Ph.D. Qualifying Exam - Spring 2004

First problem

Suppose $f \in \mathrm{~L}^{1}(\mathbb{R})$. Let

$$
\forall x \in \mathbb{R} \quad g(x)=\int_{\mathbb{R}} \mathrm{e}^{-\mathrm{i} x y^{2}} f(y) \mathrm{d} y
$$

1. Prove that the integral exists for every x.
2. Prove that g is a continuous function.
3. Prove that there is a dense subset S of $\mathrm{L}^{1}(\mathbb{R})$ such that if $f \in \mathrm{~S}$, then

$$
\lim _{|x| \rightarrow+\infty} g(x)=0
$$

4. Prove that (\star) holds for any $f \in \mathrm{~L}^{1}(\mathbb{R})$.

Second problem

Suppose $(\mathrm{X}, \mathscr{A}, \mu)$ is a measure space and that $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a sequence in $\mathrm{L}^{1}(\mu)$ converging weakly. Prove that

$$
\forall \epsilon>0 \quad \exists \delta>0 \quad \forall \mathrm{~A} \in \mathscr{A} \quad\left(\mu(\mathrm{~A})<\delta \Longrightarrow \forall n \in \mathbb{N} \quad \int_{\mathrm{A}}\left|f_{n}\right| \mathrm{d} \mu \leqslant \epsilon\right)
$$

> Third problem

Let $f:(a, b) \longrightarrow \mathbb{R}$ be an arbitrary function. Let

$$
\mathrm{S}=\left\{x \in(a, b) \mid f^{\prime}(x) \text { exists and equals } 0\right\}
$$

Prove that the image $f(\mathrm{~S})$ of S under f has measure 0 .

Fourth problem

Let X be a metric space.

1. Prove that if X is countably compact, then X is compact.
2. Prove that if every continuous function on X is bounded, then X is compact.

Fifth problem

Prove that there exists an orthonormal basis \mathscr{B} of $\mathrm{L}^{2}([0,1])$ such that

$$
\forall f \in \mathscr{B} \quad \int_{0}^{1}|f(x)| \frac{\mathrm{d} x}{x}<\infty \quad \text { and } \quad \int_{0}^{1} f(x) \frac{\mathrm{d} x}{x}=0
$$

Sixth problem

Let $(\mathrm{X}, \mathscr{B}, \mu)$ be a finite measure space. Suppose that $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a sequence of functions in $\mathrm{L}^{1}(\mu)$, converging almost everywhere to an $\mathrm{L}^{1}(\mu)$ function f. Suppose also that

$$
\left\|f_{n}\right\|_{1} \xrightarrow[n \rightarrow \infty]{ }\|f\|_{1}
$$

1. Prove that for every measurable set A, $\int_{\mathrm{A}}\left|f_{n}\right| \mathrm{d} \mu \underset{n \rightarrow \infty}{ } \int_{\mathrm{A}}|f|$.
2. Prove that $\left\|f_{n}-f\right\|_{1} \xrightarrow[n \rightarrow \infty]{ } 0$.

Seventh problem

Suppose that $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence of continuous functions on $[0,1]$, converging pointwise to a continuous function f. Prove that the convergence is uniform.

Eighth problem

Let $\left(c_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers. Assume there are positive integers $\mathrm{N}_{k} \xrightarrow[k \rightarrow \infty]{ } \infty$ such that the trigonometric polynomials

$$
\mathrm{P}_{k}(t)=\sum_{j=-\mathrm{N}_{k}}^{\mathrm{N}_{k}}\left(1-\frac{|j|}{\mathrm{N}_{k}+1}\right) c_{j} \mathrm{e}^{\mathrm{i} j t}
$$

are nonnegative for all t. Prove that there exists a positive measure μ on \mathbb{T} such that

$$
\forall n \in \mathbb{Z} \quad c_{n}=\int_{\mathbb{T}} \mathrm{e}^{-\mathrm{i} n t} \mathrm{~d} \mu(t)
$$

Ninth problem

Let X be a vector space.

1. Prove that X has a Hamel basis (or algebraic basis).
2. If X is an infinite dimensional Banach space, prove that any Hamel basis must be uncountable.

Tenth problem

Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a bounded function such that

$$
\exists \mathrm{K}>0 \quad \forall x, h \in \mathbb{R} \quad|f(x+h)+f(x-h)-2 f(x)| \leqslant \mathrm{K}|h|
$$

Prove that

$$
\forall x, y \in \mathbb{R} \quad|f(x)-f(y)| \leqslant c\left(1+\ln ^{+} \frac{1}{|x-y|}\right)|x-y|
$$

where c is a constant depending only on K and $\|f\|_{\infty}$.

