Solutions: Markov Chains

Exercise 1. a) $\{0\}$ et $\{1\}$ are linked, thus the chain is irreducible. Since $E=\{0,1\}$ is finite, the chain is reccurent.
b) The equation $\pi P=\pi$ can be rewritten :

$$
\left\{\begin{array}{l}
(1-\alpha) \pi_{0}+\beta \pi_{1}=\pi_{0} \\
\alpha \pi_{0}+(1-\beta) \pi_{1}=\pi_{1}
\end{array}\right.
$$

Considering the fact that $\pi_{0}+\pi_{1}=1$, then

$$
\pi_{0}=\frac{\beta}{\alpha+\beta} \text { and } \pi_{1}=\frac{\alpha}{\alpha+\beta}
$$

c) Let n be an integer. Then

$$
\begin{aligned}
\mathbb{P}_{0}\left(T_{1}=n\right) & =\mathbb{P}_{0}\left(X_{1}=0 ; \cdots ; X_{n-1}=0 ; X_{n}=1\right) \\
& =P(0,0)^{n-1} P(0,1) \\
& =\alpha(1-\alpha)^{n-1}
\end{aligned}
$$

The same kind of calculation leads to

$$
\mathbb{P}_{0}\left(T_{0}=1\right)=\mathbb{P}\left(X_{1}=0\right)=1-\alpha
$$

and for all $n \geq 2$,

$$
\mathbb{P}_{0}\left(T_{0}=n\right)=\mathbb{P}_{0}\left(X_{1}=1 ; \cdots ; X_{n-1}=1 ; X_{n}=0\right)=\alpha(1-\beta)^{n-2} \beta
$$

Then one can find the stationary probability with the following relation : for all $x \in$ $\{0,1\}, \pi(x)=\mathbb{E}_{x}\left(T_{x}\right)^{-1}$. Since

$$
\begin{aligned}
\mathbb{E}_{0}\left(T_{0}\right) & =\sum_{n=1}^{+\infty} n \mathbb{P}_{0}\left(T_{0}=n\right) \\
& =\mathbb{P}_{0}\left(T_{0}=1\right)+\sum_{n=2}^{+\infty} n \mathbb{P}_{0}\left(T_{0}=n\right) \\
& =1-\alpha+\sum_{n=2}^{+\infty} n \alpha(1-\beta)^{n-2} \beta \\
& =1-\alpha+\alpha \beta \sum_{n=1}^{+\infty}(n+1)(1-\beta)^{n-1} \\
& =1-\alpha+\alpha \beta\left(\frac{1}{\beta^{2}}+\frac{1}{\beta}\right) \\
& =\frac{\alpha+\beta}{\beta}
\end{aligned}
$$

we have $\pi_{0}=\frac{\beta}{\alpha+\beta}$. The same calculation for $\mathbb{E}_{0}\left(T_{0}\right)$ brings $\pi_{1}=\frac{\alpha}{\alpha+\beta}$.
d) A first approach for the calculation of P^{n} can be the diagonalization of P, but here, we will use the theorem of Caley-Hamilton. The real 1 is an eigenvalue of P (this is true for any stochastic matrix).
Let λ be the other eigenvalue. Then,

$$
\operatorname{Tr}(P)=1+\lambda=2-\alpha-\beta
$$

Thus, $\lambda=1-\alpha-\beta$.
The caracteristic polynom of P is

$$
\chi_{P}(t)=(t-1)(t-1+\alpha+\beta)
$$

By euclidian division,

$$
X^{n}=(X-1)(X-1+\alpha+\beta) Q(X)+a X+b
$$

where $a, b \in \mathbb{R}$ must be determined. Evaluating at 1 and at λ the above expression, we get

$$
1=a+b \quad \text { and } \quad(1-\alpha-\beta)^{n}=a(1-\alpha-\beta)+b
$$

Thus,

$$
a=\frac{1-(1-\alpha-\beta)^{n}}{\alpha+\beta} \quad \text { and } \quad b=\frac{\alpha+\beta-1+(1-\alpha-\beta)^{n}}{\alpha+\beta}
$$

Applying the Cayley-Hamilton theorem,

$$
P^{n}=\chi_{P}(P) Q(P)+a P+b=a P+b=a\left(P-I_{2}\right)+I_{2}
$$

that is to say,

$$
\begin{aligned}
P^{n} & =\frac{1}{\alpha+\beta}\left(\begin{array}{ll}
\beta & \alpha \\
\beta & \alpha
\end{array}\right)+\frac{(1-\alpha-\beta)^{n}}{\alpha+\beta}\left(\begin{array}{cc}
\alpha & -\alpha \\
-\beta & \beta
\end{array}\right) \\
& =\left(\begin{array}{ll}
\pi_{0} & \pi_{1} \\
\pi_{0} & \pi_{1}
\end{array}\right)+(1-\alpha-\beta)^{n}\left(\begin{array}{cc}
\pi_{1} & -\pi_{1} \\
-\pi_{0} & \pi_{0}
\end{array}\right)
\end{aligned}
$$

$\rho=1-\alpha-\beta$ et $A=1$ work.

Exercise 2. For all $n \geq 1$,

$$
\left\{\tau_{x}=n\right\}=\left\{X_{0}=x ; \cdots ; X_{n-1}=x ; X_{n} \neq x\right\} \in \sigma\left(X_{0}, \cdots, X_{n}\right)
$$

and

$$
\left\{\tau_{x}=0\right\}=\left\{X_{0} \neq x\right\} \in \sigma\left(X_{0}\right)
$$

Thus τ_{x} is a stopping time relative to the canonical filtration of $\left(X_{n}\right)_{n \geq 0}$. Using the definition of $\left\{\tau_{x}=n\right\}$,

$$
\begin{aligned}
\mathbb{P}_{x}\left(\tau_{x}=n\right) & =\sum_{y \neq x} \mathbb{P}_{x}\left(X_{0}=x ; \cdots ; X_{n-1}=x ; X_{n}=y\right) \\
& =\sum_{y \neq x} P(x, x)^{n-1} P(x, y) \\
& =P(x, x)^{n-1}(1-P(x, x))
\end{aligned}
$$

When $P(x, x)>0$ the random variable $\tau_{x}-1$ have a geometric distribution $\mathcal{G}(P(x, x))$.
When $P(x, x)=0, \tau_{x}=1$ almost surely.

Exercise 3. a)

$$
P=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
3 / 4 & 1 / 4
\end{array}\right)
$$

b) The chain takes its values in $E=\{1,2\}$. For all $n \geq 0$,

$$
\begin{aligned}
\mathbb{P}\left(X_{n+1}=1\right) & =\mathbb{P}\left(X_{n+1}=1 ; X_{n}=1\right)+\mathbb{P}\left(X_{n+1}=1 ; X_{n}=2\right) \\
& =\mathbb{P}\left(X_{n}=1\right) \mathbb{P}\left(X_{n+1}=1 \mid X_{n}=1\right)+\mathbb{P}\left(X_{n}=2\right) \mathbb{P}\left(X_{n+1}=1 \mid X_{n}=2\right),
\end{aligned}
$$

thus

$$
p_{n+1}=p_{n} P(1,1)+\left(1-p_{n}\right) P(2,1)=\frac{3}{4}-\frac{1}{4} p_{n} .
$$

Its fixed point is $l=\frac{3}{5}$ and so for all $n \geq 0$,

$$
p_{n}=\frac{3}{5}+\left(\frac{-1}{4}\right)^{n}\left(p_{0}-\frac{3}{5}\right)
$$

and $\lim _{n \rightarrow+\infty} p_{n}=3 / 5$.
c) The aim is to calculate $\mathbb{P}\left(X_{n+7}=1 \mid X_{n}=1\right)$. Using the homogeneity assumption and assuming $p_{0}=1$, we have

$$
\mathbb{P}\left(X_{n+7}=1 \mid X_{n}=1\right)=\mathbb{P}\left(X_{7}=1 \mid X_{0}=1\right)=P^{7}(1,1)=p_{7} .
$$

Thus,

$$
\mathbb{P}\left(X_{n+7}=1 \mid X_{n}=1\right)=\frac{3}{5}+\frac{2}{5}\left(\frac{-1}{4}\right)^{7} \approx \frac{3}{5} .
$$

d) The reccurence relation indicates that $p_{n}=3 / 5$ implies $p_{n+1}=3 / 5$.
e) Let C_{n} be the random cost in euros of the day n :
$C_{n}=10 \mathbf{1}_{\left\{X_{n-1}=1 ; X_{n}=1\right\}}+25 \mathbf{1}_{\left\{X_{n-1}=1 ; X_{n}=2\right\}}+15 \mathbf{1}_{\left\{X_{n-1}=2 ; X_{n}=1\right\}}+20 \mathbf{1}_{\left\{X_{n-1}=2 ; X_{n}=2\right\}}$,
thus

$$
C_{n}=10 p_{n-1} P(1,1)+25 p_{n-1} P(1,2)+15\left(1-p_{n-1}\right) P(2,1)+20\left(1-p_{n-1}\right) P(2,2) .
$$

If we are on an "asymptotic" day such that $p_{n}=3 / 5$, then $\mathbb{E}\left(C_{n}\right)=17 €$.

