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We studied the imaging properties of a simple 4f system, in the setting of Fourier Optics. We imaged gratings
of varying frequency under illumination of various coherence. We observed the image both in spatial and frequency
domain; enabling us to determine the transfer function of the system, as well as effects like ringing, aliasing (from the
digital camera used), or defocus effects like the Talbot frequency doubling.

Introduction

The purpose of Fourier optics is to describe an optical
system with the tools of the Fourier theory, and more
precisely in terms of its effects over the frequency con-
tents of an image.

The behaviour of the system is wholly different be-
tween conditions of coherent and incoherent imaging,
and the first two parts of this reports will present those
behaviours, as well as the measured transfer function
for incoherent illumination. The last part will be a dis-
cussion of the behaviour of the system under conditions
of mixed coherence and defocus, and a description of
the effects due to the use of a digital camera.

Set-up

The optical system under study consisted in two iden-
tical lenses, sharing a common focal point where was
placed the aperture stop. This is commonly called a 4f
system (since the distance between the object and the
image will be four times the common focal length). Here
the focal length was about 9.0cm.

The light source was a red led, of power controlled
by voltage. The effective spatial extension of the source
was controlled by an iris, modulating the coherence of
the illumination, and a lens is used to provide a uniform
(Kohler) illumination.

The object used to analyse the system is a grating
(gratings of several frequencies were available), placed
at the focus of the first lens. A CCD camera is then
placed at the focus of the second lens, recording the out-
put of the system. It is then processed to display both
the image and its spectrum (Fourier transform), anal-
ysed by a provided Matlab script.

The set-up is represented in the figure 1, taken from
the lab script.

Fig. 1. Schematic of the 4f system

1. First observations

In the case were the aperture iris is completely open,
and when the system is perfectly focused, the image is
exactly the intensity distribution at the first focal plane
of the first lens. (That is, here, a grating).

The Fourier transforming properties of a thin lens tell
us that we are to observe in the second focal plane of the
first lens the Fourier spectrum of the intensity distribu-
tion in the first focal plane; and indeed we putting a
piece of paper instead of the aperture stop, we observed
a line of points, which is the Fourier transform of a grat-
ing. (Cf. also subsection 5.2.2 of [1]).

If the source iris is small enough, then the illumina-
tion will be coherent. That is, the system will be linear
in amplitude: at one point, two incoming waves would
sum up and the observed intensity will present interfer-
ence effects. In that case, the Fourier Optics theory tells
us tat the coherent transfer function is simply a scaled
version of the pupil function (here, just a disk). (cf. also
Section 6.2 of [1]). The hard-edge low-pass nature of this
filter gives rise to the appearance of ringing artefacts.
This is exactly the Gibbs phenomenon, where truncated
Fourier series give rise to over-oscillations.

The Fourier transform of a brick-wall filter is an os-
cillating function; here the image is convolved with
an Airy function. This causes oscillatory pattern to ap-
pear near high-contrast boundaries in the image. This is
clearly illustrated in Fig. 2.

Fig. 2. Image and line scan for the ringing effect

2. Incoherent illumination

When the size of the source is big enough, the illu-
mination becomes incoherent, and the system is lin-
ear in term of intensity. In that case, it may be shown
that the optical transfer function of the system will
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be the autocorrelation of the coherent transfer func-
tion. As, in our case, the latter is simply the scaled
aperture stop, the incoherent transfer function will be
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r0 is the frequency cut-off of the coherent system (cf. for
reference Section 6.3 of [1]). There are two important
differences with the coherent case: first, the frequency
cut-off is twice as much, and secondly, the filter is a soft
cut-off, without noticeable ringing effects.

For three values of the diameter of the aperture stop
(fully open, 5cm and 10cm), we measured the intensity
of the spectral components to deduce the form of the
incoherent transfer function. To be able to measure ev-
ery peak, we used the grating of highest frequency at
our disposal, which gave a bigger inter-peak separation
than lower frequency gratings. A grating can be ideal-
ized in Fourier space as a sum of Dirac peaks, at odd-
integer harmonics of the frequency of the grating; each
peak having a coefficient of 1n where n is the harmonic
order. Thus, we measured the intensity of every two
peaks, multiplied them by n and plotted it as a function
of frequency. The results are presented in Fig. 4. We can
see that the overall shape does not really match the ideal
transfer function; it is well possible that this is an effect
of an imperfect focusing of the whole system (cf. [1],
Figure 6.11b p.150). The fundamental grating frequency
was measured to be 8.43mm−1.

3. Beyond ideal: mixed coherence, defocus, aliasing

When changing from coherent to incoherent illu-
mination, we observed that, for a given aperture,
additional harmonic components would appear; this il-
lustrate well how the system changes from a hard-edge
low-pass filter of cut-off frequency r0 to a soft-edge
low-pass of cut-off 2r0.

We also observed the effect of defocus over our
system; when shifting the position of the plate, moving
it backwards, we observed first a doubling of the
frequency on the image of the grating, then an image
of the grating but with reversed contrast. This is linked
with the Talbot effect : the near-field diffraction pattern
of the grating is taken as object in the first focal plane
of the first lens. (For the Talbot effect, cf. Section 4.5.2
of [1])

Finally, as we are using a digital system to observe
the image, the said image is sampled by the CCD pixel
array. As such it is subject to aliasing : sampling can be
understood as a multiplication by a Dirac Sha distribu-
tion (comb); which in frequency gives a convolution of
the object spectrum by a comb of inverse frequency. If
the sampling frequency is smaller than twice the higher
spatial frequency contained in the image, then the spec-
trum will overlap. This is shown in Fig. 3, where the line
of frequency components wraps around the 2d plane

and produces parallel lines of points. This effects disap-
peared with the closing of the aperture stop, showing
clearly its function of filtering in Fourier space.

Fig. 3. Aliasing (upper half of the spectrum, processed
to make the wrapped spectrum visible)

Conclusion

This 4f system provides considerable insight in the the-
ory of Fourier optics, as it links to significant results:
one being that a lens realises the Fourier transform of
its front focal plane in its back focal plane, and the other
being that a general imaging system realises the mul-
tiplication of the Fourier spectrum of the object by its
transfer function. Here it is highlighted as the transfer
function comes mostly from the aperture stop, placed
precisely at the common focal plane of the two lenses,
realizing directly the frequency filtering process for the
coherent case, and showing the difference in behaviour
of the incoherent case.
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Fig. 4. Incoherent transfer function. Diameter: green: 5mm, red: 10mm, blue : wide open
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