Conditional Expectation

Exercise 1. Let $(\Omega, \mathcal{T}, \mathbb{P})$ be a probabilized space. Let \mathcal{B} be a sub- σ algebra of \mathcal{T}. Let X et Y be two random variables. Y has a Poisson distribution of parameter λ. We suppose that X is \mathcal{B}-measurable and Y and \mathcal{B} are independent. Calculate $\mathbb{E}^{\mathcal{B}}[\cos (X Y)]$

Hint : Use $\mathbb{E}^{\mathcal{B}}[f(X, Y)]=\hat{f}(X) \mathbb{P}$-a.s. where $\hat{f}(x)=\mathbb{E}(f(x, Y))$ (proved on exercise 5).

Exercise 2. Let X, Y be jointly continuous variables with the probability distribution function

$$
f_{(X, Y)}(x, y)=\left\{\begin{array}{lrr}
x+y & \text { if } & 0 \leq x, y \leq 1 \\
0 & \text { else }
\end{array}\right.
$$

Calculate $\mathbb{E}[X \mid Y]$ using $f_{X \mid Y}(x \mid y)$ and $f_{Y}(y)$.

Exercise 3. Let Y be a random variable defined by $Y=X U$ where X and U are independent random variables and X has the Rayleigh density :

$$
f_{X}(x)=\left\{\begin{array}{lrr}
\frac{x}{\sigma^{2}} e^{-\frac{x^{2}}{2 \sigma^{2}}} & \text { if } & 0 \leq x \\
0 & & \text { else }
\end{array}\right.
$$

and U is uniformely distributed on the interval $[0,1]$. The aim of this exercise is to calculate $\mathbb{E}[X \mid Y]$.

1) Calculate $\mathbb{E}(X), \mathbb{E}(Y), \mathbb{E}\left(X^{2}\right), \operatorname{Var}(Y), \operatorname{Cov}(X, Y)$.
2) Determine $f_{(X, Y)}$ and f_{Y}.
3) Estimate $\mathbb{E}[X \mid Y=y]$ and then $\mathbb{E}[X \mid Y]$.

Exercise 4. Let B_{1}, \cdots, B_{n} be a partition of the universe Ω and $\mathcal{B}=\sigma\left(B_{1}, \cdots, B_{n}\right)$ the σ-algebra generated by $\left\{B_{1}, \cdots, B_{n}\right\}$. Let Y be a random variable \mathcal{B}-measurable.

1) Prove that $Y=\sum_{i=1}^{n} y_{i} \mathbb{1}_{B_{i}}$ where $y_{i}=Y\left(\omega_{i}\right)$ for an element $\omega_{i} \in B_{i}$.
2) Using this formula, calculate $\mathbb{E}(Y \mid \mathcal{B})$.

Exercise 5. Let $(\Omega, \mathcal{T}, \mathbb{P})$ be a probabilzed space. Let \mathcal{B} be a sub σ-algebra of \mathcal{T}, X and Y two real random variables such that X is independent from \mathcal{B}. We choose $Y \mathcal{B}$-measurable and finally, we consider a bounded measurable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. We define

$$
\hat{f}: \begin{aligned}
\mathbb{R} & \longrightarrow \mathbb{R} \\
y & \longmapsto \mathbb{E}(f(X, Y))
\end{aligned}
$$

Show that $\mathbb{E}(f(X, Y) \mid \mathcal{B})=\hat{f}(Y)$.

Exercise 6. Let X be a Poisson random variable of parameter λ. Let S be another random variable defined this way : if $X=n$, we toss a coin n times with a probability p to get a head : S is the number of heads obtained during those n throws. The aim of this exercise is to calculate $\mathbb{E}[X \mid S]$ and $\mathbb{E}[S \mid X]$.

1) $\mathbb{E}[S \mid X]$
a) If $X=n$, show that $\mathbb{E}[S \mid X=n]=p n$.
b) Prove that $\mathbb{E}[S \mid X]=p X$.
2) $\mathbb{E}[X \mid S]$
a) Calculate $\mathbb{P}(X=n \mid S=k)$ and then $\mathbb{E}[X \mid S=k]$.
b) Prove that $\mathbb{E}[X \mid S]=S+(1-p) \lambda$.

Exercise 7. Gaussian couple. Let $Z=(X, Y)$ be a gaussian random vector of dimension 2 with $\mathbb{E}(Z)=0$. We note σ_{X}^{2} (resp. σ_{Y}^{2}) the variance of X (resp. Y) and $\rho_{X Y}$ the correlation coefficient of X and Y defined by

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Calculate $\mathbb{E}[X \mid Y]$.

Exercise 8. Let $\left(X_{n}\right)_{n \geq 0}$ be a sequence of independent identically distributed random variables with $\mathbb{E}\left(X_{n}\right)=\mu$ and $\operatorname{Var}\left(X_{n}\right)=v$. We consider $S_{n}=X_{0}+\cdots+X_{n}$. Let N be a random variable which takes its values in \mathbb{N}, independent from the X_{n}, with $\mathbb{E}(N)=\nu$ and $\operatorname{Var}(N)=$ w.

1) Show that $\mathbb{E}\left(S_{N} \mid N=n\right)=\mathbb{E}\left(S_{n}\right)$.
2) Deduce from it $\mathbb{E}\left(S_{N}\right)$ and $\operatorname{Var}\left(S_{N}\right)$.
