Markov Chains

Exercise 1. Two states Markov Chain.
Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain on the set $E=\{0,1\}$. We note its transition matrix P, so that : $P=\left(\begin{array}{cc}1-\alpha & \alpha \\ \beta & 1-\beta\end{array}\right)$, where α, β are reals in the interval $] 0,1[$.
a) Draw the chain's graph and prove that it is irreducible and positive recurrent.
b) Figure out the stationary distribution ${ }^{1} \pi$.
c) Calculate $\mathbb{P}_{0}\left(T_{1}=n\right), \mathbb{P}_{0}\left(T_{0}=n\right)$ and find another way to get the invariant measure.
d) Calculate P^{n}.Find $A>0$ and $\left.\rho \in\right] 0,1[$ such that :

$$
\forall x, y \in E^{2}, \quad\left|P^{n}(x, y)-\pi(y)\right| \leq A \rho^{n}
$$

Exercise 2. Length of stay in a state.
Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state space E.
We note τ_{x} the length of stay in the state x, the random variable :

$$
\tau_{x}=\inf \left\{n \in \mathbb{N} \quad \mid \quad X_{n} \neq x\right\}
$$

(we assume $\inf \emptyset=+\infty$)
Proove that τ_{x} is a stopping-time for the filtration relative to $\left(X_{n}\right)$ (the σ-algebra $\sigma\left(X_{0}, X_{1}, \ldots\right)$), and then determine the distribution of τ_{x} under \mathbb{P}_{x}.

Exercise 3. Energy management. in a house with two heaters, a main one and an additional one. We say "we are in the state 1 " if only the main heating supply is working, and "in the state 2 ", if both main and additionnal heaters are on.

- If one day we only use the main heater, we will do so the next day with probability $\frac{1}{2}$.
- On the contrary, if we use both heaters, the next day the house is hotter and we turn off the additionnal one with probability $\frac{3}{4}$.

Let's note X_{n} the state of the heating supplies on the $n^{\text {th }}$ day. We assume $\left(X_{n}\right)_{n \geq 0}$ is a Markov chain.

[^0]a) Determine the chain's transition matric and its graph.
b) We define $p_{n}=\mathbb{P}\left(X_{n}=1\right)$.

Give a recurrent relation satisfied by p_{n}, then express p_{n} as a function of p_{0}. What is the value of $\lim _{n \rightarrow \infty} p_{n}$?
c) Assuming we are in the first state a Sunday, find the probability to stay in the same state the next sunday.
d) Prove that if a day we are on the first state with a probability $\frac{3}{5}$, then it is the same for all the days that follows.
e) Each day on the first state costs $10 €$, the second $20 €$ et each transition from 1 to 2 and inversely cost $5 €$. Calculate the average cost of one day in the situation described in d).

[^0]: 1. π is also called "invariant measure"
