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Abstract. In this article the one-dimensional, overdamped 
motion of a classical particle is considered, which is cou- 
pled to a thermal bath and is drifting in a quenched disor- 
der potential. The mobility of the particle is examined as 
a function of temperature and driving force acting on the 
particle. A framework is presented, which reveals the de- 
pendence of mobility on spatial correlations of the disor- 
der potential. Mobility is then calculated explicitly for new 
models of disorder, in particular with spatial correlations. It 
exhibits interesting dynamical phenomena. Most markedly, 
the temperature dependence of mobility may deviate quali- 
tatively from Arrhenius formula and a localization transition 
from zero to finite mobility may occur at finite temperature. 
Examples show a suppression of this transition by disorder 
correlations. 

PACS: 05.40; 05.60; 71.55J 

1. Introduction 

In recent years there has been wide interest in transport prop- 
erties of disordered media: e.g. diffusion on a polymer in 
an external field, random resistor networks, domain wall dy- 
namics of magnets in a random field, and pinning of vortices 
in type-II superconductors. Some reviews have already been 
devoted to this subject [1-4]. 

This article focuses on the mobility of a particle moving 
at finite temperature in a one-dimensional disorder poten- 
tial. Its purpose is twofold: (i) The functional dependence of 
mobility on temperature and on an additional external driv- 
ing force is for the first time worked out explicitly in terms 
of stochastic properties of the disorder potential in the con- 
tinuous space. Previous publications have mainly focused 
on the situation, where the particle moves on a lattice. The 
dynamics was specified in terms of hopping rates between 
neighbored places. Our point of view will be more adequate 
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and also physically more transparent in situations, where the 
disorder potential is well characterized and hopping rates, if 
to be used, had to be calculated from this potential first. In 
other works, where space was treated as continuous, only 
special disorder types have been considered [5, 6]. (ii) This 
functional dependence is explicitly calculated and discussed 
for new models, in particular for spatially correlated distri- 
butions of the disorder force, Thereby we obtain general- 
izations of the Sinai model [7] with spatially uncorrelated 
forces, which has attracted particular attention in the past 
(see e.g. [5] and references therein). 

Our approach, which leads to closed analytic expres- 
sions, is limited to the evaluation of the mean velocity. Thus 
interesting transport phenomena, like an anomalous scaling 
behavior of the (mean squared) displacement as a function 
of time, which characterize dynamical phases [4] and were 
found for the Sinai model [5, 6, 7, 8, 9], are beyond the 
scope of the present treatment. 

In the following, we first derive and discuss the general 
expression for mobility (Sect. 2). Its asymptotic behavior for 
large or small temperatures or driving forces is then analyzed 
(Sect. 3). In Sect. 4 mobility is calculated over the complete 
parameter range for some models. Finally, the phenomena 
of thermal activation encountered thereby are summarized 
(Sect. 5). 

2. Basic description 

Our problem is defined by the one-dimensional Langevin- 
equation for a single particle with coordinate x in the pres- 
ence of a disorder potential U(w) and an external force F,  

2 ( t )  = F - U ' ( x ( t ) )  + rl( t ) .  (1) 

The thermal random force rl(t) is assumed to be Gaussian 
distributed with moments 

(~(t)} = 0, (2a) 

( ~ ( t ) ~ ( t ' ) }  = 2 T ~ ( t  - t ' ) .  (2b) 

Angular brackets represent thermal average in a heat bath 
of temperature T. 
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We are interested in the velocity-force-characteristics 
(VFC) for a given disorder potential, where the average ve- 
locity is defined by 

1 
VT(F) := lim - (x(t) -- x(0)}. (3) 

t--+ec t 

A bar denotes the translation-average for the given realiza- 
tion of disorder, i.e. one replaces U(x) by U(x - Xo) and 
averages over all x0. In the last formula, this means an av- 
erage over all initial positions x(0). If desired, an additional 
average over an ensemble of disorder realizations should be 
taken as last operation. 

For convenience, we suppose for the moment periodicity 
of the potential, U(x + L) = U(x), and formulate the result 
in a way, which does not depend on the periodicity L. We 
argue then, that the result is correct for any unbiased disorder 
potential. 

The dynamics of the model can be reformulated in terms 
of the Fokker-Planck equation for the probability density 
P(t, x) and current density J(t, x): 

OtP(t, x) = - O~J(t, x), (4a) 

J(t, x) = IF - g'(x)] P(t, x) - T OxP(t, x). (4b) 

From the stationary solution, which has a homogeneous 
current distribution, one derives the mean velocity v = 

J L / f :  dxP(x)  in a standard way (see e.g. [10]) 

vT(F) = T L  ( 1 -  r / 

{fo / dx e -r dx r e~(X')/T+ 

+e-LF/T ~ L d x  e-r /oXdX' er } (5) 

with the effective potential r := U(x) - Fx.  This expres- 
sion simplifies by replacing the periodicity L by N L  and 
taking the limit N ---+ co. The result can be represented in 
two ways. A first one, frequently used in the literature, will 
be indicated in the following paragraph. The second one, 
which seemingly has been disregarded up to now and which 
can be evaluated more easily, is the basis of the remainder 
of this article. 

The first version has the compact form 

VT(F) : [ T--~ ] - '  , (6a) 

where 

?-(x) := T - I  dx' e [e(x')-r (6b) 

with the integral running towards -4-cx~ for F ~ 0. This rep- 
resentation of the VFC evaluates the so-called sojourn-time 
density ~-(x): dt = T(x)dx is proportional to the conditional 
probability of finding the particle in the interval (x, x + dx) 
at times t > 0, provided it started from position x at t = 0. 
Therein all later passages of the particle parallel and oppo- 
site to the direction of the driving force are included. Several 
works have been devoted to the study of sojourn-time dis- 
tributions, mainly in spatially discrete hopping models (see 
e.g. [5] and references therein). 

In contrast to Eq. (6), which emphasizes the "dynami- 
cal" aspect of the problem by the statistical analysis of the 
sojourn-time, we prefer a second "static" point of view, for- 
mulated in terms of correlations of the disorder potential. 
This formulation enables us also to interpret our results di- 
rectly in terms of activation processes in the energy land- 
scape of the disorder potential. It is related to Eqs. (6) by a 
mere change of the order of two integrations: the mobility 

#T(F)  := VT(F) /F  (7) 

can be calculated directly as 

{/0 }' #T(F)  = d~ e -~ 9T(~T/F)  (8a) 

with the generating function 

9T(Y) := exp {[U(x + y) - U(x)]/T}.  (8b) 

Viewed as a function of temperature, gT(Y) is the generat- 
ing function of the potential energy difference correlations 
at distance y. Equation (8a) shows, that mobility is essen- 
tially the Laplace transform of the generating function. In 
an experimental situation, where the force- and temperature 
dependence of mobility are known, the generating function 
may thus be determined by an inverse Laplace transforma- 
tion. 

The above derivation was based on the fact, that the 
current density is spatially constant in the stationary state, 
which is a particularity of one-dimensional problems. Unfor- 
tunately this approach does not allow an evaluation of the 
diffusion constant, which requires joint probability distribu- 
tions at different times, and relaxation phenomena, which are 
not stationary. Both topics have been treated for the Sinai 
model[5, 6, 7, 8, 9]. 

Formulae (6) and (8) have been derived for periodic po- 
tentials. Since periodicity shows up only implicitly as a prop- 
erty of ?-(x) and 9T(Y) but no longer explicitly as parameter, 
we postulate their validity also for non-periodic disorder po- 
tentials. Depending on the nature of disorder it may happen, 
that the stationary current is zero for some range of forces. 
In this case the integral in Eq. (8a) will diverge, leading to 
vanishing mobility. 

In contrast to the original equation of motion, the ex- 
pressions for the mobility are not invariant under the trans- 
formation U(x) --~ U(x) + const x x and F --+ F + const. 
They require an unbiased disorder potential, i.e. 

U'(x) = 0. (9) 

This condition, which is obvious for periodic potentials, has 
to be imposed on the non-periodic case as well. However, 
situations with a biased disorder potential can be treated, too. 
Then in our expressions U has to be taken as the original 
potential after subtraction of its bias and F as the original 
external force plus the mean force of the original potential. 

For the spatially discrete version of the model with un- 
correlated hopping rates, it was shown[11] that the results, 
obtained from a periodic potential and taking the limit of 
infinite periodicity in the end[8, 12], are unchanged, if one 
allows for non-periodicity from the very beginning. In ad- 
dition, for zero temperature but arbitrary disorder, one can 
integrate the equation of motion Eq. (1) after separation of 
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variables and finds directly the zero temperature limit of 
Eq. (8a) without use of periodicity, leading to Eq. (11) be- 
low. 

Now we address the question, whether an additional av- 
erage over different realizations of the disorder potential may 
affect the VFC. In principle, this average should be taken as 
last average in Eqs. (6a) or (8a). Again, for the spatially dis- 
crete version of the model with uncorrelated hopping rates, 
it was shown[11], that velocity is a self-averaging quantity. 
This means, that its value, when calculated for a given real- 
ization of the disorder potential, coincides with probability 
one with the value after an additional averaging over all real- 
izations of the disorder potential. It seems natural to assume 
this property for any disorder potential with short-ranged 
correlations, since the particle samples during its drift the 
potential on infinite length scales, where a given realization 
is expected to be representative for the whole ensemble of 
realizations. Therefore we may consider the spatial averages 
as averages in the ensemble of disorder realizations. If, for 
a contrary example, the disorder extends only over a finite 
region, the ensemble-average does modify the result and is 
to be performed in addition. This situation has been studied 
for the Sinai model without bias[13]. 

Our main formula (8) can be illustrated physically in 
the following way: Consider jumps over a finite distance 
y. The larger the fluctuations of U(x + y) - U(x) when x 
varies, the larger will be 9T(Y) --> 1. The inequality holds for 
all unbiased potentials. Therefore we might call AT(y ) := 
T - l  lngT(y) _> 0 "energetic roughness" on distances y. A 
large roughness signifies a pronounced relief-structure of the 
potential to be overcome by thermal activation and reduces 
mobility. An "enthalpic roughness" z~y(F) can be intro- 

duced by exp[z~T(F)/T] := ( T / F )  f ? ~  dy e x p [ - y F / T  + 
Ar (y ) /T] ,  reminding of the relation between free energy 
and enthalpy in equilibrium thermodynamics, since F and y 
are thermodynamically conjugated variables. This enthalpic 
roughness turns out to act as an effective activation energy, 
since it determines mobility by >T(F) = exp[- fST(F) /T] .  

Equation (8) shows also, that in the evaluation of the dis- 
order potential an energy scale is set by temperature, whereas 
the spatial structure of the potential is relevant only up to 
the length scale T / F .  

3. Limiting cases 

Before we attempt to evaluate the VFC for particular models, 
defined by a probability distribution of the disorder poten- 
tial, we analyze different limits of the general expression for 
mobility. 

A. Low temperatures 

At strictly zero temperature, we obtain from an integration of 
the equation of motion (1) over a finite time interval (ti, t f): 

x f  - x~ _ F x f -  xi 
(10) d x  7 

1 - U ' ( x ) / F  

with Xi,f = x(ti,f). If the disorder force is everywhere 
weaker than the external force, U ( x ) / F  < 1, the parti- 
cle cannot be trapped in the disorder potential. In the limit 
t f  - ti ~ oc, Eq. (10) then confirms the zero-temperature 
limit of Eq. (8): 

(11) 

In the opposite case, with U'(x ) /F  > 1 somewhere, the 
particle will be localized, i.e. have vanishing mobility. The 
threshold-forces F ~  for the onset of drift towards x = +co  
are clearly given by the maximum/minimum slope of U. In 
the localized region, Eq, (10) is invalid in the strict sense, 
since the particle does no longer sample the whole potential. 
However, if it is used naively, localization formally shows 
up by a divergence of the integral in the denominator. 

At small, but finite temperatures, one might expect to 
find an Arrhenius-like thermally activated behavior. This is 
certainly true for periodic potentials, where one easily de- 
rives (for F r F ~ )  

L ~/--/~max/~rnin e -[r162 (12) 
V ~- 27i" 

with /~max,min := 051t(Xmax,min), where Xmin/ma x denotes the 
position of a minimum/maximum of 05 such, that (Xmax - 
xmin)/F > 0 and the energy difference 05(xm~x) - 05(xmil~) 
is maximal. This expression is valid only for temperatures 
much smaller than this activation energy and L[FI /T  >> 1, 
such that activation over the maximum occurs only in the 
direction of F. In this case, the mean velocity is just propor- 
tional to Kramers transition rate (see e.g. [14]) for thermal 
activation out of minimum Xmin over Xmax. The resulting 
velocity is finite for all finite external forces. 

In the case of non-periodic disorder potentials, where 
arbitrarily large energy barriers (or curvatures at extrema) 
occur with finite probability density and thus no highest en- 
ergy barrier exists, deviations from Arrhenius-like tempera- 
ture dependence may occur. 

B. High temperatures 

For high temperatures one may expand the generating func- 
tion into 

1 T _  n gT(Y) = Z n! [U(x + y) - U(x)] n. 
n=O 

(13) 

An additional temperature dependence of mobility comes in 
through the fact, that the generating function is evaluated 
at distances y = ~T /F ,  which increase with temperature. If 
qualitatively [U(x + y) - U(x)] ~ ~ ]y]n~ for ]Yl ---+ oc with 
some roughness exponent ( < 1, we will have anyway 

~T(F) = 1 -- ~ (T2<C-')) .  (14) 

On the other hand, if the potential is so rough that ~ > 1, 
this series diverges and the particle can be expected to be 
localized at all temperatures. 
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C. Small driving forces 

In the limit of small F,  the function gT(Y) is evaluated in 
(8a) mainly for large arguments and the integral therein acts 
as additional spatial average. Then one has 

, ( i s )  

provided that the averages therein exist. Therefore, one has 
finite mobility 0 < # _< 1 for small driving forces, i.e. Ohmic 
behavior. The range of this Ohmic regime is given by the 
condition, that T / F  has to be small compared to typical 
length scales (periodicity or correlation length) of the dis- 
order. Remarkably, mobility is independent of the direction 
of the driving force, even for asymmetric potentials. If, on 
the other hand, one of the averages is infinite, mobility van- 
ishes for small forces. In general, any non-Ohmic behavior 
requires the divergence of one of the averages in Eq. (15). 

interesting to note, that a disorder potential may 
to a temperature dependence of the Ohmic mobility, 
qualitatively different from Arrhenius-like behavior. 
to illustrate this, let us assume a potential energy 

It is 
give rise 
which is 
In order 
density 

P(U1) := ~(U1 -- U(x))  

with an asymptotics 

P(U) ~ cexp [-IV/El 

(16) 

(17) 

for U --* +co  with some energy scale E and exponent cr > 
1. For small temperatures we may evaluate the integrals in 
Eq. (15) with a saddle-point approximation and obtain 

~(cr--1)  ( E )  (~-2)/(~-1) 
/~T(F) ,~ ~ c y E  ~ ~-~ X 

x exp -2(or - 1) \ ~ T J  (18) 

Only in the limit ~7 --~ oe, i.e. a narrow distribution P(U), 
one obtains an Arrhenius-like temperature dependence of 
the velocity. Potentials of a finite width, like periodic or 
quasiperiodic ones, belong to this class. For general cr > 1, 
mobility will vanish with temperature faster than Arrhenius- 
like, since the exponent c~/(~7-1) in the exponential function 
will be greater than one. However, for ~7 > 1 and T > 0 
mobility will always be finite. 

In the marginal case cr = 1 we find a transition from zero 
mobility at T < E to finite mobility at T > E. In the case 

< 1 the particle will always have zero mobility. 
These results show the naively expected tendency: the 

broader the distribution P(U), the larger are the involved 
activation energies and the smaller is the mobility. Perhaps 
less expected is the fact, that spatial correlations of the po- 
tential for small y will affect the VFC only for larger driving 
forces. 

D. Large driving forces 

In the limit of large F,  the function 9T(Y) is evaluated in 
Eq. (8a) only for small arguments. We now expand 

1 rFq_/F2~ ~2 gT(~T/F) = 1 + (F~/F)  ~ + 7" c 2 /  ] - t - . . .  (19) 

for [ ~ 0, where we introduced in general temperature- 
dependent characteristic forces of order n by 

( ~--y)~gT(Y)vo • :=  T . ( 2 0 )  
= 

From the representation (Sa) for the mean velocity, we obtain 

1 
#T(F)  ~ i • 2 (21) 

I + Fcl/F + F~a/F +.. .  

If the nature of the disorder potential is "smooth", i.e. 
allows to change the order of differentiation an averaging, 
one derives from the definition (8b) of 9, that 

~;~ = U'(z) = O, (22a) 

I,~ = TU"(x) + U'Z(x) > 0. (225) 

If in addition U"(x) = 0, as for periodic potentials, 
the leading correction of the asymptotics is temperature- 
independent. 

Otherwise, if the potential is not smooth, the identities 
(22) need not hold, as we will see in the Gaussian model 
below, where F ~  may be different from zero. Then disorder 
affects a finite shift of velocity with respect to the disorder- 
free case even for large velocities, 

VT(F ~ •  = Y - F ~  + O ( F  -1) (23) 

for F 2 >> F ~ .  
In the case of a discontinuous potential, one may find 

9T(O +) 7( 1 inhibiting the expansion (19), see e.g. the 
random-potential case of the Gaussian model below. 

4. Examples 

We now explicitly calculate the VFC for certain disorder 
potentials to demonstrate the richness of phenomena which 
can be found in this class of diffusion problems. 

A. Sinusoidal model 

For the sake of completeness, let us discuss in the present 
context the periodic model U(x) = E sin(27rx/L), which 
has been studied already some time ago by Ambegaokar 
and Halperin[15] in order to determine the thermal noise 
contribution to the dc Josephson effect. Afterwards, we will 
discuss a non-periodic generalization of this model. 

The generating function can easily be calculated as 

9T(Y) = I0 [2(E/T) sin(Try/L)], (24) 

where I0 is a modified Bessel function. Due to the smooth- 
ness and symmetry of the potential, gT(Y) is even and ana- 
lytic. A straightforward evaluation of Eq. (8a) leads to 

sinhTrf/~ {~01 
pT(F) - ~rf /O d[ x 

-1 

x cosh[~Trf/0] /0[(2/0) cos([Tr/2)] (25) 
) 
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Fig. 1. Mobility of the sinusoidal model according to Eq. (25) as a function 
of the driving force for T/E= 4, 2, 1, 0.5, 0.25, 0 from top to bottom 

with reduced temperature 0 := T / E  and reduced force f := 
FIFo where F0 := 27tElL. This expression can be treated 
further analytically only in limiting cases. The result of its 
numerical integration is shown in Fig. 1. 

At T = 0 one finds from Eq. (11) 

= f 0 for If l < 1 
#0(F) (26) [ vii  - f -2  for Ifl > 1 

with a rapid onset of motion near the the critical force Fc := 
maxx[lU'(x)}] = Fo. 

At low temperatures and within the force-region ]fl < 1, 
where the particle is localized at zero temperature, we find 
from an saddle-point evaluation of Eq. (25) 

VT(F) : 2F0 sinh(Trf/0) V/1 - f 2  e-EA(F)/T (27a) 

EA(F) := 2Ev/1 - f 2 +  2 E f  arcsin f ,  (27b) 

provided 0 << ~v/1 - f2 and t9 << f arcsin f .  The temper- 
ature range of its validity shrinks when the external force 
vanishes or approaches the critical force. This asymptotic 
evaluation yields the mean velocity just as the difference of 
Kramers rates for an activation parallel and antiparallel to 
the driving force across energy barriers EA(F)qzTrfE. Since 
the energy barriers assume only certain values, temperature 
dependence is Arrhenius-like. 

At high temperatures, we can expand the denominator 
of Eq. (25) in E/T .  This produces only even terms and we 
find to second order 

{ 2(E/T) 2 }-I 
#T(F) ~ 1 + 4 + (2fE/Tfi (28) 

At small forces follows from Eq. (25) 

#T(F) ~ [Io(E/T)] -2 (29) 

in agreement with a direct calculation from Eq. (15) with 

e ~g(z)/T = Io(E/T). (30) 

The characteristic forces of lowest order are F ~  = 0 
and Fc~ = Fg/2, since U is smooth. In Fig. 1 one observes 
for finite temperatures, that the VFC approaches in the limit 
F --+ eo first the curve T = 0 before it assumes the limit 

# = 1. This reflects the fact, that the leading correction to 
# = 1 is temperature-independent. 

Now we address the question, how these results will 
change when the periodicity of the potential is abandoned. 
Let us construct such a potential by stretching the maxima 
U = E from points to plateaus such, that the density of 
minima U = - E  is reduced to p < 1/L. The generating 
function 9T(g) behaves for small y as 

9T(Y) ~ (1 -- pL) + pL[o [2(E/T) sinOry/L)] , (31) 

since this distance falls with probability (1 - pL) onto a 
plateau and with probability pL into a trap region with U < 
E, where Eq. (24) holds. This expression is correct in G(y2), 
thus the leading correction for large driving forces is given 
by 

F~ = 2pLOrE/L) 2 (32) 

and vanishes with density p. However, the critical force Fc = 
27vEIL at T = 0, being the maximum slope of U, does 
not depend on p. On the other hand, if there is no long- 
range translational order between the traps, we deduce using 
Eq. (30) 

ezt-g(x)/T ~ (1 - pL)e +E/T + pLIo(E/T). (33) 

and the asymptotics 

#T(F --+ 0) ~ [2(1 -- pL)pL sinh(E/T)Io(E/T) + 

+(I - pL) 2 + p2L21~(E/T)] -i. (34) 

This expression displays a low-temperature behavior 

- -  )< 

• 27r(E/T)e -aE/T. (35) 

Its exponential factor is Arrhenius-like with activation en- 
ergy 2E. The prefactor can not be calculated from Kramers 
expression (12), since the curvature of the maximum is in- 
finite. Remarkably, mobility at zero force and its leading 
correction at large forces depend only on the mean density 
of traps and not on more information about their distribu- 
tion. This is true for any shape of the traps, at small forces 
since exp[• depends only on the shape and density 
of traps, at large forces since the leading term of gT(Y) -- 1 
for small y is simply proportional to the density. 

B. Gaussian model 

In general, the probability distribution ~ of the functions 
U may be generated by an "hamiltonian" 5~6", 

~ [ U ]  oc e x p { - ~ g [ U ] } .  (36) 

The hamiltonian can have direct physical significance. Imag- 
ine that the particle diffuses on a substrate. In an external 
field, the shape of this substrate will determine the energy 
U of the particle. Assume that the shape of the substrate 
was frozen after a quench from an initial temperature, where 
the substrate performed shape-fluctuations according to a re- 
duced hamiltonian .~d (substrate energy divided by temper- 
ature). Then this hamiltonian determines the distribution of 
potentials U according to Eq. (36). 
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In this section we consider the Gaussian case, where 0.8 
the hamiltonian is bilinear in the potential. We assume the 1 
"energy" of a realization of the potential to be determined by 
a inversion-symmetric stiffness e in Fourier-space according 

to gT(F) 0"6 
1 fdh 57U[U] = ~ - ~  U(k )e ( k )U( -k ) ,  (37) 

0.4 
for which one obtains immediately 

9T(Y) = exp ~Z 27r e(k) " (38) 

The stiffness should satisfy limk-~0 k3/e(k) = 0 = l i m k ~  k 
/e(k), otherwise the particle is always localized. We restrict 
us to c(k) = m0 + ms I k[ + m2k ~, thereby generalizing Sinai 's 1 
random-force model with a term m2k 2 only. For simplifica- 
tion we select the cases with ms = 0 or m0 = 0. 0.8 

We start with ml  = 0, where the absolute fluctuations of  
U(x)  are confined. One has 0.6 

~ ( F )  
9 r ( y ) = e x p { ( l - e - l Y l / Y ~  (39) 0.4 

with the length- and force-scales 0.2 

Y0 := X / ~ f / m 0 ,  (40a) 0 

FT := 1/2ra2T. (40b) 

Since the potential now typically is rough on short length 
scales, 9T(Y) has a non-analytic distance dependence at y = 1 
0. In addition, the first characteristic force 

Fc~ = • (41) 0.8 

is finite and depends on temperature, as well as the charac- P'r(F) 0.6 
teristic forces of  higher order, 

Laplace integration over 9 yields (see Fig, 2a-ca) 0.4 

1 (yoFT/T)Y~ e-Y~ (42) 0.2 

# T ( F )  - Yo lF l /T  7(yo[FI/T,  yoFT /T )  ' 0 

where "7 denotes the incomplete gamma function. This model 
exhibits the asymptotic behavior 

# T ( F  --* •  = 1 -- FT/IF[,  (43a) 

p T ( F  ~ O) = e x p { - Y O F T / T } .  (43b) 

It provides an explicit example of  a non-Arrhenius-like 
temperature dependence of the mobility, since y o F T / T  = 
1/(2 m v / m ~  T2). The fact, that temperature occurs squared, 
is due to the Gaussian nature of  disorder in agreement with 
the discussion leading to Eq. (18). Note, that the limit F ---+ 0 
always contains the constant ms,  which enters the distribu- 
tion 

P(U)  ~x exp - ~ -  27re(k)J = (44a) 

= e x p { -  m x / - ~  U2}. (44b) 

It would be therefore misleading to reason, that this limit 
should depend only on m2, which governs e(k) for small 
k. Rather, for this limit all length scales matter, as already 
visible in Eq. (38). 

The special case ms = m2 = 0 describes an uncorrelated 
potential and Eq. (15) applies for all forces. As the amplitude 

/ (a) 

0 2 4 6 8 10 
F 

Fig,  2 a - c .  Mobil i ty  of  the Gauss ian  model  as a funct ion of  the dr iving 
force for  different temperatures  T = 4, 2, 1, 0.5, 0.25, 0 .125 f rom top to 
bo t tom in each diagram:  a for  ra0  = ra2 = 1 accord ing  to Eq. (42), b for  
r a l  = m 2  = 1 after numerical  Laplace  integrat ion of  Eq. (45), and  e for  the 
r andom force model  as l imit ing case m 0  = m~ = 0, m 2  = 1 

of fluctuations diverges in the limit m2 ~ 0, the generating 
function diverges since l i m k ~  k/e(k)  5~ 0 and the particle 
is localized at all temperatures and driving forces. 

Consider now the case m0 = 0, where 

9T(Y) = exp{ (2yl FT /7rT)[C + In [Y / Yl l - 

- c i  lY/Yll cos lY/Yl] - si lY/Ys] sin lY/Y11]} (45) 

,,~ (eCly/ys I) (2v'FT/~T) (46) 

with a length-scale Yl := m 2 / m i ,  the force-scale FT := 
1 /2m2T  as before, Eulers constant C = 0.577 . . . .  and the 
cosine and sine integrals ci and si. Fig. 2a--cb shows mobility 
obtained by numerical integration of Eq. (45). The approx- 
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imation in Eq. (46) refers to [Y/Yl[ >> 1. The power-law 
behavior of 9 for large y translates under Laplace transfor- 
mation to a power-law behavior for small F:  

(e-CYllFI/T)(2Y'F~/~T) 
(47) 

#T(F)  ~ F[(2yIFT/TrT) + 1] 

1 (Trel-CIFI/NFT) <2y'FT/wT) (48) 
v% /T 

F denotes the gamma function, the approximation is valid 
for F << FT, the limit refers to T ~ 0. Since the expo- 
nent 2pIFT/wT = 1/TrmlT a is positive, the mobility al- 
ways vanishes with F .  The exponent is independent of the 
parameter m2. Mobility behaves at low temperatures like 

T 1/~ 'T2.  In this case, we observe an even stranger devi- 
ation from Arrhenius-activation. Since :~ [U]  is invariant 
under U(x) ~ U(x)+ const, the potential is unbound and 
Eq. (18) is violated. 

The case m0 = m2 = 0 again leads to complete localiza- 
tion, since limk~o~ k/e(k) r O. 

The case m0 = ml  = 0 is, as already indicated above, 
the Sinai random-force model[7]. To show the equivalence 
of our approach with the discrete approaches[8, 11], we re- 
produce the VFC of tiffs case. Eq. (39) reduces to 

9T(Y) = exp {lYlFT/T} (49) 

for all y and results in (compare Fig. 2a-cc) 

{ 0  for fF I_<FT  (50) 
t~T(  F )  1 - FT/IFI for ]F I > FT. 

Therefore FT is the threshold force for the onset of  mo- 
tion. The temperature dependence of the model is com- 
pletely contained in this threshold force. In particular, one 
finds at constant F a localization transition at temperature 
Tc = 1/2m2F. 

All cases with m2 5 ~ 0 discussed above have a common 
asymptotics for large driving forces, which is determined by 
T/~ 2 alone. The reason therefore is, that this asymptotics is 
governed only by the short-scale fluctuations of  the potential, 
determined by leading term of the stiffness for large k. 

C. Poissonian model 

Finally, we consider a model for diffusion on a stepped crys- 
talline surface, as illustrated in Fig. 3a. This model shows 
asymmetric transport properties and also exhibits a localiza- 
tion transition. 

The profile of  the surface is described by the height 
function h(x), which increases in units of  a > 0 for in- 
creasing x. The structure is characterized by the proba- 
bility distribution S(1) for the step length 1. We use a 
Poisson-distribution S(1) = exp(-l / lo)/ lo with mean value 
10. The particle is supposed to be in constant force-field 
with components fx,h in direction parallel and perpendic- 
ular to the x-direction, which might be components of a 
gravitational or electric field. They give rise to the total 
potential r  = .fhh(x) - fxx.  In order to use our previ- 
ous formulae, we identify U(x) = fhh(x)  - (a/ lo)fhz and 
F = fx - (a/lo)fh by subtracting the mean bias. 

h(x) 

N 

(a) 
fv 

0.8 

gT(F) 0"6 

0. 

5 

Tc(F) (c) 

0 2 6 8 4 10 
F 

Fig. 3. Poissonian model: a sketch of geometry, b mobility according to 
Eq. (53) as a function of the driving force at temperatures T = 4, 2, 1, 0.5 
from top to bottom and c localization temperature as a function of driving 
force for a fh  = lo = 1 

From the Poissonian distributed number of  steps in an 
interval of  length 9 one obtains easily 

gT(Y) = exp[y F~ (T) /T] (51) 

for ~ <> 0 with asymmetric forces of  first order 

F~(T)  = --(a/lo)fh • (1 -- e• ~ O, (52) 

which depend on temperature. From Eq. (51) we obtain (see 
Fig. 3b) 

/ 0  for F ~ ( T )  < F < F~+I(T), 
#T(F)  1 -- F ~ ( T ) / F  for F ~ F~(T) .  (53) 

Since at T = 0 the localization region covers --(a/lo)fh < 
F < oo (corresponding to 0 < f~ < ~x~) and shrinks to zero 
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for T --4 oe, we find for forces in this region a localization 
transition at a temperature To, which is implicitly determined 
by F = F~(T) ,  as depicted in Fig. 3c. 

Apart from the asymmetry, the Poissonian model is very 
similar to the random-force Gaussian model. Indeed, the 
force is distributed independently at different sites, this time, 
however, with an asymmetric and singular distribution. 

5. Conclus ion 

An analysis of particle mobility in one-dimensional disor- 
der was presented. We developed a framework based on the 
generating function of spatial correlations of the disorder 
potential. For arbitrary temperature and driving force, these 
correlations are relevant up to a length T / F .  At large driving 
forces, mobility depends only on local properties of disorder, 
whereas at small driving forces global aspects matter. 

For some models, which generalize previously studied 
structures of disorder, mobility was evaluated over the com- 
plete range of temperature and force. Thermally activated 
motion led to a rich phenomenology. 

The temperature-dependence of mobility can deviate 
drastically from Arrhenius formula. This is characteristic 
for systems with a broad distribution of activation energies. 
Such deviations have been obtained already by an ad hoc 
averaging of escape times over a spectrum of activation en- 
ergies (see e.g. [16]). This procedure is unsatisfying from 
a principal point of view, since transport properties depend 
also on the spatial location and not only on the height of 
energy barriers, which is in higher dimensions even more 
important than in one dimension. 

The models with spatially uncorrelated force distribution, 
the Poissonian model as well as the random-force Gaussian 
model, exhibit a localization transition. The similar phe- 
nomenology of these models is due to the validity of the 
Central Limit Theorem, which assures a Gaussian distribu- 
tion of U(x + y) - U(z). 

It is therefore of particular interest to examine the sta- 
bility of the localization phases with respect to the introduc- 
tion of correlations in the force-distribution. For the Gaus- 
sian model, we achieved this by two different, continuous 
deformations of the random-force model. Switching on the 
couplings m0 or ml ,  we found the localized phase to be un- 
stable, i.e. mobility was finite for all positive temperatures 
and driving forces. 

Note added in proof. After acceptance of this work, the author received 
a preprint of P. Le Doussal and V.M. Vinoknr, who also find Eq. (8) and 
evaluate it for an additional special case of Ganssian disorder. 

This result complements previous studies: In a dynamics, 
where the particle may hop on a lattice only in one direction 
and which is thus incompatible with a Langevin equation 
of motion, dynamical phases were found to be stable with 
respect to short-ranged correlations in the hopping rates, but 
unstable with respect to long-ranged correlations[17]. Intro- 
ducing force-correlations into the Sinai model, the scaling 
behavior of diffusion in the absence of a driving fore has 
been found to be modified, but remained anomalous[18, 19]. 

I am grateful to P. Nozi~res for a critical reading of the manuscript and to 
N. Pottier and D. Saint-James for interesting comments. 
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