Ph.D. Qualifying Exam – Spring 2004

First problem

Suppose $f \in L^1(\mathbb{R})$. Let

$$\forall x \in \mathbb{R}$$
 $g(x) = \int_{\mathbb{R}} e^{-ixy^2} f(y) \, \mathrm{d}y$

- 1. Prove that the integral exists for every x.
- 2. Prove that g is a continuous function.
- 3. Prove that there is a dense subset S of $L^1(\mathbb{R})$ such that if $f \in S$, then

$$\lim_{|x| \to +\infty} g(x) = 0 \tag{(\star)}$$

4. Prove that (\star) holds for any $f \in L^1(\mathbb{R})$.

Second problem

Suppose (X, \mathscr{A}, μ) is a measure space and that $(f_n)_{n \in \mathbb{N}}$ is a sequence in $L^1(\mu)$ converging weakly. Prove that

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall \mathbf{A} \in \mathscr{A} \qquad \left(\mu(\mathbf{A}) < \delta \implies \forall n \in \mathbb{N} \qquad \int_{\mathbf{A}} |f_n| \, \mathrm{d}\mu \leqslant \epsilon\right)$$

Third problem

Let $f:(a,b) \longrightarrow \mathbb{R}$ be an arbitrary function. Let $S = \{x \in (a,b) \mid f'(x) \text{ exists and equals } 0\}$ Prove that the image f(S) of S under f has measure 0.

Fourth problem

Let X be a metric space.

- 1. Prove that if X is countably compact, then X is compact.
- 2. Prove that if every continuous function on X is bounded, then X is compact.

Fifth problem

Prove that there exists an orthonormal basis ${\mathscr B}$ of $\mathrm{L}^2([0,1])$ such that

$$\forall f \in \mathscr{B}$$
 $\int_0^1 |f(x)| \frac{\mathrm{d}x}{x} < \infty$ and $\int_0^1 f(x) \frac{\mathrm{d}x}{x} = 0$

Sixth problem

Let (X, \mathscr{B}, μ) be a finite measure space. Suppose that $(f_n)_{n \in \mathbb{N}}$ is a sequence of functions in $L^1(\mu)$, converging almost everywhere to an $L^1(\mu)$ function f. Suppose also that

$$||f_n||_1 \xrightarrow[n \to \infty]{} ||f||_1$$

1. Prove that for every measurable set A, $\int_{\mathcal{A}} |f_n| \, \mathrm{d}\mu \xrightarrow[n \to \infty]{} \int_{\mathcal{A}} |f|.$

2. Prove that $||f_n - f||_1 \xrightarrow[n \to \infty]{} 0$.

Seventh problem

Suppose that $(f_n)_{n \in \mathbb{N}}$ is a decreasing sequence of continuous functions on [0, 1], converging pointwise to a continuous function f. Prove that the convergence is uniform.

Eighth problem

Let $(c_n)_{n\in\mathbb{N}}$ be a sequence of complex numbers. Assume there are positive integers $N_k \xrightarrow[k\to\infty]{} \infty$ such that the trigonometric polynomials

$$P_{k}(t) = \sum_{j=-N_{k}}^{N_{k}} \left(1 - \frac{|j|}{N_{k} + 1}\right) c_{j} e^{ijt}$$

are nonnegative for all t. Prove that there exists a positive measure μ on \mathbb{T} such that

$$\forall n \in \mathbb{Z}$$
 $c_n = \int_{\mathbb{T}} e^{-int} d\mu(t)$

Ninth problem

Let X be a vector space.

- 1. Prove that X has a Hamel basis (or algebraic basis).
- 2. If X is an infinite dimensional Banach space, prove that any Hamel basis must be uncountable.

Tenth problem

Suppose $f : \mathbb{R} \longrightarrow \mathbb{R}$ is a bounded function such that

$$\exists \mathbf{K} > 0 \quad \forall x, h \in \mathbb{R} \qquad \left| f(x+h) + f(x-h) - 2f(x) \right| \leqslant \mathbf{K} |h|$$

Prove that

$$\forall x, y \in \mathbb{R} \qquad \left| f(x) - f(y) \right| \leq c \left(1 + \ln^+ \frac{1}{|x - y|} \right) |x - y|$$

where c is a constant depending only on K and $||f||_{\infty}$.