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Ph.D. Qualifying Exam – Spring 2005

First problem

1. Let (B, ‖ ‖) be a normed space and A : B −→ B an invertible linear map such that
‖An‖ 6 c for all some constant c > 0 and all n ∈ Z. Prove that there exists an
equivalent norm on B with respect to which A is an isometry.

2. Let µ be a finite measure on [−1, 1] and assume that
∫
xkn dµ(x) = 0 for some

integer k and all non-negative integers n. Prove that if k is odd, µ = 0. What can
you say if k is even?

3. Prove that C (0, 1) is not reflexive.

4. Prove that C (0, 1) is not isomorphic – and in particular not isometric – to a uni-
formly convex Banach space.

Solution

1 Let
(
B, ‖ ‖

)
be a normed space and A be an invertible endomorphism of B such that

∃c > 0 ∀n ∈ Z ‖An‖ 6 c

Because of that, we know that

∀x ∈ B ∀n ∈ Z ‖Anx‖ 6 ‖An‖ ‖x‖ 6 c‖x‖ <∞ (1)

which allows us to define

∀x ∈ B N(x) = Sup
n∈Z

‖Anx‖

We first check that N is a norm on B.

• Let λ be a scalar and x ∈ B. Then

N(λx) = Sup
n∈Z

∥∥An(λx)
∥∥ = Sup

n∈Z

|λ| ‖Anx‖ = |λ| Sup
n∈Z

‖Anx‖ = |λ|N(x)

• Let x and y be in B. Then

∀n ∈ Z
∥∥An(x+ y)

∥∥ = ‖Anx+ Any‖ 6 ‖Anx‖ + ‖Any‖ 6 N(x) + N(y)

Hence N(x+ y) 6 N(x) + N(y)
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• Finally, notice that

∀x ∈ B ‖x‖ 6 N(x) (2)

Thus, if N(x) = 0, then ‖x‖ = 0 as well which in turn implies that x = 0.

N is a norm on B

Next, let’s check that A is an isometry for N. Notice that N was defined specifically
for that matter and this part is thus not hard to see:

∀x ∈ B N(Ax) = Sup
n∈Z

‖An+1x‖ = N(x)

A is an isometry for N

Finally, N and ‖ ‖ should be equivalent. A first step towards showing this was already
done when mentioning (2). And by (1), we have

∀x ∈ B N(x) 6 c ‖x‖

Hence ‖ ‖ and N are equivalent.

2 Let µ be a finite measure on [−1, 1], such that

∃k ∈ Z ∀n ∈ N

∫

[−1,1]

xkn dµ(x) = 0 (3)

Suppose first that k is odd and let X be the algebra generated by the function
x 7−→ xk. In other terms, f is in X if and only if f is of the form

x 7−→
N∑

n=0

anx
kn

Then X contains the constant function 1, and separates points, since if x1 6= x2 are in
[−1, 1], the function x 7−→ xk takes different values at x1 and x2. By Weirstrass’ theorem,
X is dense in C ([−1, 1]). Thus (3) generalizes to every continuous function on [−1, 1]:

∀f ∈ C ([−1, 1])

∫

[−1,1]

f dµ = 0

Since ‖µ‖ = Sup
f∈C ([−1,1])

‖f‖61

∫

[−1,1]

f dµ = 0

it follows that µ = 0
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Now suppose that k is even. This time the algebra X does not separate points in
[−1, 1], since it is formed of even functions. However, X separates points in [0, 1] and we
can thus extend (3) to all even functions on [−1, 1]:

∀f ∈ C ([−1, 1]) f even

∫

[−1,1]

f dµ = 0

And it looks like we cannot say much more than that.

3 By Riesz’s representation theorem, we know that the dual space of C (0, 1) can be
identified with the space M (0, 1) of signed measures on [0, 1]. More precisely, for every
linear functional ϕ on C (0, 1), there exists a unique signed measure µ on [0, 1] such that

∀f ∈ C (0, 1) 〈ϕ, f〉 =

∫

(0,1)

f dµ

We want to show that the dual of M (0, 1) contains strictly C (0, 1) so we have to come up
with a linear functional on M (0, 1) that cannot be represented by a continuous function.
There are probably various ways of cooking up such an example, and what follows is only
one of them.

Remember that L1(0, 1) sits inside M (0, 1) as a strict closed subspace.

Here is how it works: if f is an L1 function, we can define µf = f dx, i.e. µf is
the measure with density f relatively to the Lebesgue measure on [0, 1]. It should
have been seen in class as well that ‖µf‖M = ‖f‖L1, which shows at once that L1

is closed inside M (0, 1). And finally, one exhibits elements of M (0, 1), such as the
Dirac mass at 0, for example, that are not elements of L1(0, 1).

So L1(0, 1) is certainly not dense in M (0, 1). By the Hahn-Banach theorem, there is a
linear functional ϕ on M (0, 1), not identically 0, but whose restriction to L1(0, 1) is 0.
Suppose that C (0, 1) is reflexive. Then ϕ is represented by a function g ∈ C (0, 1), which
means:

∀µ ∈ M (0, 1) (ϕ, µ) = (µ, g) =

∫

[0,1]

g dµ and ‖ϕ‖ = ‖g‖∞

But from the Riesz representation theorem for Lp spaces, we know in particular that

‖g‖∞ = Sup
f∈L1

‖f‖=1

∫

[0,1]

g(x)f(x) dx = Sup
f∈L1

‖f‖=1

(ϕ, µf) = 0

Thus ‖ϕ‖ = 0, which contradicts the fact that ϕ is not trivial. Hence C (0, 1) is not
reflexive.

4 The Milmann-Pettis theorem states that any uniformly convex Banach space is reflex-
ive. Thus C (0, 1) is not uniformly convex, for any choice of equivalent norm.
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This theorem is sometimes proved in 205B, in lecture or in homeworks. Some-
times it is not, it all depends on who teaches the class. So whether or not you are
authorized to use it during quals is unclear. No matter what, it is still useful to
know that this result exists and this is why I quote it here.

Its proof is hard, but not insanely hard and you should probably be able to do
it by yourselves as a challenging exercise. It is done by using directly the definition
of reflexivity (and not by use of, for example, Kakutani’s theorem), requires good
knowledge weak topologies, and the use of Banach-Alaoglu-Bourbaki’s theorem.

Now back to the qual: Milmann-Pettis is, of course, a sledgehammer for this
question, which can be treated directly.

Here is an alternate, more direct, solution to this question. Remember that a Banach
space B is said to be uniformly convex if and only if

∀ǫ > 0 ∃δ > 0 ∀f, g ∈ B
(
‖f‖ = ‖g‖ = 1 and

∥∥∥f + g

2

∥∥∥ > 1− δ
)

=⇒ ‖f −g‖ < ǫ

Just take f and g to be the following functions:

-

6

0 11/2

1

-

6

0 11/2

1

Then f+g
2

and f − g respectively look like

-

6

0 11/2

1

-

6

0 11/2

1

−1

and we have ‖f‖ = 1 ‖g‖ = 1
∥∥∥f + g

2

∥∥∥ = 1 and ‖f − g‖ = 1

which contradicts the definition of uniform convexity. More precisely, if we take ǫ = 1
2
,

then for every positive δ, we have at the same time
∥∥f+g

2

∣∣ > 1 − δ and ‖f − g‖ > ǫ.
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Second problem

Let H be a Hilbert space and let T be a bounded operator on H . Show that T is
compact if and only if it is the limit, in the operator norm, of a sequence of finite rank
operators.

Solution

First, suppose that T is compact. Let ǫ be a positive real number. The image of the
unit ball of H can be covered with finitely many (say n) balls of radius ǫ. Thus there
exist points x1, . . . , xn in the unit ball of H , such that

T
(
BH

)
⊂

n⋃

k=1

B(Txk, ǫ)

Let P be the orthogonal projection on the finite-dimensional subspace spanned by Tx1,
. . . , Txn. Then PT is a linear operator on H of finite rank (its range is contained in the
range of P) and we proceed to show that ‖PT − T‖ 6 2ǫ, which will show that T is a
limit of finite rank operators.

Let x ∈ H be in the unit ball. Then Tx has to be in one of the balls B(Txk, ǫ) for
some k ∈ {1, . . . , n}:

‖Tx− Txk‖ 6 ǫ

Thus ‖PTx − Tx‖ 6 ‖PTx− Txk︸︷︷︸
=PTxk

‖ + ‖Txk − Tx‖ 6
∥∥P(Tx− Txk)

∥∥ + ǫ 6 2ǫ

and ‖PT − T‖ 6 2ǫ

Compact operators on a Hilbert space are limits of finite rank operators.

Conversely, suppose that there is a sequence (Tn)n∈N of finite rank operators converging
to T. Let ǫ be a positive real number. We know then that there exists an integer N such
that ‖TN − T‖ 6 ǫ.

The operator TN is of finite rank, hence compact. So TN

(
BH

)
can be covered by

finitely many balls B1, . . . , Bm of radius ǫ. Thus
(
TN

−1(Bi)∩BH

)
16i6m

is a cover of the

unit ball of H and
(
T

(
TN

−1(Bi)∩BH

))
16i6m

is a finite cover of T
(
BBH

)
. Let’s evaluate

the diameters of these sets.
Let i be an integer between 1 and m, and x and y be in TN

−1(Bi) ∩ BH . Then

‖Tx− Ty‖ 6 ‖Tx− TNx‖ + ‖TNx− TNy‖ + ‖TNy − Ty‖
The first and last term are less than ǫ because ‖T − TN‖ 6 ǫ. The middle term is less
than 2ǫ since TNx and TNy are in the ball Bi of radius ǫ. Hence
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‖Tx− Ty‖ 6 4ǫ

or in other words ∀i ∈ {1, . . . , m} diam
(
T

(
TN

−1(Bi) ∩ BH

))
6 4ǫ

Now, just choose a point xi in T
(
TN

−1(Bi) ∩ BH

)
for each i. What we just showed

ensures that

T
(
TN

−1(Bi) ∩ BH

)
⊂ B(xi, 4ǫ)

Hence, T
(
BH

)
can be covered by finitely many balls of radius 4ǫ: this set is totally

bounded, hence relatively compact since H is complete.

A limit of compact operators is compact.
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Third problem

Suppose B is a Banach space and K ⊂ B is a subset. Recall that its convex hull ch(K)
is the smallest convex subset containing K.

1. Prove that if K is compact, the closure ch(K) is compact as well.

2. Show that the set of indicator functions
{
1[τ,τ+ 1

5
] | τ ∈ T

}
is compact in L1(T) and

its convex hull is not.

Solution

Let B be a Banach space and K a subset of B. The convex hull of K is the smallest convex
subset of B containing K. It is also the intersection of all convex sets containing K, or
the set of all convex combinations of elements of K:

ch(K) =
{ n∑

i=1

aixi

∣∣ n ∈ N⋆ x1, . . . xn ∈ K a1, . . . , an ∈ [0, 1]
n∑

i=1

ai 6 1
}

1 Suppose that K is compact. Because B is complete, to show that ch(K) is compact, it
is enough to show that ch(K) is totally bounded. Let ǫ be a positive real number. Since
K is compact, it can be covered by finitely many balls of radius ǫ:

∃x1, . . . , xn ∈ K K ⊂
n⋃

i=1

B(xi, ǫ) = {x1, . . . , xn} + B(0, ǫ)

The closed convex hull of the set X = {x1, . . . , xn} is

ch(X) = ch(X) =
{ n∑

i=1

aixi

∣∣ a1, . . . , an ∈ [0, 1]
n∑

i=1

ai = 1
}

which is included in the image of the compact set [0, 1] under the continuous map

[0, 1]n −→ B

(a1, . . . , an) 7−→
n∑

i=1

aixi

Hence ch(X) is compact and can be covered by finitely many balls of radius ǫ:

∃y1, . . . , ym ∈ ch(X) ⊂ ch(K) ch(X) ⊂
m⋃

i=1

B(yi, ǫ)

But ch(X)+B(0, ǫ) is convex (easy to check) and contains X+B(0, ǫ). Hence it contains
ch

(
X + B(0, ǫ)

)
. It follows that:
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ch(K) ⊂ ch
(
X + B(0, ǫ)

)
⊂ ch(X) + B(0, ǫ) ⊂

m⋃

i=1

B(yi, ǫ) + B(0, ǫ) ⊂
m⋃

i=1

B(yi, 2ǫ)

The convex hull of K can be covered by finitely many balls of radius 2ǫ, for any given ǫ.
Hence because B is complete,

If K is compact, ch(K) is compact.

2 We know from class that translations are continuous on L1, which means precisely that

∀f ∈ L1(T) lim
τ→0

∫

T

∣∣f(t+ τ) − f(t)
∣∣dt = 0

In particular, taking f = 1[0, 1
5
], the function ϕ defined by

∀τ ∈ T ϕ(τ) = 1[τ,τ+ 1

5
]

is continuous. The set of indicator functions
{
1[τ,τ+ 1

5
] | τ ∈ T

}
is the image of T (compact)

by ϕ (continuous). Therefore,
{
1[τ,τ+ 1

5
] | τ ∈ T

}
is compact.
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Fourth problem

Let (Aj)16j6N be a collection of Lebesgue-measurable subsets of [0, 1] such that
µ(Aj) >

1
2

for each j. Let a ∈ (0, 1
2
) and denote

Ea =
{
x ∈ [0, 1] | x ∈ Aj for more than aN values of j

}

Prove that µ(Ea) >
1 − 2a

2(1 − a)

and that this estimate is the best possible (if it is to apply for all N).

Solution

Following the hint, consider the function F =
N∑

k=1

1Ak
. Then for every integer n,

{F = n} = {x ∈ [0, 1] | x is in exactly n of the Aj’s}

Therefore {F 6 n} = {x ∈ [0, 1] | x is in at most n of the Aj’s}

and {F 6 aN} = {x ∈ [0, 1] | x is in at most aN of the Aj’s}
since F only takes integer values. It follows that

{F > aN} = {x ∈ [0, 1] | x is in more than aN of the Aj ’s} = Ea

Thus Ea is measurable and we found a relationship between this set and F. Now, since
all the Aj’s have measure greater than 1

2
, we have on the one hand

N

2
=

N∑

k=1

1

2
6

N∑

k=1

µ(Ak) =
N∑

k=1

∫

[0,1]

1Ak
dµ =

∫

[0,1]

F dµ (1)

On the other hand,
∫

[0,1]

F dµ =

∫

[F>aN]

F dµ+

∫

[F6aN]

F dµ 6

∫

Ea

F dµ+ aN

∫

[F6aN]

dµ (2)

Let’s look at each term separately:
∫

Ea

F dµ =

N∑

k=1

∫

Ea

1Aj
dµ =

N∑

k=1

∫

Ea∩Aj

dµ 6 Nµ(Ea)

while aN

∫

[F6aN]

dµ = aNµ(F 6 aN) = aN
(
1 − µ(Ea)

)
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Pluging this back in (2) yields
∫

[0,1]

F dµ 6 Nµ(Ea) + aN − aNµ(Ea) = aN + N(1 − a)µ(Ea)

and then reinjecting in (1) gives us

N

2
6 aN + N(1 − a)µ(Ea)

Conclusion: µ(Ea) >
1 − 2a

2(1 − a)
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Fifth problem

The Hausdorff-Young inequality on the line states that if 1 6 p 6 2 and 1
p

+ 1
q

= 1,
then

f ∈ Lp(R) =⇒ f̂ ∈ Lq(R) and ‖f̂‖q 6 ‖f‖p (1)

Prove that the converse is true: (1) implies that 1
p

+ 1
q

= 1 and p ∈ [1, 2].

Solution

Let p > 1 be a real number and suppose that there exists a q > 1 such that

∀f ∈ Lp(R) f̂ ∈ Lq(R) and ‖f̂‖q 6 ‖f‖p

First let f 6= 0 be in S (R) (the Schwartz space) and λ be a positive real number. Then

f is in Lp(R), f̂ is in Lq(R) with ‖f̂‖q 6= 0 by injectivity of the Fourier transform. Define

∀x ∈ R fλ(x) = f(λx)

Then ‖fλ‖p =

( ∫

R

∣∣f(λx)
∣∣p dx

)1/p

=

( ∫

R

∣∣f(x)
∣∣pdx

λ

)1/p

= λ−1/p‖f‖p

∀ξ ∈ R f̂λ(ξ) =

∫

R

f(λx)e−ixξ dx =

∫

R

f(x)e−ixξ/λ dx

λ
=

1

λ
f̂
( ξ
λ

)

and ‖f̂λ‖q =
1

λ
× λ1/q‖f̂‖q

We chose here to take f in the Schwartz space, for a technical reason: we then
know that f̂ is also in S (R), which allows us to use the integral formula in order

to relate f̂λ and f̂ like we did earlier.
If f is only taken in Lp(R), then all we know is that f̂ is defined in the sense

of distributions and we have then to work in that framework. We would still have
been able to find that f̂λ = 1

λ
f̂1/λ, but it would have been a bit more tedious.

We know that ‖f̂λ‖q 6 ‖fλ‖p

that is λ−1+1/q‖f̂‖q 6 λ−1/p‖f‖p

or ∀λ > 0 ‖f̂‖q 6 λ1−(1/p+1/q)‖f‖p

If 1 − (1
p

+ 1
q
) > 0, letting λ tend to 0 yields ‖f̂‖q = 0, which is a contradiction.

If 1 − (1
p

+ 1
q
) < 0, let λ tend to +∞ in order to get the same contradiction. Hence

1

p
+

1

q
= 1
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Now to proving that p has to be between 1 and 2.

This part is extremely long and tedious, but I could not come up with anything
better to solve it. There may be a trick to solve this question very easily, but
I am starting to doubt it given the time I spent on it. It is my opinion that,
whoever submitted that problem for the qualifying exam, seriously underestimated
its difficulty. Anyway, you have been warned.

If z is a complex number in the closed upper half-plane H = {Im z > 0}, define

∀x ∈ R ϕz(x) = eizx

Notice that if z ∈ R⋆
+, then ϕz is a continuous function of absolute value 1. Thus it does

not have a Fourier transform (at least in the classical sense). If z ∈ iR⋆
+, then ϕz is a

Gaussian function. And we know how to compute the Fourier transform of such functions:

∀α > 0 ∀ξ ∈ R ϕ̂iα(ξ) =

∫

R

e−αx2−iξx dx =

√
π

α
e−

ξ2

4α (2)

Of course, no one is expected to remember this precise formula. But you
should be able to recover it quickly. The easiest way, I believe, is by solving the
differential equation satisfied by the Fourier transform. This equation is obtained
by differentiating with respect to ξ under the integral and integrating by parts:

ϕ̂iα
′(ξ) = −i

∫

R

xe−αx2

e−iξx dx =
i

2α

∫

R

(−2αx)e−αx2

e−iξx dx

=
i

2α

([
e−αx2

e−iξx
]+∞
−∞ + iξ

∫

R

e−αx2−iξx dx
)

= − ξ

2α
ϕ̂iα(ξ)

Therefore ϕ̂iα(ξ) = K e−
ξ2

4α with K =

∫

R

e−αx2

dx

K2 is then computed by using polar coordinates:

K2 =

∫

R2

e−α(x2+y2) dx dy =

∫ 2π

0

∫
+∞

0

re−αr2

dr dθ = −2π

2α

[
e−αr2]+∞

0
=
π

α

Hence ϕ̂iα(ξ) =

√
π

α
e−

ξ2

4α

In order to rewrite (2) in terms of iα only, we choose the usual branch of the square
root in C \ R−, that is real on the positive real axis. We then get:

ϕ̂iα(ξ) =

√
π

−i (iα)
e−

iξ2

4iα = eiπ/4

√
π

iα
ϕ −1

4iα
(ξ)

Real Analysis 12 Spring 2005 Qualifying exam



David Lecomte dslecomte@gmail.com

which can be rewritten ∀z ∈ iR⋆
+ ϕ̂z = eiπ/4

√
π

z
ϕ−1

4z
(3)

Now, let ψ be a fixed C ∞ function with compact support included in, say, [−1, 1]. Let
ξ be a fixed real number. Define

∀z ∈ H h(z) = ϕ̂zψ(ξ) =

∫ 1

−1

ϕz(x)ψ(x) e−iξx dx

This function of a complex variable is perfectly well defined and continuous, since ϕzψ is
C ∞ with support in [−1, 1]. Moreover, h is holomorphic in the interior of H :

We used here a theorem from complex analysis:
Theorem 1: Let K be a compact set in Rn and Ω an open set in C. Let (x, z) 7−→
f(x, z) be a function defined in K×Ω, measurable with respect to the first variable

and holomorphic with respect to the second. Then

z 7−→
∫

K

f(x, z) dx

defines a holomorphic function in Ω.

There is another version of this theorem, which we should need later, for when
the integration occurs on a non-compact set:
Theorem 2: Let Ω be an open set in C. Let (x, z) 7−→ f(x, z) be a function

defined on Rn ×Ω, measurable in the first variable and holomorphic in the second.

Suppose that there exists a function g, integrable over Rn, such that

∀x ∈ Rn ∀z ∈ Ω
∣∣f(x, z)

∣∣ 6 g(x)

Then z 7−→
∫

Rn

f(x, z) dx

defines a holomorphic function in Ω.

Our goal is now to compute h for every z ∈ H \ R, using formula (3) and analytic
continuation. We let ǫ be a positive real number and

Ω =
{
z ∈ H \ R | ǫ < |z| < M

}

Suppose that z is purely imaginary, with positive imaginary part (z ∈ iR⋆
+). Then ϕz

and ψ are Schwarz functions (all we really need is L2, actually) and we know that

h(z) = ϕ̂z ⋆ ψ̂(ξ) =

∫

R

ϕ̂z(u)ψ̂(ξ − u) du

= eiπ/4

√
π

z

∫

R

e−
iu2

4z ψ̂(ξ − u) du
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But the expression on the righthandside makes sense for every z ∈ Ω and defines a
holomorphic function. Indeed, the part with the square root is no problem; as for the
integral, it is dealt with using Theorem 2, since:

∀z = |z| eiθ ∈ Ω ∀u ∈ R
∣∣e− iu2

4z

∣∣ =
∣∣∣e−

iu2

4|z|
e
−iθ

∣∣∣ = e−
u2

sin θ
4|z| 6 e−

u2
sin θ
4ǫ 6 1

Since the two functions are holomorphic in Ω and agree on the imaginary axis, they are
equal:

∀z ∈ H \ R |z| > ǫ h(z) = φ̂zψ(ξ) = eiπ/4

√
π

z

∫

R

e−
iu2

4z ψ̂(ξ − u) du

This is true for every positive ǫ, thus

∀z ∈ H \ R φ̂zψ(ξ) = eiπ/4

√
π

z

∫

R

e−
iu2

4z ψ̂(ξ − u) du

We are now able to estimate this Fourier transform:

∀z ∈ H \ R
∣∣φ̂zψ(ξ)

∣∣ 6

√
π

|z|

∫

R

∣∣ψ̂(u)
∣∣du

But h is continuous on the closed upper half-plane, as stated earlier. Thus this estimate
extends in particular to R+:

∀λ > 0 ∀ξ ∈ R
∣∣ϕ̂λψ(ξ)

∣∣ =

∣∣∣∣
∫ 1

−1

eiλx2

ψ(x) e−iξx dx

∣∣∣∣ 6
K√
λ

Conclusion: lim
λ→+∞

∥∥ϕ̂λψ
∥∥
∞ = 0

Now we can go back to solving the problem. Suppose that p > 2. The Fourier
transform ϕ̂λψ is in the Schwartz space, since ϕλψ is in Schwartz. Thus it is in Lp and
bounded, and we have:

∥∥ϕ̂λψ‖p
p =

∫

R

∣∣ϕ̂λψ
∣∣p =

∫

R

∣∣ϕ̂λψ
∣∣2 ∣∣ϕ̂λψ

∣∣p−2
6

∥∥ϕ̂λψ
∥∥p−2

∞
∥∥ϕ̂λψ

∥∥2

2

Note how we used the fact that p − 2 > 0 in this computation. Now, using Parseval’s
formula and the fact that ϕλ has absolute value 1:

∥∥ϕ̂λψ
∥∥2

2
= ‖ϕλψ‖2

2 = ‖ψ‖2

and therefore
∥∥ϕ̂λψ‖p

p 6
∥∥ϕ̂λψ

∥∥p−2

∞ ‖ψ‖2
2 −−−−−→

λ→+∞
0

We know that the Fourier inversion formula holds for Schwartz functions, so the double
Fourier transform of ϕλψ is x 7−→ ϕλψ(−x), which has same Lq norm as ϕλψ. So by the
inverted Hausdorff-Young inequality (1),

‖ϕλψ‖q 6
∥∥ϕ̂λψ

∥∥
p
−−−−−→

λ→+∞
0
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And we have our contradiction, since ‖ϕλψ‖q does not depend on λ:

‖ϕλψ‖q
q =

∫

R

|ψ|q

Conclusion: (1) implies that 1
p

+ 1
q

= 1 and 1 6 p 6 2.
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Sixth problem

1. A distribution µ on T is positive if 〈µ, f〉 > 0 for every non-negative f ∈ C ∞(T).
Show that a positive distribution is a measure.

2. Assume fn ∈ L2(0, 1), n ∈ N and ‖fn‖ 6 1. Prove that

µ
[
|fn| > n2/3

]
<

1

n4/3

and conclude that for every positive ǫ, there exists N ∈ N such that

µ
[
|fn| 6 n2/3 ∀n > N

]
> 1 − ǫ

Solution

1 Let µ be a distribution on T, that is a continuous linear functional on C ∞(T), and
suppose that µ is positive. That is

∀f ∈ C ∞(T) f > 0 〈µ, f〉 > 0

We will show that µ extends to a bounded linear functional on C (T), which in turn implies
that µ is a measure, by Riesz’ representation theorem.

Let f be a real-valued function in C ∞(T). We write 1 for the constant function equal
to 1. Then ‖f‖∞ 1− f and ‖f‖∞ 1+ f are both nonnegative on T. Thus

〈µ, ‖f‖∞ 1− f〉 > 0 and 〈µ, ‖f‖∞ 1+ f〉 > 0

and it follows that
∣∣〈µ, f〉

∣∣ 6 ‖f‖∞ 〈µ,1〉

Now, if f a complex-valued C ∞ function on T, we write that f = ℜf + iℑf . Then
∣∣〈µ, f〉

∣∣ 6
∣∣〈µ,ℜf〉

∣∣ +
∣∣〈µ,ℑf〉

∣∣ 6 2〈µ,1〉 ‖f‖∞
This estimate, valid for every C ∞(T) function, combined with the fact that C ∞(T) is
dense in C (T) (for example, it contains trigonometric polynomials), tells us that µ has a
unique extension to C (T), that satisfies

∀f ∈ C (T)
∣∣〈µ, f〉

∣∣ 6 2〈µ, 1〉 ‖f‖∞
By Riesz’ representation theorem, there exists a unique signed measure ν on T such that

∀f ∈ C (T) 〈µ, f〉 =

∫

T

f dν

µ a measure.
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2 Let (fn)n∈N be a sequence of L2(0, 1) functions such that ‖fn‖2 6 1 for every n. Let n
be an integer. We have

µ
[
|fn| > n2/3

]
= µ

[
|fn|2 > n4/3

]
=

∫

[|fn|2>n4/3]

dµ = n−4/3

∫

[|fn|2>n4/3]

n4/3 dµ

< n−4/3

∫

[|fn|2>n4/3]

|fn|2 dµ 6 n−4/3‖fn‖2
2

Hence µ
[
|fn| > n2/3

]
< n−4/3

Now, let ǫ be positive. Since the series
∑
n−4/3 converges, there exists an integer N

such that
∑

n>N

1

n4/3
< ǫ

Then µ
( ⋃

n>N

[
|fn| > n2/3

])
6

∑

n>N

1

n4/3
< ǫ

and µ
[
|fn| 6 n2/3 | n > N

]
= 1 − µ

( ⋃

n>N

[
|fn| > n2/3

])
> 1 − ǫ
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Problem 7

Let (fn)n∈N be an orthonormal sequence in L2(0, 1). Let Sn = 1
n

n∑
m=1

fm.

1. Prove that ‖Sn‖2 = 1
n
. It follows that if

∑
1
λj

< ∞, and in particular if λj =

[
j ln2 j

]
, then

∑
|Sλj

|2 converges almost everywhere, and Sλj
converges to 0 almost

everywhere.

2. If N ∈ (λj , λj+1), then SN =
λj

N
Sλj

+ 1
N

N∑
m=λj+1

fm. Use 6.2 to estimate the sum and

deduce that (Sn)n∈N converges almost everywhere to 0.

Solution

1 Let n be an integer. Because f1, . . . , fn are orthonormal, we have

‖Sn‖2 =
1

n2

n∑

m=1

‖fm‖2 =
1

n

Let (λj)j∈N be a sequence of positive integers such that
∑

1
λj

converges and let C be its

sum. For example, take λj = [j ln2 j], as the problem suggests. Let

∀k ∈ N Ak =
[ ∞∑

j=1

|Sλj
|2 > k

]
and A =

[ ∑
|Sλj

|2 diverges
]

so that A =

∞⋂

k=1

Ak and µ(A) 6 µ(Ak) for every k

Using the same strategy as in problem 6.b, we show that

µ(Ak) 6
1

k

∫

[0,1]

∞∑

j=1

|Sλj
|2 dµ =

1

k

∞∑

j=1

‖Sλj
‖2 =

C

k

and it follows that ∀k ∈ N⋆ µ(A) 6
C

k
so µ(A) = 0

Thus The series
∑

|Sλj
|2 converges almost everywhere

and (Sλj
)j∈N converges to 0 almost everywhere.

2
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Problem 8

Let B be the unit ball in R3, G = 1B its indicator function, and

g(x) =

∫

R2

G(x, y, z) dy dz

1. Compute g(x).

2. Show that ĝ(ξ) = O( 1
|ξ|3 ). (This is more than probably false)

3. Show that Ĝ(ξ, η, ζ) = O
(

1
(ξ2+η2+ζ2)3/2

)
.

4. Let Fn(x, y, z) = sin2(nr)G(x, y, z) and fn(x) =

∫

R2

Fn(x, y, z) dy dz. Prove that

(fn)n∈N converges uniformly to g
2
.

Solution

1 Computing g is not too much of a problem. Let x be a real number. If |x| > 1, there is
no chance for (x, y, z) to be in the unit ball of R3, whatever y and z are. Thus g(x) = 0.

If |x| 6 1, then (x, y, z) belongs to B if and only if

y2 + z2 6 1 − x2

so ∀(y, z) ∈ R2 G(x, y, z) = 1 ⇐⇒ (y, z) ∈ D(0,
√

1 − x2)

Otherwise, G(x, y, z) is 0. So g(x) is simply the area of the disk centered at 0, with radius√
1 − x2:

∀x ∈ R g(x) = π(1 − x2)1[−1,1](x)

4 Let n be a positive integer and define

∀(x, y, z) ∈ R3 Fn(x, y, z) = sin2(nr)G(x, y, z)

and ∀x ∈ R fn(x) =

∫

R2

Fn(x, y, z) dydz

Fix x ∈ R. As explained in question 1, (y, z) 7−→ G(x, y, z) is 0 if |x| > 1, and is the
indicator function of the disk D(0,

√
1 − x2) if |x| 6 1. Thus

fn(x) =





0 if |x| > 1∫

D(0,
√

1−x2)

sin2(nr) dydz if |x| 6 1
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and fn = 0 = g
2

when |x| > 1, which of course gives us the uniform convergence for free.
Now let’s focus on the case where |x| 6 1 and switch to polar coordinates in order to
compute the integral:

fn(x) =

∫ 2π

0

∫ √
1−x2

0

ρ sin2(n
√
x2 + ρ2) dρdθ = 2π

∫ √
1−x2

0

ρ sin2(n
√
x2 + ρ2) dρ

Proceed next with the substitution

u =
√
x2 + ρ2 ρ2 = u2 − x2 ρ dρ = u du

so that fn(x) = 2π

∫ 1

|x|
u sin2(nu) du = 2π

∫ 1

|x|

u

2

(
1 − cos(2nu)

)
du

= π

∫ 1

|x|
u du− π

∫ 1

|x|
u cos(2nu) du =

π

2

√
1 − x2 − π

∫ 1

|x|
u cos(2nu) du

fn(x) =
g(x)

2
− π

∫ 1

|x|
u cos(2nu) du

All that remains is to show that the integral converges to 0 uniformly in x. This is done,
for example, by integration by parts:

∫ 1

|x|
u cos(2nu) du =

1

2n

[
u sin(2nu)

]1

|x| −
1

2n

∫ 1

|x|
sin(2nu) du

The functions involved on the righthandside are less than 1 (remember that we are con-
sidering the case |x| < 1), therefore

∣∣∣∣
∫ 1

|x|
u cos(2nu) du

∣∣∣∣ 6
3

2n

This bound being independent of x, the claim is proved:
∣∣∣∣
∫ 1

|x|
u cos(2nu) du

∣∣∣∣ tends to 0 uniformly in x.

Therefore (fn)n∈N converges uniformly to g
2

on R.
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Problem 9

Let ∀x ∈ R f(x) =

∞∑

n=0

cos 102nx

10n

1. Prove that f is Hölder 1
2
.

2. Prove that f is nowhere differentiable.

3. Can a Lipschitz function be nowhere differentiable?

Solution

Of course, f is well defined and is continuous since the series converges normally:

∀x ∈ R ∀n ∈ N

∣∣∣cos 102nx

10n

∣∣∣ 6
1

10n

1 Let x and h be real numbers. We have

f(x+ h) − f(x) =
∞∑

n=0

cos 102n(x+ h) − cos 102nx

10n

Since f is 2π
100

-periodic, we may assume that |h| 6
2π
100

. We cut this sum in two parts, one
between 0 and N, the other one between N+1 and ∞, then estimate each part separately,
and finally choose N cleverly in order to get the Hölder 1

2
inequality required:

∣∣f(x+h)−f(x)
∣∣ 6

N∑

n=0

∣∣ cos 102n(x+ h) − cos 102nx
∣∣

10n
+

∞∑

n=N+1

∣∣ cos 102n(x+ h) − cos 102nx
∣∣

10n

Each term of the first sum is estimated through the mean value theorem:
∣∣ cos 102n(x+ h) − cos 102nx

∣∣ 6 102n|h|
and each term of the second sum is roughly estimated

∣∣ cos 102n(x+ h) − cos 102nx
∣∣ 6 2

so that
∣∣f(x+ h) − f(x)

∣∣ 6 |h|
N∑

n=0

10n + 2

∞∑

n=N+1

1

10n

We have
N∑

n=0

10n = 10N
N∑

n=0

1

10n
6 10N

∞∑

n=0

1

10n
=

10N+1

9
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and

∞∑

n=N+1

1

10n
=

1

10N+1

∞∑

n=0

1

10n
=

1

9 × 10N

Hence
∣∣f(x+ h) − f(x)

∣∣ 6
10N+1|h|

9
+

2

9 × 10N
=

√
|h|
9

(
10N+1

√
|h| + 2

10N
√

|h|

)

This computation is valid for every integer N. Now is time to choose it in order to optimize
this inequality. Let’s take N to be the only integer such that

1

10N+1
6

√
|h| < 1

10N

Then 10N+1
√
|h| < 10 and

1

10N
√

|h|
6 10

and we finally get
∣∣f(x+ h) − f(x)

∣∣ 6
30

9

√
|h|

2 Let x be in
[
0, 2π

100

)
and suppose that f is differentiable at x. Then, if (yk)k∈N and

(zk)k∈N are sequences converging to x, such that yk 6 x < zk or zk 6 x < yk for every k,
we have

lim
k→∞

f(x) − f(yk)

x− yk
− f ′(x) = 0 and lim

k→∞

f(x) − f(zk)

x− zk
− f ′(x) = 0

So there exist sequences (ǫk)k∈N and (ηk)k∈N tending to 0, such that

∀k ∈ N f(x) − f(yk) = (x− yk)
(
f ′(x) + ǫk

)

and ∀k ∈ N f(x) − f(zk) = (x− zk)
(
f ′(x) + ηk

)

Thus f(zk) − f(yk) = (zk − yk)f
′(x) + (x− yk)ǫk + (zk − x)ηk

and
f(zk) − f(yk)

zk − yk

− f ′(x) =
x− yk

zk − yk

ǫk +
zk − x

zk − yk

ηk

But yk 6 x 6 zk or zk 6 x < yk so that

0 6 |x− yk| 6 |zk − yk| and 0 6 |zk − x| 6 |zk − yk|

So
∣∣∣f(zk) − f(yk)

zk − yk
− f ′(x)

∣∣∣ 6 ǫk + ηk

which proves that lim
k→∞

f(zk) − f(yk)

zk − yk
= f ′(x)
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In order to show that f is not differentiable at x, we will exhibit two sequences (yk)k∈N

and (zk)k∈N that contradict this result. Let’s do this.

Let k be an integer. The collection of intervals
{[

2pπ
102k ,

2(p+1)π
102k

) ∣∣ 0 6 p < 102k−2
}

covers the interval [0, 2π
100

) so there exists (a unique) p such that

2pπ

102k
6 x <

2(p+ 1)π

102k

We then define

yk =
(2p+ 1)π

102k
and zk =





2pπ

102k
if x < yk

2(p+ 1)π

102k
if x > yk

so that either zk 6 x < yk or yk 6 x < zk

Assume, for example, that we are in the first case. The second case would be studied

exactly the same. We want to look at every ratio
cos 102nzk − cos 102nyk

10n(zk − yk)
and see how

each of them behaves. Notice that

zk − yk = − π

102k

There are three cases to look at.

• n > k: We have

102nzk = 2pπ 102(n−k) and 102nyk = (2p+ 1)π 102(n−k)

which are even multiples of π. Therefore these numbers have same cosine and

∀n > k
cos 102nzk − cos 102nyk

10n(zk − yk)
= 0

• n = k: We have

102kzk = 2pπ and 102kyk = (2p+ 1)π

Hence
cos 102kzk − cos 102kyk

10k(zk − yk)
=

−2 · 10k

π

• n < k: We simply use the mean value estimate:

∣∣∣cos 102nzk − cos 102nyk

10n(zk − yk)

∣∣∣ 6
102n(zk − yk)

10n(zk − yk)
= 10n
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Thus
k−1∑

n=0

∣∣∣cos 102nzk − cos 102nyk

10n(zk − yk)

∣∣∣ 6

k−1∑

n=0

10n
6

10k

9

From what precedes, we see that

∣∣∣f(zk) − f(yk)

zk − yk

∣∣∣ =
∣∣∣

k−1∑

n=0

cos 102nzk − cos 102nyk

10n(zk − yk)
− 2 · 10k

π

∣∣∣

Using the triangle inequality:

∣∣∣f(zk) − f(yk)

zk − yk

∣∣∣ >
2 · 10k

π
−

∣∣∣
k−1∑

n=0

cos 102nzk − cos 102nyk

10n(zk − yk)

∣∣∣ > 10k ×
( 2

π
− 1

9

)

We would have the same estimate if we had made the other choice for zk. So this lower
bound is valid for every k, and since 2

π
− 1

9
is positive,

and lim
k→∞

∣∣∣f(zk) − f(yk)

zk − yk

∣∣∣ = +∞

This contradicts the existence of f ′(x). So

f is nowhere differentiable.

3 A Lipshitz function is absolutely continuous, hence differentiable almost everywhere.
Thus it cannot be nowhere differentiable.
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Problem 10

Let B be a Banach space and S : B −→ C ([0, 1]) a linear map such that, for every
sequence (vn)n∈N of elements of B converging to 0, (Svn)n∈N converges pointwise to 0.
Prove that S is bounded.

Solution

B and C ([0, 1]) are Banach spaces, so the tool to show that S is bounded is of course
teh closed graph theorem. Let (vn)n∈N be a sequence in B, converging to some v ∈ B and
such that (Svn)n∈N converges (uniformly) to some f ∈ C ([0, 1]).

The sequence (vn − v)n∈N converges in B to 0. Therefore, (Svn − Sv)n∈N converges
pointwise to 0. In other terms, (Svn)n∈N converges pointwise to Sv. But we also know
that it converges uniformly (hence pointwise) to f . Thus f = Sv and the convergence
towards Sv is uniform.

This achieves showing that S has closed graph;

S is a bounded operator.
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