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1 Preliminaries from general topology

In this section, we are given a set X, a collection of topological spaces (Y;);e1 and a
collection of maps (f;)ier such that each f; maps X into Y.

We wish to define a topology on X that makes all the f;’s continuous. And we want to
do this in the cheapest way, that is: there should be no more open sets in X than required
for this purpose.

Obviously, all the f;7!(O;), where O; is an open set in Y; should be open in X. Then
finite intersections of those should also be open. And then any union of finite intersections
should be open. By this process, we have created as few open sets as required. Yet it is
not clear that the collection obtained is closed under finite intersections. It actually is, as
a consequence of the following lemma:

Lemma 1
Let X be a set and let 0 C P (X) be a collection of subsets of X, such that

e () and X are in O;

e U is closed under finite intersections.

Then  ={J O] O C O} is a topology on X.
0€0

Proof: By definition, .7 contains X and () since those were already in &. Furthermore,
7 is closed under unions, again by definition. So all that’s left is to check that .7 is
closed under finite intersections.

Let A; and A, be two elements of .7. Then there exist O and O,, subsets of &', such
that

A1:UO and A2:Uo

0ec0y 0€02



It is then easy to check by double inclusion that
AlﬂAQI U OlﬁOQ

01€0,
0204

Letting O denote the collection {O; N Oy | O € O; Oy € Oy}, which is a subset of &
since the latter is closed under finite intersections, we get

AnA=JO
0€0
This set belongs to 7. By induction, .7 is closed under finite intersections. 0

Corollary 2
The collection of all unions of finite intersection of sets of the form f;*(0;) wherei € 1
and O; s an open set in Y; is a topology. It is called the weak topology on X generated
by the (fi)ie1’s and we denote it by U(X, (fl)lel)

By definition, the functions (f;)ic1 are continuous for this topology.

Of course, a topology is useless if it is too complicated for us to deal with it. It turns out
there is a nice characterization of converging sequences, and continuous function from a
topological space into a weakly topologized space.

Theorem 3
Let (x,)nen be a sequence in X. It converges in the topology U(X, (fi)iel) to some x € X
if and only if

Viel 7}220 filzn) = fi(2)

Remember that in a topological space (X,.7),

e a sequence (T, ),en converges to x € X if and only if
VO € .7 containing x INe€N Vn >N T, € O

Notice also that if the topology .7 is not Hausdorff, there is no unicity for the
limit of a sequence. For example, if # and y are distinct points that cannot
be separated by open sets, the constant sequence equal to x will converge
both to x and y.

e a function f : X — Y, where Y is a topological space, is continuous at a
point z if and only if the preimage by f of any open set (in Y) containing
f(z)isin 7.




It is easy to show that in such a case, for every sequence (z,,),en converging
to x, the sequence (f(a:n))neN converges to f(x). But this property does not
characterize continuity at x in general!!! We need more assumptions on X, one
of them being for example that x has a countable basis of neighbourhoods.

So we see that there are bad habits, inherited from working with normed or
metric spaces all the time, that we have to lose. Here are more of them:

e If X is compact for the topology .7, there is no reason to believe that any
sequence has a converging subsequence.

What can be shown is the following: if (x,),en is a sequence in X compact,
there exists a point = such that any open set containing x contains infinitely
many terms of the sequence (z,),en. However, this does not allow us to build
a subsequence of (x,)nen converging to = because there could be too many
open neighbourhoods of x.

However, if x has a countable basis of neighbourhoods, we can build such a
subsequence.

e If A is any subset of X, the closure of A cannot be characterized anymore as
the set of limit points of A. It is true that limit points of A are in A, but A
could contain strictly the set of limit points of A.

The only characterization of points € A is that every open set containing
meets A.

Proof: Suppose first that the sequence converges in the weak topology to some z € X.
Since for every j € I, the function f; is continuous for U(X, ( f,-),-el), we have

Jim fy(2,) = (2)
Conversely, suppose that there exists z in X such that
Viel lim f;(z,) exists and equals f;(z)

Let O be any open set containing x. By definition, there exist a finite subset J of I, and
open sets (O;);e; such that O; C Y; for all j € J, such that

x € ﬂ fgl(Oj)
j=1

which means that Viel fi(x) € O;



Given j € J, we know that the sequence ( fj(xn))ne converges to fj(x). Then, since O;

contains f;(x), there exists N; € N such that
Vn 2 Nj f](iﬁn) c Oj

N

Letting N = MaJX N;, we have
VIS

VnZN \V/] el fj(llﬁ'n) GO]'

In other words, Yn > N Zy € ﬂ fj_l(Oj) cO
jel
So (x,)nen converges to x for the topology U(X, (f,),el) O

Theorem 4
Let (Z, ) be a topological space, and ¢ : Z — X be map. Then ¢ is continuous for the
topologies 7 and o (X, (f;)ie1) if and only if for every i € 1, f; 0 ¢ is continuous.

Proof: Easy, try it. 0

An example of a weak topology, aside from the ones we will present in those note, is
the topology of pointwise convergence. It is defined as follows: let A be any set and let
X be the set of functions A — R. For every a in A, define the function ¢, : X — R by

vfeX QOa(f):f(a)

The topology of pointwise convergence is O’(X, (fa)ac A). In this topology, a sequence of
functions converges if and only if it converges pointwise, in view of Theorem 3. One can
show that this topology is not metrizable, this is the topic of a problem in the fall 2003
qualifying exam.

2 The topology o(X, X*)

In this section, X is a normed space. Unless stated otherwise, we do not assume that it
is complete.

Definition 5 The weak topology on X is the topology O’(X, (f)fex*)- For convenience, it
is simply denoted o (X, X*).

A first thing we want to check is that the weak topology on X is Hausdorff, which will
guarantee us the unicity of limits.

Theorem 6
The topology o(X, X*) is Hausdorff.



Proof: Let x and y be two distinct points in X. Since ||z —y|| > 0, there exists a positive
e such that B(z, €) does not contain y. Since B(z, €) is convex open, we know that it can
be strictly separated from {y} by a hyperplane by the geometric form of the Hahn-Banach
theorem: there exist f € X* and o € R such that

Vu e B(z,e)  (f,u) <a<(fy)

In particular, (fox) <a<(f,y)

Therefore, z e f((-00,a)) and  y e [ ((a, +00))

Those two sets are weakly open, since they are preimages of open subsets of R by a linear
functional. And they are disjoint. Thus (X, X*) is Hausdorff. O

Then we prove a few easy facts comparing the weak topology and the norm (also called
strong) topology on X.

Proposition 7
1. The weak topology is weaker than the norm topology: every weakly open (resp.
closed) set is strongly open (resp. closed).

2. A sequence (x,)nen converges weakly to x if and only if
vieXt  lm(fm) = (f.2)
3. A strongly converging sequence converges weakly.
4. If () nen s a sequence in X converging weakly to x, then (x,)nen is bounded and

||z|| < liminf ||z,||
n—oo

5. If (xy)nen 18 a sequence in X converging weakly to x and (fn)nen 1S a sequence in
X* converging strongly to f, then

nlinolo(fn, x,,) exists and equals (f,x)
Proof: The first point is clear: the norm topology already makes all linear functionals
continuous. Since the weak topology is the weakest with this property, it is weaker than
the strong topolgy. So every weakly open set is strongly open, and by taking complements,
every weakly closed set is strongly closed.
The second point is just a restatement of Theorem 3 in the particular case of the
weak topology on X.



The third point is clear as well: if (z,,),en converges strongly to z, then
vfeXt |(f2) = (fan)| = [(Fx = w)| NI e = wl —— 0

and therefore (z,),en converges weakly to = by 2.

Let (z,)nen be a sequence in X converging weakly to z. We have already seen at least
once in quals that (x,),en is bounded, as a consequence of the Banach-Steinhaus theorem
(see for example the spring 2002 exam). Also, if f is a bounded linear functional on X,

Ve N |(f, )] < F] |2l
so by taking liminfs, we get

[(£.2)] < £ timin [z,

Since ||z|| = Sup (7 2)
rex+ Il
J#0

it follows that ||| < liminf ||z,||

Finally, let (z,),en be sequence in X converging weakly to z and (f,,),en be a sequence
in X* converging strongly to f. We have for every integer n

}(fvx) - (fmxn)} = }(f,x) — (fiwn) + (f,2n) — (fmxn)‘ < ‘(fux - xn)‘ + [ fn = Fll |l
Since (x,,)nen is bounded by 4, the righthandside tends to 0 and 5 is proved. O
The next step is to identify a basis of neighbourhoods for o(X, X*).

Theorem 8
Let o € X. A basis of neighbourhoods of xo for the weak topology is given by the collection
of sets of the form

Wg,fl,,,,7fn = {ZL" e X } Vi € {1,...,71} }(fz,l") — (f,,l’o)‘ < 6}

neN e>0 fi,...,f.eX*

Proof: Remember that a collection 2" of open sets containing x is a basis of neighbour-
hoods of z( if and only if every open set containing x contains an element of 2.

That every set W,y . are weakly open is clear, since all fi,..., f, are weakly
continuous. Furthermore, it contains xy since

vie{l,....n}  |(fiwo) = (fimo)| =0<e

Now, let O be any weakly open set containing x,. By definition of the topology
o(X,X*), it is a union of finite intersections of preimages of open sets in R by bounded



linear functionals. So there exist a finitely many bounded linear functionals fi,..., f,.
and open subsets Oq,..., 0O, of R, such that

wo € () f7(0;) CcO
j=1

Then for every j € {1,...,n}, the real number (f;,zo) belongs to O,. Since this set is
open, there is a positive €; such that

((fj>$0) — €5, (fj>$0) + ej) - Oj

Let e = Min ¢; >0
1<<n
so that Vie{l,...,n} ((f5,20) — €, (f,20) +€) C Oy

Then, if x belongs to W 4, ., we have by definition of this set
Vie{l,...,n}  (fi,2) € ((fis20) — € (fj,m0) +€) C Oy

which means that T € m fj_l(Oj) cO
j=1
Thus WE,f1,...,fn cO O

Now that we have two topologies on X, we may wonder if by any chance they coincide.
The answer is given by the following

Proposition 9
The weak topology and the strong topology on X coincide if and only if X is finite dimen-
sional.

Proof: Suppose first that X is finite dimensional. We already know that the weak
topology is included in the strong topology, through Proposition 7. All that is left to
show is the converse.

Since X is finite dimensional, it has a basis (e1,...,€e,). Any z € X has a unique
decomposition along this basis, which means that

n
Mxy,...,z,) €R" :L’:inei
i=1

Define then |z]|oo = ll\glagjl |24

It is easy to check that it is a norm on X.



Remember that, as a consequence of the finite dimensionality of X, all norms are
equivalent and the strong topology on X is the topology defined by any norm. So if O is
any strong open set, it is in particular open for || ||o. This means that for every z € O,
there exists a positive €, such that

By (x,e,) C O

Therefore 0= U B (z, €x)

€0

So if we show that any open ball is weakly open, we get that the strongly open set O is
weakly open, as union of weakly open sets.
Let z be any point in X and € be any positive real number. Then

B (x,€) = {yEX ‘ |y — || <e}:{y€X ‘ Vie{l,....,n} |y — x4 <e}
But the functionals f1, ..., f,, defined by

Vx:ijeJGX (fi,x) =a;

J=1

are clearly in X*. And we can then write

Bo(z,6) ={yeX ‘ Vie{l,...,n} ‘(fl,y)—(fl,:c)‘ <€}

which proves that B (z,€) is weakly open, by Theorem 8.
So any strong open set is weakly open: the weak and strong topology on a finite
dimensional space coincide.

Now let’s suppose that X is infinite dimensional, and let’s show that the weak and
strong topologies do not coincide. Let S be the unit sphere in X:

S={reX| |z =1}

Then S is strongly closed. But 0 belongs to the weak closure of S. Indeed, let O be any
weak neighbourhood of 0. By Theorem 8, there exist ¢ > 0 and fi,..., f, in X* such
that

W:{xEXH(fi,:c)}<e}CO

The map o: X — R
€T — ((flaz)"'ﬂ (f"’z))

is linear and

Kerd = {xeX| (fi,x)=0 VI<i<n}=[)Kerf;
i=1



By the rank-nullity theorem,
Dim Ker ® + DimIm ® = Dim X = oo

Since DimIm® < n

it follows that Ker ® is infinite dimensional, and can certainly not be equal to {0}. So
there exists x # 0 such that

Vie{l,...,n} (fi,x) =0
Then VAER Vie{l,...,n} |(fi,Az)|=0<e

which proves that VAeR Are W CO

Now, taking A\ = ﬁ shows that O intersect S. So any weakly open neighbourhood
of 0 intersects S: 0 is in the weak closure of S. Thus the weak and strong closure of S
are different. OJ

Notice how in the proof we showed that weakly open sets are very big: they
at least contain lines when the dimension of X is infinite.

Using exactly the same strategy, one can show that the weak closure of S
contains the closed unit ball B of X. And the next theorem will establish that B
is weakly closed. So we get that in an infinite dimensional normed space,

gO’(X,X*) _ E

The next theorem answers the important question: if the weak topology is strictly
weaker than the strong topology (in infinite dimension), are there sets for which we can
guarantee that strongly closed implies weakly closed?

Theorem 10
Let C be a nonempty convex set in X. Then C is strongly closed if and only if it is weakly
closed.

Proof: Of course, by Proposition 7, if C is weakly closed, it is strongly closed. We are
more interested in the converse. N

Suppose that C is strongly closed. We have C C ") and we want to show the
converse inclusion. So let x be in the complement of C. By the geometric form of the
Hahn-Banach theorem, C (convex strongly closed) and {z} (convex strongly compact)
can be strictly separated by a hyperplane: there exist f € X* and a € R such that

VweC  (fiy) <a<(fz)

Thus the weakly open set f~! ((a, +oo)) contains x and does not intersect C. So z is not
in the weak closure of C. Which achieves the proof. O

Now we worry about bounded linear maps.



Theorem 11
Let X and Y be two Banach spaces and let T be a linear map between X and Y. Then T
s continuous strong-strong if and only if it is continuous weak-weak.

Proof: The fact that continuous strong-stong implies continuous weak-weak is a conse-
quence of Theorem 4. The converse (or something very close) has already been studied
in the 2003 spring qualifying exam, and follows at once from the closed graph theorem.[]

And to finish this section, we wonder about whether the weak topology is metrizable.
We will first need a lemma from linear algebra:

Lemma 12
Let fy, ..., fn, [ be linear functionals on a vector space X. Then f is a linear combination

of f1,--., fn if and only if

ﬂ Kerf, C Kerf
i=1

Proof: If f is a linear combination of fi,..., f,, we can write

n
f:Zazfz al,...,aneR
i=1

and it clear from here that () Ker f; C Ker f.
i=1
Conversely, suppose that this inclusion holds. Assume also, for now, that fi,..., f,

are linearly independent. Define

Ve e X ®(z) = ((fi.2),.... (fn,2), (f. 7))
Then (0,...,0,1) cannot be in the image of ®, since if (f;,x) = 0 for 1 < i < n, then
(f,z) = 0 as well. So Im @ is a strict subspace of R"*! and there exists a nonzero linear
functional on R™*! that vanishes on Im ®:

o, ..y an, @) € RIN{0} Y(z1,...,2,,2) € Im P azx + Zaixi =0
i=1

Then Ve e X oz(f,x)+Zozi(fi,x):0
i=1
and Ve e X (af+2aifi,x>:0
i=1
which implies that af + Z a;fi=0
i=1

10



Now, a cannot be 0 since fi,..., f, are linearly independent. Thus we can divide by «

and f is a linear combination of fi,..., f,.
If we don’t assume that fi,..., f, are linearly independent, up to renaming, we can
suppose that fi,..., f, are linearly independent and that f,11,..., f,, are linear combina-

tions of those. Then by the first part of the proposition,
p n
ﬂKerfi = ﬂKerfi C Ker f
i=1 i=1
From what we just proved, f is a linear combination of f1,..., f,, which is fair enough.[]

Corollary 13
The weak topology on a normed space X is metrizable if and only if X is finite dimensional.

Proof: From Proposition 9, if X is finite dimensional, the weak topology is the norm
topology and therefore comes from a metric.

Conversely, suppose that there is a metric d on X, such that the induced topolgy
coincides with the weak topology. For every positive integer k, define

Bk:{xEX‘d(x,O)<%}

By, is open for d and thus is a weak open neighbourhood of 0. By Theorem 8, there exist
a finite collection F; of bounded linear functionals and a positive €, such that

We={zeX||(f2)] <e VfeF,}CBy,

Let F:UFk

E>1

which is a countable subset of X*. We show that F spans X*. This implies (see the spring
2004 qual) that X* (complete) is finite dimensional. Thus X** is finite dimensional as
well, and therefore X follows the herd since it injects in X**.

So let g be any bounded linear functional on X and consider

W={zeX||(ga2)]<1}

This is a weak neighbourhood of 0. So there exists a k big enough so that B, C W and

as a consequence Wy, C W. Let z € () Ker f. Then
J€Fg

YAeR erFk ‘(f,)\l’)‘:0<€k
Hence YAeR e W, CcW

which means that VAeR Al (g, 2)| <1

11



Necessarily (g,2)=0 that is x € Kerg
According to Lemma 12, g € Span F. Which achieves showing that
X* = SpanF O

3 The topology o(X*, X)

Remember that any element of X can be seen as a bounded linear function on X*, through
evaluation at z:

vieX*  (z,f)=(fz)

Definition 14 The weakx topology on X* is the topology o(X*, (z).ex). For convenience,
it is simply noted o(X*, X).

We rapidly check the usual properties of this new topology:

Theorem 15
The topology o(X*,X) is Hausdorff.

Proof: This is easier than Theorem 6, since it does not even involve the Hahn-Banach
theorem. We let f and g be distinct elements of X*. Thus there exists x € X such that

(f,x) # (9,2)

Assuming, for example, that (f,z) < (g, ), we can find a real number « such that
(f,z) <a<(g,7)
so that feax((-o0,)) and g€z ((a,+00))

Those are two disjoint weak* open sets that separate f and g. 0

Proposition 16
1. The weakx topology on X* is weaker than the weak topology o(X*, X**), itself weaker
than the norm topology.

2. A sequence (fn)nen in X* is weakx convergent to f if and only if
Ve e X lim (f,,z) = (f,x)
3. A strongly converging sequence in X* is weakx convergent.

4. If (fo)nen is weakx convergent to f, then (fn)nen is bounded and

1] < timind |,

12



5. If (fu)nen is a sequence in X*, weakx convergent to f, and if (z,)nen 1S a sequence
i X converging strongly to x, then

lim (f,,z,) exists and equals (f,x)

Proof: Same as Proposition 7. 0

Theorem 17
Let fo € X*. A basis of neighbourhoods of fy for the weakx topology is given by the
collection of sets of the form

Weanon = {f € X* ‘ Vie{l,...,n} }(f,zi) - (fo,x,-)} < e}

neN >0 x,...,0,€X

Proof: Same as Theorem 8. ]

Now, at this point, we might wonder why in the world someone would be that
obsessed with weakening topologies.

The basic answer is that, if there are less open sets, it is easier to extract finite
subcovers from open covers. So we are hoping to get more compact sets.

And indeed, the Banach-Alaoglu-Bourbaki theorem will show that the closed
unit ball in X* actually is compact for the weaker o(X*, X). This is, for example,
the starting point of the (really neat) Gelfand theory of Banach algebras. See
Professor Katznelson’s book for that.

Aside from that very specific example, compactness is generally a good thing
because it allows us to show that things exist: minimums or maximums of contin-
uous functions, fixed points, and other stuff such as converging subsequences (even
though compactness alone is not enough for that).

Proposition 18
Let ¢ € X** and suppose that ¢ is weakx continuous. Then

JreX VieX* (o f)=(fx)

Proof: Since ¢ is weakx continuous, the set

Vo {rext |l fl<1)

is weakx open and contains 0. According to Theorem 17, there exist z1, ..., x, in X and
a positive € such that

W:{fEX*H(f,xi)‘<e Vi<i<n}cCV

13



If fe N Kera;, then

=1

VAeR VI<i<n (AMf,z) =0<e

so that YA eR AMfeWcCcV

Thus VAER  |A||(e, )] <1

Necessarily, feKerp

According to Lemma 12, ¢ is a linear combination of x4, ..., z,. O

Proposition 19
Let H be a hyperplane in X* and suppose that H is closed for the weakx topology. Then
there exist v € X and o € R such that

H={feX"|(f,z)=a}

Proof: H is a hyperplane, that is there exist £ € X** and a € R such that
H:{fEX* | (£,f):a}

By assumption, H is weakx closed. So if fy € X* \ H, there exists a weak* open set
containing f, that does not intersect H. So there are x;,...,z, in X and ¢ > 0 such that

WNH=0  where W={feX*||(f,z:)— (fo,z:)| <eforalli}

We also have (&, fy) # «a since fy ¢ H so either (&, fo) < a or (&, fo) > a. Assume we are
in the first case.
Suppose that for some f in W, we have (£, f) > . Then

p:t— (&tf+(1—1t)fo)

is continuous on [0, 1], such that

p(0) = (5 fo) <a and (1) = (£, f)>a

So by the intermediate value theorem, there is f’ in [fy, f] which belongs to H. But that
segment is contained in W (this set is convex, it is easy to check) so W intersects H: this
is absurd. Therefore,

VieW & f)<a

Now, consider W — fo={f—fo| f€e W}
={f=Jfol feX* |(f,z)— (fo,x:)| < eforalli}
W — fo={feX*||(f z:)] <eforalli}

14



This is a weakx neighbourhood of 0. Also,
v.]CGVV_.]CO (é-vf):<£7f+f0)_(£vf0)<a—(£7f0)
—

cewW

Since —f belongs as well to W — fj, we have

vaW_fO }(gaf)}<a_(§af0)
If we had supposed that (£, fo) > «, then we would have obtained that

erw—fo }(guf)}<(£7f0)_a

So we showed that, for any choice of fy in X* \ H, there exists a weakx neighbourhood of
0 contained in the pre-image under £ of the open interval ( — [(¢, fo) — al, [(&, fo) — a]).
It follows that & is weakx continuous at 0 and by linearity, it is weakx continuous.
Proposition 18 then tells us that ¢ is actually in X. Which achieves the proof. U

Those two propositions are satisfying, in the sense that the weak* topology allows us
to separate X from X**: the only linear functionals that are weakx continuous are elements
of X. Similarly, the only weakx closed hyperplanes are the ones induced by elements of X.

Thus, we see that if the space X is not reflexive, then o(X*, X) is strictly included in
o(X*, X**): there are hyperplanes closed for the latter that are not closed for the former,
namely the ones induced by linear functionals on X* that are not in X.

Finally, here comes the Banach-Alaoglu-Bourbaki theorem:

Theorem 20
The closed unit ball in X* is weakx compact.

Proof: We first check that Bx« is closed for the weak« topology. Let fy be in the weakx
closure of this set. Let € be any positive real number. By definition of || fo||, there exists
x € X, with norm 1, such that

(fo, ) > [ foll — €

The weakx open neighbourhood
W = {f e X* ‘ }(fwr) - (fo,l’)‘ < 6}

has to intersect Bxs non-trivially: there exists f € X* such that

Ifl<t and  |(fix) = (fo.x)| <e
In particular | foll —€ < (fo,z) < (fyx) +e<|fllllz|| +e<1+e€

and it follows that | foll <14 2

This holds for every positive €, so || fo|| < 1 which proves our claim.

15



Let Y be the space R* of all real-valued functions on X, together with the product
topology. That is, the weakest topology on Y that makes all the evaluations

e;: Y — R reX
wr— ez(w) = w(z)

continuous. Since every element of X* is a function on X, we have an injection

J: X* —Y
f—3(f)
where Ve e X J(f)(x) = (f,x)

We first check that J is continuous when X* has the weakx topology. According to
Theorem 4, this is the case by definition of the weakx topology, since

VeeX VfeX  (eol)(f)=I(f)z)=(f2)

We also make sure that J!' is continuous on J(X*). This is also a consequence of
Theorem 4 and the definition of the product topology:

VeeX VieJX)  (I7Nf)2) = (f2) =elf)
So J is a homeomorphism onto its image. Notice that

veeX VfEBx-  [I(NH@)|=[(f,0)] < I 2l < ]

50 J(Bx-) < [T [ Il 1]

zeX
The righthandside is compact by Tychonoff’s theorem; the lefthandside is closed,
since J7! is continuous and By« is weakx closed. Therefore, J (EX*) is compact. Again,
J~! is continuous and the continuous image of a compact set is compact. So Bx-
is compact for the weakx topology. 0

And now, we finally achieved something: the closed unit ball in X*, which is certainly
not compact when X is infinite dimensional, has a topology that makes it compact. There
is also a neat immediate consequence of this theorem:

Corollary 21
If X is reflexive, the closed unit ball of X is weakly compact.

Proof: We identify X and X**, since X is reflexive. Then (X, X*) and o(X**, X*)
are the same topology on X. But in the latter, the closed unit ball of X is compact,
by Theorem 20. Simple as that. O

This is the “trivial” direction of Kakutani’s theorem, which actually asserts that the
converse is true: if the closed unit ball of X is weakly compact, then X is reflexive. This
will be proved in the next section.

16



4 Weak topologies, reflexivity and uniform convexity

4.1 Kakutani and consequences

Lemma 22 B
Bx is weakx dense in Bxss.

Proof: We let & be in the unit ball in X** and we suppose that there is a weakx
neighbourhood of ¢, that does not intersect Bx: there are fi,..., f, in X* and a positive
€ such that

WnNBx =10 where W:{EEX** | ‘(S,f,-)—(fo,fi)‘ < € for allz’}

In other words, Vaxe Bx 3Jie{l,...,n} |(fisx) = (S0, fi)| = € (1)
(flvx)
Define Vr e X O(z) = :
(fn, )
and let’s use || || on R™. Then (1) tells us precisely that
(o5 f1)
Vo € Bx H<I>(x)—aHoo >e€  where o= :
(607 fn)

In other words, e is not in the closure of the convex set ®(Bx) so those can be separated
by a hyperplane in R™: there exist real numbers 3y, ..., 3,,w such that

Vz € Bx Zﬁi(fi,l') <W<Z@'(§>fz’)
i=1 1=1

This implies that H S B <w< (5, Zﬁ,f,-) < H S 6,
i=1 i=1 i=1
and we have a contradiction. Therefore, W intersect Bx non-trivially. U

Theorem 23 (Kakutani)
A Banach space X is reflexive if and only if Bx is weakly compact.

Proof: One direction was shown in Corollary 21. So now suppose that Bx is weakly
compact. Then it is compact in X** for the o(X**, X*) topology. In particular, it is weakx
closed. By Lemma 22, its weakx closure is Bx«+. Thus

By = By

and X is reflexive. O
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This theorem has very important consequences.

Corollary 24
Let X be a reflexive Banach space. Fvery closed subspace s reflezive.

Proof: Let Y be a closed subspace of X. There are, on Y, two topologies: the restriction
of the weak topology on X and the weak topology o(Y,Y*). We check that those two
coincide.

Let yo € Y and consider an elementary o(Y, Y*)-neighbourhood of yq:

W={yeY| ‘(f,-,y)—(fi,yo)}<ef0ralli} neN fi,...,[neY" €>0

By Hahn-Banach, fi,..., f, can be extended to bounded linear functionals gi,..., g,
on X. Thus, since the g;’s coincide with the f;’s on Y, we have:

W={yeY| ‘(giay)_(giayo)} <eforalli} =YN{z e X| }(gi,x)—(gi,yo)} < efor alli}

so W is an open subset of Y for the restriction of the o(X, X*) topology.
Conversely, let W be an elementary neighbourhood of y, for the trace of the o(X, X*)
topology. There exist € > 0 and ¢y, ..., g, in X* such that

W=Yn{z eX| }(gi,z)—(gi,yo)} <eforalli} ={yeY| }(gi,y)—(gi,yo)} < efor alli}

Since g1, ..., g, are bounded on X, their restrictions fi,..., f, to Y are also bounded.
Thus

W={yeY||(fiy) = (fi,y)| < eforalli}

is open for the weak topology on Y.

The closed unit ball By is convex and strongly closed in X. Therefore, it is a weakly
closed subset of By, which is compact by Kakutani’s theorem. Therefore, By is compact
for o(X,X*). Since that topology coincides on Y with o(Y,Y*), it follows that By is
weakly compact in Y. By Kakutani, Y is reflexive. O

Corollary 25
A Banach space X is reflexive if and only if X* is reflexive.

Proof: Suppose that X is reflexive. Then X = X** and bounded linear functionals on
X** are the same as bounded linear functionals on X. In other words, X** = X*.
Conversely, let’s assume that X* is reflexive. The weakx topology and the weak topol-
ogy on X** then coincide. By Banach-Alaoglu-Bourbaki, X** is reflexive. But X is a
closed subspace of X** so by Corollary 24, X is reflexive. O
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Corollary 26
Let X be a reflexive Banach space. Any closed convex bounded set is weakly compact.

Proof: If C is closed and convex, it is weakly closed. Since it is bounded, it is included
in B(0,R) for some R and this set is weakly compact by Kakutani. Closed subsets of
compact sets are compact, so C is weakly compact. 0

This is all for the moment in general. More will come later, once we study the con-
nection between weak topologies and separability.

4.2 Uniformly convex Banach spaces

Let’s prove the Milmann-Pettis theorem about uniformly convex Banach spaces. Although
it is not a consequence of Kakutani, it uses Banach-Alaoglu-Bourbaki as well as Lemma
22 so it derives from all the work done so far.

Definition 27 A Banach space X is called uniformly convex if and only if
H T4y
2

Ve>0 30>0 Vo,yeX |z =]y =1 H S1-6 = [lz—y| <e
We first show that this definition is in fact equivalent to an apparently stronger state-
ment:

Lemma 28
Let X be a uniformly convex Banach space. Then

=

Ve>0 30>0 Vz,y€ Bx 5

H>1—5 = flz—yll<e

Be careful, this is ugly and does not result from a simple scaling argument. I have
not been able to find anything simpler...

Proof: Let ¢ be a positive real number. By uniform convexity of X, we are given a
positive « such that

r+y €
veyeX el =llyl=1 |52 >1-a = le-vl<s
o €
Let 6 = Min (5, %)
e m 91
so that 20 < « and 25<§
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Take x,y non-zero in X, both with norm less than 1 and such that
=] >

-0

Suppose also, for example, that ||y|| < ||z||. It will be useful to get also a lower bound for
|ly||. This is done by noticing that

y:2xz+y_
so that Iyl > 2| 2| = llell > 2 — 26 — ]
and [yl = [lzfl =2 =26 = 2|[z]| = -
We scale x and y to bring them on the unit sphere: let
Ty = T and Yo = Ea
] [yl
x
Then on+y0HIH—+LH=‘ + A + Y H
[zl lyll el ezl =l ]
I+yH ‘ H 2-20 ’ Uyl = llzl)y H
] [T ] [ [y
o 2=20 el =yl _ 2 =20+ Jlyll — ll=]
> —
] ] ]
2 —46
|zo + yol| = Tz >2—40 22 -2
Thus “x0+y0’)21—a
and from uniform convexity, |0 — yol| < <

€ y

IIII

Now we have to relate this to ||z — y||. It is the same kind of mess as what we just did:
€ Y Y Y
o — ol = - = o

_' {1 I | e | O 7]
ISUII —lyll o lz =yl _ 26

=

] (| |

20 = yoll = llz = yll =20

|
[
O

Therefore |z =yl < |lwo — yol| + 20 <

l\DIm
l\DIm
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Theorem 29 (Milmann-Pettis)
A uniformly convexr Banach space is reflezive.

Proof: Let € be a positive number, which provides us with a positive ¢ such that
r+y
2

Let & € X** with [|£|| = 1 and « be any positive real number. There exists f € X* with
||l = 1 such that

Y,y € Bx ‘

H>1-5 — Jz—yll<e

(S0, f) >1—4¢
Define W={ceX*|(f)>1-6}

This is a weakx neighbourhood of & and by Lemma 22, it intersects Bx non-trivially:
there exists zp € X, with ||zo|| < 1, such that

(f,.ﬁ(f(]) >1—4

Now, assume that ||& — zo|| > €. This means that & is not in the ball Bx«(zg, €).
This set is weakx closed, as we proved in Theorem 20 so its complement is open. Thus,

EXH ([L’(), E)C N'W

is a weakx neighbourhood of £;. By Lemma 22, it contains a yy € X with ||yo|| < 1 and
Yo satisfies

lzo — yol| > € and (fiyo) >1—96

Therefore (f, o ;_ yO) >1-9
which implies H o _2|_ 90 H >1—-90
From uniform convexity, |0 — ol < e

and this is a contradiction. Thus ||z¢ — &|| < €, or in other words
Ye>0  B(&,e)NBx #0

So & is in the (strong) closure of By, which is already closed: & is in fact in X. O
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5 Weak topologies and separability

We finally investigate how the property of separability influences the weak topologies.
Let’s remember that

Definition 30 A normed space X is called separable if and only if it contains a countable
dense subset.

Theorem 31
Let X be a Banach space such that X* is separable. Then X is separable.

Proof: Let (f,)nen be a countable dense subset of X*. For every n, there exists x, in X
with norm 1, such that

o) >

Let Lo be the Q-vector subspace of X spanned by (z,,),en, and L be the R-vector subspace
of X spanned by (x,)n,en. Then L is countable, and dense in L. So if we show that L is
dense in X, we’re done.

Let f € X*, that vanishes on L. Since (f,)nen is dense in X*, given a positive e, there
exists n € N such that || f, — f]| < e. Then

IS

TNH < (for ) = (fa — fran) <€
and A< (1 f = fIT 4 N fall < 3e
This is true for all positive €, so f = 0 and L is dense. O

Note that there is no converse to this theorem, that is, if X is separable,
X* has no reason to be separable as well.
Think, for example, of L!'(R) which is separable while its dual, L>(RR) is not.

Corollary 32
A Banach space X is reflexive and separable if and only if X* is reflexive and separable.

Proof: Assume that X is reflexive and separable. Then X** is reflexive and separable
since it is identified with X. By Corollary 25 and Theorem 31, X* is reflexive and
separable.

Conversely, if X* is reflexive and separable, Corollary 25 and Theorem 31 imply
that X is reflexive and separable. O
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Theorem 33
A normed space X is separable if and only if the weakx topology on Bx« is metrizable.

Notice that there is no contradiction at all with the fact, seen earlier, that a weak
topology is never metrizable on an infinite dimensional space. Indeed, if we remem-
ber how that was proved, we used the fact that weak open sets contained entire
lines. Obviously, if we restrict the topology to a bounded set such as the unit ball,
we cannot use that fact anymore.

Proof: Let X be a separable normed space, which means there is a countable dense subset
A in X. We define D to be A N Bx(0, 1); because D is countable, we can enumerate its
elements:

D = {z, | n € N}
Finally, we define :

Vo) e  d(f.g)= 3

neN
where S is the closed unit ball in X*. We claim that d is a metric on S and that the
toplogy 7 it induces on S coincides with the weak topology o(X*, X). In order to do this,
there are a few things to check.

(.f B gaxn)|
2n

1: D is dense in Bx

Let z be in the unit ball of X and let O be an open set containing z. Then there is
some € such that Bx(z, €) is included in O. And because By is open, we can take € smaller
so that Bx(z,€) is included in Bx. Since A is dense, Bx(z,€) intersects A at some .
And y is then in D. Which shows that D is dense in Bx.

And we conclude using the fact that By is dense in Bx.

2 : d is a metric on S
We first check that d is properly defined, i.e. that it does not take the value co. This
is easy :

vrges v ozl o Iz allllzal g 5

1
neN 2" neN 2n neN 2"

which is finite.

Triangular inequality and symmetry for d are trivial to check. The only thing remain-
ing is to see what happens if d(f, g) = 0. In this case, we get

Vo €D (f—g,)=0
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Now take any y in X with norm less than 1. From 1.1, there is some sequence (y,)nen
in D converging to y. So that :

(f=9,9)=(f—g, lim y,) = lim (f - g,9.)
n—oo n—>ooi6_/

since f — g is continuous on X. Which shows that
vweX  (lyl<1=(f-g,9)=0)
Hence If =gl =0
and f=g
d is a metric on S.

3: 7 Co(X*X)
Let fy be in S and take an open set O in .7 containing fy. Then we can find a positive
real number 7 such that :

Ba(fo.r)={feS|d(fo,f)<r}cCO
1
Now take an integer k such that o < g and € < g . Define :

V={feS||(f- foz)| <eforj=0,....k}

so that V is a weakx open set in S containing fy. Then

7xn , Ly 1
n>k+1_/—/

<2n,1

which shows V C Ba(fo,r) C O

Thus for every fy in S, every 7 -open neighbourhood of f; contains a weakx neigh-
bourhood of fj.

4: o(X*,X)C T

Let fy be in S and take O a weak* open set in S containing f,. Then O is a union of
elementary weak* open sets containing f; so that there exists ¢ > 0 and points yq, ..., Yk
in X such that :

Now, take m = Max {||y;|| | j = 1,...,k} so that

Vie{l,... k) %es
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Given a positive 1, and j € {1,..., k}, there is some n; in N such that ||z, —y;/m| <.
And we take a positive r such that

Vie{l,....k}  m2ur< %
Then for all f in Bq(fo,7), we have :

Z| f anxn <r
neN
so that Vie{l,... k} |(f = fo,mn,)| <207

Finally, ¥j € {1,...,k} |(f—fo,yj)|=m‘<f_f0%)‘
m|(f_f0axnj)|+m)<f_fo’x"j _%))
—— J/

<2nj r <o

< §+277m

Recall that n was arbitrary ; so just take it small enough so that 2nm < % and we get
f € V. Hence

Ba(fo,7) CVCO

So for every fp in S and every weakx open neighbourhood O of fy in S, there is a
J -neighbourhood of fy contained in O.

5 : Conclusion
Both topologies .7 and x — o(X*, X) coincide.

Now, suppose that S together with the weakx topology is metrizable: there exists a
distance d on S such that the induced topology coincides with o(X*, X). Define

Vn € N* anBd<0,%)={f€S‘d(o’f)<%}

Each B, is an weakx open neighbourhood of 0, so there exist a positive ¢, and F,, C X,
finite, such that

W, ={feX*||(f,z) <e, forallz € F,} CB,
Let F=|]JF,

This is a countable subset of X. Let’s show that it spans a dense subspace of X. Let f
be a bounded linear functional that takes the value 0 at each x € F. Then

fe ) Wnc () B.={0}

neN* neN*

25



So f is 0 and as a consequence of the Hahn-Banach theorem, Span F is dense. This is a
separable set (take finite linear combinations of elements of F with rational coefficients).
Thus X is separable. U

This theorem has a dual equivalent, though more difficult to prove:

Theorem 34 B
Let X be a Banach space. Its dual is separable if and only if Bx is metrizable for the weak
topology o (X, X*).

We end our work with the two important consequences of everything done so far:

Theorem 35
Let X be a separable Banach space. Any bounded sequence in X* has a weakx converging
subsequence.

Proof: Let (f,)nen be any bounded sequence in X*. There exists a positive real number
M such that

_h
M
The sequence (g, )nen takes its values in the unit ball of X*, which is weakx compact by
Banach-Alaoglu-Bourbaki. And the weakx topology on it is metrizable by Theorem 33.
Therefore, (g,)nen has a weakx converging subsequence, as well as (f,,)nen-

Yn eN On € Bx»

Theorem 36
Let X be a reflexive Banach space. Any bounded sequence has a weakly converging subse-
quence.

Proof: Let (z,),en be a bounded sequence in X and let M be the closure in X of
Span (2, )nen. Then M is a closed subspace of X. By Corollary 24, M is reflexive.
By construction, M is also separable since the Q-vector subspace spanned by the (z,,)nen
is dense.

By Theorem 34, there is a o(M**, M*) converging subsequence of (z,,)nen, with limit
x. But since M is reflexive, the topologies o(M**, M*) and o(M, M*) coincide. So (z,,)nen
converges to x for the topology (M, M*).

Now, if f is any bounded linear functional on X, its restriction to M is of course
bounded on M. Therefore,

lim (f, z,) = (f, )

n—~0o0

So (2 )nen converges to x for o(X, X*). O
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