=0}^{n-1} H_k(M_{k+1} - M_k)$ or equivalently :

$$\forall n \ge 0, \quad G_{n+1} - G_n = H_n(M_{n+1} - M_n)$$

- 1) Prove that $G = (G_n)_{n \ge 0}$ is a (\mathcal{F}_n) -martingale.
- Application : gain of a betting strategy in a fair game. We note H = (H_n)_{n≥0} the sequence of bets on a sequence of results briging (X_{n+1})_{n≥0} by unit bet. we suppose that for each n, H_n is a function of (X₁, ..., X_n) and is a bounded random variable. H₀ is deterministic. The profit realized at time n is then defined by the following recurrent relation : G_{n+1} G_n = H_nX_{n+1}.

- a) Using 1), prove that $(G_n)_{n\geq 0}$ is a (\mathcal{F}_n) -martingale with $\mathcal{F}_n = \sigma(X_1, \cdots, X_n)$.
- b) Prove that it is impossible to earn money in a fair coin tossing game.
- c) Explain why it is impossible to win money without taking risk, i.e. $\mathbb{P}(G_n \ge G_0) = 1$ and $\mathbb{P}(G_n > G_0) > 0$.

Exercise 5. We note \wedge the mathematical operator defined by $x \wedge y = \inf\{x, y\}$. Let M be a (\mathcal{F}_n) random process, i.e. for each n, M_n is \mathcal{F}_n -measurable, and τ a \mathcal{F}_n -stopping time. We define another random process N by $N_n = M_{\tau \wedge n}$. Prove that N is a (\mathcal{F}_n) -martingale.

Exercise 6. Stopped martingale theorem. \mathcal{F}_n is a filtration of $(\Omega, \mathcal{T}, \mathbb{P})$. Let τ be a bounded \mathcal{F}_n -stopping time (i.e. there exists $C \geq 0$ such that $\tau \leq C$ a.s.) and $M = (M_n)_{n \geq 0}$ a (\mathcal{F}_n) -martingale. Show that $\mathbb{E}(M_{\tau}) = \mathbb{E}(M_0)$.

Exercise 7. [**] Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables with the same law, $\mathbb{P}(X_n = 1) = \mathbb{P}(X_n = -1) = 1/2$. We define the random walk generated by $(X_n)_{n\geq 1}$, S, defined by :

$$\begin{cases} S_0 = 0\\ S_n = X_1 + \dots + X_n & if \quad n \ge 1 \end{cases}$$

For $a \in \mathbb{N}^*$, we define $\tau_a = \inf\{n \ge 0, S_n = a\}$. $(\tau_a = +\infty \text{ if } \{n \ge 0, S_n = a\} = \emptyset)$

- 1) Prove that τ_a is a (\mathcal{F}_n) -stopping time with $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$.
- 2) Show that $\mathbb{P}(\tau_a < +\infty) = 1$.
- 3) Explain why $\mathbb{E}(S_{\tau_a}) = a > 0.$
- 4) Interprete this result in terms of coin-flipping.
- 5) Prove $\mathbb{E}\left[\sup_{n \leq \tau_a} S_n^{-}\right] = +\infty$ where x^{-} is the negative part of x. Interpret this result for a fair coin-flipping game.