Markov Chains 2

Exercise 1. Generic Markov chain.
Let S, C be two finite or countable sets and $f: S \times C \rightarrow S$ an application. We consider a random variable X_{0} in S, and a sequence of random variables $\left(U_{n}\right)_{n \geq 1}$ in C and we define the sequence $\left(X_{n}\right)_{n \geq 0}$ by induction

$$
X_{n+1}=f\left(X_{n}, U_{n+1}\right) .
$$

We suppose that the random variables $\left(X_{0}, U_{1}, U_{2}, \ldots, U_{k}, \ldots\right)$ are independants and that all the $\left(U_{n}\right)_{n \geq 1}$ have the same distribution on C, noted ν. The goal of this exercise is to prove that $\left(X_{n}\right)_{n \geq 0}$ is a Markov chain and to calculate its transition matrix.
a) Prove by induction that the random vector $\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ is $\sigma\left(X_{0}, U_{1}, \ldots, U_{n}\right)$ - measurable. Deduce from this that U_{n+1} is independant from $\left(X_{0}, X_{1}, \ldots, X_{n}\right)$.
b) Calculate $\mathbb{P}\left(X_{n+1}=s \mid X_{0}=x_{0}, X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$ and prove it equals to

$$
\mathbb{P}\left(f\left(x_{n}, U_{1}\right)=s\right) .
$$

c) Conclude on the nature of $\left(X_{n}\right)_{n \geq 0}$.
d) Finally, prove that for two states s, t of S, the coefficient of the transition matrix M is given by

$$
M(s, t)=\sum_{\substack{k \in C \\ f(s, k)=t}} \nu(k)=\mathbb{P}\left(f\left(s, U_{1}\right)=t\right) .
$$

Exercise 2. Invariant distribution, average return time to a state.
Let $E=\{1,2,3,4,5\}$ and $X=\left(X_{n}\right)_{n \geq 0}$ a process such that for each $x \in E,\left(X_{n}\right)_{n \geq 0}$ is an homogeneous Markov chain over E, on a probabilised space $\left(\Omega, \mathcal{F},(\mathcal{F})_{n \geq 0}, \mathbb{P}_{x}\right)$.
Its transition matrix M is

$$
M=\left(\begin{array}{ccccc}
0 & \frac{2}{3} & \frac{1}{3} & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right)
$$

a) Determine the graph associated to the chain. Isolate and give its communication classes.
b) Specify the nature and the period of the communication classes.
c) Using b), justify the existence of a unique invariant distribution for the Markov chain. Calculate it and deduce $\mathbb{E}_{x}\left(T_{x}\right)$ where $T_{x}=\inf \left\{n \in \mathbb{N}^{*}, X_{n}=x\right\}$ is the time of first transit at x (and $\inf \emptyset=\infty$).
d) Determine the potential matrix, noted R, of this Markov chain.
e) Calculate the probabilities $\mathbb{P}_{4}\left(T_{5}<+\infty\right)$ and $\mathbb{P}_{5}\left(T_{5}<+\infty\right)$.
f) Let us note for each $y \in E, N_{y}=\sum_{j \in \mathbb{N}} \mathbf{1}_{\left\{X_{j}=y\right\}}$ the number of transit to the state y. Calculate the probabilities $\mathbb{P}_{4}\left(N_{5}=m\right)$ and $\mathbb{P}_{5}\left(N_{5}=m\right)$ for each $m \in \mathbb{N}$.
g) Show the following equality for every $x, y \in E$,

$$
\mathbb{E}_{x}\left[T_{y} \mathbf{1}_{\left\{T_{y}<+\infty\right\}}\right]=M(x, y)+\sum_{x \neq y} M(x, z)\left[\mathbb{E}_{z}\left(T_{z} \mathbf{1}_{\left\{T_{y}<+\infty\right\}}\right)+\mathbb{P}_{z}\left(T_{y}<+\infty\right)\right]
$$

h) Deduce the value of $\mathbb{E}_{x}\left(T_{1}\right)$ for every $x \in E$.

Exercise 3. Random walk on $\{0,1,2, \ldots, N\}$
Let $X=\left(X_{n}\right)_{n \geq 0}$ a process taking its values on $E=\{0,1,2, \ldots, N\}$. For each $x \in E, X$ is an homogeneous Markov chain with transition matrix M, given by

$$
\left\{\begin{array}{c}
M(x, x+1)=p, \quad M(x, x-1)=q, \quad \text { if } \quad 1 \leq x \leq N-1, \\
M(0,1)=1, \quad \text { and } \quad M(N, N-1)=1 .
\end{array}\right.
$$

a) Draw the graph of the transition matrix and determine its communication classes.
b) Justify the existence and unicity of an invariant probability ν for the Markov chain. Calculate it as a function of p, q and N.
c) Deduce the value of $\mathbb{E}_{0}\left(T_{0}\right)$.

